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Singular anisotropic elliptic equations with
gradient-dependent lower order terms
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Abstract. We prove the existence of weak solutions for a general class of
Dirichlet anisotropic elliptic problems of the form

Au + Φ(x, u, ∇u) = Ψ(u, ∇u) + Bu + f

on a bounded open subset Ω ⊂ R
N (N ≥ 2), where f ∈ L1(Ω) is ar-

bitrary. Our models are Au = −∑N
j=1 ∂j(|∂ju|pj−2∂ju) and Φ(u, ∇u) =

(
1 +

∑N
j=1 aj |∂ju|pj

)
|u|m−2u, with m, pj > 1, aj ≥ 0 for 1 ≤ j ≤ N and

∑N
k=1(1/pk) > 1. The main novelty is the inclusion of a possibly singular

gradient-dependent term Ψ(u, ∇u) =
∑N

j=1 |u|θj−2u |∂ju|qj , where θj > 0
and 0 ≤ qj < pj for 1 ≤ j ≤ N . Under suitable conditions, we prove the
existence of solutions by distinguishing two cases: 1) for every 1 ≤ j ≤ N ,
we have θj > 1 and 2) there exists 1 ≤ j ≤ N such that θj ≤ 1. In the
latter situation, assuming that f ≥ 0 a.e. in Ω, we obtain non-negative
solutions for our problem.

Mathematics Subject Classification. 35J75, 35J60, 35Q35.

Keywords. Anisotropic operators, Boundary singularity, Leray–Lions
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1. Introduction and main results

Motivated by our study initiated in [16], in this paper we obtain existence
of solutions for general singular anisotropic elliptic equations in a bounded,
open subset Ω ⊂ R

N (N ≥ 2), subject to a homogeneous Dirichlet boundary
condition, u = 0 on ∂Ω. We impose no smoothness assumptions on the bound-
ary of Ω. The equations under consideration feature a low summability data
f ∈ L1(Ω), a lower-order term Φ(x, u,∇u) satisfying a “good sign” condition,
an “anisotropic natural growth” in the gradient and no upper bound restric-
tion in |u| (see (1.13) and (1.14)). The novelty of our work here consists in
the introduction of a possibly singular gradient-dependent term Ψ(u,∇u) (as
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in (1.3)) which cannot be incorporated in Φ and cannot be treated with the
arguments in [16]. The main contribution in this paper is to show that, under
suitable assumptions, our problem (1.11) admits solutions u in the anisotropic
Sobolev space W 1,−→p

0 (Ω) such that Φ(x, u,∇u) ∈ L1(Ω).

Let W 1,−→p
0 (Ω) be the closure of C∞

c (Ω) (the set of smooth functions with
compact support in Ω) with respect to the norm

‖u‖
W 1,−→p

0 (Ω)
=

N∑

j=1

‖∂ju‖Lpj (Ω),

where we assume that

1 < pj ≤ pj+1 < ∞ for every 1 ≤ j ≤ N − 1 and p < N. (1.1)

Here, p := N/
∑N

j=1(1/pj) is the harmonic mean of p1, . . . , pN . We write ∂ju

for the partial derivative ∂u/∂xj . We use W−1,−→p ′
(Ω) for the dual of W 1,−→p

0 (Ω)
and 〈·, ·〉 for the duality between W−1,−→p ′

(Ω) and W 1,−→p
0 (Ω). Since p < N , the

embedding W 1,−→p
0 (Ω) ↪→ Ls(Ω) is continuous for every s ∈ [1, p∗] and compact

for every s ∈ [1, p∗), where p∗ := Np/(N−p) stands for the anisotropic Sobolev
exponent (see Remark A.3 in the “Appendix”).

Before introducing our general problem in Sect. 1.2 and the main results
associated with it (Theorems 1.4 and 1.5), we present a model. For every
(t, ξ) ∈ R × R

N , we define

Φ0(t, ξ) =

⎛

⎝a0 +
N∑

j=1

aj |ξj |pj

⎞

⎠ |t|m−2t, (1.2)

where m > 1, a0 > 0, aj ≥ 0 for 1 ≤ j ≤ N , whereas

Ψ(t, ξ) =
N∑

j=1

|t|θj−2t |ξj |qj (1.3)

with θj > 0 and 0 ≤ qj < pj for all 1 ≤ j ≤ N .
Let h ∈ W−1,−→p ′

(Ω) and f ∈ L1(Ω) be arbitrary. The model for our
problem is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

−
N∑

j=1

∂j(|∂ju|pj−2∂ju) +Φ0(u,∇u) =Ψ(u,∇u) +h +f in Ω

u ∈ W 1,−→p
0 (Ω), Φ0(u,∇u) ∈ L1(Ω).

(1.4)

Regarding {θj}1≤j≤N , we distinguish two cases:
Case 1: (Non-singular) For every 1 ≤ j ≤ N , we have θj > 1.
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Case 2: (Mildly singular) We have θj ≤ 1 for some 1 ≤ j ≤ N . In this
case, we will impose some restrictions, such as h = 0 and f ≥ 0 a.e. in Ω, to
obtain non-negative solutions of (1.4).

The strongly singular case when θj ≤ 0 for some 1 ≤ j ≤ N requires
different ideas and techniques and will be considered elsewhere.
To give the notion of solution of (1.4), for v ∈ W 1,−→p

0 (Ω) ∩ L∞(Ω) and U0 ∈
W 1,−→p

0 (Ω), we define

IU0(v) :=
∫

{|U0|>0}
Ψ(U0,∇U0) v dx. (1.5)

By a solution of (1.4) we mean a function U0 ∈ W 1,−→p
0 (Ω), which is non-negative

in Case 2, such that Φ0(U0,∇U0) ∈ L1(Ω) and for every v ∈ W 1,−→p
0 (Ω)∩L∞(Ω),

we have IU0(v) ∈ R and
∫

Ω

N∑

j=1

|∂jU0|pj−2∂jU0 ∂jv dx +
∫

Ω

Φ0(U0,∇U0) v dx

= IU0(v) + 〈h, v〉 +
∫

Ω

fv dx.

(1.6)

We leverage Φ0 to get the existence of solutions of (1.4) for every f ∈ L1(Ω).
This is reflected in a (lower bound) condition on m > 1. To be precise, we
define

N−→a :=
{

1 ≤ j ≤ N : ajqj = 0,
θjpj

pj − qj
≥ p

}

,

P−→a := {1 ≤ j ≤ N : ajqj > 0, mj > 1} ,

where mj :=
pj − qj

qj

(
θjpj

pj − qj
− p

)

.

(1.7)

When either N−→a or P−→a is non-empty, we need m > 1 to satisfy

m > max
j∈N−→a

θjpj

pj − qj
and m > min {θj ,mj} for every j ∈ P−→a . (1.8)

We first illustrate our main results for the model problem in (1.4).

Theorem 1.1. Let (1.1)–(1.3) and (1.8) hold. Let h ∈ W−1,−→p ′
(Ω) and f ∈

L1(Ω) be arbitrary. When f = 0, we assume that min1≤j≤N aj > 0. As-
sume Case 1 or Case 2 and, in the latter, let h = 0 and f ≥ 0 a.e. in Ω.
Then, (1.4) has a solution U0 ∈ W 1,−→p

0 (Ω). Moreover, for f = 0, we have
that Φ0(U0,∇U0)U0 and Ψ(U0,∇U0)U0 belong to L1(Ω) and (1.6) holds for
v = U0.

Remark 1.2. Let us stress that if we take qj = 0 for every 1 ≤ j ≤ N , that is
P−→a = ∅, and θj ≥ p for some 1 ≤ j ≤ N , that is N−→a = ∅, then (1.8) reads as
m > maxj∈N−→a θj , which is the natural condition to expect when we look for
solutions in the energy space W 1,−→p

0 (Ω).



   58 Page 4 of 58 B. Brandolini and F. C. Ĉırstea NoDEA

1.1. A brief history of the problem

To understand how our results fit within the literature, we review what is
known in the isotropic case, where the model problem is the following:

⎧
⎨

⎩

−Δpu + λ|u|m−2u = c(u)|∇u|q + f in Ω,

u = 0 on ∂Ω.
(1.9)

Here, −Δpu = −div
(|∇u|p−2∇u

)
is the p-Laplacian operator with 1 < p <

∞, λ ≥ 0, m > 1, q ≥ 0 and c(·) is a continuous, non-negative function.
We start by considering λ = 0, c(·) constant and f summable enough. The
case 0 ≤ q < p − 1 is well-known. Indeed, the existence of a solution u in
W 1,p

0 (Ω) follows easily from a priori estimates, which are obtained using u
as a test function. This is part of the general theory of pseudo-monotone
operators by J. Leray and J.-L. Lions (see, for example, [41]). When f has
low summability, the main questions appear to be solved (see, for instance,
[7,10] and the references therein). The limiting case q = p − 1 is more difficult
since the operator −Δpu − c |∇u|q is not coercive for large c. This difficulty
has been first overcome by Bottaro and Marina in [14] when p = 2, and by
various authors in the nonlinear case (see, for example, [10,24]).

We now focus our attention on the case p − 1 < q ≤ p. When q = p, the
existence of a bounded weak solution is proved in [12] when f ∈ Lr(Ω) with
r > N/p. The case f ∈ LN/p(Ω) is treated in [29], which shows that there
exists a positive constant C = C(β,N, p) such that, if ‖f‖LN/p(Ω) < C, then

a solution u ∈ W 1,p
0 (Ω) of problem (1.9) exists such that exp

(
β

p−1 |u|
)

− 1 ∈
W 1,p

0 (Ω). Similar results are proved in the case p − 1 < q < p (see [28,38] and
the references therein).

The authors of [6] consider the case p − 1 < q ≤ p and look for sharp
assumptions on f in order to have a solution obtained as a limit of approxi-
mations (SOLA).

As far as we know, the more challenging case is q > p: it requires a com-
pletely different approach and it appears to be largely open (see, for instance,
[18] and the references therein).

The case λ = 0, c(u) = uα with α ≥ 0 and p = q = 2 is considered in
the paper [1]. Among other things, the authors prove that if α > 0 and f ≥ 0
is sufficiently small, then there exists a positive solution in H1

0 (Ω). In [2] (see
also [8,19,37]) any value of α ∈ R and 1 < q ≤ 2 is allowed. The authors prove
that: if α < −1/q and f ∈ L1(Ω), then there exists a distributional solution;
if −1/q ≤ α < 0 and f ∈ Lr(Ω) with r > N/2, then there exists a solution in
H1

0 (Ω); if α ≥ 0, then there exists a solution only if f is small enough. In [35]
the presence of an absorption term, which corresponds to λ > 0 and m = 2,
is used to prove the existence of a bounded solution in H1

loc(Ω) when α < 0,
p = q = 2 and f is a bounded, non-negative function. In [36] the authors allow
the presence of a sign-changing datum f and they discuss related questions as
the existence of solutions when the datum f ∈ Lr(Ω), r ≥ N/2, or it is less
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regular, or the boundedness of the solutions when r > N/2. Regarding the
existence of classical solutions, we refer the interested reader to [47].

Sharp a priori estimates for solutions to anisotropic problems with λ = 0
and c ≡ 0 have been proved by Cianchi [21] (see also [4,5]) by introducing
a convenient notion of rearrangement satisfying an anisotropic version of the
Pólya-Szegö principle. For other results on anisotropic problems we refer the
interested reader to the recent papers [3,20,22,25–27,30–32,37].

We end this section by recalling the paper [13] (see the pioneering papers
[23,39,43], as well as [15,17,33,40] for the anisotropic equivalent), where the
Dirichlet homogeneous problem relative to the equation −Δu = f/uα is con-
sidered. The authors distinguish three cases: 0 < α < 1, α = 1 and α > 1. The
first two cases can be treated using approximation techniques and providing
the existence of a unique solution in H1

0 (Ω). The validity of a strong compari-
son principle is a fundamental tool in order to prove the monotonicity, and also
a uniform bound far from zero, of the sequence of solutions of the approximate
problems. We stress that this kind of arguments cannot be generalized to the
anisotropic setting because of the lack of a strong maximum principle (see [45],
as well as [34,42] for existence results without the use of a strong maximum
principle).

1.2. Our general problem

We remark that the principal part in (1.4) is the anisotropic −→p -Laplacian oper-
ator Au = −∑N

j=1 ∂j(|∂ju|pj−2∂ju). It is the prototype of a coercive, bounded,

continuous and pseudo-monotone operator A : W 1,−→p
0 (Ω) → W−1,−→p ′

(Ω) in di-
vergence form

Au = −
N∑

j=1

∂j(Aj(x, u,∇u)). (1.10)

In this paper, we give existence results for general singular anisotropic elliptic
problems such as

{Au + Φ(x, u,∇u) +Θ(x, u,∇u) = Ψ(u,∇u) + Bu + f in Ω

u ∈ W 1,−→p
0 (Ω), Φ(x, u,∇u) ∈ L1(Ω),

(1.11)

where f ∈ L1(Ω) and A is as in (1.10) with Aj(x, t, ξ) : Ω × R × R
N →

R a Carathéodory function for each 1 ≤ j ≤ N (that is, measurable on Ω
for every (t, ξ) ∈ R × R

N and continuous in t, ξ for a.e. x ∈ Ω). Moreover,
Φ(x, t, ξ), Θ(x, t, ξ) : Ω × R × R

N → R are also Carathéodory functions. For
any r > 1, let r′ = r/(r − 1) be the conjugate exponent of r.

The conditions on A, Φ and Θ are similar to those in [16]. We assume
that there exist constants ν0, ν > 0 and non-negative functions ηj ∈ Lp′

j (Ω)
for 1 ≤ j ≤ N such that for a.e. x ∈ Ω, for all t ∈ R and every ξ, ξ̂ ∈ R

N , we
have
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N∑

i=1

Ai(x, t, ξ) ξi ≥ ν0

N∑

i=1

|ξi|pi [coercivity],

N∑

i=1

(
Ai(x, t, ξ) − Ai(x, t, ξ̂)

)(
ξi − ξ̂i

)
> 0 if ξ = ξ̂

[monotonicity],

|Aj(x, t, ξ)| ≤ ν

⎡

⎣ηj(x) + |t|p∗/p′
j +

(
N∑

i=1

|ξi|pi

)1/p′
j

⎤

⎦

[growth condition].

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.12)

We note that in the growth condition in (1.12), we take the greatest expo-
nent for |t| regarding the anisotropic Sobolev inequalities. For the pseudo-
monotonicity of A, see [16, Lemma 2.7].

Assume that there exist a constant CΘ > 0, a non-negative function
c ∈ L1(Ω) and a continuous non-decreasing function φ : R → R

+ such that for
a.e. x ∈ Ω and all (t, ξ) ∈ R × R

N ,

|Θ(x, t, ξ)| ≤ CΘ, t Φ(x, t, ξ) ≥ 0,

|Φ(x, t, ξ)| ≤ φ(|t|)
⎛

⎝
N∑

j=1

|ξj |pj + c(x)

⎞

⎠ , (1.13)

|Φ(x, t, ξ)| ≥ |Φ0(t, ξ)|, where Φ0is as in (1.2). (1.14)

Compared with [16], we have the extra assumption (1.14) to deal with the new
term Ψ in (1.3).

The operator B in (1.11) belongs to the general class BC introduced
in [16]. By BC we denote the class of bounded operators B : W 1,−→p

0 (Ω) →
W−1,−→p ′

(Ω) satisfying two properties:

(P1) The operator A − B from W 1,−→p
0 (Ω) into W−1,−→p ′

(Ω) is coercive in the
sense that

〈Au − Bu, u〉
‖u‖

W 1,−→p
0 (Ω)

→ ∞ as ‖u‖
W 1,−→p

0 (Ω)
→ ∞.

(P2) If u� ⇀ u and v� ⇀ v (weakly) in W 1,−→p
0 (Ω) as  → ∞, then

lim
�→∞

〈Bu�, v�〉 = 〈Bu, v〉.

We recall from [16] that our assumption (P2) is somehow reminiscent of (iii)
in the Hypothesis (II) of Theorem 1 in the celebrated paper [41] by Leray
and Lions. Every operator satisfying (P2) is strongly continuous (see [16]) and
thus pseudo-monotone (cf. [46, p. 586]). However, unlike A, the operator −B
is not necessarily coercive (see Example 1.2).

Let BC+ be the class of operators in BC satisfying the extra condition
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(P3) For ν0 > 0 in the coercivity condition of (1.12) and each k > 0, it
holds

ν0

N∑

j=1

‖∂ju‖pj

Lpj (Ω)
− 〈Bu, Tku〉 → ∞ as ‖u‖

W 1,−→p
0 (Ω)

→ ∞.

We use Tk for the truncation at height k, see (1.19).
To indicate that the operator A is associated with the class BC and BC+,

respectively, we shall write BC(A) and BC+(A), respectively. We recall from
[16] examples of B in BC(A).

Example. Let F ∈ L(p∗)′
(Ω) and h, h̃ ∈ W−1,−→p ′

(Ω) be arbitrary. Let ρ, αk ∈ R

for 0 ≤ k ≤ 4. For every u ∈ W 1,−→p
0 (Ω), we define

(1) Bu = h;
(2) Bu = F + ρ |u|ϑ−2u with 1 < ϑ < p if ρ > 0 and 1 < ϑ < p∗ if ρ < 0;
(3) Bu = (α0 + α1‖u‖b1

Lr(Ω) + α2|〈h̃, u〉|b2)(α3h + α4F ) with r ∈ [1, p∗); we
take b1 ∈ (0, p/p′

1) and b2 ∈ (0, p1 − 1) if α3 = 0; b1 ∈ (0, p − 1) and
b2 ∈ (0, p1/p′) if α3 = 0;

(4) Bu = −∑N
j=1 ∂j

(
βj + |u|σj−1u

)
, where βj ∈ Lp′

j (Ω) and σj ∈ (0, p/p′
j)

for all 1 ≤ j ≤ N .
In each example, B belongs to the class BC((1 − ε)A) for every ε ∈ [0, 1).

Definition 1.3. A function U0 ∈ W 1,−→p
0 (Ω), which is non-negative in Case 2,

is said to be a solution of (1.11) if Φ(x,U0,∇U0) ∈ L1(Ω) and for every v ∈
W 1,−→p

0 (Ω) ∩ L∞(Ω),

SU0,Θ,f (v) = 〈BU0, v〉 if Ψ = 0, (1.15)
SU0,Θ,f (v) = 〈BU0, v〉 + IU0(v) if Ψ = 0, (1.16)

where IU0(v) and SU0,Θ,f (v) are given respectively by (1.5) and

SU0,Θ,f (v) := 〈AU0, v〉 +
∫

Ω

Φ(x,U0,∇U0) v dx

+
∫

Ω

Θ(x,U0,∇U0) v dx −
∫

Ω

fv dx.

To simplify the notation, we have not included A and Φ in the symbol
SU0,Θ,f (v). When f = 0, we simply write SU0,Θ(v) instead of SU0,Θ,f (v).

Assuming (1.12) and (1.13), we have shown in [16, Theorem 1.3] that
when Ψ = 0 and f = 0, then (1.11) has a solution U0 for every B in the class
BC(A). Moreover, Φ(x,U0,∇U0)U0 ∈ L1(Ω) and (1.15) holds for v = U0. If,
in addition, there exist constants l, γ > 0 such that

|Φ(x, t, ξ)| ≥ γ

N∑

j=1

|ξj |pj (1.17)

for all |t| ≥ l, a.e. x ∈ Ω and all ξ ∈ R
N , then (1.11) with Ψ = 0 has at least

a solution for every f ∈ L1(Ω) and B in the class BC+(A).
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In this paper, under suitable hypotheses, we prove the existence of so-
lutions for (1.11) with Ψ in (1.3) (see Theorems 1.4 and 1.5 below). Let
v± = max{±v, 0} be the positive and negative parts of v. In Case 2, we look
for non-negative solutions of (1.11) and assume, in addition, that

〈Bv, v−〉 ≥ 0, 〈Bw, z〉 ≥ 0 for all v, w, z ∈ W 1,−→p
0 (Ω)

with w, z ≥ 0,

f(x) ≥ 0 ≥ Θ(x, t, ξ) a.e. x ∈ Ω and all (t, ξ) ∈ R × R
N

Φ(x, 0, 0) = Aj(x, 0, 0) = 0 a.e. x ∈ Ω, for all 1 ≤ j ≤ N.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1.18)

Without further mention, we henceforth understand that (1.18) holds when-
ever Case 2 occurs.

Our main results are stated below.

Theorem 1.4. Let (1.1), (1.3), (1.8), and (1.12)–(1.14) hold. Let f = 0 in
(1.11). Suppose that B belongs to the class BC((1 − ε)A) for some ε ∈ (0, 1).
Assume Case 1 or Case 2. Then, there exists a solution U0 ∈ W 1,−→p

0 (Ω)∩Lm(Ω)
of (1.11). Moreover, both Φ(x,U0,∇U0)U0 and Ψ(U0,∇U0)U0 belong to L1(Ω)
and (1.16) holds for v = U0.

When N−→a ∪P−→a = ∅, then Theorem 1.4 gives that (1.11) admits a solution
for every m > 1.

If in the framework of Theorem 1.4, we have min1≤j≤N aj > 0 (in relation
to (1.14)), then we obtain the existence of solutions for (1.11) for every f ∈
L1(Ω) and B in the class BC+((1 − ε)A) for some ε ∈ (0, 1). More precisely,
we prove the following result.

Theorem 1.5. Let (1.1), (1.3), (1.8) and (1.12)–(1.14) hold and, in addition,
min1≤j≤N aj > 0. Let f ∈ L1(Ω). Suppose that B belongs to the class BC+((1−
ε)A) for some ε ∈ (0, 1). Assume Case 1 or Case 2. Then, (1.11) has at least
a solution u0 ∈ W 1,−→p

0 (Ω).

1.3. Notation

As usual, in the following sections, we will denote by C a positive constant,
the value of which can change from line to line.
For k > 0, we let Tk : R → R stand for the truncation at height k, that is,

Tk(s) = s if |s| ≤ k, Tk(s) = k
s

|s| if |s| > k. (1.19)

Moreover, we define Gk : R → R by

Gk(s) = s − Tk(s) for every s ∈ R, (1.20)

so that Gk = 0 on [−k, k].
For every u ∈ W 1,−→p

0 (Ω) and for a.e. x ∈ Ω, we define

Aj(u)(x) := Aj(x, u(x),∇u(x)) for every 1 ≤ j ≤ N,

Φ(u)(x) := Φ(x, u(x),∇u(x)), Φ0(u)(x) = Φ0(u(x),∇u(x)),

Θ(u)(x) := Θ(x, u(x),∇u(x)), Ψ(u)(x) := Ψ(u(x),∇u(x)).
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For u, v, w ∈ W 1,−→p
0 (Ω), we introduce Eu(v, w) as follows

Eu(v, w) :=
N∑

j=1

[Aj(x, u,∇v) − Aj(x, u,∇w)] ∂j(v − w). (1.21)

We set −→p = (p1, p2, . . . , pN ) and −→p ′ = (p′
1, p

′
2, . . . , p

′
N ).

As usual, χω stands for the characteristic function of a set ω ⊂ R
N .

1.4. Strategy for the proof of Theorems 1.4 and 1.5

We first take f = 0 in (1.11) and in the framework of Theorem 1.4, we obtain a
solution U0 (with additional properties that Φ(U0)U0 ∈ L1(Ω) and Ψ(U0)U0 ∈
L1(Ω), allowing us to take v = U0 in (1.16)). The difficulty in our analysis arises
from the interaction of the absorption term Φ with the gradient-dependent
lower order term Ψ. We point out that Ψ cannot be integrated into Φ since
they have the same sign but appear in the opposite sides of (1.11). Moreover,
Ψ(u) is not part of Bu either (except in very special cases such as qj = 0
and 1 < θj < p for all 1 ≤ j ≤ N). Hence, we cannot tackle Ψ(u) directly in
the framework of our paper [16]. We overcome this obstacle by approximating
Ψ(u) by bounded functions Ψn(u) with ‖Ψn(u)‖L∞(Ω) ≤ Nn for every n ≥ 1
(see Sect. 2).

We consider a sequence of approximate problems corresponding to (1.11)
with f = 0 and Ψ replaced by {Ψn}n≥1. Then, for each n ≥ 1, by applying
Theorem 1.3 in [16], we obtain the existence of a solution Un ∈ W 1,−→p

0 (Ω) ∩
Lm(Ω) for the approximate problem

{AU + Φ(U) + Θ(U) = Ψn(U) + BU in Ω,

U ∈ W 1,−→p
0 (Ω), Φ(U) ∈ L1(Ω).

(1.22)

Moreover, Un is non-negative in Case 2 in view of the hypothesis (1.18) (see
Lemma 2.1). We capture the properties of Un in Proposition 2.3 to be proved
in Sect. 4. We are able to get a suitable upper bound for

∫
Ω

Ψ(Un)Un dx via
Lemma 4.1. To show that {Un}n is bounded in W 1,−→p

0 (Ω) and also in Lm(Ω),
we rely on (1.8) and the property (P1) of B in the class BC((1− ε)A). Hence,
up to a subsequence, {Un}n≥1 converges weakly in both W 1,−→p

0 (Ω) and Lm(Ω)
to a function U0 ∈ W 1,−→p

0 (Ω)∩Lm(Ω). It turns out that U0 is a good candidate
for a solution of (1.11). In addition to Ψn(Un), we need to handle another
gradient-dependent term, namely, Φ(Un). To deal with these terms, we show
in Proposition 2.4 that, up to a subsequence,

Un → U0 (strongly) in W 1,−→p
0 (Ω) as n → ∞. (1.23)

To prove (1.23), it is enough to show that for a subsequence of {Un}n, we have

EUn
(U±

n , U±
0 ) → 0 in L1(Ω) as n → ∞, (1.24)

where we define

EUn
(U±

n , U±
0 ) =

N∑

j=1

[Aj(x,Un,∇U±
n ) − Aj(x,Un,∇U±

0 )]∂j(U±
n − U±

0 ).



   58 Page 10 of 58 B. Brandolini and F. C. Ĉırstea NoDEA

Indeed, from (1.24) we obtain that, up to a subsequence, ∇U±
n → ∇U±

0 a.e. in
Ω and U±

n → U±
0 (strongly) in W 1,−→p

0 (Ω) as n → ∞. For details, see Lemma A.4
in the “Appendix”.

Broadly speaking, the proof of (1.24) is inspired by the approach in the
celebrated paper [9] dealing with Leray–Lions operators from W 1,p

0 (Ω) into
W−1,p′

(Ω). We point out that, in our case, the analysis becomes more techni-
cally involved given the anisotropic setting with the modified growth condition
in (1.12) and the inclusion of B and Ψ. Based on the property (P2) of B and a
careful use of the absorption term, we show that lim supn→∞ ‖Gk(Un)‖

W 1,−→p
0 (Ω)

≤ Wk, where limk→∞ Wk = 0, see Lemma 5.2. This is an essential tool not
only in the proof of (1.24) but also in that of Lemma A.4 (see Remark A.5).
The technical details in the proof of Proposition 2.4 are deferred to Sect. 6.

Then, by Propositions 2.3 and 2.4, we can apply Vitali’s Theorem to
obtain that

Φ(Un) → Φ(U0) in L1(Ω) as n → ∞. (1.25)

We end the proof of Theorem 1.4 by showing that, up to a subsequence of Un,
we have

IU0(v) = lim
n→∞

∫

Ω

Ψn(Un) v dx = SU0,Θ(v) − 〈BU0, v〉 (1.26)

for every v ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω). For details see Sect. 3.

We remark that it is possible to make the proof of Theorem 1.4 work with
only the strong convergence in W 1,−→p

0 (Ω) for the truncations Tk(Un), namely,
proving that up to a subsequence,

Tk(Un) → Tk(U0) in W 1,−→p
0 (Ω) as n → ∞, for every k ≥ 1. (1.27)

It is this latter strategy that we adopted in our paper [16] for Ψ = 0
(inspired by [11]), first to obtain the existence of solutions for f = 0 and then
building upon it also for f ∈ L1(Ω). But unlike Theorem 1.4, the approxima-
tion argument for f = 0 in [16] concerned the absorption term Φ.

For Theorem 1.5 dealing with a low summability term f ∈ L1(Ω), we use
a well-known approximation: we replace f in (1.11) by a sequence {fn}n≥1 of
L∞(Ω)-functions such that |fn| ≤ |f | for each n ≥ 1 and fn → f in L1(Ω)
as n → ∞. For the approximate problem, we use Theorem 1.4 to gain a
solution un ∈ W 1,−→p

0 (Ω). The additional assumption min1≤j≤N aj > 0 and
the extra property (P3) for B in BC+((1 − ε)A) are needed to obtain in
Proposition 7.3 that the solutions un are uniformly bounded in W 1,−→p

0 (Ω) with
respect to n. Since here we test the approximate problem with Tk(un) (and not
un, which is potentially unbounded), we can only derive that {Φ(un)}n (and
not {Φ(un)un}n≥1) is uniformly bounded in L1(Ω) uniformly with respect to
n. However, this suffices to get that Φ(u0) ∈ L1(Ω), where u0 is the weak limit
in W 1,−→p

0 (Ω) of (a subsequence of) {un}n≥1. In Proposition 7.4, we establish
the analogue of (1.27). To this end, we use [16, Lemma A.5] (and a diagonal
argument) to reduce the proof to showing that for every k ≥ 1 and, up to
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subsequence,

Eun
(Tk(un), Tk(u0)) → 0 in L1(Ω) as n → ∞. (1.28)

(For the definition of Eu, see (1.21).) To prove (1.28), we adapt the approach
in our paper [16] by testing the approximate problem with

v = (Tk(un) − Tk(u0)) exp
(
λ (Tk(un) − Tk(u0))2

)

for λ = λ(k) > 0 large enough. The new ingredient here corresponds to getting
a good control of Iun

for this test function (see Lemma 7.6).
Bearing in mind the strong convergence of Tk(un) to Tk(u0) in W 1,−→p

0 (Ω)
as n → ∞, we can obtain the analogue of (1.25) and then pass to the limit
in the approximate problem to obtain suitable counterparts of (1.26) (see
Lemma 7.7 for details). Putting together the above results, we conclude that
u0 ∈ W 1,−→p

0 (Ω) is a solution of (1.11).

1.5. Structure of the paper

In Sect. 2 we consider the sequence of approximate problems (1.22) and we
establish the existence of solutions, which are non-negative in Case 2. We
state the a priori estimates and the strong convergence of such solutions in
W 1,−→p

0 (Ω), deferring their proofs to Sect. 4 and 6, respectively. Based on these
properties, we complete the proof of Theorem 1.4 in Sect. 3. In Sect. 5 we
include several results that are invoked in Sect. 6. Sect. 7 contains the proof
of Theorem 1.5. For the reader’s convenience, in the “Appendix” we present
some details which are modifications of arguments known in the literature or
already contained in our recent paper [16].

2. Approximate problems

We always assume that (1.1), (1.3), (1.12) and (1.13) hold. Unless otherwise
stated, we also understand that Φ satisfies (1.14) and B belongs to the class
BC((1 − ε)A) for some ε ∈ (0, 1) (see Sect. 2.2 below for an exception). We
first take f = 0 in (1.11).

2.1. Setting up the approximation

We introduce the sets

J1 := {1 ≤ j ≤ N : θj > 1}, J2 := {1 ≤ j ≤ N : 0 < θj ≤ 1}.

Case 1 (respectively, Case 2) in Theorem 1.4 corresponds to J2 = ∅ (respec-
tively, J2 = ∅).

Let n ≥ 1 be arbitrary. For each 1 ≤ j ≤ N , we define

Hj,n(t1, t2) =
|t1|θj−2t1 |t2|qj

1 + 1
n |t1|θj−1|t2|qj

for all (t1, t2) ∈ (0,∞) × R. (2.1)

In Case 1, for each 1 ≤ j ≤ N , we extend Hj,n(t1, t2) on (−∞, 0] × R

with the same formula as in (2.1). In Case 2, for each j ∈ J1 (when J1 is
not empty), we extend Hj,n(t1, t2) on (−∞, 0] ×R so that it becomes an even
function in the first variable.
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In Case 1 or Case 2, we define Ψn from W 1,−→p
0 (Ω) into L∞(Ω) as follows

Ψn(u) := Ψn,J1(u) + Ψn,J2(u), (2.2)

where Ψn,J1(u) and Ψn,J2(u) are functions from Ω to R given by

Ψn,J1(u)(x) :=
∑

j∈J1

Hj,n(u(x), ∂ju(x)),

Ψn,J2(u)(x) :=
∑

j∈J2

Hj,n (|u(x)| + 1/n, ∂ju(x)) .
(2.3)

Clearly, Ψn(u) ∈ L∞(Ω) for all u ∈ W 1,−→p
0 (Ω) and ‖Ψn(u)‖L∞(Ω) ≤ Nn.

As explained in Sect. 1.4, we consider the approximate problem (1.22).

2.2. Existence of solutions for (1.22)

We point out that for the existence of solutions of (1.22), we do not need Φ
to satisfy (1.14). Moreover, the operator B can be taken in the class BC(A)
(rather than BC((1 − ε)A) for some ε ∈ (0, 1)).

Lemma 2.1. Let (1.1), (1.3), (1.12) and (1.13) hold. Suppose that B belongs to
the class BC(A). Assume Case 1 or Case 2. For every n ≥ 1, problem (1.22)
admits a solution Un, which in addition satisfies Φ(Un)Un ∈ L1(Ω) and

SUn,Θ(Un) =
∫

Ω

Ψn(Un)Un dx + 〈BUn, Un〉. (2.4)

Moreover, in Case 2, we have Un ≥ 0 a.e. in Ω.

Proof. By applying Theorem 1.3 in [16], with Θ there replaced by Θ − Ψn,
we obtain that (1.22) has a solution Un (in the sense of Definition 1.3 with
Ψ = 0), satisfying

SUn,Θ(v) =
∫

Ω

Ψn(Un) v dx + 〈BUn, v〉 (2.5)

for all v ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω). Moreover, Φ(Un)Un ∈ L1(Ω) and (2.4) holds.

We now show that in Case 2, we have Un ≥ 0 a.e. in Ω. Since U−
n may not be

in L∞(Ω), we cannot directly use v = U−
n in (2.5). However, for every k > 0,

we have Tk(U−
n ) ∈ W 1,−→p

0 (Ω) ∩ L∞(Ω). Hence, by taking v = Tk(U−
n ) in (2.5),

we obtain that

SUn,Θ(Tk(U−
n )) =

∫

Ω

Ψn(Un)Tk(U−
n ) dx + 〈BUn, Tk(U−

n )〉. (2.6)

Notice that ‖Tk(U−
n )‖

W 1,−→p
0 (Ω)

≤ ‖U−
n ‖

W 1,−→p
0 (Ω)

for all k > 0.
Moreover, ∂j(Tk(U−

n )) → ∂jU
−
n a.e. in Ω as k → ∞, for every 1 ≤ j ≤ N ,

so that Tk(U−
n ) ⇀ U−

n (weakly) in W 1,−→p
0 (Ω) as k → ∞. Since AUn and BUn

belong to W−1,−→p ′
(Ω), it follows that

lim
k→∞

〈AUn, Tk(U−
n )〉 = 〈AUn, U−

n 〉,
lim

k→∞
〈BUn, Tk(U−

n )〉 = 〈BUn, U−
n 〉.
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Recalling that Φ(Un)Un ∈ L1(Ω), ‖Ψn(Un)‖L∞(Ω) ≤ Nn and (1.13) holds,
from the Dominated Convergence Theorem, we can pass to the limit k → ∞
in (2.6) to find that

SUn,Θ(U−
n ) =

∫

Ω

Ψn(Un)U−
n dx + 〈BUn, U−

n 〉. (2.7)

In view of (1.18), we see that the right-hand side of (2.7) is non-negative. Using
also the coercivity condition in (1.12), we infer that the left-hand side of (2.7)
is bounded above by

−
⎛

⎝ν0

N∑

j=1

∫

{Un<0}
|∂jUn|pj dx +

∫

{Un<0}
Φ(Un)Un dx

+
∫

{Un<0}
Θ(Un)Un dx

)

.

(2.8)

From the sign-conditions on Φ and Θ in (1.13) and (1.18), respectively, we
see that all terms contained in the round brackets of (2.8) are non-negative.
Hence, meas ({Un < 0}) = 0 and so Un ≥ 0 a.e. in Ω. �

Remark 2.2. If, in addition, Φ satisfies (1.14), then for the solution Un of (1.22)
provided by Lemma 2.1, we have Un ∈ Lm(Ω). This follows from the property
Φ(Un)Un ∈ L1(Ω).

2.3. Strong convergence of Un

Throughout this section, we work in the framework of Theorem 1.4. Then,
Lemma 2.1 and Remark 2.2 give that for every n ≥ 1, the approximate problem
(1.22) has a solution Un ∈ W 1,−→p

0 (Ω) ∩ Lm(Ω). In Proposition 2.3 we derive
essential a priori estimates in W 1,−→p

0 (Ω) and in Lm(Ω) for the sequence of
solutions {Un}n≥1, which up to a subsequence, converges weakly to some U0

both in W 1,−→p
0 (Ω) and in Lm(Ω). In Proposition 2.4, we show that, up to a

subsequence, {Un}n≥1 converges strongly to U0 in W 1,−→p
0 (Ω) as n → ∞, see

(2.12). We aim to prove that U0 is a solution of (1.11) with f = 0. In Sects. 4
and 6, respectively, we prove Propositions 2.3 and 2.4, which are the crux of
the proof of Theorem 1.4.

Proposition 2.3. Let (1.1), (1.3), (1.8) and (1.12)–(1.14) hold. Let f = 0. Sup-
pose that B belongs to the class BC((1 − ε)A) for some ε ∈ (0, 1). Assume
Case 1 or Case 2.

(a) There exists a constant C > 0 such that for every n ≥ 1, the solution Un

given by Lemma 2.1 satisfies

‖Un‖
W 1,−→p

0 (Ω)
+ ‖Un‖Lm(Ω) +

∫

Ω

Φ(Un)Un dx

+
∫

Ω

Ψ(Un)Un dx ≤ C.

(2.9)
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(b) There exists U0 ∈ W 1,−→p
0 (Ω) ∩ Lm(Ω) such that, up to a subsequence, as

n → ∞
Un ⇀ U0 (weakly) both in W 1,−→p

0 (Ω) and in Lm(Ω),
Un → U0 a.e. in Ω.

(2.10)

Proposition 2.4. In the framework of Proposition 2.3, up to a subsequence, we
have

∇Un → ∇U0 a.e. in Ω as n → ∞, (2.11)

Un → U0 (strongly) in W 1,−→p
0 (Ω) as n → ∞. (2.12)

Remark 2.5. Under the same assumptions as in Proposition 2.3, by Fatou’s
Lemma we immediately infer that Φ(U0) ∈ L1(Ω). Furthermore, using Fatou’s
Lemma and (2.9)–(2.11), we find that Φ(U0)U0 and Ψ(U0)U0 belong to L1(Ω).

3. Proof of Theorem 1.4 completed

Let m satisfy (1.8) and f = 0. We show that the function U0 in Proposition 2.4
is a solution of (1.11). Once this is established, we readily obtain that (1.16)
holds for v = U0 in both Case 1 and Case 2 with a reasoning similar to
Lemma 2.1. Indeed, by taking v = Tk(U0) in (1.16) and letting k go to infinity,
we get the claim.

We now prove (1.16). As already pointed out in Sect. 1.4, we just need
to check (1.26) for every v ∈ W 1,−→p

0 (Ω) ∩ L∞(Ω). We first establish the second
identity in (1.26), that is

lim
n→∞

∫

Ω

Ψn(Un) v dx = SU0,Θ(v) − 〈BU0, v〉. (3.1)

Proof of (3.1). Since Un → U0 and ∇Un → ∇U0 a.e. in Ω as n → ∞, we have

Θ(Un) → Θ(U0) and Aj(Un) → Aj(U0) a.e. in Ω (3.2)

for 1 ≤ j ≤ N . Let v ∈ W 1,−→p
0 (Ω)∩L∞(Ω) be arbitrary. Now, Θ satisfies (1.13).

Thus, by the Dominated Convergence Theorem, we obtain that Θ(Un) v →
Θ(U0) v in L1(Ω) as n → ∞. Since {Aj(Un)}n≥1 is uniformly bounded in
Lp′

j (Ω) with respect to n, from (3.2) we get that, up to a subsequence,

Aj(Un) ⇀ Aj(U0) (weakly) in Lp′
j (Ω) as n → ∞ (3.3)

for every 1 ≤ j ≤ N . It follows that limn→∞〈AUn, v〉 = 〈AU0, v〉. Using that
Un ⇀ U0 (weakly) in W 1,−→p

0 (Ω) as n → ∞, the property (P2) for the operator
B yields that limn→∞〈BUn, v〉 = 〈BU0, v〉. Thus, by passing to the limit as
n → ∞ in (2.5), we gain (3.1) whenever

Φ(Un) → Φ(U0) (strongly) in L1(Ω) as n → ∞. (3.4)

Since Φ(Un) → Φ(U0) a.e. in Ω as n → ∞ and Φ(U0) ∈ L1(Ω) (see Re-
mark 2.5), by Vitali’s Theorem, it is enough to show that {Φ(Un)}n is uni-
formly integrable over Ω. Let ω be any measurable subset of Ω and M > 0 be
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arbitrary. By the growth condition of Φ in (1.13), we have

∫

ω∩{|Un|≤M}
|Φ(Un)| dx ≤ φ(M)

⎛

⎝
N∑

j=1

‖∂jTM (Un)‖pj

Lpj (ω)

+
∫

ω

c(x) dx

)

.

(3.5)

On the other hand, using (2.9) and the sign-condition on Φ in (1.13), we see
that

∫

ω∩{|Un|>M}
|Φ(Un)| dx ≤ 1

M

∫

ω

Φ(Un)Un dx ≤ C

M
, (3.6)

where C > 0 is a constant independent of n and ω. Since c ∈ L1(Ω) and
∂jTM (Un) → ∂jTM (U0) in Lpj (Ω) as n → ∞ for all 1 ≤ j ≤ N (see (2.12)),
from (3.5) and (3.6) we get the equi-integrability of {Φ(Un)}n over Ω. By
Vitali’s Theorem, we end the proof of (3.4). �

It remains to show the first identity in (1.26), that is

lim
n→∞

∫

Ω

Ψn(Un) v dx =
∫

{|U0|>0}
Ψ(U0) v dx (3.7)

for every v ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω).

Recall that N−→a and P−→a are given in (1.7). We define

N c−→a :=
{

1 ≤ j ≤ N : ajqj = 0,
θjpj

pj − qj
< p

}

,

P c−→a := {1 ≤ j ≤ N : ajqj > 0, mj ≤ 1} .

(3.8)

It follows that
{1 ≤ j ≤ N : ajqj = 0} = N−→a ∪ N c−→a ,

{1 ≤ j ≤ N : ajqj > 0} = P−→a ∪ P c−→a .
(3.9)

For every 1 ≤ j ≤ N , we introduce the notation

Im,pj
(Un) :=

∫

Ω

|Un|m|∂jUn|pj dx,

Iθj ,qj
(Un) :=

∫

Ω

|Un|θj |∂jUn|qj dx.

(3.10)

To prove (3.7), we treat Case 1 in Sect. 3.1 and Case 2 in Sect. 3.2.

3.1. Proof of (3.7) in Case 1

Here, θj > 1 for each 1 ≤ j ≤ N . Since J2 = ∅, from (2.2) and (2.3), we find
that Ψn(Un) = Ψn,J1(Un) =

∑N
j=1 Hj,n(Un, ∂jUn), with Hj,n(·, ·) defined in

(2.1). So, to prove (3.7), it suffices to show that (up to a subsequence)

lim
n→∞

∫

Ω

Hj,n (Un, ∂jUn) v dx =
∫

Ω

|U0|θj−2U0 |∂jU0|qj v dx (3.11)

for every 1 ≤ j ≤ N and all v ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω).
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Let 1 ≤ j ≤ N be arbitrary. By Proposition 2.4, we have

Hj,n(Un, ∂jUn) → |U0|θj−2U0 |∂jU0|qj a.e. in Ω as n → ∞. (3.12)

We next show that there exists s > 1 (depending on j) such that

‖Hj,n(Un, ∂jUn)‖Ls(Ω) ≤ C (3.13)

for a positive constant C independent of n. We distinguish the following two
situations.
(a) Let j ∈ N−→a ∪ N c−→a (when ajqj = 0). We define s as follows

s = m′ if j ∈ N−→a and s = p′ if j ∈ N c−→a .

Let cj be given by

cj := (meas (Ω))1/λj , where
1
λj

:= 1 − θj

s′ − qj

pj
. (3.14)

By Hölder’s inequality and Proposition 2.3, we infer that

‖Hj,n(Un, ∂jUn)‖Ls(Ω) ≤ cj ‖Un‖θj−1

Ls′ (Ω)
‖∂jUn‖qj

Lpj (Ω)
≤ C,

where C is a positive constant independent of n.
(b) Let j ∈ P−→a ∪P c−→a (when ajqj > 0). Let Im,pj

(Un) be as in (3.10). In each of
the situations below, we use Hölder’s inequality and Proposition 2.3 to obtain
(3.13) for suitable s > 1.
(b1) If m ≥ (θj − 1)pj/qj , then by choosing 1 < s < pj/qj , we see that

‖Hj,n(Un, ∂jUn)‖Ls(Ω)

≤ (meas (Ω))
1
s − qj

pj
(
Im,pj

(Un)
) θj−1

m ‖∂jUn‖qj− (θj−1)pj
m

Lpj (Ω)
.

(b2) If θj − 1 < m < (θj − 1)pj/qj , then for 1 < s < m/(θj − 1), we have

‖Hj,n(Un, ∂jUn)‖Ls(Ω)

≤ (meas (Ω))
1
s − θj−1

m

(
Im,pj

(Un)
) qj

pj ‖Un‖θj−1− qjm

pj

Lm(Ω) .

(b3) If 1 < m ≤ θj − 1, then we always have m > mj . Indeed, if j ∈ P−→a ,
then the assumption (1.8) gives that m > min{θj ,mj} = mj . If, in turn,
j ∈ P c−→a , then mj ≤ 1 < m. Hence, m > mj for j ∈ P−→a ∪ P c−→a leads to

‖Hj,n(Un, ∂jUn)‖Lp′ (Ω)

≤ (meas (Ω))
qj(m−mj)

ppj
(
Im,pj

(Un)
) qj

pj ‖Un‖θj−1− qjm

pj

Lp(Ω) .

Thus, (3.13) holds with s = p′.
This proves (3.13) for every 1 ≤ j ≤ N . Then, using (3.12), we have, up to a
subsequence,

Hj,n (Un, ∂jUn) ⇀ |U0|θj−2U0 |∂jU0|qj (weakly) in Ls(Ω)

as n → ∞, where s > 1 is chosen according to (a), (b1), (b2) or (b3) (for
the latter, we take s = p′). Thus, (3.11) follows for every 1 ≤ j ≤ N and all
v ∈ W 1,−→p

0 (Ω) ∩ L∞(Ω).
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3.2. Proof of (3.7) in Case 2

Let v be an arbitrary non-negative function in W 1,−→p
0 (Ω)∩L∞(Ω). By Lemma 2.1,

for each n ≥ 1, we have Un ≥ 0 a.e. in Ω and the same applies to U0. Hence,
proving (3.7) amounts to showing that

∫

Ω

(Ψn,J1(Un) + Ψn,J2(Un))v dx

→
N∑

j=1

∫

{U0>0}

|∂jU0|qj

U
1−θj

0

v dx (3.15)

as n → ∞, where Ψn,J1(Un) and Ψn,J2(Un) can be obtained from (2.3) replac-
ing u by Un.

From U0 ∈ W 1,−→p
0 (Ω), it follows that ∇U0 = 0 a.e. in {U0 = 0}. For every

j ∈ J1 we have θj > 1 so that with the same argument given for Case 1 in
Sect. 3.1, we find that

lim
n→∞

∫

Ω

Ψn,J1(Un) v dx = lim
n→∞

∑

j∈J1

∫

Ω

Hj,n (Un, ∂jUn) v dx

=
∑

j∈J1

∫

{U0>0}
U

θj−1
0 |∂jU0|qj v dx.

Hence, by (3.7), we get that there exists limn→∞
∫
Ω

Ψn,J2(Un) v dx. To reach
(3.15), it remains to show that

lim
n→∞

∫

Ω

Ψn,J2(Un) v dx =
∑

j∈J2

∫

{U0>0}

|∂jU0|qj

U
1−θj

0

v dx. (3.16)

To this aim, let us notice that, for every σ > 0, we have
∫

Ω

Ψn,J2(Un) v dx =
∫

{Un>σ}
Ψn,J2(Un) v dx

+
∫

{Un≤σ}
Ψn,J2(Un) v dx.

(3.17)

Fix σ > 0 such that σ ∈ E , where we define

E := {σ > 0 : meas ({U0 = σ}) > 0}. (3.18)

We show that

(i) lim
n→∞

∫

{Un>σ}
Ψn,J2(Un)v dx =

∑

j∈J2

∫

{U0>σ}

|∂jU0|qj

U
1−θj

0

v dx

(ii) lim
σ→0

lim
n→∞

∫

{Un≤σ}
Ψn,J2(Un)v dx = 0.

(3.19)

Assuming that the assertions in (3.19) have been proved, we end the proof of
(3.16) as follows. We have χ{U0>σ2} ≤ χ{U0>σ1} for 0 < σ1 < σ2, and the set E
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in (3.18) is at most countable. Moreover, from (3.17) and (3.19), we see that
∑

j∈J2

∫

{U0>σ}

|∂jU0|qj

U
1−θj

0

v dx ≤ lim
n→∞

∫

Ω

Ψn,J2(Un) v dx < ∞.

Hence, by the Monotone Convergence Theorem, we deduce that

lim
σ→0, σ/∈E

lim
n→∞

∫

{Un>σ}
Ψn,J2 (Un) v dx

=
∑

j∈J2

∫

{U0>0}

|∂jU0|qj

U
1−θj

0

v dx < ∞.
(3.20)

Using (3.19) and (3.20) in (3.17), we obtain (3.16). It remains to show (3.19).
(i) Let j ∈ J2 be arbitrary. We conclude (i) by proving that

∫

{Un>σ}
Hj,n

(

Un +
1
n

, ∂jUn

)

v dx →
∫

{U0>σ}

|∂jU0|qj

U
1−θj

0

v dx (3.21)

as n → ∞. For every measurable subset ω of Ω, we have
∫

ω∩{Un>σ}
Hj,n

(

Un +
1
n

, ∂jUn

)

v dx

≤ ‖v‖L∞(Ω)

σ1−θj
‖∂jUn‖qj

Lpj (Ω)
(meas (ω))1− qj

pj .

From Proposition 2.3, using that σ /∈ E , we obtain that

χ{Un>σ} → χ{U0>σ} a.e. in the set {U0 = σ},

as well as

Hj,n

(

Un +
1
n

, ∂jUn

)

χ{Un>σ} v → |∂jU0|qj

U
1−θj

0

χ{U0>σ} v a.e. in Ω

as n → ∞. By Vitali’s Theorem, we conclude the proof of (3.21).
(ii) Let Zσ : [0,∞) → [0, 1] be the following function

Zσ(s) =

⎧
⎨

⎩

1 if 0 ≤ s ≤ σ,
2 − s/σ if σ ≤ s ≤ 2σ,
0 if 2σ ≤ s.

For w ∈ W 1,−→p
0 (Ω), we define

Lσ,v(w) :=
N∑

j=1

∫

Ω

Aj(w)Zσ(w) ∂jv dx +
∫

Ω

Φ(w)Zσ(w) v dx. (3.22)

Observe that Zσ(U0) → χ{U0=0} a.e. in Ω as σ → 0 and U0 ∈ W 1,−→p
0 (Ω)

implies that ∇U0 = 0 a.e. in {U0 = 0}. From (1.18), we have Φ(x, 0, 0) = 0
and Aj(x, 0, 0) = 0 a.e. in Ω, for every 1 ≤ j ≤ N . It follows that Lσ,v(U0) → 0
as σ → 0. Hence, we conclude the assertion of (ii) in (3.19) by showing that

0 ≤
∫

{Un≤σ}
Ψn,J2 (Un) v dx ≤ Lσ,v(Un) for all n ≥ 1, (3.23)

lim
n→∞ Lσ,v(Un) = Lσ,v(U0). (3.24)
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From (1.18), we have 〈BUn, Zσ (Un) v〉 ≥ 0 and Θ(Un) ≤ 0 for every n ≥
1. Thus, by taking v Zσ(Un) ≥ 0 as a test function in (2.5) and using the
coercivity condition in (1.12), we see that

Lσ,v(Un) ≥ν0

σ

N∑

j=1

∫

{σ<Un<2σ}
|∂jUn|pj v dx

+
∫

Ω

Zσ(Un)Ψn(Un) v dx.

(3.25)

Since Zσ(Un) = 1 in {Un ≤ σ}, from (3.25), we derive (3.23).
Using that Zσ(Un) → Zσ(U0) a.e. in Ω as n → ∞, by Lebesgue’s Domi-

nated Convergence Theorem, for each 1 ≤ j ≤ N , we find that Zσ(Un) ∂jv →
Zσ(U0) ∂jv (strongly) in Lpj (Ω) as n → ∞. This, jointly with (3.3), implies
that

lim
n→∞

N∑

j=1

∫

Ω

Aj(Un)Zσ(Un) ∂jv dx =
N∑

j=1

∫

Ω

Aj(U0)Zσ(U0) ∂jv dx.

Similar to the proof of (3.4), we have Φ(Un)Zσ(Un) → Φ(U0)Zσ(U0) in L1(Ω)
as n → ∞. Then, using w = Un in (3.22) and letting n → ∞, we obtain (3.24).

The proof of (3.16), and hence of (3.15), is now complete.
This ends the proof of Theorem 1.4. �

4. Proof of Proposition 2.3

For each n ≥ 1, the solution Un ∈ W 1,−→p
0 (Ω)∩Lm(Ω) of (1.22) given in Lemma

2.1 satisfies

〈AUn, Un〉 − 〈BUn, Un〉 +
∫

Ω

Φ(Un)Un dx

= −
∫

Ω

Θ(Un)Un dx +
∫

Ω

Ψn(Un)Un dx.

(4.1)

(a) We prove that there exists a constant C > 0 such that (2.9) holds for
all n ≥ 1.

We first show that {Un}n≥1 is bounded in W 1,−→p
0 (Ω). We have assumed

that B belongs to the class BC((1− ε)A) for some ε > 0. Using the coercivity
condition in (1.12), (1.14) and (3.10), we find that the left-hand side of (4.1)
is bounded below by

εν0

N∑

k=1

‖∂kUn‖pk

Lpk (Ω) + 〈[(1 − ε)A − B]Un, Un〉

+ a0‖Un‖m
Lm(Ω) +

∑

j∈P−→a ∪P c−→a

ajIm,pj
(Un).

(4.2)

We observe that aj > 0 for every j ∈ P−→a ∪P c−→a . We now consider the right-hand
side of (4.1). Using (1.13) and the anisotropic Sobolev inequality (A.2) in the
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“Appendix”, we find a positive constant C, independent of n, such that
∣
∣
∣
∣

∫

Ω

Θ(Un)Un dx

∣
∣
∣
∣ ≤ CΘ‖Un‖L1(Ω) ≤ C‖Un‖

W 1,−→p
0 (Ω)

.

By Young’s inequality, for each δ > 0, there exists a constant Cδ > 0, depend-
ing on δ, such that

∣
∣
∣
∣

∫

Ω

Θ(Un)Un dx

∣
∣
∣
∣ ≤ C

N∑

k=1

‖∂kUn‖Lpk (Ω)

≤ δ

N∑

k=1

‖∂kUn‖pk

Lpk (Ω) + Cδ for all n ≥ 1.

(4.3)

By (3.10), we have
∫

Ω

Ψn(Un)Un dx ≤
∫

Ω

Ψ(Un)Un dx ≤
N∑

j=1

Iθj ,qj
(Un). (4.4)

In Lemma 4.1, we obtain a suitable upper bound for
∑N

j=1 Iθj ,qj
(Un). To

this end, we distinguish the case m ≥ θjpj/qj from m < θjpj/qj whenever
j ∈ P−→a ∪ P c−→a . We observe that P−→a ∪ P c−→a = {1 ≤ j ≤ N : ajqj > 0} is a union
of three sets:

P−→a ∪ P c−→a = P̂−→a ,1 ∪ P̂−→a ,2 ∪ P−→a ,3, (4.5)

where we define

P̂−→a ,1 =
{

j ∈ P−→a ∪ P c−→a : m ≥ θjpj

qj

}

,

P̂−→a ,2 =
{

j ∈ P−→a : θj < p, m <
θjpj

qj

}

∪
{

j ∈ P c−→a : m <
θjpj

qj

}

P−→a ,3 =
{

j ∈ P−→a : θj ≥ p, m <
θjpj

qj

}

.

(4.6)

Lemma 4.1. For any δ > 0, there exists a positive constant Cδ such that, for
every n ≥ 1,

N∑

j=1

Iθj ,qj
(Un) ≤ Nδ‖Un‖m

Lm(Ω) + δ
∑

j∈P−→a ∪P c−→a

Im,pj
(Un)

+ (1 + N)δ
N∑

k=1

‖∂kUn‖pk

Lpk (Ω) + Cδ.

(4.7)

Proof. For the inequalities in (4.8), (4.9), (4.11)–(4.13) below, we use Hölder’s
inequality, then Young’s inequality (see Lemma A.1 in the “Appendix”). In
what follows, we understand that δ > 0 is arbitrary and Cδ > 0 is a suitable
constant depending on δ.

(I) We first estimate Iθj ,qj
(Un) for every j ∈ N−→a ∪ N c−→a when we let cj

and λj be as in (3.14).
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• Let j ∈ N−→a . Condition (1.8) gives that λj > 1 so that

Iθj ,qj
(Un) ≤ cj‖Un‖θj

Lm(Ω)‖∂jUn‖qj

Lpj (Ω)

≤ δ‖Un‖m
Lm(Ω) + δ‖∂jUn‖pj

Lpj (Ω)
+ Cδ.

(4.8)

• Let j ∈ N c−→a . Using Lemma A.1 and the anisotropic Sobolev inequality (A.2)
in the “Appendix”, we find a positive constant C, depending on N , −→p , qj , θj

and meas (Ω), such that

Iθj ,qj
(Un) ≤ cj ‖Un‖θj

Lp(Ω)‖∂jUn‖qj

Lpj (Ω)

≤ C‖∂jUn‖
θj
N +qj

Lpj (Ω)

∏

k∈{1,...,N}\{j}
‖∂kUn‖

θj
N

Lpk (Ω)

≤ δ

N∑

k=1

‖∂kUn‖pk

Lpk (Ω) + Cδ.

(4.9)

(II) We now estimate Iθj ,qj
(Un) for every j ∈ P−→a ∪ P c−→a when we define

cj = (meas (Ω))
1

λj and
1
λj

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 − qj

pj
if j ∈ P̂−→a ,1,

1 − θj

m
if j ∈ P−→a ,3,

qj(m − mj)
pjp

if j ∈ P̂−→a ,2.

(4.10)

Recall that P−→a := {1 ≤ j ≤ N : ajqj > 0, mj > 1}. Condition (1.8)
implies that m > min{θj ,mj} whenever j ∈ P−→a and, moreover, min{θj ,mj} =
θj if and only if θj ≥ p.

• For every j ∈ P̂−→a ,1, we obtain that

Iθj ,qj
(Un) ≤ cj ‖∂jUn‖qj− pjθj

m

Lpj (Ω)

(
Im,pj

(Un)
) θj

m

≤ δ Im,pj
(Un) + δ‖∂jUn‖pj

Lpj (Ω)
+ Cδ.

(4.11)

• Let j ∈ P−→a ,3. In this case, we have m > θj so that

Iθj ,qj
(Un) ≤ cj ‖Un‖θj− mqj

pj

Lm(Ω) (Im,pj
(Un))

qj
pj

≤ δ Im,pj
(Un) + δ‖Un‖m

Lm(Ω) + Cδ.
(4.12)

• Let j ∈ P̂−→a ,2. Then m > mj . By Hölder’s inequality, Lemma A.1 and the
anisotropic Sobolev inequality (A.2) in the “Appendix”, we find a positive
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constant C = C(N,−→p , qj , θj ,m,meas (Ω)) such that

Iθj ,qj
(Un) ≤ cj ‖Un‖θj− mqj

pj

Lp(Ω)

(
Im,pj

(Un)
) qj

pj

≤ C
(
Im,pj

(Un)
) qj

pj

N∏

k=1

‖∂kUn‖
(
θj− mqj

pj

)
1
N

Lpk (Ω)

≤ δ Im,pj
(Un) + δ

N∑

k=1

‖∂kUn‖pk

Lpk (Ω) + Cδ.

(4.13)

By adding the inequalities in (4.8), (4.9), (4.11)–(4.13), we complete the proof
of (4.7). �

Proof of Proposition 2.3 completed. From (1.14) and the definition of P−→a
and P c−→a , we have a0 > 0 and minj∈P−→a ∪P c−→a

aj > 0. We choose δ > 0 small such
that

εν0 > (N + 2)δ, a0 > Nδ and min
j∈P−→a ∪P c−→a

aj > δ. (4.14)

By (4.3), (4.4) and Lemma 4.1, there exists a positive constant Cδ such that
for each n ≥ 1, the right-hand side of (4.1) is bounded above by

(N + 2)δ
N∑

k=1

‖∂kUn‖pk

Lpk (Ω) + Nδ‖Un‖m
Lm(Ω)

+ δ
∑

j∈P−→a ∪P c−→a

Im,pj
(Un) + Cδ.

(4.15)

For ease of reference, we introduce Sn as follows

Sn := ‖Un‖m
Lm(Ω) +

∑

j∈P−→a ∪P c−→a

Im,pj
(Un) ≥ 0.

In view of (4.1), the quantity in (4.2) is bounded above by that in (4.15).
Hence, using the inequalities in (4.14), we infer that for some small constant
ε1 > 0, we have

ε1

(
N∑

k=1

‖∂kUn‖pk

Lpk (Ω) + Sn

)

+ 〈[(1 − ε)A − B]Un, Un〉 ≤ Cδ (4.16)

for every n ≥ 1. Now, from the hypothesis that B belongs to the class
BC((1−ε)A) with ε ∈ (0, 1), we have the coercivity of the operator (1−ε)A−B

from W 1,−→p
0 (Ω) into W−1,−→p ′

(Ω). Hence, (4.16) implies that {Un}n≥1 is bounded
in W 1,−→p

0 (Ω). Since B : W 1,−→p
0 (Ω) → W−1,−→p ′

(Ω) is bounded, we find a positive
constant C such that |〈BUn, Un〉| ≤ C for every n ≥ 1. Using also the coer-
civity assumption in (1.12), the inequality in (4.16) gives the boundedness of
{Sn}n≥1. Using this fact into (4.4) and (4.7), we conclude from (4.4) that

0 ≤
∫

Ω

Ψn(Un)Un dx ≤
∫

Ω

Ψ(Un)Un dx ≤ C,
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where C > 0 is a constant independent of n ≥ 1. Returning to (4.1) and
using (4.3), we obtain that the sequence of positive functions {Φ(Un)Un}n≥1

is bounded in L1(Ω). The proof of (2.9) is now complete. �
(b) From (2.9), there exists a function U0 ∈ W 1,−→p

0 (Ω)∩Lm(Ω) such that,
up to a subsequence, (2.10) holds. This completes the proof of Proposition 2.3.

�

Remark 4.2. From (2.10), we have U±
n ⇀ U±

0 (weakly) in W 1,−→p
0 (Ω) as n → ∞,

which yields that limn→∞〈AU±
0 , U±

n − U±
0 〉 = 0.

5. Applications of Proposition 2.3

Throughout this section, the assumptions of Proposition 2.3 hold. For each
n ≥ 1 let Un be the solution of (1.22) provided by Lemma 2.1.

Lemma 5.1. Let ω be a measurable subset of Ω. Assume that {Vn}n≥1 is a
sequence in W 1,−→p

0 (Ω)∩Lm(Ω) satisfying |Vn| ≤ |Un| on ω for all n ≥ 1. Then,
for every τ ∈ (0, 1) small enough and β ∈ (1/τ,m/τ) fixed, there exists a
positive constant C, independent of ω, such that

N∑

j=1

∫

ω

|Un|θj−1|∂jUn|qj |Vn| dx ≤ C(‖Vn‖τ
Lp(Ω) + ‖Vn‖τ

Lτβ(Ω)) (5.1)

for all n ≥ 1.

Proof. Fix τ small satisfying 0 < τ < min{m − 1,min1≤j≤N{θj}, 1}. Since
|Vn| ≤ |Un| on ω for all n ≥ 1, we have |Un|τ−1 ≤ |Vn|τ−1 on ω so that

∫

ω

|Un|θj−1|∂jUn|qj |Vn| dx ≤
∫

Ω

|Un|θj−τ |∂jUn|qj |Vn|τ dx (5.2)

for every 1 ≤ j ≤ N . Recall from (3.8), (3.9), and (4.5) that

{1 ≤ j ≤ N} = N−→a ∪ N c−→a ∪ P̂−→a ,1 ∪ P̂−→a ,2 ∪ P−→a ,3.

By Hölder’s inequality, with cj given (3.14), for every j ∈ N c−→a , we have
∫

Ω

|Un|θj−τ |∂jUn|qj |Vn|τ dx

≤ cj ‖Un‖θj−τ

Lp(Ω)‖∂jUn‖qj

Lpj (Ω)
‖Vn‖τ

Lp(Ω).

(5.3)

By the definition of P̂−→a ,2 in (4.6), we can take τ small such that

0 < τ < θj − mqj

pj
for every j ∈ P̂−→a ,2.

Using cj given by (4.10), for every j ∈ P̂−→a ,2, we derive that
∫

Ω

|Un|θj−τ |∂jUn|qj |Vn|τ dx

≤ cj

(
Im,pj

) qj
pj ‖Un‖θj−τ− mqj

pj

Lp(Ω) ‖Vn‖τ
Lp(Ω).

(5.4)
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We fix β ∈ (1/τ,m/τ). From (1.8), we have λj > 1 for every j ∈ N−→a , where λj

is given by (3.14). We choose τ > 0 small such that (m−1) τ < m/λj for every
j ∈ N−→a , which implies that λjm/(m + τλj) < β. Hence, for every j ∈ N−→a , by

defining cj,N−→a = (meas (Ω))
1

λj
+ τ

m − 1
β , we obtain that

∫

Ω

|Un|θj−τ |∂jUn|qj |Vn|τ dx

≤ cj,N−→a ‖Un‖θj−τ

Lm(Ω)‖∂jUn‖qj

Lpj (Ω)
‖Vn‖τ

Lτβ(Ω).

(5.5)

We diminish τ such that 0 < τ < (pj − qj)/pj for every j ∈ P̂−→a ,1. Using that
m ≥ pjθj/qj for every j ∈ P̂−→a ,1, by Hölder’s inequality, we infer that

∫

Ω

|Un|θj−τ |∂jUn|qj |Vn|τ dx

≤ cj,P̂−→a ,1

(
Im,pj

) θj−τ

m ‖∂jUn‖qj− pj(θj−τ)
m

Lpj (Ω)
‖Vn‖τ

Lτβ(Ω)

(5.6)

for every j ∈ P̂−→a ,1, where cj,P̂−→a ,1
= (meas (Ω))

pj−qj
pj

− 1
β .

Finally, for every j ∈ P−→a ,3, we have p ≤ θj < m < θjpj/qj in view of (1.8).
We let τ > 0 small such that τ < (m − θj)/(m − 1) for every j ∈ P−→a ,3. Then,
Hölder’s inequality yields that

∫

Ω

|Un|θj−τ |∂jUn|qj |Vn|τ dx

≤ cj,P−→a ,3

(
Im,pj

) qj
pj ‖Un‖θj−τ− mqj

pj

Lm(Ω) ‖Vn‖τ
Lτβ(Ω)

(5.7)

for every j ∈ P−→a ,3, where we define cj,P−→a ,3
:= (meas (Ω))

m−θj+τ

m − 1
β .

From (5.2)–(5.7), jointly with the a priori estimates in (2.9), we derive
(5.1).

�

We remark that, as n → ∞,

Gk(Un) ⇀ Gk(U0) (weakly) in W 1,−→p
0 (Ω) and in Lm(Ω)

||Gk(Un)||Lr(Ω) → ||Gk(U0)||Lr(Ω), where 1 ≤ r < m,
(5.8)

and

Gk(U+
0 ) ⇀ 0 (weakly) in W 1,−→p

0 (Ω) as k → ∞. (5.9)

For every k ≥ 1, we define

zn,k := U+
n − Tk(U+

0 ). (5.10)

In the proof of Lemma 5.2 below, we need several properties of {z±
n,k}n, which

we summarise next.
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Properties of {z±
n,k}n

From (2.9) and (5.10), we see that {z±
n,k}n is bounded in W 1,−→p

0 (Ω) and also
in Lm(Ω) and, up to a subsequence,

z+
n,k → (U+

0 − Tk(U+
0 ))+ = Gk(U+

0 ) a.e. in Ω as n → ∞,

z−
n,k → (U+

0 − Tk(U+
0 ))− = 0 a.e. in Ω as n → ∞.

(5.11)

Hence, up to a subsequence, using also Remark A.3 in the “Appendix”, as
n → ∞, we have

z+
n,k ⇀ Gk(U+

0 ) (weakly) in W 1,−→p
0 (Ω) and in Lm(Ω),

z+
n,k → Gk(U+

0 ) (strongly) in Lp(Ω),

z−
n,k ⇀ 0 (weakly) in W 1,−→p

0 (Ω) and in Lm(Ω),

z−
n,k → 0 (strongly) in Lp(Ω).

(5.12)

From (5.9) and (5.12), by passing to a subsequence, we deduce that

lim
n→∞ ‖z+

n,k‖Lp(Ω) = ‖Gk(U+
0 )‖Lp(Ω) → 0 as k → ∞,

lim
n→∞ ‖z−

n,k‖Lp(Ω) = 0.
(5.13)

Let r ∈ (1,m) be arbitrary. By Vitali’s Theorem and (5.11), up to a subse-
quence, we get that

lim
n→∞ ‖z+

n,k‖Lr(Ω) = ‖Gk(U+
0 )‖Lr(Ω) → 0 as k → ∞,

lim
n→∞ ‖z−

n,k‖Lr(Ω) = 0.
(5.14)

Since B satisfies the property (P2), from (5.12) we have, up to a subsequence,

lim
n→∞〈BUn, z+

n,k〉 = 〈BU0, Gk(U+
0 )〉 and lim

n→∞〈BUn, z−
n,k〉 = 0.

By applying Lemma 5.1, we obtain Lemma 5.2 to be used in the proof of
Proposition 2.4.

Lemma 5.2. There exist {Wk}k≥1 and {Zk}k≥1 with limk→∞ Wk = limk→∞
Zk = 0 such that, up to a subsequence of {Un}, we have for each k ≥ 1

lim supn→∞ ‖Gk(Un)‖
W 1,−→p

0 (Ω)
≤ Wk, (5.15)

lim supn→∞〈AUn, z+
n,k〉 ≤ Zk. (5.16)

Proof. By a well-known diagonal argument, it suffices to show that for every
k ≥ 1, there exists a subsequence of {Un} such that (5.15) and (5.16) hold.
Let k ≥ 1 be arbitrary.



   58 Page 26 of 58 B. Brandolini and F. C. Ĉırstea NoDEA

We prove (5.15). Since Gk(Un) = Un − Tk(Un) and ∂jTk(Un) = ∂jUn

χ{|Un|≤k} for 1 ≤ j ≤ N , by the coercivity assumption in (1.12), we have

〈AUn, Gk(Un)〉 =
N∑

j=1

∫

{|Un|>k}
Aj(Un) ∂jUn dx

≥ ν0

N∑

j=1

∫

{|Un|>k}
|∂jUn|pj dx

= ν0

N∑

j=1

‖∂jGk(Un)‖pj

Lpj (Ω)
.

(5.17)

Since tGk(t) ≥ 0 for every t ∈ R, by the sign-condition in (1.13), we find that
Gk(Un)Φ(Un) ≥ 0 for all n ≥ 1. Then, by Lemma 2.1, we can test (2.5) with
v = Gk(Un) and using (1.13), we get

〈AUn, Gk(Un)〉 ≤ 〈AUn, Gk(Un)〉 +
∫

Ω

Gk(Un)Φ(Un) dx

≤
∫

Ω

Ψn(Un)Gk(Un) dx + |〈BUn, Gk(Un)〉|

+ CΘ

∫

Ω

|Gk(Un)| dx.

(5.18)

Since B satisfies the property (P2), using (5.8) we infer that

|〈BUn, Gk(Un)〉| + CΘ

∫

Ω

|Gk(Un)| dx converges to

|〈BU0, Gk(U0)〉| + CΘ‖Gk(U0)‖L1(Ω) as n → ∞.

(5.19)

By (2.2), we see that
∫

Ω

Ψn(Un)Gk(Un) dx

≤
N∑

j=1

∫

{|Un|>k}
|Un|θj−1|∂jUn|qj |Gk(Un)| dx.

(5.20)

Observe that 0 < |Gk(Un)| ≤ |Un| on {|Un| > k}. By Lemma 5.1, for small
τ > 0 and β ∈ (1/τ,m/τ) fixed, there exists a positive constant C, independent
of n and k, such that

N∑

j=1

∫

{|Un|>k}
|Un|θj−1|∂jUn|qj |Gk(Un)| dx

≤ C
(
‖Gk(Un)‖τ

Lp(Ω) + ‖Gk(Un)‖τ
Lτβ(Ω)

)
.

(5.21)

From (5.20) and (5.21), using (5.8) it follows that

lim sup
n→∞

∫

Ω

Ψn(Un)Gk(Un) dx

≤ C
(
‖Gk(U0)‖τ

Lp(Ω) + ‖Gk(U0)‖τ
Lτβ(Ω)

)
:= Rk.
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Using this fact, jointly with (5.17), (5.18) and (5.19), we arrive at

ν0 lim sup
n→∞

N∑

j=1

‖∂jGk(Un)‖pj

Lpj (Ω)

≤ Rk + |〈BU0, Gk(U0)〉| + CΘ‖Gk(U0)‖L1(Ω).

(5.22)

Since Gk(U0) ⇀ 0 (weakly) in W 1,−→p
0 (Ω) and in Lm(Ω) as k → ∞, using that

τβ ∈ (1,m), we find that (up to a subsequence),

Gk(U0) → 0 (strongly) in Lp(Ω) and in Lτβ(Ω) as k → ∞.

Hence, limk→∞ Rk = 0 and, moreover, the right-hand side of (5.22) converges
to 0 as k → ∞. The proof of (5.15) is complete.

We now establish (5.16). Let  > 0 be arbitrary. We take v = T�(z+
n,k) ∈

W 1,−→p
0 (Ω) ∩ L∞(Ω) as a test function in (2.5) and, proceeding as in the proof

of Lemma 2.1, by letting  → ∞, we get that (2.5) holds for v = z+
n,k ∈

W 1,−→p
0 (Ω) ∩ Lm(Ω). This, jointly with (1.13), implies that

〈AUn, z+
n,k〉 ≤

∫

Ω

Ψn(Un) z+
n,k dx + |〈BUn, z+

n,k〉|

+ CΘ

∫

Ω

z+
n,k dx.

(5.23)

From the definition of Ψn in (2.2), we have
∫

Ω

Ψn(Un) z+
n,k dx ≤

N∑

j=1

∫

{z+
n,k>0}

|Un|θj−1|∂jUn|qj z+
n,k dx. (5.24)

Observe that z+
n,k ≤ Un on {z+

n,k > 0}. Then, from Lemma 5.1, for sufficiently
small τ > 0 and β ∈ (1/τ,m/τ) fixed, there exists a positive constant C,
independent of n and k, such that

N∑

j=1

∫

{z+
n,k>0}

|Un|θj−1|∂jUn|qj z+
n,k dx

≤ C
(
‖z+

n,k‖τ
Lp(Ω) + ‖z+

n,k‖τ
Lτβ(Ω)

)
.

(5.25)

By using (5.23), (5.24), (5.25), (5.13) and (5.14), we conclude (5.16) with Zk

given by

Zk := C
(
‖Gk(U+

0 )‖τ
Lp(Ω) + ‖Gk(U+

0 )‖τ
Lτβ(Ω)

)
+ |〈BU0, Gk(U+

0 )〉|
+ CΘ‖Gk(U+

0 )‖L1(Ω).

From (5.9), (5.13) and (5.14), we have limk→∞ Zk = 0 since τβ ∈ (1,m). This
ends the proof of Lemma 5.2. �

For λ > 0, we define ϕλ : R → R as follows

ϕλ(t) = t exp (λt2) for every t ∈ R. (5.26)
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We define I0(n, k) by

I0(n, k) := CΘ‖ϕλ(z−
n,k)‖L1(Ω) −

∫

Ω

Ψn(Un)ϕλ(z−
n,k) dx

− 〈BUn, ϕλ(z−
n,k)〉.

(5.27)

Lemma 5.3. Up to a subsequence of {Un}n, we have

lim sup
n→∞

I0(n, k) ≤ 0 for each k ≥ 1.

Proof. It suffices to show that for each k ≥ 1, by passing to a subsequence
of {Un}, we have lim supn→∞ I0(n, k) ≤ 0. Since Un ⇀ U0 and ϕλ(z−

n,k) ⇀

0 (weakly) in W 1,−→p
0 (Ω) as n → ∞, by the property (P2) for B, we have

limn→∞〈BUn,−ϕλ(z−
n,k)〉 = 0. Moreover, up to a subsequence, ϕλ(z−

n,k) → 0
(strongly) in L1(Ω) as n → ∞. Thus, it remains to show that

lim sup
n→∞

(

−
∫

Ω

Ψn(Un)ϕλ(z−
n,k) dx

)

≤ 0. (5.28)

From (2.2), we have

−
∫

Ω

Ψn(Un)ϕλ(z−
n,k) dx

≤
∑

j∈J1

∫

{Un≤0}
|Un|θj−1|∂jUn|qj ϕλ(z−

n,k) dx

≤ eλk2 ∑

j∈J1

∫

Ω

|Un|θj−1|∂jUn|qj z−
n,k dx.

(5.29)

Let j ∈ J1 be arbitrary. In view of Lemma 5.1, for sufficiently small τ > 0 and
β ∈ (1/τ,m/τ) fixed, there exists a positive constant C, independent of n and
k, such that

∫

{|Un|≥z−
n,k}

|Un|θj−1|∂jUn|qj z−
n,k dx

≤ C
(
‖z−

n,k‖τ
Lp(Ω) + ‖z−

n,k‖τ
Lτβ(Ω)

)
.

(5.30)

We write Ω as the union of {|Un| < z−
n,k} and {|Un| ≥ z−

n,k}. Since θj ≥ 1, we
see that |Un|θj−1 ≤ (z−

n,k)θj−1 on {|Un| < z−
n,k}. This and (5.30) imply that

∫

Ω

|Un|θj−1|∂jUn|qj z−
n,k dx ≤C

(
‖z−

n,k‖τ
Lp(Ω) + ‖z−

n,k‖τ
Lτβ(Ω)

)

+
∫

Ω

|∂jUn|qj (z−
n,k)θj dx.

(5.31)

With (5.29) and (5.31) in mind, to conclude (5.28), it suffices to show that for
each j ∈ J1, each term in the right-hand side of (5.31) converges to zero as
n → ∞.

In light of (5.13) and (5.14), we see that the right-hand side of (5.30)
converges to 0 as n → ∞ using here that τβ ∈ (1,m). For every j ∈ J1, let
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αj ∈ (0, θj) satisfy 1 < ϑj < m, where we define ϑj = (θj − αj)pj/(pj − qj).
Since z−

n,k ≤ k, by Hölder’s inequality, we have
∫

Ω

|∂jUn|qj (z−
n,k)θj dx ≤ kαj

∫

Ω

|∂jUn|qj (z−
n,k)θj−αj dx

≤ kαj ‖∂jUn‖qj

Lpj (Ω)
‖z−

n,k‖θj−αj

Lϑj (Ω)
.

The choice of αj yields that limn→∞ ‖z−
n,k‖Lϑj (Ω) = 0. Then, for every j ∈ J1,

the last term in the right-hand side of (5.31) converges to 0 as n → ∞. This
completes the proof of (5.28). �

6. Proof of Proposition 2.4

As explained in Sect. 1.4, we conclude (2.11) and (2.12) by showing that (1.24)
holds. We observe that in Case 2, we need only prove that EUn

(U+
n , U+

0 ) → 0
in L1(Ω) as n → ∞ since all Un and, hence, U0 are non-negative functions.
Similarly, we can establish the other convergence claim in (1.24). We thus
show the details only for EUn

(U+
n , U+

0 ) in (1.24) and leave the modifications
for EUn

(U−
n , U−

0 ) to the reader noting that instead of zn,k in (5.10), one needs
to work with yn,k defined by yn,k := U−

n − Tk(U−
0 ).

In light of the monotonicity assumption in (1.12), we have EUn
(U+

n , U+
0 ) ≥

0 a.e. in Ω. Hence, to attain (1.24) for EUn
(U+

n , U+
0 ), it remains to show that

lim sup
n→∞

∫

Ω

EUn
(U+

n , U+
0 ) dx ≤ 0. (6.1)

Notation. Let ω be a measurable subset of Ω and v, w, z ∈ W 1,−→p
0 (Ω). We

introduce
Ej,Un

(v, w) := Aj(x,Un(x),∇v(x)) − Aj(x,Un(x),∇w(x)),

En,ω(v, w, z) :=
N∑

j=1

∫

ω

Ej,Un
(v, w) ∂jz dx.

(6.2)

If either of the variables v, w and z or ω depends on n, we drop the subscript
n in En,ω(v, w, z).

Fix k > 0. We define zn,k as in (5.10). From (1.20), we see that Gk(U+
0 ) ≥

0 a.e. in Ω. Since

U+
n − U+

0 = z+
n,k − z−

n,k − Gk(U+
0 ),

we infer that
∫

Ω

EUn
(U+

n , U+
0 ) dx =EΩ(Tk(U+

0 ), U+
0 , U+

n − U+
0 )

+ EΩ(U+
n , Tk(U+

0 ), z+
n,k)

+ EΩ(U+
n , Tk(U+

0 ),−z−
n,k)

+ EΩ(Tk(U+
0 ), U+

n , Gk(U+
0 )).

(6.3)
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We show that, up to a subsequence of {Un}, there exist μj ∈ Lp′
j (Ω) for

1 ≤ j ≤ N such that

lim
n→∞ EΩ(Tk(U+

0 ), U+
n , Gk(U+

0 )) =
N∑

j=1

∫

Ω

μj ∂jGk(U+
0 ) dx. (6.4)

Indeed, by the growth condition in (1.12), there exists a positive constant C,
independent of n and k such that, for 1 ≤ j ≤ N , it holds

‖Aj(x,Un,∇Tk(U+
0 ))‖

L
p′

j (Ω)
+ ‖Aj(x,Un,∇U+

0 )‖
L

p′
j (Ω)

+ ‖Aj(x,Un,∇U+
n )‖

L
p′

j (Ω)
≤ C.

(6.5)

Hence, passing to a subsequence of {Un}, we can find μj ∈ Lp′
j (Ω) for 1 ≤ j ≤

N such that

Ej,Un
(Tk(U+

0 ), U+
n ) ⇀ μj (weakly) in Lp′

j (Ω) as n → ∞. (6.6)

This proves the claim in (6.4).
We complete the proof of (6.1) assuming that the next two results hold.

Lemma 6.1. For every k ≥ 1, there exist R1(k) and R2(k) such that, up to a
subsequence of {Un}n≥1, we have

lim sup
n→∞

EΩ(Tk(U+
0 ), U+

0 , U+
n − U+

0 ) ≤ R1(k),

lim sup
n→∞

EΩ(U+
n , Tk(U+

0 ), z+
n,k) ≤ R2(k),

where limk→∞ R1(k) = limk→∞ R2(k) = 0.

Lemma 6.2. For every k ≥ 1, by passing to a subsequence of {Un}n≥1, we
have

lim sup
n→∞

EΩ(U+
n , Tk(U+

0 ),−z−
n,k) ≤ 0. (6.7)

For the proof of Lemmata 6.1 and 6.2, we refer to Sects. 6.1 and 6.2,
respectively.
Hence, by using a diagonal argument, there exists a subsequence of {Un}n≥1

such that for every k ≥ 1 (6.4) holds and Lemmata 6.1 and 6.2 apply.
Consequently, using also (6.3), we deduce that

lim sup
n→∞

∫

Ω

EUn
(U+

n , U+
0 ) dx

≤ R1(k) + R2(k) +
N∑

j=1

∫

Ω

μj ∂jGk(U+
0 ) dx

(6.8)

for every integer k ≥ 1.
Hence, by using (5.9) and letting k → ∞ in (6.8), we conclude the proof

of (6.1).
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6.1. Proof of Lemma 6.1

Let k ≥ 1. By Lemma 5.2, it suffices to show that there exist a positive constant
C, independent of k, and R0(k) with limk→∞ R0(k) = 0 such that

lim sup
n→∞

EΩ(Tk(U+
0 ), U+

0 , U+
n − U+

0 )

≤ C lim sup
n→∞

‖Gk(Un)‖
W 1,−→p

0 (Ω)
− R0(k),

(6.9)

and

lim sup
n→∞

EΩ(U+
n , Tk(U+

0 ), z+
n,k)

≤ lim sup
n→∞

〈AUn, z+
n,k〉 + C lim sup

n→∞
‖Gk(Un)‖

W 1,−→p
0 (Ω)

.
(6.10)

Proof of (6.9). We define L1(n, k), L2(n, k) and L3(n, k) by

L1(n, k) := E{|Un|<k}(Tk(U+
0 ), U+

0 , U+
n − U+

0 ),

L2(n, k) := E{|Un|≥k}(Tk(U+
0 ), U+

0 , U+
n ),

L3(n, k) := E{|Un|≥k}(Tk(U+
0 ), U+

0 , U+
0 )

=
N∑

j=1

∫

{|Un|≥k}
Ej,Un

(Tk(U+
0 ), U+

0 ) ∂jU
+
0 dx.

It follows that

EΩ(Tk(U+
0 ), U+

0 , U+
n − U+

0 ) = L1(n, k) + L2(n, k) − L3(n, k). (6.11)

Note that χ{|Un|≥k}∂jU
+
n = χ{Un≥k}∂jGk(Un) for every 1 ≤ j ≤ N . Hence,

by Hölder’s inequality and (6.5), we obtain that
∣
∣L2(n, k)

∣
∣ =

∣
∣E{Un≥k}(Tk(U+

0 ), U+
0 , Gk(Un))

∣
∣

≤ C‖Gk(Un)‖
W 1,−→p

0 (Ω)
,

(6.12)

where C > 0 is a constant independent of n and k.
By the Dominated Convergence Theorem, we see that R0(k) → 0 as k → ∞,
where we define

R0(k) :=
N∑

j=1

∫

{U0≥k}
Ej,U0(0, U0) ∂jU0 dx. (6.13)

Using (6.11) and (6.12), we finish the proof of (6.9) by showing that

lim
n→∞ L3(n, k) = R0(k) and lim

n→∞ L1(n, k) = 0. (6.14)

Let 1 ≤ j ≤ N be arbitrary. As n → ∞, we have

χ{|Un|≥k}∂jU
+
0 → χ{U0≥k}∂jU0 (strongly) in Lpj (Ω). (6.15)

Since Ej,Un
(Tk(U+

0 ), U+
0 ) → Ej,U0(Tk(U+

0 ), U+
0 ) a.e. in Ω as n → ∞, using

(6.5) and passing to a subsequence of {Un}, we find that

Ej,Un
(Tk(U+

0 ), U+
0 ) ⇀ Ej,U0(Tk(U+

0 ), U+
0 ) weakly in Lp′

j (Ω) (6.16)
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as n → ∞. Hence, from (6.15) and (6.16), we infer that as n → ∞
Ej,Un

(Tk(U+
0 ), U+

0 )χ{|Un|≥k}∂jU
+
0 converges to

Ej,U0(Tk(U+
0 ), U+

0 )χ{U0≥k}∂jU0 (strongly) in L1(Ω).

This proves the first limit in (6.14) since

Ej,U0(Tk(U+
0 ), U+

0 ) = Ej,U0(0, U0) on {U0 ≥ k}.

Let 1 ≤ j ≤ N be arbitrary. We now remark that the sequences {Ej,Un
(Tk(U+

0 ),
U+

0 )χ{|Un|≤k}}n, {Aj(x,Un,∇Tk(U+
0 ))χ{|Un|≤k}}n are uniformly integrable

in Lp′
j (Ω) with respect to n. Since Un → U0 a.e. in Ω as n → ∞, by Vitali’s

Theorem, we obtain that as n → ∞
Ej,Un

(Tk(U+
0 ), U+

0 )χ{|Un|≤k} converges to

Ej,U0(Tk(U+
0 ), U+

0 )χ{|U0|≤k} in Lp′
j (Ω),

(6.17)

Aj(x,Un,∇Tk(U+
0 ))χ{|Un|≤k} converges to

Aj(x,U0,∇Tk(U+
0 ))χ{|U0|≤k} in Lp′

j (Ω).
(6.18)

Recall that ∂jU
+
n ⇀ ∂jU

+
0 and ∂jz

+
n,k ⇀ ∂jGk(U+

0 ) (weakly) in Lpj (Ω) as
n → ∞. Since χ{|U0|≤k} ∂jGk(U+

0 ) = 0, using (6.17) and (6.18), we conclude
that as n → ∞

Ej,Un
(Tk(U+

0 ), U+
0 )χ{|Un|≤k} ∂j(U+

n − U+
0 ) → 0 in L1(Ω), (6.19)

Aj(x,Un,∇Tk(U+
0 ))χ{|Un|≤k} ∂jz

+
n,k → 0 in L1(Ω). (6.20)

Moreover, from (6.19) and the squeeze law, we get the second limit in
(6.14).

Proof of (6.10). We define P1(n, k) and P2(n, k) as follows

P1(n, k) :=
N∑

j=1

∫

{|Un|<k}
Aj(x,Un,∇Tk(U+

0 )) ∂jz
+
n,k dx,

P2(n, k) :=
N∑

j=1

∫

{Un≥k}
Aj(x,Un,∇Tk(U+

0 )) ∂j(−z+
n,k) dx.

Since on the set {Un ≥ k} we have z+
n,k = Un −Tk(U+

0 ) and ∂jUn = ∂jGk(Un)
for 1 ≤ j ≤ N , the definition of P2(n, k) yields that P2(n, k) = P2,1(n, k) +
P2,2(n, k), where

P2,1(n, k) := −
N∑

j=1

∫

{Un≥k}
Aj(x,Un,∇Tk(U+

0 )) ∂jGk(Un) dx,

P2,2(n, k) :=
N∑

j=1

∫

{Un≥k}∩{0<U0<k}
Aj(x,Un,∇U0) ∂jU0 dx.
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From (6.20), we get limn→∞ P1(n, k) = 0. When z+
n,k > 0, then U+

n > 0
so that

Un = U+
n on {z+

n,k > 0} and 〈AU+
n , z+

n,k〉 = 〈AUn, z+
n,k〉.

Hence, we arrive at

EΩ(U+
n , Tk(U+

0 ), z+
n,k) = 〈AUn, z+

n,k〉 − P1(n, k) + P2(n, k).

Consequently, we end the proof of (6.10) once we show that

lim sup
n→∞

P2(n, k) ≤ C lim sup
n→∞

‖Gk(Un)‖
W 1,−→p

0 (Ω)
, (6.21)

where C is a positive constant independent of k.
As for (6.12), we find a positive constant C, independent of n and k such

that

|P2,1(n, k)| ≤ C‖Gk(Un)‖
W 1,−→p

0 (Ω)
. (6.22)

For 1 ≤ j ≤ N , by the Dominated Convergence Theorem, we get χ{Un≥k}
χ{0<U0<k}∂jU0 → 0 (strongly) in Lpj (Ω) as n → ∞. Since Aj(x,Un,∇U0) ⇀

Aj(x,U0,∇U0) (weakly) in Lp′
j (Ω) as n → ∞, we infer that limn→∞ P2,2(n, k)

= 0. This, together with (6.22), proves (6.21).
The proof of Lemma 6.1 is now complete. �

Remark 6.3. The reasoning in the proof of limn→∞ L1(n, k) = 0 cannot be
extended to get limn→∞ EΩ(Tk(U+

0 ), U+
0 , U+

n −U+
0 ) = 0. Indeed, in the growth

condition in (1.12), we have taken the greatest exponent for |t| regarding the
anisotropic Sobolev inequalities so that we don’t have the compactness of the
embedding W 1,−→p

0 (Ω) ↪→ Lp∗
(Ω). Hence, we cannot infer that {Ej,Un

(Tk(U+
0 ),

U+
0 )}n≥1 is uniformly integrable in Lp′

j (Ω) with respect to n.

6.2. Proof of Lemma 6.2

We need to show that, up to a subsequence, (6.7) holds, namely,

lim sup
n→∞

∫

Ω

D(n, k) dx ≤ 0, (6.23)

where we define D(n, k) by

D(n, k) =
N∑

j=1

[
Aj(x,Un,∇U+

n )

−Aj(x,Un,∇Tk(U+
0 ))

]
∂j(−z−

n,k).

(6.24)

We choose λ = λ(k) > 0 large such that 4ν2
0 λ > φ2(k), where φ appears in

the growth assumption on Φ in (1.13), while ν0 > 0 is given by the coercivity
condition in (1.12). We define ϕλ as in (5.26). Our choice of λ ensures that for
every t ∈ R

λt2 − φ(k)
2ν0

|t| +
1
4

> 0 and, hence, ϕ′
λ(t) − φ(k)

ν0
|ϕλ(t)| >

1
2
. (6.25)
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Recall that I0(n, k) is defined in (5.27). For convenience, we set

I1(n, k) :=
N∑

j=1

∫

Ω

Aj(x,Un,∇Tk(U+
0 )) ∂j(ϕλ(z−

n,k)) dx

+EΩ(Un, U+
n , ϕλ(z−

n,k)), (6.26)

I2(n, k) :=
N∑

j=1

∫

Ω

[
Aj(x,Un,∇U+

n ) ∂jTk(U+
0 )

+Aj(x,Un,∇Tk(U+
0 )) ∂jzn,k

]
ϕλ(z−

n,k) dx.

We divide the proof of (6.23) into two steps.
Step 1. Let ν0 and c, φ be as in (1.12) and (1.13), respectively. We have

1
2

∫

Ω

D(n, k) dx ≤I0(n, k) + I1(n, k)

+ φ(k)
[
I2(n, k)

ν0
+
∫

Ω

c(x)ϕλ(z−
n,k) dx

]

.

(6.27)

Proof of STEP 1. On the set {Un > Tk(U+
0 )}, we have D(n, k) = 0 since

z−
n,k = 0 and, hence, ∂jz

−
n,k = 0 for 1 ≤ j ≤ N . In turn, on the set {Un ≤

Tk(U+
0 )}, we find that z−

n,k = Tk(U+
0 )−U+

n and, by the monotonicity condition
in (1.12), it follows that D(n, k) ≥ 0. Hence, we have

D(n, k) ≥ 0, z−
n,k ∈ [0, k],

ϕλ(z−
n,k) ∂j(−z−

n,k) = ϕλ(z−
n,k) ∂j(U+

n − Tk(U+
0 )) a.e. in Ω

(6.28)

for each 1 ≤ j ≤ N . Then, using (6.25), we find that

1
2

∫

Ω

D(n, k) dx ≤
∫

Ω

D(n, k)ϕ′
λ(z−

n,k) dx

− φ(k)
ν0

∫

Ω

D(n, k)ϕλ(z−
n,k) dx.

(6.29)

From (6.24) and (6.26), we observe that
∫

Ω

D(n, k)ϕ′
λ(z−

n,k) dx = EΩ(U+
n , Tk(U+

0 ),−ϕλ(z−
n,k))

= I1(n, k) + 〈AUn,−ϕλ(z−
n,k)〉.

(6.30)

Since z−
n,k ∈ W 1,−→p

0 (Ω) ∩ L∞(Ω), we have ϕλ(z−
n,k) ∈ W 1,−→p

0 (Ω) ∩ L∞(Ω) so
that ϕλ(z−

n,k) can be taken as a test function in (2.5). Hence, using (1.13) and
I0(n, k) given by (5.27), we find that

〈AUn,−ϕλ(z−
n,k)〉 ≤

∫

Ω

Φ(Un)ϕλ(z−
n,k) dx + I0(n, k). (6.31)
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In view of (6.29)–(6.31), we conclude (6.27) by showing that
∫

Ω

Φ(Un)ϕλ(z−
n,k) dx ≤

[∫
Ω

D(n, k)ϕλ(z−
n,k) dx + I2(n, k)
ν0

+
∫

Ω

c(x)ϕλ(z−
n,k) dx

]

φ(k).

(6.32)

To this end, we next prove that
∫

Ω

Φ(Un)ϕλ(z−
n,k)dx ≤ φ(k)

(
I3(n, k)

ν0
+
∫

Ω

c(x)ϕλ(z−
n,k) dx

)

(6.33)

where I3(n, k) is defined by

I3(n, k) =
N∑

j=1

∫

{0<Un≤Tk(U+
0 )}

Aj(Un) ∂jUn ϕλ(z−
n,k) dx. (6.34)

Indeed, since z−
n,k = 0 on {U+

n > Tk(U+
0 )} and Φ(Un) ≤ 0 ≤ ϕλ(z−

n,k) on
{Un ≤ 0}, we have

∫

Ω

Φ(Un)ϕλ(z−
n,k) dx =

∫

{U+
n ≤Tk(U+

0 )}
Φ(Un)ϕλ(z−

n,k) dx

≤
∫

{0<Un≤Tk(U+
0 )}

Φ(Un)ϕλ(z−
n,k) dx.

Next, from the growth condition on Φ in (1.13) and the coercivity condition
in (1.12), we get

∫

{0<Un≤Tk(U+
0 )}

Φ(Un)ϕλ(z−
n,k) dx

≤ φ(k)
∫

{0<Un≤Tk(U+
0 )}

⎛

⎝
N∑

j=1

|∂jUn|pj + c(x)

⎞

⎠ϕλ(z−
n,k) dx

≤ φ(k)
ν0

I3(n, k) + φ(k)
∫

Ω

c(x)ϕλ(z−
n,k) dx.

Consequently, the assertion of (6.33) is proved.
Since ϕ(z−

n,k) = 0 on {Un > Tk(U+
0 )}, we have

I3(n, k) =
N∑

j=1

∫

Ω

Aj(x,Un,∇U+
n ) ∂jU

+
n ϕλ(z−

n,k) dx

=
∫

Ω

D(n, k)ϕλ(z−
n,k) dx + I2(n, k),

(6.35)

where I2(n, k) is given in (6.26). From (6.33) and (6.35), we attain (6.32). This
ends the proof of (6.27) and of Step 1. �

Step 2. Proof of (6.23) concluded.
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Proof of STEP 2. Since 0 ≤ c(x)ϕλ(z−
n,k) ≤ k eλk2

c(x) a.e. in Ω and c(x)ϕλ

(z−
n,k) → 0 a.e. in Ω as n → ∞, by the Dominated Convergence Theorem, we

have limn→∞
∫
Ω

c(x)ϕλ(z−
n,k) dx = 0. In view of Step 1 and Lemma 5.3, we

conclude Step 2 by showing that, up to a subsequence,

lim
n→∞ I1(n, k) = 0 and lim

n→∞ I2(n, k) = 0. (6.36)

From (5.12), we have that both z−
n,k and ϕλ(z−

n,k) converge to 0 weakly in

W 1,−→p
0 (Ω) as n → ∞. In particular, for each 1 ≤ j ≤ N , it holds

∂j(ϕλ(z−
n,k)) ⇀ 0 (weakly) in Lpj (Ω) as n → ∞. (6.37)

We recall that z−
n,k = Tk(U+

0 ) on {Un ≤ 0} and ϕλ(z−
n,k) = 0 on {Un >

Tk(U+
0 )}.
(1) We show that limn→∞ I1(n, k) = 0. If I1,1(n, k) is the first term in

I1(n, k) in (6.26), then

I1,1(n, k) =
N∑

j=1

∫

{Un<0}
Aj(x,Un,∇Tk(U+

0 )) ∂j(ϕλ(Tk(U+
0 )) dx

+
N∑

j=1

∫

{0≤Un≤Tk(U+
0 )}

Aj(x,Un,∇Tk(U+
0 ))∂j(ϕλ(z−

n,k)) dx.

(6.38)

Let 1 ≤ j ≤ N be arbitrary. By the Dominated Convergence Theorem, we get

χ{Un≤0} ∂j(ϕλ(Tk(U+
0 ))) → 0 (strongly) in Lpj (Ω) (6.39)

as n → ∞. Hence, using that

Aj(x,Un,∇Tk(U+
0 )) ⇀ Aj(x,U0,∇Tk(U+

0 )) (weakly) in Lp′
j (Ω)

as n → ∞, we obtain that the first term in the right-hand side of (6.38)
converges to 0 as n → ∞. Moreover, on {0 ≤ Un ≤ Tk(U+

0 )}, we have Un ≤ k

and the family {|Aj(x,Un,∇Tk(U+
0 ))|p′

j }n≥1 is uniformly integrable. Then,
based on

Aj(x,Un,∇Tk(U+
0 )) → Aj(x,U0,∇Tk(U+

0 )) a.e. in Ω

as n → ∞, by Vitali’s Theorem, we infer that as n → ∞
Aj(x,Un,∇Tk(U+

0 ))χ{0≤Un≤Tk(U+
0 )} converges to

Aj(x,U0,∇Tk(U+
0 ))χ{0≤U0≤Tk(U+

0 )} in Lp′
j (Ω).

(6.40)

This, jointly with (6.37), implies that the second term in the right-hand side
of (6.38) converges to 0 as n → ∞. This proves that limn→∞ I1,1(n, k) = 0.

We now show that the remaining term in the definition of I1(n, k) in
(6.26) converges to 0 as n → ∞, that is,

lim
n→∞ EΩ(Un, U+

n , ϕλ(z−
n,k)) = 0.
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By the definition of En,ω(·, ·, ·) in (6.2), since z−
n,k = Tk(U+

0 ) = −zn,k on
{Un ≤ 0}, we get

EΩ(Un, U+
n , ϕλ(z−

n,k))

=
N∑

j=1

∫

{Un≤0}
[Aj(x,Un,∇Un) − Aj(x,Un,∇U+

n )]∂j(ϕλ(Tk(U+
0 ))dx.

As for (6.6), by passing to a subsequence of {Un}, we get that

{Aj(x,Un,∇Un)}n, {Aj(x,Un,∇U+
n )}n, {Aj(x,Un,∇Tk(U+

0 ))}n

converge weakly in Lp′
j (Ω) as n → ∞. This and (6.39) yield

lim
n→∞ EΩ(Un, U+

n , ϕλ(z−
n,k)) = 0.

(2) We show that limn→∞ I2(n, k) = 0. From (5.11) and 0 ≤ z−
n,k ≤ k a.e

in Ω, we have ϕλ(z−
n,k) → 0 a.e. in Ω as n → ∞ and 0 ≤ ϕλ(z−

n,k) ≤ k eλk2
a.e.

in Ω. Thus, by the Dominated Convergence Theorem, for each 1 ≤ j ≤ N , we
find that as n → ∞

ϕλ(z−
n,k) ∂jTk(U+

0 ) → 0 (strongly) in Lpj (Ω),

χ{Un≤0} ϕλ(Tk(U+
0 )) ∂jzn,k → 0 (strongly) in Lpj (Ω).

Consequently, as n → ∞, we get

N∑

j=1

∫

Ω

Aj(x,Un,∇U+
n )ϕλ(z−

n,k) ∂jTk(U+
0 ) dx → 0,

N∑

j=1

∫

{Un<0}
Aj(x,Un,∇Tk(U+

0 ))ϕλ(Tk(U+
0 )) ∂jzn,k dx → 0.

(6.41)

For 1 ≤ j ≤ N , we have zn,k = −z−
n,k on {0 ≤ Un ≤ Tk(U+

0 )} so that
using (6.40) and the weak convergence ∂jz

−
n,k ⇀ 0 in Lpj (Ω) as n → ∞, we

arrive at

Aj(x,Un,∇Tk(U+
0 ))χ{0≤Un≤Tk(U+

0 )} ∂jzn,k → 0 in L1(Ω)

as n → ∞. It follows that
N∑

j=1

∫

{0≤Un≤Tk(U+
0 )}

Aj(x,Un,∇Tk(U+
0 ))ϕλ(z−

n,k) ∂jzn,k dx

converges to 0 as n → ∞.

(6.42)

Since ϕλ(z−
n,k) = 0 on {Un > Tk(U+

0 )}, from (6.41) and (6.42), we find that
limn→∞ I2(n, k) = 0, completing the proof of (6.36) and of Step 2. �

This finishes the proof of Lemma 6.2. �
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7. Proof of Theorem 1.5

Let (1.1), (1.3), (1.8) and (1.12)–(1.14) hold and, in addition, let min1≤j≤N aj >
0. Here, we suppose that the function f in (1.11) is not identically 0. In Case 2,
we assume that f ≥ 0 a.e. in Ω. We approximate f by a sequence of functions
fn ∈ L∞(Ω), taking for instance

fn(x) :=
f(x)

1 + |f(x)|/n
for a.e. x ∈ Ω.

In particular, in Case 2, we have fn ≥ 0 a.e. in Ω. We remark the following
properties

|fn| ≤ |f | a.e. in Ω, fn → f a.e. in Ω,

fn → f (strongly) in L1(Ω) as n → ∞.
(7.1)

With this approximation, assuming that B belongs to BC((1− ε)A) for some
ε ∈ (0, 1), in either Case 1 or Case 2, we can apply Theorem 1.4 for the problem
generated by (1.11) with fn instead of f . Then such an approximate problem
admits at least a solution un, namely,

{Aun + Φ(un) + Θ(un) = Ψ(un) + Bun + fn in Ω,

un ∈ W 1,−→p
0 (Ω), Φ(un) ∈ L1(Ω).

(7.2)

Moreover, Φ(un)un and Ψ(un)un belong to L1(Ω),

Iun
(v) :=

∫

{|un|>0}
Ψ(un) v dx ∈ R

and

Sun,Θ,fn
(v) = Iun

(v) + 〈Bun, v〉 (7.3)

for every v ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω). Furthermore, (7.3) holds for v = un.

In the rest of the paper, we understand that un is a solution of (7.2) with
the above-mentioned properties that we obtain from Theorem 1.4.

But, unlike Theorem 1.4, to prove that {un}n≥1 is uniformly bounded
in W 1,−→p

0 (Ω), we need B to satisfy the extra condition (P3) associated with
(1 − ε)A, namely, for every k > 0,

(1 − ε) ν0

N∑

j=1

||∂ju||pj

Lpj (Ω)
− 〈Bu, Tk(u)〉 → ∞ (7.4)

as ‖u‖
W 1,−→p

0 (Ω)
→ ∞. Thus, B belongs to the class BC+((1 − ε)A). This

assumption is made throughout this section.
All the results in this section are derived in the framework of Theorem 1.5.

7.1. A priori estimates

In order to obtain a priori estimates for un solving (7.2) we need the following
result, which is in the spirit of Lemma 4.1.
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Lemma 7.1. Let k ≥ 1 be arbitrary and Φ0 be given by (1.2). Then, for every
ρ > 0, there exists a constant Cρ > 0 such that for all n ≥ 1, we have

Iun
(Tk(un)) ≤ρ

N∑

j=1

‖∂jun‖pj

Lpj (Ω)
+ ρ

∫

{|un|≥k}
|Φ0(un)|dx + Cρ. (7.5)

Remark 7.2. The property Φ(un)un ∈ L1(Ω) and (1.14) ensure that∫
{|un|≥k} |Φ0(un)| dx < ∞ for all k ≥ 1 and n ≥ 1.

We define

Im−1(k, un) =
∫

{|un|>k}
|un|m−1 dx,

Im−1,pj
(k, un) :=

∫

{|un|>k}
|un|m−1|∂jun|pj dx.

If in the definition of Im−1,pj
(k, un), we replace m − 1 and pj by θj − 1 and

qj , respectively, then we obtain Iθj−1,qj
(k, un).

Proof of Lemma 7.1. We observe that

Im−1(k, un) +
N∑

j=1

Im−1,pj
(k, un)

≤ 1
min0≤k≤N ak

∫

{|un|≥k}
|Φ0(un)| dx < ∞.

Using the definition of Iun
(v), we see that

Iun
(Tk(un))

=
N∑

j=1

∫

{0<|un|≤k}
|un|θj |∂jun|qj dx + k

N∑

j=1

Iθj−1,qj
(k, un)

≤ 2
N∑

j=1

kθj

∫

Ω

|∂jun|qj dx + k
∑

j∈J1

Iθj−1,qj
(k, un).

(7.6)

Let δ > 0 be arbitrary. By Hölder’s inequality and Young’s inequality, there
exists a constant Cδ > 0 such that for every n ≥ 1,

N∑

j=1

∫

Ω

|∂jun|qj dx ≤
N∑

j=1

(meas (Ω))1− qj
pj ‖∂jun‖qj

Lpj (Ω)

≤ δ

N∑

j=1

‖∂jun‖pj

Lpj (Ω)
+ Cδ.

(7.7)

Let j ∈ J1 be arbitrary. To estimate Iθj−1,qj
(k, un), we distinguish several

cases:
Case (a) Let qj = 0 and θj ≥ p + 1. Then, j ∈ N−→a and from (1.8), we

have m > θj . Hence, by Young’s inequality, there exists a constant Cδ > 0
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such that for all n ≥ 1,

Iθj−1,qj
(k, un) =

∫

{|un|>k}
|un|θj−1 dx ≤ δ Im−1(k, un) + Cδ. (7.8)

Case (b) Let qj = 0 and θj < p + 1. We set γj = 1 − (θj − 1)/p and
Cj = (meas (Ω))γj . By Hölder’s inequality, Remark A.3 and Lemma A.1 in the
“Appendix”, we find constants C > 0 (depending on N , −→p , θj and meas (Ω))
and Cδ > 0 such that for all n ≥ 1,

Iθj−1,qj
(k, un) ≤ Cj ‖un‖θj−1

Lp(Ω) ≤ C

N∏

i=1

‖∂iun‖
θj−1

N

Lpi (Ω)

≤ δ

N∑

i=1

‖∂iun‖pi

Lpi (Ω) + Cδ.

(7.9)

When qj > 0, we define ζj as follows

ζj := θj − 1 − (m − 1) qj

pj
. (7.10)

Case (c) Let qj > 0 and ζj ≤ 0. We set γj = 1 − qj/pj and Cj =
(meas (Ω))γj . Then, by Hölder’s inequality and Lemma A.1, there exists Cδ > 0
such that

Iθj−1,qj
(k, un) ≤ Cj ‖∂jun‖− pjζj

m−1

Lpj (Ω)

(
Im−1,pj

(k, un)
) θj−1

m−1

≤ δIm−1,pj
(k, un) + δ‖∂jun‖pj

Lpj (Ω)
+ Cδ.

(7.11)

Case (d) Let qj > 0 and ζj > 0. We distinguish three sub-cases:

(d1) Let mj > 1 and θj ≥ p. Then, j ∈ P−→a and from (1.8), we have m > θj =
min{mj , θj}. We set γj := (m − θj)/(m − 1) and Cj := (meas (Ω))γj . It
follows that

Iθj−1,qj
(k, un) ≤ Cj (Im−1(k, un))

ζj
m−1

(
Im−1,pj

(k, un)
) qj

pj

≤ δ Im−1(k, un) + δ Im−1,pj
(k, un) + Cδ,

(7.12)

where Cδ > 0 is a suitable constant depending on δ.
(d2) Let mj > 1 and θj < p. Then, from (1.8), we see that m > mj =

min{mj , θj}.
(d3) Let mj ≤ 1. Here, we have m > 1 ≥ mj .

We next treat sub-cases (d2) and (d3) together to get (7.14) below. Using
that m > mj , we define

γj := 1 − ζj

p
− qj

pj
=

1
p

[
qj

pj
(m − mj) + 1 − qj

pj

]

∈ (0, 1). (7.13)

We let Cj = (meas (Ω))γj . By Hölder’s inequality, the anisotropic Sobolev
inequality (A.2) in the “Appendix” and Lemma A.1, we find constants C > 0
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(depending on N , −→p , θj , qj , m and meas (Ω)) and Cδ > 0 such that for all
n ≥ 1, we have

Iθj−1,qj
(k, un) ≤ Cj‖un‖ζj

Lp(Ω)

(
Im−1,pj

(k, un)
) qj

pj

≤ C
(
Im−1,pj

(k, un)
) qj

pj

N∏

i=1

‖∂iun‖
ζj
N

Lpi (Ω)

≤ δIm−1,pj
(k, un) + δ

N∑

i=1

‖∂iun‖pi

Lpi (Ω) + Cδ.

(7.14)

Since δ > 0 is arbitrary, the conclusion of Lemma 7.1 follows from (7.6) based
on the inequalities in (7.7)–(7.9), (7.11), (7.12) and (7.14). �

We now proceed with the proof of the a priori estimates of un.

Proposition 7.3. The following hold.
(a) There exists a positive constant C such that for all n ≥ 1, we have

‖un‖
W 1,−→p

0 (Ω)
+
∫

Ω

|Φ(un)| dx ≤ C. (7.15)

(b) There exists u0 ∈ W 1,−→p
0 (Ω) such that, up to a subsequence of {un}n≥1,

un ⇀ u0 (weakly) in W 1,−→p
0 (Ω) as n → ∞,

un → u0 a.e. in Ω as n → ∞.
(7.16)

Proof. (a) Fix k ≥ 1 large such that km−1(k−1)min1≤j≤N aj ≥ ν0. We define

Kn,k :=
N∑

j=1

∫

{|un|<k}
Aj(un) ∂jun dx − 〈Bun, Tk(un)〉. (7.17)

We have ∂jTk(un) = χ{|un|<k} ∂jun a.e. in Ω for 1 ≤ j ≤ N . By the sign-
condition of Φ in (1.13), we see that

Φ(un)Tk(un) = Φ(un)un ≥ 0 on {|un| < k}.

Since ‖fn‖L1(Ω) ≤ ‖f‖L1(Ω), by taking v = Tk(un) ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω) in

(7.3), we find that

Kn,k + k

∫

{|un|≥k}
|Φ(un)| dx ≤ C0 + Iun

(Tk(un)), (7.18)

where C0 := k
(‖f‖L1(Ω) + CΘ meas (Ω)

)
. Lemma 7.1 gives that for every ρ >

0, there exists a constant Cρ > 0 such that (7.5) holds for all n ≥ 1. Using
(7.5) into (7.18), we find that

Kn,k + (k − ρ)
∫

{|un|≥k}
|Φ(un)| dx

≤ C0 + ρ

N∑

j=1

‖∂jun‖pj

Lpj (Ω)
+ Cρ.

(7.19)
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We fix 0 < ρ < min {1, εν0}. Hence, using (7.17), (1.14), our choice of k and
the coercivity condition in (1.12), we derive that

ν0

N∑

j=1

‖∂jun‖pj

Lpj (Ω)
− 〈Bun, Tk(un)〉

≤ C0 + ρ

N∑

j=1

‖∂jun‖pj

Lpj (Ω)
+ Cρ.

By the choice of ρ and (7.4), we conclude the boundedness of {un}n in W 1,−→p
0 (Ω).

Since B is a bounded operator from W 1,−→p
0 (Ω) into its dual, we have

|〈Bun, Tk(un)〉| ≤ C, where C is a positive constant independent of n. Thus,
from (7.19), we readily deduce that

∫

{|un|≥k}
|Φ(un)| dx ≤ C.

Using the growth condition of Φ in (1.13), we find that

∫

{|un|<k}
|Φ(un)| dx ≤ C

for all n ≥ 1. This completes the proof of (7.15).
(b) Up to a subsequence, the assertion in (7.16) follows from (7.15). �

7.2. Strong convergence of Tk(un)

Our aim in this section is to prove the following Proposition 7.4.

Proposition 7.4. Up to a subsequence of {un}n, as n → ∞, we have

∇un → ∇u0 a.e. in Ω

Tk(un) → Tk(u0) (strongly) in W 1,−→p
0 (Ω)

(7.20)

for every positive integer k.

Remark 7.5. We have Φ(u0) ∈ L1(Ω). Indeed, using the a.e. convergences of
{un} and {∇un} in (7.16) and (7.20), respectively, we obtain that |Φ(un)| →
|Φ(u0)| a.e. in Ω as n → ∞. Then, the claim follows from (7.15) and Fatou’s
Lemma.

To derive (7.20), we can proceed as in the proof of Lemma 4.2 in [16].
However, the new ingredient here is Lemma 7.6, which is due to the introduc-
tion of Ψ in (1.11).
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We define Qj(n, k) and Rj(n, k) for 1 ≤ j ≤ N , as well as Vj(n, k) if
j ∈ J1 and Wj(n, k) if j ∈ J2 as follows

Qj(n, k) :=
∫

{un≥k}
|un|θj−1|∂jun|qj (k − Tk(u0)) dx,

Rj(n, k) :=
∫

{un≤−k}
|un|θj−1|∂jun|qj (k + Tk(u0)) dx,

Vj(n, k) :=
∫

{0<|un|<k}
|∂jun|qj |un − Tk(u0)| dx,

Wj(n, k) :=
∫

{Tk(u0)<un<k}
|un|θj−1|∂jun|qj (un − Tk(u0))dx.

(7.21)

Let ϕλ be as in the proof of Lemma 6.2 (see (5.26)). For every n, k ≥ 1,
we set

Zn,k := Tk(un) − Tk(u0). (7.22)

Lemma 7.6. We have

lim sup
n→∞

Iun
(ϕλ(Zn,k)) ≤ 0. (7.23)

Proof. Since ϕλ(Zn,k) = Zn,k eλ(Zn,k)2 , from (1.3) we find that

Iun(ϕλ(Zn,k)) =

N∑

j=1

∫

{un≥k}
|un|θj−1|∂jun|qj (k − Tk(u0)) eλ(Zn,k)

2

dx

+
N∑

j=1

∫

{un≤−k}
|un|θj−1|∂jun|qj (k + Tk(u0)) eλ(Zn,k)

2

dx

+

N∑

j=1

∫

{0<|un|<k}
|un|θj−2un|∂jun|qj (un − Tk(u0)) eλ(Zn,k)

2

dx.

Since |Zn,k| ≤ 2k a.e. in Ω, using (7.21), we infer that

Iun
(ϕλ(Zn,k))
e4λk2 ≤

N∑

j=1

(Qj(n, k) + Rj(n, k))

+
∑

j∈J1

kθj−1Vj(n, k) +
∑

j∈J2

Wj(n, k).
(7.24)

We separate the case j ∈ J2 from j ∈ J1.
(I) Let j ∈ J2, which pertains to Case 2 when un ≥ 0 a.e. in Ω and,

hence, u0 ≥ 0 a.e. in Ω. Remark that (k − Tk(u0))χ{un≥k} → 0 in L(pj/qj)
′
(Ω)

as n → ∞. Since {∂jun}n≥1 is bounded in Lpj (Ω), by Hölder’s inequality, we
infer that

0 ≤ Qj(n, k)

≤ kθj−1‖∂jun‖qj

Lpj (Ω)
‖(k − Tk(u0))χ{un≥k}‖L(pj/qj)′

(Ω)
→ 0
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as n → ∞. With a similar argument, we obtain that

lim
n→∞ Rj(n, k) = 0.

Let 0 < τ < mini∈J2 θi. Hence, τ ∈ (0, 1) and

|un|θj−1(un − Tk(u0)) ≤ kθj−τ (un − Tk(u0))τ

on the set {Tk(u0) ≤ un ≤ k}. Since

(un − Tk(u0))τχ{Tk(u0)≤un≤k} → 0 in L(pj/qj)
′
(Ω) as n → ∞,

proceeding as above, we obtain that
0 ≤ Wj(n, k)

≤ kθj−τ‖∂jun‖qj

Lpj (Ω)
‖(un − Tk(u0))τχ{Tk(u0)≤un≤k}‖L(pj/qj)′

(Ω)

→ 0 as n → ∞.

(II) We now assume that j ∈ J1 and we show that

Qj(n, k) → 0 as n → ∞. (7.25)

As in the proof of Lemma 7.1, we distinguish several situations:
Case (a). Let qj = 0 and θj ≥ p + 1. In this case, j ∈ N−→a and hence,

(1.8) yields that m > θj .
Case (b). Let qj = 0 and θj < p + 1.
In Cases (a) and (b) above, we define γj = 1−(θj −1)/r, where r = m−1

in Case (a) and r = p in Case (b). Then, by Hölder’s inequality and (7.15), we
have

0 ≤ Qj(n, k)

≤ ‖un‖θj−1

Lr(Ω)‖(k − Tk(u0))χ{un≥k}‖L1/γj (Ω)
→ 0 as n → ∞.

For Cases (c) and (d) below, we define ζj as in (7.10).
Case (c) Let qj > 0 and ζj ≤ 0. Defining γj = 1−qj/pj , similar to (7.11),

we get

Qj(n, k) ≤‖∂jun‖− pjζj
m−1

Lpj (Ω)

(
Im−1,pj

(un)
) θj−1

m−1

× ‖(k − Tk(u0))χ{un≥k}‖L1/γj (Ω)
.

(7.26)

Case (d) Let qj > 0 and ζj > 0. We have three sub-cases, see (d1)–(d3)
in Lemma 7.1.
(d1) Let mj > 1 and θj ≥ p. Defining γj = (m− θj)/(m− 1), similar to (7.12),
we see that

Qj(n, k) ≤ (Im−1(un))
ζj

m−1
(
Im−1,pj

(un)
) qj

pj

× ‖(k − Tk(u0))χ{un≥k}‖L1/γj (Ω)
.

(7.27)

We treat the remaining sub-cases (d2) and (d3) together and define γj as
in (7.13). Analogous to (7.14), we find that

Qj(n, k) ≤‖un‖ζj

Lp(Ω)

(
Im−1,pj

(un)
) qj

pj

× ‖(k − Tk(u0))χ{un≥k}‖L1/γj (Ω)
.

(7.28)
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By (7.15), the right-hand side of each of the inequalities in (7.26), (7.27)
and (7.28) converges to 0 as n → ∞. So, in any of the Cases (a)–(d), we get
(7.25) for j ∈ J1. With the same reasoning, we obtain that limn→∞ Rj(n, k) =
0 for every j ∈ J1. Using that (un − Tk(u0))χ{0<|un|<k} → 0 in L(pj/qj)

′
(Ω)

as n → ∞, we find that Vj(n, k) → 0 as n → ∞. Thus, the right-hand side of
(7.24) converges to 0 as n → ∞. The proof of (7.23) is complete. �

Proof of Proposition 7.4. Using Lemma A.5 in [16], to obtain (7.20), it suffices
to show that for every integer k ≥ 1, there exists a subsequence of {un}
(depending on k and relabeled {un}) such that (1.28) holds. We first note
that, as n → ∞,

Eun
(Tk(un), Tk(u0))χ{|un|≥k} → 0 (strongly) in L1(Ω). (7.29)

Indeed, from (6.2) and (7.22), we have

Eun
(Tk(un), Tk(u0)) =

N∑

j=1

Ej,un
(Tk(un), Tk(u0)) ∂jZn,k.

For all 1 ≤ j ≤ N , since ∂jTk(un) = χ{|un|<k}∂jun, the Dominated Conver-
gence Theorem yields

∂jZn,k χ{|un|≥k} = −∂ju0 χ{|un|≥k}χ{|u0|<k} → 0 (7.30)

(strongly) in Lpj (Ω) as n → ∞.
Similar to (6.6), by passing to a subsequence of {un}, for each 1 ≤ j ≤ N ,

we see that {Ej,un
(Tk(un), Tk(u0))}n converges weakly in Lp′

j (Ω) as n → ∞.
Hence, we obtain (7.29).

Using the monotonicity assumption in (1.12), we get that

Eun
(Tk(un), Tk(u0)) ≥ 0 a.e. in Ω.

Hence, in view of (7.29), to conclude (1.28), it remains to show that, up to a
subsequence,

lim sup
n→∞

∫

{|un|<k}
Eun

(Tk(un), Tk(u0)) dx ≤ 0. (7.31)

We set

fλ(n, k) := ϕ′
λ(Zn,k) − φ(k)

ν0
|ϕλ(Zn,k)|,

Fn,k(v) :=
N∑

j=1

∫

{|un|<k}
Aj(x, un,∇v) fλ(n, k) ∂jZn,k dx,

(7.32)

where v ∈ W 1,−→p
0 (Ω). Since Tk(un) = un on {|un| < k}, from (6.25) and the

definition of Eu in (1.21), we infer that
1
2

∫

{|un|<k}
Eun

(Tk(un), Tk(u0)) dx ≤ Fn,k(un) − Fn,k(Tk(u0)).

The proof of (7.31) follows now by establishing that

(i) lim
n→∞ Fn,k(Tk(u0)) = 0, (ii) lim sup

n→∞
Fn,k(un) ≤ 0. (7.33)
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Since |Zn,k| ≤ 2k, we find a constant Ck > 0 such that |fλ(n, k)| ≤ Ck for all
n ≥ 1. For arbitrary 1 ≤ j ≤ N , with the same reasoning as for (6.18), we have
that Aj(x, un,∇Tk(u0))χ{|un|≤k} converges to Aj(x, u0,∇Tk(u0))χ{|u0|≤k}
(strongly) in Lp′

j (Ω) as n → ∞. Hence, using that ∂jZn,k ⇀ 0 (weakly) in
Lpj (Ω) as n → ∞, we find that Aj(x, un,∇Tk(u0))χ{|un|≤k} ∂jZn,k → 0 in
L1(Ω) as n → ∞. Thus, by the squeeze law, we obtain the first limit in (7.33).

To prove (ii) in (7.33), we take as a test function in (7.3) the function

v = ϕλ(Zn,k) ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω). (7.34)

Compared with [16], we have the extra term Iun
(v) in the right-hand side of

(7.3). Then, Iun
(ϕλ(Zn,k)) is the additional term which appears when bound-

ing from above Fn,k(un). By following the ideas in the proof of Lemmata 3.2
and 4.2 in [16] (see Lemma A.6 in the “Appendix” for details), we arrive at

Fn,k(un) ≤ Sk(n) + Iun
(ϕλ(Zn,k)), (7.35)

where, up to a subsequence of {un}, limn→∞ Sk(n) = 0. From Lemma 7.6 and
(7.35), we conclude (ii) in (7.33). This ends the proof of Proposition 7.4. �

7.3. Proof of Theorem 1.5 concluded

Here, we obtain that u0 ∈ W 1,−→p
0 (Ω) is a solution of (1.11) by combining

Propositions 7.3 and 7.4 with Lemma 7.7 below.

Lemma 7.7. Let un and u0 be as in Proposition 7.3. Then, up to a subsequence,
we have

Iu0(v) = lim
n→∞ Iun

(v) = Su0,Θ,f (v) − 〈Bu0, v〉 (7.36)

for every v ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω).

Proof. We start by proving the second equality in (7.36). Let v ∈ W 1,−→p
0 (Ω) ∩

L∞(Ω) be arbitrary. From (7.1), we have

lim
n→∞

∫

Ω

fnv dx =
∫

Ω

fv dx.

Reasoning as in the proof of (3.1), we obtain

Θ(un) v → Θ(u0) v in L1(Ω) as n → ∞,

limn→∞〈A(un), v〉 = 〈A(u0), v〉 and limn→∞〈Bun, v〉 = 〈Bu0, v〉. Since Φ(u0)
∈ L1(Ω) (see Remark 7.5), it is enough to show that

Φ(un) → Φ(u0) (strongly) in L1(Ω) as n → ∞. (7.37)

By Vitali’s Theorem, it suffices to show the uniform integrability of {Φ(un)}n≥1

over Ω.
Fix M > 2 arbitrary. Let ω be any measurable subset of Ω. We regain

(3.5) with un instead of Un. However, the proof of (3.6) does not translate here
since from Proposition 7.3 we only have the uniform boundedness in L1(Ω) for
{Φ(un)}n≥1 (rather than for {Φ(un)un}n≥1). The case Ψ = 0 is treated in [16,
Lemma 4.3] by adapting and extending to the anisotropic case an approach
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from [11]. We give the details since compared with [16] we need to deal with
the new term Ψ in (1.3). In (7.3), we take

v = T1(GM−1(un)) ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω).

Then, using the coercivity condition in (1.12) and (1.13), we obtain the esti-
mate

∫

{|un|>M}
|Φ(un)| dx ≤

∫

{|un|≥M−1}
(|fn| + CΘ) dx

+ |〈Bun, T1(GM−1(un))〉|
+ Iun

(T1(GM−1(un))).

(7.38)

Now, up to a subsequence of {un}, from (7.16), we have

T1(GM−1(un)) ⇀ T1(GM−1(u0)) (weakly) in W 1,−→p
0 (Ω) as n → ∞.

Using this in (7.38), jointly with (7.1) and the property (P2) for B, we find
that

lim sup
n→∞

∫

{|un|>M}
|Φ(un)| dx

≤
∫

{|u0|≥M−1}
(|f | + CΘ) dx + |〈Bu0, T1(GM−1(u0))〉|

+ lim sup
n→∞

|Iun
(T1(GM−1(un)))|.

(7.39)

Since T1(GM−1(un)) = 0 on {|un| ≤ M − 1}, we have

|Iun
(T1(GM−1(un)))| ≤

N∑

j=1

∫

{|un|≥M−1}
|un|θj−1|∂jun|qj dx. (7.40)

Let μM−1(v) := meas {|v| ≥ M−1}. We next bound from above the right-hand
side of (7.40).

(I) For every j ∈ J2, using that M > 2 and θj ≤ 1, we find that
∫

{|un|≥M−1}
|un|θj−1|∂jun|qj dx

≤ (M − 1)θj−1‖∂jun‖qj

Lpj (Ω)
(μM−1(un))1−qj/pj .

(7.41)

(II) Let j ∈ J1 corresponding to θj > 1. We are guided by the reasoning in
Lemma 7.6. In relation to the upper bound for Qj(n, k) in the proof of (7.25),
we replace (k − Tk(u0))χ{un≥k} by χ{|un|≥M−1}. Hence, using also (7.15), we
obtain a positive constant C, independent of n and M , such that

∫

{|un|≥M−1}
|un|θj−1|∂jun|qj dx ≤ C (μM−1(un))γj , (7.42)

where γj ∈ (0, 1) is defined according to (a)–(d) in the proof of (7.25).
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In light of (7.41) and (7.42), we infer from (7.40) that

lim sup
n→∞

|Iun
(T1(GM−1(un)))|

≤ C

⎛

⎝
∑

j∈J2

(μM−1(u0))1−qj/pj +
∑

j∈J1

(μM−1(u0))
γj

⎞

⎠ ,

where C > 0 is a constant independent of M . As μM−1(u0) converges to
0 as M → ∞, by choosing M > 2 large, we can make lim supn→∞ |Iun

(T1(GM−1(un)))| as small as desired. Using this fact in (7.39), we conclude
that

∫
ω

|Φ(un)|χ{|un|>M} dx is small uniformly in n and ω. This finishes the
proof of (7.37).

We now establish the first equality in (7.36) for every v ∈ W 1,−→p
0 (Ω) ∩

L∞(Ω). We follow the ideas in the proof of (3.7), working here with Ψ, un and
u0 instead of Ψn, Un and U0, respectively. Hence, for every j ∈ J1, the reader
should replace Hj,n(Un, ∂jUn) by |un|θj−2un|∂jun|qj .
For every j ∈ J1, corresponding to (3.13), we want to show that there exists
sj > 1 such that

‖|un|θj−2un|∂jun|qj ‖Lsj (Ω) ≤ C (7.43)

for a positive constant C independent of n. We need to adjust the argument in
Sect. 3.1. The reason is that instead of {‖un‖Lm(Ω)}n≥1 and {Im,pj

(un)}n≥1

being uniformly bounded in n, we only have that {∫
Ω

|un|m−1 dx}n≥1 and
{Im−1,pj

(un)}n≥1 are uniformly bounded (see Proposition 7.3 (a)). With sim-
ilar ideas to those given in the proof of (7.25), based on Hölder’s inequality,
we obtain (7.43) by taking sj = 1/(1 − γj), where γj ∈ (0, 1) is defined as for
(7.42).
Now, we use Proposition 7.3 (b) and (7.20) to deduce that

|un|θj−2un|∂jun|qj → |u0|θj−2u0|∂ju0|qj a.e. in Ω as n → ∞.

Using (7.43), we infer that, up to a subsequence,

|un|θj−2un|∂jun|qj ⇀ |u0|θj−2u0|∂ju0|qj (weakly) in Lsj (Ω)

as n → ∞, proving that

lim
n→∞

∑

j∈J1

∫

Ω

|un|θj−2un|∂jun|qj v dx

=
∑

j∈J1

∫

Ω

|u0|θj−2u0|∂ju0|qj v dx.

(7.44)

As mentioned before, for w ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω), we have ∇w = 0 a.e. in

{w = 0}. Hence, the above identity holds if instead of Ω we put {|un| > 0}
in the left-hand side of (7.44) and {|u0| > 0} in the right-hand side. This
completes the proof of (7.36) in Case 1.

In Case 2, the proof of (7.36) adapts almost verbatim from Sect. 3.2 re-
membering to work with Ψ instead of Ψn. This ends the proof of Lemma 7.7.

�



NoDEA Singular anisotropic elliptic equations Page 49 of 58    58 

Acknowledgements

The authors would like to thank the anonymous referee for helping improve
the presentation.

Author contributions Both authors wrote and reviewed the manuscript.

Funding Information Open Access funding enabled and organized by CAUL
and its Member Institutions. The first author has been supported by the Syd-
ney Mathematical Research Institute International Visitor Program (August–
September 2019), by Programma di Scambi Internazionali dell’Universitá degli
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Appendix A

In this paper, we need the following version of Young’s inequality.

Lemma A.1. (Young’s inequality) Let N ≥ 2 be an integer. Assume that
β1, . . . , βN are positive numbers and 1 < Rk < ∞ for each 1 ≤ k ≤ N − 1.
If
∑N−1

k=1 (1/Rk) < 1, then for every δ > 0, there exists a positive constant Cδ

(depending on δ) such that

N∏

k=1

βk ≤ δ
N−1∑

k=1

βRk

k + Cδ βRN

N ,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where we define RN =
[
1 − ∑N−1

k=1 (1/Rk)
]−1

.

We recall the anisotropic Sobolev inequality in [44, Theorem 1.2].

Lemma A.2. Let N ≥ 2 be an integer. If 1 < pj < ∞ for every 1 ≤ j ≤ N and
p < N , then there exists a positive constant S = S(N,−→p ), such that

‖u‖Lp∗ (RN ) ≤ S
N∏

j=1

‖∂ju‖1/N

Lpj (RN )
for all u ∈ C∞

c (RN ), (A.1)

where, as usual, p∗ := Np/(N − p).

Remark A.3. Let Ω be a bounded, open subset of RN with N ≥ 2. If 1 < pj <
∞ for every 1 ≤ j ≤ N and p < N , then by a density argument, (A.1) extends
to all u ∈ W 1,−→p

0 (Ω) so that the arithmetic–geometric mean inequality yields

‖u‖Lp∗ (Ω) ≤ S
N∏

j=1

‖∂ju‖1/N

Lpj (Ω)

≤ S
N

N∑

j=1

‖∂ju‖Lpj (Ω) =
S
N

‖u‖
W 1,−→p

0 (Ω)

(A.2)

for all u ∈ W 1,−→p
0 (Ω). Moreover, using Hölder’s inequality, the embedding

W 1,−→p
0 (Ω) ↪→ Ls(Ω) is continuous for every s ∈ [1, p∗] and compact for ev-

ery s ∈ [1, p∗).

Lemma A.4. Let the assumptions of Proposition 2.3 hold. Suppose that

EUn
(U±

n , U±
0 ) → 0 in L1(Ω) as n → ∞. (A.3)

Then, up to a subsequence, we have

∇U±
n → ∇U±

0 a.e. in Ω as n → ∞, (A.4)

U±
n → U±

0 (strongly) in W 1,−→p
0 (Ω) as n → ∞. (A.5)

Proof. From (A.3), we see that, up to a subsequence,

EUn
(U±

n , U±
0 ) → 0 a.e. in Ω as n → ∞.

We prove (A.4). Recall from Proposition 2.3 that (2.10) holds. Let Z
be a subset of Ω with meas (Z) = 0 such that for every x ∈ Ω \ Z, we have
|U±

0 (x)| < ∞, |∇U±
0 (x)| < ∞, |ηj(x)| < ∞ for all 1 ≤ j ≤ N , as well as

Un(x)± → U±
0 (x), EUn

(U±
n , U±

0 )(x) → 0 as n → ∞. (A.6)
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We fix x ∈ Ω \ Z. By the monotonicity and coercivity assumptions in (1.12),
we find that

EUn
(U±

n , U±
0 ) ≥ ν0

N∑

j=1

|∂jU
±
n (x)|pj

−
N∑

j=1

|Aj(x,Un,∇U±
n ) ∂jU

±
0

+ Aj(x,Un,∇U±
0 ) ∂jU

±
n |.

(A.7)

By Young’s inequality, for every δ > 0, there exists Cδ > 0 such that

|Aj(x,Un,∇U±
n )∂jU

±
0 | ≤δ |Aj(x,Un,∇U±

n )|p′
j + Cδ|∂jU

±
0 (x)|pj

|Aj(x,Un,∇U±
0 )∂jU

±
n | ≤δ |∂jU

±
n (x)|pj + Cδ|Aj(x,Un,∇U±

0 )|p′
j

(A.8)

for every 1 ≤ j ≤ N . We use the growth condition in (1.12) to bound from
above the right-hand side of each inequality in (A.8). Then, there exist positive
constants C and C ′

δ, both independent of n (only C ′
δ depends on δ) such that

EUn
(U±

n , U±
0 )(x) is bounded below by

(ν0 − Cδ)
N∑

j=1

|∂jU
±
n (x)|pj

− C ′
δ

⎛

⎝
N∑

j=1

η
p′

j

j (x) + |Un(x)|p∗
+

N∑

j=1

|∂jU
±
0 (x)|pj

⎞

⎠ .

Using (A.6) and choosing δ ∈ (0, ν0/C), we conclude that

{|∇U±
n (x)|}n is uniformly bounded with respect to n. (A.9)

Let x ∈ Ω \ Z be arbitrary. To prove that ∇U+
n (x) → ∇U+

0 (x) as n → ∞, we
show that any accumulation point Ξ of {∇U+

n (x)}n coincides with ∇U+
0 (x).

From (A.9), we have |Ξ| < ∞. By (A.6) and the continuity of Aj(x, ·, ·) with
respect to the last two variables, we get that EUn

(U+
n , U+

0 )(x) converges to

N∑

j=1

[
Aj(x,U0(x),Ξ) − Aj(x,U0(x),∇U+

0 (x))
]
(Ξj − ∂jU

+
0 (x))

as n → ∞. This, jointly with (A.6) and the monotonicity condition in (1.12),
gives that Ξ = ∇U+

0 (x). Similarly, we obtain that

∇U−
n (x) → ∇U−

0 (x) as n → ∞.

The proof of (A.4) is complete since x ∈ Ω \ Z is arbitrary and meas (Z) = 0.
In order to prove (A.5), we use (A.4), (A.7), Lemma 5.2 and Vitali’s

Theorem. We see that {|∂jU
±
n −∂jU

±
0 |pj }n is a sequence of non-negative inte-

grable functions, converging to 0 a.e. on Ω as n → ∞. So, we conclude (A.5) by
showing that, up to a subsequence,

{∑N
j=1 |∂jU

±
n |pj

}

n
is uniformly integrable
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over Ω. Now, up to a subsequence, we have for each 1 ≤ j ≤ N ,

Aj(x,Un,∇U±
n ) ⇀ Aj(x,U0,∇U±

0 ) (weakly) in Lp′
j (Ω) (A.10)

as n → ∞. Indeed, {Aj(x,Un,∇U±
n )}n is bounded in Lp′

j (Ω) from the growth
condition in (1.12) and the boundedness of {Un}n in W 1,−→p

0 (Ω) and, hence, in
Lp∗

(Ω). Moreover, {Aj(x,Un,∇U±
n )}n → Aj(x,U0,∇U±

0 ) a.e. in Ω as n → ∞
using (A.4), the convergence Un → U0 a.e. in Ω (from (2.10)) and the continuity
of Aj(x, ·, ·) in the last two variables. Hence, up to a subsequence, we have
(A.10). Consequently, for each 1 ≤ j ≤ N , we get

Aj(x,Un,∇U±
n ) ∂jU

±
0 → Aj(x,U0,∇U±

0 ) ∂jU
±
0 in L1(Ω) (A.11)

as n → ∞.
Let k ≥ 1 be arbitrary. For each 1 ≤ j ≤ N , we next prove that, as

n → ∞,

Aj(x,Un,∇U±
0 )χ{|Un|≤k} ∂jU

±
n converges to

Aj(x,U0,∇U±
0 )χ{|U0|≤k} ∂jU

±
0 in L1(Ω).

(A.12)

Fix 1 ≤ j ≤ N arbitrary. Note that {|Aj(x,Un,∇U±
0 )|p′

j χ{|Un|≤k}}n is uni-
formly integrable over Ω and

Aj(x,Un,∇U±
0 )χ{|Un|≤k} → Aj(x,U0,∇U±

0 )χ{|U0|≤k}

a.e. in Ω as n → ∞. Thus, by Vitali’s Theorem,

Aj(x,Un,∇U±
0 )χ{|Un|≤k} → Aj(x,U0,∇U±

0 )χ{|U0|≤k} in Lp′
j (Ω)

as n → ∞. This proves (A.12) since ∂jU
±
n ⇀ ∂jU

±
0 (weakly) in Lpj (Ω) as

n → ∞ (see Remark 4.2).
By Hölder’s inequality, we get a constant C > 0 (independent of k) such

that for all n ≥ 1,
N∑

j=1

∫

{|Un|>k}
|Aj(x,Un,∇U±

0 ) ∂jU
±
n | dx

=
N∑

j=1

∫

{U±
n >k}

|Aj(x,Un,∇U±
0 ) ∂jGk(Un)| dx

≤ C

N∑

j=1

‖∂jGk(Un)‖Lpj (Ω).

(A.13)

Using (A.13), jointly with Lemma 5.2, we get that, up to a subsequence,

lim sup
n→∞

N∑

j=1

∫

{|Un|>k}
|Aj(x,Un,∇U±

0 ) ∂jU
±
n | dx ≤ CWk, (A.14)

for each k ≥ 1, where limk→∞ Wk = 0. Using (A.3), (A.11), (A.12) and (A.14),
from (A.7), we get that

{∑N
j=1 |∂jU

±
n |pj

}

n
is uniformly integrable over Ω. This

ends the proof of (A.5). �
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Remark A.5. We need Lemma 5.2 to control the integral in the left-hand side
of (A.13). Indeed, we cannot conclude the convergence Aj(x,Un,∇U±

0 ) ∂jU
±
n →

Aj(x,U0,∇U±
0 ) ∂jU

±
0 in L1(Ω) as n → ∞ for the same reason as in Re-

mark 6.3.

Lemma A.6. In the framework of Theorem 1.5, we have (7.35).

Proof. Recall that Zn,k = Tk(un) − Tk(u0). From (7.16), we have Zn,k → 0
a.e. in Ω as n → ∞ and Zn,k ⇀ 0 (weakly) in W 1,−→p

0 (Ω) as n → ∞. Moreover,
as n → ∞, we find that

ϕλ(Zn,k) → 0 a.e. in Ω

ϕλ(Zn,k) ⇀ 0 (weakly) in W 1,−→p
0 (Ω).

(A.15)

Observe that un Zn,k ≥ 0 on the set {|un| ≥ k}, which gives that Φ(un)ϕλ(Zn,k)
χ{|un|≥k} ≥ 0. Thus, by testing (7.3) with

v = ϕλ(Zn,k) ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω),

we obtain that

〈Aun, ϕλ(Zn,k)〉 +
∫

{|un|<k}
Φ(un)ϕλ(Zn,k) dx

≤ n,k + Iun
(ϕλ(Zn,k)),

(A.16)

where n,k is defined by

n,k := 〈Bun, ϕλ(Zn,k)〉 −
∫

Ω

Θ(un)ϕλ(Zn,k) dx +
∫

Ω

fn ϕλ(Zn,k) dx.

The first term in n,k converges to 0 as n → ∞ from (7.16), (A.15) and the
property (P2) of B. Since |Θ(un)| ≤ CΘ and (7.1) holds, by the Dominated
Convergence Theorem, we get that the second, as well as the third term in
n,k, converges to 0 as n → ∞. Hence, limn→∞ n,k = 0.

To simplify exposition, we now introduce some notation:

Xk(n) = φ(k)
∫

{|un|<k}
[ν−1

0

N∑

j=1

Aj(un) ∂jTk(u0) + c(x)] |ϕλ(Zn,k)|dx

Yk(n) =
N∑

j=1

∫

Ω

Aj(un) ϕ′
λ(Zn,k)χ{|u0|<k} χ{|un|≥k} ∂ju0 dx.

We rewrite the first term in the left-hand side of (A.16) as follows

〈Aun, ϕλ(Zn,k)〉 =
∑N

j=1

∫
{|un|<k} Aj(un)ϕ′

λ(Zn,k) ∂jZn,k dx − Yk(n).

(A.17)
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The coercivity condition in (1.12) and the growth condition of Φ in (1.13)
imply that

|Φ(un)|χ{|un|<k}

≤ φ(k)

⎡

⎣ 1
ν0

N∑

j=1

Aj(un) ∂jun + c(x)

⎤

⎦ χ{|un|<k}.
(A.18)

In the right-hand side of (A.18) we replace ∂jun by ∂jZn,k + ∂jTk(u0), then
we multiply the inequality by |ϕλ(Zn,k)| and integrate over Ω with respect to
x. It follows that the second term in the left-hand side of (A.16) is at least

−φ(k)
ν0

N∑

j=1

∫

{|un|<k}
Aj(un) |ϕλ(Zn,k)| ∂jZn,k dx − Xk(n).

Using this fact, as well as (A.17), in (A.16), we see that Fn,k(un) (defined in
(7.32)) satisfies

Fn,k(un) ≤ Xk(n) + Yk(n) + n,k + Iun
(ϕλ(Zn,k)). (A.19)

Since limn→∞ n,k = 0, by showing that

lim
n→∞ Xk(n) = lim

n→∞ Yk(n) = 0,

we conclude (7.35). Using (A.15) and c ∈ L1(Ω), we infer from the Dominated
Convergence Theorem that

c(x)|ϕλ(Zn,k)|χ{|un|<k} → 0 in L1(Ω) as n → ∞. (A.20)

Next, up to a subsequence of {un}, Aj(un) converges weakly in Lp′
j (Ω) as

n → ∞ for all 1 ≤ j ≤ N . Hence,
∑N

j=1 Aj(un) ∂ju0 converges in L1(Ω) as
n → ∞. Then, there exists a non-negative function F ∈ L1(Ω) (independent
of n) such that, up to a subsequence of {un},

∣
∣
∣
∑N

j=1 Aj(un) ∂ju0

∣
∣
∣ ≤ F a.e. in

Ω for all n ≥ 1. By the Dominated Convergence Theorem, as n → ∞,
N∑

j=1

Aj(un) ∂jTk(u0) |ϕλ(Zn,k)|χ{|un|<k} → 0 in L1(Ω). (A.21)

From (A.20) and (A.21), we find that limn→∞ Xk(n) = 0. Remark that |ϕ′
λ(Zn,k)|

is bounded above by a constant independent of n and χ{|u0|<k} χ{|un|≥k} → 0
a.e. in Ω as n → ∞. Hence, we can use a similar argument as for Xk(n), to
obtain that, up to a subsequence of {un}, limn→∞ Yk(n) = 0. From (A.19), we
conclude (7.35) with Sk(n) = Xk(n) + Yk(n) + n,k. �

References

[1] Abdellaoui, B., Dall’Aglio, A., Peral, I.: Some remarks on elliptic problems with
critical growth in the gradient. J. Differ. Equ. 222, 21–62 (2006), J. Differ. Equ.
246(7), 2988–2990 (2009) (Corrigendum)



NoDEA Singular anisotropic elliptic equations Page 55 of 58    58 

[2] Abdellaoui, B., Giachetti, D., Peral, I., Walias, M.: Elliptic problems with non-
linear terms depending on the gradient and singular on the boundary. Nonlinear
Anal. 74(4), 1355–1371 (2011)

[3] Alberico, A., Chlebicka, I., Cianchi, A., Zatorska-Goldstein, A.: Fully anisotropic
elliptic problems with minimally integrable data. Calc. Var. Partial Differ. Equ.
58(6), 186 (2019)

[4] Alberico, A., di Blasio, G., Feo, F.: A priori estimates for solutions to anisotropic
elliptic problems via symmetrization. Math. Nachr. 290(7), 986–1003 (2017)

[5] Alberico, A., di Blasio, G., Feo, F.: A symmetrization result for a class of
anisotropic elliptic problems. J. Math. Sci. 224, 607–617 (2017)

[6] Alvino, A., Ferone, V., Mercaldo, A.: Sharp a priori estimates for a class of
nonlinear elliptic equations with lower order terms. Ann. Mat. Pura Appl. (4)
194(4), 1169–1201 (2015)

[7] Alvino, A., Mercaldo, A.: Nonlinear elliptic equations with lower order terms
and symmetrization methods. Boll. Un. Mat. Ital. 1(3), 645–661 (2008)

[8] Arcoya, D., Boccardo, L., Leonori, T., Porretta, A.: Some elliptic problems with
singular natural growth lower order terms. J. Differ. Equ. 249(11), 2771–2795
(2010)

[9] Bensoussan, A., Boccardo, L., Murat, F.: On a nonlinear partial differential
equation having natural growth terms and unbounded solution. Ann. Inst. H.
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[47] Zhang, Z.: Two classes of nonlinear singular Dirichlet problems with natural
growth: existence and asymptotic behavior. Adv. Nonlinear Stud. 20(1), 77–93
(2020)

Barbara Brandolini
Dipartimento di Matematica e Informatica
Università degli Studi di Palermo
via Archirafi 34
90123 Palermo
Italy
e-mail: barbara.brandolini@unipa.it

Florica C. Ĉırstea
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