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Biomass valorization represents a simple way to reduce Green House Gases emissions. However, the 
biomass-to-energy field is limited by high gaseous emission concentrations. Innovative abatement 
technologies can make gaseous emissions close to zero. In this work, three different NO2 abatement 
technologies were assessed and compared. A deterministic approach was used to estimate NO2 
concentrations using experimental concentrations at the chimney for a 20 kWe biomass gasifier. The gasifier 
chimney was described as an equivalent stack. The pollutant propagation was simulated with a Gaussian 
plume dispersion model. On this purpose, the unknown equivalent stack flow rate in the model was adjusted 
using the available data of NO2 on the ground, considering the changing of the air stability between nighttime 
and daytime and the variable wind direction. Thanks to pollutants dispersion modeling, the evaluation of the 
optimal abatement technology was possible, investigating the potential effect produced on people and the 
environment. Results show a bioscrubber technology as the best one to reduce NO2 concentrations at 100, 
1000, 3000 m from the emission point of 74, 75, 70 %, respectively. 

1. Introduction 
Cogeneration or Combined Heat and Power (CHP) definition is the simultaneous generation of two different 
forms of useful energy by one primary energy source. Cogeneration can be a solution for energy saving and 
environmental preservation, due to the application of a heat exchangers kit to absorb and recover exhaust 
heat (Sofia et al., 2020c). In this sense, cogeneration plants can achieve energy efficiency levels around 90% 
and could reduce greenhouse gas emissions by up to 250 million tonnes by 2020 (Sofia et al., 2020a). Many 
research studies have been conducted in recent years to improve the economic and environmental efficiency 
and effectiveness of biomass cogeneration systems (Sofia et al., 2013). However, the biomass-to-energy field 
is limited by the high gaseous emissions that can emit (Sonarkar and Chaurasia, 2019). In particular, PM (10 
and 2.5), CO and NOx are considered having concentrations higher than small power plants fed by fossil 
sources (e.g., natural gas) (Petrov et al., 2017). Due to these reasons, biomass power plant emissions often 
represent a limit to the diffusion of these plants due to the lack of social acceptance (Giuliano et al., 2018b). 
Dispersion modeling was carried out for the estimation of NO2 concentrations from biomass power plants by 
Chusai et al. (2012), whereby biomass burning was the most influence (>90%) on the air quality respect fossil-
based sources. Petrov et al. (2017) studied the NO2 emissions from the small-scale biomass gasification plant 
with no engineered pollution controls, concluding that advanced high-efficiency pollution control devices are 
essential to lower emissions for emission sources located in a densely populated community. Biomass 
Combined heat and power systems are operated with solid fuels, such as residual lignocellulose material, 
grasses or fruits as well as more or less every other organic residue. The lignocellulosic biorefineries' waste 
solid material is valorized by cogeneration systems, as combustion or gasification of lignin-rich streams 
(Giuliano et al, 2018a). From gasification, the raw syngas is obtained and conditioned in order to feed an 
engine (La Villetta et al., 2017). Generally, small CHP plants (until 1 MWe) are used for domestic, local 
heating and residential buildings, while medium and large CHP plants (more than 2 MWe) are used for larger 
buildings, industrial sites or district heating grids. Biomass gasification plants with a size less than 200 kWe 
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can have a high diffusion if they guarantee air pollution levels less than traditional fossil-based equivalent 
plants. Thus, pollution monitoring technologies must be applied to model their spread (Sofia et al., 2018). 
Correct positioning of monitoring points for concentrations of pollutants allows the identification of the source 
of polluting emissions (Sofia et al., 2019). The mitigation of pollution also passes through the utilization of 
innovative and bio-based processes to produce thermal energy and electricity (Sofia et al., 2020b). In this 
work, a deterministic approach was used to estimate NO2 concentrations using experimental concentrations at 
the chimney for a 20 kWe biomass gasifier. The gasifier chimney was described as an equivalent stack. The 
pollutant propagation was simulated with a Gaussian plume dispersion model. On this purpose, the unknown 
equivalent stack flow rate in the model was adjusted using the available data of NO2 on the ground 
considering the changing of the air stability between nighttime and daytime and the variable wind direction. 
Thanks to pollutants dispersion modeling, the evaluation of the optimal abatement technology was possible, 
investigating the potential effect produced on people and the environment. 

1.1 Gaussian plume 

The NO2 dispersion after the gasification process has been described using a Gaussian Plume dispersion 
model. The concentration of gas aerosols at a certain point of coordinates x, y, z, from a continuous source 
with an emission height, H can be described by the following equation (Turner, 1970):  
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(1) 

Where Q is the uniform pollutant emission rate, g/s, u is the mean wind speed affecting the plume, m/s, σy is 
the plume distribution standard deviation in the horizontal direction, m, σz is the plume distribution standard 
deviation in the vertical direction, m, H is the effective emission height, m. 
Equation 1 is obtained assuming that the plume spread as a Gaussian distribution along the horizontal and 
vertical planes, and there is no deposition or reaction at the ground surface. 
The values of are σy and σz vary with the characteristics of the atmosphere, height above the surface, surface 
roughness, sampling time to evaluate the concentrations, wind speed, and the downwind distance from the 
source, x.  
Considering that the concentration of practical interest is that of fallout at ground level (z = 0) and on the 
centreline of the plume (y = 0), the concentration of pollutant, on the ground, C(x,0,0), in the geometric 
coordinates of point P(x, 0,0), downwind, considering all reflections of the plume is negligible, the Equation 1 
reduces to: 
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Most of the experimental activities promoted in the study of the dispersion of pollutants in the planet boundary 
layer (PBL) were aimed at obtaining useful data for the formulation of semi-empirical relationships to describe 
the two standard deviations of the dispersion as a function of the Stability Classes Atmospheric and downwind 
distance. This dependence implies that the semi-empirical relationships inferred are strictly related to the 
scheme used in the experimental surveys to define the Stability Classes. So, when employing a Gaussian 
Plume model, congruence between the definition of the Stability Class and the semi-empirical relationships 
used should be guaranteed. There have been many relationships proposed by various researchers, but only 
two are actually used in current modeling practice. However, it should be remembered that these correlations 
can be considered valid for leeward distances between 100 meters and 10 - 20 km. 
Among the relationship to calculate σy and σz, the most used are the Pasquill-Gifford correlations (Hossain, 
2014). The Pasquill-Gifford correlations were integrated by Turner (Turner, 1970), who obtained graphical 
elaborations that related the two standard deviations, σy and σz, to the downwind distance as a function of 
atmospheric stability classes (obtained through the schemes proposed by Pasquill-Turner). From these 
graphic representations, the analytical relationships were deduced. The analytical relationship most used in 
practice and for this study is proposed by Green et al. (Green et al., 1980), expressed as follows (Equation 3, 
4): = 1 +  
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The constants values (k1, k2, k3, k4, and k5) are reported in Table 1. Figure 1 presents the trend with the 
downwind distance of the horizontal and vertical standard deviation depending on the Atmospheric Stability 
Class. 

Table 1: Constants of Green correlations 

Stability class k1 k2 k3 k4 k5 
A 0.2500 927 0.189 0.1020 -1.918 
B 0.2020 370 0.162 0.0962 -0.101 
C 0.1340 283 0.134 0.0722 0.102 
D 0.0787 707 0.135 0.0475 0.465 
E 0.0566 1070 0.137 0.0335 0.624 

 
Atmospheric stability 
The concepts of stability, neutrality, and atmospheric instability are related to the physical conditions of the air 
mass dynamic balance. Atmospheric instability is a meteorological condition that favors the air particles’ 
vertical movements and, therefore, the polluting substances mixing, dispersion, and dilution. Conversely, a 
condition of atmospheric stability hinders these vertical motions, prevents mixing and dispersion, and favors 
the pollutant accumulation. An intermediate condition to the previous ones, therefore, represents a condition of 
neutrality. Conventionally, stability can be classified as A - highly unstable and B - unstable; C - slightly 
unstable and D - neutral; E - slightly stable and F - stable. The stability classes, according to Hossain 
(Hossain, 2014), are calculated based on wind speed, daytime solar radiation, and nighttime cloudiness. 

 

Figure 1: Gaussian Plume standard deviations value according to Pasquill-Gilfford 

1.2 Data implemented 

The Gaussian Plume dispersion model was calculated using a Matlab code developed for the present study.  
The NO2 mass flow rate Qout was calculated according to the following equation:  =    (5) 

Considering conditions at the gasifier outlet shown in Table 2. Where S is the gasifier section, Qin is the inlet 
mass flow rate, tf is the operating time and Tout is the outlet stream temperature. Cout represents the measured 
NO2 outlet concentration.  
 



Table 2: Conditions at the gasifier outlet 

S (m2) Qin (t/y) tf (h/y) Tout (°C) H (m) 
0.09 300 7200 800 3 

 
In this study, four different values of NO2 concentrations corresponding to four separation methods were 
investigated. In detail, the NO2 concentrations investigated were from the Eco20 gasifier, a Cyclone, a 
Washing Tower and, a Bioscrubber all considered at 20 kW (Table 3). 

Table 3: NO2 outlet concentrations 

Operation NO2 outlet concentration, mg/m3 
ECO20 gasifier 297.15 
Cyclone 289.6 
Washing Tower 237.5 
Bioscrubber 77.4 

 
The residual NO2 concentrations', evaluated at three different distances from the plant emission point, were 
calculated to investigate the effect of the Gaussian Plume dispersion. The distance investigated were 100 m, 
1000 m, and 3000 m. 
As described by Equation 1, the parameters to calculate the Gaussian Plume dispersion includes information 
about the wind field. Investigating the plant background, it was clear that the wind field characteristics is the 
prevailing one. This condition allows the wind comes from a prevailing wind direction that can fluctuate in a 
small range of degrees. The wind intensity and direction values were set as the average of the wind measured 
in the last year at the plant location (https://globalwindatlas.info/ ) and resulting from being equal to 5.5 m/s in 
the West-South-West direction. The stability class used in the case studied is the neutral class D. The neutral 
stability class is representative of the wind intensity value used and represents well both the diurnal and 
nocturnal conditions. The σy and σz values at the three distances considered were calculated considering the 
kn values in Table 1 for the D stability class. 

2. Results 
Figure 2 clearly shows the concentrations on the ground estimated by the Gaussian plume in conditions of 
atmospheric neutrality (class D). From the values shown in table 4 it can be seen how the Eco20 gasifier, the 
cyclone and the washing tower have similar trends. Starting from very similar values of NO2 concentrations, 
after 3000 m reach similar values. The Gaussian plume model applied to the bioscrubber returns a trend 
proportional to that of the operations analyzed above, albeit with lower values. In particular, after 100 m there 
is a reduction in the NO2 concentration ranging from 1.05% of the Eco20 gasifier to 1.10% of the bioscrubber; 
after 3000 m all the operations considered have decreased by 99.98% compared to the start. The maximum 
concentration is reached in all four cases at 50 m from the emission point. Concentrations decay occurs more 
rapidly with the bioscrubber reaching after about 1700 m concentrations values tending to zero, while for the 
other operations considered this reduction also extends beyond the 3000 m considered. 
The determination of the ground concentrations due to the dispersion of NO2 allows the identification of any 
critical areas in which to operate if necessary to reduce further the NO2 concentrations exiting the operations 
considered. Therefore, the dispersion of the Gaussian plume depends not only on the atmospheric conditions 
but also on the initial concentration measured at the emission point. With the same atmospheric stability 
conditions, the lower the concentration at the emission point, the less space will be necessary for the complete 
dispersion of NO2.  
 



 

Figure 2: Gaussian Plume standard deviations value according to Pasquill-Gilfford 

The concentration values estimated by the Gaussian plume model are strongly influenced by the atmosphere 
physical conditions. Atmospheric instability is a meteorological condition that favors the air particles vertical 
movements and, therefore, the mixing, dispersion and dilution of polluting substances. Conversely, a condition 
of atmospheric stability hinders these vertical motions, prevents mixing and dispersion and promotes the 
accumulation of pollutants. An intermediate condition to the previous ones therefore represents a condition of 
neutrality. 

Table 4: NO2 concentration results 

Operation NO2 concentration, mg/m3, at 
 0 m 100 m 1000 m 3000 m 
Eco20 Gasifier 297.14 294.01 0.51 0.03 
Cyclone 289.62 286.43 0.5 0.03 
Washing Tower 237.45 234.84 0.41 0.028 
Bioscrubber 77.38 76.52 0.13 0.009 

3. Conclusions 
In this work, A deterministic approach was used to estimate NO2 concentrations using experimental 
concentrations at the chimney for a 20 kWe biomass gasifier. Four different pollutant abatement systems were 
compared in terms of NO2 concentration at four different distances from the chimney. In particular, without 
specific abatement system case, cyclone, washing tower a bioscrubber technologies were considered thanks 
to the availability of experimental data. The Gaussian Plume dispersion model was used to estimate NO2 
concentrations at 100, 1000 and 3000 m from the chimney. Atmospheric stability and meteorology were 
considered in the analysis using the stability classes. Model results show the quick diffusion of pollutants 
considering the difference of concentrations between distances 100 and 1000 m. In this 900 m of distance 



NO2 concentrations decrease of about 99.8 %. At 3000 m the concentrations are less than 0.01 mg/m3. 
Comparison between four different abatement technologies leads to the bioscrubber as the optimal 
technology. Results show a bioscrubber technology as the best one to reduce NO2 concentrations at 100, 
1000, 3000 m from the emission point of 74, 75, 70 % respectively. This abatement process, together with the 
small scale CHP systems, can be the next generation of residual solid biomass utilization strategies to valorize 
solid waste from agricultural activities in the rural areas. 
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