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Introduction: Few artificial intelligence models exist to predict severe forms of 
COVID-19. Most rely on post-infection laboratory data, hindering early treatment 
for high-risk individuals.

Methods: This study developed a machine learning model to predict inherent risk 
of severe symptoms after contracting SARS-CoV-2. Using a Decision Tree trained 
on 153 Alpha variant patients, demographic, clinical and immunogenetic markers 
were considered. Model performance was assessed on Alpha and Delta variant 
datasets. Key risk factors included age, gender, absence of KIR2DS2 gene (alone 
or with HLA-C C1 group alleles), presence of 14-bp polymorphism in HLA-G 
gene, presence of KIR2DS5 gene, and presence of KIR telomeric region A/A.

Results: The model achieved 83.01% accuracy for Alpha variant and 78.57% for 
Delta variant, with True Positive Rates of 80.82 and 77.78%, and True Negative 
Rates of 85.00% and 79.17%, respectively. The model showed high sensitivity in 
identifying individuals at risk.

Discussion: The present study demonstrates the potential of AI algorithms, 
combined with demographic, epidemiologic, and immunogenetic data, in 
identifying individuals at high risk of severe COVID-19 and facilitating early 
treatment. Further studies are required for routine clinical integration.
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1. Introduction

Researchers worldwide have had to face a myriad of challenges at a near-relentless pace, 
driven by the complex nature of the disease caused by the Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2). Although mass vaccination campaigns have significantly 
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alleviated the effects of the pandemic, it is becoming increasingly clear 
that Coronavirus Disease 2019 (COVID-19) is likely to accompany us 
for many years to come. The vaccines have proven to be particularly 
effective in reducing the risk of severe and devastating forms of the 
disease caused by the original strain of the coronavirus. However, the 
emergence of new and more infectious variants of the coronavirus 
casts further doubts on our ability to completely eradicate the disease 
(1). Since the initial variant, known as Alpha (B.1.1.7), several other 
variants have been identified, including the Delta (B.1.617.2) and the 
Omicron (B.1.1.529) variants. The Delta variant has been estimated to 
spread about 225% faster than the Alpha variant (2). Similarly, the 
Omicron variant has shown increased transmissibility compared to its 
predecessors. As recently reported by WHO (World Health 
Organization), the Omicron XBB.1.16 variant has shown an increase 
in the prevalence, and it may become dominant in some countries and 
cause a rise in case incidence due to its growth advantage and immune 
escape characteristics. However, despite its high transmissibility, early 
data suggested these Omicron variants are associated with milder 
symptoms and a lower risk of hospitalization compared to other 
variants. Given that, and also the important fact that vaccines provided 
a significant level of protection against severe disease and other 
complications, the proposed study focused only on Alpha and 
Delta variants.

Unfortunately, up to 50% of people of all age groups end up having 
Post-Acute Sequelae of COVID-19 (PASC). These symptoms may 
linger for months or even years and seem to depend on a variety of 
factors including vaccination status, the virus variant and geographic 
region (3). It is strongly suspected that these phenomena are closely 
linked to the innate and adaptive immune response mechanisms of 
individuals (4–6).

The immune system activates different pathways of innate and 
adaptive immune response mechanisms to effectively combat viral 
infections and their associated disease progression. In previous 
epidemics such as SARS and MERS (Middle East Respiratory 
Syndrome), the immune response mechanisms of the host, including 
both innate and adaptive components, have been closely associated 
with the progression of the disease and clinical outcomes in affected 
patients (7). Also, in Zan et al. (8) Killer-cell Lectin-like Receptor D1 
(KLRD1) has been identified as a potential biomarker for flu 
susceptibility. During the current ongoing pandemic, additional 
factors such as advanced age and male gender have been identified as 
risk factors for the progression of COVID-19 toward severe and often 
fatal disease (9).

The outbreak of COVID-19 has undoubtedly prompted a large 
number of scientists to employ Artificial Intelligence (AI) to help 
combat the pandemic crisis. In fact, Machine Learning and Deep 
Learning, particular approaches of AI, are a very useful tool to 
understand and fight this disease.

In literature there are several thousands of publications that show 
a various range of ML applications that have been developed to 
address different issues related to the virus and to the associated 
disease, including forecasting the number of future infections and the 
trajectory of the outbreak (10, 11); diagnosing the disease, e.g., using 
imaging tools in addition to the standard Polymerase Chain Reaction 
(PCR) test (12); predicting the mortality and severity risk (13); 
improving drug development and vaccination (14); enhancing contact 
tracing methods from individual interviews to more efficient digital 
contact tracing (15). What becomes apparent is that, despite the 

remarkable progress in the field of ML applied to COVID-19, the 
current approaches suffer from some important drawbacks (16–21). 
First and foremost, the lack of data is a crucial element in the 
development of models. In fact, it is well-known that patients’ data are 
difficult to gather, and considering that ML models rely on large 
datasets, this problem plays an important role on models’ 
generalization and performance. Secondly, many laboratory 
parameters included in the studies are collected after the patient has 
contracted the virus and the disease has already evolved, thereby 
excluding the option of early and tailored treatment in high-risk 
individuals (22, 23). Another drawback is that the proposed 
algorithms have not yet reached the level of a human expert. This 
particular flaw is closely related to the need for ML models with high 
interpretability and transparent output. These qualities are crucial so 
that human readers, e.g., medical professionals, can have trust in the 
conclusion made by the model. Decision Tree-based models are 
particularly helpful in this case as they can provide comprehensible 
rules behind every decision taken.

What emerges from the published studies is that ML is a popular 
paradigm to create new solutions that can help in the fight against the 
virus and the related disease. However, as far as the authors’ knowledge, 
no studies that can identify “a priori” subjects at risk of developing the 
severe clinical manifestation of COVID-19, based on immunogenetics, 
demographic and clinical characteristics, were published.

The aim of the proposed study was to develop an algorithm 
capable of predicting the risk of developing a more aggressive and 
severe disease course in individuals before they become infected with 
SARS-CoV-2. An AI method, combining common demographic risk 
factors (age and gender) (24, 25) with key immunogenetic risk 
markers, including HLA class I molecule alleles (HLA-A, -B, -C) and 
the 14-base pair polymorphism in the HLA-G gene, is described. In 
fact, classical and non-classical HLA antigens play a crucial role in 
activating and regulating innate and adaptive immune responses (26). 
Additionally, KIR genes regulating NK lymphocyte activity, which 
have a significant impact on the severity of SARS CoV-2 infection 
(27), have been included.

The proposed predictive model involves the use of Decision Trees 
(DT) (28, 29), which belong to the supervised machine learning 
classification methods. DTs are able to provide high classification 
accuracies together with a simple and intuitive representation of 
gathered knowledge. This peculiarity made them quite popular in 
different areas of medical decision making (30). DTs are compared 
with Naïve Bayes (NB) classifiers, as they are a common benchmark 
in classification problems.

Considering the above, the main contributing parts of this work 
are described as follows:

 - Development of an algorithm: the paper presents the 
development of an algorithm that utilizes demographic, 
epidemiologic and immunogenetic data to identify individuals at 
high risk of developing severe clinical manifestations of 
COVID-19.

 - Validation of the algorithm: the algorithm is validated using a 
limited number of cases by means of a leave-one-out cross-
validation procedure, demonstrating its high predictive ability.

 - Improvement in early treatment: the algorithm’s ability to identify 
high-risk individuals enables early treatment with antiviral drugs 
and passive immunotherapy, potentially improving patient 
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outcomes and reducing the incidence of severe illness 
and hospitalization.

 - Relevance to different COVID-19 variants: the algorithm’s 
effectiveness in discriminating against severe forms of COVID-19 
infection is highlighted, suggesting its potential applicability and 
customization to new emerging variants and viruses with 
similar characteristics.

 - Comparative analysis: the paper compares the performance of 
the proposed algorithm with existing approaches and discusses 
its advantages, highlighting the incorporation of immunogenetic 
markers as a distinguishing factor.

 - Integration of AI in healthcare: the paper discusses the broader 
implications of AI in healthcare, emphasizing the integration of 
AI algorithms with IoMT and digital healthcare platforms. It 
highlights the potential of such technologies to improve disease 
management, diagnostics, and therapeutic strategies.

The remaining sections of the paper are structured as follows: 
section 2 provides a description of the Materials and Methods. This 
section is further divided into subsections. Section 2.1 discusses the 
ethical statement, section 2.2 describes the database containing the 
parameters of the COVID-19 infected subjects, sections 2.3 and 2.4 
present a theoretical explanation of the NB and DT models, 
respectively, and section 2.5 introduces the indices used to assess the 
model’s performance. The experimental results are presented in 
section 3. In section 4, an organized discussion and possible 
limitations of the method are presented. Finally, the paper ends with 
a conclusion in section 5.

2. Materials and methods

2.1. Ethical statement

Patients were recruited and enrolled in the study protocol at the 
Department of Medical Sciences and Public Health of the University 
of Cagliari, the University Hospital of Cagliari (AOUCA) and the 
SS. Trinità Hospital of the Sardinian Regional Company for the 
Protection of Health (ATS Sardegna). Written informed consent was 
obtained from all patients and controls in accordance with the ethical 
standards (institutional and national) of the local human research 
committee. The study protocol, including informed consent 
procedures, conforms to the ethical guidelines of the Declaration of 
Helsinki and was approved by the responsible ethics committee 
(Ethics Committee of the Cagliari University Hospital; date of 
approval: 27 May 2020; protocol number GT/2020/10894). Records of 
written informed consent are kept on file and are included in the 
clinical record of each patient.

2.2. Clinical and laboratory parameters of 
the COVID-19 infected subjects

A panel of 153 patients were recruited from 1 June to 1 December 
2020. The diagnosis of SARS-CoV-2 infection was confirmed in all 
patients by RT-PCR from nasopharyngeal swab. The patients were 
assigned to one of two groups according to disease severity: 73 
(47.71%) patients with severe disease were assigned to the “severe” 

class and 80 (52.29%) patients, who were either asymptomatic or 
pauci-symptomatic, were assigned to the “asy/pauci” class. Patients in 
the asy/pauci group had been confined to home isolation whereas 
patients in the severe group had been hospitalized in the COVID Unit 
of the SS. Trinità Hospital in Cagliari. Fourteen of the 73 hospitalized 
patients died from cardio-respiratory arrest related to severe 
pulmonary impairment (interstitial pneumonia) (31).

Model aging has been observed in a variety of application 
scenarios. In order to test for aging of the prediction model, an 
additional test set was prepared using 42 patients infected by the more 
recent Delta variant of the coronavirus during the period from May 
to July 2021. Also, in this data set the diagnosis of SARS-CoV-2 
infection was confirmed in all patients by RT-PCR from 
nasopharyngeal swab. The analysis included clinical and demographic 
parameters as well as the immunogenetic factors required by 
the model.

Most patients in the severe group required high-flow nasal oxygen 
supplementation or invasive treatment with mechanical ventilation. 
The second group of asy/pauci patients presented symptoms such as a 
runny nose, loss of taste or smell, headaches, a dry cough and/or other 
flu-like symptoms.

The clinical and demographic parameters included in the analysis 
were: male or female gender, age, a positive anamnesis for autoimmune 
diseases (Hashimoto’s thyroiditis, rheumatoid arthritis, diabetes 
mellitus, autoimmune hepatitis), flu vaccination performed in 
2019/2020, use of levothyroxine (for thyroid disease), G6PDH 
deficiency, carrier of thalassemia.

Alongside these 7 clinical and demographic parameters, several 
immunogenetic variables based primarily on HLA class I and II alleles, 
the 14-bp insertion/deletion polymorphism of the HLA-G gene, KIR 
genes and combinations of KIR genes and their HLA ligands 
were included.

More precisely, the main immunogenetic factors used for risk 
analysis were frequencies of the HLA-A, HLA-B, HLA-C, HLA-DRB1 
alleles, 3 HLA-G genotypes based on the presence of the 14-bp 
insertion (Ins) or deletion (Del) polymorphism of the HLA-G gene 
(Ins/Ins, Ins/Del or Del/Del) and 14 KIR genes (2DL1, 2DL2, 2DL3, 
2DL4, 2DL5, 3DL1, 3DL2, 3DL3, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, and 
3DS1). Additionally, the KIR AA genotype (present or absent) and the 
most relevant functional units (combinations of KIR genes and HLA 
Class I alleles assigned to the C1, C2 or Bw4 categories of KIR ligands), 
i.e., KIR2DL1/S1-HLA C2 group, KIR2DL2/S2-HLA C1 group, 
KIR3DL1/S1-HLA-Bw4 group, were included. The diversity of KIR 
haplotypes according to the four centromeric (cA01, cB01, cB02, cB03) 
and two telomeric (tA01, tB01) gene-content motifs (32) were also 
considered. To simplify the analysis, the centromeric regions were 
divided into Cen A/A, Cen A/B and Cen B/B and the telomeric regions 
into Tel A/A Tel A/B and Tel B/B (33). Finally, the role of the extended 
haplotype HLA-A*02:05, B*58:01, C*07:01, DRB1*03:01, which in a 
previous study of the Sardinian population resulted to offer protection 
against the severe clinical forms of COVID-19 (25), was evaluated.

Typing of the HLA Class I  alleles (HLA-A, HLA-B, HLA-C), 
typing of KIR genes, and determination of the 14-bp polymorphism 
(Ins/Del) of the HLA-G gene were performed as described in Mocci 
et al., Littera et al., Amodio et al., and Caocci et al. (24–26, 34).

To construct the ML models, a database was built in which each 
record corresponds to one patient and each feature in these patient 
records corresponds to the clinical/demographic and immunogenetic 
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parameter. Given the small number of records and the presence of 
missing values in the database, a record saving procedure was applied 
so that only features common to the 153 patients were kept. 
Conversely, features with no variability across the 153 patients such as 
KIR2DL4, KIR3DL2, and KIR3DL3, were discarded. The features kept 
after the cleaning procedure and their corresponding values are 
summarized in Table 1 (column Parameters) which also shows the 
presence or absence of the HLA-A, -B, -C, -DRB1 alleles and the KIR 
genes identified in the selected sample.

The right column reports the coding adopted to construct the 
database for the machine learning algorithm. The possible values 
assigned to the first- and second-class HLA alleles were: absent if the 
allele was absent at the locus of interest; present once if only one copy 
of the allele was present; present twice if two copies of the allele 
were present.

2.3. Naïve Bayes

Naïve Bayes (NB) is a simple probabilistic classification technique 
commonly used in ML. It is based on Bayes’ theorem (29) and assumes 
that all features are independent of each other. In order to make 
prediction, the NB algorithm calculates the conditional posterior 
probability for each class and selects the class label with the 
highest probability.

In a binary classification problem, the algorithm can 
be  further optimized by setting a proper threshold on the 
conditional posterior probability. If the resulting probability is 
above this threshold, the test instance is assigned to the positive 
class, otherwise to the negative class. Normally, the threshold is 
obtained by a cross-validation procedure in correspondence to 
the optimal operating point of the Receiving Operating Curve 
(ROC) curve (35). In this case, leave-one-out cross validation is 
applied. In leave-one-out cross-validation, one single observation 
is used to validate the remaining observations. In other words, 
the training process is applied once for each observation, using 
all the other observations as a training set and using the selected 
observation as the validation set (29).

2.4. Decision trees

DTs pertain to the class of supervised Machine Learning 
classification methods and were used in the proposed study to 
evaluate the risk for an individual to develop a severe clinical 
form of COVID-19. In particular, the prediction models were 
based on implementation adopted in the MATLAB toolbox 
(MATLAB R2019b) for Statistics and Machine Learning (36, 37). 
These Machine Learning algorithms are among the most versatile 
statistical models, able to automatically classify multidimensional 
data into two or multiple classes. In the proposed study, it was 
opted for a binary classification for the prediction of 
asymptomatic/pauci-symptomatic (asy/pauci class = 0) or severe 
(severe class = 1) disease.

DTs consist of hierarchical data structures that grow through a 
divide-and-conquer strategy (28) categorizing data samples into 
different classes. The construction of a DT starts from the root node, 
which contains the entire dataset with a class composition reflecting 
the proportion among class populations in the whole dataset. In the 
proposed problem, 48% of the instances belong to the severe class, 
whereas the remaining 52% belong to the asy/pauci class. At each 
node, the algorithm selects the best feature to split the data based on 
a certain criterion, such as minimizing the impurity of that node. Two 
of the most popular impurity indexes are Entropy and Gini’s Diversity 
Index, calculated, respectively, as follows:

    ( ) 2 2 )|N |NPr(1 )log Pr(1 ) Pr(O )log Pr(| NON |H N = − −
 

(1)

   ( ) )|N2Pr(1 ) ( NPr |OG N =
 

(2)

where Pr(1|N) and Pr(0|N) represent the conditional probabilities of 
an instance belonging to severe and asy/pauci classes. These measures 

TABLE 1 Clinical/demographic and immunogenetic parameters used to 
build the AI models and related values.

Parameters Values

Gender Female, Male

Age 20–96

Flu vaccination

Absent, presentAutoimmune disease

G6PDH

HLA-A*

01, 02, 03, 11, 23, 24, 

25, 26, 29, 30, 31, 32, 

33, 66, 68, 69, 80

Absent, present once, 

present twice

HLA-B*

07, 08, 13, 14, 15, 18, 

27, 35, 37, 38, 39, 40, 

41, 44, 45, 47, 49, 50, 

51, 52, 53, 55, 56, 57, 

58, 78

HLA-C*
01, 02, 03, 04, 05, 06, 

07, 08, 12, 14, 15, 16, 17

HLA-DRB1*
01, 03, 04, 07, 08, 10, 

11, 12, 13, 14, 15, 16

HLA-G Del/Del, Ins/Del, Ins/Ins

KIR 2DL1, 2DL2, 2DL3, 

2DL5, 3DL1, 2DS1, 

2DS2, 2DS3, 2DS4, 

2DS5, 3DS1

Absent, presentGenotype AA

HLA C1 group of epitopes

HLA C2 group of epitopes

KIR2DS2 and HLA C1 group

KIR2DS1 and HLA C2 group

Centromere (CEN)
A/A, A/B, B/B

Telomere (TEL)

Protective Haplotype (HLA-A*02:05, B*58:01, 

C*07:01, DRB1*03:01)
Absent, present
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are used to evaluate the homogeneity of the labels at the node and 
guide the DT algorithm in determining the best split to create more 
homogeneous child nodes.

The splitting process continues recursively until leaf nodes are 
reached, where final decisions are taken, as shown in Figure 1, where 
red and green leaves indicate a classification as severe and asy/pauci, 
respectively.

Once the decision tree is constructed, a decision on a test 
sample can be reached by simply following the conditions in the 
tree until a leaf is reached. Based on the training set distribution, 
a posterior probability is assigned to the leaf and a score is 
assigned to the test sample. If the score is above (or below) a 
certain threshold, the test instance is assigned to the positive (or 
negative) class. Also in this case, the optimum value of the 
threshold is normally obtained by leave-one-out cross-
validation procedure.

There are several motivations that support the choice of DTs 
among the numerous and well-known ML classification methods, 
such as Neural Networks (NNs), SVM, discriminant analysis, and so 
on (29). The main reasons backing the decision to apply DTs were:

 • features can be both continuous or categorical (in the problem at 
hand the features are categorial with binary or multiple values);

 • availability of large training datasets is not mandatory, as opposed 
to other machine learning methods (as shown in paragraph 2.2, 
in the proposed problem, a limited number of instances 
are available);

 • the contributions of the features can be easily evaluated; and
 • when using the model on an instance never presented before, 

the final decision (i.e., the classification of an instance) is 
easy to understand, interpret and visualize, simply by 
following the rules used along the path from the root to 
the leaf.

2.5. Methodology

Firstly, univariate analysis was performed on all clinical/
demographic and immunogenetic parameters, to find the parameters 
more related to both low and high risk of developing a severe form of 
COVID-19. The age, which maximized the separation between asy/
pauci and severe groups, was used as a threshold to calculate the odds 
ratios (OR).

Secondly, the training of the DT classifiers was performed. Given 
the limited size of the database, 10 training sessions were performed 
selecting 10 training and 10 test set sets by means of the Bootstrap 
Aggregating (Bagging) procedure. Bagging reduces the eventual bias 
arising from the choice of a particular test set (38). By subsampling 
the initial database of 153 patients, 10 balanced test sets of 30 patients 
were created, each one composed of 15 asy/pauci patients and 15 
severe patients, none of whom were used for the model training 
process. For each test set, a model was trained on the remaining 123 
patients, 65 pertaining to the asy/pauci group and 58 to the severe 
group. Subsequently, predictive performance was evaluated by 
averaging the performance of the 10 models. For the validation of the 
models, leave-one-out cross-validation was used.

One of the advantages of using DTs is the possibility to derive 
rules easily interpretable by the medical staff. In order to create a 
single model capable of improving the classification based exclusively 
on age group and gender, from each of the 10 DT models, the rules 
leading to classification scores greater than 2/3 on the training set were 
extrapolated. Only the rules present in at least three models 
were retained.

Aging of the prediction model was evaluated by preparing an 
additional test set of 42 patients infected by the highly contagious 
Delta variant of SARS-CoV-2. The clinical and demographic 
parameters were included in the analysis as well as the immunogenetic 
factors required by the model.

FIGURE 1

Graphical representation of a Decision Tree. Red and green leaves indicate a classification as severe and asy/pauci, respectively.

https://doi.org/10.3389/fmed.2023.1230733
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Pisano et al. 10.3389/fmed.2023.1230733

Frontiers in Medicine 06 frontiersin.org

2.6. Performance indexes

In the following section, performance of the classifiers was tested 
on the database described in paragraphs 2.1 and 2.2. The performance 
indexes used to evaluate the classifier models were the well-known 
metrics as: True Positive Rate (TPR) or sensitivity, which refers to the 
ability of the model to correctly detect severe patients; True Negative 
Rate (TNR) or specificity, which refers to the ability of the model to 
correctly detect asy/pauci patients; Accuracy (ACC), which refers to 
the proportion of correctly classified patients among all cases; Positive 
Predictive Value (PPV) and Negative Predictive Value (NPV), which 
measure the proportion of true positives (TP) among the positive test 
results and the proportion of true negatives (TN) among the negative 
test results, respectively.

3. Results

Figure 2 shows the odds ratio for COVID 19 protective and risk 
factors and their related confidence intervals (39). The plots highlight 
the factors more closely associated with protection or an increased risk 
of a severe clinical disease course. The age, which maximized the 
separation between asy/pauci and severe groups, was 55.

The immunogenetic factors that seemed to offer increased 
protection against the more severe clinical forms of COVID 19 were: 
age less than or equal to 55 years, female gender, presence of the 
KIR2DS2 gene, particularly when combined with HLA-C alleles of the 
C1 group, presence of KIR2DS3 and presence of the HLA-G 14-bp 
Del/Del or Ins/Ins genotype. It is interesting to note that the presence 

of the protective haplotype (HLA-A*02:05, B*58:01, C*07:01, 
DRB1*03:01), not shown in Figure 2, yielded an OR of 0, owing to the 
fact that this haplotype was completely absent in the severe group of 
patients. This factor has previously been shown to have a strong 
protective effect and, despite its relatively high frequency (2.6%) in the 
Sardinian population, was only observed in 4 of the 80 (3%) 
individuals pertaining to the asy/pauci group.

The strongest risk factors for a severe clinical disease course were: 
age above 55 years, male gender, absence of the KIR2DS2 gene alone 
or in combination with HLA-C alleles of the C1 group (KIR2DS2/
HLA-C C1+), presence of the 14-bp polymorphism (Ins/Del) of the 
HLA-G gene, presence of the KIR2DS5 gene and presence of the KIR 
telomeric region A/A (Tel A/A).

The associations found for COVID 19 protection/risk factors 
using univariate analysis deserve further investigation in larger 
cohorts of patients.

Table 2A shows the average performance of the 10 NB models for 
training, leave-one-out, and test data sets. The range of the different 
indices among the 10 models is also provided for the whole database. 
The NB models, trained on the full set of features, showed relatively 
high accuracy on the training data with a score of 86.02%; despite this, 
the average accuracy for leave-one-out and test were 61.87% and 
60.33%, respectively. This shows that NB models fit the training data, 
but perform worse on test data, which means that they experience a 
high overfitting. Similar results would be obtained by means of DT 
without any action to limit overfitting.

To avoid overfitting, when training the DT models, the tree-
building process was stopped before it produced leaves with very small 
samples. This heuristic is known as early stopping, although 

FIGURE 2

Odds-ratio of factors that influence the severity of COVID-19 disease in Sardinian patients (odds ratio: red squares, blue bars: 95% confidence interval).
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occasionally it is referred to as pre-pruning. The minimum sample size 
in terminal nodes was fixed at 6, since this helps to maximize the 
average accuracy on the 10 models for the leave-one-out set (see 
Figure 3). An example of a pre-pruned tree (one of the 10 trained 
models) is shown in Figure 1.

Table 2B shows the average performance of the 10 DT models for 
training, leave-one-out and test data sets. The range of the different 
indices among the 10 models is also provided for the whole database. 
With respect to the results obtained on NB models, the DT models 
showed similar accuracy on the training data with a score of 83.41%, 
while higher average accuracy, equal to 80.98%, for leave-one-out. 
Accuracy on test data decreased on average to 74.67%showing also for 
decision trees a little overfitting. When considering performance on 
the whole dataset, the averaged accuracy remained high (81.70%). The 
accuracy in the worst model was still high (79.74%). However, larger 
deviations were observed for TPR (72.60–84.93) and TNR (75.00–
88.75). In fact, models with low TPR generally report high TNR and 
vice versa, making accuracy values quite stable.

The reduced overfitting obtained on DT models with respect to 
NB models could be due, as well as to the pre-pruning stage, also to 
the capability of DTs to perform a feature selection. Figure 4 shows the 
relative importance of the most significant features (in order of 
importance) used by the DT models. In order to easily compare the 
importance obtained in the different tests, the impurity gain for each 
feature was normalized by the sum of the impurity gains of all features. 
The red circle indicates the average normalized importance, while the 
blue bars indicate the interval obtained among the 10 models.

As can be seen, the most important features were age group and 
gender. This finding is furthermore supported by the results of 
univariate analysis shown in Figure 2.

The genetic feature with the highest importance was the 14-bp 
insertion/deletion polymorphism of the HLA-G gene, already 
identified as a risk or protection factor in univariate analysis. For the 
sake of comparison, the results on the NB models by using only the 11 
features selected by DTs shown in Figure 4 are reported in Table 2C. As 
it can be noticed, the performances on the leave-one-out after the 
feature selection are better than those obtained with the full features 
dataset and closer to the results obtained by DT models.

In line with current literature, age group and gender were leading 
predictors for all the considered models. The age group threshold 
identified by the DTs was 55. Table 3 reports the number of asy/pauci 
and severe classified cases according to the different age and gender 
groups. In the database, the asy/pauci and severe cases were 
equinumerous (19 asy/pauci and 18 severe) in the group of women 
over 55 years of age and, therefore, did not provide any information 
for this group. On the other hand, 40 out of the 49 men older than 55 
developed severe symptoms. Among younger patients (age less than 
56 years), only 2 of the 35 women developed severe symptoms. Thus, 
young age is in itself a protection factor for women. Among younger 
men, only 13 out of 32 developed severe symptoms.

After extrapolating the rules leading to classification scores greater 
than 2/3 on the training set, present in at least three models, the 
retained rules involved four genetic parameters: presence or absence 
of the HLA-G 14-bp Del/Ins genotype, presence or absence of 
KIR2DS5, presence or absence of 2DS2/HLA-C1 and presence of the 
KIR telomeric region (Tel A/A). Among older women, addition of the 
parameter KIR2DS5 allowed for correct classification in 27 out of 37 
cases: 14 out of 19 asy/pauci cases and 13 out of 18 severe cases. 
Among older men, after adding presence or absence of the KIR2DS2/
HLA-C C1+ functional unit and the KIR telomeric region (Tel A/A), 
it became possible to correctly classify 42 out of 49 cases: 5 among the 
9 severe cases and 37 among the 40 asy/pauci cases. In the group of 
younger men, presence or absence of the HLA-G 14-bp Del/Ins 

TABLE 2 Average performance of (A) NB models, (B) DT models, (C) NB 
models with selected features from DTs, for training, leave-one-out and 
test sets.

Training Leave-
One-
Out

Test Whole

(A) NB models

P 58 58 15 73

TP 49.0 32.0 8.6 57.6 (47–63)

TPR (%) 84.48 55.17 57.33 78.90 (64.38–86.30)

N 65 65 15 80

TN 56.8 44.1 9.5 66.3 (61–70)

TNR (%) 87.38 67.85 63.33 82.87 (76.25–87.50)

P + N 123 123 30 153

TP + TN 105.8 76.1 18.1 123.9 (115–131)

ACC (%) 86.02 61.87 60.33 80.98 (75.16–85.62)

PPV (%) 85.66 60.49 61.00 80.96 (75.00–85.92)

NPV (%) 86.32 62.91 59.80 81.33 (72.34–86.30)

(B) DT models

P 58 58 15 73

TP 48.1 47.0 10.9 59.0 (53–62)

TPR (%) 82.93 81.03 72.67 80.82 (72.60–84.93)

N 65 65 15 80

TN 54.5 52.6 11.5 66.0 (60–71)

TNR (%) 83.85 80.92 76.67 82.50 (75.00–88.75)

P + N 123 123 30 153

TP + TN 102.6 99.6 22.4 125.0 (122–127)

ACC (%) 83.41 80.98 74.67 81.70 (79.74–83.01)

PPV (%) 82.45 79.30 76.31 81.07 (75.61–85.94)

NPV (%) 84.83 83.00 73.86 82.66 (78.02–85.14)

(C) NB models with selected features from DTs

P 58 58 15 73

TP 48.7 44.6 11.4 60.1 (56–66)

TPR (%) 83.97 76.90 76.00 82.33 (76.71–90.41)

N 65 65 15 80

TN 54.3 50.1 11.4 65.7 (61–71)

TNR (%) 83.54 77.08 76.00 82.12 (76.25–88.75)

P + N 123 123 30 153

TP + TN 103.0 94.7 22.8 125.8 (121–132)

ACC (%) 83.74 76.99 76.00 82.22 (79.08–86.27)

PPV (%) 81.99 74.96 76.00 80.92 (77.21–87.71)

NPV (%) 85.38 78.90 76.00 83.71 (79.27–89.71)

The same performance and corresponding ranges (in brackets) obtained on the 10 DT 
models are also provided for the whole dataset.
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genotype allowed for the correct classification of 25 out of 32 cases: 9 
among the 13 severe cases and 16 among the 19 asy/pauci cases.

Figure 5 illustrates the diagnosis classification scheme. The red and 
green rectangles represent severe and asy/pauci classification, respectively. 
The two numbers in these rectangles indicate the number of asy/pauci 
and severe patients falling within each class. Overall, 126 out of 153 cases 
were correctly classified: 63 of the 80 asy/pauci cases and 63 of the 73 
severe cases. The classification failed for 10 older women (5 asy/pauci and 
5 severe), 7 older men (4 asy/pauci and 3 severe), 2 severe young women 

and 7 young men (3 asy/pauci and 4 severe). As shown, for older women, 
older men and younger men, the additional genetic parameters improved 
the classification based on age group and gender by about 21.62%, 4.08%, 
and 20.00%, respectively.

Performance of the two models—one based on age group and 
gender and the other expanded to include genetic parameters—is 
shown in Table 4A. Although the model based on age group and 
gender has a quite good performance in recognizing actual asy/pauci 
patients, it exhibits a very low ability in recognizing actual severe 
patients. The inclusion of genetic parameters helps to increase the 
accuracy on the overall dataset by more than 10 % points, thereby 
consistently increasing the TPR from 54.79% to 80.82%. This property 
is confirmed by the PPV and NPV. In fact, while the classification 
based on age group and gender has a low NPV, demonstrating a low 
ability in identifying asy/pauci cases, the proposed expanded model 
yielded both PPV and NPV above 80%.

The test on the aging of the prediction model in Figure 5 by means 
of the 42 patients infected by the Delta variant, lead to 24 (57.14%) 
patients with severe disease assigned to the severe class, and 18 
(42.86%) patients, who were either asymptomatic or pauci-
symptomatic, assigned to the asy/pauci class. Out of the 18 female 
patients, most of whom were under the age of 55, 77% did not develop 
severe disease. Out of the remaining 24 male patients, 58.3% 
developed the severe form of the disease.

Table 4B compares the performance of the proposed predictive 
model to that of the model exclusively based on age group and gender. 
Although the model based on age group and gender achieved quite 
good performance in identifying asy/pauci patients, it had a very low 
ability in recognizing severely ill patients. After adding the genetic 
parameters, accuracy increased by more than 7 % points with a 
remarkable increase in TPR from 44.44% to 77.78%. Moreover, TNR% 

FIGURE 3

Average number of correct classifications (TP  +  TN) and accuracy 
(ACC) on the leave-one-out set with varying minimum sample size 
on the terminal nodes. The dotted lines indicate the minimum and 
maximum values obtained in the 10 DT models. The red circle 
indicates the best accuracy obtained and the corresponding 
minimum leaf size.

FIGURE 4

Normalized relative importance for each feature averaged among the 10 DT models (red circle) with min-max interval (blue bars).
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yielded a value greater than 79%. It should be noted that the proposed 
model also yielded quite good values for PPV and NPV. The latter 
reached a value of about 83% thereby providing us with a high degree 
of confidence that, in case of negative predicted value, the tested 
patient will not develop the severe form of the disease even if he/she 
has been infected by the Delta variant virus. It is worth noting that 
PPV and NPV are closely related to the prevalence, and thus should 
be carefully evaluated during screening stages. The comparison with 
the numbers in Table  4A confirms the conclusions made when 
referring to the datasets of patients infected by the Alpha variant, 
thereby showing a limited aging effect; all the performance indices 
decreased but still remained well above the 70% threshold.

4. Discussion

Medicine is one of the main sectors in which the use of AI has 
been successfully applied, not only achieving improvement in 
diagnostic strategies but also enabling more specific and targeted 
therapies that in future will allow for increasingly “personalized” 
medicine. The application of AI embraces a variety of medical fields 
that range from the digitalization of diagnostic imaging and the 
replacement of paper files with digital reporting to the development 
of biotechnologies associated to “omics” sciences, all of which have led 
to a true explosion of the so-called Internet of Medical Things (IoMT). 

IoMT is focused on healthcare and is an extended and more specific 
version of the Internet of Things (IoT) (40–42). Combined to point-
of-care diagnosis, it could be used within the current crisis to develop 
a digital healthcare platform capable of administering proper care to 
COVID-19 patients at home as well as to provide government and 
healthcare organizations with a comprehensive disease management 
database (43).

On the topic of prediction of mortality risk and severity, several 
works have been published. The aim of the first line of research was to 
assess the mortality risk, i.e., to determine patients with the highest 
risk of dying from COVID 19 using clinical, demographic and 
radiological data on admission to the hospital from the electronic 
medical records (44–48). Each study selected various biomarkers that 
can predict the mortality, e.g., age, male gender, white blood cell, 
comorbidity profile of the patient such as diabetes mellitus, respiratory 
distress, coronary artery disease, and others.

The second line of research aforementioned, focused on the 
assessment of the severity risk, i.e., the development of a ML model 
based on clinical, radiological and laboratory characteristic to predict, 
on the basis of the patients outcome, the severity of the disease (49–
53). Male gender, obesity, smoking, cerebrovascular disease, chronic 
liver disease, etc., were clinical determinants of Covid-19 severity. The 
study in Toraih et al. (54) explored pre-existing cardiovascular diseases 
as a risk factor of a severe form of COVID 19. This study suggested 
that, beyond the well-known pulmonary complications, high severity 
and mortality rates are closely related to viral myocarditis, myocardial 
damage, microangiopathy, and acute coronary syndromes. The 
conclusion of this study was that elevated cardiac injury biomarkers 
may improve the identification of patients with high risk of mortality 
and severity. In de Freitas et al. (55)’, the main symptoms, signs and 
demographic data that were most often associated to the 
hospitalization in patients with respiratory problems, have been 
defined by means of a ML model. In Sun et  al. (56), researchers 
employed a Support Vector Machine (SVM) model where input data 

TABLE 3 Database grouping based on age and gender.

Age group Gender Asy/pauci Severe

>55
F 19 18

M 9 40

≤55
F 33 2

M 19 13

FIGURE 5

Classification scheme and results: green and red rectangles represent the asy/pauci and severe classes respectively; the two numbers are the number 
of asy/pauci and severe patients, respectively, falling within the class.
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are associated with the clinical course of COVID-19. The results 
showed that a four-feature combination of GSH, CD3 ratio, total 
protein and age resulted in an Area Under Receiving Operating Curve 
(AUROC) of 0.9996 and 0.9757 in the training and testing datasets, 
respectively. Kaplan–Meier survival and cox-multivariate regression 
analyses confirmed the ability of the model to individuate severe cases 
using the selected clinical parameters. Moreover, after evaluating 253 
clinical blood samples from the city of Wuhan in China, a group of 
researchers found 11 key relevant indices (total bilirubin, creatine 
kinase isoenzyme, glucose, creatinine, kalium, lactate dehydrogenase, 
platelet distribution width, calcium, basophil, total protein, and 
magnesium) which can detect, with an overall specificity and 
sensitivity of 95.95 and 96.97%, respectively, COVID 19 infected 
patients (57).

In general, most of these algorithms couple demographic 
parameters such as the sex and age of the patients to simple clinical 
and laboratory parameters such as blood group, transaminase, 
bilirubin, creatinine, number of platelets, etc. Some other studies have 
included more sophisticated laboratory markers: the dosage of 
cytokines, chemokines, the structure of lymphocyte subpopulations 
and various genetic factors including mutations in coagulation genes 
(58, 59). In Yasar et al. (60), three COVID-19 positive patient groups 
(mild, severe, and critical) and a control group have been classified 
based on the blood protein profiling.

Among all ML methods, Logistic Regression, SVM, Random 
Forest (RF) and Gradient Boosting Decision Trees were the most used. 
Particularly, the best possible results may be achieved by the gradient 
boosting models, RF and NNs.

Additionally, machine learning models tuned by metaheuristic 
algorithms like Genetic Algorithms and Particle Swarm Optimization 
have gained popularity due to their ability to find near-optimal 
solutions in complex problem domains.

In the context of COVID-19, metaheuristic frameworks that 
combine the Generalized Boltzmann distribution and orthogonal 

Jacobi polynomials have been successfully employed to analyze the 
spread of the virus (61). These metaheuristic approaches have also 
found applications in other critical areas, such as the monitoring and 
management of COVID-19 patients. By leveraging the Internet of 
Things (IoT), real-time monitoring of COVID-19 patients could 
be achieved through wearable devices, enabling automatic alerts to 
mitigate risk factors (62).

Throughout the pandemic, millions of people with or without 
symptoms have been isolated at home, waiting for the evolution of the 
infection either toward recovery or worsening of the clinical 
symptoms. This has often led to delays in hospitalization and the 
administration of timely and effective treatment (63). Indeed, early 
treatment of patients at a greater risk of developing the more severe 
forms of the disease is fundamental to the healing process and reduces 
the incidence of patients admitted to intensive care and the overall 
mortality rate (64).

AI algorithms have been widely used to predict the clinical evolution 
of SARS-CoV-2 infection. These algorithms have a high accuracy and 
ability to discriminate severe cases. However, an intrinsic limitation is 
represented by the fact that the laboratory and instrumental parameters 
on which these tools are based are altered by the interaction of the 
organism with the virus. This limits their predictive ability in the early 
stages of infection, when it is more important to be able to predict the 
evolution of the disease toward severe forms in order to ensure timely and 
appropriate treatment strategies.

The antiviral Paxlovid (Pfizer Inc.) for COVID-19 appear 
promising for treating COVID-19 in the early stages and seem to 
be particularly indicated for adults with mild to moderate disease and 
at risk of developing a more severe disease course (65). Therefore, it 
becomes even more important to identify individuals who are at a 
high risk of experiencing severe illness and hospitalization.

Unlike previous algorithms described in the literature, the 
proposed algorithm is based on demographic and epidemiologic data 
as well as the specific immunogenetic characteristics of each individual 
which are totally unrelated to the humoral and tissue changes 
generated during the viral infection.

This approach, which has a TPR and TNR of around 80%, allows 
us to identify “a priori” subjects at high risk of developing the severe 
clinical manifestations of COVID-19 should they become infected 
with SARS-CoV-2. Despite the limited number of cases used for AI 
training, the extremely high predictive ability of the model supports 
the reliability and effectiveness of the proposed algorithm.

The high ability to discriminate subjects at high risk of developing 
the severe and potentially lethal forms of COVID-19, both before and 
in the early stages of SARS-CoV-2 infection, makes this particular 
algorithm an interesting system for use in clinical practice. Another 
problem that needs to be  addressed is that even fully vaccinated 
individuals do not always mount an appropriate immune response 
when challenged with the virus and in some cases may require booster 
shots to ensure adequate protection. The proposed algorithm might 
be  capable of individuating these cases and could perhaps help 
researchers upgrade therapies as well as the trained immunity 
currently offered by COVID-19 vaccines.

The main limitation of this study lies in the relatively small 
number of subjects examined, as well as the focus on only two variants 
[B.1.1.7 (Alpha) and B.1.617.1 (Delta)]. Therefore, the high predictive 
capabilities of the proposed AI algorithm need to be validated on 
larger and more diverse cohorts. Furthermore, the use of these 
approaches is currently hindered by the challenge of regularly 

TABLE 4 Performance on the (A) Alpha variant infected patients and (B) 
Delta variant infected patient datasets of the two models: one based 
exclusively on age group and gender and a proposed model expanded to 
include four relevant genetic parameters.

(A) Alpha variant 
infected patients

(B) Delta variant 
infected patients

Age 
group 

and 
gender

Proposed 
model

Age 
group 

and 
gender

Proposed 
model

P 73 73 18 18

TP 40 59 8 14

TPR (%) 54.79 80.82 44.44 77.78

N 80 80 24 24

TN 71 68 22 19

TNR (%) 88.75 85.00 91.67 79.17

P + N 153 153 42 42

TP + TN 111 127 30 33

ACC (%) 72.55 83.01 71.43 78.57

PPV (%) 81.63 83.10 80.00 73.68

NPV (%) 68.27 82.93 68.75 82.61
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collecting immunogenetic variables in non-hospitalized patients, thus 
limiting its application beyond hospital settings. However, it is 
important to acknowledge the growing trend of integrating genomic 
information into routine clinical practice. Technological advancements 
and decreasing costs of genomic sequencing are making complete 
genomic profiling of individuals at birth increasingly feasible and 
potentially commonplace. As genomic medicine progresses, the 
availability and integration of immunogenetic variables in clinical 
settings are expected to improve, creating new opportunities for the 
broader application of AI algorithms in healthcare.

However, the algorithm can be significantly simplified by reducing 
the number of immunogenetic markers to only four genetic 
parameters strongly associated with a more severe disease course: 
absence of the KIR2DS2 gene alone or in combination with HLA-C 
alleles of the C1 group (KIR2DS2/HLA-C C1+), presence of the 14-bp 
polymorphism (Ins/Del) of the HLA-G gene, absence of the KIR2DS5 
gene and absence of the KIR telomeric region A/A (Tel A/A).

These four genetic markers made it possible to identify with certainty 
about 80% (TPR) of all patients who developed the severe form of 
COVID-19 whereas the use of sex and age alone only identified half of 
those at risk of developing severe SARS-CoV-2 infection.

It is interesting to note that the proposed algorithm resulted to 
be  effective in discriminating against severe forms of COVID19 
infection independent of whether the patients had been infected by 
the Alpha variant and the more common and widespread Delta 
variant. It can therefore be assumed that its application would also 
be effective in the case of newly emerging Omicron variants.

In synthesis, all subjects who test positive by a nasopharyngeal 
swab can quickly be classified in a low or high-risk range. Those at 
high risk can receive early treatment with the anti-COVID19 drugs 
such as the oral antiviral drug Molnupiravir (66) and/or passive 
immunotherapy based on the use of anti-spike monoclonal antibodies 
which has shown to yield the best results when administered in the 
initial stages of infection (63, 67).

The proposed algorithm could be made user-friendly by creating a 
rapid antigen test to analyze the four most relevant genetic markers either 
at home or in the clinic. The algorithm can be inserted into an application 
for iOS or Android to facilitate its use even in an out-of-hospital setting. 
This would allow for early treatment of patients at high risk of developing 
severe disease with the newly emerging but highly expensive drugs.

However, considering that it is extremely difficult to develop high 
quality clinical prediction models that are beneficial to patients and 
providers in the different areas of healthcare (22), the proposed 
algorithm will need to undergo scrupulous validation on large cohorts 
before it can be  recommended for widespread use in routine 
clinical practice.

Overall, the algorithm tested in this pilot study is extremely 
reliable and combines clinical and demographic features with some 
simple immunogenetic markers associated with the more severe forms 
of COVID-19. With appropriate modifications, the proposed 
approach could represent a starting point for the creation of other 
algorithms applicable to a wide spectrum of viral infections.

5. Conclusion

In conclusion, the application of artificial intelligence (AI) in 
the field of medicine, particularly in the context of the COVID-19 

pandemic, has shown great potential for improving diagnostic 
strategies and enabling personalized medicine. The use of AI 
algorithms has facilitated the prediction of clinical evolution and 
identification of individuals at high risk of developing severe forms 
of COVID-19. While existing AI algorithms primarily rely on 
laboratory and instrumental parameters that are influenced by the 
interaction between the virus and the organism, the proposed 
algorithm takes into account demographic, epidemiologic, and 
specific immunogenetic characteristics. This unique approach has 
demonstrated a high accuracy in identifying individuals at high risk 
of severe clinical manifestations of COVID-19, even in the early 
stages of infection. Furthermore, the algorithm’s ability to 
discriminate between severe and mild/moderate cases of COVID-19 
is independent of the viral variants, including the Alpha and Delta 
variants, suggesting its potential effectiveness against variants and 
viruses with the same characteristics. To simplify the 
implementation of the algorithm in clinical practice, it is proposed 
to reduce the number of immunogenetic markers to four genetic 
parameters strongly associated with a more severe disease course. 
This would make it feasible to determine the risk level of patients 
using a rapid antigen test in a user-friendly manner, either at home 
or in a clinic setting. However, before widespread implementation, 
the algorithm requires rigorous validation on large cohorts to 
ensure its reliability and effectiveness. Additionally, the integration 
of the algorithm into a digital healthcare platform, along with the 
administration of early treatment using antiviral drugs and passive 
immunotherapy, could significantly improve disease management 
and reduce the incidence of severe cases and overall mortality rate. 
In conclusion, the present study demonstrates the potential of AI 
algorithms, combined with demographic, epidemiologic, and 
immunogenetic data, in identifying individuals at high risk of 
severe COVID-19 and facilitating early treatment. This approach 
could serve as a foundation for the development of similar 
algorithms for various viral infections, highlighting the broader 
applications of AI in healthcare.
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