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Abstract: Landslide occurrence in Colombia is very frequent due to its geographical location in the
Andean mountain range, with a very pronounced orography, a significant geological complexity and
an outstanding climatic variability. More specifically, the study area around the Bogotá-Villavicencio
road in the central sector of the Eastern Cordillera is one of the regions with the highest concentration
of phenomena, which makes its study a priority. An inventory and detailed analysis of 2506 landslides
has been carried out, in which five basic typologies have been differentiated: avalanches, debris
flows, slides, earth flows and creeping areas. Debris avalanches and debris flows occur mainly in
metamorphic materials (phyllites, schists and quartz-sandstones), areas with sparse vegetation, steep
slopes and lower sections of hillslopes; meanwhile, slides, earth flows and creep occur in Cretaceous
lutites, crop/grass lands, medium and low slopes and lower-middle sections of the hillslopes. Based
on this analysis, landslide susceptibility models have been made for the different typologies and
with different methods (matrix, discriminant analysis, random forest and neural networks) and input
factors. The results are generally quite good, with average AUC-ROC values above 0.7–0.8, and
the machine learning methods are the most appropriate, especially random forest, with a selected
number of factors (between 6 and 8). The degree of fit (DF) usually shows relative errors lower
than 5% and success higher than 90%. Finally, an integrated landslide susceptibility map (LSM) has
been made for shallower and deeper types of movements. All the LSM show a clear zonation as a
consequence of the geological control of the susceptibility.

Keywords: landslide; susceptibility analysis; modelling; Bogotá-Villavicencio road; Eastern Cordillera;
Colombian Andes

1. Introduction

Landslides are considered one of the most important natural hazards worldwide,
causing thousands of casualties and costs amounting to billions of euros each year [1–3].
Compared to other risk phenomena such as earthquakes or floods, the effect of landslides
is more diffuse and continuous in space and time, so their impact can be underestimated
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according to some evaluations [2]. Nevertheless, they cause significant damage to infras-
tructure, properties and the environment, as well as the interruption of socioeconomic
activity [1,4].

In Colombia, the occurrence of natural hazard phenomena, including landslides,
earthquakes, and volcanic eruptions, is very frequent due to its geographical location
in the Andean mountain range, with a steep orography, a great geological complexity
and a significant climatic variability [5–8]. In fact, according to [9], it is one of the most
prominent countries in global databases such as the Disaster database (EM-DAT [10]), the
Disaster Inventory System (DesInventar [11]), the Global Landslide Catalog (GLC [12]) and
the Global Fatal Landslide database (GFLD [13]). Specifically, DesInventar [11] reports
10,559 incidents and 7400 deaths for Colombia.

Thus, landslides in Colombia represent almost half of all natural catastrophic events,
far exceeding disasters caused by floods, earthquakes and volcanic eruptions [14], with an
average of 47 landslides and 59 deaths each year from 1993 to 2004. According to infor-
mation available in the Mass Movements Information System (SIMMA) of the Colombian
Geological Service (SGC [15]), 135,632 mass movements have been reported in the country
since 1900. Due to this, 31,631 people have lost their lives, and 68,792 families have been af-
fected. Combining different national and international databases, García-Delgado et al. [8]
collected a total of 2351 fatal landslides that caused almost 40,000 deaths, with some of
them in historical times (prior to 1912) and the majority in modern times (1912–2020), with
an upward trend in the last 20 years. In another work, Aristizábal and Sánchez [6] compiled
about 30,730 landslides that caused 34,198 fatalities and economic losses of more than
600 million dollars in the period of 1900–2018.

According to SIMMA [15], among the most affected regions in absolute terms are
the departments of Cundinamarca, Boyacá and Norte de Santander, located in the East-
ern Cordillera at the central and northern part of the country, as well as Cauca in the
Colombian Massif in the south. Other smaller departments, such as Caldas, Risaralda or
Quindío in the Central Cordillera or Atlántico in the Sierra de Santa Marta, also present
a considerable density in relative terms [15]. These data coincide with the compilation of
García-Delgado et al. [8], in which the highest densities of landslides occur in the depart-
ments of Tolima, Caldas, Risaralda, Bogotá, Quindío, Cauca and Cundinamarca. Specif-
ically, the departments of Cundinamarca and Meta in the central sector of the Eastern
Cordillera are exposed to medium and high probabilities of occurrences of catastrophic
phenomena, particularly landslides, caused, among other reasons, by a high anthropic
intervention on the slopes with the consequent deterioration of the hydrographic basins
and their stability conditions. Thus, the Subdirectorate of Geoambiental Engineering of
Ingeominas (now Subdirectorate of Geo-Hazards of the SGC) prioritized six regions with a
higher concentration of phenomena: the Guavio river basin, the area around the Bogotá-
Villavicencio road, the eastern slope of the Negro River, the Sumapaz river basin, the
middle basin of the Bogotá River and the municipality of San Cayetano [16]. This work
focuses on the vicinity of the road from Bogotá to Villavicencio, specifically on its section
towards the Orinoco river basin.

One of the most effective measures for risk prevention and mitigation is the evaluation
of both the hazard of the phenomenon and of the exposure and vulnerability of the elements
at risk [17]. In Colombia, some studies have been carried out that evaluate risk assessment
and reduction [7,18–20], but there are many more that evaluate hazard or susceptibility.
For hazard, there are numerous deterministic and probabilistic methods, the latter of which
are generally the most applied for extensive areas due to the lack of precise and exhaustive
data in such areas. Within the deterministic methods, different hydrological models [21,22]
or stability analysis methods such as infinite slope [23], r.slope.stability of GRASS [24],
FOSM [25–27], SLIP [26,27], PEM point estimates [25] or deformation analysis [28] have
been applied. These models have been used in high-impact landslides such as the Mocoa
debris flow in the southern part of the country [21,29–31], hillslopes around Medellin [22]



Remote Sens. 2023, 15, 3870 3 of 38

and San Eduardo in Boyacá [28] or watersheds such as La Arenosa and La Liboriana [24–27]
in the department of Antioquia in the Western Cordillera.

Meanwhile, within probabilistic methods, most are extensively applied in the esti-
mation of spatial probability or susceptibility, which are based on the statistical analysis
of correlation between determinant factors and landslides, according to the susceptibility
definition established by Brabb [32]. To develop susceptibility models using statistical tech-
niques, numerous methods are available, which, according to Reichenbach et al. [33], can
be grouped into models based on indices [34–36] and bivariate statistics [37]; multicriteria
evaluation [34]; multivariate statistics [4,38,39]; machine learning, ML [40] and artificial
neural networks (ANN) [41,42]. The last two groups, sometimes with the ANN integrated
in the more general group of ML, have advanced regarding classical statistical methods
due to their greater versatility and better performance in nonlinear systems such as models
developed from factors of different nature [43]. These methods allow the integration of a
great number of factors that are not usually analyzed and selected since the algorithms
directly perform the fit of the models [33]. In our opinion, this lack of factor control and
selection leads to a loss of knowledge in the elaboration of the models and sometimes to an
overfitting of them.

Different studies have been conducted in the Colombian Andes, using all types of
methods from index-based methods such as frequency ratio or weight of evidence [44–48];
statistical methods such as logistic regression [31,46,48–51]; machine learning methods such
as random forest [46], graded boosted regression trees, GBRT [46] or multivariate adaptive
regression [31] and simple [46,52] or convolutional neural networks [53]. The methods have
been applied to different areas such as Capitanejo in the NE of the country [52], Medellín
and the department of Antioquia to the NW [47–49], Caldas [44], Cauca [45,50], Boyacá [52],
Bogotá and Cundinamarca [46,51] and Mocoa in the south [31]. Most of these studies, not
only in Colombia but also throughout the world, do not take into account the landslide
typology, which produces less precision and noise in the models.

Finally, it should be mentioned that those methods for determining rainfall thresholds
and, where appropriate, establishing early warning systems, exist throughout the whole
country [54] or in different departments such as Bolívar, Antioquia and Caldas to the
northwest [50,55–58] or in Bogotá [59]. Regarding precipitation, the influence of deep
convective systems [60] and the impact of climate change on the generation of landslides
and other risks [61] have also been evaluated in these previous works.

The main objective of this work is to present a detailed inventory and susceptibility
models of the study area. The inventory will allow the understanding of the different
processes that occur in this mountainous area and their characteristics, while the subse-
quent factor analysis by typologies will allow the factor selection and the determination
of the conditions under which they originate, as a previous step to modeling landslide
susceptibility. Thus, an important limitation of most current studies, such as the lack of
knowledge of the different landslide typologies, factors and conditions, can be overcome.
From this knowledge, susceptibility models for the different typologies have been devel-
oped using several methods and introducing an increasing number of factors, which will
allow a control of the models’ behavior in relation to overfitting and noise. Examples of
the main groups of methods that have been used are the matrix method (index), linear
discriminant analysis (multivariate statistics), random forest (machine learning) and a
perceptron ANN (neural networks). The results have been compared in order to provide
consistent results in determining the landslide hazard in the region and ensuring robust
models that can be applied in other areas. Finally, once the susceptibility models from the
different typologies are obtained and selected, they have been integrated into susceptibility
maps for shallower and deeper processes in order to assess the hazard in the study area.
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2. Materials and Methods
2.1. Study Area

The study area is located in the central sector of the Eastern Cordillera of the Colombian
Andes (Figure 1a). This is a mountain chain that extends for about 1000 km from southern
Colombia (Colombian Massif, where the cordillera divides into its three main branches,
Western, Central and Eastern) to near the border with Venezuela in the north (Sierra Nevada
del Cocuy), where the highest altitudes of around 5400 m are reached. To the west of the
Cordillera lies the Cundinamarca Plateau, where the capital of Bogotá (Figure 1b) and
many other towns are located; from there, it descends to the Magdalena River, which flows
between the Eastern and Central Cordilleras; to the east, the basins of the Orinoco and
Amazon rivers extend. In this central sector of the Eastern Cordillera, altitudes range
from a few hundred meters in the river basins to 4000 m at the summits. The Eastern
Cordillera of Colombia is an intracontinental mountain belt 100 to 200 km wide [62] with a
SW-NE trend. The materials correspond mainly to marine deposits but also transitional
to continental, ranging from the Cretaceous to Paleocene in age [63,64]. On both sides of
the Cordillera, in the Magdalena River valley and the Amazon and Orinoco basins, there
are Tertiary sedimentary or volcanoclastic deposits. Above all of them appear Quaternary
materials: alluvial, colluvial and paludal fillings. The structure consists of thrusts and folds,
which, in some cases, bring to the surface metamorphic materials of the Paleozoic substrate
(Ordovician and Devonian) without reaching the Proterozoic crystalline basement.

More specifically, the study area has an extension of approximately 746 km2 on the
vicinity of the road between Bogotá and Villavicencio (Figure 1b,c), a city located 75 km
southeast of the country capital (120 km by this road, also known as “Vía al Llano” or
Route 40). The area extends through the municipalities of Cáqueza, Fosca, Quetame
and Guayabetal in the Oriente province of the department of Cundinamarca and the
municipality of Villavicencio in the department of Meta. The municipalities’ total number
of inhabitants and percentage of rural population are Cáqueza with 15,594 inhabitants and
58%; Fosca, 5578 inhabitants and 75%; Quetame with 4929 inhabitants and 77%; Guayabetal
with 5809 inhabitants and 70% and Villavicencio with 451,212 inhabitants, of which only
the 7% are rural population [65]. The road between Bogotá and Villavicencio connects the
entire area together other minor roads.

The elevations range from 600 m in Villavicencio up to 3500 m in the mountain range
to the east of Quetame. The average annual rainfall varies from 500 mm in the western
sector to over 3000 mm in the Villavicencio sector. The slopes are generally quite steep,
with almost 64% in the range of 20–45◦. Hydrographically, it corresponds to the Negro river
basin, a tributary of the Guayuriba River that in turn flows into the Orinoco river basin.

From a geological point of view, materials from the Paleozoic substrate and Creta-
ceous sedimentary series [66] outcrop in this area, with the former in the lower part of
the basin and the latter in the higher part (Figure 1d). Within the Paleozoic, there are two
sets of materials: first, metamorphic rocks of low grade, phyllites, schists and quartzites
of Ordovician age; over them, discordantly, there are quartz sandstones and shales of
Devonian-Carboniferous age. In the Cretaceous series, there is a small outcrop of conglom-
erates and transitional environment sands at the base of the series, which pass to lutites of
a marine environment, which are predominant in the area. These series end in Paleogene,
and then Miocene sedimentary and volcanoclastic deposits fill the basins formed within
the Cordillera and at the east over the Paleozoic and Precambrian basement. The structure
is of thrusts and folds with NNE-SSW main direction, which allow the outcrop of the
underlying Paleozoic formations to the Cretaceous series in the lower part of the area. On
top of all these sets, there are Quaternary materials consisting of terraces, colluvial deposits
and current alluvial deposits in the riverbeds.

In the municipalities of the area, landslide activity is very high, according to SIMMA [15]:
Cáqueza has had 169 incidences; Quetame, 22 incidences; Guayabetal, 9 incidences and
Villavicencio, 94 incidences.
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Figure 1. Location and geology of study area: (a) Location of Cundinamarca and Meta Departments
in Colombia (own elaboration on AutoNavi Base Maps); (b) Colombian Andes and Eastern Cordillera
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(own elaboration on Esri Physical Map); (c): Study area and main populations (own elaboration
on Google Satellite); (d) Geological setting adapted from the Geological Map of Colombia [64].
Coordinates are in WGS84 (lat/long at left and top margins) and in WGS84-UTM 18 (projected, in
right and down margins).

2.2. Materials

The sources of information and software used are listed in Table 1. For the inventory,
background images from Google Maps—Google Earth (GE-GM) and Bing Maps (BM)
were used, corresponding to Airbus (Pleiades), Maxar and Copernicus (Sentinel-2). In GE,
images of different dates and resolutions could be observed.

Regarding the factor layers, the digital elevation model (DEM) obtained by InSAR
from ALOS PALSAR images of 2011 [67] was used, with a spatial resolution of 12.5 m,
downloaded from the Alaska Satellite Facility [68]. The geology comes from the Geological
Atlas of Colombia [69], available as vector information, from which the lithological units
have been extracted. A Sentinel image from 2020 [70] was used to calculate the NDVI
index and obtain the classification of land cover. Finally, the map of average precipitation
available in IDEAM [71] was used.

Table 1. Sources of information and software used in this study.

Information Resources Software

Digital elevation model (12.5 m resolution) JAXA/METI ALOS PALSAR, 2011 [67,68] Google Earth 7.3.6.9345 [72]
Background images GM, GE, BM (Airbus, Maxar, Copernicus) QGIS versión 3.18.3 [73]

Geology: Geological Atlas of Colombia Layer files (shp): Servicio Geológico
Colombiano, 2015 [69] SAGA versión: 7.9.1 [74]

Sentinel-2 image Copernicus, 2020 [70]
Rstudio 2022.02.2 [75]Precipitation in Colombia Raster files (tif): IDEAM, 2015 [71]

Regarding software, Google Earth Pro 7.3.6.9345 [72] was used for image visualization,
and QGIS 3.18.3 [73] and SAGA GIS 7.9.1 [74] for data processing and analysis. Additionally,
R studio 2022.02.2 statistical software [75] was used for generating multivariate statistical
and machine learning susceptibility models.

2.3. Methodology

The methodology is summarized in the flowchart of Figure 2. It includes first the
elaboration of a detailed landslide inventory in the study area. Second, it includes the
analysis of landslide determinant factors by typologies in order to the factor selection and
understanding the conditions of their occurrence. Third, it includes the elaboration of
susceptibility models (LSM) for each landslide typology using different methods, as well
as their validation, and finally, it includes the integration of LSM in synthesis maps.

2.3.1. Landslide Inventory

The landslide inventory was carried out using photointerpretation and digitization
from the GM-GE and BM background images. In addition, the database of the Colombian
Mass Movements Information System, SIMMA [15], was used as support. The digitization
of the identified movements was carried out by connecting to these images through WMS
from the open-source software QGIS, although the photointerpretation was helped by the
pseudo-3D views of the images in GE (Airbus/Pleiades, Maxar and Copernicus/Sentinel-2).
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Once digitized, a database was created, which, according to Chacon et al., 2006 [76] and
Guzzetti et al., 2012 [77], should include the spatial location, temporal dating and thematic
attributes of the landslides. Specifically, this database or inventory includes as attributes
the typology [78] and the activity [79], which were supported by the multi-temporal GE
images, and their area, calculated with the attribute calculation tools of QGIS. From this
database, an analysis has been carried out that will allow us to know the frequency and
total extension, the activity and the average area of each landslide typology.

2.3.2. Analysis of Determinant Factors

For the analysis of determinant factors and the elaboration of LSM with GIS, it is
necessary to have the factor layers. In this case, factor layers and maps have been obtained
from different official geographic information sources in Colombia (Table 2). Figure 3
shows the factor maps both the quantitative (DEM derivatives, precipitation, NDVI and
distance to roads and rivers) and the qualitative (lithology and land cover).

Table 2. Factors used in the analysis and their corresponding sources of information.

Factor Origin

Elevation
Derived from DEM

of 12.5 m resolution from JAXA-ALOS
PALSAR [67,68]

Slope
Aspect

Curvature
Topographical Position Index (TPI)

Terrain Roughness Index (TRI)
Lithology Geological Atlas of Colombia, SGC [69]

Precipitation Raster files (tif): IDEAM, 2015 [71]
Land Cover Sentinel-2 image, Copernicus 2020 [70]

Normalized Difference Vegetation Index (NDVI)
Distance to roads Roads digitized on GE-GM image
Distance to rivers Rivers digitized on GE-GM image
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Figure 3. Factor maps considered in the study area; (a): Elevation; (b): Slope; (c): Aspect;
(d): Curvature; (e): TPI; (f): TRI; (g): Lithology; (h): Precipitation; (i): Land Cover; (j): NDVI;
(k): Distance to roads; (l): Distance to rivers.
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From the digital elevation model (DEM), derivative models such as slope, aspect or
orientation, terrain curvature, topographic position index (TPI) and terrain roughness index
(TRI) have been obtained using QGIS analysis functions. Additionally, lithological units
extracted from the Geologic Atlas of Colombia [69] were used, which were rasterized; then,
a quantitative value was assigned to each unit based on material resistance [80], as shown
in Table 3 (lower to hard rocks and higher to soft rocks). The NDVI and land use were
obtained from a Sentinel-2 image using the corresponding formula [81] and supervised
classification (maximum probability), respectively. In the case of land cover, a similar
scheme to lithology was followed, assigning a value to each unit based on the vegetation
cover or other considerations [82], also shown in Table 3. Precipitation data were obtained
directly from a raster layer of precipitation intervals [71]. Finally, the distance to rivers and
roads was obtained through vector digitization on the GM/GE background image and
subsequent distance calculation using the corresponding QGIS function.

Table 3. Values assigned to lithological and land cover units. In lithological units, the values are
assigned to each unit based on material resistance (lower to hard rocks and higher to soft rocks). In
land cover units, values are assigned to each unit based mainly on the vegetation cover.

Lithology Land Cover
Unit Value Unit Value

Phyllites-Schists 0.3 Urban 0.6
Quartzarenites 0.4 Scarce vegetation 0.8
Conglomerates 0.8 Grass-Crops 0.5

Lutites 1.0 Bush-Shrubs 0.4
Shales 0.9 Forest 0.2

Volcanic 0.2 Water 0
Terraces 0.5

Alluvial fans 0.6
Alluvial deposits 0.7

The factorial analysis consisted of cross-tabulating the maps of determinant factors
and the landslide inventory, both global and/or by typologies. Then, the Kolmogorov–
Smirnov (K–S) coefficient was calculated to compare the distributions of factors in areas
affected and not affected by movements, thus estimating the correlation between factors
and landslides. At the same time, an analysis was conducted among the factors themselves
by determining the Pearson linear correlation coefficient in order to estimate the collinearity
between them. These analyses allowed for the selection of factors involved in the models
and the identification of conditions for the occurrence of the different landslide typologies.
The analysis has been made taking into account the landslide activity, although in most
typologies, the differences are not significant, so only the general results are shown in the
next section.

2.3.3. Susceptibility Models

Susceptibility models have been developed using different methodologies [33]: matrix
method (indices), lineal discriminant analysis, LDA (classical multivariate statistics), ran-
dom forest, RF (machine learning) and a simple artificial neural network (ANN) (Figure 4).

In the matrix method, the procedure starts by combining the raster layers of factors
in order to obtain the units of unique condition. For qualitative factors, discrete values
are used (Table 2), and for quantitative factors, continuous values are classified in inter-
vals. Next, a cross-tabulation is performed between the raster layer of unique condition
and the binary raster layers of presence/absence of landslides by typologies. From
this table, the percentage area of each combination of factors affected by landslides
can be obtained [35,36,83,84]. This is the susceptibility index, which is obtained by
the expression:

Ii =
zi
si
× 100 (1)
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where Ii is the susceptibility index; zi and si are, respectively, the area of each factor
combination affected by landslides and the total area of the combination.
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This index is used as a classification template, and thus, the susceptibility map is
obtained by reclassifying the unique condition raster layer with it [35,36,83,84].

Meanwhile, the remaining methods follow a different scheme that starts with obtaining
a random sampling of points. Based on previous works [85–89], a total of 5000 points
have been obtained with GIS tools (QGIS) in the stable zone (absence of landslides) and
5000 points in each of the differentiated landslide typologies (presence). A table was
then created by extracting the values of the different factors’ layers at each point or pixel.
Therefore, continuous (for quantitative factors) or discrete (for qualitative factors) values
are used. The integrated tables of landslides’ presence/absence were introduced in R studio
statistical software [75] with the aim of obtaining susceptibility models and maps (LSM).

Linear discriminant analysis is one of the multivariate statistical models most used
in slope instability or landslide susceptibility. These models assume that the factors that
caused landslides in a given area are the same ones that will cause landslides in the future.
The general linear models take the form [4,90]:

L = B0 + B1X1 + B2X2 + B3X3 + ... + BnXn + ε (2)

where L is the presence/absence or area percentage of landslides in each mapping unit; X’s
are input predictor variables or factors in each mapping unit; B’s are coefficients estimated
from the data through statistical techniques and ε represents the model error.

In discriminant analysis, the probability or susceptibility of landslides in a given
area (a pixel in our case) is calculated by adjusting the linear discriminant function to data
inputs and then minimizing the model error [38,39]. These data inputs are, on one hand, the
presence/absence of landslide in the area and, on the other hand, the values of determinant
factors considered in the same area (pixels in our case).

Random Forest (RF) is a nonlinear supervised method used for data classification
and regression. It is considered an ensemble method consisting of a combination of
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deep decision trees so that each tree depends on values taken from a vector sampled
randomly for growing [40,46,91,92]. Each decision tree grows splitting the input data
(in our case, factors values) recursively so that each division contains more or less
homogeneous states of the target variable (in our case, landslide susceptibility) [93].
In RF, each tree is trained on a subset of the data set and returns a result (in our case,
landslide presence/absence). Therefore, the result of each decision tree is considered a
vote, and thus, the final result is the one with the most votes or, in our case, the highest
probability of landslide occurrence [91,94]. Some relevant RF characteristics are its
predictive accuracy, low tendency to overfitting, relatively low computational cost and
its ability to work with high dimensional data [40,92,95].

An artificial neural network (ANN) is a set of interconnected nodes or neurons useful
for modeling problems with a complex relationship between analysis factors, so it is
ideal for dynamic and nonlinear phenomena such as landslide occurrence [41,42]. The
ANN architecture consists of a set of inputs (determinant factors); a set of intermediate
layers (hidden layers) that perform the processing and an output layer with the prediction
result [96]. Neural networks generally refer to supervised classification algorithms, which
compare a given output with a predicted output, adapting the necessary parameters
based on this comparison [97]. There are several neural network algorithms such as
convolutional neural networks (CNNs) or recurrent neural networks (RNNs); however,
one of the most widely used is multilayer perceptron (MLP), which has been applied in
several studies [41,42,98,99]. A perceptron is an individual neuron that allows us to classify
a set of inputs into one or two categories by means of a step function, which returns 1 if the
weighted sum of inputs exceeds a threshold or otherwise returns 0 [96]:

z = b + ∑ wixi

y =

{
1 i f z ≥ 0
0 i f z < 0

(3)

where y is the label or output variable (to predict); xi is the feature or input variable; wi
and b are the weights and the bias, both parameters that the model has to learn during the
training process.

Another important feature is the activation function, which allows an ANN to work
with nonlinear problems [96] and can be of linear, sigmoid or logistic types, hyperbolic
tangent or rectified linear unit (ReLU).

The MLP algorithm consists of a set of perceptrons organized in layers connected by
synapses that are assigned a weight. Connection weights, hidden layers and the output
layer were initialized and then updated using the backpropagation algorithm [42]. In our
case, the MLP implemented had only one hidden layer with 3 or 4 neurons.

In practice, modeling using discriminant analysis methods [4,38,39,90] and random
forest [40,46,91,92,94] involved partitioning the sample into training (80%) and validation
(20%) sub-samples, giving a 80/20 ratio as some works recommend [100], although other
proportions have been tested, such as 70/30 and 60/40. Next, a k-folds procedure (5 folds)
was applied with the training sub-sample in order to fit the models while avoiding skewed
partitions [101], in turn with an 80/20 ratio in training/testing. This procedure allowed us
to obtain the corresponding susceptibility models and maps (LSM) and their validation
through the area under the Receiver Operating Characteristic curve (AUC-ROC) [102]. In
the case of random forest, model refinement methods are applied based on hyperparameter
control, mainly number of trees (ntree, nodesize and tuneGrid) [40,91,95].

In the neural network models [41,42,46,52,95–99,103–107], the same landslide pres-
ence/absence samples as in the previous methods were used, from which a partition as
also made into training (80%) and validation (20%) sub-samples. With the training sample,
a one-layer ANN with 3 or 4 hidden neurons was adjusted using the rprop algorithm for
backpropagation [95]. The R script returned the corresponding LSM, and the AUC-ROC
value was estimated with the validation sample.
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Every method described allows the elaboration of LSM for each typology indepen-
dently, but from the results of factor analysis, synthesis maps have been made, grouping
the types of landslides that present similar conditions. In this way, an integrated LSM
was obtained for avalanches and debris flows and another for slides, earth flows and
creeping processes.

2.3.4. Models Validation

A key aspect in the use of all these methods and models is validation, which enables
them to be used as predictive models for estimating hazard and proposing prevention
and mitigation measures. The susceptibility models developed can be validated through
random, spatial and temporal partitioning of the inventory [108]. In this study, a random
partition validation was mainly used, based on obtaining training and validation sam-
ples [33]. As mentioned before, in LDA, RF and ANN methods, a sample of 2000 points
(20%) was used to validate the models fitted with the training sample (80%). However, to
validate the results of the matrix method, which is based on a different scheme, a new ran-
dom sampling of 2000 points (1000 in each of the landslide typologies and 1000 in the stable
area) was performed in QGIS. In all cases, the susceptibility values were extracted from
LSM by means of QGIS tools. The value tables were imported into R studio [75], where the
theoretical values (susceptibility) were compared with the actual values (presence/absence)
to calculate the AUC-ROC values.

AUC-ROC values were calculated from the ROC curves, which were built representing
some values derived from the confusion matrix [109] such as True Positive Rate (TPR)
or sensitivity in Y axis, versus the False Positive Rate (FPR) or 1—specificity in X-axis
for different thresholds of the predicted values (for instance, for intervals of 0.1). The
expressions for TPR and FPR are:

TPR (sensitivity) = TP
TP+FN

FPR = FP
FP+TN = 1 − speci f icity

(4)

where: TP are the true positives; TN are the true negatives; FP are the false negatives and
FN are the false negatives.

In addition to the validation with the AUC-ROC values, derived from the confusion
matrix, another independent validation method has been applied. The degree of fit (DF),
calculated in previous works from slope units [39] or landslide polygon areas [35,36,84]
has been adapted to random point samples. Thus, the LSM obtained with the procedure
described before were classified into five levels by means of the quantile method. Then,
the additional point sample obtained for validation of the LSM of the matrix method
(1000 points in stable area and 1000 points in each landslide typology) were used to extract
the susceptibility levels in them (very low, low, moderate, high, very high). The DF of each
susceptibility level was calculated as:

DFi =
pli/pti

∑ pli/pti
(5)

where pli is the number of points in landslide areas in each susceptibility level and pti is the
total number of points in each susceptibility level (approximately 200 points). Sum of pli is
1000, and sum of pti is 2000.

The sum of DF in very low to low susceptibility levels was considered the relative
error of LSM, while the sum of DF in high to very high levels was the relative success [36].

Finally, a temporal validation was conducted, obtaining the training samples from
the landslides catalogued as latent and relict (4000 points in each typology), while the
validation samples were extracted from the active landslides (1000 points in each typology).
Additionally, from the 5000-point sample obtained for the previous validation strategy,
4000 points were added to complete the training sample, and 1000 points were added to
the validation sample, giving again a training/validation ratio of 80/20. The next steps are
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the same as in the previous strategy, thus calculating the AUC-ROC values. This validation
has been applied only for LDA, RF and ANN methods.

3. Results
3.1. Landslide Inventory

The landslide inventory of Villavicencio-Bogotá (Figure 5) shows a total of 2506 landslides,
representing 8.13% of the study area (Table 4). Five basic typologies have been differentiated
according to Varnes [77] and Hungr et al. [110]: avalanches or collapses; debris flows; slides
and earth flows, often as complex movements but classified according to the dominant
type and soil creep, with a reduced speed and slow activity over time.
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Table 4. Analysis of landslide inventory. Areas are in m2.

Typologies Number Total Area
Area Ind. (m2)

Active Latent Relict
No % A (m2) % No % No % No %

Avalanches 979 39 7.95 13 8123 760 78 199 20 20 2
Debris flows 866 35 2.29 4 2649 594 69 271 31 1 0

Slides 437 17 39.00 64 89,261 59 14 122 28 256 59
Earth flows 179 7 7.47 12 41,747 4 2 70 39 105 59

Creep 45 2 3.99 7 88,803 6 13 36 80 3 7
All landslides 2506 - 60.71 8.13 1 24,231 1423 57 698 28 385 15

1 This percentage corresponds to the area occupied by all landslides regarding the total study area.

The most predominant movements are avalanches (39%) and debris flows (35%),
followed by slides (17%), earth flows (7%) and creep processes (2%). However, in terms of
area, landslides occupy the largest extent (64%), with the percentages of avalanches and
debris flows decreasing to 13% and 4%, respectively and the percentages of earth flows and
creep increasing to 12% and 7%, respectively. These data are consistent with the fact that
the average size (area) of slides and creeping processes is almost 90,000 m2, whereas that
of earth flows is approximately 42,000 m2 and avalanches and debris flows have average
areas of only 8100 and 2650 m2, respectively.

From the activity perspective, most landslides are catalogued as active (57%), while
remaining are considered latent (28%) and relict (15%). However, this distribution is
different by type (Table 3), with avalanches and debris flows being predominantly active
(78% and 69%, respectively), whereas slides and earth flows are mostly relict (59%) and
creeping processes are latent (80%).

3.2. Analysis of Determinant Factors

The factors used in this study (shown in Figure 3) were analyzed; thus, their distribu-
tion in the area and their correlation with landslides are shown in Table 5 and Figure 6.

Table 5. Distribution of factor classes and cross-correlation with the landslides (all the landslides and
for landslide typologies). The distribution of factor classes is expressed in % of area of every class
respect to the total area of the study area. The density of landslides is expressed in % of landslide area
for each class respect to the total area of this class. The correlation is expressed as the Kolmogorov-
Smirnov (K–S) coefficient. The predominant classes of each factor, the classes with the highest density
of landslides and K–S coefficients considered as significant are shown in bold.

Factors Classes All Landslides Avalanches Debris Flows Slides Earth Flows Creep

Elevation (m)

500–1000 5.90% 4.00% 1.90% 0.11% 1.61% 0.37% 0.00%
1000–1500 15.53% 11.51% 3.76% 0.72% 6.73% 0.30% 0.00%
1500–1800 16.08% 15.40% 1.61% 0.50% 12.05% 0.88% 0.37%
1800–2000 11.86% 10.35% 0.97% 0.41% 7.55% 1.07% 0.34%
2000–2400 23.10% 8.85% 0.80% 0.46% 4.58% 1.71% 1.29%
2400–2600 9.75% 6.98% 0.60% 0.48% 3.17% 2.30% 0.44%
2600–2800 6.83% 5.85% 0.62% 0.64% 1.75% 1.87% 0.97%
2800–3600 10.96% 2.87% 0.29% 0.91% 0.32% 0.73% 0.62%

K–S 0.18 0.32 0.14 0.29 0.25 0.34

Slope (◦)

0–5 1.94% 6.96% 0.62% 0.29% 3.46% 0.76% 1.83%
5–10 6.38% 7.53% 0.58% 0.15% 4.00% 1.26% 1.53%

10–20 22.69% 9.02% 0.79% 0.21% 5.12% 1.73% 1.17%
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Table 5. Cont.

Factors Classes All Landslides Avalanches Debris Flows Slides Earth Flows Creep

20–30 31.08% 9.91% 1.22% 0.42% 6.34% 1.46% 0.47%
30–45 32.62% 8.89% 1.87% 0.86% 5.43% 0.64% 0.09%
45–90 5.29% 9.93% 3.24% 1.37% 5.08% 0.23% 0.00%
K–S 0.03 0.19 0.27 0.05 0.20 0.38

Aspect

N 11.25% 7.72% 1.34% 0.42% 4.77% 0.98% 0.21%
NE 11.88% 9.11% 1.49% 0.58% 5.71% 0.92% 0.40%
E 12.13% 10.37% 1.50% 0.80% 6.40% 1.08% 0.58%

SE 14.15% 9.47% 1.51% 0.83% 5.41% 0.99% 0.73%
S 13.23% 9.07% 1.52% 0.51% 4.33% 1.47% 1.24%

SW 13.17% 10.11% 1.50% 0.44% 5.85% 1.55% 0.77%
W 12.36% 9.37% 1.20% 0.37% 6.46% 1.06% 0.28%

NW 11.82% 7.90% 1.02% 0.37% 5.06% 1.21% 0.24%
K–S 0.04 0.05 0.14 0.06 0.08 0.24

Curvature

−1–−0.02 6.26% 10.45% 3.20% 0.98% 5.30% 0.77% 0.21%
−0.02–−0.01 18.06% 10.27% 1.62% 0.60% 6.10% 1.34% 0.62%
−0.01–0.01 51.22% 9.25% 1.16% 0.47% 5.65% 1.29% 0.68%

0.1–0.2 18.28% 8.04% 1.09% 0.47% 4.97% 0.99% 0.52%
0.02–1 6.19% 7.30% 1.67% 0.76% 4.17% 0.51% 0.19%
K–S 0.04 0.11 0.07 0.03 0.06 0.06

TPI

−100–−6 16.94% 12.29% 3.24% 0.82% 6.65% 1.22% 0.37%
−6–−2.5 16.52% 11.41% 1.47% 0.57% 6.87% 1.70% 0.80%
−2.5–0 16.47% 9.75% 1.01% 0.47% 5.98% 1.47% 0.81%
0–2.5 16.02% 8.58% 0.87% 0.44% 5.28% 1.25% 0.75%
2.5–6 16.29% 7.29% 0.88% 0.46% 4.58% 0.90% 0.47%
6–100 17.76% 5.83% 0.84% 0.51% 3.69% 0.49% 0.29%
K–S 0.12 0.24 0.09 0.10 0.15 0.12

TRI

0–2 16.02% 7.93% 0.58% 0.17% 4.31% 1.36% 1.52%
2–3 16.68% 9.36% 0.87% 0.23% 5.40% 1.83% 1.03%
3–4 18.12% 9.96% 1.14% 0.36% 6.34% 1.57% 0.54%
4–6 17.04% 9.72% 1.45% 0.57% 6.34% 1.10% 0.27%
5–6 13.65% 8.90% 1.74% 0.76% 5.59% 0.70% 0.10%
>6 18.50% 8.99% 2.49% 1.15% 4.94% 0.38% 0.03%

K–S 0.03 0.19 0.27 0.06 0.19 0.38

Lithology

Phylites-
Schists 38.43% 5.77% 1.85% 0.89% 2.90% 0.14% 0.00%

Quartzarenites 13.62% 5.62% 2.84% 1.27% 1.28% 0.22% 0.01%
Shales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Lutites 45.48% 13.32% 0.56% 0.06% 9.07% 2.37% 1.26%

Conglomerates 0.89% 4.22% 0.50% 0.20% 3.53% 0.00% 0.00%
Volcanic 0.13% 4.77% 0.85% 0.00% 1.92% 2.00% 0.00%

Alluvial fans 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Alluvial
deposit 0.93% 4.41% 1.88% 0.00% 2.53% 0.00% 0.00%

Terraces 0.42% 6.69% 2.86% 0.44% 3.39% 0.00% 0.00%
K–S 0.23 0.28 0.42 0.31 0.48 0.55
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Table 5. Cont.

Factors Classes All Landslides Avalanches Debris Flows Slides Earth Flows Creep

Precipitation (mm)

500–1000 2.43% 20.56% 0.38% 0.06% 15.44% 1.74% 2.93%
1000–1500 12.31% 9.80% 0.29% 0.01% 7.58% 1.63% 0.29%
1500–2000 7.74% 9.10% 1.51% 0.60% 3.58% 3.07% 0.35%
2000–2500 32.25% 7.91% 2.07% 0.85% 4.45% 0.38% 0.17%
2500–3000 14.37% 3.47% 1.88% 0.52% 0.90% 0.17% 0.00%
3000–4000 13.50% 3.40% 1.39% 0.86% 0.95% 0.20% 0.00%
4000–5000 17.40% 2.64% 1.12% 1.12% 0.40% 0.00% 0.00%

K–S 0.21 0.22 0.27 0.33 0.42 0.59

Land cover

Urban 5.00% 18.68% 7.06% 1.09% 9.58% 0.53% 0.43%
No

vegetation 1.94% 17.16% 5.70% 1.12% 8.46% 0.58% 1.30%

Grass 9.83% 16.15% 1.70% 0.50% 11.41% 1.21% 1.33%
Bush-Shrubs 62.01% 10.20% 1.07% 0.48% 6.27% 1.68% 0.71%

Forest 21.03% 2.40% 0.39% 0.33% 1.38% 0.27% 0.03%
Water 0.20% 15.44% 8.45% 0.58% 6.32% 0.00% 0.09%
K–S 0.17 0.29 0.09 0.17 0.17 0.20

NDVI

−0.5–0.1 5.08% 4.40% 1.81% 1.09% 1.48% 0.01% 0.02%
0.1–0.25 19.68% 2.40% 0.39% 0.34% 1.38% 0.26% 0.02%
0.25–0.4 58.66% 10.06% 1.11% 0.49% 6.14% 1.64% 0.69%
0.4–0.6 11.07% 16.61% 2.47% 0.60% 11.23% 1.13% 1.19%
0.6–1 5.52% 13.24% 5.35% 1.25% 5.51% 0.46% 0.66%
K–S 0.19 0.25 0.08 0.20 0.21 0.24

Distance to roads (m)

0–100 4.91% 17.53% 1.84% 0.02% 13.88% 1.17% 0.62%
100–250 6.49% 15.93% 1.31% 0.11% 12.38% 1.34% 0.79%
250–500 9.08% 13.50% 1.12% 0.22% 10.57% 0.83% 0.76%

500–1000 14.66% 11.81% 0.92% 0.30% 8.28% 1.07% 1.24%
>1000 64.85% 6.61% 1.50% 0.73% 2.79% 1.21% 0.38%
K–S 0.20 0.05 0.22 0.34 0.03 0.23

Distance to rivers (m)

0–100 3.95% 17.43% 6.33% 0.15% 10.57% 0.23% 0.15%
100–250 5.85% 17.44% 2.86% 0.46% 13.45% 0.45% 0.21%
250–500 9.00% 15.25% 1.93% 0.67% 11.55% 0.98% 0.11%

500–1000 16.32% 11.54% 1.31% 0.52% 7.98% 1.56% 0.18%
>1000 64.88% 6.47% 0.89% 0.57% 3.00% 1.21% 0.80%
K–S 0.21 0.24 0.04 0.31 0.08 0.21

The factors and their correlation with landslides are described below:
Elevation shows a wide range between 500 and 3600 m, although the majority (68%)

is well distributed between 1500 and 2800 m. Landslides have their highest density in
the range of 1500 to 1800 m. By typologies, avalanches are mainly concentrated in the
range of 1000 to 1500 m, debris flows above 2800 m, slides between 1500 and 1800 m, earth
flows between 2400 and 2600 m and creeping processes between 2000 and 2400 m. They
show a significant correlation in practically all the typologies, especially in avalanches and
creeping processes (more than 0.3).
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Figure 6. Distribution of classes and landslide density by class in each of the factors considered:
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different classes and intervals are shown as histogram bars in blue; Landslide density in each class is
shown as line diagram in red.

Slope is distributed practically throughout the total range from 0 to 90◦, but more
than 80% is between 10 and 45◦. The landslide density is equally well distributed in the
different ranges (between 7 and 10%), but by typologies, the distribution is different. Thus,
avalanches and debris flows have a higher density as the slope increases, while slides
reach their highest density in the range of 20 to 30◦, earth flows between 10 and 20◦ and
creeping processes between 0 and 10◦. Practically all typologies, except slides, show a
significant correlation.

Aspect appears to be fairly well distributed in all main orientations (11–14%). Mean-
while, the density is equally similar for all the movements (8–10%) and even in the analysis
by typologies. Only the creeping processes have a higher density on south-facing slopes,
so the correlations are generally low in all typologies, except for these processes.

Curvature presents a normal distribution concentrated around values close to 0. How-
ever, the distribution of landslides is higher in negative values (concave shapes) than in
positive values (convex shapes). This is more evident in some typologies such as avalanches
and slides, while in creeping processes, the higher density occurs in values close to 0. Cor-
relations are not significant in any case.

Topographic Position Index (TPI): The classification allows for a balanced distribution
(16–17%) of all intervals. However, the landslides’ overall density is higher in negative
values (10–12%) compared to positive values (6–8%). This asymmetry is very clear in
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avalanches, which concentrate in the lower sections of the hillslopes with negative index,
and not so much in slides, earth flows and creeping processes that move towards the lower-
middle and middle sections of the hillslopes. The correlation is significant in avalanches,
landslides and creeping processes.

Terrain Roughness Index (TRI): As in the previous case, the classification produces
a fairly uniform distribution of the different classes (14–18%). In this case, the landslide
density is relatively uniform in the different classes, although the analysis by types does
show important differences. Thus, avalanches and debris flows mainly concentrate in
high roughness classes, while landslides and especially creeping processes do so in low
roughness classes. The correlation is significant in all types, except for slides.

Lithology: Of the nine differentiated classes, three of them, such as lutites (45%),
phyllites and schists (38%) and quartz sandstones (14%), have a significant extension, while
the remaining classes barely reach 1%, including quaternary materials. Taking this into
account, a higher density is observed in Cretaceous lutites in all the landslide types; but
especially, a clear difference is observed between the distribution of avalanches and debris
flows with higher density in phyllites and quartz sandstones compared to slides, earth
flows and creeping processes, with higher density in Cretaceous lutites and conglomerates.
Avalanches and slides also involve quaternary materials (alluvial and colluvial). Meanwhile,
correlations are significant in all types and even for the landslides as a whole.

Precipitation has a wide range from 500 to nearly 5000 mm of average annual precipi-
tation, with the interval of 2000 to 2500 m having the greatest extension (32%). Unlike that
which might be expected, the landslide density decreases in the intervals of higher precip-
itation for all the movements, but certain differences are observed between the different
typologies. Thus, avalanches and debris flows have a higher density in areas of medium or
high precipitation, while slides, earth flows and creep processes have a higher density in
areas of lower precipitation. In all cases, correlations are significant.

Land cover: Of the six differentiated classes, there is a predominance of shrub areas
(62%) over-forested areas (21%), grasslands and crops (10%), areas with scarce vegetation
(2%), urban areas (5%) and water (0.2%). Excluding water and urban areas, which are
occasionally affected by movements, the highest landslide density occurs in areas with
scarce vegetation and grass/crop areas (19% and 17%, respectively) compared to shrub
areas (10%) and forested areas (2.4%). There are certain differences by typologies, as
avalanches and debris flows have a higher density in areas with scarce vegetation, while
slides, earth flows and creep processes occur mainly in grass/crop areas and even shrub
areas. In all cases, forest areas produce the lowest densities. The certain incidence of
avalanches and slides in urban or water areas is noteworthy. The correlations are also
significant in all cases.

NDVI: The most extended class is the 0.4–0.6 with almost 60%, followed by the 0.6–1
with almost 20% and the 0.25–0.4 with 10%. In terms of landslide density, the highest is
achieved in the middle values of the index, decreasing towards the low and high values.
By typologies, avalanches and debris flows present higher densities in the low values
than in the high ones, except in the very low values generally associated with urban areas;
meanwhile, slides, earth flows and creeping processes have the highest densities in the
middle values of the index. The correlations are significant in practically all cases.

The distance to roads logically shows an increasing distribution of the area as the
distance increases, with almost 65% of the surface area being more than 1 km from the main
roads. The landslide density, however, is higher at shorter distances than at longer ones.
By typologies, avalanches and earth flows barely present a relationship with roads, while
in debris flows and creeping processes, the density increases with distance; only in slides
is there an increase in density at shorter distances. The correlations are only significant in
slides, debris flows and creeping processes.

Distance to rivers: As in the case of roads, it shows an increasing distribution of
the area with distance, and almost 65% of the surface is more than 1 km away from the
riverbeds. Similarly, the landslide density increases at shorter distances compared to
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longer ones, although this does not happen in the same way for all typologies. Thus,
avalanches and slides have higher density at shorter distances, while creep processes have
higher density at longer distances, and debris flows and earth flows do not present a clear
relationship. Correlations are only significant in avalanches, slides, and creeping processes.

Meanwhile, the results of multicollinearity analysis among the factors are shown in
Table 6. As can be seen, strong correlations are only found between slope and TRI (0.97),
and land use and NDVI (0.75); moderate correlations appear between TPI and curvature
(0.65) and lithology and precipitation (0.59). Finally, weak correlations appear between
elevation and distance to roads and distance to rivers and between lithology and slope
and roughness.

Table 6. Correlation coefficients (Pearson) between factors. Strong and moderate correlations are
shown in bold.

Factors Elevation Slope Aspect Curvat. TPI TRI Lithol. Precip. Land C. NDVI D. Roads D. Rivers

Elevation 1.000
Slope 0.014 1.000

Aspect 0.001 0.022 1.000
Curvature 0.034 0.005 0.000 1.000

TPI 0.090 0.009 0.000 0.654 1.000
TRI 0.010 0.971 0.023 0.003 0.006 1.000

Lithology 0.006 0.355 0.045 0.003 0.007 0.326 1.000
Precipitation 0.248 0.231 0.029 0.000 0.001 0.210 0.585 1.000

Land
cover 0.114 0.073 0.140 0.000 0.004 0.058 0.022 0.215 1.000

NDVI 0.107 0.041 0.175 0.005 0.007 0.026 0.043 0.150 0.754 1.000
D.Roads 0.380 0.179 0.026 0.003 0.013 0.169 0.470 0.401 0.044 0.014 1.000
D.Rivers 0.471 0.086 0.012 0.011 0.036 0.071 0.029 0.119 0.021 0.006 0.185 1.000

Based on these analyses, a factor selection has been made for the elaboration of
susceptibility models and maps (Table 7). At the first level, all 12 factors used were
considered. At the second level, those factors that showed a clear collinearity (strong
and moderate correlation) were discarded, retaining those eight factors considered as
independent. At the third level, only those non-collinear factors that showed significant
correlation with the different landslide typologies were considered. Finally, the four factors
that show total independence between them but correlation with most typologies were
maintained: elevation, slope, TPI and lithology.

Table 7. Selected factors for susceptibility models: 1: All factors; 2: Non-collinear factors; 3: Factors
with significant correlation with the different landslide typologies; 4: Independent factors between
them but correlated with most typologies: Elevation, slope, TPI and lithology factors.

Factors Elevation Slope Aspect Curvat. TPI TRI Lithol. Precip. Land C. NDVI D. Roads D. Rivers

Avalanches 1234 1234 12 1 1234 1 1234 1 123 1 12 123
Debris
flows 1234 1234 123 1 124 1 1234 1 123 1 12 12

Slides 1234 124 12 1 124 1 1234 1 123 1 123 123
Earth
flows 1234 1234 12 1 1234 1 1234 1 123 1 12 12

Creep 1234 1234 123 1 124 1 1234 1 123 1 12 12

In summary, the conditions under which landslides occur preferentially are lithology
of lutites; anthropic land use, areas with scarce vegetation and grass-crop lands, with NDVI
between 0.2 and 0.4; elevation range between 1500 and 2000 m; precipitation between
500 and 1000 mm and the lower-concave section of the hillslopes.
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If the analysis is considered by typologies:

• Avalanches show a higher density in Paleozoic quartz sandstones and phyllites, areas
with scarce vegetation and NDVI between 0.1 and 0.25, altitudes between 1000 and
1500 m, slopes greater than 30◦, the lower-concave sections of the hillslopes, areas
with high roughness and areas near streams.

• Debris flows occur mainly in phyllites and quartz sandstones in areas with scarce
vegetation, elevations above 2800 m, slopes greater than 30◦, areas facing the east and
southeast and areas with high roughness.

• Slides occur more frequently in Cretaceous lutites and grass-crop areas with NDVI
between 0.25 and 0.4, elevations between 1500 and 1800 m, the middle-lower sections
of the hillslopes and areas near streams and roads.

• Earth flows are concentrated mainly in lutites in areas with shrub vegetation with
NDVI between 0.4 and 0.6, elevations between 2400 and 2800 m, slopes between
10 and 20◦ and the middle-lower sections of the hillslopes with low roughness.

• Creeping processes occur in lutites and grass-crop areas with NDVI between 0.25 and
0.4, elevations between 2000 and 2400 m, slopes of 0 to 10◦ and areas facing south with
low roughness.

As can be observed, there is a certain similarity between the conditions for the occur-
rence of avalanches and debris flows on the one hand, and slides, earth flows and creep
processes on the other hand. Thus, the first group is mainly associated with the lithology of
phyllites, schists and quartz sandstones, areas with scarce vegetation, slopes greater than
30◦ and lower sections of the hillslopes with high roughness. Meanwhile, the second group
is associated with Cretaceous lutites, grass-crop areas with NDVI between 0.25 and 0.4 and
slopes of 0 to 20◦ in middle-lower sections of hillslopes with low roughness.

3.3. Susceptibility Models and Validation

The results of the susceptibility models and maps (LSM) performed with training
samples of 8000 points (80%), using various methods and sets of factors, are shown in
Figure 7. Meanwhile, Table 8 shows the results of the AUC-ROC obtained with sample
validation (20%), Table 9 the DF for the same validation and Table 10 the AUC-ROC values
obtained with temporal validation.

It can be observed that in general, for all landslide typologies, techniques and numbers
of input factors, the models were well fitted, with the AUC-ROC for the validation samples
always above 0.70. Regarding typologies, the creeping processes presented AUC-ROC
values generally higher than 0.90; the avalanches and earth flows also reached quite high
values (average above 0.84), while slides and debris flows had the lowest values, although
still high (average above 0.80).

Regarding methods, the matrix method provides very high fits in general (average
close to 0.90), followed by RF (0.88), ANN (0.84) and finally LDA (0.82). Generally, starting
from the models obtained with the four basic factors (elevation, slope, TPI and lithology),
all statistical and machine learning methods underwent an improvement when one or two
factors were introduced that had some correlation with the landslides and low collinearity
(reaching AUC-ROC from approximately 0.80 to 0.84). Then, they moderated their growth
when non-collinear factors that did not show a high correlation with landslides (AUC-
ROC up to 0.86) were introduced and even stabilized when all factors were introduced,
including those that showed collinearity (0.87). The matrix method also improved when
factors correlated with landslides were introduced (AUC-ROC from 0.80 to 0.90), stabilized
with non-correlated factors (0.90) and increased again when all factors, even those showing
collinearity, were considered (0.98).

An analysis carried out with other training/validation ratios (70/30 and 60/40)
showed similar results. Thus, creeping processes presented the maximum AUC-ROC
values (average of 0.93 in both cases), and debris flows presented the minimum values
(0.80–0.81). Meanwhile, excluding matrix methods in which these ratios are not considered,
RF presented the highest AUC-ROC values (0.87–0.88) and LDA the lowest (0.82).
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Figure 7. Landslide susceptibility models: Avalanches (a): LDA; (b): RF; (c): ANN; Debris flows:
(d): LDA; (e): RF; (f): ANN; Slides: (g): LDA; (h): RF; (i): ANN; Earth flows: (j): LDA; (k): RF;
(l): ANN; Creep: (m): LDA; (n): RF; (o): ANN. Color scale from blue-green (lower levels of suscepti-
bility) to orange-red (higher levels of susceptibility.

Table 8. AUC-ROC values of LSM in sample validation for the different typologies, methods and
number of factors.

Methods N Factors Avalanches Debris fl. Slides Earth Flows Creep All mov.

Matrix

4 f 0.804 0.739 0.835 0.842 0.884 0.825
5–6 f 0.908 0.897 0.881 0.911 0.942 0.908

8 f 0.914 0.861 0.904 0.924 0.952 0.910
12 f 0.977 0.978 0.977 0.984 0.987 0.982

LDA

4 f 0.790 0.750 0.733 0.805 0.875 0.791
5–6 f 0.832 0.781 0.780 0.805 0.901 0.820

8 f 0.834 0.791 0.782 0.808 0.919 0.827
12 f 0.848 0.794 0.807 0.815 0.932 0.839

RF

4 f 0.773 0.727 0.776 0.817 0.908 0.800
5–6 f 0.874 0.870 0.874 0.830 0.916 0.873

8 f 0.894 0.882 0.891 0.915 0.984 0.913
12 f 0.885 0.873 0.897 0.939 0.988 0.916

ANN

4 f 0.800 0.715 0.802 0.810 0.867 0.796
5–6 f 0.857 0.806 0.814 0.822 0.909 0.842

8 f 0.857 0.799 0.818 0.833 0.934 0.848
12 f 0.844 0.819 0.841 0.877 0.940 0.845

Average 0.856 0.818 0.838 0.862 0.927 0.860

Methods

Matrix 0.901 0.869 0.899 0.915 0.941 0.906
LDA 0.826 0.779 0.776 0.808 0.907 0.819
RF 0.857 0.838 0.860 0.875 0.949 0.876

ANN 0.840 0.785 0.819 0.844 0.903 0.838

N. Factors

4 f 0.792 0.733 0.787 0.821 0.884 0.803
5–6 f 0.868 0.839 0.837 0.842 0.917 0.861

8 f 0.875 0.833 0.849 0.870 0.947 0.875
12 f 0.889 0.866 0.881 0.904 0.969 0.902
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Table 9. Degree of Fit of lower/higher susceptibility levels for the different typologies, methods and
number of factors.

Methods N Factors Avalanches Debris fl. Slides Earth Flows Creep All mov.

Matrix

4 f 5/79 11/58 6/88 3/95 2/98 5/84
5–6 f 2/96 3/96 1/92 1/99 1/98 2/96

8 f 3/95 5/87 1/94 1/97 1/97 2/94
12 f 2/97 1/99 1/99 1/99 1/99 1/99

LDA

4 f 5/82 4/72 9/78 7/93 1/99 5/85
5–6 f 6/86 4/81 8/84 7/93 1/99 5/89

8 f 5/88 4/81 7/84 6/93 1/99 4/89
12 f 4/90 4/81 5/85 6/93 1/99 4/ 90

RF

4 f 4/82 5/74 4/87 1/95 1/99 3/88
5–6 f 2/93 2/90 1/98 1/97 1/99 1/95

8 f 1/96 1/95 1/98 1/99 1/99 1/98
12 f 2/95 1/94 1/97 1/99 0/100 1/97

ANN

4 f 4/82 4/79 5/87 2/93 1/99 3/87
5–6 f 4/89 3/86 3/92 1/94 1/99 3/92

8 f 4/89 4/86 4/88 1/94 1/99 3/91
12 f 4/90 4/88 4/89 1/95 1/99 3/92

Average 4/89 4/84 4/90 3/96 1/99 3/92

Methods

Matrix 3/92 5/85 2/93 1/98 1/97 2/93
LDA 5/86 4/79 7/83 6/93 1/99 3/89
RF 2/91 2/88 1/95 1/98 1/99 2/94

ANN 4/86 4/84 4/89 1/94 1/99 3/91

N. Factors

4 f 5/81 6/71 6/85 4/94 1/98 4/86
5–6 f 4/91 3/88 3/91 3/96 1/99 3/93

8 f 3/92 4/87 3/91 2/96 1/99 2/93
12 f 3/94 2/91 2/94 2/98 1/99 2/95

Table 10. AUC-ROC values of LSM in temporal validation for the different typologies, methods and
number of factors.

Methods N Factors Avalanches Debris fl. Slides Earth Flows Creep All mov.

LDA

4 f 0.803 0.794 0.724 0.781 0.857 0.792
5–6 f 0.845 0.800 0.716 0.790 0.894 0.809

8 f 0.845 0.811 0.724 0.784 0.900 0.813
12 f 0.848 0.786 0.779 0.786 0.921 0.824

RF

4 f 0.745 0.699 0.687 0.755 0.868 0.751
5–6 f 0.789 0.795 0.735 0.787 0.865 0.794

8 f 0.794 0.724 0.743 0.806 0.913 0.796
12 f 0.832 0.748 0.790 0.829 0.923 0.824

ANN

4 f 0.801 0.770 0.705 0.768 0.831 0.775
5–6 f 0.819 0.793 0.726 0.764 0.847 0.790

8 f 0.834 0.793 0.734 0.795 0.869 0.805
12 f 0.926 0.785 0.785 0.808 0.926 0.846

Average 0.823 0.775 0.737 0.788 0.885 0.802

Methods
LDA 0.835 0.798 0.736 0.785 0.893 0.809
RF 0.790 0.742 0.739 0.794 0.892 0.791

ANN 0.845 0.785 0.737 0.784 0.868 0.804

N. Factors

4 f 0.783 0.754 0.705 0.768 0.852 0.773
5–6 f 0.818 0.796 0.726 0.780 0.869 0.798

8 f 0.824 0.776 0.734 0.795 0.894 0.805
12 f 0.869 0.773 0.785 0.808 0.923 0.831
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The validation made with degree of fit showed that the error/success ratio was very
suitable in most cases, with an average of 3/92, with the creeping processes being those
that presented the best ratio (1/99) and the debris flows the worst (4/84). By methods,
the matrix method and RF presented slightly better average ratios (2/93 and 2/94) than
ANN (3/91) and LDA (3/89). Regarding the number of factors included in the models, the
aver-age ratio of the models with four factors was the worst (4/86), while the remaining
ones reached 2–3/93–95.

The temporal validation shows acceptable results in general, with AUC-ROC values
being mostly higher than 0.7 but between 0 and 12 points lower than in the sample vali-
dation. The average is 0.80, which is 4.5 points lower than in the sample validation. By
typologies, the best results are obtained also in creeping processes (0.89) and the worst
in slides (0.74), in which the AUC-ROC values decrease about eight points. By methods,
all of them (LDA, RF and ANN) present similar AUC-ROC average values, about 0.80.
Regarding the number of factors involved, the models present increasing AUC-ROC values,
from 0.77 with 4 factors to 0.83 with 12 factors.

Finally, the integrated LSM of shallower processes (avalanches and debris flows) and
deeper processes (slides, earth flows and creep), modeled with the random forest method
and eight factors, are shown in Figure 8. In this case, the AUC-ROC values using sample
validation and an 80/20 ratio are 0.88 and 0.83, respectively.
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4. Discussion

This study was conducted in an area of the central sector of the Eastern Andes moun-
tain range in Colombia, which is characterized by intense landslide activity due to particular
geological, topographical and climatic conditions. The geology of the area consists of Creta-
ceous sedimentary series, mostly composed of lutites and sandstones, structured by thrust
faults and folds with a SSW-NNE direction, through which materials from the Paleozoic
substrate with a certain degree of metamorphism outcrop [63,64]. The predominant ele-
vation in the area ranges from 1000 to 3000 m, with relatively steep slopes (modal range
between 20 and 30◦), generally above 1000–1500 mm of precipitation, and land cover made
up mainly of shrub-bush, grass-crop and forest areas.

4.1. Lanslides Inventory

A predominance of slide and earth flow type movements was observed when the
total area or extension of landslides were considered, although avalanches, debris flows
and creeping processes were also present. The individual areas were larger in slides and
soil creep (almost 90,000 m2), whereas that of earth flows was approximately 42,000 m2

and only 8100 and 2650 m2, respectively, for avalanches and debris flows. Meanwhile,
slides and earth flows occasionally had a complex character, although in this work, they
were considered the dominant process, which generally depends on their greater or lesser
evolution, respectively. On the other hand, the creeping processes corresponded to undiffer-
entiated flows with slow movement in general. Avalanches, which in other terminologies
may be called collapses [36,111], are frequently in transition with both rock falls and debris
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slides-debris flows; however, considering the morphology and slopes observed (steep but
not sub-vertical) and the materials in which they originate (phyllites, schists and quartzites
often superficially weathered), they are classified as debris avalanches. Nevertheless, these
avalanches can evolve into debris flows if the hillslope morphology allows it.

The inventory and differentiated typologies generally coincided with other studies of
the Eastern Cordillera of the Colombian Andes. Thus, in the study by Calderón et al. [46],
translational, rotational and wedge slides were differentiated in the vicinity of the Bogotá-
Villavicencio highway. In the study by Valencia and Martínez-Graña [52], debris-flow,
debris slides and rock falls were also inventoried in the Capitanejo area (Santander), further
north in the Eastern Cordillera. Garcia-Delgado et al. [28] studied deep landslides and grav-
itational processes in San Eduardo, which is also to the North. Finally, Pradhan et al. [51]
and Ramos-Cañon et al. [59] catalogued rock falls, avalanches, rotational and translational
landslides, earth-mud flows and debris flows. In other parts of the country, such as the
Western and Central Cordilleras, shallow slides, falls, debris flows and mud-flows have
been identified [5,24–27,29,45,50,55]; in the southern Colombian Massif, specifically in
Mocoa, debris flows, debris avalanches and shallow slides have been found [8,21,30,31].

Regarding the estimated activity based on photointerpretation, smaller movements
such as avalanches, debris flows and small slides show higher activity than larger slides,
earth flows and creeping processes, which have lower activity. This generally agrees
with what happens in other regions of the world where these types of analyses have
been addressed [111]. Activity generally depends on precipitation, which is abundant in
the region due to the influence of deep convective systems [60] and which will probably
have an even greater impact in the coming years [61,112]. This influence of precipitation
has been analyzed by applying hydrological models [21,22,29,39] or determining rainfall
thresholds [54–59,113]. The influence of other phenomena as triggering factors, such as
earthquakes [8,114], active faults [115] or deforestation [116], has been also considered.

4.2. Analysis of Determinant Factors

Regarding factor analysis, the number of factors to be used in the models can be
very high, especially in machine learning models [33], where it is common not to perform
factor selection and allow the algorithms to fit the models. In this work, 12 variables have
been used, which more or less coincide with those used in previous studies on suscep-
tibility modelling, both globally [35,36,38,40–42,90,97,103,104,106,107] and in Colombian
Andes [31,44–53]. Among them, the ones derived from the DEM stand out, which are
related to the spatial distribution of important parameters such as slope, morphology, soil
moisture or flow direction [51,117,118]; those related to geology and the geomechanical
characteristics of materials [119] or those related to land use and land cover [81].

Despite what was said above, some authors recommend performing a certain factor
selection to optimize the predictive capacity of the models and the performance of computa-
tional processes [120], generally based on the multicollinearity between factors or through
methods of dimensionality reduction, which allows the selection of the most determinant
factors and discarding other ones [121]. In addition, this analysis allows us to determine
the conditions of the different landslide typologies [36,74,122]. The analysis carried out
in this work shows that the factors that mainly condition the landslides’ generation are
elevation and lithology; although in the differentiated analysis by typologies, slope must
be considered, and in some cases, TPI, aspect, land cover, distance to roads and distance
to rivers should be considered as well. Some factors such as TRI, precipitation and NDVI
also show some correlation with different landslides typologies but at the same time are
strongly correlated to slope, TPI, lithology and land cover, respectively. These factors are
similar to those found in previous works in other areas of the Colombian Andes, where
a factor selection has been made. Thus, in Calderón et al.’s work [46], landslides were
found to be related to the distance to faults, profile curvature, flow length, accumulated
flow and land use. Salazar et al. [44] considered elevation, slope, planar curvature, land-
form shape, distance to faults, geological units, distance to rivers and distance to roads.
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Correa et al. [50] considered slope, flow length, TWI, convergence index and soil types.
Goyes-Peñafiel et al. [45] considered slope, curvature, TWI, landform shape, geological
units and land use.

The conditions in which landslides occur preferably are the lithology of lutites, which
is usually lower-resistance material and therefore more prone to landslides; areas with
scarce vegetation and grass-crop lands, with NDVI between 0.2 and 0.4, that is, areas
where there is a scarce or null vegetation cover protecting the soil from erosion and
weathering processes; elevation between 1500 and 2000 m, where various geological, soil
and morphological conditions favourable to instability are concentrated; rainfall between
500 and 1000 mm, which has no justification but is a consequence of the correlation of
this factor with lithology and is therefore discarded in the analysis and, finally, lower-
concave sections of the hillslopes, where hydrological and erosive phenomena promote
the landslide generation. These conditions are similar to those found in other parts of the
world and specifically in the Colombian Andes. Thus, in Salazar et al. [44] and Valencia and
Martínez-Graña [52], landslides were associated with steep slopes (above 25–30◦), southern
orientation, concave morphologies, high roughness and a certain proximity to rivers but not
so much to roads. However, they differed in altitude intervals and especially in the most
affected lithology, which in the case of Valencia and Martínez-Graña [52] in the Eastern
Cordillera were lutites or shales similar to those in the study area; and in Salazar et al. [44]
in the Western Cordillera, with a different geological environment, they were volcanic
rocks. Meanwhile, in Grima et al.’s work [116], landslides occurred in a proportion of six
times more in deforested areas than in forested areas, while in Renza et al.’s work [53], no
clear relationship was found between NDVI and other vegetation indices and landslides.

One of the interesting aspects of this work is the typology-based factor analysis,
which has allowed us to observe differences in the conditions of occurrence of the different
landslide typologies. From the results, a dichotomy was observed in the conditions in which
landslides occur, with a first group of shallower landslides corresponding to avalanches
and debris flows and a second group of larger and usually deeper landsides corresponding
to slides, earth flows and creep processes. These conditions are shown in the Figure 9 for
every determinant factor. Lithology appears as a crucial factor that in turn influences other
factors such as slope, elevation or land cover, among others.

Thus, since lithology is the most determinant factor, a higher resolution of the geologi-
cal map is needed, which allows greater precision in the identification of the conditions
in which landslides and their corresponding typologies originate. The same can be stated
about other factors such as the land cover, NDVI and even DEM derivatives.

Despite this, it can be observed that avalanches and debris flows present similar
occurrence conditions that are different from the remaining typologies. As previously
noted, there can be a certain transition between avalanches and debris flows, such that
the former may eventually evolve into the latter if the morphological conditions allow for
it. Thus, the conditions that lead to a higher landslide density are mainly the lithology
of Paleozoic quartz sandstones and phyllites, which are rocks more resistant a priori,
enabling the formation of quite steep slopes where these processes originate [36]. Therefore,
the slopes on which they occur are generally higher than 30◦ and even up to 45◦, with
a high terrain roughness. However, avalanches occur in the lower-concave sections of
the hillslopes and close to the channels, which is not the case with debris flows, which
extend to higher sections, as the elevation analysis shows (1000–1500 m and over 2800 m,
respectively). Furthermore, both types are associated with areas of low vegetation cover
and low NDVI values (0.10–0.25).
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Meanwhile, slides, earth flows and creeping processes occur more frequently in
Cretaceous lutites, which are rocks with less resistance than the previous ones. Hence,
landslides can occur even at lower slopes than with the previous types. Specifically, slides
occur at a wide range of slopes but more frequently between 20 and 30◦, with earth flows
between 10 and 20◦ and creeping processes on slopes below 10◦. Additionally, they often
occur in the middle and lower sections of the slopes, with low roughness. Regarding
land cover and NDVI, they are more concentrated in grass-crop and shrub areas, with
medium NDVI values (0.25–0.6). However, the elevations range from lower for slides to
medium-high for earth flows and creeping processes.

4.3. Susceptibility Models and Validation

Regarding susceptibility models and maps (LSM), four methods have been applied
according to the groups established in Reichenbach et al. [33]: matrix method (index),
discriminant analysis (multivariate statistics), random forest and an artificial neural network
(machine learning). In general, all methods showed good results, with AUC-ROC values
above 0.70 for the different typologies and number of factors considered in the models
(Table 8, Figure 10a). For typologies, creeping processes generally had AUC-ROC values
above 0.90, which shows that these processes are associated with very specific conditions
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that make the models very fitted. In fact, in this case, there are methods such as RF that have
higher ROC AUC values (0.95) than even the matrix method (0.94). Next are avalanches
and earth flows with also quite high values (average around 0.86), reaching maximum
values in the matrix method (0.90–0.91). Finally, slides and debris flows present the lowest
AUC-ROC average values (0.84 and 0.82, respectively), since the conditions for the landslide
occurrence are not so clearly defined in these typologies, reaching maximum values also in
the matrix method (0.88–0.90).
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Linking to the above, the comparison by methods shows that the matrix method
provides very high fits in general (average close to 0.90), followed by RF (0.88), ANN (0.84),
and finally LDA (about 0.82) (Figure 8b). As can be seen, the matrix method elaborated from
unique condition units provides very good fits even with randomly selected testing samples.
This agrees with the results obtained in previous works, where other validation techniques
such as temporal validation (performed with inventories elaborated after the one used in
the model) produce degree of fit [39] of 5–10% in the classes of very low to low susceptibility
(errors) and 70–80% in the classes of high to very high susceptibility (success) [35,36,83].
Despite that, matrix and other index-based or bivariate statistical methods have some
limitations related to the simplification of the conditioning factors (especially when they
are classified as in matrix approach) and the assumption of conditional independence
between them [123]. Thus, they fit very well to the specific conditions of an area when
inventories are exhaustive, but their performance is reduced when they are transferred to
other areas [124] or when the starting inventories are less exhaustive.

The LDA models showed relatively lower fits, although they can be considered ac-
ceptable, as they reached average values of AUC-ROC around 0.80 for most landslide
typologies and even 0.90 for creeping processes. This is corroborated by previous studies
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where 70–80% of the slopes were correctly classified in high susceptibility classes [4,39].
However, multivariate statistical methods maintain some of the limitations of the bivariate
methods, such as the simplification and dependence between factors [123]. Moreover, these
limitations cannot be overcome due to the linearity of the discriminant functions compared
to the greater versatility and better performance of machine learning methods in non-linear
systems such as susceptibility models developed from factors of different nature [105,125].

The RF method produced excellent results, with AUC values between 0.84 and 0.88 in
most landslide typologies and 0.95 in creeping processes, which agrees with other studies
where values close to and above 0.90 were achieved [40,92,126–128]. In the studies carried
out Colombian Andes, Calderón et al. [46] applied RF starting from 14 similar factors, with
very good results (area under the success rate curve, ASRC, of 93%).

Finally, the application of a perceptron-type ANN with a single hidden layer and three–four
neurons provided fits that were somewhat lower to RF but higher to LDA. Thus, except
for the lower AUC-ROC value for debris flows (0.79), the remaining typologies had values
between 0.82 and 0.84, and even the creeping processes reached a value of 0.90. These
values are consistent with the results obtained by numerous authors who have applied
neural networks of different types, from MLP to convolutional ones, passed through Radial
Basis Funtion (RBF) networks and others. Focusing on perceptron-type networks, Pradham
and Lee [41] obtained an AUC of 0.91–0.94; Tien Bui et al. [42], 0.92; Bravo et al. [95], 0.76;
Zare et al. [98], 0.88; Pham et al. [99], 0.87; Park et al. [104], 0.81 and Aslam et al. [107], 0.87.
In the Colombian Andes, Calderón et al. [46], in an area that encompasses that used in this
article, applied an MLP-type ANN with 14 factors (input neurons) and two hidden layers
of 16 neurons, which provided an ASRC of 0.88. When factor selection was applied (five
factors), the ASRC became 0.86, and after applying factor reduction by means of PCA, the
ASRC decreased to 0.81. Meanwhile, Valencia and Martínez-Graña [52], further north in the
Santander department, applied a perceptron-type ANN with backpropagation algorithm,
starting from 14 factors and a layer of 20 neurons, which provides a very high AUC-ROC
value (0.988).

Regarding the number of factors, although all methods show a better fit as the number
of factors used in the models increases, not all do so in the same way, which allows us to
extract considerations about the behavior of these models and the opportunity to make
or not make factor selection (Figure 10c–f). Thus, starting from models with four basic
factors common to all typologies and independent of each other (elevation, slope, TPI
and lithology), statistical methods (LDA) and machine learning (RF and ANN) undergo a
significant increase when introducing one or two factors that have a certain correlation with
landslides and low collinearity. Then, the AUC-ROC value increases from approximately
0.80 to 0.845, mainly in RF. However, this growth is attenuated (0.86) when up to eight
non-collinear factors are included, although some of them did not show a correlation with
landslides, and it practically stabilizes when all factors are introduced, including those
that show collinearity (0.87). This behavior, in which the value of the AUC-ROC on the
validation sample stabilizes, may be evidence of noise when introducing factors that do not
show an influence on landslides and of overfitting or overtraining [129] when introducing
redundant factors. In this sense, it is important to mention that the strong correlation
between factors also increases the probability of overfitting [130]. This shows the interest
of the factor analysis that allows for factor selection.

These observations are partially corroborated by the behavior observed in the matrix
method, which does not aim to develop a statistical or learning model but rather fit the
susceptibility zoning to the data on factors and movements in a specific area. Thus, the
value of AUC increases as correlated factors with landslides are introduced (from 0.80 to
0.90), which is consistent with what was observed in the previous methods, indicating
the importance of including as many determinant factors of landslides as possible. Then,
the AUC-ROC value stabilizes when introducing factors uncorrelated to landslides (0.90),
which confirms that these factors do not improve the model and may introduce noise.
However, unlike the other methods, the AUC-ROC value again increases when all factors
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are introduced, even those that show collinearity (0.98), which could be a clear indication
of overfitting in this method when a large number of factors are introduced. It should be
noted that, despite using a random validation sample, this validation sample is not entirely
independent of the total mobilized surface used to develop the susceptibility map, since
the matrix method uses the entire landslide area to fit the model.

Regarding the other methods and strategies of validation, the analysis carried out
with other training/validation ratios showed similar results for AUC-ROC values, which
ensured that the ratio used (80/20) is valid for this case and in general [100]. Meanwhile,
the degree of fit showed an error/success ratio that was very suitable in most cases. Relative
errors were lower than 5% in practically every case, and relative successes reached values
usually higher than 90% and even 95%. Moreover, the results by typologies, methods and
number of factors involved were in agreement with those obtained with the AUC-ROC.
Finally, the temporal validation showed acceptable results in general, with AUC-ROC
values mostly higher than 0.7. However, these values were between 0 and 12 points lower
than in the sample validation, being an average of 4.5 points lower. By typologies, methods
and number of factors, similar tendencies were observed, with the models of creeping
processes and the models with a greater number of factors presenting higher AUC-ROC
values. However, there were some differences such as the lowest values observed in slides
that probably are related to the different size and, thus, the conditions of the active slides
(smaller, in areas of higher slopes and lower sections of hillslopes) and non-active (larger, in
areas of moderate slopes and lower-middle sections of the hillslopes). The other typologies
presented similar conditions between active and non-active landslides, so the AUC-ROC
values obtained in temporal validation were higher. The other difference was the similar
behavior between the methods analyzed (LDA, RF and ANN since this validation was not
applied for the matrix approach). In this case, the global reduction of AUC-ROC values
made the values of different methods less distinguishable.

In summary, we can conclude about the importance of choosing the more adequate
method as well as the factor selection for LSM. Regarding the method, it seems that machine
learning methods, especially random forest, show better performance than statistical
methods due to their greater flexibility and non-linear adjustment. Regarding the matrix
method, it has less statistical basis and produces significant overfitting, especially when
there is no factor selection. Factor analysis and selection appear to be a recommended
procedure to avoid overfitting and noise, even in machine learning methods where the
importance of factor selection is not as apparent.

Finally, regarding the distribution of landslide susceptibility, a clear zoning can be
observed in the maps of the different typologies whatever the method and the number of
factors that have been used. Thus, the LSM corresponding to avalanches and debris flows
show greater susceptibility in the south-eastern part (lower basin), which is also clearly
observed in the integrated map of these typologies; meanwhile, the LSM of slides, earth
flows and creep processes have a higher susceptibility in the north-western part (upper
basin), as can also be observed in the integrated map. This zoning is the consequence of
geological control, as mentioned before in the discussion of factor analysis, since meta-
morphic rocks outcrop in the lower basin through fold and thrust structures; these rocks
are generally more coherent and resistant, developing steep slopes where avalanches and
debris flows occur (affecting mainly the superficial layers of weathered rocks). Meanwhile,
the Cretaceous shales outcrop predominantly in the upper part of the basin, and these
sedimentary rocks, usually less resistant, are more susceptible to slides, earth flows and
creeping processes. Logically, this general zoning is discriminated by the remaining factors,
such as slopes, TPI, land cover and distance to roads in those maps that show better results
(e.g., maps obtained with RF). Moreover, given the importance of the lithological factor,
a higher resolution of the geological maps would have allowed a better discrimination
of susceptibility.
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5. Conclusions

The present study has allowed the characterization of landslides in a sector of almost
750 km2 in the Eastern Cordillera of the Colombian Andes, by means of the elaboration
of inventories using photointerpretation, GIS factors analysis and landslide susceptibility
maps (LSM). A total of 2506 landslides were inventoried, occupying approximately 8% of
the study area, including avalanches, debris flows, slides, earth flows and creeping pro-
cesses. Debris flows (39%) and avalanches (35%) were the most abundant in number, while
landslides (64%) occupied the largest area due to their larger individual size. Avalanches
and debris flows were predominantly active, while most slides and earth flows were relict
and creeping processes were latent.

The factors analysis showed that elevation, lithology and land cover were the factors
that most influenced the generation of landslides. However, in the differentiated analysis
by typologies, slope and, in some cases, TPI, the aspect, distance to roads and distance to
rivers had to also be considered. Some factors, such as TRI, precipitation and NDVI, also
showed some correlation with different landslide typologies but were strongly related to
slope, TPI, lithology and land cover, respectively. This analysis also allowed us to observe
differences in the conditions of occurrence of the different typologies. Thus, avalanches
and debris flows had similar conditions of occurrence, which were the lithology of quartz-
sandstone and phyllites from the Paleozoic era (more resistant rocks) and areas with scarce
vegetation and low NDVI values (0.10–0.25); slopes higher than 30◦ and lower sections of
the hillslopes with high roughness. Meanwhile, slides, earth flows and creeping processes
occurred mainly in Cretaceous lutites and grass/crop areas; morphologically, they occurred
on a wide range of slopes, generally lower than 30◦ in the middle and lower sections of the
hillslopes with low roughness.

Regarding LSM, different types of methods were tested to provide consistent results
in determining landslide hazards in the region, including index-based methods (matrix),
multivariate statistical methods (discriminant analysis, LDA), machine learning methods
(random forest, RF) and a perceptron-type neural network (ANN). In general, all methods
produced good results, with the AUC-ROC values always above 0.7 and obtained with
the validation sample (20%). For landslide typologies, the best fits occur in cases where
the conditions are more specific, such as creeping processes (0.90) and debris flows and
avalanches (0.84), and the worst fits occur where they are not so specific, such as slides
and debris flows (0.82–0.80). By methods, although the matrix method provides very high
fits (average close to 0.90), there is a certain tendency toward overfitting, especially when
no factor selection is addressed. LDA offers relatively lower adjustments (average around
0.82), while RF and ANN present very good fits in general (average around 0.88 and 0.84,
respectively). In all these methods, starting from four common and non-collinear factors
with a high correlation with all typologies (elevation, slope, TPI and lithology), an increase
in AUC-ROC occurs when one or two additional factors specific for each typology are
introduced. Then, they moderate their increase when non-collinear factors with lower
correlation with the movements are included (introducing noise), and especially when
collinear factors are also considered (producing overfitting). But whatever the method
used, the LSM maps show a zoning as a consequence of geological control, which produces
higher susceptibility to avalanches and debris flow in the lower part of the basin, with
more resistant rocks, while a higher susceptibility to slides, earth flows and creep occurs in
the upper part of the basin where less resistant rocks appear.

The importance of the choice of susceptibility modeling method and factor selection
is also checked in order to avoid noise and overfitting. This ensures the development
of robust and coherent models that can be in neighboring areas of this region. Thus,
the use of RF or other machine learning methods is recommended due to their greater
versatility and better behavior in nonlinear systems such as LSM. Likewise, a certain factor
analysis is also recommended that allows a better understanding of the conditions in which
landslides occur and also an improvement in the factor selection. In this case, models with
six or eight factors are considered to provide the most reliable results, and thus, synthesis
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maps have been prepared for shallower or deeper movements, with AUC-ROC values
of 0.87 and 0.83, respectively.

The main limitations of this work are related to the quality and resolution of input
data, especially the determinant factors. Thus, although the resolution of DEM can be
considered as sufficient, its precision as a DEM derived from PalSAR could be limited.
Nevertheless, the most limiting aspect is the resolution of thematic factors, especially the
geological map as the main determinant factor; in addition, a better quality and temporal
signification of the land cover, even with derived land use, and vegetation indices is also
required. Meanwhile, another limiting aspect is the estimation of landslide activity that can
allow not only a refinement of susceptibility maps but also the elaboration of hazard maps.

Thus, for future improvements and work, the introduction of new determinant factors,
especially the improvement of those used in this work, is proposed, both derived from
the DEM and thematic maps, which allow the models to be refined. This would also
allow the analysis of the influence of spatial and thematic resolution on the models. Thus,
robust models are developed, which can be applied to other neighboring areas. Automated
methods for factor selection and complex models for susceptibility maps can be tested, but
always subject to control by the analysts. Finally, the estimation of temporal probability
based on the realization of multi-temporal inventories and the introduction of triggering
factors (mainly rainfall) will allow the creation of hazard or threat maps in the study area
and other areas of the mountain range.
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89. Dornik, A.; Drăguţ, L.; Oguchi, T.; Hayakawa, Y.; Micu, M. Influence of Sampling Design on Landslide Susceptibility Modeling in

Lithologically Heterogeneous Areas. Sci. Rep. 2022, 12, 2106. [CrossRef]
90. Carrara, A. Multivariate Models for Landslide Hazard Evaluation. J. Int. Assoc. Math. Geol. 1983, 15, 403–426. [CrossRef]
91. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
92. Dou, J.; Yunus, A.P.; Tien Bui, D.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.-W.; Khosravi, K.; Yang, Y.; Pham, B.T. Assessment

of Advanced Random Forest and Decision Tree Algorithms for Modeling Rainfall-Induced Landslide Susceptibility in the
Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [CrossRef] [PubMed]

93. Nefeslioglu, H.A.; Sezer, E.; Gokceoglu, C.; Bozkir, A.S.; Duman, T.Y. Assessment of Landslide Susceptibility by Decision Trees in
the Metropolitan Area of Istanbul, Turkey. Math. Probl. Eng. 2010, 2010, 901095. [CrossRef]

https://doi.org/10.1190/INT-2015-0011.1
https://www2.sgc.gov.co/MGC/Paginas/mgc2M2019.aspx
https://www2.sgc.gov.co/MGC/Paginas/mgc2M2019.aspx
https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018
https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018
https://www.eorc.jaxa.jp/ALOS/en/obs/palsar_strat.htm
https://www.eorc.jaxa.jp/ALOS/en/obs/palsar_strat.htm
https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/
https://www2.sgc.gov.co/MGC/Paginas/agc_500K2015.aspx
https://www2.sgc.gov.co/MGC/Paginas/agc_500K2015.aspx
https://scihub.copernicus.eu/dhus/
http://atlas.ideam.gov.co/visorAtlasClimatologico.html
https://www.google.es/intl/es/earth/index.html
https://www.qgis.org/en/site/
https://saga-gis.sourceforge.io/en/index.html
https://www.rstudio.com/categories/rstudio-ide/
https://doi.org/10.1007/s10064-006-0064-z
https://doi.org/10.1016/j.earscirev.2012.02.001
https://doi.org/10.3390/land12061135
https://doi.org/10.1007/s10346-022-02020-4
https://doi.org/10.1007/s11069-006-9027-8
https://doi.org/10.1186/s40677-016-0052-y
https://doi.org/10.1016/j.geomorph.2020.107222
https://doi.org/10.1007/s10346-020-01473-9
https://doi.org/10.1016/j.catena.2019.104358
https://doi.org/10.1038/s41598-022-06257-w
https://doi.org/10.1007/BF01031290
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.scitotenv.2019.01.221
https://www.ncbi.nlm.nih.gov/pubmed/30690368
https://doi.org/10.1155/2010/901095


Remote Sens. 2023, 15, 3870 37 of 38

94. Miner, A.; Vamplew, P.; Windle, D.J.; Flentje, P.; Warner, P. A Comparative Study of Various Data Mining Techniques as Applied
to the Modeling of Landslide Susceptibility on the Bellarine Peninsula, Victoria, Australia. In Geologically Active, Proceedings of the
11th IAEG Congress of the International Association of Engineering Geology and the Environment, Auckland, New Zealand, 5–10 September
2010; CRC Press: Boca Raton, FL, USA, 2010.

95. Bravo-López, E.; Fernández Del Castillo, T.; Sellers, C.; Delgado-García, J. Landslide Susceptibility Mapping of Landslides with
Artificial Neural Networks: Multi-Approach Analysis of Backpropagation Algorithm Applying the Neuralnet Package in Cuenca,
Ecuador. Remote Sens. 2022, 14, 3495. [CrossRef]

96. Ciaburro, G.; Venkateswaran, B. Neural Network with R: Smart Models Using CNN, RNN, Deep Learning, and Artificial Intelligence
Principles; Packt Publishing Ltd.: Birmingham, UK, 2017; Volume 91.

97. Günther, F.; Fritsch, S. Neuralnet: Training of Neural Networks. R J. 2010, 2, 30–38. [CrossRef]
98. Zare, M.; Pourghasemi, H.R.; Vafakhah, M.; Pradhan, B. Landslide Susceptibility Mapping at Vaz Watershed (Iran) Using

an Artificial Neural Network Model: A Comparison between Multilayer Perceptron (MLP) and Radial Basic Function (RBF)
Algorithms. Arab. J. Geosci. 2013, 6, 2873–2888. [CrossRef]

99. Pham, B.T.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine
Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. Catena 2017, 149, 52–63.
[CrossRef]

100. Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 Relation between Training and Testing Sets: A Pedagogical
Explanation. Dep. Tech. Rep. 2018, 1209, 1–6.

101. Vu, H.L.; Ng, K.T.W.; Richter, A.; An, C. Analysis of input set characteristics and variances on k-fold cross validation for a
Recurrent Neural Network model on waste disposal rate estimation. J. Environ. Manag. 2022, 311, 114869. [CrossRef]

102. Zou, K.; O’Malley, A.; Mauri, L. Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive
Models. Circulation 2007, 115, 654–657. [CrossRef]

103. Yilmaz, I. A Case Study from Koyulhisar (Sivas-Turkey) for Landslide Susceptibility Mapping by Artificial Neural Networks.
Bull. Eng. Geol. Environ. 2009, 68, 297–306. [CrossRef]

104. Park, S.; Choi, C.; Kim, B.; Kim, J. Landslide Susceptibility Mapping Using Frequency Ratio, Analytic Hierarchy Process, Logistic
Regression, and Artificial Neural Network Methods at the Inje Area, Korea. Environ. Earth Sci. 2013, 68, 1443–1464. [CrossRef]

105. Flórez-García, A.C.; Pérez Castillo, J.N. Técnicas Para La Predicción Espacial de Zonas Susceptibles a Deslizamientos. Av. Investig.
Ing. 2019, 16, 20–48. [CrossRef]

106. Yi, Y.; Zhang, W.; Xu, X.; Zhang, Z.; Wu, X. Evaluation of Neural Network Models for Landslide Susceptibility Assessment. Int. J.
Digit. Earth 2022, 15, 934–953. [CrossRef]

107. Aslam, B.; Zafar, A.; Khalil, U. Comparative Analysis of Multiple Conventional Neural Networks for Landslide Susceptibility
Mapping. Nat. Hazards 2023, 115, 673–707. [CrossRef]

108. Chung, C.J.F.; Fabbri, A.G. Validation of Spatial Prediction Models for Landslide Hazard Mapping. Nat. Hazards 2003, 30, 451–472.
[CrossRef]

109. Conforti, M.; Pascale, S.; Robustelli, G.; Sdao, F. Evaluation of Prediction Capability of the Artificial Neural Networks for Mapping
Landslide Susceptibility in the Turbolo River Catchment (Northern Calabria, Italy). Catena 2014, 113, 236–250. [CrossRef]

110. Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194.
[CrossRef]

111. Fernández, T.; Pérez García, J.L.; Gómez López, J.M.; Cardenal, F.J.; Moya-Giménez, F.; Delgado, J. Multitemporal Landslide
Inventory and Activity Analysis by Means of Aerial Photogrammetry and LiDAR Techniques in an Area of Southern Spain.
Remote Sens. 2021, 13, 2110. [CrossRef]

112. Gariano, S.L.; Guzzetti, F. Landslides in a Changing Climate. Earth Sci. Rev. 2016, 162, 227–252. [CrossRef]
113. Correa, O.; García, F.; Bernal, G.; Cardona, O.D.; Rodriguez, C. Early Warning System for Rainfall-Triggered Landslides Based on

Real-Time Probabilistic Hazard Assessment. Nat. Hazards 2020, 100, 345–361. [CrossRef]
114. García-Delgado, H.; Contreras, N.M. Historical Distribution for Landslides Triggered by Earthquakes in the Colombian Region.

In Proceedings of the XIII International Symposium on Landslides, Cartagena, Colombia, 15–19 June 2020.
115. Bermúdez, M.A.; Velandia, F.; García-Delgado, H.; Jiménez, D.; Bernet, M. Exhumation of the Southern Transpressive Bucara-

manga Fault, Eastern Cordillera of Colombia: Insights from Detrital, Quantitative Thermochronology and Geomorphology. J. S.
Am. Earth Sci. 2021, 106, 103057. [CrossRef]

116. Grima, N.; Edwards, D.; Edwards, F.; Petley, D.; Fisher, B. Landslides in the Andes: Forests Can Provide Cost-Effective Landslide
Regulation Services. Sci. Total Environ. 2020, 745, 141128. [CrossRef] [PubMed]

117. Vorpahl, P.; Elsenbeer, H.; Märker, M.; Schröder, B. How Can Statistical Models Help to Determine Driving Factors of Landslides?
Ecol. Modell. 2012, 239, 27–39. [CrossRef]

118. Zhu, A.-X.; Miao, Y.; Yang, L.; Bai, S.; Liu, J.; Hong, H. Comparison of the Presence-Only Method and Presence-Absence Method
in Landslide Susceptibility Mapping. Catena 2018, 171, 222–233. [CrossRef]

119. Costanzo, D.; Rotigliano, E.; Irigaray, C.; Jiménez-Perálvarez, J.D.; Chacón, J. Factors Selection in Landslide Susceptibility
Modelling on Large Scale Following the Gis Matrix Method: Application to the River Beiro Basin (Spain). Nat. Hazards Earth Syst.
Sci. 2012, 12, 327–340. [CrossRef]

https://doi.org/10.3390/rs14143495
https://doi.org/10.32614/RJ-2010-006
https://doi.org/10.1007/s12517-012-0610-x
https://doi.org/10.1016/j.catena.2016.09.007
https://doi.org/10.1016/j.jenvman.2022.114869
https://doi.org/10.1161/CIRCULATIONAHA.105.594929
https://doi.org/10.1007/s10064-009-0185-2
https://doi.org/10.1007/s12665-012-1842-5
https://doi.org/10.18041/1794-4953/avances.1.5188
https://doi.org/10.1080/17538947.2022.2062467
https://doi.org/10.1007/s11069-022-05570-x
https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b
https://doi.org/10.1016/j.catena.2013.08.006
https://doi.org/10.1007/s10346-013-0436-y
https://doi.org/10.3390/rs13112110
https://doi.org/10.1016/j.earscirev.2016.08.011
https://doi.org/10.1007/s11069-019-03815-w
https://doi.org/10.1016/j.jsames.2020.103057
https://doi.org/10.1016/j.scitotenv.2020.141128
https://www.ncbi.nlm.nih.gov/pubmed/32736113
https://doi.org/10.1016/j.ecolmodel.2011.12.007
https://doi.org/10.1016/j.catena.2018.07.012
https://doi.org/10.5194/nhess-12-327-2012


Remote Sens. 2023, 15, 3870 38 of 38

120. Meena, S.R.; Puliero, S.; Bhuyan, K.; Floris, M.; Catani, F. Assessing the Importance of Conditioning Factor Selection in Landslide
Susceptibility for the Province of Belluno (Region of Veneto, Northeastern Italy). Nat. Hazards Earth Syst. Sci. 2022, 22, 1395–1417.
[CrossRef]

121. Liu, L.L.; Yang, C.; Wang, X.M. Landslide Susceptibility Assessment Using Feature Selection-Based Machine Learning Models.
Geomech. Eng. 2021, 25, 1–16.

122. Chacón Montero, J.; Irigaray Fernández, C.; Fernández del Castillo, T. Large to Middle Scale Landslides Inventory, Analysis
and Mapping with Modelling and Assessment of Derived Susceptibility, Hazards and Risks in a GIS. In International Congress
International Association of Engineering Geology; A.A. Balkema: Rotterdam, The Netherlands, 1994; pp. 4669–4678.

123. van Westen, C.; van Asch, T.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ.
2006, 65, 167–184. [CrossRef]

124. Huabin, W.; Gangjun, L.; Weiya, X.; Gonghui, W. GIS-based landslide hazard assessment: An overview. Prog. Phys. Geogr. Earth
Environ. 2005, 29, 548–567. [CrossRef]

125. Korup, O.; Stolle, A. Landslide Prediction from Machine Learning. Geol. Today 2014, 30, 26–33. [CrossRef]
126. Sahin, E.K. Assessing the Predictive Capability of Ensemble Tree Methods for Landslide Susceptibility Mapping Using XGBoost,

Gradient Boosting Machine, and Random Forest. SN Appl. Sci. 2020, 2, 1308. [CrossRef]
127. Deng, H.; Wu, X.; Zhang, W.; Liu, Y.; Li, W.; Li, X.; Zhou, P.; Zhuo, W. Slope-Unit Scale Landslide Susceptibility Mapping Based

on the Random Forest Model in Deep Valley Areas. Remote Sens. 2022, 14, 4245. [CrossRef]
128. Wei, A.; Yu, K.; Dai, F.; Gu, F.; Zhang, W.; Liu, Y. Application of Tree-Based Ensemble Models to Landslide Susceptibility Mapping:

A Comparative Study. Sustainability 2022, 14, 6330. [CrossRef]
129. Bilbao, I.; Bilbao, J. Overfitting problem and the over-training in the era of data: Particularly for Artificial Neural Networks. In

Proceedings of the Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt,
5–7 December 2017; pp. 173–177. [CrossRef]

130. Lv, L.; Chen, T.; Dou, J.; Plaza, A. A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping. Int. J.
Appl. Earth Obs. Geoinf. 2022, 108, 102713. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5194/nhess-22-1395-2022
https://doi.org/10.1007/s10064-005-0023-0
https://doi.org/10.1191/0309133305pp462ra
https://doi.org/10.1111/gto.12034
https://doi.org/10.1007/s42452-020-3060-1
https://doi.org/10.3390/rs14174245
https://doi.org/10.3390/su14106330
https://doi.org/10.1109/INTELCIS.2017.8260032
https://doi.org/10.1016/j.jag.2022.102713

	Introduction 
	Materials and Methods 
	Study Area 
	Materials 
	Methodology 
	Landslide Inventory 
	Analysis of Determinant Factors 
	Susceptibility Models 
	Models Validation 


	Results 
	Landslide Inventory 
	Analysis of Determinant Factors 
	Susceptibility Models and Validation 

	Discussion 
	Lanslides Inventory 
	Analysis of Determinant Factors 
	Susceptibility Models and Validation 

	Conclusions 
	References

