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Abstract
In this paper, multi-dimensional global optimization problems are considered, where the
objective function is supposed to be Lipschitz continuous, multiextremal, and without a
known analytic expression. Two different approximations of Peano-Hilbert curve applied to
reduce the problem to a univariate one satisfying the Hölder condition are discussed. The
first of them, piecewise-linear approximation, is broadly used in global optimization and not
onlywhereas the second one, non-univalent approximation, is less known.Multi-dimensional
geometric algorithms employing these Peano curve approximations are introduced and their
convergence conditions are established. Numerical experiments executed on 800 randomly
generated test functions taken from the literature showa promising performance of algorithms
employing Peano curve approximations w.r.t. their direct competitors.

Keywords Deterministic global optimization · Lipschitz and Hölder conditions ·
Space-filling curves · Black-box functions

1 Introduction

Awide variety of real-life applications requires a deep study of global optimization problems
with many local minima and maxima (see. e.g. [1–10]). In particular, applications in engi-
neering, machine learning, electronics, optimal control, etc. (see, e.g., [11–22]) are interested
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in finding the global (called also absolute) solution to the problem, since local solutions can
often be unsatisfactory.

In this work, we consider the following global optimization problem

F∗ = F(y∗) = min F(y), y ∈ D, (1)

where D = [a, b]N is a hyperinterval in R
N ,

D = {y ∈ R
N : a ≤ y j ≤ b, 1 ≤ j ≤ N },

and F(y) is the objective black-box function that satisfies the Lipschitz condition with an
unknown Lipschitz constant L , 0 < L < ∞, i.e.,

|F(y′) − F(y′′)| ≤ L‖y′ − y′′‖, y′, y′′ ∈ D, (2)

where ‖ · ‖ denotes the Euclidean norm. Problems of this kind attract a great attention of
researchers since they can be faced frequently in applications (see. e.g. [23–33]).

It has been shown (see, e.g., [33]) that solving the problem (1), (2) is equivalent to solve
the following one-dimensional problem:

f (x∗) = F(y(x∗)) = min F(y(x)), x ∈ [0, 1], (3)

where y(x) is a Peano curve mapping the interval [0, 1] in [a, b]N . This kind of curve, first
introduced by Peano in [34] passes through every point of [a, b]N (in the present paper,
Hilbert’s version of a Peano curve proposed in [35] will be used).

In addition, it can be also proved (see [33]) that the function f (x) from (3) satisfies the
Hölder condition

| f (x ′) − f (x ′′)| ≤ H |x ′ − x ′′|1/N , x ′, x ′′ ∈ [0, 1], (4)

with the constant

H = 2L
√

N + 3.

Thus, we can use one-dimensional algorithms proposed in [31, 33] to solve (3), (4).
Obviously, computable approximations to the Peano curve should be used in numerical
algorithms. In several works (see, e.g., [31, 33, 36–38]) a piecewise-linear approximation
hereinafter indicated as lM (x) was applied, where M ∈ N is the level of approximation, in
the sense that it is constructed dividing the hypercube D into 2M N subcubes with edge length
equal to 2−M (b − a).

In this paper, we propose to use another type of M-approximation of the Peano curve
y(x), called Peano non-univalent approximation and indicated by nM (x) (see [33]). Fig. 1
compares l1(x) (left picture) with n1(x) (right picture) and Fig. 2 shows l2(x) and l3(x)

with D = [−1, 1]2 whereas Fig. 3 presents n2(x) and n3(x). In [33], nM (x) was applied in
so-called information methods. In contrast, in this paper, the non-univalent approximation
is used in the framework of geometric global optimization algorithms that so far used the
piecewise-linear approximation lM (x) only (see [31, 33, 36–38]).

The Peano non-univalent approximation is constructed using the same partition of D as
lM (x) does but it reflects the following property (see [33]) of the Peano curve y(x): a point in
D can have several inverse images in [0, 1] (but not more than 2N ). In order to describe this
approximation, let us denote with p(M, N ) the uniform grid of the interval [0, 1] composed
by

p(M, N ) =
{

j

2(M+1)N − 2M N
: 0 ≤ j ≤ 2(M+1)N − 2M N

}
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Fig. 1 Peano piecewise-linear approximation (left) and Peano non-univalent approximation (right) for N = 2,
M = 1

Fig. 2 Peano piecewise-linear approximation for N = 2 and M = 2, 3

and with P(M, N ) the grid of the M−partition of D which has the mesh width equal to
2−M (b−a) (composed by the vertices of the subcubes of the M-partition of D) and satisfying
another useful condition:

P(M, N ) ⊂ P(M + 1, N ).

Thus, the evolvent nM (x) maps the uniform grid p(M, N ) onto the grid P(M, N ). In this
way, the result obtained by computing the value F(nM (x)) for a point x of the uniform grid in
[0, 1] allows one to know the values F(nS(xi )), where S ≥ M and the s, 1 ≤ s ≤ 2N , points
xi ∈ [0, 1] , 1 ≤ i ≤ s, are the inverse images of nM (x) with respect to the correspondence
nM (x).

In Fig. 3.a), integers around the nodes of P(2, 2) indicate the corresponding inverse images
of [0, 1]. For example, the points x1 = 8

48 = 1
6 , x2 = 24

48 = 1
2 , x3 = 40

48 = 5
6 ∈ [0, 1] are

all mapped through n2(x) in the point (0, 0). In this way, computing a single evaluation, for
example, at the point x1 we know that the values of the function F(nM (x)) at the points x2
and x3 will be the same for M ≥ 2.
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Fig. 3 Peano non-univalent approximation for N = 2 and M = 2, 3

The rest of the paper is structured as follows. In the next section, theorems discussing
solution to the problem (1), (2) using Peano non-univalent approximations are given. In
Sect. 3, two new geometric optimization algorithms are introduced and their convergence
conditions are established. In Sect. 4, we discuss results of some numerical experiments and
Sect. 5 is dedicated to conclusions.

2 Establishing a lower bound for themulti-dimensional objective
function

Let us prove the following theoremwhich allows us to establish a lower bound for the function
F(y) over the entire multi-dimensional region D using a lower bound for the function F(y)

evaluated only along the approximation nM (x), x ∈ p(M, N ). It should be noticed that a
similar result has been proven in [36] for the function F(lM (x)) employing the piecewise-
linear approximation lM (x). Even though the two approximations are very different (see
illustrations in Figs. 1–3) we show that it is possible to link estimates of global minimizers
of F(y) over D and over the non-univalent approximation nM (x), as well.

Theorem 2.1 Let U∗
M be a lower bound along nM (x) for a multidimensional function F(y)

satisfying Lipschitz condition with the constant L, i.e.,

U∗
M ≤ F(nM (x)) x ∈ p(M, N ),

then the value
U = U∗

M − 2−(M+1)L
√

N (b − a), (5)

is a lower bound for F(y) over the entire region D, i.e.,

U ≤ F(y), y ∈ D.

Proof Due to the construction of the non-univalent approximation nM (x), every point y in
D can be approximated by s, 1 ≤ s ≤ 2N , different points αi (y), hereinafter called images
such that

αi (y) = argmin{‖y − y‖ : y = nM (x), x ∈ p(M, N )},
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with 1 ≤ i ≤ s. This is due to the fact that a hypercube belonging to P(M, N ) and containing
y has 2N vertices, therefore, the closest to y vertices are less than 2N . Let us consider now a
point y and one of its images α(y). Since the function F(y) satisfies the Lipschitz condition,
we have

|F(y) − F(α(y))| ≤ L‖y − α(y)‖,
F(y) ≥ F(α(y)) − L‖y − α(y)‖.

By hypothesis F(α(y)) ≥ U∗
M , therefore

F(y) ≥ U∗
M − LdM , (6)

where

dM = max
y∈D

‖y − α(y)‖.

It is easy to understand that dM is equal to the distance between the center of a sub-cube of
P(M, N ) and one of its vertex. In other words, this distance is half the length of the diagonal
of a sub-cube of P(M, N ) which is

dM = 2−(M+1)
√

N (b − a). (7)

Thus, from (6) and (7) we obtain

F(y) ≥ U∗
M − L2−(M+1)

√
N (b − a)

that concludes the proof. ��

Corollary 2.2 The following condition holds

min{F(nM (x)) : x ∈ p(M, N )} − F∗ ≤ 2−(M+1)L
√

N (b − a), (8)

where F∗ from (1) is the global minimum of F(y) over the search region D.

Proof Let us consider the value

U∗
M = min{F(nM (x)) : x ∈ p(M, N )}

that is the minimum of F(y) along nM (x). It then follows from (5) that

F(y) ≥ U∗
M − 2−(M+1)L

√
N (b − a), y ∈ D,

in particular,

min{F(y) : y ∈ D} ≥ U∗
M − 2−(M+1)L

√
N (b − a),

which is equivalent to (8). ��

The theorem and its corollary mean, in particular, that, given the required accuracy to solve
the problem (1), (2), it is possible to choose an appropriate level of approximation M for
nM (x) in order to minimize F(y) with the prescribed accuracy.
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Fig. 4 The point (d̃i , Ai ) is
approximated by the point
(di , Ri )

3 Geometric methods and their convergence conditions

In this section, we introduce a Geometric Algorithm using Peano non-univalent approxima-
tion, GAP for short, for solving problem (1), (2). In order to proceed, we need to introduce
some notations.

We indicate with the term trial point a point xi ∈ [0, 1] in which the evaluation of the
objective function (this operation is called trial), denoted by zi = f (xi ) has been performed.

Let us consider a partition of [0, 1] made by c trial points xi , such that xi < xi+1,

1 ≤ i ≤ c − 1, and the following functions

g−
i (x) = zi−1 − H(x − xi−1)

1/N , x ∈ [xi−1, xi ],
g+

i (x) = zi − H(xi − x)1/N , x ∈ [xi−1, xi ],

and

Gc(x) =
c⋃

i=2

gi (x) =
c⋃

i=2

max{g−
i (x), g+

i (x)}.

It has been shown in [39] that Gc(x) is a minorant over [0, 1] for the function f (x) which
satisfies (4), (see Fig. 4). In [39], the authors use Gc(x) with a priori given Hölder constant
H and then find the “peak” points (d̃i , Ai )which are the intersection of the graphs of the two
functions g−

i (x) and g+
i (x) in order to choose among these points the new trial point (see

Fig. 4). However, as it has been shown in [40], solving the nonlinear system of equations
determining the peak point (d̃i , Ai ) can be difficult when N increases and the curves g−

i (x)

and g+
i (x) tend to be flat. Clearly, another problem consists in the fact that it is difficult to

know the constant H a priori.
For this reasons we follow [31, 36, 40] and consider an adaptive global estimate of the

Hölder constant H and approximate the points (d̃i , Ai ) using the method proposed in [40]
which does not need to solve a nonlinear system of equations of degree N and requires a
smaller computing time. Let us describe this approach briefly.

The adaptive global estimate Hc of the Hölder constant H can be computed as follows

Hc = max{ξ, Mc}, (9)
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where ξ > 0 is a small positive number and

Mc = max{mi : 2 ≤ i ≤ c},
with

mi = |zi − zi−1|
|xi − xi−1|1/N

, 2 ≤ i ≤ c.

Then the point (d̃i , Ai ) can be approximated with the point (di , Ri ), where

di = 0.5(xi + xi−1) − zi − zi−1

2r Hc(xi − xi−1)
1−N

N

, (10)

is found as intersection of the following lines (see an illustration in Fig. 4)

rle f t (x) = −r Hc(xi − xi−1)
1−N

N x + r Hc(xi − xi−1)
1−N

N xi−1 + zi−1,

rright (x) = r Hc(xi − xi−1)
1−N

N x − r Hc(xi − xi−1)
1−N

N xi + zi ,

with r > 1 being a reliability parameter of the global optimization method, while,

Ri = min{zi−1 − r Hc(di − xi−1)
1/N , zi − r Hc(xi − di )

1/N }, (11)

is found as the minimum value of the auxiliary functions g−
i (x), g+

i (x) evaluated at the point
di . Figure 4 shows the point (d̃i , Ai ) found as intersection of g−

i (x), g+
i (x) and the point

(di , Ri ) found using rle f t (x), rrigth(x).

Thus, for each interval [xi−1, xi ], 2 ≤ i ≤ c, its characteristic Ri is computed and then
an interval [xt−1, xt ] for performing the next function evaluation xc+1 is chosen as follows

Rt = min{Ri : 2 ≤ i ≤ c}.
Let us return now to the function F(nM (x)). As said previously, the function nM (x) is

defined only on the points of the grid p(M, N ) and not over the entire interval [0, 1]. Thus,
when we need to evaluate the function F(nM (x)) at a new trial point xc+1 we should proceed
as follows: if xc+1 belongs to the grid p(M, N ), execute the next trial point at the point xc+1

i.e., zc+1 = F(nM (xc+1)), otherwise detect the point w of p(M, N ) which is the nearest to
xc+1 from the left and compute zc+1 = F(nM (w)). With abuse of notation, in both cases we
will indicate with xc+1, zc+1 the points in which the evaluation was performed and its result,
respectively.

As compensation for losing some information in approximating the point xc+1 with w, at
the cost of a single function evaluation we can obtain more than one trial point (at most 2N ),
computing all the inverse images w1, . . . , w j , of the point nM (xc+1) with respect nM (x). In
order to avoid redundancy, we will decide which inverse images to include in our trial points.
Let us introduce two different strategies which lead to two different optimization algorithms.
For this purpose, let us consider the ordered array W0 composed by xc+1 and {w1, . . . , w j }
and define the following selection procedures discussing their meaning.

Selection rule 1:
Input: Array W0

Output: Array W1

Reject, if there are any, inverse images which are already included in our current trial points
x1, x2, . . . , xc. Namely, W1 has as elements the points w ∈ W0 such that w = xi , 1 ≤ i ≤ c.
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Selection rule 2:
Input: Array W1

Output: Array W2

Keeping xc+1, discard from W1 inverse images that are close to each other less than the width
of the grid p(M, N ). In particular, we consider the following procedure:
s=width of the grid p(M,N)
W2(1) = W1(1)
for i = 1 : length(W1) do

if abs(W1(i) − W2(end)) > s then
W2(end + 1) = W1(i)

end
else if 0 < (xc+1 − W2(end)) < s then

W2(end) = xc+1

end
end

Selection rule 3.1:
Input: Array W2

Output: Array W ′
3

Reject from W2 the points inside [xt−1, xt ] different from xc+1 and also those points that are
external from [xt−1, xt ] but too close to its endpoints i.e., W ′

3 is the ordered array which has
as elements the point xc+1 and all the points w ∈ W2 which satisfy

(w < xt−1 ∨ w > xt ) ∧ (|w − xt | > ε) ∧ (|w − xt−1| > ε),

with ε > 0 sufficiently small.

Selection rule 3.2:
Input: Array W2

Output: Array W ′′
3

If an improvement on at least 1% of the minimal function value

zmin = min{zi : 1 ≤ i ≤ c}
is reached in xc+1 i.e.,

zc+1 ≤ zmin − 0.01 · zmin,

and, in addition, the interval [xt−1, xt ] containing the current best point is not the smallest
one, then W ′′

3 = W2, otherwise W ′′
3 contains only xc+1.

By combining these selection rules we obtain the following two algoritms:

GAP1 : the method employing the Geometric Algorithm using Peano non-univalent approx-
imation and selection rules as written in Step 8.1;

GAP2 : the method employing the Geometric Algorithm using Peano non-univalent approx-
imation and selection rules as written in Step 8.2.

As can be seen from the selection procedures described above, GAP1 avoids to generate too
small intervals where the search region has already been well studied, whereas GAP2 avoids
excessive partition of intervals that are possibly faraway from global minimizer.

Let us now describe the general scheme of the Geometric Algorithm.
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Step 0. Initialization. Compute the first two function evaluations at the points x1 = 0, x2 =
1, i.e., compute the values z j = F(nM (x j )), j = 1, 2. Set the iteration counter
k = 2 and the trial points counter c = 2. The choice of the (c+1) trial point is done
as follows.

Step 1. Renumbering. Renumber the trial points points x1, x2, .., xc, and the corresponding
function values z1, z2, . . . , zc, of the previous c trial points by subscripts so that

0 = x1 < x2 < · · · < xc = 1,

and each value zi corresponds to the trial points xi with 1 ≤ i ≤ c. In addition,
memorize the current record zmin = min{z1, z2, . . . , zc}.

Step 2. Estimates of the Hölder constant. Calculate the current estimates Hc of the Hölder
constant using (9).

Step 3. Calculation of characteristics. For each interval [xi−1, xi ], 2 ≤ i ≤ c, compute the
point di from (10) and the characteristic Ri from (11).

Step 4. Subinterval selection. Select an interval [xt−1, xt ] for performing the next function
evaluation such that

Rt = min{Ri : 2 ≤ i ≤ c}.
Step 5. Stopping criterion. Check whether the following condition holds

|dt(k) − dt(k−1)| ≤ δ,

where δ > 0 is a given search accuracy. In the affirmative case, Stop and return
x̃ = argmin{F(nM (xi )), i = 1, . . . , c.} as an estimate of the global minimizer.
Otherwise go to Step 6.

Step 6. New function evaluation. Execute the next trial at the point xc+1 = dt .
Step 7. Calculation of inverse images. Compute all inverse images w1, . . . , w j , of the point

nM (xc+1) with respect to nM (x).
Step 8. Selection of inverse images. Insert in an ordered array W0 all points of xc+1 ∪

{w1, . . . , w j }. To obtain GAP1 go to Step 8.1, to obtain GAP2 go to Step 8.2.

Step 8.1. Perform Selection 1,2,3.1 starting from W0 (after applying Selection rule 1 to
W0, the array W1 is obtained, then the Selection rule 2 is applied to W1 in order to obtain W2

to which Selection rule 3.1 is applied). Denote by ν the number of selected inverse images
contained in the obtained array W ′

3 which will be all inserted in the list of trial points. Go to
Step 8.3.

Step 8.2. Perform Selection 1,2,3.2 starting from W0 (after applying Selection rule 1 to
W0, the array W1 is obtained, then the Selection rule 2 is applied to W1 in order to obtain W2

to which Selection rule 3.2 is applied). Denote by ν the number of selected inverse images
contained in the obtained array W ′′

3 which will be all inserted in the list of trial points. Go to
Step 8.3.

Step 8.3. Set k = k + 1, c = c + ν, and go to Step 1.
Let us study convergence conditions of the introduced methods and consider an infinite

trial sequence {xc} produced by any of the algorithms. First of all, it should be noticed that
in the practical case M < ∞, the set of limit points of {xc} coincides with the set of limit
points of the sequence {dt(k)}. This is due to the fact that the sequence {xc} is composed
by the points of {dt(k)} and the additional selected inverse images {wl} inserted at Step 8.
Since the points of {wl} belong to the discrete finite (this is because M is finite) uniform grid
p(M, N ), they cannot produce any additional accumulation point.
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Let us study now the behaviour of an infinite sequence {dt(k)} of trial points generated
by any of the two proposed algorithms, without checking the stopping criterion in Step 5, in
the limit case M = ∞. The following convergence properties were already proved in [36]
for the algorithms employing the piecewise-linear approximation. Now we show that these
results hold for the non-univalent approximation to Peano curve, as well.

Theorem 3.1 Let f (x) = F(y(x)) be the objective function which satisfies (4) where y(x)

is the Peano curve and let x ′ be any limit point of {dt(k)} generated by GAP1 or GAP2. Then
the following assertions hold:

1. Convergence to x ′ is bilateral, if x ′ ∈ (0, 1);
2. f (xc) ≥ f (x ′), for any c ≥ 1;
3. If there exists another limit point x ′′ = x ′ of {dt(k)}, then f (x ′′) = f (x ′);
4. If the function f (x) has a finite number of local minima in [0, 1], then the point x ′ is

locally optimal;
5. (Sufficient conditions for convergence to a global minimizer.) Let x∗ be a global minimizer

of f (x). Suppose that there exists an iteration number k∗ such that for all k > k∗ the
inequality

r · Hc > H (12)

holds, where Hc calculated at Step 2 at the kth iteration (see (9)) is an estimate of the
Hölder constant H from (4) and r is the reliability parameter of the method. Then x∗
and all its inverse images will belong to the set of limit points of the sequence {dt(k)} and,
moreover, any limit point x of {dt(k)} is the global minimizer of f (x).

Proof The proof follows from that of Theorem 8.2 in [33] where analogous results for the
piecewise-linear curve with M = ∞ and information algorithms have been established (see
also [31] where geometric methods are discussed). The difference introduced by the non-
univalent approximation consists in the insertion of the inverse images in the trial sequence.
In fact, the sequences of all trial points produced by GAP1 and GAP2 contain the points
{dt(k)} and the additional selected in Step 8 inverse images of the points {nM (dt(k))} chosen
with respect to nM (x). This does not influence the proof of assertions 1–4. From [33] it
follows that the global minimizer x∗ is the limit point of {dt(k)}. Since all inverse images of
x∗ have the same value f (x∗) and condition (12) holds over the whole search region [0, 1],
the inverse images and other global minimizers also will be limit points of the sequence. This
ensures that assertion 5 is also satisfied. ��

4 Numerical experiments

In this section we discuss results of numerical experiments executed to compare the two
new methods with the method MGA from [36] produced by the General Scheme employing
the Peano piecewise-linear approximation and with the DIRECT algorithm from [41]. The
experiments regarding GAP1, GAP2, and MGA were performed using MATLAB R2020b.
The results of experiments using DIRECT were taken from [42]. In GAP1, GAP2, and
MGA the technical parameter ξ from (9) was set to 10−8. The value ε = 10−3 was used
in Selection rule 3.1 for GAP1. The GKLS-generator described in [43] was used to test the
methods since it is very popular in the global optimization community because it provides
classes of test functions with known local and global minima. These functions are defined
by a convex quadratic function (paraboloid) systematically distorted by polynomials. The 8
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classes of 100 N -dimensional test functions taken from [42] and used in the experiments are
briefly described in Table 1 where the parameters m, f ∗, d , and rg indicate the number of
local minima, the value of the global minimum, the distance from the global minimizer to
the vertex of the paraboloid and the radius of the attraction region of the global minimizer
respectively. An important aspect of the generator is that, for a complete repeatability of the
experiments, if the same five parameters (N , m, f ∗, d , and rg) are used, then the same class
of functions is exactly produced. Thus, if one compares several methods using the same class
of functions then all the methods will optimize the same 100 randomly generated functions.
Each of them satisfies (2) and is defined on D = [−1, 1]N . The difficulty of a class can
be increased either by decreasing the radius rg or by increasing d , thus for each dimension
N = 2, 3, 4 we have a simple class and a difficult one.

Since the global minimizers generated by the GKLS generator are known (this is one of
the advantages of this generator), for GAP1 and GAP2, instead of the practical stopping rule
used in Step 5, we applied the following stopping criterion: if an algorithm generated a point
y′ which satisfies

|y′(i) − y∗(i)| ≤ N
√

�(b − a), 1 ≤ i ≤ N ,

then the global minimizer y∗ was considered found and the method stopped giving y′ as an
approximation to the solution for the problem (1). The same stopping criterion has been used
in MGA and DIRECT, as well.

The reliability parameter r for GAP1, GAP2, and MGA has been chosen as follows: at
most two value r1, r2 of this parameter were used for each class. This is due to the fact that
it is difficult to use different values of r for each function and, on the other hand, using a
unique value of r does not allow the algorithms to show their complete potential. The value
r1 was obtained starting from the initial value 1.1 and it was increased with the step equal
to 0.1 until at least the 95% of all test problems were solved and the maximum number of
iterations is less than 15000 for Classes 1, 2 and 3, less than 50000 for Classes 4, 5 and 6
and less than 70000 for Classes 7 and 8. Then the parameter r2 was used for the remaining
unsolved problems. It was obtained starting from r1 and then increased once again with the
step equal to 0.1 until the remaining problems were all solved within the previous values of
maximum number of iterations. Table 2 shows the values of the parameters r1, r2 used for
GAP1, GAP2, MGA and the number of solved problems with r1 and r2 (for instance 96(4)
means that 96 problems were solved using the value r1 and 4 problems with r2). The value
M = 10 was chosen as the number of partitioning of D both for the construction of Peano
non-univalent approximation and for the piecewise-linear approximation. As the objective
function is considered hard to evaluate, the number of function evaluation was chosen as the
comparison criterion. Figure 5 illustrates the comparison between DIRECT and the methods
using approximations of Peano curve on a problem of Class 2. In particular, Fig. 5 a) shows
3025 points of trials executed by DIRECT to find the global minimum of a problem of Class
2, Fig. 5 b), c), and d) present 641, 405, and 528 points of trials executes by MGA, GAP1,
and GAP2, respectively, to solve the same problem. As can be seen from the figure, DIRECT
remains too “stuck” at a local minimum with respect to its competitors and this implies a
slower convergence to the global minimizer.

Table 3 shows the average number of function evaluations performed duringminimization
of all 100 functions while Table 4 reports the maximum number of function evaluations. The
symbol “>" in Table 3 for the DIRECT algorithm means that the method stopped when the
maximum number (1000000) of function evaluations had been executed for the particular
test class. In these cases, we reported in the table a calculation of a lower estimate of the
average. Finally the notation “> 1000000(j)” in Table 4 means that after 1000000 function
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Table 1 Parameters setting for
GKLS test functions taken from
[42]

Class dimension m f ∗ d rg

1 2 10 −1 0.90 0.20

2 2 10 −1 0.90 0.10

3 3 10 −1 0.66 0.20

4 3 10 −1 0.90 0.20

5 4 10 −1 0.66 0.20

6 4 10 −1 0.90 0.20

7 5 10 −1 0.66 0.30

8 5 10 −1 0.66 0.20

Table 2 Values of the parameter
r used in the experiments

Class Method r1 r2 Solved problems with r1(r2)

1 MGA 1.5 1.8 96(4)

GAP1 1.6 1.7 98(2)

GAP2 1.6 1.7 97(3)

2 MGA 2 2.1 98(2)

GAP1 2 2.1 99(1)

GAP2 2.1 2.2 98(2)

3 MGA 1.1 1.2 95(5)

GAP1 1.1 1.2 96(4)

GAP2 1.1 1.2 96(4)

4 MGA 1.2 1.3 98(2)

GAP1 1.3 1.4 98(2)

GAP2 1.2 1.3 96(4)

5 MGA 1.2 1.3 99(1)

GAP1 1.2 − 100(0)

GAP2 1.1 1.2 99(1)

6 MGA 1.3 − 100(0)

GAP1 1.1 1.2 97(3)

GAP2 1.3 1.4 99(1)

7 MGA 1.1 1.2 98(2)

GAP1 1.1 − 100(0)

GAP2 1.1 − 100(0)

8 MGA 1.1 1.2 96(4)

GAP1 1.1 − 100(0)

GAP2 1.1 − 100(0)

evaluations themethod under consideration was not able to solve j problems. The best results
for each class are shown in bold in the tables.

As it can can be seen from tables the advantage of the proposed methods becomes more
evident when the dimension of problems increases and the problems become harder, allowing
to reduce the average number and the maximum number of function evaluations. Figure. 6
shows the behavior of the four methods through the operational characteristics (see [44])
constructed on Class 6 (left picture) and Class 8 (right picture) that are graphs showing
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(a) (b)

(c) (d)

Fig. 5 Contour lines of a test function and trial points generated by DIRECT (a), MGA (b), GAP1 (c) and
GAP2 (d) during their work. Global minimizer is marked by the red symbol “*"

Table 3 Average number of function evaluations for GKLS test functions

N Class � DIRECT MGA GAP 1 GAP 2

2 1 10−4 198.89 249.02 248.66 274.89

2 2 10−4 1063.78 699.39 796.02 683.51

3 3 10−6 1117.70 1311.31 1248.3 1261.17

3 4 10−6 >42322.65 2413.01 2618.65 2671.25

4 5 10−6 >47282.89 4504.33 4149.93 4339.02

4 6 10−6 >95708.25 10360.63 8854.58 9889.38

5 7 10−7 >16057.46 5941.37 5408.88 5403.33

5 8 10−7 >217215.58 13650.57 13217.57 13525.18
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Table 4 Maximum number of
function evaluations for GKLS
test functions

N Class � DIRECT MGA GAP1 GAP2

2 1 10−4 1159 723 825 1707

2 2 10−4 3201 2525 4872 2326

3 3 10−6 12507 12550 3580 6924

3 4 10−6 >1000000 (4) 7206 8324 8049

4 5 10−6 >1000000 (4) 18923 16313 29609

4 6 10−6 >1000000 (7) 47908 36094 37950

5 7 10−7 > 1000000 (1) 40469 32770 22248

5 8 10−7 >1000000 (16) 64444 62932 64296

Fig. 6 DIRECT, MGA, GAP1 and GAP2 on Class 6, N = 4 (left) and on Class 8, N = 5 (right)

the number of solved problems in dependence on the number of executed evaluations of the
objective function. It can be seen thatMGA,GAP1, andGAP2 are competitive in dependence
of the available budget of function evaluations.

5 Conclusions

In this paper, the multi-dimensional global optimization problem of functions satisfying
Lipschitz condition has been considered. In problems of this kind each evaluation of the
objective function f (x) is often a time consuming operation. TheGeometricAlgorithmMGA
using the traditional Peano piecewise-linear approximation and two new multidimensional
geometric algorithms GAP1, GAP2 have been considered. The methods GAP1 and GAP2
allow one to pass from the search domain in N dimension to the interval [0, 1] using a not very
well known approximation of the Peano curve, called Peano non-univalent approximation.
This approximation denoted by nM (x) reflects the property of the Peano curve: a point y in
D can have different inverse images x ′, x ′′ in [0, 1] such that nM (x ′) = nM (x ′′) = y. The
maximal possible number of inverse images of a point y ∈ D is 2N . Thus, the introduced
algorithmsGAP1 andGAP2 give the opportunity to evaluate only once the objective function
F(nM (x)) and introduce the same outcome to all multiple inverse images, leading to the
chance of reducing the total number of expansive objective function evaluations. Numerical
comparison of GAP1, GAP2, and MGA with the well-known DIRECT algorithm on 800
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test problems constructed using the GKLS generator show a promising performance of all
methods using Peano curves and, in particular, of the new algorithms.
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