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Abstract—An efficient method to improve the convergence in
non-conformal meshes including an automatic quasi-Helmholtz
decomposition has been developed for the simulation of non-
conforming meshes using the novel Multibranch Rao-Wilton-
Glisson (MB-RWG) basis functions. Numerical experiments will
be shown to illustrate the great flexibility of this approach for
the solution of small-frequency and large multi-scale objects.

I. INTRODUCTION

The extension of the surface integral equations (SIEs) [1]
to non-conforming meshes has ignited intense research in the
last years with the goal of finding a versatile and accurate
method to address large and multi-scale complex problems,
greatly simplifying computer-aided-design (CAD) generation
and meshing processes.

Discontinuous Galerkin (DG) implementations of the SIEs
[2] are the most popular approach to deal with this kind
of problems. Other SIE non-conforming schemes alternative
to DG are the monopolar-RWG [3] and the very recently
presented Multibranch Rao-Wilton-Glisson (MB-RWG) [4].
The MB-RWG basis functions can be easily integrated into
existing MoM codes without need of penalty terms, additional
volumetric integrals or artificial surfaces. They are very conve-
nient for h-refinement techniques and are div-conforming basis
functions, allowing the construction of a solenoidal basis as
linear combination of them.

SIE methods also have some inconveniences. They suf-
fer from the ill-conditioning of MoM applied to realistic
high-fidelity models that include multi-scale features. The
physics-based preconditioners take advantage of the physical
properties of the problem to improve the convergence in an
iterative solver scheme. An example of dense-discretization
stable physics-based preconditioner is the multiresolution pre-
conditioner (MR) [5]. The MR preconditioner introduces a
set of multi-level basis functions able to keep the different
scales of variation of the solution, improving then the matrix
conditioning in particular in the case of multi-scale structures
[6]. This set of functions improves the spectral properties
of the original MoM matrix system with a quasi-Helmholtz
decomposition by splitting the current into solenoidal and non-
solenoidal parts.

In this paper we present a multiresolution preconditioner
realized with multibranch RWG functions for computing the
electromagnetic solution of complex multi-scale problems
discretized with non-conformal meshes, providing a method
to automatically construct all solenoidal and non-solenoidal
functions, including the topological (global) solenoidal ones.

The proposed approach fully generalized the MR basis gen-
eration to non-conforming meshes without the need of any
specific treatment of the mesh cells related to non-conforming
triangles. Moreover, the obtained MR-MB preconditioner is a
multiplicative preconditoner that can be easily inserted in any
fast MoM code. To the best of authors’ knowledge, this is the
first work where a multi-level quasi-Helmholtz decomposition
is applied to non-conforming meshes in SIE.

II. MULTIBRANCH RWG BASIS FUNCTIONS

A MB-RWG function is defined, analogous to a RWG
function, in two domains, but in the case of MB-RWG the
second domain can be made up of several triangles as:
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where T is the positive triangle and 7T, ; are the M,, triangles
in the negative part of the nth function. pn, h,, are respectively
the position vector relative to the free vertex and the height
respect to the common edge of each triangle. The MB-
RWGs have the same properties of the RWGs: null normal
component in the external edges, unitary normal component
in the common edge and analytic divergence.

III. THE MR PRECONDITIONER INCLUDING MB-RWGs

The MR preconditioner generation is divided into two main
steps. First, the input triangular mesh, supporting the structure
discretization in terms of RWGs and MB-RWGs, is rearranged
until getting a set of meshes with different mesh-element (cell)
sizes. This is done via a multilevel algorithm in which the
adjacent cells of the previous level are aggregated giving rise
to macro-cells. A generalized version of the initial RWGs and
MB-RWGs (gRWG) are then defined on each pair of adjacent
macro-cells. Then, on each level mesh, the singular vectors
in the null-space of the charge matrix [5] of each gRWG
correspond to the solenoidal functions, while the non-zero
singular vectors correspond to the non-solenoidal functions.
The above scheme is applied recursively down to the quasi-
Nyquist (coarsest) cell-size level, where gRWGs are defined
completing the set of multilevel basis functions, or, in the case
of an object with a small electrical size, down to when all
initial level cells are completely included into one cell in order
to split all functions into solenoidal and non-solenoidal parts.
All the generated MR functions at the intermediate (detail)



levels and gRWG functions at the coarsest level (if present)
can be described as linear combinations of the initial RWG
and MB-RWG functions. Due to the multilevel approach, the
complexity of the generation of the MR basis is O(Nlog(N)).

IV. NUMERICAL RESULTS

A first numerical example is introduced to validate the
proposed approach to automatically construct all solenoidal
and non-solenoidal functions of a non-conformal mesh for the
solution of a small object that contains global loops. A toroid
with A/10 of diameter is considered. The toroid structure
(shown in Fig.1(b)) is divided into eight octants applying dif-
ferent refinements to each pair of neighbour octants providing
a total of 36151 RWGs and 256 MBs. The first level of MR
grouping is shown in Fig.1(b), where each color represents
different macro-cells. The toroid has a total of 11965 inner
nodes (Vin:), 24442 triangles (M) and one handle (H). The
number of solenoidal (/Ns) and non-solenoidal (V,,s) functions
generated with the Multiresolution scheme are 11966 and
24441 respectively obtained in the 7 levels of grouping, that
match with the relation between the number of nonsolenoidal
(Nps = M — 1) and solenoidal (N, = V;,y — 1 + 2H)
functions described in [7], including the topological (global)
loop correspond to the handle.
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Fig. 1. (a) Iteration count for the toroid of the figure considering a plane
wave excitation. (b) Bistatic radar cross section of the toroid.

Fig.1 shows the bistatic radar cross section (RCS) calculated
using the MR-MB, compared to the reference MoM solution
(b) and the improvement of convergence of the proposed
approach (a) for small objects.

A second numerical example is introduced to highlight the
capacity and versatility of the proposed approach to solve
complex multi-scale non-conformal meshed problems. The
radiation at 600MHz of four patch antennas embedded into
a challenging structure consisting of a realistic vessel is con-
sidered. The mesh is adapted to the fine detail features of the
antenna allowing non-conforming triangles in the connections
with the structure (mesh details in Fig2), providing a total of
13782364 RWGs and 3468 MBs. In this example, the grouping
is stopped at the quasi-Nyquist level (A/4) providing a total
of 3514716 solenoidal, 8571690 non-solenoidal and 1699426

gRWG basis functions. The problem is solved via the multi-
level fast multiple algorithm applying a diagonal precondi-
tioner and appling also the proposed MR-MB preconditioner.

Fig. 2. Non-conformal mesh details of the feeding point and the connections
of antennas with the structure.
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Fig. 3. (a) Iteration count for the proposed vessel considering a delta-gap
excitation. (b) Equivalent electric currents induced on the vessel surfaces.

Finally, Fig.3(a) shows the number of needed iterations
to reach a residual error of 107%: it is very evident the
converge acceleration due to the applied MR-MB precondi-
tioner. Fig.3(b) reports the obtained equivalent electric currents
induced on the ship surfaces.
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