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Hybrid UWB-Inertial TDoA-based Target
Tracking with Concentrated Anchors

M. Martalò, S. Perri, G. Verdano, F. De Mola, F. Monica, and G. Ferrari

Abstract—In this paper, hybrid radio/inertial mobile target
tracking for accurate and smooth path estimation is considered.
The proposed tracking approach builds upon an Ultra Wide-
Band (UWB)-based positioning algorithm, based on the Linear
Hyperbolic Positioning System (LinHPS), with Time Difference of
Arrival (TDoA) processing and anchors concentrated on a single
hotspot at the center of the environment where the target moves.
First, we design an Adaptive Radio-based Extended Kalman
Filter (AREKF), which does not require a priori statistical
knowledge of the noise in the target movement model and
estimates the measurement noise covariance, at each sampling
time, according to a proper LookUp Table (LUT). In order to
improve the performance of AREKF, we incorporate inertial
data collected from the target and propose three “hybrid” ra-
dio/inertial algorithms, denoted as Hybrid Inertial Measurement
Unit (IMU)-aided Radio-based EKF (HIREKF), Hybrid Noisy
Control EKF (HNCEKF), and Hybrid Control EKF (HCEKF).
Our results on experimentally acquired paths show that the
proposed algorithms achieve an average instantaneous position
estimation error on the order of a few centimeters. Moreover,
the minimum target path length estimation error, obtained with
HCEKF, is on the order of 6% and 1% for two paths with lengths
equal to approximately 17 m and 46 m, respectively.

Index Terms—Target tracking, Inertial Measurement Unit
(IMU), Ultra WideBand (UWB), Time Difference of Arrival
(TDoA).

I. INTRODUCTION

MODERN communication networks require a more and
more accurate knowledge of the positions of users

and objects to allow context awareness and location-based
services, such as navigation, network optimization, augmented
reality, location-sensitive billing, security, etc. This aspect
is crucial in Internet of Things (IoT)-based applications, in
which devices may be placed in indoor scenarios, where
environmental characteristics (e.g., obstructions, multipath,
and interferences) may lead to Non-Line-Of-Sight (NLOS)
propagation conditions, which are detrimental for accurate
device localization [1].

Positioning algorithms are based on properly processing the
estimated distances between the target and some reference

M. Martalò is with the Department of Electrical and Electronic Engi-
neering, University of Cagliari, Italy, & the Research Unit of Cagliari,
Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT),
Italy, e-mail: marco.martalo@unica.it. He was with the University of
Parma, Italy, when this work was carried out. G. Verdano, F. De Mola,
and F. Monica are with Elettric80 S.p.A., Viano (RE), Italy, e-mail:
{verdano.g,demola.f,monica.f}@e80group.com. S. Perri was with Elettric80
S.p.A., Viano (RE), Italy, when this work was carried out, e-mail: si-
mone.perri23@gmail.com. G. Ferrari is with the IoT Lab, Department of
Engineering and Architecture, University of Parma, Italy, & the Research
Unit of Parma, CNIT, Italy, e-mail: gianluigi.ferrari@unipr.it.
This paper was presented in part at the IEEE Int. Conf. Computing, Commun.
and Security (ICCCS), Rome, Italy, October 2019.

(with known positions) nodes, denoted as anchors, from
relevant parameters of the used radio technologies, such as
Bluetooth, WiFi, cellular (4G/5G) [2]. Examples of these
parameters are the Received Signal Strength Indicator (RSSI),
Angle of Arrival (AoA), Time of Arrival (ToA), Time Differ-
ence of Arrival (TDoA) [2]. In particular, TDoA exploits the
difference, in terms of signal propagation times from the target
(transmitting a beaconing signal) to the anchors, provided that
the anchors are synchronized with each other. An appealing
technology for localization is Ultra Wideband (UWB), which
can provide, jointly with TDoA processing, accurate position
estimation and limited vulnerability to changes of environmen-
tal conditions in many scenarios (see, e.g., [3] and references
therein).

While existing algorithms allow to determine the position
of a static user, proper tracking algorithms are needed if a
mobile user is considered [4]. ToA- and AoA-based tracking
with NLOS mitigation is discussed in [5]. In [6], target
tracking is performed without using information from fixed an-
chors, odometers, or Inertial Measurement Units (IMUs), but
leveraging position-related information contained in multipath
components of the received radio signal. In [7], TDoA-based
target tracking with UWB communications is considered,
focusing on measurement noise decorrelation for performance
improvement. The joint use of IMU and UWB measurements
in Kalman-based target tracking is also considered in the
literature. In [8], the joint use of IMU and Time of Flight
(ToF) data is proposed to improve the robustness and accuracy;
in particular, a constant acceleration model for the target
movement is considered. ToF and IMU data are also exploited
in [9], where experimental results are obtained using the
InvenSense MPU-9250 IMU [10] and DWM1000 UWB radio
node [11]. A similar scenario is considered in [12]. In [13],
TDoA and AoA data from UWB UbiSense devices [14] are
fused with InvenSense MPU-6050 IMU [15] data and the
corresponding performance is investigated.

Unlike previous literature, which focuses on “classical”
scenarios where the anchors are distributed along the perimeter
of the area to be monitored and the target lies inside this area,
we consider anchors placed on a single “hotspot” with limited
dimensions, whereas the target to be localized lies outside the
polytope identified by the anchors, as proposed in [16]. This
scenario may be relevant in smart warehouses, where human
operators and Automatic Guided Vehicles (AGVs) coexist.
In this case, the anchors may be placed on the AGV to
localize human operators around it. The use of this architecture
allows to avoid situations in which the anchors are in NLOS
conditions with the target, thus making the localization process
ineffective.
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While in [16], [17] a TDoA-based three-dimensional radio
positioning algorithm with anchors concentrated on a single
hotspot is designed for static target detection, in this paper
we extend it to a scenario with a mobile target (which
moves around the hotspot). The key idea is to apply standard
solutions, e.g., those based on Kalman filtering, to exploit
inertial information from the mobile target to improve local-
ization accuracy. In particular, we focus on two-dimensional
target tracking.1 Since the accuracy of the considered radio
positioning algorithm varies with the relative distance and
angle between the hotspot and the target [16], we consider
two classes of algorithms.
• First, we propose an Adaptive Radio-based Extended

Kalman Filter (AREKF), which does not required fixed
a priori statistical knowledge of the noise in the target
movement model (which is indeed adaptively estimated)
and the measurement noise covariance is estimated at
each time epoch according to a proper LookUp Table
(LUT).

• In order to improve the performance of the AREKF,
we extend this algorithm by taking into account inertial
data collected from the target [18], [19]. Depending
on how inertial information (representative of the target
movement) is combined with radio-based tracking, we
will consider IMU-aided or IMU-controlled radio-based
tracking.

Even if Kalman filtering is a well-established technique, its
extension to the considered architecture with concentrated
anchors on the hotspot is novel—this implies that a direct com-
parison with other approaches in the literature cannot easily be
performed. Our results show that the proposed algorithms can
track the true target path with an average estimation error on
the order of a few centimeters. In particular, the hybrid IMU-
controlled radio-based tracking algorithm, denoted as HCEKF,
is the best solution among those investigated.

The remainder of this paper is organized as follows. In
Section II, the system model is discussed. In Section III, the
standard radio-based Kalman filter is presented. In Section IV,
the AREKF algorithm is proposed. Then, in Section V the
hybrid radio/inertial solutions are presented, with a discussion
on potential system implementations. In Section VI, numerical
results are shown. Finally, concluding remarks are given in
Section VII.

II. SYSTEM MODEL

A. Reference Architecture

The considered reference scenario is shown in Fig. 1: a
target to be localized moves in a monitored environment,
e.g., a human operator walks inside a large warehouse with
AGVs. In this paper, we consider a single target to be tracked,
but our TDoA-based localization strategy can be extended to
multiple targets, provided that they can be identified from the
exchanged packets.2

1The extension to three-dimensional tracking is an interesting research
extension, but goes beyond the scope of this paper.

2The use of ToA-based algorithms incurs higher latency, e.g., due to the
use of Two-Way Ranging (TWR) techniques.

Fig. 1. Considered reference scenario.

Fig. 2. System model and illustrative trajectory (true and estimated).

Standard localization approaches envision the distribution
of several anchors in the environment. However, this may
not be feasible in large environments, such as warehouses.
Moreover, some of the anchors may not be in direct visibility
with the target due to the presence of possibly large obstacles,
e.g., goods’ shelves. Such anchors, in NLOS communication
conditions with respect to the target, may be detrimental for
localization accuracy and, in some cases, make the entire
system unusable. To this end, in this paper we assume that the
anchors are concentrated on a single hotspot [16]. The hotspot
comprises a sufficient number of anchors to locate the target.
Moreover, the hotspot can be opportunistically placed in the
monitored environment, so that at least one set of anchors is
in direct visibility (Line-Of-Sight, LOS) with the target.

Note that we do not focus on specific requirements on
target-hotspot distances. In fact, the proposed architecture
allows to track targets also in very large environments, by sim-
ply inserting multiple hotspots at proper positions. Moreover,
our preliminary results in [16] show sufficient localization
accuracy even for relatively large target-hotspot distances (on
the order of a few tens of meters).

B. Three-Dimensional Topology

The system model is shown in Fig. 2, where a representative
target trajectory (solid black line) is also shown. The target
position and velocity at time epochs t = kTs, k = 0, 1, . . .
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(being Ts, dimension: [s], the sampling interval) can be
denoted, in the three-dimensional space, as follows:3

ppp
(3d)
k = [px,k, py,k, pz,k]

T (1)

vvv
(3d)
k = [vx,k, vy,k, vz,k]

T
=
ppp
(3d)
k − ppp(3d)k−1

Ts
. (2)

This approach can be extended to take into account the
acceleration which the target is subject to. However, our
results, not shown here for lack of space, show that no sig-
nificant performance improvement is obtained by considering
the acceleration.

The target has to be detected by a hotspot on which N
anchor nodes are placed at the following fixed positions:

aaa
(3d)
i = [ax,i, ay,i, az,i]

T
i = 1, . . . , N. (3)

The Center of Gravity (CoG) of the hotspot is denoted as

aaa(3d) =
1

N

N∑
i=1

aaa
(3d)
i . (4)

The three-dimensional distance ri,k between the i-th anchor
and the k-th target position can be expressed as follows:

ri,k =
∣∣∣∣∣∣ppp(3d)k − aaa(3d)i

∣∣∣∣∣∣ = c τi,k (5)

where || · || denotes the Euclidean norm, c ' 3 · 108 m/s is
the speed of light, and τi,k is the ToF between the i-th anchor
and the k-th target position.

At each time epoch, the target sends a UWB beacon and the
hotspot, running a TDoA-based radio positioning algorithm on
the signals received by the anchors, derives a position estimate
denoted as

mmm
(3d)
k = [mx,k,my,k,mz,k]

T
. (6)

C. TDoA Measurements

TDoA algorithms exploit the difference (rather than abso-
lute values) between the ToFs (from the target) measured at
different anchors upon the reception of the beacon transmitted
by the target.4 Even if ToF-based methods can be potentially
more accurate than TDoA-based methods, they require that the
anchors, besides being synchronized among themselves, are
also synchronized with the target. Another possible solution
is the use of two-way ranging, which, however, is not scalable
to scenarios where multiple targets have to be tracked. On the
other hand, in TDoA-based methods only the anchors need
to be synchronized with each other: this can be effectively
obtained in the considered scenario, since they are physically
close. This is also confirmed in [20].

Let us consider the k-th time epoch. Denoting aaa(3d)j,k (j ∈
{1, 2, . . . , N}) as the first anchor receiving the transmitted
beacon, the i-th TDoA ∆τi,k (i 6= j) can be defined as the

3We remark that, in the remainder of this paper, boldface lowercase and
uppercase letters denote vectors and matrices, respectively.

4Note that the number of anchors receiving the transmitted beacon may
be smaller than N , e.g., due to environmental interference and obstacles.
However, in the remainder of this paper, we will assume that all the anchors
are receiving a beacon and can collaborate to target localization.

difference between the ToF τi,k measured by the i-th anchor
and the ToF τ ′k measured by a reference anchor, i.e.,

∆τi,k = τi,k − τ ′k i ∈ {1, . . . , N}/j. (7)

Note that, by definition, ∆τi,k > 0. In practice, however, only
measured TDoAs, rather than the true TDoAs, are available.
These TDoA measurements are denoted as

∆̃τ i,k = τ̃i,k − τ̃ ′k =
r̃i,k − r̃′k

c
i ∈ {1, . . . , N}/j (8)

where the following notation will be used in the rest of the
paper: χ̃ will denote the measurement of the true value χ. One
can easily observe that the accuracy of (7) strictly depends on
the clock synchronization between the anchors, i.e., the ToFs
τi,k and τ ′k need to refer the same time axis. In the following,
we will assume perfect synchronization among anchors—the
impact of imperfect time synchronization among anchors of
UWB nodes in TDoA-based schemes is discussed in [16], [20].
The results in [16] show that a 1 ns accuracy between anchors
is needed to achieve good positioning accuracy in the scenario
of interest for this paper. Almost perfect synchronization can
be practically achieved by wire-connecting the anchors to a
central unit, which acts as a very accurate clock source and
distributes a signal synchronization to the anchors [21]. Other
solutions are based on wireless communications among the
anchors to achieve the desired synchronization accuracy (see,
e.g., [22] and references therein).

We remark that the ToFs are computed with reference to
the three-dimensional distances travelled by radio signals.

D. UWB Communication Model

The specific statistical characterization of the measured
ToFs {τ̃i,k} in (8) depends on UWB signalling and channel
status. All the target-anchor communication links are assumed
to be in LOS. In [16], the following simple, yet accurate and
experimentally validated, model for noisy ToF estimation in
UWB LOS links is considered:

τ̃i,k = τi,k + δi,k (9)

where δi,k ∼ N (µi,k, σ
2
i,k). According to [16], µi,k and σi,k

can be approximated as linear functions of τi,k, i.e.:

µi,k ' q1τi,k + q2/c (10)
σi,k ' s1τi,k + s2/c. (11)

Expressions (10) and (11) are intuitive, since the longer the
target-anchor distance, the higher the expected measurement
noise.

Following the approach proposed in [16], here we consider
q1 = 0.0042, q2 = 0.01 m, s1 = −0.0003, and s2 =
0.0302 m. These values are obtained using a standard Least
Square (LS) estimation model based on experimental data
collected with decaWave DW1000 UWB nodes [11], which
are currently considered for experimental implementation of
the proposed localization system.
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E. Two-Dimensional Tracking

Even though we refer to a three-dimensional topology (as
described in Subsection II-B), in the remainder of the paper we
are interested in two-dimensional tracking. This is meaningful
in a scenario where the target is moving on a flat surface and
the goal is to reconstruct its two-dimensional trajectory.

In the following, unless there is a superscript (·)(3d), a
vector will be two-dimensional and its components will refer
to x and y coordinates. In particular, the target tracking
algorithms presented in Section III, Section IV, and Section V
will refer to two-dimensional scenarios.

F. IMU Measurement Model

We assume that the target is equipped with an IMU which
allows to derive an estimate v̂vvk of the true instantaneous
velocity vvvk at the k-th time epoch.5 Estimation of the target
velocity vector can be tackled, as in standard inertial naviga-
tion problems, by resorting to in-sensor processing at the IMU
and leveraging kinematic laws. A possible (but not the only
one) method in the literature can be found in [23].

The use of the velocity estimate may be expedient to
improve the accuracy of the tracking algorithm, as explained
in Section V. The estimated target velocity can be modeled as

v̂vvk = vvvk + qqqk (12)

in which qqqk ∼ N (000,RRRIMU) is the IMU measurement noise,
assumed to be additive Gaussian with zero mean and the
following covariance matrix:

RRRIMU = diag([σ2
IMU σ2

IMU]) (13)

where: diag(ξξξ) is a diagonal matrix with elements of vector
ξξξ on the main diagonal; and σ2

IMU is the per-component noise
variance (assumed, for simplicity, to be the same for both
components). We implicitly assume that the reference systems
of the IMU and of the radio positioning algorithm are the
same, i.e., the orientation estimate provided by the IMU is
error-free. An accurate experimental estimation of the velocity
vector is an open research question. However, in Section VI
we will provide numerical results with various values of σIMU

to encompass the cases of good or poor velocity estimation.
The impact of an imperfect orientation estimation on the
performance will be the subject of future work [24].

III. (STANDARD) RADIO-BASED TARGET TRACKING

We now briefly recall the basics of a standard radio-based
EKF, whose goal is to provide smooth estimation of the true
positions {pppk} starting from the radio-based position mea-
surements {mmmk} [25]. The linearized equations that describe
a Kalman filter, namely the state transition equation and the
state observation equation, are the following [25]:

sssk+1 = AAAsssk +wwwk (14)
mmmk = HHHsssk +nnnk (15)

where the main terms can be described as follows.

5We remark, for instance, that, according to Subsection II-E, vvvk is the
two-dimensional velocity in the x− y plane, i.e., vvvk = [vx,k, vy,k]

T .

• The vector sssk denotes a properly defined state to be
estimated (at time epoch k). In this case, we define a
four-dimensional state as the combination of the position
and the velocity at each time epoch, i.e.,

sssk =
[
pppTk , vvv

T
k

]T
. (16)

• The matrix AAA is the state transition matrix, which de-
scribes the state update model. In the remainder of this
paper, we will consider a constant velocity model, where
the state transition matrix AAA, of size 4 × 4, has the
following block matrix form:

AAA =

[
1 Ts
0 1

]
⊗ III2 (17)

in which ⊗ denotes the Kronecker product between
matrices [26] and IIIn is the notation for the identity matrix
of size n.

• The vector wwwk is the additive noise affecting the move-
ment with respect to the considered model given by
matrix AAA. The model noise wwwk is a four-dimensional
Gaussian vector with zero mean and the following co-
variance matrix:

QQQ = diag([0 0 σ2
Q σ2

Q]). (18)

Therefore, the model (14) is representative of a target
moving with a velocity which can vary around a constant
value affected by a (Gaussian) noise characterized by its
standard deviation σQ.

• The vector mmmk has, as elements, the measurements of
the components of state sssk available at the input of the
EKF at time epoch k. The measurements correspond to
position and velocity estimates obtained with a proper
positioning algorithm (as will be described at the begin-
ning of Section IV). The state observation equation is
characterized by the matrix HHH , of size 2× 4, which can
be written as

HHH = [1 0]⊗ III2. (19)

• The vector nnnk = [nx,k, ny,k]T is a two-dimensional ad-
ditive noise vector which affects the considered measure-
ments (i.e., radio-based position estimates). This vector is
modeled as Gaussian with zero mean and the following
covariance matrix:

RRR = diag([σ2 σ2]) (20)

where RRR = E[nnnknnn
T
k ] is the covariance matrix of the

measurement noise, being E[·] the mean value operator
The standard EKF algorithm for dynamic state estimation

involves two main steps: prediction and update [25]. In the
prediction step, the current state is predicted (on time) and the
a priori estimate of the error covariance is obtained for the
next step—these estimates will be identified, notation-wise, by
a reversed hat symbol (̌·). The update step is then responsible
for a feedback correction that incorporates a new measurement
into the a priori estimate to obtain an improved a posteriori
estimate. The updated estimate will be identified by a hat
symbol (̂·).
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The prediction step at epoch k is characterized by the
following operations:

šssk = AAAŝssk−1 (21)

F̌FF k = AAAF̂FF k−1AAA
T +QQQ (22)

where the symbol FFF is used to estimate the state covariance
matrix, namely: F̂FF k−1 is the updated estimate at the previous
epoch and F̌FF k is the predicted estimate at the current epoch.
In the update step, the following operations are carried out:

GGGk = F̌FF kHHH
T
(
HHHF̌FF kHHH

T +RRR
)−1

(23)

F̂FF k = (III4 −GGGkHHH) F̌FF k (24)
ŝssk = šssk +GGGk (mmmk −HHHšssk) (25)

where GGGk is referred to as the Kalman gain (at epoch k). The
recursion is initialized with F̂FF 0 = III4, p̂pp0 = mmm0 (mmm0 being the
first radio-based measured position), and v̂vv0 = 0002, where 000n
is the notation for the all-zero vector of size n.

IV. ADAPTIVE RADIO-BASED TARGET TRACKING

The radio-based position estimates {mmmk} fed at the input of
the EKF, as explained in Section III, correspond to the x− y
coordinates of the position estimates coming from a TDoA-
based three-dimensional positioning algorithm (see [16] for
more details). In particular, we rely on the Linear Hyperbolic
Positioning System (LinHPS) algorithm [27], which provides
a position estimate as a LS solution of the following linear
system of equations:

mmm
(3d)
k = EEE+

k bbbk (26)

where: mmm(3d)
k is the three-dimensional position estimate; EEEk

and bbbk are proper matrix and vector containing the coordinates
of anchors and the range estimates between them and the tar-
get; and EEE+

k represents the pseudoinverse of EEEk, obtained by
means of the Moore-Penrose pseudoinversion operation [26]—
EEEk is not, in general, a square matrix.

The matrix RRR in (23) characterizes the estimation error in
the (three-dimensional) TDoA-based UWB positioning algo-
rithm: for this reason, we refer to nnnk as “measurement” noise.
In [16], we have shown that, for the LinHPS algorithm, the
position error does not have zero mean and the variance is
not constant, as it depends on the relative position (in terms
of distance and angle) between the hotspot and the target.
In particular, the longer the distance, the higher the noise
intensity [16].

According to [16], the position error can then be modeled
as nnnk ∼ N (µµµk,RRRk), with

µµµk = µµµ(dk, θk) (27)

RRRk =

[
σ2
x(dk, θk) ρkσx(dk, θk)σy(dk, θk)

ρkσx(dk, θk)σy(dk, θk) σ2
y(dk, θk)

]
(28)

where: dk , |pppk − aaa| and θk , pppk − aaa are the true two-
dimensional distance and the true angle between the target
and the hotspot CoG, respectively; and ρk = ρ(dk, θk) is

the correlation coefficient between the errors on the x and
y coordinates, i.e.,

ρk =
E {[nx,k − µx(dk, θk)] [ny,k − µy(dk, θk)]}

σx(dk, θk)σy(dk, θk)

which depends, in general, on dk and θk.

A. Offline LUT Construction

The parameters µµµk andRRRk can be estimated offline, through
a preliminary calibration phase for different distances and
angles, and properly stored in a LUT for online use by
the EKF, as explained in the following subsection. To this
end, the target is placed at various positions characterized
by different distances and angles from the hotspot. For
each target position, Nm two-dimensional position estimates{
mmm

(1)
k ,mmm

(2)
k , . . . ,mmm

(Nm)
k

}
of the true position pppk are col-

lected. The j-th (vector) position error (with sign) can be
written as

eee
(j)
k = mmm

(j)
k − pppk j = 1, 2, . . . , Nm (29)

where the difference is performed element-wise. Assuming a
Gaussian distribution of the position error (the same for each
consecutive estimate corresponding to the same true position),
one can compute the sample mean and the standard deviation
of the position error as follows [28]:

µµµk =
1

Nm

Nm∑
j=1

eee
(j)
k (30)

σσσk =

√√√√ 1

Nm − 1

Nm∑
j=1

[
eee
(j)
k −µµµk

]2
(31)

where µµµk = [µx,k, µy,k]T and σσσk = [σx,k, σy,k]T . The cor-
relation coefficient can be estimated by means of the sample
Pearson correlation coefficient as [28, Ch. 4]

ρk =
1

Nm − 1

Nm∑
i=1

[
e
(i)
x,k − µx,k

σx,k

][
e
(i)
y,k − µy,k

σy,k

]
. (32)

From σσσk in (31) and ρk in (32) one can derive RRRk in (28).
Note that the LUT parameters are accurately estimated if the
number Nm of collected measurements is sufficiently large.
This comes at the price of an estimation delay. However, since
the LUT construction is performed offline, this is not an issue
and Nm can be set to a sufficiently large value to guarantee
convergence of (30)-(32).

B. Online Operations

The standard EKF has to be properly modified to take into
account the statistical characterization of the position error
derived in the previous subsection. In particular, we propose
to use the LUT to obtain, at each time epoch, an estimate of
the covariance matrix R̂RRk in the following way. Since the exact
target-hotspot distance and angle (i.e., the polar coordinates)
are not available in practice, the following estimates of these
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quantities, based on the current position estimate mmmk output
by the LinHPS algorithm, are considered:

d̂k = |mmmk − aaa| (33)

θ̂k = mmmk − aaa. (34)

At this point, the LUT is first read at coordinates given by d̂k
and θ̂k, obtaining6(

µ̂µµk, R̂RRk

)
= LUT(d̂k, θ̂k). (35)

Since the position estimate mmmk has (from the LUT) a non-zero
mean error, the LUT reading at (d̂k, θ̂k) does not provide the
correct statistical characterization. In particular, the true target
position pppk is better characterized by a modified estimate mmm′k,
which can be computed as

mmm′k = mmmk − µ̂µµk.

One can then compute the following polar coordinates corre-
sponding to mmm′k:

d̂′k = |mmm′k − aaa| (36)

θ̂′k = mmm′k − aaa (37)

and, then, read the corresponding LUT entry, i.e.,(
µ̂µµ′k, R̂RR

′
k

)
= LUT(d̂′k, θ̂

′
k). (38)

The parameters µ̂µµ′k and R̂RR
′
k provide a more accurate statistical

characterization of the position error. At this point, the Kalman
gain computation in (23) can be modified as follows:

GGGk = F̌FF kHHH
T
(
HHHF̌FF kHHH

T + R̂RR
′
k

)−1
. (39)

Moreover, the update equation (25) can be modified as

ŝssk = šssk +GGGk

(
mmm
′′

k −HHHšssk
)

(40)

where mmm
′′

k = mmmk − µ̂µµ′k is a corrected (zero-mean) version of
mmmk. The final estimated position by AREKF is ŝssk.

The adaptive estimation of the covariance matrix of the
movement model is obtained according to the method pre-
sented in [29], where an iterative estimation is proposed on
the basis of the following innovation term:

ěeek = mmmk −HHHšssk. (41)

In particular, following the approach in [29] one obtains

Q̂QQk = λQ̂QQk−1 + (1− λ)GGGkěeekěee
T
kGGG

T
k (42)

where λ ∈ [0, 1] is a proper forgetting factor.
Since the above described approach uses the radio-based

EKF scheme introduced in Section III with adaptive estimation
of the covariance matrices, we refer to it as Adaptive Radio-
based EKF (ARKEF). A complete block diagram of the
AREKF algorithm is shown in Fig. 3.

6Note that the LUT is obtained at discretized values of dk and θk . If the
LUT is not available at distance d̂k and angle θ̂k , proper linear interpolation
among adjacent available values is performed.

prediction

update

AAA known

HHH known
LUT

reading

mmmk

(ŝssk, F̂FF k)

(ŝssk−1, F̂FF k−1)

z−1šssk

iter. est.

known

z−1

F̌FF k

Q̂QQk

mmm
′′
k

R̂RR
′
k

(HHH,λ)

Fig. 3. Block diagram of the AREKF algorithm.

V. HYBRID INERTIAL/RADIO-BASED TARGET TRACKING

We now propose an improvement of the AREKF derived
in Section IV by leveraging the use of inertial measure-
ments, independent of the radio ones, according to the IMU
measurement model in Subsection II-F. Depending on how
inertial information is combined with radio-based tracking,
we will consider two classes of hybrid radio/inertial tracking
algorithms: IMU-aided (Subsection V-A) or IMU-controlled
(Subsection V-B).

A. IMU-aided Radio-based EKF

A heuristic hybrid solution, denoted as Hybrid IMU-aided
Radio-based EKF (HIREKF), can be obtained as follows.
First, one can use the AREKF in Section IV and, then,
correct the AREKF-based position estimate using the IMU-
based position estimate (predicted by the velocity vector). In
particular, denoting as p̂ppk,radio the position estimate provided
by the update step (40) in AREKF,7 the final position estimate
can be written as

p̂ppk = αp̂ppk,radio + (1− α) p̂ppk,IMU (43)

where: α ∈ [0, 1] is a proper weight; p̂ppk,radio is obtained using
the AREKF with p̂ppk−1 used as ŝssk−1 in (21); and p̂ppk,IMU is
the position estimate predicted by the IMU-based estimated
velocity v̂vvk starting from the last overall position estimate,
i.e.,

p̂ppk,IMU = p̂ppk−1 +BBB v̂vvk (44)

being BBB = diag([Ts Ts]).
In other words, the HIREKF approach starts from the

last position estimate p̂ppk−1 and derives two possible position
estimates: one from the AREKF (p̂ppk,radio) and the other by
integrating the velocity vector over the sampling interval
(p̂ppk,IMU). The final position estimate can be computed as a
weighed average of these two estimates as in (43), where the

7Note that p̂ppk,radio corresponds to p̂ppk in Section IV and that p̂ppk is
composed by the first two components of the state ŝssk estimated by the
AREKF, according to the block diagram in Fig. 3 and the final equation
(40).
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path
true

p̂ppk
p̂ppk,IMU

p̂ppk,radio

p̂ppk−1

pppk−1

v̂vvk pppk

Fig. 4. Pictorial description of a step of the HIREKF algorithm.

coefficient α can be tuned according to the accuracy of the
two measurements. If the IMU has low reliability (e.g., due to
poor orientation estimation), the AREKF should weigh more
and one should set α > 0.5; if, on the other hand, the AREKF
is not reliable (e.g., due to the presence of obstructions in
the communication links that degrades the LinHPS estimate),
then one should set α < 0.5. This tuning can be typically
performed offline on the basis of the measurement accuracy
provided by the device constructor. In Section VI, we will
analyze a scenario where no reliability information is a priori
available and, therefore, α is set to 0.5, i.e., an arithmetic
average is performed in (43). A pictorial description of a step
of the HIREKF algorithm is shown in Fig. 4.

One may observe that equations (43) and (44) do not depend
on the parameter σIMU, which, therefore, does not need to
be accurately characterized from a statistical point of view.
Considering adaptive setting of the value of α, this approach
may be helpful when the target cannot be radio localized, e.g.,
in an indoor scenario with poor (NLOS) UWB connectivity. In
this case, an IMU-based estimate could still be obtained and,
by setting α = 0, the algorithm could rely on it. We remark
that a purely inertial tracking could be used for a limited
amount of time to prevent inaccurate estimation due to the drift
problem, which should be properly taken into account [24].
Tuning can also be performed online, if real-time estimates of
the accuracies of UWB and IMU measurements are available.
Adaptive selection of the value of α is an interesting research
direction which, however, goes beyond the scope of this paper.

B. Radio-based EKF with IMU Control

The linearized Kalman filter can be extended to take into
account the presence of an input control as follows:

sssk+1 = AAAsssk +BBBuuuk +wwwk (45)
mmmk = HHHsssk +nnnk (46)

where uuuk is the control variable and BBB is a properly defined
matrix that may also include known disturbances [25]. This
Kalman filtering can be applied to target tracking provided
that uuuk can include external inputs that can control the target
movement. In our case, the state can be defined as the target
position, i.e., sssk = pppk, and the control may be the velocity
vvvk. Therefore, the state transition matrix becomes AAA = III2,
whereas, by resorting to a constant velocity model, BBB is
defined as in Section V-A. The model noise, of size 2 × 1,
is wwwk ∼ (000,QQQmod), where, in this case, the covariance
matrix QQQmod described the uncertainty of the state, i.e., the
target position, in the considered constant velocity model.

update
HHH known

LUT
reading

(ŝssk, F̂FF k)

(ŝssk−1, F̂FF k−1)

z−1

mmm
′′
k

R̂RR
′
k

mmmk

v̂vvk

(šssk, F̌FF k)

prediction

known
(AAA,BBB)

Fig. 5. General block diagram of the Kalman-based algorithm with IMU
control.

The measurement model only takes into account the position
estimates given by the radio positioning algorithm. Therefore,
it holds that HHH = III2 and nnnk ∼ (000, R̂RR

′
k). The rationale behind

this approach is that the linearized Kalman filter can provide
reliable estimates when relying on a well-measured control,
since the constant velocity model becomes accurate.

A general block diagram of the Kalman algorithm with IMU
control is shown in Fig. 5. In the following, we will derive
the algorithm with two possible instances, i.e., using different
equations in the prediction and update stages.

1) Instance 1 (HNCEKF): If the control variable is noisy
(as in our case with uuuk = v̂vvk), one can resort to the approach
in [30], where a robust unbiased linear Kalman filter with
noisy control input is derived. We refer to this approach as
Hybrid Noisy Control EKF (HNCEKF). The prediction step
is characterized by the following operations:

šssk = AAAŝssk−1 +BBBv̂vvk (47)

F̌FF k = AAAF̂FF k−1AAA
T +BBBRRRIMUBBB

T + Q̂QQk,mod (48)

where Q̂QQk,mod is an estimate of the model noise covariance
matrix obtained through the iterative innovation-based ap-
proach presented at the end of Section IV. In the update
step, the only operation different from the radio-based EKF in
Section IV is the Kalman gain computation, which becomes

GGGk = F̌FF kHHH
T
(
HHHF̌FF kHHH

T + R̂RR
′
k −RRRIMU

)−1
(49)

where the k-th estimation of the measurement covariance
matrix R̂RR

′
k is obtained using the LUT method.

2) Instance 2 (HCEKF): The HNCEKF approach is based
on the fact that the state update equation has an overall additive
noise, resulting from the sum of (i) the noisy measurement of
the velocity and (ii) the model noise, with covariance matrix
QQQmod+BBBRRRIMU. If we neglect the noise of the constant veloc-
ity model, with respect to the IMU measurement noise, only
the noise component with covariance matrix QQQ′ = BBBRRRIMU
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survives. Therefore, the standard EKF can be applied with the
following prediction step:

šssk = AAAŝssk−1 +BBBv̂vvk (50)

F̌FF k = AAAF̂FF k−1AAA
T +BBBQQQ′BBBT . (51)

The update step remains formally as in Section IV (see
equations (23)-(25)). The key advantage of this approach,
referred to as Hybrid Control EKF (HCEKF), is the absence
of the need to estimate the covariance matrix of the state
update equation, i.e., the covariance matrix of the noise of
the movement with respect to the considered constant velocity
model.

It is worth noting that both the HNCEKF and the HCEKF
algorithms are based on the assumption of perfect knowledge
of σIMU. The impact of an imperfect statistical characterization
of the IMU noise, i.e., σIMU, may be subject of future work.

C. Implementation Details

Even if in Section VI we will assess the system performance
by means of numerical simulations (based, however, on exper-
imentally acquired UWB data over realistic paths), we now
provide a few details on a potential system implementation
of the hybrid schemes previously described. In particular, the
following steps may be envisioned.
• The target is equipped with a tag embedding both an

IMU, from which the instantaneous velocity vector can be
obtained, and a UWB transceiver. The design of a robust
algorithm for velocity estimation from IMU-based data
is an open and interesting research topic. As expected,
the shorter the sampling interval of the IMU, the more
accurate the potentially estimated velocity vector.

• The AGV is equipped with N anchors able to receive
the UWB signal transmitted by the tag. The anchors are
wire-connected to a central processing unit responsible
for, among others, anchors’ synchronization.

• The target sends, at each UWB transmission act, the
bi-dimensional estimated velocity vector in the payload
of the UWB packet according to a pre-defined syntax.
Since the microcontroller clock of the tag manages both
the IMU and the UWB chips, it can provide (almost)
synchronized data.

• The anchors receive the UWB packet and send it to
the central processing unit, which extracts the velocity
vector, performs TDoA processing, and runs the Kalman-
based hybrid tracking algorithm. As anticipated in Sub-
section II-C, in this paper all the anchor-target links are
assumed to be LOS. In the presence of NLOS links,
instead, a proper mitigation strategy should be designed,
e.g., by identifying and removing (or correcting) the data
received through NLOS links.

VI. NUMERICAL RESULTS

In this section, we provide a performance analysis of the
AREKF and the hybrid radio/inertial algorithms described in
Subsection V-A (HIREKF) and Subsection V-B (HNCEKF
and HCEKF), respectively. The performance assessment is

TABLE I
ANCHORS’ POSITIONS (IN METERS).

Anchor 3D coordinates [m] Anchor 3D coordinates [m]

aaa
(3d)
0 [0.149,−0.4625, 2.9121]T aaa

(3d)
6 [1.6449, 0.7988, 0.382]T

aaa
(3d)
1 [−0.1125,−0.809, 0.1077]T aaa

(3d)
7 [0.929, 0.8029, 1.6708]T

aaa
(3d)
2 [1.6166,−0.8188, 0.5103]T aaa

(3d)
8 [0.2561, 0.8106, 0.1516]T

aaa
(3d)
3 [0.6756,−0.8127, 1.5578]T aaa

(3d)
9 [1.4268,−0.0111, 3.9815]T

aaa
(3d)
4 [1.6604,−0.388, 1.7668]T aaa

(3d)
10 [−0.124, 0.4615, 2.5203]T

aaa
(3d)
5 [1.7687, 0.5172, 1.4905]T aaa

(3d)
11 [0.8348,−0.013, 2.5831]T

Fig. 6. Anchors’ placement for simulations.

obtained through simulations based on experimental measure-
ments. These measurements are acquired with two goals: (i)
to validate the UWB noise model in Subsection II-D and (ii)
to test the devised algorithms on realistic target trajectories,
whose estimates can be visualized. These measurements are
associated with a realistic warehouse environment, where vari-
ous operators co-exist, namely: humans (pedestrians), forklifts,
and automated guided vehicles. The target may be placed
on any of these operators. Such operators move around the
hotspot with the anchors and various shelf racks (with different
types of goods) are present.

All the results are relative to an anchors’ placement corre-
sponding to an illustrative setup, composed of N = 12 anchors
placed on the hotspot at the positions summarized in Table I.
The hotspot has an approximate size of 1.5 m × 1.5 m × 4 m
and the chosen placement is compliant with practical anchors’
positions on an AGV. A three-dimensional pictorial description
of the anchors’ setup is shown in Fig. 6. The CoG of the
hotspot is

aaa(3d) = [0.8938, 0.0063, 1.6362]
T
. (52)

Since the LinHPS is a three-dimensional positioning algo-
rithm, in all cases the target is assumed to be at a height
equal to 1.5 m. This is representative of a target placed on
the upper part of the trunk of a human operator (e.g., in a
pocket) moving into the industrial environment. We recall that,
however, two-dimensional tracking is of interest in this paper.

The performance assessment presented here has been car-
ried out using target paths experimentally acquired in a real-
istic industrial environment. In particular, the following target
paths, representative of a pedestrian human operator moving
around the hotspot, have been tested.8 The true target positions
{pppk}Lpath−1

k=0 , where Lpath is the number of collected positions

8Similar considerations for other acquired target paths and anchors’ place-
ment and are not shown here for lack of space.
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over a path, have been optically acquired through a Topcon
Total Station9 with a sampling interval Ts = 0.5 s. The first
experimental target path is shown as the solid line with squares
in Fig. 7 (a)-(c): the target moves from the bottom left corner
(denoted as “start”) to the upper right one (denoted as “end”),
making a single turn. The second experimental target path
is shown as the solid line with triangles in Fig. 7 (d)-(f):
the target moves from the left point (denoted as “start”) to
the right one (denoted as “end”). In all cases, each point
along the path corresponds to a true acquired target position
(with sampling interval Ts). It is worth noting that these paths
do not fulfill the constant velocity assumption used by the
radio-based EFK algorithm. Therefore, one of the goals of
our performance analysis is also to evaluate the impact of
the constant velocity model, assumed in the derivation of the
Kalman-based solutions, on the performance with a realistic
movement characterized by a different mobility pattern.

The LUT has a resolution of 1 m in terms of distance
(for target-hotspot distances10 between 2 m and 20 m) and
2 degrees in terms of angle (from 0 to 2π). The forgetting
factor λ of the AREKF algorithm in (42) is set to 0.3.

We first analyze the effectiveness of the proposed hybrid
radio/inertial algorithms, with respect to AREKF, in terms of
the “shape” of the estimated target path. In Fig. 7, we show 10
path estimates with (a),(d) AREKF, (b),(e) HIREKF, and (c),(f)
HCEKF algorithms, respectively.11 Cases (a)-(c) correspond to
the first type of target trajectory, whereas cases (d)-(f) to the
second type. In all hybrid cases, σ2

IMU = 10−1 m2/s2. It can
be observed that the estimated paths with the hybrid algorithms
are more accurate than those obtained with the AREKF, i.e.,
they are smoother. Moreover, the HCEKF seems to provide
the most accurate estimated path, i.e., very close to the actual
one, even with a relatively strong IMU noise intensity. Finally,
the same conclusions can be drawn also for the second path,
i.e., the more complicated one with the target moving around
the hotspot (with several turns).

In order to obtain a concise performance evaluation, the
following indicators are considered. The first is the position
estimation error defined, for the k-th time epoch of the
tracking algorithm, as follows:

εk , |pppk − p̂ppk| (53)

where pppk and p̂ppk are the true and the estimated target positions,
respectively. The performance indicator (53) is small when
the instantaneous position estimate is close to the true one.
However, even if εk is small, the estimated path may contin-
uously “hop” around the true trajectory. In order to quantify
the “smoothness” of the path estimate provided by the tracking
algorithm, we also consider the estimated path length, defined
as follows:

L̂ ,
Lpath−1∑

k=0

∣∣p̂ppk − p̂ppk−1∣∣ . (54)

9For more detail, see https://www.topconpositioning.com/total-station-
solutions.

10For distances shorter than 2 m or longer than 20 m, the LUT “saturates”
and returns 2 m or 20 m, respectively.

11The path estimates with the HNCEK algorithm are not shown for lack
of space, but they are worse than those with the HCEKF.

The rationale behind (54) is that, for a fixed small position
estimation error (53), the smoother the estimated path, the
smaller (i.e., the closer to the true value) the estimated path
length. In particular, this value can be compared with the
true path length, which is approximately equal to 17.12 m
and 45.88 m for the first and second considered target paths,
respectively.

In Fig. 8, we carry out a comparative performance analy-
sis between all the considered tracking algorithms (AREKF,
HIREKF, HNCEKF, HCEKF) and the radio-based positioning
algorithm, based on LinHPS, proposed in [16] for the first con-
sidered target trajectory. We investigate the robustness of these
algorithms against the IMU noise—obviously, purely radio-
based positioning (LinHPS) and tracking (AREKF) algorithms
are not affected by IMU noise. In case (a), the mean estimation
error is shown as a function of σ2

IMU, whereas in case (b)
the mean estimated path length is considered. The mean
performance is obtained by averaging over 105 independent
simulation runs.12 In particular, in each run different noisy
TDoAs are computed at the hotspot leading to a different
position estimate generated by the LinHPS algorithm. More-
over, a different realization of the noisy velocity measured
by the IMU is taken into account. It can be observed that
the HCEKF algorithm provides the lowest mean position
estimation error (Fig. 8 (a)), but the HIREKF algorithm leads
to a shorter mean estimated length (Fig. 8 (b)). Since the
mean estimated length with HCEKF is slightly longer than
that with HIREKF, the HCEKF algorithm can be considered
as the best solution. However, since the performance with
HIREKF is slightly dependent on the IMU noise, whose
statistical characterization is not required by this algorithm,
the HIREKF solution is attractive from an implementation
point of view. It is also worth noting that HCECKF has a
better performance than HNCEKF. This is due to the fact that
the estimation of the covariance matrix in the state update
equation performed by the HNCEKF is noisy. Since the
algorithm is recursive, the estimation error may propagate,
thus degrading the performance. Therefore, it may be more
effective to avoid estimating such a matrix, especially for large
IMU noise intensity. Finally, note that, although the hybrid
radio/inertial tracking algorithms (HCEKF and HIREKF) show
a performance degradation when the IMU noise increases,
this degradation is limited and these algorithms outperform
the purely radio-based ones (either positioning, LinHPS, or
tracking, AREKF) also for large values of σ2

IMU.
In Fig. 9, the same analysis carried out in Fig. 8 is performed

for the second considered target trajectory. Considerations
similar to those presented for the results in Fig. 8 for the
first (simpler) path can be carried out in this case as well.
However, one can observe that, for large values of the IMU
noise intensity σ2

IMU, the estimation error of the considered
tracking strategies may be larger than that with pure radio
positioning. This is due to the fact that the considered path is
more “irregular” and, therefore, an imprecise (because of the

12Note that in Fig. 7 it seems the estimation error may range from a
few centimeters up to 1 m in some cases. However, in this figure only 10
sample paths are considered. By averaging over a large number of independent
realizations, most of the instantaneous errors are concentrated to small values.
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Fig. 7. Path estimates with (a),(d) AREKF, (b),(e) HIREKF, and (c),(f) HCEKF algorithms. Cases (a)-(c) correspond to the first target trajectory, whereas
cases (d)-(f) to the second target trajectory. In all hybrid cases, σ2

IMU = 10−1 m2/s2. The solid lines with squares or triangles correspond to the true
experimentally acquired target paths and the start and end points are explicitly indicated.
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Fig. 8. Mean estimation error (case (a)) and mean estimated path length
(case (b)), as functions of σ2

IMU, for the designed tracking strategies and the
first considered target trajectory (shown in Fig. 7 (a)-(c)).

large value of σ2
IMU) side information on the target movement

may hinder the accuracy of Kalman-based tracking. Note that,
in this case, the average estimation error of AREKF is worse
than that of LinHPS. This is due to the “irregular” shape of
the trajectory, because of the presence of several curves. In
this case, in fact, the target’s constant velocity assumption is
not satisfied during its movement.

We finally propose a performance comparison of the pro-
posed hybrid radio-inertial solutions with respect to reasonable
performance benchmarks given by (i) pure radio position-
ing and (ii) radio-based Kalman tracking—the LinHPS and
AREKF algorithms, respectively.13 In Table II, the relative
improvement (percentage), in terms of average localization
error, of the proposed hybrid radio-inertial solutions, with
respect to the considered benchmarks, is shown. Various target
trajectories and IMU noise intensities are considered. It can be
observed that, for small IMU noise intensity, the considered
hybrid strategies can achieve a gain, with respect to pure po-
sitioning (LinHPS), up to approximately 58% (for the second

13Note that further comparisons with other state of the art solutions is not
viable, due to the specific anchors’ placement (concentrated on the hotspot)
considered in this paper. This makes the statistical characterization of our radio
positioning measurements differ from the models considered in the literature.
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Fig. 9. Mean estimation error (case (a)) and mean estimated path length
(case (b)), as functions of σ2

IMU, for the designed tracking strategies and the
second considered target trajectory (shown in Fig. 7 (d)-(f)).

TABLE II
RELATIVE IMPROVEMENT (PERCENTAGE), IN TERMS OF AVERAGE

LOCALIZATION ERROR, OF THE PROPOSED HYBRID RADIO-INERTIAL
SOLUTIONS WITH RESPECT TO THE CONSIDERED BENCHMARKS. VARIOUS
TARGET TRAJECTORIES AND IMU NOISE INTENSITIES ARE CONSIDERED.

% gain wrt LinHPS % gain wrt AREKF
trajectory σ2IMU IREKF HNCEKF HCEKF IREKF HNCEKF HCEKF

first 10−6 35.30 52.42 54.94 27.80 46.90 49.71

10−4 35.48 52.55 54.73 28.00 47.05 49.48

Fig. 7 (a)-(c) 10−2 34.95 39.07 46.58 27.41 32.01 40.39

10−1 19.68 13.92 31.14 10.30 3.94 23.15

second 10−6 17.87 56.65 58.53 23.75 59.76 61.50

10−4 17.57 56.10 57.46 23.4 59.25 60.51

Fig. 7 (d)-(f) 10−2 12.88 36.95 43.32 19.12 41.46 47.38

10−1 −5.74 6.56 27.20 1.83 13.26 32.41

considered trajectory). Such a gain reduces for very large IMU
noise intensity, still remaining approximately equal to 31% (for
the first considered trajectory). If AREKF is considered as a
benchmark, instead, these gains are approximately 61% and
32%, respectively.

In Table II, the relative improvement (percentage), in terms
of average estimated path length, of the proposed hybrid radio-
inertial solutions, with respect to the considered benchmarks,
is shown. Various target trajectories and IMU noise intensities
are considered. In this case, the relative gain is much more
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TABLE III
RELATIVE IMPROVEMENT (PERCENTAGE), IN TERMS OF AVERAGE

ESTIMATED PATH LENGTH, OF THE PROPOSED HYBRID RADIO-INERTIAL
SOLUTIONS, WITH RESPECT TO THE CONSIDERED BENCHMARKS.

VARIOUS TARGET TRAJECTORIES AND IMU NOISE INTENSITIES ARE
CONSIDERED.

% gain wrt LinHPS % gain wrt AREKF
trajectory σ2IMU IREKF HNCEKF HCEKF IREKF HNCEKF HCEKF

first 10−6 14.59 11.32 14.72 10.41 6.97 10.54

10−4 14.56 11.17 14.57 10.37 6.82 10.38

Fig. 7 (a)-(c) 10−2 14.09 9.70 13.41 9.88 5.27 9.16

10−1 12.24 6.55 10.21 7.94 1.97 5.81

second 10−6 7.09 7.14 8.22 5.94 6.00 7.09

10−4 7.09 7.23 8.34 5.95 6.09 7.21

Fig. 7 (d)-(f) 10−2 7.09 7.87 8.36 5.94 6.73 7.24

10−1 6.80 7.02 5.99 5.65 5.87 4.83

limited, ranging from approximately 15% to 10%.
We now investigate the system performance with different

system deployments in terms of number of anchors and their
positions. In particular, we focus on the path in Fig. 7 (a)-(c).
We first compare the performance of the various considered
tracking strategies with the Cramer-Rao Lower Bound (CRLB)
of the positioning system, i.e., the TDoA-based LinHPS, which
was already derived and analyzed in [16]. In Fig. 10, the
CRLB is compared with the Root Mean Square (RMSE)
of the position estimates of the considered localization and
tracking strategies. The RMSE, for a given target position pppk,
k ∈ {0, 1, . . . , Lpath − 1}, is defined as

RMSE(k) ,

√√√√ 1

T

T∑
i=1

∣∣∣∣∣∣pppk − p̂pp(i)k

∣∣∣∣∣∣2 (55)

where p̂pp(i)k is the position estimate, of the true position pppk,
at the i-th simulation run (i = 1, 2, . . . , T ). In Fig. 10 (a),
the RMSE is shown as a function of the target position
(Lpath = 21). Various IMU noise intensities are considered in
the hybrid algorithms. It can be observed that, with HNCEKF
and HCEKF, the RMSE approaches the CRLB at the end of
the path if the IMU noise intensity is sufficiently small (e.g.,
σ2
IMU = 10−3). In order to investigate an average performance,

we consider the average RMSE over the entire path:

RMSE ,
1

Lpath

Lpath−1∑
k=0

RMSE(k).

In Fig. 10 (b), the average RMSE is shown as a function of
the IMU noise intensity. It can be observed that the considered
hybrid radio/inertial mobile target tracking strategies achieve
performance sufficiently close to the theoretical one predicted
by the CRLB. In particular, the gap of the radio-based tracking
with IMU control strategies (i.e., HNCEKF and HCEKF) with
respect to the CRLB is half of that achieved by the pure radio
tracking (i.e., AREKF).

We then investigate the localization error of the considered
tracking strategies with different values of the number of
anchors N . To this end, we refer to the subset selection
approach originally presented in [16] to improve the position-
ing accuracy together with data fusion. The results in [16]
show that N = 7 is the smallest value that can guarantee a
sufficient localization accuracy. In particular, we investigate
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Fig. 10. CRLB and RMSE of the position estimates of the considered
localization and tracking strategies: in case (a), the instantaneous RMSE (for
each target position) is shown for different IMU noise intensities, whereas in
case (b) the mean RMSE (over the entire path) is shown as a function of the
IMU noise intensity.

the performance of considered tracking methods with the
known best subset (of size N = 7) that contains anchors aaa1,
aaa2, aaa5, aaa6, aaa8, aaa10, and aaa11 (see Fig. 6 and Table I for more
specific anchors’ positions).

In Fig. 11, the mean estimation error is shown, as a function
of σ2

IMU, for the considered tracking strategies and two values
of N : 12 (i.e., all the anchors) and 7 (the considered subset).
It is worth noting the performance loss induced by a smaller
number of considered anchors that cannot be recovered by
the Kalman-based algorithms. However, with N = 7 the
performance of the hybrid algorithms is slightly influenced by
the IMU noise intensity, showing that this class of algorithms
is sufficiently robust.

Finally, we investigate the impact of the distance of the
hotspot (i.e., the anchors) from the considered path on the es-
timation error accuracy. In particular, according to Fig. 12 (a),
we move the anchors’ Center of Gravity (CoG), originally
placed at x = 0.8938 and y = 0.0063, by ±2 meters on
both the coordinates. We consider, as a representative concise
distance parameter, the distance between the CoG and the
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Fig. 11. Mean estimation error, as a function of σ2
IMU, for the considered

tracking strategies and two values of N : 12 (i.e., all the anchors) and 7 (the
considered subset).

point associated with the target position at k = 13, denoted as
DCoG (dimension: [m]). In Fig. 12 (b), the mean estimation
error is shown, as a function of DCoG, for the considered
target tracking strategies and different values of σ2

IMU. One
can observe that the LinHPS positioning scheme and the pure
radio tracking strategy (AREKF) are less robust; the longer
DCoG, the higher the mean estimation error. On the other hand,
the hybrid radio/inertial strategies (HIREKF, HNCEKF, and
HCEKF) are more robust and the performance degradation is
more limited. In particular, the lower the IMU noise intensity,
the smaller the mean estimation error.

VII. CONCLUDING REMARKS

In this paper, we have addressed the problem of target
tracking, when the anchors are placed on a single hotspot and
the target moves around the hotspot itself. EKF-based solu-
tions have been proposed, in which measurements come from
a radio-based positioning algorithm (namely, the LinHPS,
exploiting UWB communications and TDoA processing at
the anchors). First, a purely radio EKF, denoted as AREKF,
has been proposed, with adaptive estimation of the distribu-
tion of the noise in the movement model—the covariance
of the measurement noise is estimated according to a LUT
offline pre-computed during a calibration phase. Then, hybrid
radio/inertial algorithms (HIREKF, HNCEKF, and HCEKF)
have been proposed to improve the performance of AREKF
by taking into account inertial data (more precisely, the
instantaneous velocity) collected from the target. Our results
show that the proposed hybrid algorithms can track the true
target path with an average estimation error, with respect to
the true position, on the order of a few centimeters. Overall,
the HCEKF scheme is the best solution among those proposed
in this paper.
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[16] M. Martalò, S. Perri, G. Verdano, F. De Mola, F. Monica, and G. Ferrari,
“Improved UWB TDoA-based positioning using a single hotspot for
industrial IoT applications,” IEEE Trans. Ind. Info., vol. 18, no. 6, pp.
3915–3925, June 2022, DOI: 10.1109/TII.2021.3111449.
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