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A B S T R A C T

Dynamic progressive collapse tests are becoming more and more popular in recent years since this approach
captures the real structural behavior more robustly, and progressive collapse response more accurately. The
results of dynamic tests are of great importance for defining computational models and improving current
codes and guidelines. Even for static tests and simulations, the dynamic effects should be indirectly considered,
namely by including the dynamic amplification factors. The adopted dynamic column removal approach is the
most important and challenging aspect of the dynamic progressive collapse tests. While several methods for
dynamic column removal have already been suggested and implemented, a comprehensive discussion of the
techniques is missing. In this regard, a comprehensive review of the available literature is first presented.
Current experimental techniques for dynamic column removal are categorized into three main groups, i.e.,
quick-release device, dummy column, and explosion technique, and the underlying concepts and applied
methodologies are compared and contrasted. Finally, future needs are highlighted and possible improvements
for the current methodologies are also discussed.
1. Introduction

Structural collapse is the biggest fear of structural engineers. Among
the different possible collapse modes, progressive collapse, in which
an initial local failure leads to a total or disproportionately large col-
lapse [1], is responsible for the vast majority of recent tragic incidents.
Understanding the progressive collapse response of a structural system
can be very complicated since dynamic and nonlinear effects are always
included in the collapse mechanisms. However, huge efforts have been
devoted to progressive collapse and structural robustness after 9/11
events, and there is ongoing progress in understanding the phenomenon
and methods to analyze, control and prevent it. The major findings are
listed and discussed in [2–7].

The experimental study is the most effective and reliable method to
investigate structural failure problems. However, dynamic progressive
collapse tests are not only expensive, time-consuming and dangerous,
but also inherently complicated and rarely straightforward. This is the
reason why most of the campaigns on progressive collapse do not
work in this way. The results of quasi-static tests, in which the test
is performed on an already-damaged assembly, dominate our current
knowledge of structural performance in progressive collapse scenarios.
Nevertheless, nonlinear dynamic behavior is the inherent nature of any
system in progressive collapse scenarios, and the quasi-static studies are
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only an estimation of the governing physics. It should be mentioned
that the results of dynamic tests are of great value even in nonlinear
static simulations. Because dynamic amplification factors (DAFs) are
expressed in guidelines and codes in a very general framework and
application of the code-based DAFs may lead to an underestimation
or overestimation of structural responses depending on the building
configuration and/or initial failure location [8]. Therefore, a deep focus
on dynamic progressive collapse tests is necessary, since there is not
a unique and well-accepted method for dynamic column removal, and
different researchers have adopted different innovative methods to deal
with it. While terms like sudden, abrupt, instantaneous, etc., are used
in the available literature, the term ‘‘dynamic’’ is preferred herein,
since it captures the inherent characteristics in a more general way. As
discussed later in Section 2, column removal time is one of the main
parameters that governs the dynamics of the system, and it is greatly
advantageous if the column removal devices can monitor, control and
adjust this parameter.

Researchers, being human, are subjected to bias and predisposition
toward subjects of their studies. The tendency to overestimate our
ability and knowledge is highlighted, following the Dunning–Kruger
effect [9]. Inexperienced researchers, often consider the experimental
procedures straightforward [10]. It is argued that many mistakes could
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be avoided if the aim and scope of the experimental programs are
initially articulated and the experimental procedure is deliberately
reflected upon [10]. Scientists are not immune to biases even regarding
the published studies, especially when it comes to their own work [11].
In structural engineering realm, it is not uncommon to encounter ex-
perimental setups that fail to capture the true properties of the subject
under study, and/or the obtained experimental results are generalized
without considering (or even understanding) the inherent limitations of
the adopted test configurations. In this regard, reviewing and revisiting
the test procedures are always insightful.

This review paper, for the first time, reports a comprehensive sur-
vey, deep discussion and possible improvement of the available lit-
erature on dynamic column removal techniques in experimental pro-
gressive collapse studies. The paper categorizes and discusses these
methods. The adopted categorization of the reported techniques sheds
light on the basic concepts and opens a window for possible future alter-
natives and/or improvement of the existing ones. The advantages and
pitfalls of each approach are highlighted. Limitations of each concept,
according to the representing structure, are discussed. New theories
and novel techniques are seldom born in the void. Therefore, after
a comprehensive review, future needs are highlighted and achievable
enhancements in the current methodology are also suggested.

2. Dynamic column removal techniques

The available literature on experimental dynamic column removal
techniques is classified into three groups. The adopted categorization
policy applied to both build-on-purpose specimens and existing build-
ings, as well as to different constructional materials, namely reinforced
concrete and steel. Since similar techniques have been applied to the
structures and substructure models with different constructional mate-
rials, more distinguishing features are ignored herein and, instead, the
analogy in column removal approach is stressed. Therefore, the main
emphasis is put on the basic concepts for dynamic column removal
and not on the structures that are subjected to it. In this regard, three
basic classes for dynamic column removal, i.e., quick-release device
(Section 2.1), dummy column (Section 2.2) and explosion techniques
(Section 2.3), are extracted from the available experimental literature.
The general aspects of the test are discussed herein, while the next
three subsections are devoted to the aforementioned dynamic column
removal techniques. Fig. 1 summarizes the overall classifications that
were used in this study.

The majority of the reported experimental programs are performed
on double-span beams or substructures. It should be noted that the real
structural behavior in column removal scenario can only be captured in
a 3D multi-story multi-span specimen including slabs and infill walls [4,
5]. In 2D frames and substructure specimens, some aspects of real
structural behavior in term of mass distribution and load transferring
mechanisms cannot be completely and accurately apprehended [8].
Therefore, special measures should be taken to control these effects. For
example, extra weights in the form of adding masses on the slab and/or
hanging weights on the beam are usually applied to represent the real
dead and live loads usually based on the code recommendations for
dynamic analysis [12,13]. The added mass can be in the form of con-
crete blocks, steel sheets, baskets full of sand, etc. Out-of-plane support
systems, especially in substructure specimens, are usually utilized to
guarantee frame movement only in the vertical in-plane direction. As
highlighted in [14], load resisting mechanisms of each floor in a multi-
story frame is different. This fact should be carefully considered when
a substructures model is adopted.

Because experimental studies on dynamic column removal usually
involve several structural members, especially when multi-story models
are considered, a scaled-down model is widely adopted in experimental
studies to overcome space, cost and time limitations. The scale factors
of 1/8 [15], 1/4 [16–18], 1/3 [19–21], and 1/2 [22] are frequently
reported for dynamic progressive collapse tests. It is well-known that
2

the smaller the specimen, the more dominant the size effect. How-
ever, the scaling effects involving the dynamics of column removal
response have not been clearly highlighted since the geometrical, me-
chanical, or dynamic scaling relationships are different. Details like
the scaling at material level, namely aggregate in concrete, are not
well-documented, too. Based on some studies the size effect would
not have a significant impact on structural response under progressive
collapse scenarios [20], since the expected dominant failure modes
involved flexure and catenary action. However, the scaling effects
may vary across various constructional materials when subjected to
different loading conditions. Size effect in normal-, high-strength, fiber-
reinforced and prestressed concrete, are reported and discussed in [23–
25]. Based on some studies [24], the size effect represents a nominal
strength reduction of about 30% to 35% even in flexure. As mentioned
and discussed in [17,18] testing scaled-down timber structures must be
performed with caution, as the strength of a timber element is known
to be sensitive to the size, and higher capacities, up to 20%, may be
expected. Therefore, when conducting tests on the scaled specimens, it
is crucial to carefully consider the size effects and clearly highlight and
report any simplifications and assumptions made during the process.

In dynamic column removal tests, a series of linear variable defor-
mation transducers (LVDTs), load cells, accelerometers, strain gauges,
etc., are usually installed both internally and externally to monitor the
response of the system and local behavior of the specimens [26]. The
different instrumental setups reflect the need of the researchers for the
required experimental data, say stresses, displacements, internal forces,
reaction forces, etc. Load cells are usually installed in column removal
devices, namely above the quick-release device (see Section 2.1) or
below the dummy columns (see Section 2.2). The vertical displacement
at the column removal point is the main output of the dynamic column
removal tests. Therefore, the time-history of vertical displacement is of
great interest and is usually reported in the available literature. Laser is
sometimes used to measure the vertical deflection, or, alternatively, a
high-speed camera or LVDT [27], or digital image correlation and low-
speed video cameras can serve this purpose. In some cases, ancillary
structures are used to facilitate the measurement of the absolute ver-
tical displacements of the column removal point as reported in [28].
Safety columns, located several tens of centimeters below the first
floor, can be used in order to avoid a total collapse. Besides, forces
in the beams and columns, before and after removal, are usually moni-
tored. Strains, either in critical points like reinforcement bars in RC or
connections in steel specimens can be measured quantities. Moreover,
strain outputs for the calculation of other parameters, like removal
time, are also considered. Figs. 2 and 3 illustrate two configurations
for instrumentation.

It should be noted that the involved collapse-resisting mechanisms
(flexural, arch action, catenary action, etc.) affect the instrumentation
type and pattern. Collapse-resisting mechanisms are related to the
amount of vertical displacement in column removal point. Therefore,
having an estimation of the structural behavior in column removal
scenarios is very insightful in designing the experimental plan. Simu-
lation using advanced finite element packages can serve this purpose
perfectly. However, considering the expensive and time-consuming
nature of this approach, simplified methods, like what was reported
in [31], provide essential insights for instrumentation.

According to Progressive collapse guidelines and codes, it is prefer-
able to remove the column instantaneously, and the duration for re-
moval must be less than one-tenth of the period associated with the
structural response mode for the vertical motion of the bays above
the removed column [12,13]. Alternatively, column removal time is
related to the acting threat and the nature of the initial failure. In
other words, while instantaneous column removal always leads to a
larger structural response, for a realistic test, the real situation should
be considered. In any case, to capture the full dynamic effects, the
aforenamed code-based limit is essential. However, the necessity of

fully dynamic column removal is related to the aim and scope of the
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Fig. 1. A general view of dynamic column removal techniques and triggering mechanisms.
Fig. 2. Instrumentation for dynamic column removal test, as reported in [29]. Steel baskets were installed to describe gravity loads.
Fig. 3. Instrumentation in dynamic column removal test as reported in [30]; positions
of vertical LVDTs and accelerometers in structural scheme (top), collapsible column
and safety column in test setup (bottom left) and a close view of an accelerometer
(bottom right).
3

experimental program. For example, if the test represents a column loss
due to low-speed impact, the column removal in a certain period of
time is favorable compared with abrupt column removal. In any case,
the column removal device should monitor and control this time. The
limitations and possible improvements regarding column removal time
are highlighted in the next sections. Table 1 lists the reported column
removal times based on available literature for quick-release device and
dummy column concepts. For explosion approach, the column removal
time is not well-documented. It should also be noted that the term
‘‘column removal time’’ is used for all approaches, mainly for dummy
column method, but when a quick-release device method is adopted
‘‘release time’’ is more favorable. However, in this paper the term
‘‘column removal time’’ is used for all methods, since it addresses the
main concept clearly.

2.1. Quick-release device

Quick-release device refers to any tensioning device that supports
the beneath slab/beam and can release suddenly to simulate the dy-
namic column removal. Examples and details of quick-release devices
are presented in Figs. 4 to 6. A triggering mechanism is needed for
any quick-release device to start releasing and simulating dynamic
column removal. A load cell (see Fig. 4) is usually placed in series
with the quick-release device to measure the initial axial force [22,50].
Compared to the dummy column, which basically is a column with
a releasing mechanism, a quick-release device is essentially a ‘‘cable’’
with a releasing mechanism.
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Fig. 4. Dynamic column removal test setup using the quick-release device: (a) boundary conditions and (b) quick-release device, as reported in [22,29].
Fig. 5. Dynamic column removal test setup using the quick-release device: (a) overall configuration, (b) quick release mechanism before failure, and (c) quick-release mechanism
after failure, as reported in [50].
Table 1
Examples of column removal time (CRT) in milliseconds for different techniques.

Quick-release device Dummy column concepts

Author CRT (ms) Author CRT (ms)

Cheng et al. [17] 3 Kai & Li [19] 8 & 12
Cheng et al. [18] 22–70 Qian and Li [26] 20
Pham and Tan [20] 2–25 Li et al. [32] 3 & 3.5
Yang et al. [21] 30 Qian et al. [33] 9–11
Zhou et al. [22] 20–30 Qian and Li [34] 5–7.5
Feng et al. [29] 17–38 Qian et al. [35] 5 & 8
Zhao et al. [36] 60 Han et al. [37] 3.5
Liu et al. [38] 50–80 Peng et al. [39] 12 & 13
Pham and Tan [40] 49–85 Cuong et al. [41] 10
Zhao et al. [42] 14–20 Qian and Li [43] 3-5
Tian and Su [44] 8 Peng et al. [45] 7.4
Liu et al. [46] 30 Zhang et al. [47] 21–69

Russell et al. [48] 33.7–57
Buitrago et al. [49] 70

The triggering can be performed by hand or by an electromechanical
device. While not widely reported, electromagnetic approaches like the
ones suggested in [36] for member-breaking devices in truss structure,
can potentially be used as quick-release devices for dynamic column
removal in a frame assembly. However, the triggering mechanism in
available literature usually includes a rope attached to the handle
(see Fig. 6), allowing safe operation under laboratory conditions by
yanking the rope away from the test specimens [17,18,20,21,38,40,42].
Alternatively, based on the configuration of the experimental setup, a
hanger may be manually knocked off by a hammer to simulate the
sudden loss scenario [51]. Burning the string support to trigger the
gravitational-induced dynamic effects is also reported in [52].

Column removal time is an important issue in any column removal
test (see Table 1). In quick-release devices, the column removal time
is actually related to the triggering mechanism. When approaches like
‘‘rope yanking’’ are adopted, the column removal time is not fully
controllable. Because, as mentioned and discussed in [22], the release
time is affected by the weight of applied loads, as well as the human-
controlled triggering device. However, the removal time can be in
terms of milliseconds. For example, 8 ms in [44], 20–30 ms in [22],
30 ms in [46] and 17–38 ms in [29] were observed. Therefore, it
4

can be considered as ‘‘dynamic’’ column loss, and moreover, such
short times are usually but not necessarily (for example see [46]) less
than 10% of the natural period of specimens and thereby enabled
the simulation of fully dynamic tests as recommended by progressive
collapse guidelines [12,13]. In such an assessment, absolute numbers
cannot be suggested, since the natural period is related to the structural
assembly. Moreover, generalization to real structures should also be
avoided, since in the lab, as mentioned before in this section, usually
a substructure model is considered. In the experimental programs,
strain gauges can be installed onto the hook of the removed column to
determine the load release time when the specimen was released from
the initial conditions [38]. Alternatively, other sensors can be used for
this purpose. It should be noticed that all the recordings of LVDTs and
strain gauges should be initialized to zero before column removal [38].

2.2. Dummy column concepts

A dummy column, or collapsible column, is herein referred to as any
temporary (vertically compressed) supports substituting the original
structural column (or developed by modification of the actual struc-
tural column) and can be released via different mechanisms to mimic
dynamic column loss. In the published literature, other terms, namely
temporary column, instantaneous column removal device, etc., are also
used referring to this configuration. However, the term ‘‘dummy’’ is
preferred herein since it points to the underlying concepts, i.e., collapsi-
bility and lack of real initial condition, more clearly. While suggested
and used in different shapes and configurations, the basic underly-
ing characteristics are very similar. The dummy column includes a
triggering mechanism that allows dynamic column removal. Fig. 7
illustrates an example of the dummy column concept in a steel frame
assembly [32]. Fig. 8 shows the details of the dummy column design
and installation, as reported in [30]. Herein, the available literature
on dummy columns in terms of the shape, boundary conditions and
triggering mechanisms are reviewed and discussed.

2.2.1. Shape and boundary conditions
Dummy columns are designed in different shapes and configurations

based on the constructional materials, lab limitations and scope of the
study. Therefore, the basic similarity between different approaches is
only in the underlying concept. When a dummy column is in steel, that
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Fig. 6. Quick-release mechanism to simulate sudden column removal scenario, as reported in [38].
Fig. 7. Schematic diagram of test steel frame, as reported in [32]. The dummy column is shown in green color. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 8. Details of dummy column design and installation, as reported in [30].

can be used in both steel and RC frames, a configuration of hinges and
roller is usually adopted [19,26,30,33–35,53,54]. The most frequently
reported configurations including three-hinged and pinned-roller are
illustrated in Fig. 9. In the latter, i.e., pinned-roller configuration,
the roller can be at the top or the bottom of the dummy column.
The roller can be in the form of a single steel ball, or an assembly
of ball bearings [37] to eliminate the friction as much as possible
5

Fig. 9. Basic reported configurations for dummy column.

and facilitate the dynamic column removal. However, other innovative
configurations, namely scissor arrangement [39,45], are also reported
in the literature.

In the alternative approach, the structural column is weakened
to allow releasing the axial loads under a specific mechanism. This
weakening can be in the form of a partial cut of steel cross-section (see
Fig. 10), cutting reinforcement bars in RC column, or even replacement
of a specific length of the column with the weaker material, namely
masonry. For example, in the studies reported in [55,56] exterior
structural columns were first torched near the top and bottom. Only a
small portion of the flange was left intact. Such measures facilitate fast
and easy dynamic column removal. In other words, in this approach,
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Fig. 10. Dynamic column removal in existing steel frame building; (a) torching of the
removed column, (b) column ready to be pulled out, and (c) removal of the column,
as reported in [56].

the structural column is converted into a dummy column either by
weakening (in the existing structure) or building it weaker (in the lab).
The weak part then undergoes (horizontal) loading in terms of pulling,
pushing, impact and even blast to trigger the dynamic column loss. The
triggering mechanisms are discussed in the next section.

Dummy columns, due to their geometry and configurations, usually
allow limited vertical displacement, say a few dozens of centimeters.
This limit is usually enough for the column removal tests. However,
when large displacements are anticipated, or the development of full
catenary action in the beams is of interest, some modifications in
the configuration are needed. Next-generation collapsible column al-
lows large displacements in order to activate catenary action in the
beams. Fig. 11 shows the configuration and mechanism of such a novel
collapsible dummy column.

2.2.2. Triggering mechanisms
Since different forms and configurations are used for dummy colum-

ns, the triggering mechanisms are also very different. The adopted
triggering mechanism is also related to the constructional material,
lab equipment and the size and shape of the specimens. Regardless
of the adopted triggering mechanism, the underlying characteristic
is the releasing of the axial force in a very short period of time to
allow dynamic column removal. For example, in the experimental test
reported in [33], the duration of the axial force release is 9–11 ms.
However, the column removal time when the dummy column is used
is not always well-documented.

Impact. When hinges and roller configurations are adopted, an impact
can easily lead to the instability of the dummy column and therefore,
dynamic column removal. A pendulum hammer usually serves this
aim [26,34,41,43,59]. For example, as reported in [32], a removable
column made up of a three-hinged strut kept in a straight position by
inserting a brittle (glass) locking rod through an additional hole at the
middle hinge is adopted. Then, the glass locking rod was broken by the
impact of the pendulum hammer (see Fig. 12), and this triggered the
hinge mechanism and eliminated the axial load-carrying capacity of the
dummy column. A similar approach is adopted in the majority of the
dummy columns that included hinge-roller configurations. A projectile
fired by a compressed gas gun is also suggested for releasing the axial
force in dummy columns [60–62]. In this technique, concrete blocks are
usually inserted in the mid-section of the column to facilitate dynamic
removal.

Based on the results reported in [47,63], when a dummy column
and hammer are used, the column removal time can be less or more
compared to 10% of respective vertical natural periods. Therefore,
the maximum dynamic effect is not necessarily captured. However,
even in a real incident, column loss is not always instantaneous [1,
64]. Nonetheless, column removal time between 3–5 ms that perfectly
satisfied the code’s requirements is also reported [43]. The available
information for column removal time is listed in Table 1.
6

Pulling and pushing. Similar to what was mentioned for the ‘‘impact’’
approach, the axial force in the dummy column can be released by
pulling and pushing. Pulling and pushing forces are usually applied
with different types of industrial trucks, either directly or by a device
like rope and chain. This methodology is reported not only for hinge-
roller configurations but also for weakened columns. An example of this
method in an existing building is shown in Fig. 10 in which the middle
segment between the torched sections (the weakened part) was pulled
out by a bulldozer using a steel cable to simulate the dynamic column
loss [55,56]. Another example of a pulling technique is reported in [48]
in which a rope attached to the bar was pulled sharply to unstabilize
a roller-based dummy column. A similar methodology is also illus-
trated in [37,54,65]. The ball bearings system, compared to a single
ball roller, provides a low-friction interface resulting in a maximum
required pulling force of less than 500 N, as presented in [37]. The
pushing approach is also reported in the available literature [30]. The
methodology is very similar to what was explained for the impact
approach, but the applied forces are smaller and in some cases a touch
is enough to release the mechanism. Fig. 13 shows an example of these
techniques that can be compared to Fig. 12.

Pneumatic devices. Two basic concepts for dummy column are dis-
cussed earlier in this section; i.e., pin-roller configurations and weaken-
ing strategy. While the impact and pulling/pushing approach is mainly
reported for the former, pneumatic devices (air gun, gas cannon, etc.)
are also suggested for the latter. A scissor jack and a steel tension cable
with a pneumatic quick-release mechanism are suggested in [39,45].

An interesting example of such a technique in which the dummy
column is actually merged with the pneumatic device is shown in
Fig. 14. The system includes an air compressor (supplying compressed
air to the cylinder), a pressure gauge (displaying the air pressure), a
solenoid valve (controlling the air direction to intake and exhaust), a
switch (controlling the solenoid valve), and air pipes [66].

2.3. Explosion

Using explosives for column removal is discussed in this section. It
should be noted that the discussion here is limited to a very narrow
field in which explosion is used as a column removal technique. There-
fore, blast-induced progressive collapse and demolition techniques are
outside the scope herein. In the scope of the present discussion, the
explosion effects are limited to a single column and the main pur-
pose of such measure is to remove the selected column suddenly and
completely without any loading (over-pressure or fragmentation) to
other structural members. To guarantee such a requirement, special
measures should be taken. Therefore, while lessons can be learned
from building demolition and blast-induced progressive collapse, a very
special application of explosion is considered herein.

Explosion techniques, for obvious security reasons, have been very
rarely used in lab tests, especially because complete column removal
needs considerable energy, and consequently, large explosive charge
weight. Such large weight can lead to strong blast waves and high-
speed fragmentation that is not safe for indoor applications. However,
for existing and build-on-purpose structures in open areas, explosion
techniques can provide fast and easy solutions. The explosion tech-
niques were mainly used in reinforced concrete frames. The applica-
tion of such a technique in steel structures is not well-documented.
The limitations and possible improvements are discussed herein. The
categorization of the material into ‘‘existing structures’’ and ‘‘built-on-
purpose structures’’ is only for convenient discussion. They are basically
similar referring to the column removal method, as already pointed out
in Section 2.

The intensity of an explosion basically depends on two parameters,
charge weight and standoff distance. Since in this technique the ex-
plosive is actually installed inside the column (or at least in contact

with the column), charge weight is mainly responsible for the outcome.
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Fig. 11. Next generation collapsible column; (a) schematic view, (b) overall configuration and (c) installation in structural assembly. Test performed at Universitat Politècnica de
València [57,58].
Fig. 12. Schematic of dynamic column removal process with a pendulum hammer, as reported in [32].
Fig. 13. Dynamic column removal in dummy column assemblies (a) pushing by slight destabilization of the column using a forklift, as reported in [30] and (b) pulling, the cables
were connected to a hydraulic jack (test performed at Universitat Politècnica de València [57]).
Fig. 14. Dynamic column removal process with a pneumatic device; (a) schematic view of the initial condition, (b) schematic view after column removal and (c) specimen’s
deformed shape after the experiment, as reported in [66].
However, the available literature does not provide enough details on
charge weight, type and shape (for example, 120 g of C4 explosive
is reported in [67]). Therefore, the explosive charge weight should be
very deliberately selected. A strong explosion can destroy the column
suddenly and completely, which is favorable, but at the same time
it also leads to overload and fragmentation of other members, which
is unfavorable. The energy produced by such a explosion is mainly
dissipated by the fragmentation. On the other hand, if the explosive is
not strong enough, complete and sudden column loss will not happen.
7

Considering the expensive and time-consuming nature of such tests,
it is recommended that a pre-test on a single column and/or numerical
simulations should be performed to decide the best size, shape and
location for the explosive charge that can lead to sudden and complete
column loss with negligible effects on other parts of the system [4].
Computational simulations can also be adopted for checking the re-
liability of the results. After an explosion, waves propagate in all
directions. Therefore, some parts of the column will suffer upwards
movement due to the explosion. While based on some literature the
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Fig. 15. Blast-induced column failure in a RC substructure; (a) general assembly and the location of the explosive charge and (b) failure and damage pattern after the test, as
reported in [73].
blast waves have a low impact and do not influence the vertical
movement of the structure [28], the impact of this phenomenon on
dynamic column removal response should also be scrutinized. If the
estimated explosive charge weight is too large for safe and accurate
application, some weakening measures may be applied to the structural
column, so the dynamic column removal can be performed by a lower
charge and consequently a safer circumstance.

2.3.1. Existing structures
Explosives as dynamic column removal technique is originally sug-

gested and implemented by Sasani et al. [68–71]. In this methodology,
explosives were inserted into drilled holes in the column. The columns
and beam portions were then well wrapped with a few layers of
protective materials before the explosions were set off to avoid flying
debris and fragmentation after explosion [70].

Similar approaches to Sasani’s methodology are also adopted by
other researchers [28,67]. Some other special measures occasionally
are taken prior to the test. For example, cementitious grout was applied
to the jagged surfaces of the first-floor columns and second-floor beams
originally cast against masonry. This grouting was done to help prevent
large chunks from dislodging during the test and make identification
of cracking from test deformations easier [67]. Sometimes, the column
is weakened before the explosion to facilitate the complete sudden
column loss. In this case, the entire methodology is similar to the
dummy column concept in which an explosion just acts as a triggering
mechanism. For example, in the test reported in [67] partial depth saw
cuts were sliced into a selected column at various elevations in the
explosive zone to cut the longitudinal column reinforcement bars and
ensure this bar would not remain continuous after the explosion.

2.3.2. Built-on-purpose structures
Progressive collapse tests on built-on-purpose multi-story structures

are really rare. But, at the same time, such studies are among the
most important research that can provide a deep understanding of real
structural response in progressive collapse scenarios. Compared to the
tests on existing structures, the results obtained from built-on-purpose
models are more accurate, since they are extracted from deliberately
constructed models with very clear material and geometrical proper-
ties. The approach is very similar to what has been already discussed for
existing structures. Obviously, there is no need for drilling holes in the
column, since explosive can be installed in the construction phase [72].
Contact detonation [27,73] as an alternative to the installation of the
explosive inside the column is also reported for substructure RC speci-
mens. While the majority of progressive collapse tests using explosion
are devoted to the multi-story frames, few studies have focused on sub-
assemblages [27,73]. Fig. 15 illustrates an example of blast-induced
column removal in a RC substructure. In such studies, the differences
between different experimental progressive collapse techniques are
clearly highlighted [73].
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3. Discussion

Based on the progressive collapse codes and guidelines, the dynamic
column removal should be sudden, complete and without any overload
and damage to other members. While these requirements are perfectly
met in the current numerical methodology [74], for experimental tests
more research is still required. In this paper, the most common ex-
perimental dynamic column removal methods are reviewed. While the
dynamic method is a key step toward a more realistic progressive
collapse assessment, several improvements are still needed to enhance
the current methodology.

The majority of adopted methods, except for the explosion (see
Section 2.3) are not accounted for moment transfer. Both dummy
column and quick-release devices solely consider the axial action.
This limitation may lead to different levels of inaccuracy based on
system topology and location of initial damage. For example, if a frame
system is very irregular (in structural topology, loading scheme, or
boundary conditions), the influence of the acting moment cannot be
ignored. Moreover, in some special cases, namely underground struc-
tures, the columns may undergo non-negligible shear forces. Therefore,
in such cases, neither the dummy column concept nor quick-release
devices can be used without losing the real structural behavior. As a
very matter-of-fact, except for the explosion approach, other methods,
i.e., dummy column and quick-release devices, are unable to consider
the real initial conditions. Engineering judgment and/or pre-analysis
are needed to determine the exact impact of such simplifications. If
necessary to consider the perfect initial condition, novel techniques
based on electromagnetic failure excitation devices can potentially be
considered [75].

Another important issue, that is almost completely neglected in the
current methodology, is related to the column removal time. Based on
several published studies, column removal time has a major influence
on the structural response [8,64]. However, in the current experimental
literature, column removal time is not easily adjustable. Referring to
the column removal time three characteristics are of particular interest;
(i) measurability, (ii) repeatability and (iii) adjustability. Measurability
is important to extract the exact column removal time that is necessary
for verification and validation of the developed finite element model
based on the experimental study and also for comparison of different
column removal cases. The cases are comparable only if the column
removal time is equal (or be short enough to capture full dynamic
effects) for all cases. Repeatability is a key feature so it can be checked
if the column removal time is equal for all test cases in an experimental
program, especially when other parameters are changing. Adjustability
is important to check different column removal times, since, in real
scenarios, the damage is not always instantaneous. Therefore, if the test
program focuses on a specific threat, in a scenario-based or parametric
approach, it is necessary to change the column removal time based on
the requirements of the program.

As reviewed, the body of the literature can be categorized into
the three reported groups. However, it should be noticed that new
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Fig. 16. Experimental tests on steel frame structure subjected to vehicular collision; (a) steel frame model structure, (b) vehicle model and (c) schematic view of horizontal collision
facility, as reported in [80].
concepts can be fueled by the ideas already used in threat-dependent
experimental progressive collapse studies. Full-scale threat-dependent
tests of building structures subjected to extreme loading conditions are
truly sparse [76]. While limited in number, the concepts that are used
in [77–80] for impact-induced progressive collapse and in [81,82] for
fire-induced progressive collapse can be potentially considered for dy-
namic column removal tests. It should be noted that threat-dependent
tests are usually performed on the intact model. That means the target
column is in a perfect state regarding strength and boundary conditions.
Therefore, unlike the current mainstream, the perfect initial condition
can be guaranteed, that obviously is of great importance for dynamic
tests. Fig. 16 illustrates an example in which the structural response
of a steel garage subjected to vehicular collision is experimentally
investigated.

While not explicitly documented, the safety of operators is one of
the major issues that should be considered in any progressive collapse
tests. Some dynamic column removal techniques, namely the dummy
column approach, are inherently safer than others, say explosion tech-
niques. Special care should be given to the collapse tests on existing
buildings since different uncertainties are always involved in such
situations that can lead to safety issues for the operators.

4. Conclusion and future directions

Experimental tests, usually, act as a basis for verification and valida-
tion of the numerical simulations and for improving and updating the
current guidelines and codes. But, for dynamic column removal tests,
a rational framework for assessing the accuracy of the experimental
approach is first needed. In this regard, the situation of the targeted
structure, that the experimental setup aimed to represent, should be
carefully checked. Namely, special emphasis should be put on the irreg-
ularities in loading and configuration. Only with such considerations,
simplifications that are usually applied to the initial conditions can be
justified; either if it is a rational simplification, or not. In the latter case,
some currently adopted techniques cannot be used. With a downpour
of recent studies on experimental dynamic column removal, there is
a growing need to re-visit and review the existing research methods
to update both research and practice methodology. Obviously, there is
also room for further studies on developing novel techniques, too. In
the following, the main challenges and foremost future prospects are
abridged.

• In a real collapse scenario under a specific threat, the occurrence
of ‘‘complete’’ and ‘‘sudden’’ column loss is a rare event, instead,
a specific level of damage is usually materialized in a certain
period of time [83]. In other words, sudden and complete column
removal is a conservative simplification of the real phenomenon,
and it can be observed only in special circumstances, i.e., small
near-field blasts or high-speed impacts. The development of more
general experimental configurations for the modeling of differ-
ent levels of damage in the column enables the opportunity to
perform more realistic progressive collapse tests.
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• In the current dynamic column removal techniques, column re-
moval time is neither easily reproducible nor adjustable. This
shortage leads to two problem classes; first, column removal time
cannot easily and directly adjust to serve the research needs, and
second, there is no guarantee that column removal time is equal
for different cases and scenarios in the experimental program.
This issue should be addressed in future studies.

• The adopted column removal techniques should satisfy the ini-
tial conditions of the intact model. In the current experimental
methodology, except for some cases in the explosion approach,
initial conditions cannot be perfectly guaranteed; the focus is
usually put only on the axial force of the column and not all the
acting components. The consequences of such a simplification are
dramatically related to the model configurations, namely the pos-
sible irregularities, column removal location, etc. Anyway, such
simplification cannot be recommended as a general role, and a
special focus on the development of a more effective methodology
is necessary.

• In the absolute majority of the current literature on experimental
techniques for dynamic progressive collapse tests, initial failure
occurs in the column. However, initial failures can also be ob-
served in the beam, bracing and wall, usually accompanied by
column damage/failure. This issue is partially addressed in the
current numerical literature [4], but there is no methodology
to consider such a removal/damage to the lateral load-bearing
members in the experimental studies. Therefore, more research
emphasis to overcome this shortage is needed. Developing the
techniques for removing the structural members, in a more gen-
eral way, can provide more opportunities for experimental stud-
ies. Such techniques can also be used in non-building structures,
namely space structures. While not directly in the scope of the
current survey, special scenarios, like punching shear failure,
need more attention, a technique to model the dynamic shear fail-
ure can be the first step for controlled pancake-type progressive
collapse tests.

• Multiple-column loss, either due to a large threat or repeated
threats, is observed in several real incidents. However, the cur-
rent literature on experimental progressive collapse studies has
mainly focused on single-column removal scenarios. In this re-
gard, modification of the current methodology or development
of new techniques to address this need is required. The new
approach for simultaneous column removal may consist of using
cables connected to different joints. After releasing the cables,
multiple-column removal would occur. However, the new tech-
nology should address the column removal time and the sequence
between removal scenarios, as well as initial conditions, since the
impact of such issues is much more important in a large initial
failure regime or consecutive local failures.

• The absolute majority of the available experimental literature is
devoted to column removal at ground level, especially in a single
or two-story substructure. Column removal in the upper story
has its special requirements and the current techniques cannot be
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directly used for it. In this regard, developing new techniques for
efficient column removal regardless of the location of the column
in the structural system is important and should be addressed in
future research. For such a technique, safety concerns should also
be considered.

• There has been a surge in research focusing on the impact of
infill walls on the progressive collapse response. While numerous
numerical studies have been conducted to investigate the perfor-
mance of frames with infill walls subjected to sudden column
removal, there is a lack of documented experimental studies in
this area. It is important to note that the inclusion of infill walls
and other secondary collapse-resisting mechanisms in the setup
can influence the usability and performance of column removal
devices. Therefore, there is a need for further research to address
the dynamic column removal in infill frames.

• Progressive collapse tests are inherently costly and time-
consuming. Therefore, the re-usability of the developed column
removal devices is of great interest. While such measures are
partially reported in the literature [30], much more emphasis is
still needed.

• Structures under construction and temporary structures are very
prone to progressive collapse and several real progressive collapse
incidents occurred in such systems [84,85]. Experimental dy-
namic failure of formworks, falseworks, shuttering and especially
scaffolding is very rarely studied. More research focus is needed
to shed light on the dynamic failure of temporary structures, as
well as to develop lab equipment to test such phenomena.

• There is very rich and well-developed literature on demolition
techniques. When a mechanical approach is chosen, tools ranging
from wire saw to wrecking ball to remote control truck and
hydro-demolition are documented. Alternatively, demolition can
be done by using chemical techniques including but not limited
to explosion and bursting. While there are inherent similarities,
there are not enough conversations between demolition and pro-
gressive collapse field in general, and dynamic column removal in
particular. Obviously, such techniques cannot be used directly for
dynamic column removal, but demolition techniques can serve as
an idea pool for experimental progressive collapse studies.

• Progressive collapse of the non-building structures, namely space
structures, is attracting more and more researchers. However, few
studies are devoted to dynamic experimental tests. An interesting
member-breaking device including springs and electromagnets is
reported in [36] for member removal in planer trusses. Such
concepts can be used for dynamic member removal in space
structures too. Moreover, while some famous collapse incidents
are reported for steel truss bridges, not enough experimental
dynamic tests are documented on such structural configurations.
In this regard, more emphasis on member removal techniques in
non-building structures is necessary.

• Safety during the tests is one of the major issues in dynamic
progressive collapse tests that has not been well-documented so
far. Some solutions are unsafe for the workers, while others are
much more reliable and safe. Safety concerns should be clearly
mentioned when reporting a test, and the measures to guarantee
the workers’ safety should be suggested and discussed in detail.
Moreover, in developing new techniques for column removal, or
modification of the existing ones, safety issues should always be
scrutinized and clearly reported.

• New techniques that are already used in threat-dependent pro-
gressive studies, as well as approaches used in other industrial
fields can be scrutinized to develop novel and more efficient
dynamic column removal techniques. Especial emphasis should
be put on the electromagnetic and mechatronic devices since such
an approach is very rarely reported in the current experimental
10

progressive collapse studies.
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