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Abstract—Predicting the quality perception of an individual
subject instead of the mean opinion score is a new and very
promising research direction. Deep Neural Networks (DNNs)
are suitable for such prediction but the training process is
particularly data demanding due to the noisy nature of individual
opinion scores. We propose a human-in-the-loop training process
using multiple cycles of a human voting, DNN training, and
inference procedure. Thus, opinion scores on individualized sets
of images were progressively collected from each observer to re-
fine the performance of their DNN. The results of computational
experiments demonstrate the effectiveness of our approach. For
future research and benchmarking, five DNNs trained to mimic
five observers are released together with a dataset containing the
1500 opinion scores progressively gathered from each of these
observers during our training cycles.

Index Terms—Individual quality perception, Artificial-
intelligence-based observer, Subjectively annotated image
dataset
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I. INTRODUCTION AND RELATED WORK

Several authors [1]–[3] have pointed out the need to go
beyond the Mean Opinion Score (MOS) in order to achieve
a more complete assessment of the end users’ quality-of-
experience (QoE). Therefore, approaches to predict the whole
distribution of the opinion scores for a given stimulus have
been proposed [4]–[6].

The distribution of opinion scores does not however tackle
several QoE related questions. For instance, what are the
characteristics of the end users that would not be satisfied
with the quality of a given stimulus?

Authors have therefore proposed to predict the opinion
scores of an individual observer [7]. The authors of [8]–[10]
have trained a Neural Network (NN) that can mimic the quality
perception of an individual observer. Such an NN is called an
Artificial Intelligence-based Observer (AIO). The AIOs can
allow for instance to address the aforementioned question,
since each modeled observer has well known characteristics
and their AIO can be used as a representative of all end users
with these characteristics.

Individual opinion scores are known to be very noisy as
compared to the MOS [11], [12]. Therefore, how to train an
effective AIO is a challenging and hot research question. The
literature in that sense is rather recent and limited. In [8], [9],
the authors combined three subjectively annotated datasets to

deal with the lack of training samples. In [10], the training of
the AIOs was done in two learning steps. A deep CNN was
first trained on a synthetically annotated large-scale dataset;
then, the features learned by this deep CNN were refined
during a second learning step to get the AIOs.

In this work, we propose a human-in-the-loop learning
approach to train the AIOs. More precisely, each observer
whose quality perception is to be mimicked with a deep CNN
first rated a given set of images. The collected ratings were
used to perform a first training of their AIO. The trained AIO
was then used to make inference on a large-scale dataset,
and to identify a new set of images that the observer must
evaluate, i.e images for which the AIO provided a questionable
prediction of the quality. The identified images were evaluated
by the observer and the gathered opinion scores were used to
refine the AIO during a second training process. The AIO
obtained after this second learning step was again used to
select a new set of images to be rated by the observer. Finally,
a third and last training process was conducted with the
gathered opinion scores to get the final deep CNN modeling
the observer.

The obtained results show that the accuracy of the trained
AIOs is comparable to that of a real observer when trying to
repeat their opinion scores on a given set of images. Also,
each AIO can predict the opinion scores of the observer it
is mimicking with higher accuracy than the AIO of other
observers. This suggests that each trained AIO did not learn
only generic perceptual features, but rather features that model
intrinsic characteristics of the scoring behavior of the real
observer that it is mimicking.

The trained AIOs as well as the subjectively annotated
dataset created for our analysis are made freely available to
researchers at: http://media.polito.it/AIOs-from-human-in-the-
loop-training-process.

II. HUMAN VOTING AND AIO TRAINING CYCLES

A. Subjective Tests Setup and Paper’s Notation

Our analysis aimed at training the AIO of five observers.
Each of these five observers was invited in five different
testing sessions. During each session, the observer evaluated
the quality of 300 JPEG compressed images using the five
point absolute category rating scale. The laboratory in which
all sessions were conducted was prepared in accordance with979-8-3503-1173-0/ 23/$31.00 ©2023 IEEE



Fig. 1. The picture illustrates the viewing distance, the used monitor and the
lighting conditions under which the observers provided their opinion scores.

the relevant ITU recommendations [13]. The picture in Fig 1
illustrates the experimental setups.

We introduce the following notation used throughout the
paper. We denote by O the set of the five observers to be
modeled; by Iso the set of images evaluated by the observer
o ∈ O during their s-th session. We denote by OSs

o the
opinion scores provided by the observer o ∈ O during their
s-th session, i.e., when evaluating the images in Iso . Finally,
we will call AIOs

o, the AIO of the observer o ∈ O, trained on
the images in Iso , using the opinion scores in OSs

o as ground
truth.

All the images used in all the sessions were progressively
selected from a dataset of 100,000 JPEG compressed images
that we will call I. The images in I were generated following
the procedure used in [10], i.e., compressing 20,000 pristine
quality images, selected from the ImageNet dataset [14], using
five different ranges of JPEG compression so that the qualities
of the images in the obtained dataset cover the whole five point
absolute category rating scale.

For all the observers, the first (s = 1) and the second (s =
2) test sessions were carried out with the same set Is1s2 of
images, i.e.,

I1o1 = I1o2 = I2o1 = I2o2 = Is1s2 (1)

where o1 and o2 represent two generic observers selected from
O.

In other words, the first two sessions for each observer
consisted in a repeated evaluation of the images in Is1s2. This
repetition, as shown later in the result section (see Table I), is
useful to benchmark the performance of the trained AIOs.

During the third and the fourth session, each observer eval-
uated an individualized set of images. The sets of images that
each observer evaluated in these two sessions were determined
by the performance of their AIO at predefined stages of the
training process. Thus, we have iterated between AIOs training
phases and subjective experiments.

As for the first and the second session, during the fifth
session, all subjects were shown a similar set of images, thus:

I5o1 = I5o2 = Itest ∀o1, o2 ∈ O. (2)

The images in the set Itest were never used during the training
of the AIOs and we therefore define this set of images and
the related opinion score OS5

o gathered from each observer
o ∈ O as the test set for our analysis.

The images in the sets Iso s = 2, 3, 4 and the corresponding
opinion scores OSs

o s = 2, 3, 4 were instead used to perform
the three-steps training process that yielded the AIO of each
observer o ∈ O following the procedure described in the next
section. Note that the images in I1o were not considered for
the training because, as already mentioned, I1o = I2o ∀o ∈ O.

B. A Human-in-the-Loop Approach to Train the AIOs

Fig 2 summarizes our approach to train the AIO of a generic
observer o ∈ O. For each observer o ∈ O, we first trained
the AIO2

o by performing transfer learning from a pretrained
deep CNN called JPEGResNet50 [10]. The JPEGResNet50
is a deep CNN with 52 hidden layers that was trained on
a large-scale synthetically annotated dataset to make it a
suitable starting point for transfer learning in image quality
assessment [10]. That is the reason why we started from
such a network. All the trained AIOs in this work have the
same architecture, i.e., the one of the JPEGResNet50, but they
obviously have different weights.

The transfer learning to obtain the AIO2
o was performed on

the images in I2o using the opinion scores in OS2
o as ground

truth. To obtain the AIO2
o from the JPEGResNet50, the latter

was trained for 13 more epochs, using the stochastic gradient
descent with momentum algorithm. The best learning rate was
experimentally found to 0.0001 and the momentum parameters
was set to 0.9 as typically recommended. These settings were
adopted for all the training processes.

Once we obtained the AIO2
o , we used it to select from I

the next set of images, i.e., I3o , that had to be evaluated by the
observer o, so that the provided opinion scores can be used to
refine the AIO2

o yielding the AIO3
o .

To identify the set I3o , we used the AIO2
o to predict the

quality of the 100,000 images in the set I. For each image,
the softmax layer of AIO2

o outputs a five class probability
distribution, i.e., the probability that the observer o would
score the quality respectively as ”Bad”, ”Poor”, ”Fair”, ”Good”
and ”Excellent”. From this probabilistic output, we computed
the variance of the prediction of the AIO2

o for each image in

Transfer 
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on the set  and prediction variance-
based selection of the next set of images
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Fig. 2. The diagram summarizes our human-in-the-loop training procedure
of the AIO of a generic real observer.



I. We then obtained the set I3o by selecting the 300 images
whose quality prediction exhibited the highest variance.

The larger the variance of the prediction is for a given
image, the lower is the confidence of the AIO on its prediction
of the quality of that image. Therefore, a natural attempt to
improve the AIO performance, is to ask the observer to rate
these images that are critical for their AIO, so that the provided
opinion scores can be used during the next training process,
and thus informing the AIO on how to correctly rate the quality
of these images previously considered as critical.

The observer o was invited to score the quality of the newly
selected images in I3o . These images along with the collected
opinion scores OS3

o were then used to perform a second
transfer learning step. This time we started from the AIO2

o and
updated its weights using as ground truth the newly gathered
opinion scores OS3

o for the images in I3o , and obtained the
AIO3

o .
We adopted the same procedure to train the AIO4

o starting
from the AIO3

o . Thus, the images in I4o were selected based
on the variances of the predictions of the AIO3

o . The selected
images were evaluated by the observer o and a third transfer
learning step was conducted starting from the AIO3

o to obtain
the AIO4

o that we considered as the final model of the observer
o. For simplicity sake, from now on the final AIO of each
observer o ∈ O will be denoted by AIOo.

III. RESULTS

We used the performance of the five real observers consid-
ered in this work to benchmark that of their trained AIOs. In
particular, we exploited the repeated evaluation of the images
in Is1s2 to estimate the accuracy of a real observer interpreting
the repetition as a prediction of their own ratings. The Table I
shows the estimated accuracy for each observer. For instance,
when rating for the second time the images in Is1s2, the
observer #1 was able to predict/repeat their first opinion score
on 58% of the images.

TABLE I
ACCURACY OF REAL OBSERVERS TO PREDICT THEIR OPINIONS

Obs 1 Obs 2 Obs3 Obs 4 Obs 5
58% 57% 73% 62% 47%

TABLE II
ACCURACY OF AIOS TO PREDICT THE OPINIONS OF REAL OBSERVERS

Obs 1 Obs 2 Obs3 Obs 4 Obs 5
AIO1 63% 59% 43% 39% 50%
AIO2 59% 67% 39% 36% 52%
AIO3 39% 41% 57% 58% 57%
AIO4 45% 42% 52% 51% 59%
AIO5 36% 35% 55% 53% 60%
JPEGResNet50 42% 56% 39% 32% 43%

Since each AIO is trained to mimic their related observer,
we can consider the percentages in Table I as a kind of
reference or benchmark accuracy for the AIO when predicting
the opinion scores of the observer it is mimicking. In other
words, the AIO of the observer o ∈ O can be considered
effective if it can predict the opinion scores of the observer o
with an accuracy that is close to or higher than the performance
of the observer o in predicting their own opinion scores.

Table II shows the accuracy of each AIO when predicting
the opinion scores of the real observers on the test set. The
accuracy is the fraction of images for which the predicted
opinion score by the AIO is equal to the opinion score
provided by the real observer. For instance, the AIO1 correctly
predicted 63% of the opinion scores of the observer it is
mimicking, i.e. the observer #1, and 43% of the opinion scores
of the observer #3.

Looking at Table I and Table II, it can be noticed that
3 AIOs (AIO1, AIO2 and AIO5) out of 5 predicted the
opinion scores of the related observers with an accuracy that
is higher than their expected reference accuracy in Table I.
The AIO3 and AIO4 that showed lower accuracy than the
related observers however guaranteed an accuracy greater than
50%. Thus, their performance is still comparable to that of a
real observer. In fact, the observer #5, as it can be seen from
Table I, correctly predicted the first rating only in 47% of
cases.

It is also very interesting to notice from Table II that, except
for the AIO4, each AIO predicted the ratings of the observer
it is mimicking better than any other AIO on the test set. This
suggests that, similar to real observers, the AIOs are different,
and thus, they did not learn only generic features valid for
any subject, instead they probably can mimic some individual
characteristics of the scoring behavior of the real observer they
are modeling.

A closer look at the gathered ratings revealed that the
observer #4 never chose 5 as an opinion score when rating
the images used in session 2 and 3. This might explain the
fact that their AIO did not predict their opinion scores better
than all the other AIOs on the test set.

The last row of Table II shows the performance of the
JPEGResNet50 in predicting the five real observers. It can
be noticed that, at the end of the proposed training procedure,
the performance of each AIO in predicting the related observer
on a set of images never seen during the training strictly
overcomes that of the JPEGResNet50 that was used as starting
point for the training of the AIOs. For instance, for the
observer #1, the proposed training process has allowed to
achieve an accuracy of 63% starting from 42% offered by
the JPEGResNet50. This further highlights the effectiveness
of our training procedure.

IV. CONCLUSIONS

In this work we described an approach that iterates between
human voting, transfer learning and inference procedures to
train the deep CNN mimicking the quality perception of an
individual subject. The current results are very promising,
since in general each trained AIO can mimic the related real
observer with an accuracy that is comparable to the one that
a real subject would achieve in a repeated evaluation of a
given set of images. A non-individualized prediction method
would not allow for such a result. The complexity and the
convergence of our approach will be investigated in a future
contribution.
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