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A B S T R A C T   

Activated sludge models are widely used to simulate, optimize and control performance of wastewater treatment 
plants (WWTP). For simulation of nutrient removal and energy consumption, kinetic parameters would need to 
be estimated, which requires an extensive measurement campaign. In this study, a novel methodology is pro-
posed for modeling the performance and energy consumption of a biological nutrient removal activated sludge 
system under sensitivity and uncertainty. The actual data from the wastewater treatment plant in Slupsk 
(northern Poland) were used for the analysis. Global sensitivity analysis methods accounting for interactions 
between kinetic parameters were compared with the local sensitivity approach. An extensive procedure for 
estimation of kinetic parameters allowed to reduce the computational effort in the uncertainty analysis and 
improve the reliability of the computational results. Due to high costs of measurement campaigns for model 
calibration, a modification of the Generalized Likelihood Uncertainty method was applied considering the 
location of measurement points. The inclusion of nutrient measurements in the aerobic compartment in the 
uncertainty analysis resulted in percentages of ammonium, nitrate, ortho-phosphate measurements of 81%, 90%, 
78%, respectively, in the 95% confidence interval. The additional inclusion of measurements in the anaerobic 
compartment resulted in an increase in the percentage of ortho-phosphate measurements in the aerobic 
compartment by 5% in the confidence interval. 

The developed procedure reduces computational and measurement efforts, while maintaining a high 
compatibility of the observed data and model predictions. This enables to implement activated sludge models 
also for the facilities with a limited availability of data.   

1. Introduction 

The International Water Association (IWA) Activated Sludge Models 
(ASMs) (Henze et al., 2000) have widely been accepted as a simulation 
tool in full-scale wastewater treatment plants (WWTPs). Those models 
have been used for either enhancing process understanding (Boiocchi 
et al., 2017), development of control strategies (e.g. Huang et al., 2020; 
Pocquet et al., 2016; Zaborowska et al., 2019), or diagnosis and opti-
mization (Flores-Alsina et al., 2014; Mannina et al., 2011a,b; Mąkinia 
and Zaborowska, 2020; Wu et al., 2016). In terms of the cost optimi-
zation, aeration systems are the most significant energy consumers (up 
to 60%) in WWTPs (Gu et al., 2017; Henriques and Catarino, 2017). 
However, practical studies, specifically focused on the energy 

consumption for aeration, have been published less frequently, pri-
marily due to the lack of appropriate experimental data for model 
calibration and validation (e.g. Zaborowska et al., 2017; Zhao et al., 
2019). 

In order to use the ASMs for analyzing performance of WWTPs, a 
number of kinetic parameters should be adjusted (Fall et al., 2011; 
Henze et al., 2000; Zhu et al., 2015). Considering the number of iden-
tified parameters and interactions between them, the ASM calibration 
protocols have been expanded with sensitivity and uncertainty analysis 
(Mannina et al., 2011a,b). Sensitivity analysis, either local or global, is 
performed before the calibration stage to (1) identify the parameters 
that have a significant influence on model predictions, and (2) reduce 
the number of parameters to be adjusted at the calibration stage 
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(Mannina et al., 2011a,b; Sin et al., 2011). Despite the reduced number 
of parameters, their identification may be difficult due to potential 
strong interactions between the parameters (Mannina et al., 2011a,b, 
2016; Sathyamoorthy et al., 2014; Zonta et al., 2014). 

The local sensitivity analysis (LSA) methods, even though still useful 
for model calibration (Cosenza et al., 2013), evaluate only local effects 
on the model outputs under small changes of a single parameter. In 
contrast, global sensitivity analysis (GSA) methods examine the effects 
of combinations of different parameters over a wide range of parameter 
values. Furthermore, uncertainty analysis is combined with GSA to 
determine the reliability of identified parameters and their effect on 
model outputs (Belia et al., 2021; Lindblom et al., 2020). Due to the high 
computational demands in the GSA methods, simulation runs should 
rather be minimized. 

In the WWTP calibration protocol of Mannina et al. (2011a,b), un-
certainty analysis allowed to establish the scatter of computational re-
sults in terms of the 95% confidence interval and reliability of the 
identified parameters. However, that protocol focused on the identifi-
cation of model parameters for simulation of wastewater quality, while 
neglecting the energy-related aspects. Moreover, an appropriate selec-
tion of sampling points (their number and location) for model calibra-
tion was not considered in terms of the results of uncertainty analysis. It 
should be emphasized that a higher number of the sampling points re-
duces the uncertainty of model predictions, but the cost of measurement 
campaigns is increased. 

This study presents a new methodology for modelling ASMs 
considering both nutrient compounds (NUC - SNH4–N, SNO3–N, SPO4–P) 
and energy consumption for aeration with the uncertainty of kinetic 
parameters. A practical application of the developed methodology is 
shown for a large advanced WWTP. The multivariate adaptive regres-
sion spline (MARS) method was used to account for a variability in the 
assumed ranges of parameters during sensitivity analysis. In comparison 
with the multivariate linear regression method, the MARS is advanta-
geous when dealing with non-linear relationships. Furthermore, the 
proposed methodology presents a novel solution based on the General-
ized Likelihood Uncertainty Estimation (GLUE) analysis to (1) deter-
mine the variation ranges of model parameters, and (2) reduce 
computational demands in uncertainty analysis. With this approach, 
different combinations of the sampling points and measurement data 
could be for identification and distribution of parameters in the ASMs. 
This is an important advantage compared to the currently used methods, 
because the optimal selection of sampling points and the scope of 
measurements can be determined. 

2. Material and methods 

2.1. Study site 

The studied plant is a large biological nutrient removal (BNR) facility 
treating municipal wastewater originating from the city of Slupsk 
(northern Poland) and surrounding communities. During the studied 

period, comprising the summer months, the average flow rate and 
pollutant load were approximately 22,000 m3/d and 190,000 PE (pop-
ulation equivalents), respectively. The effluent standards for the plant 
were established in accordance with the requirements of the EU Urban 
Wastewater Directive (91/21/EEC), i.e., the average annual total ni-
trogen (TN) and total phosphorus (TP) concentrations of 10 mg N/L and 
1 mg P/L, respectively. 

The biological step of the plant consists of three parallel trains with 
the bioreactors designed according to the A2O process configuration 
(Fig. 1). The total volume of one bioreactor is 10,000 m3 and the shares 
of the anaerobic (AN), anoxic (AO) and aerobic (AE) compartments are 
14%, 29% and 57%, respectively. 

The mixed liquor recirculation is directed from the end of the AE 
compartment to the first AO compartment, while the returned activated 
sludge (RAS) is recirculated to the head of the bioreactor. More details 
on the studied WWTP layout and performance can be found elsewhere 
(Zaborowska et al., 2017, 2019). 

2.2. Methodology for modelling bioreactor performance and energy 
consumption under uncertainty 

In the present study, the model developed by Zaborowska et al. 
(2017) is subjected to a novel modelling procedure. This study explores 
a new approach to sensitivity analysis (GSA vs. LSA) and applies un-
certainty analysis (GLUE method) while predicting an extended range of 
model outputs, i.e., NUC and EAIR. The complete modelling procedure is 
shown in Fig. 2, highlighting the steps in the present study. In com-
parison with the methodology of Flores – Avilés et al. (2019), Mannina 
et al. (2011a,b), Borzooei et al. (2019a, 2019b), the following three new 
elements have been incorporated:  

- Energy consumption for aeration is considered as a model output, 
- Ranges of the variability of kinetic parameters are narrowed in un-

certainty analysis, 
- The number and location of sampling points are considered in un-

certainty analysis. 

2.2.1. Simulation tool 
GPS-X ver 7.0 (Hydromantis, Canada) was used as a simulator 

environment with special utilities for the influent characterization and 
sensitivity analysis (see: Section 2.2.6). 

2.2.2. Data collection (step 1) 
The model has previously been calibrated based on laboratory ex-

periments (batch tests under anaerobic/aerobic and anaerobic/anoxic 
conditions) and validated based on full-scale measurements (96-h 
campaigns in summer and winter) (Zaborowska et al., 2017). In the 
present study, a new set of data was used from another 96-h measure-
ment campaign. The bioreactor influent and effluent characteristics are 
shown in the Supporting Information (SI) (Table S1). Grab samples were 

Fig. 1. Schematic layout of the bioreactor in the studied WWTP with the location of sampling points used as NUC (AN – anaerobic, AO – anoxic, AE – aerobic).  
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withdrawn every 2 h at the following locations: inlet to the bioreactor, 
and outlets from the AN, AO and AE compartments. The samples were 
analyzed for several parameters, including total and volatile solids 
concentrations, chemical oxygen demand (COD) fractions as well as 
different nitrogen and phosphorus compounds. The detailed description 
of the measurement campaign can be found in Zaborowska et al. (2019). 
Concentrations of ammonium (NH4

+-N) (SNH4), nitrate (NO3
− -N) (SNO3) 

and phosphate (PO4
3--P) (SPO4) in the bioreactor were used in this study 

as the NUCs for sensitivity and uncertainty analysis. The blowers power 
supply (EAIR) was recorded (in kWh) every 1 h by electricity meters. 

2.2.3. Building a simulation model of the WWTP (step 2) 
A simulation model of the studied WWTP was developed using the 

Activated Sludge Model No. 2 d (ASM2d) as a core model for 
biochemical processes (Henze et al., 2000). For the same model, applied 
in other WWTPs located in the northern Poland, the kinetic parameters 
were estimated using the Nelder-Mead simplex method with the 
maximum likelihood objective function (Mąkinia et al., 2006; Swinarski 
et al., 2012). In the study of Zaborowska et al. (2017), those kinetic 
parameters were adopted for the Slupsk WWTP with minor changes. The 

accuracy of model predictions was confirmed by the coefficient of 
determination (R2). In the calibration phase (laboratory experiments), 
the model predictions and measurements were strongly correlated (R2 

= 0.88–0.99). In a validation phase (full-scale experiments), a strong 
correlation was also obtained (R2 = 0.54–0.72). The hydraulic model of 
the bioreactor was set as a series of completely stirred tank reactors 
(“tanks-in-series” model), including one anaerobic (AN), four anoxic 
(AO), and two aerobic (AE) tanks. The secondary clarifier was repre-
sented by a one-dimensional, non-reactive model by Takács et al. 
(1991). The influent characterization model (COD-based fractions) was 
developed in the Influent Advisor module incorporated in GPS-X. 

2.2.4. Identification of the variability range of the kinetic parameters (step 
3) 

A review of literature data shows that the physically interpretable 
ranges of the kinetic parameters in the ASM2d can be very broad (e.g., 
Mąkinia and Zaborowska, 2020). Estimation of the variability ranges of 
kinetic parameters is a crucial step in uncertainty analysis. Thus, the 
present study implements a simple method of narrowing the variability 
ranges of kinetic parameters using the available measurement data 

Fig. 2. Complete modelling procedure for the bioreactor (only steps 3–6 are considered in the present study).  

Fig. 3. Methodology for selecting the range of kinetic parameters (xj) for uncertainty analysis when (a) the limits xj,min and xj,max determined from y = f(xj) are 
within the typical range of variation (xj,lower ÷ xj,upper) of parameter j, and (b) the limits xj,min and xj,max determined from y = f(xj) exceed the typical range of 
variation of parameter j. 
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(Fig. 3). Assuming that the value of parameter j changed in the range 
Δxj, the variability of the measured output variables (NUC, EAIR) was 
determined as follows: y = f(x1, x2, xj + i⋅Δxj, …, xk), where i is the 
calculation step. 

For the maximum and minimum values of the measured output 
variables (ymes(max), ymes(min)), the values of parameter j were deter-
mined as follows: xj,max = f(ymes(max), x1, x2, xj, …, xk) and xj,min = f(ymes 

(min) x1, x2, xj, …, xk) (Fig. 3a). In a special case, when the determined 
values of xj,min, xj,max exceeded the typical limits (xj,lower, xj,upper), the 
literature range would be preferred for uncertainty analysis (Fig. 3b). 

2.2.5. Identification of the WWTP model considering the variability of 
kinetic parameters (step 4) 

The Monte Carlo (MC) method was used to simulate the uncertainty 
of the calibrated kinetic coefficients from the assumed theoretical dis-
tributions. It was also assumed that the identified kinetic coefficients are 
independent, which enables to estimate their values from single distri-
butions. Due to the probabilistic distribution of the identified model 
parameters, there is a required number of simulations in order to 
maintain the consistency of the assumed distributions. Using the MC 
method in this study, values of 10 kinetic coefficients were adjusted. In 
the previous study (Zaborowska et al., 2017), those coefficients were 
adjusted based on the process engineering approach. Considering the 
uncertainty of kinetic parameters, i.e., the fixed ranges determined in 
Section 2.3.4, MC simulations were run using a special GPS-X utility 
called “Monte Carlo Analyzer”. The MC method is based on the distri-
butions of the examined parameters and number of simulations (sam-
ples) for a series of independent tests. It was assumed in the present 
study that the distribution of the kinetic parameters was uniform. The 
number of samples was 5000, which fits in the reported range of 
1000–10000 for WWTP simulation studies (Freni et al., 2009; Sin et al., 
2011). 

2.2.6. Global sensitivity analysis (step 5) 
Considering non-linear relationships between the kinetic parameters 

and model outputs (NUC and EAIR), a non-linear Multivariate Adaptive 
Regression Spline (MARS) model was proposed for GSA. This model has 
been used to simulate processes in the bioreactor (Wang et al., 2019), 
but it has not been used for GSA of a WWTP model yet. The MARS model 
describes the following general relationship: 

y* = β0 +
∑M

j=1
⋅h
(
x*
j , t

*
j

)
(1)  

where: β0, βj– estimated empirical coefficients of the model by recursive 
partitioning of the feature space (Friedman and Roosen, 1995); M – 
number of the base functions h(xj*, tj*); x j*- standardized values of the 
identified kinetic parameters, expressed as: 

x*
j =

xj − min
{
xj
}

max
{
xj
}
− min

{
xj
} x*

j ∈ [0; 1] (2)  

y*- standardized values of the NUC (SNH4–N*, SNO3–N*, SPO4–P*) and 
EAIR* expressed as: 

y* =
y − min{y}

max{y} − min{y}
y* ∈ [0; 1] (3)  

y – predicted value are determined as 
∑p

k=1
yk(t)

k (where: k - number of the 
predicted values; j - specific NUC, EAIR calculated in the four-day period; 
p - number of the time intervals). The base function h(xj*, tj*) is defined 
as follows: 

h
(
x*
j , t

*
j

)
=

⎧
⎨

⎩

βj⋅
(
x*
j − tj

)
for x*

j > t*j

0 for x*
j ≤ t*j

(4)  

where: tj* – threshold values for M - base functions (Fig. S1); xj* – in-
dependent variables (kinetic parameters). For a compact description in 
MARS, Equation (4) is written as βj⋅max(0, xj* –tj*). 

Equation (1) is given in the form of a linear regression with the nodes 
with threshold values, tj. Therefore, in the intervals of variation xj*, βi 
can be identified with the sensitivity of a model. The sensitivity can be 
derived based on the slope angle (value βj) between the abscissa and 
ordinate axes (Wang et al., 2019). The GSA with the MARS model re-
quires consideration of the number of nodes for the subsequent inde-
pendent variables and βj variation. When two threshold values are 
determined for a single variable xj*, such that t1* < t2* and y = β1⋅xj* +
… + β0 (xj* > t1*) and y = β2⋅xj* + … + β0 (xj* > t2*), then the slope in 
the interval [t1*; t2*] is β1+β2. Assuming the number of nodes in the 
MARS model to be 0 for xj, a multi-linear regression model (MLR) was 
developed. That model has frequently been used for GSA for WWTPs 
(Shahsavania et al., 2010). The values of βj were used as a basis for the 
assessment of the influence of kinetic parameters on the predicted NUCs 
and EAIR. For βj > 0.1, the variable (βj) was assumed to have a high in-
fluence on y (Cosenza et al., 2013). For the MARS model, such data are 
missing because they have not been used for sensitivity analysis. In the 
present study, the program STATISTICA 10 was used to determine the 
number of nodes, threshold values (tj*), and βj coefficients in Equation 
(1). Statistically significant kinetic parameters were found 
automatically. 

In order to compare the GSA calculations with Equation (1), simu-
lations were also performed for the same range of kinetic parameters 
using MLR and dynamic LSA in the GPS-X “Sensitivity Analysis” module. 
The effect of the kinetic parameters was determined by calculating 
sensitivity coefficients (Sij) for the variability in NUC (SNH4–N, SNO3–N, 
SPO4–P) and EAIR (Petersen et al., 2002). 

2.2.7. Uncertainty analysis with the GLUE method (step 6) 
The aim of uncertainty analysis was to assess interactions between 

kinetic parameters and identify their empirical distributions, for which 
good fits of measurements and simulations were obtained. The kinetic 
parameters considered in the analysis represent complex biochemical 
processes in the bioreactor (nitrification, denitrification, enhanced 
biological phosphorus removal (EBPR). This generates a large number of 
kinetic parameters for identification with a limited number of mea-
surements (Fall et al., 2011). Although the kinetic parameters are 
correlated, this fact is neglected for uncertainty calculations in the GLUE 
method (Beven and Binley, 1992). Considering a correlation between 
the adjusted parameters, regression relationships between those pa-
rameters would be required (Chen and Han, 2021). 

Uncertainty analysis of the model predictions was performed with 
the probabilistic GLUE method. In contrast to the deterministic 
approach with a single set of parameters, the distribution of parameters 
is estimated by the GLUE based on the Bayes formula (Beven and Binley, 
1992): 

M(Θ / S) =
M(S/Θ)⋅M(Θ)

∫
M(S/Θ)⋅M(Θ)dM(S/Θ)dΘ

(5)  

where M(Θ) is the a priori distribution of parameters; M(S/Θ) is the 
likelihood function, and M(Θ/S) is a posteriori distribution resulting 
from identification of parameters. 

In practice, the assumption concerning a priori distribution is weak 
and takes the form of a uniform distribution. Thus, the selection of a 
likelihood function is crucial as the assumption of a priori uniform dis-
tribution may not be appropriate. With the likelihood function given in 
Equation (5), it was assumed that the model errors were uncorrelated 
and normally distributed. The variance of the model errors is κ⋅σ2. The 
following function was used for these analyses (Romanowicz and Beven, 
2006): 
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M(c /Θ)= exp

[
−
∑N

k=1(Sk − Ŝk )2

κ⋅σ2

]

(6)  

where: κ – is the scaling parameter to control posteriori distribution 
variance, σ2 – is the residual variance of the model, Sk, Ŝk - are the 
measured data and predictions of the selected NUC and EAIR in the 
subsequent and k-th time steps. 

Using the measurement data (Sk) and model predictions (Ŝk) of the 
NUCs (SNH4–N, SNO3–N, SPO4–P) and EAIR, the value of κ was determined 
by minimizing the variance (measurements - model predictions) and 
maximizing the number of data points within the 95% confidence in-
terval. The likelihood functions and multidimensional distribution of the 
kinetic parameters (a posteriori) were determined for the measurement 
data within the 95% confidence interval. Then, 95% confidence in-
tervals were determined for the NUCs, i.e. SNH4–N, SNO3–N, SPO4–P. In 
each case, the median values of the NUC and EAIR were also determined. 

In the present study, the GLUE analysis considered four scenarios of 
the measured data sets for model calibration and uncertainty analysis 
(Table S2). In Set 1, it was assumed that only the NUC data in the AE 
compartment were the basis for uncertainty analysis and model cali-
bration. In Sets 2 and 3, specific measurements (SNH4–N or SPO4–P) in the 
AN compartment were added, whereas in Set 4, SNH4–N, SNO3–N, SPO4–P 
in both AE and AN compartments were incorporated. 

3. Results 

3.1. Identification of the variability range of the kinetic parameters 

The ranges of ten kinetic parameters, assumed for the GLUE uncer-
tainty calculations, were determined using the GPS-X software and 
measurement data (SNH4–N(AE, AN), SNO3–N(AE), SPO4–P(AE, AN)). The re-
sults were compared with the literature data and ASM2d default values 
(Table 1). In comparison with the literature data, the revised ranges of 
variation were narrowed for most of the considered kinetic parameters 
(μA, bA, μH, KOH, KOA, qPHA, qPP, bPAO). 

3.2. Sensitivity analysis 

3.2.1. Local sensitivity analysis 
The LSA was performed in GPS-X for the set of 10 kinetic parameters 

adjusted in a previous study (Zaborowska et al., 2017). The values of 
sensitivity coefficients (Sij) are shown in Table S3 in the SI. The kinetic 
parameters were ranked based on the effect on SNH4–N (AN and AE 

compartments), SNO3–N (AE compartment), SPO4–P (AN and AE com-
partments). The calculations of LSA showed that μA, bA, and KNH,A had 
the strongest influence on SNH4–N(AE) and those parameters were clas-
sified as extremely influential. 

Among the other analyzed kinetic parameters, KOH had a significant 
influence on SNH4–N(AE), whereas KOH and bA had the greatest (but 
insignificant) influence on the SNO3–N. The qPHA and qPP were very 
influential on SPO4–P concentrations in the AN and AE compartments, 
respectively, whereas bPAO was influential in both compartments. The 
EAIR was insignificantly influenced by all the analyzed kinetic parame-
ters (Sij ≤ 0.05). 

3.2.2. Global sensitivity analysis 
Multiple linear regression. Using MC simulation results for the specific 

kinetic parameters (Table 1) and NUC in the AE and AN compartments, 
and EAIR* in the AE compartment, the βj coefficients were determined by 
the MLR (Table 2). 

In the AE compartment, bA*, KOH*, qPP* and kh* had a strong effect 
(βj > 0.1) on SNH4–N*, SNO3–N*, SPO4–P* and EAIR*, respectively. In the 
AN compartment, bA* and qPHA* were the most influential parameters 
affecting SNH4–N* and SPO4–P*, respectively. For most of the analyzed 
kinetic parameters, the results of GSA by the MLR confirmed the pre-
vious LSA results. The results of MLR and LSA calculations for the NUCs 
in both AE (SNH4–N*, SNO3–N*, SPO4–P*) and AN (SPO4–P*) compartments 
showed that the same kinetic parameters influenced the analyzed 
biochemical processes. On the contrary, the values of Sij and βj revealed 
a different significance for the NUCs and EAIR*. In the LSA method, the 
Sij value for KOH* indicated an insignificant influence on SNO3–N(AE)*, 
whereas the calculated βj by the MLR suggested a strong effect of KOH* 
on the output. The LSA revealed that the kinetic parameters bA* and μA* 
were insignificantly influential on SNH4–N(AN)* (Table 2). For EAIR*, the 
LSA indicated an insignificant effect of the considered kinetic parame-
ters, while the results of MLR indicated a strong effect of kh* and rather 
small effect of bA*, KOH*, and μH*. 

Multivariate Adaptive Regression Spline (MARS). Considering the ob-
tained goodness-of-fits (R2) of MLR to the data from the MC simulations 
(Table 2), the modified MLR method was used for sensitivity analysis. 
The determined threshold values of tj* and βj for statistically significant 
independent variables in the MARS models are shown in the SI 
(Tables S3–S4). The relationships between the kinetic parameters and 
model outputs (NUCs and EAIR) were found to be non-linear and 
confirmed by the high values of R2. Based on the coefficients specified in 
Tables S4–S7 in the SI, a sample equation in the MARS method for 
simulating normalized SNH4–N* values is given as follows: 

Table 1 
Summary of the variability ranges of 10 kinetic parameters for analysis.  

Kinetic parameter Symbol Units ASM2d default value Value (calibration) Range (literaturea, b) Calculated range 

Hydrolysis rate kh d− 1 3 3 0.96–3.00 0.96–3.00 
Autotrophic maximum specific growth rate μA d− 1 1 1.05 0.20–1.20 0.80–1.20 
Autotrophic decay rate bA d− 1 0.2 0.15 0.04–0.20 0.05–0.20 
Oxygen half saturation coefficient for autotrophic growth KO,A mgO2/l 0.5 0.5 0.40–3.00 0.4–1.20 
Ammonium half saturation coefficient for autotrophic growth KNH,A mgN/l 1 1.2 0.50–1.50 0.50–1.50 
Heterotrophic maximum specific growth rate μH d− 1 6 3 0.60–13.20 2.10–6.00 
Oxygen half saturation coefficient for heterotrophic growth KO,H mgO2/l 0.2 0.08 0.10–1.00 0.10–0.50 
Rate constant for storage PHA qPHA d− 1 6 6 0.30–10.00b 1.30–6.00 
Rate constant for storage of poly- P qPP d− 1 1.5 4.5 0.00–8.00a 0.80–4.50 
Poly - p accumulating biomass lysis rate bPAO d− 1 0.2 0.2 0.10–0.25 0.12–0.25  

a Zaborowska et al. (2019). 
b The upper range from Mąkinia et al. (2006). 

B. Szeląg et al.                                                                                                                                                                                                                                   



Journal of Environmental Management 323 (2022) 116040

6

Table 2 
βj coefficients determined by the MLR for the NUCs and EAIR*.  

Variables SNH4–N(AE)* SNO3–N(AE)* SPO4–P(AE)* SNH4–N(AN)* SPO4–P(AN)* EAIR* 

μH* − 0.0029 ¡0.0185 0.0510 0.0046 − 0.0696 0.0396 
KOH* 0.0015 − 0.5000 ¡0.0414 ¡0.0067 0.0690 − 0.0567 
μA* − 0.0644 0.0147 − 0.0029 − 0.0640 0.0091 0.0257 
bA* 0.1120 ¡0.0221 − 0.0010 0.1140 ¡0.0213 − 0.0579 
KOA* 0.0430 0.0121 − 0.0030 0.0430 ¡0.0070 ¡0.0128 
KNH,A* 0.0499 − 0.0302 0.0026 0.0490 ¡0.0122 0.0034 
qPHA* 0.0117 0.0409 − 0.1306 ¡0.0150 0.3040 ¡0.0089 
qPP* 0.0021 ¡0.0062 − 0.1571 ¡0.0096 0.0340 0.025 
bPAO* ¡0.0053 ¡0.0186 0.1180 0.0096 − 0.1340 0.0244 
kh* 0.0057 − 0.0952 ¡0.0260 0.0007 0.0520 0.3546 
Intercept 0.0380 0.8860 0.1720 0.0350 0.0630 0.588  

R2 = 0.52 R2 = 0.94 R2 = 0.44 R2 = 0.55 R2 = 0.90 R2 = 0.63 

Where: italic bold black indicates the most influential kinetic parameters for the NUC and EAIR calculations; bold black (shadowed cells) indicates statistically sig-
nificant parameters in the MLR. 

Fig. 4. Variability of the NUCs (SNH4–N*, SNO3–N*, SPO4–P*), EAIR* and βj in terms of the normalized kinetic parameters: a) bA*, b) KOH*, (c) qPHA*, (d) kh*.  

S*
NH4− N(AE) = 0.04+ 0.08 ⋅ max

(
0; b*
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)
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(
0; b*

A − 0.64
)
+ 0.14 ⋅ max

(
0; b*

A − 0.81
)

− 0.09 ⋅ max
(
0; μ*

A − 0.45
)
− 0.15 ⋅ max

(
0; 0.45 − μ*

A

)
+ 0.07 ⋅ max

(
0; μ*

A − 0.21
)
+ 0.06 ⋅ max

(
0;K*

NH − 0.38
)

− 0.03 ⋅ max
(
0; 0.38 − K*

NH

)
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(
0;K*

OA − 0.51
)
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(
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)
− 0.01 ⋅ max

(
0; 0.99 − b*
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)

+ 0.01 ⋅ max
(
0; q*

PP − 0.16
)
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(
0; 0.16 − q*

PP

)
R2 = 0.634 (8)   
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In the MARS model, the R2 values for SNH4–N(AE)* were 22% higher 
than in the MLR. For SNH4–N(AN)*, SPO4–P(AE)*, and EAIR*, R2 increased in 
the MARS model by 31%, 56%, and 46%, respectively, compared to the 
MLR. At least two threshold values were estimated with respect to the 
statistically significant kinetic parameters for the specific NUC, i.e., 
SNH4–N* - bA*, μA*; SNO3–N*- KOH*; SPO4–P* - qPHA*, qPP*, bPAO*; EAIR* – 
kh* (Tables S4–S7 in the SI). The βj values in the ranges of the normal-
ized kinetic parameters showed a high variability, which indicated a 
variable sensitivity of the model in those ranges. In Fig. 4, the re-
lationships βj = f(xj*) are shown for the NUCs* and EAIR* for the kinetic 
parameters with the highest values of Sij and βj. Tables S8–S11 in the SI 
contain the β values for the models to predict the NUC and EAIR with 
respect to the analyzed kinetic parameters. For example, the relation-
ship SNH4–N* = f(bA*, β) can be described by three linear functions with 
the βj values varying in the appropriate bA* ranges as shown in Fig. 4a. 
The obtained curves showed that β was increasing with the increasing 
bA*, which confirmed an increased model sensitivity. For the bA* range 
of 0–0.31, there was no influence of that parameter on SNH4–N* (β =
0.00). For the bA* range of 0.31–0.64, β = 0.084 which means that 
SNH4–N* increased from 0.040 to 0.068 in that range. For the bA* range of 
0.64–0.81, β = 0.200 and SNH4–N* increased from 0.068 to 0.102. The 
highest model sensitivities for SNO3–N* (β = − 0.593) and SPO4–P* (β =
− 0.956) were obtained in the ranges of KOH* = 0.0–0.36 (Fig. 4b) and 
qPHA* = 0.00–0.20 (Fig. 4c), respectively. 

The lowest value of β = − 0.012 was obtained for the qPHA* range of 
0.44–1.00. With respect to EAIR*, the highest model sensitivity (β =
1.55) was obtained for the kh* range of 0.00–0.25. For kh* > 0.5, the 

influence of that parameter on EAIR* decreased approximately 25 times 
(Fig. 4d). 

3.2.3. Uncertainty analysis with the GLUE method 
For the assumed variation ranges of 10 kinetic parameters (Table 2), 

a series of MC simulations (5000 samples) were performed using the 
GPS-X “Monte Carlo Analyzer”. Based on those simulation results, 95% 
confidence intervals of the variability of the NUC and EAIR were deter-
mined for each calibration scenario (Sets 1–4 in Table S1 in the SI). 
Simulation results for all the analyzed calibration sets during the four- 
day measurement campaign can be found in the SI (Figs. S2–S7). 
Table S12 shows the percentage of the measured data in the calculated 
95% confidence intervals. Figs. 5–6 show the 95% confidence intervals 
for the NUC and EAIR in the scenario with the full set of measured data 
(Set 4). The highest proportion of measured data (NUC, EAIR) within the 
95% confidence interval was obtained for Sets 3 and 4 (Table S12). Sets 
1 and 2 resulted in a smaller proportion of SPO4–P(AE) measurements in 
the calculated 95% confidence interval compared to Sets 3 and 4. In 
addition, Set 1 resulted in a smaller percentage of data in the 95% 
confidence interval for EAIR. In comparison with Set 1, the incorporation 
of SNH4–N(AN) did not influence the 95% confidence interval and vari-
ability of the median NUC. The results for Sets 1 and 3 (Fig. S2b in the SI) 
indicated that the consideration of SPO4–P(AN) in model calibration 
resulted in a decreased SNH4–N(AE) median (calculation from the GLUE). 

Moreover, the number of data points within the 95% confidence 
interval decreased for SNH4–N(AE), SPO4–P(AE) and SPO4–P(AN). On the 
contrary, an increased number of data points within the 95% confidence 
interval was identified for SPO4–P(AN) (Fig. S7d in the SI). It should also 
be noted that the difference in the absolute errors of model predictions 

Fig. 5. Comparison of the 95% confidence intervals in the AE compartment: a) SNH4–N(AE), b) SNO3–N(AE), c) SPO4–P(AE), d) EAIR (solid line - median obtained by GLUE 
simulation; dashed line - lower and upper limits of the 95% confidence interval). 
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decreased for the NUCs. In terms of the median from the GLUE, the 
largest difference was found for SPO4–P(AN), i.e., 10 mg P/L for Set 2 vs. 
15 mg P/L for Sets 1, 3, 4. The results for SPO4–P reflect a high uncer-
tainty of model predictions. The results confirmed previous findings 
(Zaborowska et al., 2017; Hvala et al., 2018) that the behavior of 
phosphorus compounds is difficult to predict. Nevertheless, while 
applying the proposed methodology, the confidence intervals obtained 

in this study were narrower compared with to Mannina et al. (2011a,b). 

4. Discussion 

4.1. Analysis of the results obtained by the LSA, MLR and MARS methods 

The results for SPO4–P are similar in all the applied sensitivity analysis 

Fig. 6. Comparison of the 95% confidence intervals in the AN compartment: a) SNH4–N(AN), b) SPO4–P(AN) (solid line - median obtained by GLUE simulation; dashed 
line - lower and upper limits of the 95% confidence interval). 

Fig. 7. Venn diagrams showing the results of LSA, MLR, MARS calculations for (a) SNH4–N(AE), (b) SNH4–N(AN), (c) SNO3–N(AE), (d) EAIR.  
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methods (Fig. S8 in the SI). For the analyzed NUCs (SNH4–N, SNO3–N) and 
EAIR, the results obtained by the LSA and GSA methods (MLR, MARS) are 
different as shown by Venn diagrams in Fig. 7. The diagrams show 
similarities and differences between the results obtained by the three 
applied sensitivity analysis methods. The influence of kinetic parame-
ters, in particular qPHA, qPP, bPAO, on the behavior of SPO4–P in both AE 
and AN compartments (Tables S8 and S11 in SI) has previously been 
confirmed by Mannina et al. (2011a,b). The results of sensitivity analysis 
by LSA, MLR, and MARS methods for SNH4–N(AE) are highly consistent 
(Fig. 7a). The influence of qPP on SNH4–N(AE) was clearly shown using the 
MARS and LSA methods (but not MLR). These relationships were 
confirmed by Mąkinia et al. (2005) for a bioreactor operated in the 
Johannesburg process configuration (Table S13 in the SI). The results of 
Zaborowska et al. (2017) and Cosenza et al. (2013, 2014) also showed a 
strong influence of μA on SNH4–N(AE) predictions. 

The results for SNH4–N(AN) are highly variable between the sensitivity 
analysis methods (Fig. 7b). The computational results showed the in-
fluence of μA and bA on SNH4–N in the AE compartment. This relationship 
was confirmed by Mannina et al. (2011a,b), Cosenza et al. (2013), 
(2014) and Zaborowska et al. (2019) (Table S13 in the SI). The MLR and 
MARS calculations showed the influence of qPHA, KOH, KOA, KNH,A, and 
bPAO on the behavior of SNH4–N(AN). 

Simulations by Mannina et al. (2011a,b) confirmed the influence of 
KOA, KNH,A and bPAO on the analyzed NUC in the AN compartment. The 
results of LSA, MLR, MARS methods for SNO3–N(AE) are highly correlated 
(Fig. 7c) and the simulation results (Fig. 7c) confirm the relationship 
SNO3–N(AE) = f(KOA) (Cosenza et al., 2013). Mąkinia et al. (2005) showed 
the influence of qPHA and kh on the predicted NUC (SNH4–N(AE), SPO4–P). 
The results of the MLR and MARS methods showed the relationship 
SNO3–N(AE) = f(KNH,A, μH), which was also found by Cosenza et al. 
(2014). In addition to the wastewater quality aspects, the performed 
sensitivity analysis comprised EAIR (Fig. 7d). The results of LSA, MLR, 
and MARS confirmed the influence of μA, bA, KNH,A, bPAO, kh on EAIR. 
These results are consistent with the findings of Benedetti et al. (2012) 
for an A2O bioreactor. The calculations performed with the MLR and 
MARS methods also showed the influence of qPHA, qPP, KOH, and μH on 
predictions of EAIR. It should be noted, however, that the significance of 
the kinetic parameters was only revealed in the GSA methods, while the 
LSA showed much lower influence on EAIR. It was demonstrated that the 
method selected for sensitivity analysis could affect further steps in the 
modelling procedure and eventually model predictions. These findings 
are particularly important for designing the aeration system (Bischof 
et al., 1996, Flores-Alsina et al., 2012), energy assessment of the system 
operation, control and regulation (Åmand et al., 2013), and 
decision-making process in WWTPs (Borzooei et al., 2019a, 2019b; 

2020a, 2020b). 
Based on the performed analysis, the kinetic parameters were 

grouped under two main categories. The first group comprises the ki-
netic parameters (μA, bA, and qPP), which have a strong influence on the 
predicted NUC and EAIR in a narrow range of their variation. The second 
group comprises the kinetic parameters, such as kh, μH, KOH, qPHA, and 
bPAO, which have a strong influence on the NUC and EAIR values over a 
wide range of their variation. 

4.2. The relationship between the sensitivity coefficient in LSA and the βj 
coefficients in the MLR and MARS methods 

Based on the results of LSA, MLR and MARS, a relationship between 
the Sij and βj coefficients, Sij = f(βj), was developed for the NUC (SNH4–N, 
SNO3–N, SPO4–P in the AE and AN compartments) and EAIR. The rela-
tionship was described by a second-degree polynomial (Table S14 in the 
SI). The aim of the analysis was to investigate the nature of a relation-
ship between the sensitivity coefficients obtained by the LSA, MARS and 
MLR. Specifically, the sensitivity was assessed in terms of the variability 
of kinetic parameters βj (MARS), using the mean values of the Sij 
calculated by the MLR method. It should be noted that the relationships 
between the Sij and βj, shown in Fig. 8 and Fig. 9, are not universal, but 
reflect the specific correlation between the sensitivity coefficients ob-
tained by different methods. A similar approach can be found in 
(Cosenza et al., 2013). The best fit between the theoretical and empirical 
results was found for SNH4–N(AN) with R2 = 0.98, while no linear relation 
Sij = f(βj) was obtained for EAIR (Fig. 8). The appropriate transformations 
Sij = f(βj) can also be used to determine βj in the MLR method. 

In this study, the calculation of βj in the MARS method was based on 
Sij for the NUC and EAIR (Figs. S9S–S12 in the SI) and the R2 values were 
0.54, 0.57, and 0.68 for SNO3–N(AE), SPO4–P(AN), and SNH4–N(AE), respec-
tively (Fig. 9). This confirmed that the relationship βj = f(Sij) can be 
described by second- and third-degree polynomials (Table S15 in the SI). 
Fig. 9a and b shows sample curves for SNO3–N(AE) and EAIR as the extreme 
cases for which the relationship βj = f(Sxi) was found as indicated by the 
determined R2 values. The data in Fig. 9a and b shows a decreasing trend 
of the correlation Sij - βj for the MARS model compared to the results of 
the MLR method. These differences are due to the fact that in the applied 
approach (MARS method), the sensitivity of the model considering the 
numerical values of kinetic parameters, changes rather locally in com-
parison with the results of LSA and MLR methods (Fig. 6). Therefore, a 
single kinetic parameter can have simultaneously a low and high in-
fluence on the calculation results (e.g., kh in Fig. 9). In the LSA and MLR 
methods, single values of Sij and βj can correspond to several values of βj 
in the MARS method. A strong model non-linearity can result in a 
decrease in the correlation βj = f(Sij), as shown for EAIR and SNO3–N. The 
results in Fig. 9b and Figs. S9–S12 show a decreasing trend in the cor-
relation between βj and Sij for the MARS method compared to the MLR 
method. This means that the values of βj in the MARS model can be 
determined from Sij only in a limited range. 

The novelty of the proposed approach relies on the application of 
sensitivity analysis for the ASMs in the appropriate ranges of kinetic 
parameters. In the existing methods (e.g., Cosenza et al., 2013), the 
model sensitivity is identified by a single coefficient over the full range 
of variation. On the contrary, the analysis performed in this study 
showed that the model sensitivity can actually be highly variable. 

4.3. Advantages and disadvantages of the examined sensitivity analysis 
methods 

With the approach proposed in this study, it is possible to identify the 
ranges of kinetic parameters of complex ASMs in which the NUC and 
EAIR are influenced. The existing sensitivity analysis methods (Mannina 
et al., 2011a,b; Cosenza et al., 2014) neglect this aspect. The only in-
formation that can be obtained from those methods is whether a kinetic 
parameter influences the process under consideration. In comparison 

Fig. 8. The relationship Sij = f(βj) for the NUC (SNH4–N, SNO3–N, SPO4–P) in the 
AE and AN compartments, and EAIR. 
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with the methods of Sin et al. (2011) and Mannina et al. (2011a,b), the 
proposed approach is more advantageous because the variability of 
model sensitivity allows to better understand and estimate the influence 
of the kinetic parameters on model predictions. In the MARS model, 
sensitivity is considered in a wider range compared to LSA and MLR. The 
proposed method allows to identify cases, in which a specific kinetic 
parameter influences model predictions, while this influence becomes 
negligible in a wider range of its variation. This allows to determine such 
ranges of the variation of kinetic parameters, for which the optimal 
selection of parameters may be problematic. The narrowed ranges of the 
kinetic parameters may result in a reduced number of MC simulations. 
This acelerates the calculations of uncertainty analysis and improves 
predictions of the NUC and EAIR. 

The proposed method can establish such ranges of the variation of 
kinetic parameters, in which those parameters have a negligible influ-
ence on the model sensitivity (NUC and EAIR). In such a case, the default 
values can be assumed and a range of the variability of kinetic param-
eters covered by MC simulations may be limited. As a consequence, the 
computational effort and execution time can be reduced in comparison 
with the existing sensitivity analysis methods (Mannina et al., 2011a,b; 
Saltelli et al., 2007; Sin et al., 2011), which are also based on MC 
simulations. 

The currently available calibration protocols of ASMs, summarized 
by Mąkinia and Zaborowska (2020), neglect energy considerations. In 
this study, the results of sensitivity and uncertainty analyses examined 
the influence of several kinetic parameters on EAIR, which is important 
for process control and optimization (Boroozei et al.,. 2020; Flor-
es-Alsina et al., 2014). In contrast to LSA, the relevance of EAIR was 
demonstrated in GSA while considering the interactions between the 
kinetic parameters. In particular, kh was highly influential on EAIR. This 
effect has not been reported in previous studies (Benedetti et al., 2012; 
Sin et al., 2008), which could be due to the available input data from 
laboratory experiments or full-scale measurements. On the other hand, 
EAIR represents the total energy required for aeration and thus kh rele-
vance may result from the total amount of organic matter and organic 
nitrogen available for oxidation. Flores-Alsina et al. (2012) developed a 
non-linear relationship for Operational Cost Index (OCI) OCI = f(μA), but 
did not discuss the advisability of determining μA from operational data. 
In terms of the reliability of EAIR predictions, it is advised to develop 
independent theoretical models to determine kh in order to control the 
variability of that parameter. 

Furthermore, the GLUE method proposed in this study includes ex-
amination of the influence of a number of sampling points and their 
location (AN and AE compartments) on the identification of kinetic 
parameters. This approach allows for selection of the cost and time 
efficient scope of measurements ensuring that the model predictions 

(NUC, EAIR) remain within the acceptable confidence intervals. 

5. Conclusions 

A significant statistical significance of the kinetic parameters for EAIR 
was found with GSA (but not with LSA) when considering the in-
teractions between those parameters. Moreover, identification of the 
variability range of kinetic parameters is combined with GSA using the 
MARS method. With this approach, the variability range of kinetic pa-
rameters is narrowed, which reduces computational efforts and simu-
lation time. In the GLUE method, the location of sampling points can be 
searched for a combination of measurement data to minimize the 
number of analyses without deteriorating the efficiency of model pre-
dictions. Moreover, identification of the variability range of kinetic 
parameters is combined with GSA using the MARS method. With this 
approach, the variability range of kinetic parameters is narrowed, which 
reduces computational efforts and simulation time. In the GLUE method, 
the location of sampling points can be searched for a combination of 
measurement data to minimize the number of analyses without deteri-
orating the efficiency of model predictions. 
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Zonta, Ž.J., Flotats, X., Magrí, A., 2014. Estimation of parameter uncertainty for an 
activated sludge model using Bayesian inference: a comparison with the frequentist 
method. Environ. Technol. 35, 1618–1629. https://doi.org/10.1080/ 
09593330.2013.876450. 

B. Szeląg et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.jenvman.2022.116040
https://doi.org/10.2166/wst.2013.139
https://doi.org/10.3390/su11143919
http://refhub.elsevier.com/S0301-4797(22)01613-9/sref3
http://refhub.elsevier.com/S0301-4797(22)01613-9/sref3
http://refhub.elsevier.com/S0301-4797(22)01613-9/sref3
https://doi.org/10.2166/wqrjc.2012.038
https://doi.org/10.1002/hyp.3360060305
https://doi.org/10.1002/hyp.3360060305
https://doi.org/10.1016/0273-1223(96)00473-8
https://doi.org/10.1016/j.cej.2017.02.091
https://doi.org/10.1016/j.jwpe.2018.12.010
https://doi.org/10.1016/j.jwpe.2018.12.010
https://doi.org/10.1016/j.scitotenv.2019.07.241
https://doi.org/10.1007/s11356-020-08277-3
https://doi.org/10.2166/wst.2020.220
https://doi.org/10.1016/j.jmse.2021.09.008
https://doi.org/10.1016/j.jmse.2021.09.008
https://doi.org/10.1016/j.envsoft.2013.07.009
https://doi.org/10.1016/j.envsoft.2013.07.009
https://doi.org/10.1016/j.scitotenv.2013.10.069
https://doi.org/10.1002/j.1554-7531.2011.tb00270.x
https://doi.org/10.1016/j.envsoft.2012.04.005
https://doi.org/10.1016/j.scitotenv.2013.07.046
https://doi.org/10.1016/j.scitotenv.2013.07.046
https://doi.org/10.1016/j.envsoft.2009.03.003
https://doi.org/10.1177/096228029500400303
https://doi.org/10.1177/096228029500400303
https://doi.org/10.1016/j.egypro.2017.03.868
https://doi.org/10.1016/j.jclepro.2016.03.173
https://doi.org/10.1016/j.jclepro.2016.03.173
http://refhub.elsevier.com/S0301-4797(22)01613-9/sref23
http://refhub.elsevier.com/S0301-4797(22)01613-9/sref23
https://doi.org/10.1016/j.jclepro.2020.123233
https://doi.org/10.2166/wpt.2018.070
https://doi.org/10.2166/wst.2019.427
https://doi.org/10.2166/wst.2019.427
https://doi.org/10.2166/hydro.2011.041
https://doi.org/10.1016/j.memsci.2011.04.003
https://doi.org/10.1080/19443994.2015.1030780
https://doi.org/10.2166/wst.2006. 711
http://refhub.elsevier.com/S0301-4797(22)01613-9/sref32
http://refhub.elsevier.com/S0301-4797(22)01613-9/sref32
https://doi.org/10.1016/j.watres.2005.01.023
https://doi.org/10.2166/hydro.2002.0003
https://doi.org/10.1016/j.watres.2015.11.029
https://doi.org/10.1016/j.ress.2005.11.030
https://doi.org/10.1016/j.ress.2005.11.030
https://doi.org/10.1016/j.envsoft.2014.06.006
https://doi.org/10.1016/j.envsoft.2014.06.006
https://doi.org/10.1016/j.sbspro.2010.05.204
https://doi.org/10.1016/j.watres.2010.08.025
https://doi.org/10.1016/j.watres.2010.08.025
https://doi.org/10.2175/106143012x13373550426670
https://doi.org/10.1016/0043-1354(91)90066-Y
https://doi.org/10.1016/0043-1354(91)90066-Y
https://doi.org/10.1016/j.jprocont.2019.03.005
https://doi.org/10.1016/j.jenvman.2015.09.041
https://doi.org/10.2166/wst.2016.564
https://doi.org/10.2166/wst.2016.564
https://doi.org/10.1016/j.watres.2019.06.057
https://doi.org/10.1016/j.watres.2019.06.057
https://doi.org/10.1016/j.scitotenv.2019.02.024
https://doi.org/10.1016/j.scitotenv.2019.02.024
https://doi.org/10.1038/srep08493
https://doi.org/10.1038/srep08493
https://doi.org/10.1080/09593330.2013.876450
https://doi.org/10.1080/09593330.2013.876450

	Modeling nutrient removal and energy consumption in an advanced activated sludge system under uncertainty
	1 Introduction
	2 Material and methods
	2.1 Study site
	2.2 Methodology for modelling bioreactor performance and energy consumption under uncertainty
	2.2.1 Simulation tool
	2.2.2 Data collection (step 1)
	2.2.3 Building a simulation model of the WWTP (step 2)
	2.2.4 Identification of the variability range of the kinetic parameters (step 3)
	2.2.5 Identification of the WWTP model considering the variability of kinetic parameters (step 4)
	2.2.6 Global sensitivity analysis (step 5)
	2.2.7 Uncertainty analysis with the GLUE method (step 6)


	3 Results
	3.1 Identification of the variability range of the kinetic parameters
	3.2 Sensitivity analysis
	3.2.1 Local sensitivity analysis
	3.2.2 Global sensitivity analysis
	3.2.3 Uncertainty analysis with the GLUE method


	4 Discussion
	4.1 Analysis of the results obtained by the LSA, MLR and MARS methods
	4.2 The relationship between the sensitivity coefficient in LSA and the βj coefficients in the MLR and MARS methods
	4.3 Advantages and disadvantages of the examined sensitivity analysis methods

	5 Conclusions
	Credit author statement
	Declaration of competing interest
	Data availability
	Appendix A Supplementary data
	References


