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ABSTRACT Modern mobile communication networks and new service applications are deployed on cloud-
native platforms. Kubernetes (K8s) is the de facto distributed operating system for container orchestration,
and the extended version of the Berkeley Packet Filter (eBPF) – in the Linux (and MS Windows) kernel
– is fundamentally changing the approach to cloud-native networking, security, and observability. In this
paper, we introduce what eBPF is, its potential for Telco cloud, and review some of the most promising
pricing and billing models applied to this revolutionary operating system (OS) technology. These models
include schemes based on a data source usage model or the number of eBPF agents deployed on the network,
linked to specific eBPF modules. These modules encompass network observability, runtime security, and
power dissipation monitoring. Next, we present our eBPF platform, named Sauron in this work, and
demonstrate how eBPF allows us to write custom code and dynamically load eBPF programs into the
kernel. These programs enable us to estimate the energy consumption of cloud-native functions, derive
performance counters and gauges for transport networks, 5G applications, and non-access stratum protocols.
Additionally, we can detect and respond to unauthorized access to cloud-native resources in real-time using
eBPF. Our experimental results demonstrate the technical feasibility of eBPF in achieving highly performant
monitoring, observability, and security tooling for current mobile networks (5G, 5G Advanced) as well as
future networks (6G and beyond).

INDEX TERMS eBPF, extended Berkeley packet filter, cloud-native observability, cloud-native security,
cloud-native networking, cloud-native monitoring, 5G, 5G Advanced, 6G, Kubernetes, K8s.

I. INTRODUCTION
Cloud-native architecture and technologies are an approach
to building and running scalable applications in modern,
dynamic environments such as public, private, and hybrid
clouds. Containers, pods, service meshes, microservices,
immutable infrastructure, and declarative APIs exemplify this
methodology [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Nurul I. Sarkar .

Kubernetes, also known as K8s, is an open-source dis-
tributed operating system for container orchestration, i.e., for
automating deployment, scaling, andmanaging containerized
applications. Kubernetes is the pilot (fromGreek) of a ship of,
e.g., Docker containers [2].

A Cloud Native Network Function (CNF) is a virtual
network function designed and implemented to run inside
containers. CNFs inherit all cloud-native architectural and
operational principles, including Kubernetes lifecycle man-
agement, agility, resilience, and observability. The Cloud
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Native Computing Foundation (CNCF) provides a detailed
definition of ‘‘CNF’’ and a list of essential tests for obtaining
a CNF Certification [1].

An example of a cloud-native radio access network is the
Open virtual Radio Access Network (Open vRAN), defined
by O-RAN Alliance [3]. The disaggregated architecture and
containerized approach to run virtual Centralized Unit (vCU)
and virtual Distributed Unit (vDU) – designed to be easily
installed and to interoperate with existing system components
– on commercial off-the-shelf (COTS) hardware bring many
benefits to network carriers, particularly in terms of total cost
of ownership (TCO), automation, and innovation.

The next generation of Mobile Communication System
(6G) is expected to be cloud native and secure by design
powered by the extended version of the Berkeley Packet Filter
(eBPF). However, new capabilities and what differentiates
6G from previous generations depend on stakeholders and
what standard development organizations adhere to [4]. The
internationalWorking Party (WP) for the overall radio system
aspects of International Mobile Telecommunications (IMT)
systems is the ITU-RWP5D [5], but the 3rd Generation Part-
nership Project (3GPP) is also discussing 5G Advanced/6G
within the scope of its release process with 6G require-
ments to be defined as part of Releases 19 and 20 starting
in 2024.

The extended version of the Berkeley Packet Filter (BPF) is
an abstract virtual machine (VM) with its own instruction set
that can execute user-defined programs inside a sandbox in
the Linux (andMSWindows) kernel. eBPF enables programs
to run in the kernel of the host operating system and to
instrument the kernel without changing the kernel source
code [6].
This technology enables dynamic programming of Linux

and Windows kernels, allowing behavior changes without
reboot. Moreover, it ensures the safety and stability of loaded
programs by preventing kernel crashes. However, making
changes to the kernel can be a complex process and requires
significant time for acceptance, as community consensus is
necessary to incorporate changes into the upstream kernel
distribution for production use. The vast majority of kernel
versions deployed in production environments provide robust
and extensive support for the essential eBPF features.

eBPF programs can be verified at load time to prevent
kernel crashes and other instabilities. The verifier examines
the program as it is loaded into the kernel and ensures that
it runs to completion, all the memory access is safe, and
the machine does not crash. (There are ways to exceed the
theoretical limit of a million instructions by writing loops
and chaining the program codes.) These sandbox programs
are then triggered by kernel events, receiving pointers to the
kernel or user spacememory.Maps allow sharing information
between the kernel and user space as well as exchanging data
between eBPF programs in the kernel.

Beyond that, when Kubernetes or other cloud platforms
are used to run multiple applications on a virtual machine
(VM), eBPF provides excellent visibility of all programs on

the host machine and policy enforcement capabilities in the
kernel space to mitigate vulnerabilities.

Among other benefits discussed in the following section,
due to its low overhead, eBPF programs enable us to simplify
the kernel networking stack and reduce latency between end
points. eBPF is ideal for Telco cloud as its programs can be
made portable between kernel versions, with little effort, and
can be updated atomically, avoiding disruption of workloads
and the need to reboot nodes.

This article is organized as follows: Section II presents
the powers of eBPF for cloud-native systems and Telco
clouds. Section III introduces the concept and architecture
of our eBPF solution for Telco, denoted as Sauron, in this
article. (The name was inspired by The Lord of the Rings
author J.R.R. Tolkien’s writings, where Sauron’s goal was
to use the One Ring to influence and control the minds
of those who wielded the lesser rings.) In this section,
we also introduce some examples of Sauron’s modules,
namely eBPF for Transport, eBPF for Observability, eBPF for
Energy and eBPF for Security. The experimental validation
of the corresponding case studies and obtained results are
discussed in Section IV. Finally, conclusions are drawn in
Section V.

II. THE POWERS OF eBPF
The eBPF project layout is illustrated in Figure 1 and it
consists of three pillars:

1) eBPF programs, that run in the kernel and react to
events.

2) User space programs, which load a) to the kernel and
interact with them.

3) BPF Maps, that allow data storage and information
sharing between a) and b).

In the development phase: 1) A program, typically written in
C or Rust, is compiled into an object Executable and Linkable
Format (ELF) file, which can be analyzed using tools such
as readelf – since the Linux kernel expects eBPF programs
to be loaded in the form of bytecode, a compiler suite like
clang/LLVM1 can be used to compile restricted-C code into
eBPF bytecode. 2) The ELF file – which contains the program
bytecode, definitions ofMaps and BPF Type Format (BTF) –
is loaded into the kernel using a monolithic approach enabled
by bpf system calls; 3)Maps are created into the kernel space
before loading the eBPF programs that refer to them – the
eBPF programs can utilize eBPF maps to share and retrieve
data in a variety of formats and preserve the state. eBPF maps
can be accessed from user space applications and through
helper functions from eBPF programs. Hash tables, Arrays,
Least Recently Used (LRU), Ring Buffer, Stack Trace, and
Longest PrefixMatch (LPM) are examples ofmaps supported
in the kernel space.

In the runtime phase: 4) The eBPF program (map re-wring
and instructions) is loaded into the kernel, where it is verified
(eBPF Verifier) and, in most cases, compiled (JIT Compiler)

1The name ‘‘LLVM’’ is the full name of the project. See: https://llvm.org
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FIGURE 1. eBPF project layout.

FIGURE 2. eBPF stack: platform, SDKs, and packaging, and use cases [9].

into native instructions – typically, the loading phase and
the interaction with the kernel structures is accomplished by
using one of the available eBPF libraries and several devel-
opment toolchains exist to achieve this goal. For instance, the
Go ebpf-go library or theC libbpf library may be used for this
purpose. The libbpf library is a C/C++-based generic eBPF
library that allows you to load the ELF file into the kernel
by abstracting the interaction with the BPF system call; see
Figure 1. Some examples of eBPF programs (in C and Rust)
and user space code to load eBPF object (ELF) files in the
kernel using libbpf-bootstrap can be found in [7]. Another
toolkit for creating efficient kernel tracing and manipulating
programs is BPF Compiler Collection (BCC). BCC uses a
Python interface (and program) in the user space to generate

the eBPF bytecode and to load that into the kernel [8]. 5) The
eBPF program is attached to selected events (injected in the
desired kernel hooks) – each eBPF program loaded into the
kernel is triggered by an event using a program file descriptor,
i.e., the attached eBPF program is executed once the event
has occurred. In other words, eBPF programs allow custom
code to execute in the kernel when the kernel or an application
passes a certain hook point (e.g., TC ingress/egress, and
sockets, in Figure 1), such as, but not limited to, a system call,
a function entry/exit, a kernel tracepoint, a network event, etc.
The eBPF programs provide visibility between the kernel and
user space using BPF maps.

For example, we can run eBPF programs using a set of
eBPF hooks that are supported in the networking stack of the
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FIGURE 3. Linux BCC/BPF tracing tools [10].

Linux kernel. In addition, higher-level networking constructs
can be created by combining the hooks below:

• Express Data Path (XDP): the networking driver is
the earliest point to which the XDP BPF hook can be
attached. The eBPF program is triggered to run when a
packet arrives in the driver.

• Traffic Control (TC) ingress/egress: like XDP, eBPF
programs are attached to a networking interface by
hooking the eBPF programs to the traffic control ingress.
In contrast to XDP, the eBPF programwill run following
the initial packet processing in the networking stack.

• Socket operations: the socket operations hook attaches
the eBPF programs to a specific cgroup and triggers
them based on TCP events.

• Socket send/recv: the socket send/recv hook triggers and
runs the attached eBPF programs for each TCP socket
send operation.

Since some network cards support XDP offload, we can
run the eBPF program on a network card and process network
packets when this event is triggered, i.e., before the packet
arrives in the CPU. This allows a ‘‘zero CPU use’’ to investi-
gate incoming packets for firewalling, DDoS mitigation etc.

If a predefined hook does not exist for a particular need,
it is possible to instrument function calls, using kprobes for
kernel space functions and uprobes for user space functions,
and attach eBPF programs almost anywhere in the kernel or
user applications. Security-related actions can be taken using
Linux Security Module (LSM) hooks (Linux kernel version
5.7 and later releases).

Thanks to the wide variety of events in the kernel, eBPF
programs can be utilized for efficient networking, tracing
and data profiling, observability, and security tooling, such
as threat defense and intrusion detection, as shown in Fig-
ure 2, where the eBPF stack (eBPF Linux runtime and eBPF
MS Windows runtime, SDKs, and packaging examples, and
use cases) is detailed [9].

Figure 3 depicts a comprehensive set of eBPF tools for
observability. The figure represents the broad range of system
components that can be instrumented by means of eBPF
programs. In [10], the author provided more details on BPF
performance tools.

More information on eBPF and its applications can be
found in [11], where authors restricted their focus to four key
application domains related to networking, security, storage,
and sandboxing. They discussed various solution techniques
for each application domain to enable researchers and practi-
tioners to adopt eBPF into their designs easily.

A. WHY eBPF?
According toGartner, by 2025, over 95%of new digital work-
loads will be deployed on cloud-native platforms, up from
30% in 2021 [12]. Simultaneously, Kubernetes is becoming
the de facto standard for cross-cloud orchestration and a pillar
of cloud-native architectures [13]. Cloud-native architecture
is one of the critical drivers of eBPF-based applications;
as more kernel subsystems become extensible using eBPF,
drivers and kernel modules could be written in eBPF soon.

Figure 4 consolidates some of the values brought by eBPF
to cloud-native environments. This revolutionary technol-
ogy shows amazing programmability, and the eBPF verifier
ensures that the loaded programs are safe and guarantees that
they do not crash the kernel. Beyond that, eBPF provides
excellent visibility and enforcement control of policy and
allows operators to observe all programs running in the user
space, which is hardly ever achieved by applications that
operate in the same space. Moreover, eBPF presents low
overhead, making it ideal for containers networking, observ-
ability, and Telco cloud security in production.

Table 1 outlines ten advantages of eBPF, demonstrating
how this technology is expected to evolve to support a wide
variety of additional use cases. Those include the possi-
bility of using XDP and AF_XDP direct path, which inte-
grates naturally with Kubernetes, as opposed to Data Plane
Development Kit (DPDK), and achieve sustainable comput-
ing projects like Kubernetes-based Efficient Power Level
Exporter (KEPLER), an open-source power level exporting
tool that shows energy consumption data via eBPF for Kuber-
netes clusters [14]. KEPLER collects data based on eBPF
programs that attach to Linux tracepoints and performance
counters to collect information such as process id, cgroup id,
cpu cycles, cpu time, cpu instructions, cache misses etc. The
aggregated data are then used in conjunction with other stats
in the user space to estimate the energy consumption of pods,
as described in Section III-D.

B. eBPF FOR KUBERNETES
eBPF enables the programmability of the kernel in Kuber-
netes too. There is only one kernel on a host, and any appli-
cation running in a container, inside a pod in the case of
K8s, must still use the kernel whenever it requests access
to hardware, a file, or receive a message from the network
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FIGURE 4. Examples of eBPF advantages.

(networking) as depicted in Figure 5. The kernel is always
involved, and there is only one kernel regardless of how
many pods are deployed on a machine (BareMetal or virtual
machine). Even containers do not have their own kernel, they
employ the existing kernel running on the host machine.

Therefore, through proper eBPF instrumentation in the ker-
nel, an agent can bemade aware of everything occurring in the
user space across all applications or cloud-native functions
(micro-services). This enables complex eBPF tools to have
a view across the entire node, enabling deep observability in
the cluster, as shown in Figure 5 [6].

1) CONTAINER NETWORKING
Beyond that, eBPF can be used for creating an efficient
and scalable K8s network provider, for providing secu-
rity, achieving high-performance load balancing (K8s proxy
replacement, north-south load-balancer), and multi-cluster
and external workloads connections, such as, e.g., egress
gateway, integration of metal and VMs, global services, ser-
vice discovery, etc.

In Kubernetes, we use namespaces to isolate pods on a
node, and we typically have a network namespace for each
pod, meaning that the kernel runs a networking stack for
each pod. This is very efficient in terms of CPU utilization,
for instance, but the path for a packet that arrives at the
Network Interface Card (NIC) of the host machine to reach
an application in the user space, is relatively convoluted. For
example, as shown in Figure 6 a), a packet that arrives at eth0
of the NIC traverses the kernel networking stack on the host;
it is then routed across a virtual ethernet (veth) connection
into the network namespace of the pod, and finally, the packet
goes through the networking stack in the pod to reach the
application or CNF, in the case of Telco cloud.

eBPF allows us to simplify the networking stack in the
kernel, see Figure 6 b), and connect pods as endpoints [6].

FIGURE 5. How eBPF can be aware of all application activities involving
the kernel [6].

As depicted in Figure 7, this is achieved using a hash table –
eBPF service (svc) Map – that maps Service (Cluster) IP onto
Endpoint (Pod) IP addresses. The table states: if you send a
network packet to the Service IP (Cluster IP) using this IP
address (10.107.72.75), then that packet will be delivered to
this pod (Endpoint IP). This allows us to bypass the kernel
networking stack on the host, as shown in Figure 6 b), and
send that packet directly into the stack of the pod, for example
by using the XDP hook, which runs on the NIC of the host
machine.

In other words, replacing the iptables rules with
eBPF maps allows operators to transport data directly
from inbound sockets to outbound sockets, which enables
super-fast service load balancing with eBPF.
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FIGURE 6. How eBPF advantages for pod networking [6], [15], [21].

Figure 7 illustrates how load balancing between four repli-
cated pods on two worker nodes in a Kubernetes cluster is
achieved by employing eBPF [16]. Replacing Kube-Proxy
with a proper eBPF Agent, we can attain much better per-
formance than using the basic routing capabilities of the host
operating system (iptables DNAT).

For example, a containerized high-performance load bal-
ancer that distributes traffic using eBPF/XDP within the
Linux kernel was presented in [17]. Experimental results
demonstrated that the throughput performance of the pro-
posed load balancer using eBPF was considerably better than
that of iptables DNAT.

2) SERVICE MESH
A Service Mesh is a dedicated infrastructure layer that can
be added to applications or CNF micro-services. This layer
allows us to transparently add capabilities to applications,
without requiring the addition of code. Service Mesh pro-
vides connectivity between applications at the service level,
abstracts the underlying network, and offers features such as
observability, security, and traffic management.

The evolution of the Service Mesh model is shown in
Figure 8. The traditional approach was to use a Shared
Library Model (Service Mesh Library). Then Service Mesh
was achieved by implementing a cloud-native Sidecar Model
(ServiceMesh Sidecar). Now,with eBPF,many ServiceMesh
functionalities can bemoved to the kernel (KernelModel) and
only complex L7 processing tasks need to be delegated to a
Sidecar Container in the user space, such as an Envoy proxy
(Service Mesh proxy), as described below.

The Sidecar Model allows us to place common code in
the same container as the application or the CNF (or micro-
service) and to run the same container in each pod so that each
pod is instrumented in the same manner. That container is a
Sidecar Container. The Sidecar Model has been widely used
for logging, tracing, security tooling and service mesh [6].

Moreover, to be aware of what is happening in the pod,
a Sidecar Container must run in the same network namespace
as the application or CNF (or micro-service) in the case of
Telco cloud. To deploy the sidecar within that pod, we need
to either statically specify it into the pod Yaml manifest file
or we can use an automatic mechanism such as the one
offered by a Service Mesh implementation (see, e.g., Istio
ServiceMesh [18]) If, for whatever reason, any of the selected
technique is not successfully employed, the pod will not
be subject to the specified instrumentation and the desired
visibility will not be achieved.

Since the eBPF program is loaded into the kernel, no pod
configuration modifications are required. And once the eBPF
program is attached to an event, the event will be triggered
independent of the pod status (ready or not ready). Therefore,
there is no need to restate or reconfigure the pod in question,
as the event is triggered by the kernel, and the eBPF pro-
gram is automatically executed. In addition, eBPF is aware
of all activities carried out on that node (both expected and
malicious activities), and based on this information, an eBPF
security agent can see a malicious process running on the
node and mitigate the related risks, e.g., enforcing some net-
work security policies (as detailed in Section III-C), whereas
a Sidecar Container cannot.
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FIGURE 7. Example of load balancing using eBPF in a K8s cluster [16].

FIGURE 8. Service mesh models: shared library, sidecar model and kernel model (eBPF).

In addition, the Sidecar Model can waste many resources
in the cluster because each pod must be configured with
adequate memory and CPU quotas for the applications (or
micro-services, in the case of Telco cloud) and Sidecar Con-
tainer to perform. Besides that, we need duplicate copies
of state configuration information within each pod because,
by design, pods are isolated from one another, and pod-to-
pod communication is limited to network messages or shared
files. In contrast, eBPF maps are data structures that make
data sharing between eBPF programs in the kernel, and eBPF
tooling agents, in the user space extremely efficient.

Typically, service meshes utilize a network proxy to man-
age and process application-layer traffic (Layer 7, L7). How-
ever, other service meshes employ a Sidecar Model for such

a proxy feature. In the latter case, as already explained above,
a proxy is injected into each application pod, as depicted in
Figure 9 a).

The advantage of using eBPF is that it enables the Service
Mesh Proxy to be shared across multiple pods, as shown
in Figure 9 b). Avoiding the Sidecar Model reduces the
resources and complexity required to configure the proxy in
each pod. Additionally, as already pointed out, we can achieve
significantly more efficient networking, thereby reducing
latency, which is critical for Telco to deliver carrier-grade
communication services.

As shown in Figure 9 a), using the Sidecar Model, each
network packet must traverse the networking stack multiple
times to pass through the sidecar proxy. With eBPF, we can
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FIGURE 9. How eBPF may reduce the number of service mesh proxies to provide the same services [6], [15], [18], [21].

run the proxy outside of the pod and create a direct path
between pods, with L7 traffic passing through the proxy
only once and only when that is required, as illustrated in
Figure 9 b) [6], [15].

Another example is the mutual authentication between
application workloads. Traffic that flows between different
nodes can be encrypted in the kernel using IPsec or Wire-
Guard [19]. Those solutions are widely used and straightfor-
ward to implement. However, when next-gen mutual Trans-
port Layer Security (TLS) is required – mTLS encryption,
using X. 509 digital certificates as application workload iden-
tities, see Figure 10 a) and b) – you can use an Identity Man-
agement System (IMS) of your choice to manage the digital
certificates, as shown in Figure 10 b), which represents each
individual application workload, and eBPF to inject those
certificates into the kernel, and use kernel level encryption
for encrypting the traffic [6].

To summarize, the evolution of the Service Mesh model
employing eBPF enhances resource utilization and maintain-
ability by reducing the number of sidecar proxies and, in some
cases, eliminating them.

Whenever feasible, eBPF native (no sidecar) allows traf-
fic management (L3/L4 forwarding and load balancing,
Canary, Topology Aware Routing, Multi-cluster), security
(NetworkPolicy, mTLS), and observability (tracing, Open
Telemetry and Metrics; HTTP, TLS, DNS, TCP, UDP, etc.),
when it is not possible, such as in the case of traffic man-
agement (L7 load-balancing and Ingress), resilience (retries,
L7 rate limiting), and upper layer security (TLS termination
and origination), only a single sidecar proxy can be injected,
as depicted in Figure 9 [6], [15].

3) NETWORK SECURITY
Another important feature that eBPF brings to cloud-native
environments, particularly valuable for Telco cloud, is net-
work security for microservices.

Traditionally, containers runtimes (e.g., Docker) apply
security policies and NAT rules per-container level by con-

figuring iptables rules in the docker hosts. Using iptables,
policies can only be enforced based on Layer 3 and Layer
4 parameters. Moreover, the container must re-construct the
whole packet and forward that to the host to decide whether
to drop or deliver it.

As described in detail in Section III-C, with eBPF, con-
tainer security policies do not have the limitations of iptables,
eBPF policies can be applied to the system call, before enter-
ing the stack or constructing the packet, and all calls may be
intercepted and filtered on the spot, making the solutionmuch
faster. Also, eBPF allows us to apply security policies based
on application-level verbs, such as rest get/post/put/delete or
specific paths.

C. WHY eBPF NOW?
The market potential of eBPF is reflected in several signif-
icant companies changes in 2022, including the following
examples:

• ‘‘New Relic acquires Pixie Labs, a Next Generation of
Machine Intelligence and Observability.’’2

• ‘‘Datadog acquires Seekret and they are excited to lever-
age Seekret eBPF expertise to unlock new capabili-
ties.3’’

Seekret uses powerful eBPF technology to auto-discover
and visualize API assets, interconnections, and dependencies,
enabling developers and product leaders to understand API
behavior and usage patterns in complex, dynamic environ-
ments.

The industry comprehends eBPF, and a notable increase
in the industry utilization and understanding of eBPF has
createdmore buyers. For example, at amajor Kubernetes con-
ference, the discussion was on eBPF with one commentator
stating that ‘‘KubeCon was basically eBPF.4’’

2https://www.bloomberg.com/press-releases/2020-12-10/new-relic-
signs-definitive-agreement- to-acquire-pixie-labs-a-next-generation-
machine-intelligence-observability-solution-for

3https://www.datadoghq.com/blog/datadog-acquires-seekret/
4https://www.techtarget.com/searchitoperations/opinion/Looking-back-

on-KubeCon-CloudNativeCon
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FIGURE 10. a) mTLS using Sidecar Proxy and b) Sidecar-free mTLS with eBPF [6], [15], [18], [21].

FIGURE 11. Example of charging and billing model for eBPF monitoring, observability, and security tooling [20].

The technology has reached its technical maturity. In fact,
eBPF itself has become a markedly more general purpose,
particularly due to eBPF for Windows. Also, a series of eBPF
toolchains, such as GCC and Aya – a library that makes
it possible to write eBPF programs entirely in Rust – have
emerged.

D. HOW TO MONETIZE eBPF?
We may think of a marketplace where customers may access
the software through subscription and use a product-based
pricing and billing model based on a user subscription plan
linked to specific products, including network observability,
runtime security, energy, and a data source plan, depending
on service and support type [20], as depicted in Figure 11.

The user subscription plan considers the number of user
accounts and the type of support required. The data source
plan is linked to a usage-based pricing model. The data
reported to the eBPF agent are processed and then trans-

formed into bytes (usage metrics) by means of transformation
rules specific to the corresponding data source. If you are
on the usage-based pricing plan, you will be charged for the
number of bytes that exceed the free monthly allowance.

Another possibility is to charge based on resources, i.e.,
the number of deployed controllers (operators) and agents
(daemonsets) and types of support (services), as shown in
Figure 11.

E. eBPF LIMITATIONS AND COMPLEXITY
eBPF, like any other technology, has its own limits, and it
is crucial to be aware of these limitations, and associated
complications in developing different use cases.

eBPF can be a complex technology to work with, both in
terms of writing eBPF programs and integrating them with
other tools. Writing eBPF programs requires knowledge of
eBPF language and its libraries, and a good understanding of
the Linux kernel and its internals.
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FIGURE 12. eBPF platform for telco and modules for observability, security and networking use cases.

Also, eBPF features availability is tightly coupled to the
specific kernel version available on the host machine: the
most advanced and valuable features could only be available
in the most recent kernel versions, which in turn could not be
available or installed in the actual production environment.

Besides, reaching kernel portability could be difficult. For
example, it requires shipping the compilation suite (BCC
approach) with the solution or BTF support (BPF Compile
Once – Run Everywhere (CO-RE) approach).

Furthermore, since programmability is restricted, due to
kernel safety reasons, solving some specific problems may
require the rethinking of the development approach. The
eBPF verifier is very complex, but still not complete: its ver-
sions limit the programmability a lot and generate many false
positives. The developer must know where to find and use
some ‘‘hacks’’, which complicate the code writing, to avoid
some valid eBPF programs being rejected.

Another issue with eBPF is the kprobe interface of the
Linux kernel. The kprobe interface allows eBPF programs
to be attached to arbitrary hook points in the kernel, which
can be used to monitor and control various aspects of the
system. However, the choice of these hook points is critical,
and it can greatly impact the effectiveness and efficiency of a
host-based intrusion detection system (HIDS). For example,
if the hook point is not in the right place, it might miss critical
system events or introduce performance issues by consuming
too many resources. Therefore, a profound knowledge of the
Linux kernel is required to choose the right hook points to
monitor the system effectively.

Moreover, eBPF can also generate a lot of data and events
that need to be filtered, stored, and analyzed. This requires a
thorough understanding of the system and data to extract the
relevant information and take the right action.

Additionally, while eBPF is good at monitoring the ker-
nel and system calls, its support for monitoring user space
(enabled through uprobes) is less efficient than the kernel
side counterpart and, indeed, introduces a non-negligible
overhead. Many HIDS require monitoring and analyzing the
user-space events and actions that cannot be handled by eBPF
alone.

Beyond that, eBPF is effective at filtering and capturing
system events, but it is not designed to perform complex
correlations, analyses, or incident responses, which are fre-
quently required in HIDS. Therefore, it is often used as a first
line of defense that needs to be integrated with other systems
and tools.

Lastly, a complex control plane is required to manage
programs loading and unloading, attaching, and detaching,
and configuration.

In the following sections, we present our eBPF platform
for observability, and four case studies, to show how eBPF
can be used for estimating energy consumption of cloud-
native applications, derive performance counters and gauges
for transport and 5G networks, and detect and respond to
unauthorized access to API resources and files.

III. SAURON CONCEPT AND ARCHITECTURE
In this Section, we present our eBPF platform, named Sauron,
and the corresponding eBPF modules supporting various
use cases. The corresponding case studies and experimental
results are discussed in Section IV.

The proposed eBPF platform for Telco comprises: a Node
Agent (NA), i.e., a K8s daemonset deployed on each node,
a Controller to handle the NAs deployed in the clusters,
and three eBPF modules for observability, security, and net-
working use cases, as shown in Figure 12. Sauron does not
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FIGURE 13. Sauron reference architecture for eBPF Observability.

require the installation of any specific K8s plug-in, such as
Calico [19] or Cilium [21]. Examples of supported eBPF
features are, but not limited to, the following:

• Observability: Telemetry collector, event handler and
tracer.

• Security: Policy engine, detector, and policy enforcer.
• Networking: Data-plane engine, policy enforcer and
service mesh accelerator.

Figure 13 shows how Sauron is implemented for net-
work observability. We have one Controller for each clus-
ter and one Node Agent (Sauron daemonset) on each node
of the cluster. The Controller gets information about the
cloud-native environment from the API Server and attaches
metadata to the corresponding collected events. The Node
Agent retrieves all relevant information about Pods (on the
node the Agent runs) from the API Server; loads the eBPF
probes into the kernel and attaches them to XDP hooks,
system calls, and virtual interface(s) of each pod. Other hooks
could be instrumented as well. As described in Section II, the
eBPF Maps allow the communication between eBPF probes
in the kernel space and Node Agent in the user space. More
insights into our eBPF architecture, programs, interfaces, and
supported protocols are provided in Section III-B.
In the following sections, we describe the eBPF refer-

ence architectures, platform building blocks, and interfaces
for transport, energy, observability, and security tooling in
detail. The related experimental validation is discussed in
Section IV.

A. SAURON eBPF MODULE FOR TRANSPORT
The ability to analyze the provisioned network connections
and performance of services is critical for telecom network
management. Additionally, telecom networks are moving
towards virtualization, and any network function is expected
to be Virtualized (VNF) or Cloud Native (CNF) by design,
meeting the requirements of CNCF [1]. This means the com-

mercial off-the-shelf product (COTS) servers and network
devices, such as, e.g., routers and switches, are the dominant
factors affecting the network performance of a connectivity
service provider (CSP) in terms of agility, resiliency, and high
availability.

Moreover, the offering of hosting applications on the cloud
has become a SaaS and IaaS business where the users of these
applications consume the services via their portable devices,
shifting the attention of network monitoring solutions to be
cloud based. This progressive cloudification of networks and
services is also making them more complex. In this scenario,
purely passivemonitoring solutions are no longer sufficient to
proactively detect connectivity issues. And active probing has
become a fundamental complementary monitoring technique
to provide a complete hop-by-hop picture of the overall net-
work performance and to detect devices or applications faults
promptly [22].

In [23], eBPF was utilized for passive measurement of
network latency to overcome the inefficiency of always-on
passive monitoring to keep up with traffic as packet rates
increase, especially on current multi-Gbps interfaces. The
proposed eBPF-based solution that evolved Passive Ping
(ePPing) delivered accurate RTT measurements and greatly
improved on state-of-the-art software-based solutions, such
as PPing, handling over 1 Mpps, or, correspondingly, more
than 10 Gbps on a single core.

Conventional techniques for evaluating end-to-end (E2E)
network behavior typically employ active measurement pro-
tocols, see RFC 792, RFC 4656, RFC 6038 in [24], which
probe the network to gather information about its status,
performance, and healthiness. These protocols rely on the
generation of synthetic packets sent over the network to
measure the time it takes to reach a specific destination and/or
to receive a reply. Examples of active measurement protocols
include:

1) Internet Control Message Protocol (ICMP)
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TABLE 1. Summary of eBPF advantages and potentials [15].

2) One-Way Active Measurement Protocol (OWAMP)
3) Two-Way Active Measurement Protocol (TWAMP)

Conventional tools (e.g., from vendors such as Juniper
Networks, Accedian and others) based on those protocols
for calculating the E2E latency of telecom networks can be
useful for identifying connectivity and performance issues.
However, they have some limitations, such as, but not limited
to, the following:

• They are not always supported by all types of network
devices.

• There is a necessity of being non-intrusive to the target
network traffic, which mainly leads to a trade-off with
the obtained accuracy.

• They do not always provide a complete picture of the
latency experienced by all devices on the network.

• The calculated E2E measurements do not provide
insights about the links with issues.

• They may not be suitable for measuring latency in real
time (RT).

The following sections present how our eBPF solution
supports latency measurements, overcoming the limitations
introduced above, and its future developments.

1) eBPF SOLUTIONS FOR ACTIVE MEASUREMENTS
Transport network infrastructures are usually characterized
by many network devices, which are typically organized
in aggregation domains. Depending on the device location
and/or type, the hardware characteristics of the devices can
change, effectively making transport networks a set of het-
erogeneous nodes. However, despite these differences at the
hardware level, nowadays, many operating systems on the
network devices are mainly based on the Linux kernel, thus
enabling a homogeneous platform at the software level. As a
reference, Cisco IOS XR, IOS XE, and NX-OS families are
all Linux-based. Other vendors such as Juniper Networks and
Nokia have followed the same approach in some of their
product series.

The Linux integration provides access to all the Linux
utilities and tools. In this paper, we are leveraging the utiliza-
tion of eBPF kernel technology. As mentioned in Section II,
eBPF allows the running of custom programs at the kernel
level without modifying the kernel source code or adding
additional user space resources.

The eBPF programs can be attached to various hook points
inside the kernel. Some of the hooks are strictly related to the
network stack and capable of intercepting the traffic while it
is being processed. For this specific use case, we leveraged
the XDP hook, which allows eBPF programs to be executed
at the earliest point of the packet processing path inside the
network interface driver. In this context, the programs can
inspect or modify the content of the packets, but they can also
decide whether to redirect or drop them. Moreover, through
eBPF helpers, they can perform more advanced actions such
as timestamping.

These features make eBPF XDP programs suitable for
many network applications. In this work, we focused on the
problem of measuring the latency between network devices,
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namely routers. We adopted an active approach for the gener-
ation of synthetic packets periodically. eBPF programs are
not involved in this generation process; instead, they are
responsible for the actual measurements of the latency expe-
rienced by these synthetic packets.

In contrast to other implementations, our solution does not
require any special hardware support for clock synchroniza-
tion or packet timestamping. These hardware capabilities are
not always available on network devices, and in some cases,
they are not accessible from custom applications. At the
same time, our solution does not rely on any application-level
mechanisms for measuring latency since all its logic is in
the XDP program that runs at the kernel level. As a result,
this solution represents a perfect combination of accurate
measurement and minimum requirements. It achieves good
qualitymeasurements without any special requirement except
for the Linux kernel version, which must include the support
for XDP (it has been introduced in version 4.8).

As the resource utilization of these active measurement
tools is a major concern, we would like to emphasize that
the overhead of this solution is minimal in terms of CPU
consumption. More details are provided in Section IV-A.

2) eBPF ARCHITECTURE FOR TRANSPORT MONITORING
The proposed solution consists of two key components: a
Sauron Agent and an eBPF program, as illustrated in Fig-
ure 14, where the Sauron Agent is deployed on a router.

Sauron Agent runs as a Linux native app on the network
device. It provides an interface through which a user can
configure the desired latency measurements; it collects and
exports the metrics obtained, and it is responsible for the
setup of the eBPF program. In particular, the agent loads the
program in the kernel and attaches that to the XDP hook of all
active data plane interfaces. Moreover, it creates eBPF Maps
by passing some parameters to the program.

The Sauron Agent is also the component that generates,
sends, and receives the synthetic packets that are used for
measuring the latency. To do that, it simply leverages the tra-
ditional socket interface. Additionally, the generated packets
can be configured to have specific characteristics, such as
DiffServ class and payload length.
The eBPF program, on the other hand, processes the syn-

thetic packets and extracts all the data needed for the latency
measurements. In the XDP hooks, the program is triggered
every time a packet arrives at a network interface. In this
context, it can read and modify the packet, but it can also
decide whether to redirect that to a different destination. The
next section describes how these capabilities are utilized for
latency measurements.

3) HOW eBPF IS USED FOR CALCULATING LATENCY
The process for measuring the latency is divided into three
phases. The first is the generation phase, in which the Sauron
Agent generates synthetic packets. By default, these packets
are broadcast via all active interfaces in the router, where
the Sauron Agent is deployed, to the neighbors directly con-

FIGURE 14. eBPF reference architecture for latency measurements.

nected to the router in question. To reach the remote peers –
beyond the neighbors directly connected to the router where
Sauron runs – their IP addresses need to be explicitly speci-
fied in the configuration file of Sauron.

When a synthetic packet reaches the interface of (any) peer
device, the second phase of the process begins. This process
is performed at the XDP level and encompasses the bouncing
of the packet between the receiving device and the original
sender for a fixed number of times. The program simply
utilizes an XDP feature that allows us to redirect a packet
through the same interface at which it was received. At each
step, a timestamp of the time of occurrence of each action
(send or receive) is added to the packet payload. In Figure 15,
the dashed blue lines highlight the path the packet takes
during the process. In this case, the router on the left is the
initiator.

After the final iteration, the original sender breaks the loop,
passes the packet to the networking stack, and reaches the
Sauron Agent through the socket interface. The third and
last part of the process takes place in the user space. The
Sauron Agent extracts all the necessary information from
the payload to make the latency measurements. Using the
collected timestamps, it calculates both One-way and Two-
way latency. Once these metrics have been calculated, they
can be exported to a remote collector for processing and
visualization.

4) WHAT IS NEXT?
Most of the ‘‘in-network’’ functions, such as routing, switch-
ing, load balancing, and Quality of Services (QoS) man-
agement, support the improvement of the performance and
efficiency of the network using specialized hardware.
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We believe that eBPF implementation on Telco networks
will provide operators with the desired ability and flexibility
to build programmable ‘‘in-network’’ monitoring functions
and tooling that dynamically instrument the Linux kernel
with minimal overhead.

B. SAURON MODULE FOR NETWORK OBSERVABILITY
The latest generation of mobile networks, namely 5G and
future generations, have already adopted cloud-native archi-
tectures as standard, and cloud-native technologies will be
the basis and foundation of network infrastructures. The
migration of mobile communication networks to cloud-native
architecture poses some challenges but at the same time offers
substantial benefits, unquestionably. One of the key chal-
lenges is the instrumentation to achieve visibility or observ-
ability of the network performance near real time and at the
session level, which is where eBPF can play a fundamental
role.

1) eBPF SOLUTIONS FOR NETWORK OBSERVABILITY
In any network providing services to customers, including
mobile networks such as 5G and beyond, a fundamental
aspect and requirement is instrumentation enabling near real-
time performance monitoring, service assurance and sub-
scriber experience monitoring.

The key source of truth, providing the means of extract-
ing required information and insights for achieving the
required observability or visibility near real time, are the
packets traversing the network (packet capture), or mes-
sages/information exchanged between different network
functions. These messages or packets are typically collected
at various standards-defined interfaces between the network
functions [25]. Collecting information from these interfaces
on both the control and user plane parts of the network
is required with their complex correlation to achieve the
required observability.

In traditional networks of previous generations deployed
on physical proprietary hardware or even in VMs, various
techniques were used to capture the required information.
Most, if not all, of these are no longer adequate/possible or
at best, significantly inefficient in a cloud-based architecture
and, if applied, require a compromise in the architecture of
the next generation of mobile networks, including 5G.

Traditional means of instrumenting and extracting the
required information (e.g., packet capture) across different
parts of the network consisted of utilizing various techniques
ranging from port mirroring, network packet brokers or phys-
ical tapping, collection of traces, e.g., from the Radio Access
Network (RAN) or Core Network. However, these means
were often not consistently applied across various compo-
nents of the network; they include, but not limited to, the
following:

• Dependent on the network architecture and the capabil-
ities provided by the vendors in their network elements,
e.g., there is a significant difference between RAN cell

traces provided by different vendors (almost all are lim-
ited to only control plane data).

• Intrusive, e.g., requiring the deployment of packet bro-
kers and additional physical devices and components
with various vendor-specific configurations (requiring
support and expertise).

• Being limited by port spanning or traffic mirroring capa-
bilities and capacity, which adds overhead and additional
cost.

• Not easy to scale or deploy, monitoring new interfaces or
network functions entails introducing new components
or additional capacity and complex configuration, which
is a lengthy process.

• Limited to monitoring only interfaces between network
elements or functions.

• Not readily extensible and programmable.

Other means/methods of instrumentation, such as open
tracing/open telemetry were introduced relatively recently to
address some of these challenges [26]. However, they still
have significant limitations and are typically invasive to the
network and applications. A detailed description of which is
beyond the scope of this paper, but a key limitation is varying
implementations and the extent of what is supported.

In a cloud-based network architecture, such as the one
employed in Rakuten Mobile Japan and being adopted by
many other mobile network service providers, a different and
novel approach is required that is cloud native, consistent
throughout the network, easy to scale and deploy, and that
is programmable. This is where eBPF comes into play.

In [27], the introduction of non-intrusive data collection for
networkmonitoring at kernel level is proposed for Kubernetes
cluster for an e-commerce platforms container services based
on eBPF, supporting very high throughput and with minimal
impact or overhead on the system (less than 1%). The solution
presented in this paper, applied to a mobile telecommunica-
tions network running on a cloud platform using Kubernetes
for the orchestration of containers, although similar, goes
beyond the approach proposed in [27]. In our work, for
network observability using eBPF programs running in the
kernel, we propose a non-intrusive and protocol-independent
data collection mechanism.

Furthermore, the ideas presented in this paper meet the
requirement for fully adaptive and programmable network
monitoring. Drawing from similar approaches as described
in [28], we propose a highly programmable eBPF solution
that allows for efficient, dynamic, and granular monitoring
pipelines (i.e., data collection mechanisms) with minimal
overhead or impact for Telco networks.

In short, our eBPF solution complements and expands the
scope of the works published in [27] and [28] tomodern Telco
infrastructures running on cloud-native platforms. Our focus
is on the application of the eBPF technology, for observabil-
ity/monitoring, security, and energy, specifically to the latest
generation of mobile communication networks deployed on
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FIGURE 15. eBPF reference architecture for latency calculation.

a cloud-native environment utilizing container and container
orchestration platforms.

2) eBPF ARCHITECTURE FOR NETWORK OBSERVABILITY
Figure 16 depicts a high-level generic logical diagram of a
5G Core Network (5GC) instrumentation that utilizes eBPF
programs controlled by a daemonset agent (Sauron Agent).
The diagram is derived from the eBPF platform reference
architecture shown in Figure 13. In the figure, the generic
pods effectively represent the 5G cloud-native network func-
tions or related network micro-services, depending on the
containerization.

In the high-level logical diagram illustrated in Figure 16,
the daemonset (ds) agent, i.e., the Sauron Agent, is deployed
on each node in the cluster. Sauron detects containers and
pods of the 5GC network by querying the API Server. Also,
the agent configures the necessary eBPF programs, collects
the messages using a Ring buffer or throughout eBPF Maps,
parses, and extracts information from the protocol messages.
The agent can be configured to collect information from
all parts of the network (radio access and core domains)
with minimal overhead and process them, thus removing
vendor-specific cell trace configurations and avoiding their
inherent limitations and dependencies.

Also, the eBPF solution enables simple traffic forwarding
to an existing collector or probe component of a sophisti-
cated service assurance and/or subscriber experience tooling,
which might be already in use, and to perform complex cor-
relation of data for call or session tracing and analysis, packet
analysis, and for generating metrics and key performance
indicators (KPIs).

An agent configured to simply forward traffic is depicted
in Figure 17, where 1) A libpcap probe is installed on the
interface. 2) Packets pass through the BPF filter installed on
the interface (e.g., src 10.0.0.1 or dst 10.0.0.1 and not src net
CLUSTER_CIDR); 3) Matching packets flow to the agent;

4) The agent encodes incoming packets in PCAPNG format
and 5) sends them to the processing probe.

Furthermore, it is important to note that the described
solution is programmable and can be configured not only
for continuous observability but also on demand to monitor
different parts of the network or provide different levels of
observability as required and, in that way, optimal for perfor-
mance and minimal overhead. Furthermore, such configura-
tions could be automated using AI/ML algorithms or models
that detect changes in traffic patterns, anomalies, and utilize
other network data sources, such as PM/FM/CM etc.

The proposed eBPF solution can provide an additional
level of detail that is not supported by any traditional solution.
That is, 5G network functions deployed in a cloud envi-
ronment will typically follow a microservices-based archi-
tecture. The proposed solution could be configured to pro-
vide details of the communication or information exchanged
between microservices within the network function, provid-
ing another level of context in network observability.

Finally, the solution has no dependency on those (vendors)
providing the network functions deployed in a cloud plat-
form. It can automatically scale up and down with the net-
work, ensuring optimal and energy-efficient use of resources
for observability, end to end.

C. SAURON eBPF MODULE SECURITY
As Kubernetes gains momentum, organizations adapt how
their security teams detect and respond to threats. In contrast
to conventional environments, the workloads and resource
requirements in a containerized (virtualized) environment
are constantly changing, posing new challenges for security
teams and runtime security monitoring solutions. Since it
can be difficult to detect and respond to threats in a timely
manner when infrastructure is in a constant state of change,
a new generation of tools has evolved, where eBPF plays a
significant role as an enabling technology.
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FIGURE 16. Sauron reference architecture for 5G network functions (generic pods in the figure).

FIGURE 17. Agent configured to simply capture and forward traffic.

1) eBPF SOLUTIONS FOR NETWORK SECURITY
By providing visibility into low-level system and network
events, eBPF is a powerful technology that can be used to
enhance security in cloud-native environments. There are
many open-source tools that leverage eBPF to detect and
prevent malicious activity, which can be grouped into two
broad categories: network security and application runtime
security.

Monitoring and inspecting network traffic at various layers
of the stack, such as the kernel, eBPF offloading on the
network interface, and application layers, is the primary focus
of eBPF-based network security tools. These tools can be
used to detect and prevent various types of network-based
attacks, such as distributed denial of service (DDoS), port
scanning, and other types of reconnaissance. Cilium [21] and

Polycube [29] are examples of eBPF-based network security
tools.

Application runtime security tools utilizing eBPF typi-
cally focus on monitoring and inspecting the behavior of
host-running applications and processes. These tools can
detect and prevent a variety of application-level threats,
including privilege escalation, code injection, and other forms
of malware. Falco [30] and Tetragon [31] are examples of
application runtime security tools that employ eBPF.

2) eBPF ARCHITECTURE FOR NETWORK SECURITY
Despite the limitations introduced in Section II-E, eBPF is
a potent technology that can be used to enhance security in
various scenarios, and it continues to evolve and acquire new
capabilities. In addition, its real-time nature and capability
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FIGURE 18. Sauron reference architecture for eBPF runtime security monitoring.

to intercept, filter and redirect traffic and monitor and report
events such as syscalls on-the-fly, make it especially suitable
for network security monitoring and enforcement, runtime
security and incident response.

Figure 18 illustrates our eBPF reference architecture for
network security. The main aim of the proposed solution is
to provide eBPF runtime security monitoring to detect and
mitigate malicious activities in cloud-native environments.

The solution comprises an agent named Sauron deployed
on each node of the cluster. The agent is responsible for
loading eBPF programs into the kernel and attaching them to
specific hooks. Different types of eBPF programs are used for
providing various capabilities: among these, themost relevant
are TC, eBPF tracepoints, kprobes and eBPF LSM.
TC programs are used to implement network security (an

alternative would have been the use of sk_skb programs):
the primary role is to inspect packets flowing in and out pod
boundaries (traversing virtual ethernet interfaces) or between
containers in the same pod, detecting policy violation and
enforcing configured rules on the unwanted traffic. Unwanted
traffic could be:

1) Traffic directed to or coming from subjects (entities)
that are not allowed to communicate with the object
pod.

2) Malicious traffic (malformed packets) directed to or
coming from sources that are allowed to communicate
with the object pod but not authorized to perform cer-
tain tasks.

3) Lastly, malicious traffic that insists on a disallowed
communication path.

eBPF tracepoints programs are attached to static mark-
ers defined by kernel developers in the kernel code. The
more recent the Linux kernel version is, the more efficient
these kinds of eBPF programs (e.g., eBPF raw tracepoints
and eBPF btf-enabled raw tracepoints) are. Moreover, static
markers implementing the hook points guarantee theApplica-
tion Binary Interface (ABI) for tracepoints to be more stable
than the one available for kprobes: this could be leveraged
to implement a more stable security solution. Tracepoints
can be used to track events related to multiple subsystems,
including sched, netlink and system call, even though Fig-
ure 18 shows only the system call subsystem. The system call
subsystem allows installing eBPF programs to be triggered
on entering or exiting specific system call handlers. System
call boundaries are useful for detecting unwanted filesystem
interactions: by attaching eBPF programs on open, close,
write, read, dup, fcntl, and so on, it is possible to track file
access and modification by any process, optionally running
in a container inside a pod.

Since tracepoint static markers are not available for all
events of interest, kprobe can be used to complete the mon-
itoring surface. Even though kprobes are not as effective
as tracepoints and do not provide a stable interface, they
are essential for achieving monitoring completeness; more-
over, they allow the implementation of an additional layer of
defense beyond what tracepoints provide. Lastly, by tapping
deeper into the system calls implementation, it is possible
to circumvent the well-known Time-Of-Check Time-Of-Use
(TOCTOU) vulnerability of tracepoints.
eBPF LSM programs add an additional layer of security to

newer kernels. Besides allowing the detection of malicious
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behaviors, they allow the denial of access and permissions
directly in the kernel, enabling faster response to the one that
can be provided via tracepoints and kprobe programs.
The user space agent provides all rules for detecting mali-

cious behavior and enforcing policies to eBPF programs via
eBPF maps. eBPF programs interact with the agent via the
eBPF perf buffer or the eBPF ring buffer (depending on
which feature is available in the kernel installed on the node).
Programs send three kinds of data to user space: samples of
normal events, suspicious events, and malicious events.

• Normal/malicious events are events recognized as per-
mitted/denied directly by eBPF programs based on
the accessible information (rules configured into eBPF
maps and event-surrounded context). Malicious events
and (sampled) normal events are sent to user space to
enable data collection, which in turn enables AI/ML
model construction. Moreover, malicious events are sent
to user space to enforce related policies that cannot be
enforced directly in the kernel (e.g., pod killing), or that
cannot be enforced by the specific detecting eBPF pro-
gram type (e.g., networkmessage dropping in tracepoint
programs)

• Suspicious events are events that cannot be directly clas-
sified into eBPF programs due to the lack of information;
therefore, they must be sent to the user space for further
analysis.

The user space agent classifies suspicious events as either
benign or malicious events. Then, all events collected by the
agent (including the suspicious events once they have been
classified) are sent to a cluster-wide events collector.

The collector stores the received events and makes them
accessible to a cluster-wide runtime security module, which
has two responsibilities: buildingAI/MLmodel by leveraging
the collected events and providing each node agent with
enforcing rules inferred from the model.

By providing a plugin-based interface to third-party sys-
tems, the system can be integrated with them.

D. SAURON eBPF MODULE FOR ENERGY
Energy management in Telco networks and cloud computing
environments is motivated by climate protection, resource
conservation and cost savings. In such networks, it is impor-
tant to calculate the energy consumption per each element in
the network to manage the energy consumption.

The most important hardware elements with respect to
power consumption are the CPU and GPU. The power con-
sumption of a CPU comprises three main factors, namely
dynamic power consumption, short-circuit power consump-
tion, and power loss due to transistor leakage currents.

The dynamic power consumption is due to the charging
and discharging of the capacitors within the logic gates that
shape a CPU. It is linearly proportional to the CPU frequency,
as well as the switched load capacity, and to the square of the
CPU voltage.

The short-circuit power consumption is caused by a direct
path between the source and groundwhich is accidentally cre-
ated for a very short time when the transistors inside the logic
gates are changing their states. Modelling the short-circuit
power consumption is a complex task, and it needs to be done
per each logic gate.

Leakage currents are the currents flowing between semi-
conductor regions of the transistor that were doped differ-
ently. These currents are a function of the physical properties
of the transistors, such as their size and state. Although
their individual amount is small, the total amount of power
dissipation due to transistor leakage currents is an increasing
function of temperature and a decreasing function of transis-
tor sizes.

Another essential element to consider is the GPU. The
GPU power dissipation might be critical for 5G systems
because some network functions run on the GPU. Indeed,
a GPU can enhance the performance of 5G signal processing,
which is more advanced than in previous generations. The
main factors that determine the power consumption of GPU
include GPU clock speed, GPU voltage, GPU architecture,
cooling solution and GPU power limits.

1) eBPF SOLUTIONS FOR ENERGY MONITORING
Direct measurement of dynamic power consumption, short-
circuit power consumption, and transistor leakage currents
power loss is not possible in a scalable manner, and it is
only feasible to measure energy consumption at node-level
granularity. Therefore, finding a scalable and economical
alternative is very important for continuously monitoring
energy consumption in a large network.

One possible solution is to approximate the capacity and
execution time using the number of CPU instructions and
CPU cycles, respectively. Using these approximations, one
can characterize the power consumption of processes and
consequently the power consumption of containers and pods.
This is where eBPF enters the picture as a tool with minimal
overhead for probing the CPU performance counters and
Linux kernel tracepoints.

As already pointed out in Section II, KEPLER is one
such tool that adopts this approach [14]. It is designed for
cloud computing environments with Kubernetes as their con-
tainer orchestration system. KEPLER uses eBPF programs
to collect system and process information (such as process
id, cgroup id) and performance counters from the kernel on
the CPU, GPU and RAM (such as cpu cycles, cpu time,
cpu instructions, cache misses), and then feeds them, along
with other stats from cgroup, sysfs and other hardware coun-
ters, into ML models to estimate the instantaneous energy
consumption of each process. KEPLER also uses Running
Average Power Limit (RAPL) counters to read energy con-
sumption and because of that KEPLER works only partially
in a Virtual Environment due to the lack of RAPL counters.
To overcome this drawback, KEPLER estimates energy con-
sumption based on the pre-trained ML models.
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By exporting this information as Prometheus metrics and
aggregating them, KEPLER provides the energy consump-
tion per container, namespace, pod, and node in a Kubernetes
cluster. This level of granularity enables the operator to deter-
mine the energy consumption per CNF. KEPLER architecture
is depicted in Figure 19.

Other tools that utilize the output of KEPLER are Power
Efficiency Aware Kubernetes Scheduler (PEAKS) [32]
and Container Level Energy-efficient VPA Recommender
(CLEVER) [33]. PEAKS uses metrics exported by KEPLER
to schedule Pods to achieve optimal performance per Watt,
and CLEVER employs metrics exported by KEPLER to
recommend Vertical Pod Autoscaler (VPA) resource profiles
to improve energy efficiency by running workloads. Tools
such as PEAKS and CLEVER do not utilize the eBPF by
themselves but build the intelligence on top of KEPLERmea-
surements. They are general-purpose tools for Kubernetes
clusters, and further customization is required for developing
any optimization instrument for Telco networks that employ
eBPF.

Other examples of energy optimization tools for Kuber-
netes clusters that do not necessarily employ eBPF are, but
not limited to, the following:

1) Cloud Carbon Footprint is a tool to estimate energy use
and carbon emissions from public cloud usage [34].

2) Kube-green is a Kubernetes add-on that automatically
shuts down (some of) the resources when they are not
needed [35].

3) Kube-downscaler scales down or ‘‘pauses’’ Kubernetes
workloads during non-work hours [36].

It is worth mentioning that CNCF TAG Environmen-
tal Sustainability [37] launched in May 2022, is a Techni-
cal Advisory Group (TAG) that defines environmental sus-
tainability factors for the cloud-native landscape, incubate
and advocate open-source projects to observe and measure
cloud-native infrastructure carbon footprint, optimize, and
eventually reduce carbon footprint and promote cloud-native
infrastructure to combat environmental challenges.

The final aim of any cloud-native energy management tool
is to provide energy-aware pod scheduling and node tuning
capabilities. eBPF can serve as a reliable and lightweight tool
for observing some of the metrics in the Linux kernel. How-
ever, the rest of the intelligence for managing the observed
data and decision-making should be built independently and
often needs to be customized to that environment or applica-
tion.

2) MONITORING ENERGY IN OTHER NETWORKS
WiFi networks are another arena where the eBPF has
been leveraged for monitoring energy consumption. In [38]
and [39], the authors proposed a framework that utilizes eBPF
to enable the access points to track the energy consumption
and duty-cycling pattern of their associated stations without
any external energymeasurement tools. They achieved this by
relying on the fact that stations need to inform their associated

access point (AP) whenever they change their power mode.
Therefore, monitoring the driver-pertaining data structures
allows for tracking stations’ duty cycle patterns.

The architecture of the framework proposed in [38] is
depicted in Figure 20. The right side of the figure presents
the networking stack, and the left side shows the Network
State Monitor (NSM) module that relies on eBPF programs
to interact with the networking stack. The dotted lines with
arrows denote the collection of monitored data. The solid
lines with arrows represent the path taken by data packets
(wired-to-wireless switching data path).

IV. EXPERIMENTAL VALIDATION
This section describes four case studies and validates the
technical feasibility of the related eBPF modules for trans-
port, observability (including energy) and runtime security
presented in Section III.

A. CASE 1 – eBPF FOR TRANSPORT NETWORK LAYER
PERFORMANCE MONITORING
We validated our eBPF-based solution by deploying it on real
routers using two different testbeds. All the routers that we
used were from the Cisco NCS 540 family.

The first experiment was conducted using a simple network
configuration with two routers and two VMs, as depicted in
Figure 21.
The agent was deployed only on the routers, while the VMs

were used to generate traffic and increase the traffic volume
to put the routers under pressure. All traffic flowing from one
VM to the other was forced to pass through the two routers
using only one link between them.

The performed tests focused on measuring the latency
perceived by the two routers as the traffic load on the link in
between was changing. Results showed that our solution cor-
rectly detects the latency variation in real time, demonstrating
that it is possible to keep the status of the links always under
control.

Figure 22 shows the output metrics of the latency mea-
surements calculated by the agent. It provides the current
value for the One-way and Two-way latency as well as the
mean value and the jitter. In addition, each measurement is
associated with some metadata, such as the timestamp, the
peer’s name, and the interface at which it is reachable, and
additional information related to the characteristics of the
packet, such as the Differentiated Service Code Point (DSCP)
value and the length of the payload in use.

For generalization, we implemented our solution for cal-
culating the E2E latency on eight routers, as illustrated in
Figure 23. This configuration allowed us to validate our
solution in amore complex scenario, wherewe couldmeasure
the latency between network devices that were not directly
connected, and the route between them was not fixed.

As shown in Figure 23, our agent considers two routers
in communication as ‘‘Local Peers’’ if they are adjacent and
as ‘‘Remote Peers’’ if they do not share the same link, i.e.,
there are multiple hops between them. We want to emphasize
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FIGURE 19. KEPLER reference architecture.

FIGURE 20. The architecture of FLIP framework proposed in [38].

that, by default, our solution measures latency for local peers.
To calculate it for remote peers, the user needs to explicitly
configure them in Sauron by providing their hostname or
address, as explained in Section III-A.

Figure 24 shows the results attained (latency measure-
ments) for two remote peers (R1 and R8). The outputs are
like for ‘‘Local Peers’’, but for ‘‘Remote Peers’’, the agent
displays the route (path) of the packet chosen from the sender
(R1) to reach the remote peer (R8). This helps to display
the measurement path, considering that multiple routes are
supported.

Moreover, we assessed the resource consumption of the
proposed solution in terms of CPU utilization. The NCS
540 routers were powered by an IntelI PentI(R) CPU D1519

FIGURE 21. Measurement setup for testing eBPF for transport network
layer performance monitoring.

@ 1.50GHz CPU. We measured the CPU usage as a function
of time between measurements (period) and the number of
peer entities. As shown in Figure 25, the CPU footprint is
very low, especially when the time interval between two mea-
surements is higher than 0.1s, and it increases exponentially
as the measurements are made more frequently. This tradeoff
must be considered in the actual implementation (production
environment).
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FIGURE 22. Examples of latency, jitter, and packet loss measurements
between local peer entities.

FIGURE 23. Extended measurement setup for testing latency, jitter, and
packet loss between remote peer entities.

FIGURE 24. An example of latency measurements for remote peers.

B. CASE 2 – eBPF FOR PERFORMANCE MONITORING OF
5G PROTOCOLS
Our observability solution concept was validated in a 5G
testbed deployed in a Kubernetes cluster running on the
Google Cloud Platform (GCP). The 5G testbed is shown in
Figure 26.

The three components of the testbed were:

1) 5GC functions, from Free5GC [40].
2) User Equipment (UE) & gNodeB (GNB), from UER-

ANSIM [41].
3) Sauron Agent running on each worker node in the

cluster.

The protocol stack supported by our open-source testbed
is illustrated in Figure 27. The experiments were limited to
observing the control plane of the 5G communication.

FIGURE 25. CPU utilization as a function of time between measurements
(period) and number of peer entities.

In the first part of the validation, we focused on calcu-
lating gauges and counters to assess the performance of the
next-generation application protocol (NGAP) and non-access
stratum (NAS) messages in real time. In the second part,
we tested the ability of Sauron to capture (using libpcap),
filter (using BPF) and forward data in PCG.

1) NGAP AND NAS PERFORMANCE MONITORING
NGAP and NAS are layer five protocols, with complex mes-
sage structures (composed of different optional parts). NAS
messages are encapsulated into NGAP messages, and NGAP
relies on the stream control transmission protocol (SCTP) of
the 5G transport network layer. To extract information from
NGAP messages, we need to parse SCTP packets containing
multiple data chunks that can be fragmented, as shown in
Figure 28.
XDP and TC hooks act at the packet level, not the message

level, making them unsuitable for handling NGAP messages.
Hence, to have direct access to messages, we instru-
mented trace point hooks (available in Linux kernel ver-
sion 4.7 or later releases) by attaching eBPF programs to
BPF_PROG_TYPE_TRACEPOINT.

Examples of NGAP and NAS metrics, derived using the
approach presented above, are:

• NGAP Initial Context Setup Counters.
• NGAP Setup Success Ratio.
• NGAP Setup Time (ms).
• NGAP Procedure Duration (ms).
• NGAP Failed Procedures Cause Code
• PDU Session Establishment Attempts.
Some of the performance indicators displayed by Sauron

in real time are shown in Figure 28, namely the NGAP pro-
cedure duration on average (0.073 ms) and the PDU session
establishment request counter (1).

2) PACKET CAPTURING AND FORWARDING
For the experimental validation, we used the same 5G testbed
on GCP as for the previous use case (see Figure 26 and
Figure 27), and the reference architecture for packet capturing
and forwarding is illustrated in Figure 17. The traffic gener-
ated by UERANSIM (see Figure 26), using a libpcap probe
attached to the 5G pod (eth0), as shown in Figure 17, filtered
using BPF programs, forwarded to the SauronAgent, where it
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FIGURE 26. UE-RAN Sim (UE, gNB), Free5GC (AMF, SMF, UPF, AUSF, NSSF, PCF, NRF, UDM) and Sauron Agent running in a
Kubernetes cluster.

is encoded in PCAPNG format, and then passed to an external
processing probe for further processing.

The encoded packets as PCAPNGwere thereafter replayed
usingWireshark and tested at RakutenMobile Inc. for further
validation using their processing probes (service assurance
and subscriber experience solutions). Some examples of the
attained files results for NGAP (between RAN and Core)
and HTTP2 (between 5GC virtual network functions) are
depicted in Figure 29 a) and b).

C. CASE 3 – eBPF FOR CLOUD-NATIVE PLATFORM
RESILIENCE
In this section, we present the results attained with Sauron
for monitoring the integrity of files, detecting and preventing
unwanted traffic between two applications, and detecting and
preventing unwanted access to filesystems utilizing eBPF.

The reference architecture for the case studies discussed
in the following was described in Section III-A and shown
in Figure 18. Tests were run using a few selected files and
applications deployed on a node in a Kubernetes cluster
running on GCP.

1) FILE INTEGRITY MONITORING UTILIZING eBPF
File integrity monitoring (FIM) is a security technique used
to detect changes to critical files, folders, or system settings
on a computer or network. eBPF is not typically used as the
primary tool for file integrity monitoring as it is designed to
intercept and filter system calls, network packets and events
on the kernel level rather than monitoring files and directories
on the file system level. However, it is possible to use eBPF
to monitor system calls and events that can indicate unautho-

rized changes to the file system. For example, by attaching
eBPF programs to relevant system calls, you can monitor file
access and detect changes to the files. Additionally, eBPF can
monitor network activity and detect any abnormal network
traffic that could indicate an attack, such as the exfiltration of
files or a malicious process communicating to a command-
and-control server.

An effective architecture for implementing FIM using
eBPF can be designed as follows:

1) eBPF Probes: Attach eBPF programs to system calls
relevant to file access, such as open, close, read, write,
and unlink. These eBPF programs can monitor file
access and detect any unauthorized changes to the files.

2) Collection and Parsing of Data: The eBPF programs
can collect information about file access, such as file
paths, process IDs, and container-related information
such as cgroup IDs and timestamps. This data can be
parsed and stored in a data store, such as a database,
for further analysis.

3) Comparison: Compare the current state of the files with
a previously recorded ‘‘baseline’’ state, which is the
state of the files when they were last known to be in
a safe state. Any changes that occur outside of the
baseline state can be flagged as suspicious.

4) Correlation and Analysis: Correlate the data collected
by the eBPF programs with other security data such
as logs, network traffic, or system events to identify
any suspicious behavior or anomalies. This step can
use machine learning techniques, or any other type of
analysis, to detect patterns of attack.
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FIGURE 27. Control plane protocol stack supported by the UERANSIM-Free5GC testbed.

FIGURE 28. Examples of 5G gauges and counters derived by the Sauron Agent (daemonset) in real time.

5) Alerting: Send alerts to the incident response team
when suspicious or malicious activity is detected. This
can include information such as the file that was
accessed, the process that performed the access, and the
time of the access.

6) Response: Depending on the level of the detected
attack, the incident response team can take actions such
as blocking the malicious process, quarantining the
affected files, or shutting down the affected systems.

While eBPF can monitor file access and detect unau-
thorized changes, this method can only detect changes that
happen after the eBPF probe is attached. Therefore, it is
important to use eBPF in conjunction with other file integrity
monitoring solutions to ensure that all changes to the file
system are detected. Also, it is essential to note that FIM is not

a single point of security; it should be integrated with other
security tools, such as antivirus, firewall and intrusion detec-
tion systems, to provide a comprehensive security solution
that could detect and respond to potential threats.

Figure 30 and Figure 31present the logs of our FIM proof
of concept (PoC) using eBPF.

Figure 30 illustrates how an attacker was detected after
writing ‘‘Hi!’’ into the monitored file /etc/file1 using the
shell standard output redirection. The FD_INSTALL event
is logged when a process allocates a new file descriptor for
a specific file. In this example, the bash process, whose PID
was detected as 6436, allocated the file descriptors 3 and 1 to
the /etc/file1 file. The next CLOSE event indicates that file
descriptor 3 was closed. Lastly, the WRITE event allowed
us to detect that the process wrote 4 characters into the file
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FIGURE 29. Example of packet captured at 5GC pod interface and filtered based on protocol type, e.g., a) NGAP between RAN and Core; and b) HTTP2
between 5GC virtual network functions, for validation purposes.

/etc/file1 through the file descriptor 1. (‘‘Hi!’’ is composed
of 3 characters plus the invisible ‘\0’ termination character.)
It is worth noticing that file descriptor 1 is not closed by the
bash process since, by convention, it represents the process’s
standard output.

Figure 31 shows a similar attack pattern. Here the attacker
was detected while modifying the content of the moni-
tored file through the nano utility. The nano utility opens

the file and reads its content to show it on the screen.
In this experiment, those two events were detected and
communicated to the user through the first three log lines
(FD_INSTALL, READ(4) and READ(0) events). The nano
utility saves the modification to the file in a second temporary
file during the editing phase. When the attacker saved the
changes, the original file was reopened, and the file was
modified and then closed; these events were reported in the
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FIGURE 30. Sauron daemonset agent detecting the modification in
monitored file /etc/file1 utilising the shell standard output redirection.

FIGURE 31. Sauron daemonset agent detecting the modification in
monitored file /etc/file1 employing nano utility.

last 3 log lines (FD_INSTALL, WRITE(7) and CLOSE(7)
events).

In both examples, only events related to files whose path
starts with /etc/file1 are monitored. However, in our imple-
mentation, a different folder path, as /etc, etc., can also be
specified.

2) DETECTING AND PREVENTING UNWANTED TRAFFIC
EMPLOYING eBPF
eBPF can also detect and prevent unwanted traffic by attach-
ing eBPF programs to various hook points in the Linux
kernel. Here is an example of how this can be done:

1) First, eBPF programs are written to intercept and filter
network traffic based on IP addresses, ports, or other
header fields or information related to generating pro-
cesses. This can be done by attaching eBPF programs
to the appropriate hooks in the Linux kernel, such as
XDP, TC, sk_skb and cgroup_skb.

2) The eBPF programs are configured with rules to match
the unwanted traffic, such as IP addresses, ports or
other parameters that identify the flows to be blocked.
This can be done by using eBPF maps, which are
data structures in the kernel that can be dynamically
configured from the user space with the desired rules
and accessed from eBPF programs to enforce them.

3) Once the eBPF programs are in place, they begin inter-
cepting and filtering network traffic in real time, based
on the rules configured.

4) If needed, eBPF can also be used to log the events
of unwanted traffic, which can be useful for forensic
analysis or troubleshooting.

Figure 32 a) and b) give an example of a declarative way to
express network policies (the style follows the Kubernetes
NetworkPolicy API).

In Figure 32 a), the first SecurityPolicy is applied to
all pods having the label ‘‘run’’ equal to ‘‘curl’’. In the
test environment, only one curl pod, having the address
172.22.244.35, was deployed with this label. The policy only
allowed: 1) Incoming traffic from 172.22.80.22 to port 7000,
on which the curl pod was listening, and 2) Outgoing traffic
to target port 80 with IP address 172.22.80.22, using TCP.
The address 172.22.80.22 is the IPv4 address of a nginx pod
deployed in the same cluster.

In Figure 32 b), the nginx pod is labelled with ‘‘app’’
equal to ‘‘nginx’’ and is targeted by the second Securi-
tyPolicy. This policy only allows: 1) incoming traffic to
port 80 from 172.22.244.35; and 2) outgoing traffic to target
port 7000 with IP address 172.22.244.35, using TCP. The
address 172.22.244.35 is the Ipv4 address of the curlpod
deployed on the same test environment.

Figure 32 c) shows how Sauron was able to detect the traf-
fic and enforce the policies. Using curl 172.22.80.22:39395
from the curl pod, where the destination port 39395 was
selected randomly, the outgoing http request was blocked at
the curl egress interface, as the random target port 39395
(nginx port) was not equal to the target port (80), specified
in the egress policy applied to the ‘‘curl’’d.

3) DETECTING AND PREVENTING UNAUTHORIZED ACCESS
TO FILESYSTEMS UTILIZING eBPF
eBPF can be used to detect and prevent unwanted access to
filesystems by attaching eBPF programs to the appropriate
hooks in the Linux kernel, such as the Virtual File System
(VFS) hooks. Here is an illustration of how this can be
achieved:

1) The eBPF program is written to intercept file system
events, such as file creation,modification, and deletion.
The eBPF program is then attached to the Linux kernel
VFS hooks to capture file system events in real time.

2) The eBPF program uses eBPF maps to store a list
of files and directories that should be protected from
unwanted access, along with their permissions and
access control rules.

3) When a file system event occurs, the eBPF program
compares the file or directory being accessed with the
list of protected files and directories stored in the eBPF
map.

4) If the file or directory being accessed is on the list
of protected files and directories, the eBPF program
compares the requested access permissions with the
access control rules stored in the eBPF map.

5) If the requested access does not match the access con-
trol rules, the eBPF program can trigger an alert and
deny access to the file or directory.

6) Logging the events can also be done by the eBPF
program. This can be useful for forensic analysis or
troubleshooting.

Figure 33 shows the log of a PoC implementation of
a system able to detect unwanted access to the filesys-
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FIGURE 32. a) SecurityPolicy applied on curl (client) pod; b) SecurityPolicy applied on nginx (server) pod; c) Example of detecting the unwanted traffic
and enforcing policies between nginx and curl pods.

FIGURE 33. Sauron daemonset agent detecting the unwanted access to
filesystems.

tem. Here, an attacker was trying to read the content of
the monitored /etc/passwd file through the cat utility. The
FD_INSTALL event indicated that a process (the cat pro-
cess), whose PID was detected to be 6086, had allocated
the file descriptor 3 to the /etc/passwd file. The following
three events (READ (3014), READ (0) and CLOSE(0)) indi-
cated that the process read the entire file content and then
closed it.

D. CASE 4 – eBPF FOR ESTIMATING ENERGY
CONSUMPTION
As mentioned in Section III-D, KEPLER utilizes eBPF
probes. To put KEPLER to the test, we have created a testbed
in a K8s cluster consisting of four worker nodes and one
master. The cluster was created in a virtualized environment
to understand how reliable KEPLER is in such an environ-
ment and whether we can add other usable data sources that

would work in a similar context. Obviously, in a virtualized
environment, KEPLER will not be able to collect any data
from sources such as PERF hardware counters or RAPL
counters.

In our tests, we focused on 5G virtual functions, using the
open-source software presented in Section III-B, Figure 26,
and a sample microservices application, i.e., Google Online
Boutique [42].

Regarding the 5G network, we aimed to investigate
KEPLER’s ability to track the real-time energy consumption
of CNFs in a K8s cluster that runs both the Core and RAN
part of the 5G network, as in reality, the energy consumption
of individual components varies in time.

Initially, we analyzed the case where only the CNFs of
the 5G-Core, along with two gNBs (of the RAN) were run-
ning with no UEs. Then, the UEs were gradually added and
removed from one gNB to the other, using suitable scripts to
simulate the case where a certain number of UEs connect and
disconnect from a serving cell, e.g., in the case of handovers.
That allowed us to observe the resources that were required to
perform some procedures involving, for example, the access
andmobility function (AMF) in the core network or protocols
in the gNBs.

The data that KEPLER managed to obtain – using a trace-
point type eBPF program and, as mentioned in Section III-D,
the ML model to estimate the energy consumption per con-
tainer or pod – were then displayed using a Grafana dash-
board, as shown in Figure 34. (The actual measurement unit
was joules, and the result was an average value of a set of
measurements made over an interval of 10 minutes. Then
these measurements were scaled to the unit of kWh per day.
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FIGURE 34. Example of eBPF energy dashboard - example of demo results.

That is the reason why the numbers on the dashboard are so
small.)

In addition, based on those data, an operator could identify
which nodes of the cluster needed resources and derive how
much the various 5G-Core CNFs consumedwith a granularity
of their choice, e.g., per container, pod, node or per CNF as
illustrated in Figure 34.

V. CONCLUSION
eBPF is to the Linux and Microsoft Windows kernel what
JavaScript is to the web browser. Although some challenges
do exist – for example, eBPF development is not easy, eBPF
is fast-paced and hard to keep up with, implementation
details may vary by kernel version, and there is no easy
packaging/deployment solution – this fundamental enabling
technology is leading to a major wave of innovation in the
kernel space, bringing immediate benefits in a cloud-native
environment, especially for Telco networks.

In production,many of the Linux kernel building blocks are
decades old, and eBPF is creating the necessary cloud-native
abstractions and new building blocks required for dynam-
ically programming the kernel in a safe, performant, and
scalable way. This is primarily due to its dynamic pro-
grammability, reliability, and ability to achieve great kernel
instrumentation and workload visibility with minimal disrup-
tion.

The fact that we can inspect packets gives us extremely
performant observability tools that can be mapped to other
features, such as Telco and Kubernetes metadata, and provide
in-depth security forensics from the extracted information.

We can utilize the ability of eBPF to drop ormodify packets
based on network policies applied to various hooks in the
kernel or apply security policies based on application-level
verbs or specific paths and perform encryption with eBPF.

Additionally, since we can send packets and change the
destination for a packet, eBPF allows us to create powerful
network functionalities, such as load balancing, routing, and
service mesh, with minimal utilization of envoy proxies.

eBPF enables the next generation of service mesh because
we do not necessarily need to instrument pods with sidecars
and can improve Telco cloud performance without any app,
network micro-service, or configuration changes.

We will see more and more observability, security, and
networking solutions based on eBPF, and both legacy vendors
and emerging eBPF-native players will heavily rely on eBPF
as an integral part of their infrastructure stack.

As a result, eBPF is expected to be one of the largest
and fastest-growing markets in infrastructure software, with
organizations willing to allocate a two-digit figure of their
infrastructure spend to it, proportionally.

Rakuten Mobile has built a fully virtualized, end-to-end,
cloud-native mobile network, and Open RAN coverage has
been deployed with 300,000 cells in Japan. We operate the
world’s first fully cloud-native mobile network, and our rev-
olutionary mobile network deployment provides customers
with a high-quality mobile service, powered by eBPF.

Among other benefits, eBPF efficiently extends the
cloud-native capabilities of our network. This more modu-
lar eBPF architecture enables developers to safely and reli-
ably deploy software frequently, and platform engineering
teams can provision, observe, and secure scalable, dynamic,
available, and high-performance environments, allowing
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developers to focus on coding high-quality applications and
microservices.

Our platform, named Sauron in this work, is an example of
what we have achieved with eBPF for Telco systems.
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