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Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease with
limited treatment options. Diagnosis can be difficult due to the heterogeneity and non-specific nature
of the initial symptoms, resulting in delays that compromise prompt access to effective therapeutic
strategies. Transcriptome profiling of patient-derived peripheral cells represents a valuable bench-
mark in overcoming such challenges, providing the opportunity to identify molecular diagnostic
signatures. In this study, we characterized transcriptome changes in skin fibroblasts of sporadic ALS
patients (sALS) and controls and evaluated their utility as a molecular classifier for ALS diagnosis.
Our analysis identified 277 differentially expressed transcripts predominantly involved in transcrip-
tional regulation, synaptic transmission, and the inflammatory response. A support vector machine
classifier based on this 277-gene signature was developed to discriminate patients with sALS from
controls, showing significant predictive power in both the discovery dataset and in six independent
publicly available gene expression datasets obtained from different sALS tissue/cell samples. Taken
together, our findings support the utility of transcriptional signatures in peripheral cells as valuable
biomarkers for the diagnosis of ALS.

Keywords: amyotrophic lateral sclerosis; transcriptomics; network; machine learning; molecular
signature; class prediction; disease diagnosis

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a heterogenous neurodegenerative disorder
classically defined by the loss of upper and lower motor neurons, resulting in rapidly
progressive paralysis and respiratory insufficiency within three to five years after the
symptoms begin [1]. The clinical manifestations of ALS are variable in terms of age and site
of onset, relative degree of upper and lower motor neuron involvement, rate of progression
of symptoms, and the occurrence of cognitive and behavioral changes. ALS can be familial
(fALS), defined by its presence in more than one family member and accounting for 10–15%
of known cases, or sporadic (sALS), accounting for 85–90% of cases with no clear genetic
family history and probably associated with a polygenic and multifactorial etiology [1].
During the past years, a rapidly increasing number of genetic risk factors have been
identified, and multiple biological processes have been linked to ALS, including RNA
processing, excitotoxicity, oxidative stress, cytoskeletal abnormalities, impaired axonal
transport, neuroinflammation, mitochondrial dysfunction, and protein aggregation [2].

Despite increasing recognition of genetic and pathological contributions, the underly-
ing causes of ALS remain poorly understood, and important questions in clinical practice
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still have to be answered. Except for Riluzole and Edaravone, which provide only modest
clinical benefits, there is a dearth of effective disease-modifying therapies in ALS [3]. In
this setting, the lack of ALS biomarkers to enable an accurate diagnosis and monitoring
of disease progression is a limiting factor for the identification, development, and testing
of new drug candidates. In the absence of a definite diagnostic test, the diagnosis of ALS
is based on clinical and electrophysiological examination as well as medical history and
the exclusion of diseases mimicking ALS, as set out by a range of diagnostic criteria: El
Escorial [4], Airlie House [5], Awaji [6], and Gold Coast [7]. However, this classification
system is often found to be inadequate due to the heterogeneity and non-specific nature
of the initial symptoms of ALS, leading to a diagnostic delay of 9–15 months from onset
to diagnostic confirmation, with dire consequences in a relentlessly progressive disorder
where prompt therapeutic intervention is crucial. Therefore, elucidating complex mecha-
nisms underlying sALS and identifying new reliable biomarkers represents an urgent need
to improve diagnostic speed and accuracy and provide the basis for the development of
effective therapeutics [8].

Over the last two decades, intensive work has been carried out to find consistent
clinical biomarkers for ALS [9–13]. In particular, gene expression studies have been demon-
strated to be powerful in providing valuable insights into the molecular basis underlying
ALS pathophysiology and identifying molecular signatures or biomarkers able to classify
ALS patients into selective clinically relevant subtypes characterized by different biological
properties, prognostic biomarkers, and treatment options [14–19]. Within this context,
the emerging use of machine learning approaches to find genetic biomarkers or construct
robust disease classifiers based on patients’ gene expression data is revolutionizing clinical
decision-making in multiple complex human conditions, including cancer and cardio-
vascular diseases, and proving to be an exciting tool and promising option for hopefully
improving our skills also in neurological conditions [20–28].

In the last few years, our research group and others have established an important
foundation for the molecular diagnosis and taxonomy of ALS by using postmortem cor-
tex transcriptomics to discriminate between controls and sALS patients and stratifying
these latter into distinct molecular subtypes [9,19,29–45]. However, while the analysis of
post-mortem brain samples allows for the acquisition of relevant information on disease
mechanisms and potential drug targets, it is not readily useful for diagnostics. On the other
hand, although not primarily affected by the disease, peripheral cells of ALS patients—such
as blood cells and fibroblasts—may represent a valuable source for diagnostic ‘signatures’,
since they are readily obtainable from living donors, retain the genetic background of the
patient, and share some of the pathological features found in the central nervous system
(CNS) [14,15,46,47]. To this regard, despite the fact that blood-based tissues (lymphocytes)
are more readily obtained, in vitro expansion of fibroblasts is significantly easier given the
robustness of these cells in tissue culture, making them a more practical, cost-effective, easy,
and fast established disease model.

In this study, we identify a transcriptome-based signature in sALS fibroblasts that may
be used as a molecular classifier to discriminate between ALS and control individuals. In
particular, we analyzed the whole gene expression profiles of skin fibroblasts from sALS
patients and healthy controls. Differentially expressed genes were then used to build a
machine-learning-based classifier for discriminating patients with ALS from controls. To
validate the reliability and accuracy of this transcriptome signature, class prediction was
also performed in different independent publicly available ALS transcriptomic datasets
from various sources, including skin fibroblasts, whole blood, and post-mortem central
tissues [14,15,40,46–48].

2. Materials and Methods
2.1. Subjects

With written informed consent, fibroblast samples were obtained from three healthy
individuals and nine patients diagnosed with sALS. All patients, diagnosed according to



Cells 2023, 12, 1884 3 of 19

the El Escorial revised criteria [49], were previously screened for the presence of pathogenic
mutations in the C9ORF72, SOD1, ANG, FUS, and TARDBP genes and showed no muta-
tion [44]. The average age at the time of skin biopsy in healthy controls and ALS fibroblast
cases was 64 years (range 56–72 years) and 64 years (range 47–79 years), respectively. The
median time from onset of ALS symptoms to biopsy was 12 months, with an average age
of 63 at the time of diagnosis. We scored the functional decline of the disease through
the revised ALS Functional Rating Scale (ALSFRS-R) [50] and used the ∆FS (ALSFRS-R
at onset-ALSFRS-R at time of diagnosis/diagnostic delay) to derive the rate of progres-
sion [51]. Three different rates of progression can therefore be identified: slow (∆FS < 0.5),
intermediate (∆FS ≥ 0.5 < 1), rapid (∆FS ≥ 1). In our cohort of nine sALS patients, the
median ∆FS was 0.52 (IQR = 0.39–1.11), suggesting a slow-intermediate progression. All
patients were Caucasian and were recruited from a single ALS Center in Palermo, Italy. A
summary of the disease characteristics and demographics of all subjects enrolled in this
study is shown in Table 1. The University of Palermo Review Board approved this consent
procedure and the entire study (document 04/2019), and the participants signed informed
consent prior to the study.

Table 1. Clinical and demographic characteristics of the sALS patients and the controls.

Variable
ALS Healthy Controls p

(n = 9) (n = 3)

Age at onset 63 (42–77) N.A.
Age at skin biopsy 64 (47–79) 64 (56–72) 0.85 *
Sex (M/F) 3/6 1/2 0.90 **
∆FS 0.52 (0.39–1.11)
Site of onset (n,%)

Spinal 6 (66.6)
Bulbar 3 (33.4)

Data are expressed as medians with interquartile ranges (IQR). * Mann-Whitney Rank Sum Test; ** chi-square.

2.2. Primary Fibroblast Isolation and Culture

Primary fibroblast lines were established from punch skin biopsy samples, as pre-
viously described in detail [52], in accordance with guidelines set by the local ethics
committee. Once established, primary fibroblast cultures were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) high glucose (Life Technologies, Carlsbad, CA, USA)
medium supplemented with 10% calf serum, 2 mM L-glutamine, 5 mM pyruvate, 100 U/mL
penicillin, and 100 µg/mL streptomycin. The medium was changed every 3–4 days until
the fibroblasts were grown to confluence. Fibroblasts were maintained in culture through
passages in a flask. All experiments were performed in confluent cells at the 3rd/4th
passage on the flask.

2.3. RNA Isolation, Microarray Processing, and Data Extraction

Total RNA was extracted from fibroblasts by standardized protocols using TRIzol
Reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s guidelines. Total
RNA was quantified on an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA), and samples with an RNA integrity score (RIN) higher than 9 were qualified for
further processing. For microarray analysis, the Agilent array platform was used. Sample
preparation and microarray hybridization were performed based on the manufacturer’s
standard protocols, as previously described [53]. Briefly, 1 ug of total RNA from each sample
was amplified and transcribed into fluorescent complementary DNA (cDNA) using the Low
RNA Input Fluorescent Linear Amplification Kit (Agilent Technologies, Inc., CA, USA), after
which labelled RNA was cleaned using RNeasy column purification (Qiagen, Venlo, the
Netherlands). The Cyanine-3 (Cy3) labelled cRNA samples were hybridized onto the Whole
Human Genome Oligo Microarray (4 × 44 K; Agilent Technologies, Inc., Santa Clara, CA,
USA). Aliquots (750 ng) of Cy3 labeled cRNA targets were co-hybridized on 4 × 44 K Whole



Cells 2023, 12, 1884 4 of 19

Human Genome Oligo Microarrays (Agilent Technologies, Italy). Microarray hybridization
and washing were performed using reagents and instruments (hybridization chambers and
a rotating oven) as indicated by the manufacturer (Agilent Technologies, Palo Alto, CA,
USA). Arrays were then scanned at 3 µm resolution using an Agilent G4900DA SureScan
Microarray Scanner System (Agilent Technologies, Palo Alto, CA, USA). Raw microarray
data were acquired and analyzed using Agilent’s Feature Extraction v.12.1 software to
assess the array spot quality as well as check signal and background intensity statistics
in the default setting. Raw microarray data were deposited in NCBI’s Gene Expression
Omnibus (GEO) with the accession number GSE233881.

2.4. Gene Expression Profiling and Class Prediction Modeling

Raw signal values were thresholded to 1, log2 transformed, normalized to the 75th
percentile, and baselined to the median of all samples using GeneSpringGX v.14.9.1 (Ag-
ilent Technologies, Palo Alto, CA, USA). A moderate t-test followed by Benjamini and
Hochberg’s False Discovery Rate (FDR) was applied to detect differential expression across
sALS and healthy control groups. Transcripts were defined as differentially expressed if
they differed between groups with a fold change (FC) of >2 fold and an FDR-corrected
p-value of <0. Unsupervised hierarchical clustering of differentially expressed genes (DEGs)
was performed using a Euclidean distance measure and Ward’s linkage rule in the Gene-
SpringGX program.

The identified DEGs were subjected to class prediction analysis in order to evaluate
their ability to accurately classify patients into distinct clinical phenotypes based upon
their expression profiles. Class prediction was performed using the machine learning algo-
rithm ‘Support Vector Machines’ (SVM) of GeneSpring. The model was built using sample
classifiers ‘sALS’ or ‘CTRL’ with the linear Kernel function (maximum iterations = 100,000,
cost = 100, ratio = 1) and a leave-one-out cross-validation analysis. The SVM model was
built in our study cohort (training test) and validated in six independent ALS datasets (test
sets) to prevent over-fitting the predictive signature (Table 2). Test/validation sets were
obtained from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/; ac-
cessed on 19 May 2023) and ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/
experiments/E-TABM-940/; accessed on 19 May 2023) and included gene expression
data from skin and peripheral nerve-fibroblasts (GSE56808, GSE68240), whole blood
(GSE11280, GSE112676, E-TABM-940), and post-mortem motor cortex (E-MTAB-2325) sam-
ples of sALS patients and age-matched controls [14,15,40,46–48] (Table 2). Clinical and
demographic details of patients and controls for each dataset are described in the original
articles [14,15,40,46–48].

Table 2. Transcriptomic datasets used as test data sets in class prediction analysis.

Accession
Number Repository Platform Sample Type

Number of
Samples

(ALS/Controls)
References

GSE56808 GEO Affymetrix Human Genome
U133 Plus 2.0 Array Fibroblasts 12

(6/6) [47]

GSE68240 GEO Agilent-028004 SurePrint G3
Human GE 8x60 K Microarray Fibroblasts 6

(3/3) [46]

GSE112680 GEO Illumina HumanHT-12 V4.0
expression beadchip Whole blood 301

(164/137) [15]

GSE112676 GEO Illumina HumanHT-12 V3.0
expression beadchip Whole blood 741

(233/508) [14,15]

E-TABM-940 ArrayExpress Affymetrix GeneChip Human
Genome U133 Plus 2.0 Whole blood 85

(57/28) [48]

E-MTAB-2325 ArrayExpress Agilent-014850 Whole Human
Genome Microarray 4x44 K Motor cortex 41

(31/10) [40]

https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-940/
https://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-940/
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2.5. Functional Enrichment and Network Analysis

Functional properties of DEGs in sALS fibroblasts were evaluated by testing for
enrichment of gene ontology (GO) and known biological pathway annotations using
multiple databases and software (PANTHER, www.pantherdb.org; accessed on 12 May
2023); Reactome, http://reactome.org; Metacore, https://portal.genego.com; accessed on
12 May 2023). All these resources identified significantly enriched terms associated with a
given list of genes by calculating the hypergeometric distribution. In particular, the GO
(http://www.geneontology.org; accessed on 12 May 2023) database contains terms for the
functional classification of genomic data under three main categories: biological processes
(BP), cellular components (CC), and molecular functions (MF). The significance of GO
terms and biological pathways was determined using the Fisher‘s exact test. p-value < 0.05
and gene counts > 2 were set as thresholds to filter out significant terms.

Next, functional interactions among proteins encoded by DEGs were analyzed by
building a protein-protein interaction (PPI) network. In particular, the protein interaction
data were selected from the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) database [54,55], and the resulting PPI network was visualized with the Cy-
toscape software (v.3.9.1), an open-source software for visualization, modelling and integra-
tion of biomolecular interaction networks [56]. In the PPI network, the protein is defined
as the node, and the interaction between two nodes is defined as the edge. The extended
network was constructed by using the DEGs as seed molecules and setting a high level of
confidence between molecular interactions (a high confidence score of at least 0.8) and a
maximum number of interactions to The significant hub nodes in the PPI network were
selected according to the scoring of the maximum correlation criterion (MCC) by using
the Cytoscape plugin cytoHubba [57], which explores important nodes and modules by
topological algorithms. The topological parameter indicates the importance of a node
(gene/protein) among the functionally connecting links in a PPI network. The top twenty
genes scoring the highest in the PPI network were identified as hub genes in the present
study. Subsequently, the Molecular Complex Detection (MCODE) plugin was applied
to find highly connected clusters of genes in the PPI network with the following cut-off
criteria: Degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and max. depth = Identified
clusters with more than five nodes and the selected hub genes were analyzed by the BinGO
plug-in of Cytoscape [58] for functional enrichment analysis.

3. Results
3.1. Transcriptome Profiles Reveal a Molecular Signature for sALS Fibroblasts

Differential gene expression analysis between fibroblast lines of sALS patients and
control subjects disclosed a total of 277 DEGs (336 probes), with 176 up-regulated and
160 down-regulated genes. A full list of DEGs is provided in Supplementary Table S1.
Unsupervised hierarchical cluster analysis of samples and DEGs resulted in an overall
separation of sALS fibroblast samples from controls on the basis of their expression pat-
terns (Figure 1A). Among the 277 DEGs, 7 genes (ALAD, ANXA2, DOC2B, DPP6, FBXO32,
PARK2, and USP6NL) are already known to be genetically associated with ALS. Moreover,
beyond protein-coding genes, our analysis identified a number of non-coding transcripts,
both pseudogenes and long non-coding RNAs, differentially expressed in sALS fibrob-
lasts (SNHG28, APRG1, FLJ30679, lnc-LONRF1-2, lnc-PPIAL4G-6, LINC02104, SOX5-AS1,
DNAJC9-AS1, PAX8-AS1, PSMD5-AS1, PTPRD-AS1, PWAR5, ZNF702P, RPL14P4, EIF3FP2,
RAC1P7, PPIAP42, NIP7P2, PRDX2P4, KRT8P36, YTHDF2P1, SNHG14), further support-
ing that the disruption of RNA metabolism may play a key role in ALS pathogenesis
(Supplementary Table S1).

www.pantherdb.org
http://reactome.org
https://portal.genego.com
http://www.geneontology.org
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Unsupervised hierarchical clustering analysis (similarity measure: Euclidean; linkage rule: Wards) 

Figure 1. Transcriptome analysis revealed molecular signatures for sALS fibroblasts. (A) Unsu-
pervised hierarchical clustering analysis (similarity measure: Euclidean; linkage rule: Wards) of 277
DEGs among sALS and control subjects. The heatmap shows the median-normalized expression of
individual genes across all samples, where genes and patients were clustered on the basis of expres-
sion similarities. In this two-dimensional presentation, each row represents a single gene, and each
column represents a fibroblast sample from a control or sALS patient. In the dendrograms shown (top
and right), the length and subdivision of the branches display the relatedness of the expression of the
genes (top) and the fibroblast samples (right). Heatmap colors represent relative mRNA expression
as indicated in the color key: red indicates up-regulation, green indicates down-regulation, and
black indicates no change. (B) Venn diagram showing overlap of our list of 277 DEGs with genes
deregulated in the motor cortex of sALS patients described in our previous work [40].

Of note, we found a substantial overlap between our DEG list and other gene expres-
sion studies in sALS fibroblasts (Supplementary Table S1) [46,47,59]. In particular, 215
(78%) of the 277 DEGs were detected as differentially expressed in sALS fibroblasts from an
independent previously published study [59], with 117 of these genes showing a similar
expression pattern (Supplementary Table S1 and Supplementary Figure S1). Moreover,
some of these genes were also found statistically deregulated in other two transcriptomic
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studies on sALS fibroblasts [46,47], supporting the reliability of our molecular signature
(Supplementary Table S1 and Supplementary Figure S1). A substantial overlap was also
found between DEGs identified in this study and those previously found in the human
motor cortex of sALS patients [40], supporting common disease-specific pathological mech-
anisms reverberating in both peripheral cells and brain tissue (Figure 1B, Supplementary
Table S1).

3.2. Functional Enrichment Analysis Defines Key Factors and Processes Perturbed in sALS
Fibroblasts

To clarify the biological significance of the 277 DEGs, we performed a GO enrich-
ment analysis (Figure 2A; Supplementary Tables S2–S4). This analysis identified a highly
significant enrichment in biological processes related to the regulation of signaling, cell
communication, metabolic/catabolic processes, synaptic transmission, response to stress,
transport, and regulation of gene expression (Figure 2A; Supplementary Table S2). Neu-
ropeptide receptor binding, hormone activity, and protein binding were among the most
significantly enriched molecular functions in DEGs, while enriched GO CC terms included
intracellular organelle, protein-containing complex, mitochondrial electron transfer flavo-
protein complex, Golgi stack, and axon (Figure 2A; Supplementary Tables S3 and S4).
Finally, a large number of pathways were identified as enriched in sALS fibroblasts, with
the most significant pathways involving inflammation mediated by chemokine and cy-
tokine signaling pathways, lipid metabolism, GABA receptor activation, cellular response
to stress, mRNA splicing, FOXO-mediated transcription, neurotransmitter receptors, and
post-synaptic signal transmission (Figure 2B; Supplementary Table S5).

3.3. PPI Network Analysis Reveals Important Hub Proteins and Sub-Network Modules

In order to reveal functional interactions among proteins coded by the 277 DEGs in
sALS fibroblasts, a PPI network was constructed on the basis of the STRING database
(Figure 3A). The resulting PPI network consisted of 277 nodes and 3378 edges. The top
20 nodes scoring the highest in MCC by the cytoHubba plugin were identified as hub genes
in the network and might play crucial roles in ALS (Figure 3B). These hub genes were mainly
related to the regulation of gene expression (PHC2, EPAS1, ATM, ITGA2, ZNF577, ZNF354A,
ZNF69, PARK2, NCOA3, ZNF493, ZMYND11, ZNF587B, ZNF160, LMO7, ZNF585B, ZNF641,
EPHA5), suggesting that dysregulation of this process may be the most relevant change in
fibroblasts from sALS patients.

Subsequently, the general PPI network was divided into subnetwork clusters to repre-
sent the main interacting and functional modules. Three functional clusters were identified
by using the MCODE plugin and a score≥ 5 as the cutoff (Figure 4). The most significant
cluster, consisting of 8 nodes and 34 edges, includes genes encoding zinc finger proteins
(ZNF493, ZNF160, ZNF641, ZNF354A, ZNF585B, and ZNF577), the largest transcription
factor family in the human genome. Functional cluster 2, consisting of 38 nodes and
109 edges, includes genes involved in regulation of synaptic transmission, proteolysis, cell
division, lipid metabolism, and signal transduction, while genes in cluster 3 (49 nodes and
139 edges) are significantly enriched in regulation of proteasomal catabolic processes, the
Wnt signaling pathway, and response to cytokine stimulus.
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Figure 2. Gene Ontology (GO) and pathway enrichment analysis of DEGs in sALS fibroblasts.
(A) Pie chart showing the gene ontology terms that are most represented in the 277 DEGs in sALS
fibroblasts. The numbers are the percentage of genes in each category. (B) The top 30 functionally
enriched pathways found in the analysis of DEGs in sALS fibroblasts vs. the control group. Gene
ontologies were ranked by the number of genes related to the enriched pathway (gene count). The
color of the bar denotes their significance.
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Each node represents one gene/protein (n = 277), and the interaction between two nodes is defined 
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Figure 3. PPI network construction and hub gene screening of DEGs in sALS fibroblasts. (A) PPI
network was constructed using the STRING Online Database and visualized by Cytoscape. Each
node represents one gene/protein (n = 277), and the interaction between two nodes is defined as
the edge (n = 3378). Node color is associated with the fold change: genes down-regulated in sALS
fibroblasts vs. CTRL are colored in blue, while red nodes correspond to genes up-regulated in sALS
fibroblasts vs. CTRL. (B) The network of the 20 hub genes is shown with red (high ranking) and
yellow (low ranking) nodes, based on the ranking score in the cytoHubba plugin.
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Figure 4. Functional analysis of three DEG clusters in sALS fibroblasts. Three significant interact-
ing and functional clusters from the general PPI network were obtained by the MCODE plugin. Node
color is associated with the fold change: genes down-regulated in sALS fibroblasts vs. CTRL are
colored in blue, while red nodes correspond to genes up-regulated in sALS fibroblasts vs. CTRL.
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3.4. Class Prediction Analysis

To test the reliability of our DEGs as a biomarker signature for discriminating ALS
cases from controls, we carried out a supervised class prediction analysis applying a support
vector machine with a linear kernel and a leave-one-out cross-validation (Table 3). Through
this approach, we trained the prediction models with our ALS fibroblast dataset (training
set) and then validated them in six previously published transcriptomic ALS studies (test
sets), including gene expression data from skin and peripheral nerve-fibroblasts (GSE56808,
GSE68240), whole blood (GSE11280, GSE112676, E-TABM-940), and post-mortem motor cor-
tex (E-MTAB-2325) samples from controls and ALS patients [14,15,40,46–48] (Tables 2 and 3).
Our class prediction model correctly predicted 100% (12 of 12 correct calls) of the subjects in
the training set and ≥73% in the test sets used for its validation (Table 3).

Table 3. Summary of the prediction results for the 277 DEG transcriptome signature in training and
test/validation sets.

Training Set
(GSE233881)

Test Set 1
(GSE56808)

Test Set 2
(GSE68240)

Test Set 3
(GSE112680)

Test Set 4
(GSE112676)

Test Set 5
(E-TABM-940)

Test Set 6
(E-MTAB-2325)

ALS
(n = 9)

CTRL
(n = 3)

ALS
(n = 6)

CTRL
(n = 6)

ALS
(n = 3)

CTRL
(n = 3)

ALS
(n = 164)

CTRL
(n = 137)

ALS
(n = 233)

CTRL
(n = 508)

ALS
(n = 57)

CTRL
(n = 28)

ALS
(n = 31)

CTRL
(n = 10)

Correct
number of
patients

9 3 5 5 2 3 144 113 142 399 55 19 28 6

Incorrect
number of
patients

0 0 1 1 1 0 20 24 91 109 2 9 3 4

Accuracy * 100% 83% 83% 85% 73% 87% 83%
Sensitivity ** 100% 83% 67% 88% 61% 96% 90%
Specificity *** 100% 83% 100% 82% 78% 68% 60%

TruePositive (TP): the number of cases correctly identified as patients. True Negative (TN): the number of cases
correctly identified as healthy. False Positive (FP): the number of cases incorrectly identified as patients. False neg-
ative (FN): the number of cases incorrectly identified as healthy cases. * Accuracy = TP + TN/TP + TN + FP + FN;
** Sensitivity (%) = TP/(TP + FN); *** Specificity (%) = TN/(TN + FN).

Moreover, in light of its potential utility as a diagnostic tool, we also evaluated whether
the predictive accuracy and specificity of our prediction model were also confirmed by
using a restricted list of deregulated genes. Of note, using the top 50 DEGs (the most 25 up-
and down-regulated genes) between SALS fibroblasts and controls, the classifier algorithm
also demonstrated that it correctly identified 100% of the subjects in the training data set
and ≥75% of the subjects in the test data sets (Table 4).

Table 4. Summary of the prediction results for the top 50 DEG transcriptome signatures in training
and test/validation sets.

Training Set
(GSE233881)

Test Set 1
(GSE56808)

Test Set 2
(GSE68240)

Test Set 3
(GSE112680)

Test Set 4
(GSE112676)

Test Set 5
(E-TABM-940)

Test Set 6
(E-MTAB-2325)

ALS
(n = 9)

CTRL
(n = 3)

ALS
(n = 6)

CTRL
(n = 6)

ALS
(n = 3)

CTRL
(n = 3)

ALS
(n = 164)

CTRL
(n = 137)

ALS
(n = 233)

CTRL
(n = 508)

ALS
(n = 57)

CTRL
(n = 28)

ALS
(n = 31)

CTRL
(n = 10)

Correct
number of
patients

9 3 5 5 2 3 128 96 115 437 50 20 26 6

Incorrect
number of
patients

0 0 1 1 1 0 36 41 118 71 7 8 5 4

Accuracy * 100% 83% 83% 75% 75% 83% 83%
Sensitivity ** 100% 83% 67% 78% 50% 88% 84%
Specificity *** 100% 83% 100% 70% 86% 72% 60%

TruePositive (TP): the number of cases correctly identified as patients. True Negative (TN): the number of cases
correctly identified as healthy. False Positive (FP): the number of cases incorrectly identified as patients. False
negative (FN): the number of cases incorrectly identified as healthy. * Accuracy = TP + TN/TP + TN + FP + FN;
** Sensitivity (%) = TP/(TP + FN); *** Specificity (%) = TN/(TN + FN).

4. Discussion

One paramount challenge in ALS is the lack of valid, reliable, and broadly usable
biomarkers for an accurate diagnosis of this disorder, allowing effective therapeutic inter-
ventions. While approximately 70% of the genetic mutations that contribute to fALS have
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been identified, no genetic variations are found in the majority of sALS (85%), highlighting
the complexity and genetic heterogeneity contributing to these sporadic cases.

During the last few years, several studies have demonstrated the value and utility of
transcriptome profiling of post-mortem tissues in unravelling pathophysiological mech-
anisms underlying ALS and supporting the existence of a molecular taxonomy for this
disease [9,19–34]. However, post-mortem analysis of ALS brain samples does not allow for
evaluation of alterations occurring during the disease course; thus, it does not represent
the optimal resource for biomarker discovery efforts. In this regard, peripheral cells, such
as dermal skin-derived fibroblasts, may constitute a simple, viable, rapid, and cost-efficient
translational model to investigate ALS, as they also recapitulate the genomic background
of the patient, providing a rationale for utilizing them to find clinically useful diagnostic
biomarkers of ALS [60–63].

In this study, we aimed to identify a fibroblast-related gene signature that would detect
ALS accurately. Integrating transcriptome-wide analyses of patient-derived skin fibroblasts,
we identified a gene expression signature that recapitulates previously determined dys-
regulated genes and pathways in the CNS of ALS patients and is able to distinguish sALS
patients from control individuals. In particular, our analysis identified a total of 277 DEGs
in sALS patients when compared to controls, which were predominantly involved in path-
ways previously associated with ALS pathogenesis, including RNA processing, response
to stress, transport, and intracellular signaling [2,45,64] (Figures 1 and 2; Supplementary
Tables S2–S5). Of note, we found a significant overlap between the list of DEGs in sALS
fibroblasts and those previously identified in the motor cortex of sALS patients [40], sug-
gesting the ability of our peripheral gene expression signature to recapitulate characteristics
of ALS pathology and, thus, further sustaining its potential diagnostic utility (Figure 1B,
Supplementary Table S1).

Some of the identified DEGs have been associated with ALS, including three genes
up-regulated (ALAD, FBXO32, and USP6NL) or down-regulated (ANXA2, DOC2B, DPP6,
and PARK2) in sALS fibroblasts (Supplementary Table S1). ALAD encodes an enzyme
involved in oxidative stress that influences susceptibility to lead exposure and contributes
to MND risk [64–66]. The significant up-regulation of FBXO32, previously observed in the
skeletal muscles of ALS transgenic mice, correlates with muscle atrophy during disease
progression [67,68]. According to previous studies, we observed the down-regulated ex-
pression of DOC2B, a gene involved in Ca2+-dependent intracellular vesicle trafficking and
synaptic function, and ANXA2, which encodes a member of the annexin family involved in
calcium-homeostasis and intracellular calcium-regulated pathways [59,69,70]. Decreased
expression of DPP6, whose genetic alterations have been associated with susceptibility to
ALS and that is involved in membrane excitability, was previously reported in both CNS
tissues of sALS patients as well as in other in vitro ALS models [40,71–74]. Dysregulated
expression of the Parkinson’s disease gene PARK2 was previously found in the spinal cord
and motor cortex samples of sALS patients, as well as in ALS animal models, supporting
this gene as a disease modifier in ALS pathogenesis [75–77].

Our PPI network analysis revealed several key hub genes that may have potential roles
in sALS, confirming the implication of cell communication, metabolic/catabolic processes,
synaptic transmission, oxidative stress, transport, and transcriptional regulation in sALS
pathology (Figures 3 and 4). In particular, interactome analysis identified a cluster of hub
genes involved in the regulation of gene expression (ATM, EPHA5, EPAS1, ITGA2, LMO7,
NCOA3, PHC2, PARK2, ZNF577, ZNF354A, ZNF69, ZNF493, ZMYND11, ZNF587B, ZNF160,
ZNF585B, ZNF641), supporting dysfunctions in the RNA metabolism process and transcrip-
tional machinery as key processes in the pathogenesis of ALS [78–82] (Figure 3B). Among
these genes, of particular interest are the zinc finger proteins involved in cluster 1 (ZNF493,
ZNF160, ZNF641, ZNF354A, ZNF585B, and ZNF577) (Figures 3B and 4). Indeed, multiple
transcription factors belonging to this family were found dysregulated in both human
patients with ALS and animal models and may contribute to the pathogenic phenotype by
interacting with multiple RNA-binding proteins, including the ALS-associated proteins
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FUS and TDP43, and altering DNA damage repair processes [83–86]. In addition, the use of
zinc finger protein transcription factors has been recently investigated for the development
of an ALS gene therapy [86]. The down-regulated expression of EPHA5 observed in sALS
fibroblasts is in line with previous findings implicating ephrin-A5 as a modifier of disease
progression in both ALS patients and animal models [87]. Of note, despite the fact that our
platform is not ideal for comprehensively investigating the role of non-coding genes, our
analysis revealed a number of deregulated pseudogenes and antisense long non-coding
RNA in sALS fibroblasts, further supporting the important contribution of defective RNA
metabolism in the pathogenesis of ALS and the potential role of non-coding RNA tran-
scripts as diagnostic biomarkers [82,88–92] (Supplementary Table S1). Among these, the
differential expression of PSMD5-AS1, encoding PSMD5 antisense RNA 1, was previously
found in induced pluripotent stem cell (iPSC)-derived motor neurons from patients with
ALS [93]. In sALS fibroblasts, we also found increased expression of the PAX8 antisense
RNA1 (PAX8-AS1), a long non-coding RNA that is linked to cell cycle control and metabolic
processes previously reported to be associated with different neurodegenerative diseases,
including Parkinson’s disease and Huntington’s disease [94,95].

The functional analysis of down-regulated genes in clusters 2 and 3 revealed their in-
volvement in transmembrane transport (AQP4, ANXA2, GRIK5, HCN1, HTR2B, SLC24A2),
extracellular matrix organization (ANXA2, LTBP4, MATN2, MMP7), and synaptic trans-
mission (GRIK5, HTR2B, SLC24A2), while the up-regulated genes in these clusters were
mainly enriched in metabolic processes (ACVR2A, ALAD, ALG14, FZR1, HOXC9, MGAT2,
RNF14, SOCS5, ZDHHC3) and protein ubiquitination (CRBN, PCNP, RNF14), supporting
the pathogenic role of these processes in ALS [96–107] (Figure 4). Of interest, decreased
expression of SLC24A2, GRIK5, and HCN1, three genes involved in the regulation of neu-
ronal excitability and modulation of synaptic transmission and plasticity, was previously
reported in motor neurons of ALS patients and animal models [108–110].

In an effort to examine the reliability of our transcriptomic signature as a potential
molecular classifier, we tested the predictive power of the 277-gene signature to distinguish
sALS patients from controls in our training dataset and in six independent test datasets
obtained from different ALS tissue/cell types (Table 3). Our transcriptome-based classifica-
tion model showed consistent performance in discriminating between ALS patients and
healthy controls, with high rates of sensitivity, specificity, and accuracy in the training and
test sets (Table 3). Similar yields in terms of sensitivity, specificity, and accuracy rate were
also obtained by using the list of the top 25 up- and down-regulated genes among the 277
identified DEGs (Table 4), suggesting that these gene expression signatures may be used as
potential biomarkers for the development of a transcriptome-based diagnostic test for ALS.
Of note, our estimates compared well to those previously reported for ALS blood gene
expression signatures (reporting an accuracy~87%, sensitivity~86%, and specificity~87%),
sustaining the potential utility of our transcriptomic signature for ALS diagnostics [14,15]
(Table 3).

5. Conclusions

The use of multigene mRNA-based diagnostic assays is already included in the clinical
guidelines for different pathologies, but their use in neurodegenerative diseases has been
complicated by the inaccessibility of the diseased tissue. Our findings showed that a
transcriptome-based signature obtained from ALS fibroblasts, an easily accessible sample
type, recapitulates characteristics of brain and blood pathology. Despite the relatively small
number of samples analyzed in this study, to our knowledge, this work provides the largest
gene expression profiling in sALS fibroblasts to date and points to the promise of using a
transcriptional signature in peripheral cells as a suitable diagnostic tool for ALS diagnostics.
It remains to be determined how early these alterations can be detected. Further studies are
thus needed to evaluate the potential clinical validity and utility of this signature in clinical
practice, together with its temporal performance and differential diagnosis capacity.
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of Gene Ontology-Molecular Function terms enriched in 277 genes DE in sALS fibroblasts vs. Ctrl.
Supplementary Table S4. List of Gene Ontology-Cellular Component terms enriched in 277 genes
DE in sALS fibroblasts vs. Ctrl. Supplementary Table S5. List of biological pathways enriched in
277 genes DE in sALS fibroblasts vs. Ctrl.
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Abbreviations

ALS = Amyotrophic lateral sclerosis; sALS = sporadic ALS; fALS = familial ALS; CNS = central
nervous system; SOD1 = superoxide dismutase type 1; ANG = angiogenin; FUS = fused in sarcoma;
TARDBP = TAR DNA binding protein; DMEM = Dulbecco’s Modified Eagle Medium; RIN = RNA
integrity score; cDNA = complementary DNA; DEG = differentially expressed gene; Cy3 = Cyanine-3;
GEO = Gene Expression Omnibus; FDR = False Discovery Rate; SVM = Support Vector Machines;
CTRL = Control; GO = gene ontology; BP = biological processes; CC = cellular component;
MF = molecular function; PPI = protein-protein interaction; STRING = Search Tool for the Retrieval of
Interacting Genes/Proteins; MCC = maximum correlation criterion; MCODE = Molecular Complex
Detection; ALAD = Aminolevulinate Dehydratase; ANXA2 = Annexin A2; DOC2B = double C2
domain beta; DPP6 = dipeptidyl peptidase like 6; FBXO32 = F-box protein 32; PARK2 = parkin RBR
E3 ubiquitin protein ligase; USP6NL = USP6 N-terminal like; GABA = gamma-aminobutyric acid;
FOXO = forkhead box O; PHC2 = polyhomeotic homolog 2; EPAS1 = endothelial PAS domain protein
1; ATM = Ataxia-telangiectasia mutated; ITGA2 = integrin subunit alpha 2; ZNF577 = Zinc Finger
Protein 577; ZNF354A = Zinc Finger Protein 354A; ZNF69 = Zinc Finger Protein 69; ZNF493 = Zinc
Finger Protein 493; ZNF160 = Zinc Finger Protein 160; ZNF587B = Zinc Finger Protein 587B;
ZNF641 = Zinc Finger Protein 641; ZNF585B = Zinc Finger Protein 585B; MND = motor neuron dis-
ease; NCOA3 = nuclear receptor coactivator 3; AQP4 = aquaporin 4; ZMYND11 = zinc finger MYND-
type containing 11; LMO7 = LIM only protein 7; EPHA5 = ephrin receptor A5; ITGA2 = integrin
alpha 2; LMO7 = LIM domain only protein-7; PHC2 = polyhomeotic homolog 2; PCNP = PEST
proteolytic signal containing nuclear protein; CRBN = cereblon; GRIK5 = glutamate ionotropic recep-
tor kainate type subunit 5; HCN1 = hyperpolarization activated cyclic nucleotide gated potassium
channel 1; HTR2B = 5-hydroxytryptamine (serotonin) receptor 2B; SLC24A2 = solute carrier family
24 member 2; LTBP4 = latent transforming growth factor beta binding protein 4; MATN2 = matrilin 2;
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MMP7 = matrix metalloproteinase 7; ACVR2A = activin A receptor type 2A; ALG14 = asparagine-
linked glycosylation 14; FZR1 = fizzy and cell division cycle 20 related 1; HOXC9 = homeobox C9;
MGAT2 = mannoside acetylglucosaminyltransferase 2; RNF14 = ring finger protein 14; SOCS5 =
Suppressor Of Cytokine Signaling 5; ZDHHC3 = Zinc Finger DHHC-Type Palmitoyltransferase 3.
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