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Abstract

Open-cell foams are porous materials characterized by high porosity and large spe-
cific surface, industrially employed as catalyst supports or particulate filters. The
work reported in this manuscript aims to propose possible methodologies for the
modeling of the geometric structure of these materials, using in-silico tools for their
generation and Computational Fluid Dynamics (CFD) numerical simulations for
the investigation of the transport phenomena of a fluid flowing within the porous
medium. Moreover, the performances of solid foams for the filtration of colloidal and
fine particles are investigated with CFD and analyzed by means of classic clean-bed
filtration models, commonly employed for the evaluation of the deposition efficiency.
The first Chapter introduces open-cell foams and their principal geometric and mor-
phological features as well as giving an outline of the state of the art in the literature
for such porous media, focusing on the use of CFD and other computational meth-
ods for the generation of the geometry and the transport phenomena investigation.
The second Chapter provides a synthesis of the equations governing the simulated
systems and the framework used for the analysis of the filtration phenomena. Fur-
thermore, the theoretical background of the main algorithm used for the generation
of foam digital geometries is reported, with particular focus on the ideal Kelvin’s
Cell model, the random Voronoi tessellations and the processing of binary images.
Chapter 3 introduces and tests an open-cource workflow able to reproduce a great
varieties of geometries and numerically explore the flow field and mass transfer
on the created geometries, eventually obtaining an effective deposition rate coef-
ficient Kd . The results, interpreted using known constitutive equations and other
functional forms of the main geometric descriptors, are insufficient in explaining the
variations in filtration performances, highlighting the need for both more detailed
exploration and modelling. This last issue is tackled in Chapter 4, where an updated
and improved geometry generation workflow is proposed and validated. Pressure
drops measurements across foam pellets samples, ceramic and metallic, are obtained



v

both via experiments and through CFD simulations using geometries reconstructed
from tomography images. The workflow is tested by generating replicas of the
examined foams: a geometric comparison shows that the in-silico workflow is able
to reconstruct models whose common porous media macro-descriptors, porosity,
specific surface and tortuosity, lie within a 5-6 % range compared to the original
foams. Also from the fluid dynamic point of view the results of the CFD simulations
using the replicas are in good agreement with both experiments and simulations on
the digitally reconstructed real foams. The novel in-silico tool proves to be accurate
in reproducing the behavior of real foams as well as effective, because of the low
computational costs required to generate a digital sample. Chapter 5 focuses on a
practical problem affecting the refinery industry, the separation of fine particles from
hydrocarbon streams ahead of catalytic reactions. The system is simulated coupling
CFD for the solution of the flow field and Lagrangian simulations for the calculation
of the particles trajectories. The model is first validated by comparing the results
obtained for a granular bed configuration with the deposition model proposed by Yao
[1]. Then, the same methodology is employed to three ceramic foams geometries,
with the aim of identifying which characteristic lengths can be used to describe the
deposition phenomena interpreted according to the filtration model of Yao. The
results highlight how the complex structure of the materials in exam can not be
described by a single geometric parameter and stress the need of further detailed
investigation on the topic. Finally, Chapter 6 concludes the manuscript, identifying
the main results and proposing possible future perspectives on the topic and potential
applications for the workflow presented.
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Chapter 1

State of The Art

1.1 Porous materials in the process industry

Porous media are a class of materials characterized by pores, which are void volumes
inside a matrix of solid, which constitute the main structure. These materials can be
commonly found in nature, e.g. sand, soil, fractured rocks underground, but are also
of great importance in the field of the process industry and chemical engineering
equipment, such as packed bed reactors. Most commonly, these reactors fillings are
made of spherical beads and are of great importance in the field of heterogeneous
catalysis and filtration beds. Beside spherical particles, many other kind of shapes
have been designed and are used for catalytic applications, such as cylindrical pellets,
Raschig rings and other more complex types. Another example are the fixed bed
reactors, whose filling media are made of rigid porous materials, such as honeycomb
or other ordered lattices monoliths, characterized by an ordered pore structure, or
open-cell foams, which instead are characterized by an un-ordered and often random
pore-structure. The solid structure, the shape and sizes of the grains or the pores and
the void fraction for a given volume can change significantly between different types
of media. However, there is a set of macro-descriptors that are commonly used to
describe and compare different types of media, to quantify their ability to let fluids
flow through them, or the amount of dead zones where fluid remains trapped. These
properties are:

• Porosity, usually indicated with the greek letter ε , represents the void fraction
of a porous medium and it is defined as ε = Vvoid/Vtotal . Porosity can be
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Fig. 1.1 An example of the different scales coming into play when porous media are used as
packing materials for reactors in the process industry. At each scale different approaches can
be used, and different properties can be measured. For instance, representative elementary
volumes have different size according to the scale in exam. Another example is the porosity
ε , which has different reference values if measured at the pore scale or at the foam pellet
scale and so on.
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measured at different scales, from the nano-scale for catalyst particle up to the
the meters, in case of a packed bed catalytic reactor charge;

• Specific Surface, usually indicated as SV , it is defined as the ratio between
superficial area of a porous material and the volume of the whole sample,
SV = Asur f /Vsample. The higher the value of the specific surface, the larger is
the exchange surface for transport phenomena, given a fixed volume;

• Permeability, indicated with the letter k, it measures the intrinsic ability of a
porous material of letting fluids flow through it with more or less resistance.
Low permeable materials are rocks made of limestone or granite (k ≈ 10−9 −
10−10 m/s). Oil reservoir rocks or fractured rocks have higher values (k ≈
10−6 − 10−8 m/s). Sand and granular beds are on the upper side of the
permeability scale (k ≈ 10−5 −10−8 m/s) and even higher are highly porous
materials such as open-cell foams;

• Tortuosity, indicated with the greek letter τ , it is defined as τ = δgeod/δEucl, τ ≥
1, which is the ratio between the effective distance travelled by a fluid flowing
through two points in a porous material (δgeod) and the Euclidean distance
between those points (δEucl) . It is important in characterizing porous media
because it gives an indication regarding residence time, presence of dead zones,
hydraulic dispersion and it influences pressure drops, and many other transport
phenomena. There is not a unique way of calculating it, since many authors
defined it differently, depending on the phenomena in exam.

1.2 Open-cell foams

Let’s now come to the subject of this manuscript, by focusing on open-cell foams
and their properties. These porous materials have seen an increase in interest and
usage over the last twenty/thirty years, because of their peculiar characteristics: they
are characterized by an open cellular structure, with porosity ranging between 75
to 95 % and a very high bulk specific surface [4]. The combination of these factors
results in the features for which they became appreciated: lower pressure drops
compared to classic reactor packings, such as granular beds, and improved radial
heat and mass transfer due to reduced channeling effects [5]. Notable uses of ceramic
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foams are: molten metal filters [6], catalyst supports [5, 7, 8], soot filters [9], column
packing for packed bed reactors [10]. Metallic foams are also commonly used as
filters, catalyst supports and reactor or heat exchanger filling material due to their
great performances in heat transfer applications( [11]). The classic manufacturing
process involve inflating a gas, usually air, into molten polymers and inducing
polymerization. The polymeric structures obtained are then impregnated by ceramic
pastes/slurries or metallic powders, together with wetting and binding agents. Finally
these wet foams are calcinated, obtaining a positive replica of the polyurethane foams.
The foams manufactured through this process have the peculiarity of presenting
hollow ligaments, due to the destruction of the polymeric foam inside. Many other
techniques have been developed in recent years, such as direct blowing of melted
metal alloys or metallic powders sintering [12]. As a result of these manufacturing
techniques open-cell foams are monolithic structures composed by a solid skeleton.
Three elements can be identified to describe the microscopic geometry: the cells,
which are the macroscopic alveoli, the windows, which are the channels connecting
each cell with the neighbouring one and finally the struts, which are the solid
structuring elements of the porous materials. Figures 1.2a,1.2b show an example
of Al2O3 foam pellets, 20 and 40 PPI respectively, Fig. 1.2c show an example of
metallic aluminum piece of foam, whereas Fig. 1.2d highlights the geometrical
features mentioned above.

Because of the increasing potential applications of these porous media the mod-
eling and characterization of open-cell foams is of great importance but remains
a challenging issue. Often the main parameters used as describing metrics are the
porosity ε and the pores per inch (PPI), a number indicating the average pore dimen-
sion. However, these parameters does not lead to any direct estimation of important
descriptors such as the specific surface SV , required for the estimation of transport
coefficients, such as the pressure drops ∆P/L or the heat and mass exchange co-
efficient h and kL, necessary for the design of industrial equipment. Moreover, a
better understanding of the geometric structure and its interaction with the transport
phenomena occurring inside the foams is crucial to address the problem of the design
optimization of the foam structure for different applications, which remains an open
problem.
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(a) Al2O3 20 PPI foam pellet (b) Al2O3 40 PPI foam pellet

(c) Aluminum 20 PPI foam pellet (d) A detailed view of the foam pellet

Fig. 1.2 The first and second image from the top show two Al2O3 foam pellets, reprectively
20 and 40 PPI, used during the experimental phase of this work. The image on the second
row, on the right, show a metallic Aluminum piece of foam. Finally, the fourth image
highlight with colors the geometrical features of open-cell foams : in green the outline of a
strut, in red two windows adjacent to the strut and in yellow the volume delimited by a cell.
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1.3 Modeling open-cell foams

Over the years many attempts have been made to address the modeling of the
geometry of foams. At first ideal periodic geometries were the most common
because of their simplicity and repeatability in space. However, the need to capture
the randomness of the foams structures required the use of more complex approaches,
leading to the use of tessellation algorithms, which generate random graphs that
closely resemble the skeleton of ceramic or metallic foam and are able to capture the
random structure of real open-cell foams. This section offers a brief summary of the
most common geometric models used to describe the structures of open-cell solid
foams.

1.3.1 Ideal periodic models

The term ideal periodic models refers to ideal convex polyhedra, with regular polygo-
nal faces, which can perfectly fill the space in a repeating fashion, forming a structure
with congruent repeating cells. The advantage of using such geometries resides in
the fact that analytical correlations can be derived to describe the geometrical struc-
ture, such as edges length, area of the windows and the volume of the pores. This
also allows for an easier estimation of the porosity and specific surface. Common
polyhedra with such properties are cubes, dodecahedra and truncated octahedra, also
known as tetrakaidecahedron. The latter is the shape that Lord Kelvin [13] proposed
for the description of a foam or froth produced by soap bubbles. The reason resides
in the fact that this polyhedron attains minimal surface tension. This structure, better
known as Kelvin’s cell, has 14 faces (6 squares and 8 hexagons) and 36 edges of
equal size. The tetrakaidecahedron is still widely considered the ideal shape that a
solid foam cell would attain if the structure would be allowed to reach equilibrium
during the synthesis process. A graphical representation of the tetrakaidecahedron
and the Kelvin’s cell is reported in Fig. 1.3.

Many authors used the Kelvin’s Cell as a geometric model in their investigation
of transport phenomena inside porous open-cell foams. In their review on solid foams
and their application in the process industry Twigg and Richardson [4] reported ana-
lytical correlations for the estimation of the specific surface SV , pressure drops ∆P/L
and heat transfer coefficients h, based on the Kelvin’s cell geometry. Sullivan et al.
[14], proposed a general geometric model based on the tetrakaidecahedron reporting
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(a) A truncated octahedron (b) A Kelvin’s Cell structure

Fig. 1.3 The image on the left shows a truncated octahedron, or tetrakaidecahedron,
obtained truncating an octahedron with a smaller cube, which cut out the vertices. It has
eight hexagonal and six square faces. On the right, the geometrical representation of the
Kelvin’s Unit Cell: the edges of the cell are the struts of the ideal foam model, the windows
are composd by the faces of the polyhedron. Finally the foam cell is represented by the
whole periodic unit cell. This polyhedron is space filling, thus it can be repeated along its
periodic direction and form an ordered lattice, representing an open-cell foam.

several parametric correlation to describe such geometrical structure based on the
edge length L, varying the aspect ratio of the cell. Incera Garrido et al. [15] proposed
mass transfer and pressure drops correlations based both on experimental measure-
ments and analysis of geometries obtained with an MRI technique, highlighting the
influence of the pore size and porosity. Inayat and co-authors [16–18] developed ana-
lytical geometrical correlations based on the Kelvin’s Cell model comparing them to
data obtained by characterization of real foams with µ-CT tomography. Kumar and
Topin [19] used an analytical approach, based on the tetrakaidecahedron unit cell, to
investigate the thermohydraulic aspects (pressure drops and thermal conductivity) of
several different foams structure, comparing a large amount of experimental results
found in literature. Ambrosetti et al. [20] developed a very detailed analytical model,
based on experimental data. Della Torre et al. [21] used the Kelvin’s Cell model for
numerical simulations of a catalytic reaction in open-cell foams substrates.
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1.3.2 Adding complexity: random tessellations

To overcome the limits imposed by a simplified analytical model, such as the Kelvin’s
Cell, many authors focused their research on developing more realistic approaches,
in order to better describe the random nature of open-cell foams. Lautensack et
al. [22], Redenbach et al. [23], Wejrzanowski et al. [24], were among the first to
propose the use of random tessellations as an optimal model to represent the cellular
random nature of solid foams. Random Voronoi or Voronoi-Laguerre algorithms
subdivide the space into regions, which can be taken to represent the pores of a
real foam. Fig. 1.4 shows an example of two and three-dimensional Voronoi and
Voronoi-Laguerre diagrams. The generation of a tessellation starts from a initial set
of point, called seeds, that are usually randomly distributed in the computational
space of the tessellation algorithm. Then, the tessellation algorithm computes the
subdivision of space into cells, creating a cellular structure that forms the core of
the foam model. The advantage of this approach lies in the fact that a large range of
parameters affecting the final geometry can be explored. This allows the creation and
the study of many structures and configurations that would not otherwise be possible
to experimentally investigate. Many authors, such as Bracconi et al. [25], Nie et
al. [26, 27], Das et al. [28] used random tessellations to generate geometries and
investigated transport phenomena using numerical simulations. Different algorithms
and software were used by these authors to create the geometries: LIGGGHTS [29]
or LAMMPS [30] to compute the initial random seeds of the tessellation, voro++ [2]
to compute the tessellations and Surface Evolver [31] to create the superficial
mesh. These computational models are often used in combination with numerical
simulations to study transport phenomena and fluid dynamics inside foam materials.

1.3.3 Fluid dynamics and CFD

The investigation of fluid dynamics inside porous media is made difficult by the
complex nature of these materials and because of the small scale at which most of the
phenomena occur. At a macroscopic level, global measurements (such as pressure
drops or heat exchange) can be carried out to obtain some macroscopic/global
transport coefficients. However, the investigation of what takes place at the scale of
the pore is hindered by the costs and complexity required by experimental devices.
For this reason, alongside analytical and experimental models, in the last 20 years
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(a) A 2D Voronoi tessellation with its
seeds (b) A 3D Voronoi tessellation with its seeds

(c) A 3D Voronoi-Laguerre tessellation with
its seeds

Fig. 1.4 The first image represents a two dimensional Voronoi tessellation in a confined
square box. The red dots are the starting seeds of the algorithm which subdivides the space
accordingly. The second and third image are a three-dimensional representation of a Voronoi
and Voronoi-Laguerre tessellation, respectively: the spheres inside each cell are once again
the original seed of the algorithm. For the Laguerre-Voronoi case, the spheres have different
sizes. It is clear the analogy between the structure generated by such random tessellation
and the underlying skeleton of an open-cell foam: the edges of diagram are the struts of the
in-silico foam, the windows are composed by the faces between neighbouring polyhedral
cells. Fig. 1.4b and 1.4c are taken from [2].
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many authors used numerical methods to study and characterize the fluid dynamics
inside porous materials. The first system to be widely explored were spherical
granular beds, for their great importance in the process industry. For instance,
Boccardo, Icardi and their co-authors [32–35]) carried out several studies using
numerical simulations to investigate the micro-scale fluid dynamics of randomly
packed spherical beds. The use of CFD numerical simulation for the solution of the
flow field and the exploration of the transport phenomena inside open-cell foams
is well reported in literature: the work of Krishnan et al. [36] is one of the first
reported, studying fluid flow and pressure drops with DNS methods. The works
of Lucci and co-authors [37–39] focused on momentum, heat, mass transfer and
catalytic reactions using a regular and a randomized Kelvin’s cell model coupled
with CFD. For the same geometrical model Della torre et al. [40] explored the flow
field over different fluid dynamic regimes. Das et al. [41, 42] and Chandra et al.
[43] studied momentum and mass transfer inside a periodic Kelvin’s cell using CFD
with an Immersed Boundary Method. As already cited in the previous section many
authors ([25–28]) used numerical methods to solve the flow field inside geometries
generated using random tessellations. The great number of works using numerical
simulations as a tool for the investigation of micro-scale transport phenomena, of
which the previously cited ones are but a small fraction, show how much importance
and reliability CFD simulations have acquired in the last years in the in the field of
fluid dynamics modeling of porous media.

1.4 Structure of the manuscript

What is reported in the previous sections testifies the significant increase in interest
towards open-cell foams over the past years. Many authors proposed different
types of model for the geometric structure and correlations for the estimation of
pressure drops or heat and mass transport coefficients. However, even now a great
deal of knowledge is missing regarding the influence that the specific geometric
features characterizing open-cell foams have on the transport processes. Moreover,
the optimization of the geometric structure for specific areas of application remains
an open problem. To approach such issues it is crucial to develop an in-silico tool
that is able to generate a great variety of structures, exploring large parameter ranges.
The aim of this work is to propose, test and validate different approaches towards the
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generation of digital open-cell foams models and investigate the transport phenomena
occurring between fluid and solid matrix, with particular focus towards filtration
applications.

The following brief overview of the work will serve as a reading guide of the
organization of the chapters composing this manuscript.
Chapter 2 gives a theoretical background regarding the flow of an incompressible
fluid inside porous media, the mass transport and particles deposition and filtration
phenomena. Then the main theoretical concepts used for the creation of in-silico
foam geometries, originated both from tomography images or digitally generated,
will be addressed: random tessellation algorithms, the generation of their starting
seeds, and the processing of binary images.
In Chapter 3 a workflow for the generation of different balls-and-sticks foam models
is presented and tested. The geometries thus obtained are used to investigate and
solve the fluid flow of an incompressible fluid. Then the scalar transport equation is
solved to investigate phenomena associated with the deposition of colloidal particles
on the foam walls. Different geometric models are digitally explored: the Kelvins’s
Cell, mono-disperse and poly-disperse Voronoi-like structures. Hydraulic permeabil-
ity and filtration efficiency are calculated for each model and compared.
In Chapter 4, an innovative and improved foam generation workflow is proposed.
This novel procedure is tested and validated both from a geometric and a fluid dy-
namics point of view. Four types of real foam samples are used to carry out pressure
drop measurement on packed column set-up. Then, the geometry of such samples
is digitally reconstructed from X-ray tomography images. Numerical simulations
of the fluid flow are carried out on both the digitally reconstructed foams and the
digital replicas geometries generated with the proposed workflow. This work has
been carried out in collaboration with IFP-Energies Nouvelles.
While the topics exposed in Chapter 3 and 4 are more focused on the methodology
proposed and its testing and validation, the main topic of Chapter 5 addresses a more
practical problem of the process industry: the purification of hydrocarbon streams
fed to a catalytic packed bed, from iron oxide fine particles. The investigation was
carried out in close collaboration with IFP-Energies Nouvelles. The fluid flow is
solved using CFD simulations, and Lagrangian Discrete Particle Model (DPM) ones
are used to solve the particles trajectories. This method is first tested on a granular
bed configuration and then filtration efficacy of open-cell foams is compared with
results obtained from classical filtration models ([1]) to validate the results and
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retrieve the characteristic parameters involved in the filtration process.
In Chapter 6 the final conclusion on the topic of this research work will be drawn,
with particular focus on the objectives of the different subjects taken into account
and the models proposed. Finally, future perspectives on the use of the proposed
workflows and where their use could give a better understanding on open-cell foams
as well as improve and optimize their applications, in the field of the process industry,
will be addressed.



Chapter 2

Governing Equations

In this chapter, the main notions and governing equations for single-phase flow in
porous media, particle deposition, scalar transport, and Lagrangian particle simula-
tions will be covered and explained. Particular care will be given to the analysis and
modelling of surface particle deposition processes, since it is the focus of two chap-
ters of this work. Finally, the geometrical tools to generate in-silico the geometries
used throughout the work will be described in detail.

2.1 Single-Phase Flow in Porous Media

The characteristic length scale involved in transport phenomena inside porous media
is very small: the pores have dimensions of the order of hundreds of µm. However,
the continuum hypothesis still holds true, and for this reason the governing equations
of a fluid moving through an open-cell foam are the continuity and the Navier-Stokes
equations, which for an incompressible fluid, with constant density ρ and viscosity
µ , read as follow:

∂Ui

∂xi
= 0 (2.1)

∂Ui

∂ t
+U j

∂Ui

∂xi
=− 1

ρ

∂ p
∂xi

+ν
∂ 2Ui

∂x2
j

(2.2)
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where Ui is the i-th component of the fluid velocity, p is the fluid pressure, and
ν is the fluid kinematic viscosity. Here the Einstein or index notation has been
used. These are the equations that are discretized and solved by a Computational
Fluid Dynamics (CFD) software. In most cases the porous media systems under
investigation have extensive dimension, with a huge number of pores, thus it would
be impractical to describe the results of the solution of the flow field of a fluid through
the medium using a micro-scale formulation. Therefore, it is necessary to use a
macro-scale description, which is the result of an averaging operation carried out on
the microscopic element of the geometry in exam. This procedure, well explained
by Whitaker [44], is a spatial smoothing of the micro-scale equations, leading to a
new macro-scale continuum formulation which entails a loss of distinction between
the solid and the fluid fraction of the entire domain. Thus, the elementary element
of the description is a solid-fluid zone, characterized by its porosity. The resulting
equations are written as follows:

∂Vi

∂xi
= 0 (2.3)

∂Vi

∂ t
+Vj

(
ε

∂Vi

∂xi

)
=− 1

ρ

∂P
∂xi

+gi + γVi (2.4)

where Vi is the Darcy velocity (or superficial velocity) in the porous medium, ε is the
medium porosity and gi is the i-th component of the gravitational acceleration. The
friction coefficient γ can be expressed as γ = µ/ρk, where k is the porous medium
permeability and µ is the fluid viscosity.

The earliest example of the use of such macroscopic approach for the flow of
fluid though porous media is the search for a constitutive equation between the
pressure drop measured across it and the inlet superficial velocity V0. This means
finding an analytical expression for the γ term of Eq. 2.4. A famous example is work
of Henry Darcy [45] focused on the filtration system employed by the city of Dijon
for purification of the ground water and for the design of its fountains. This work
resulted in the well known Darcy’s Law, which is still a relevant equation for the
description of flow through porous media in general:

∆P
L

=−µq
k

(2.5)



2.1 Single-Phase Flow in Porous Media 15

where ∆P/L is the pressure drop per unit volume and q is the superficial velocity.
The linear relationship existing between q and the pressure drops, depends on the
properties of the fluid, the viscosity µ , and the permeability of the porous medium
k. This equation can be obtained directly from Eq. 2.4 under the hypothesis that
the flow is stationary, in laminar regime, and gravity effects are unimportant. It is
important to highlight the relationship between the velocity of the fluid inside the
pores and the superficial velocity. Taking into account the cross-section of the porous
medium, it is not entirely crossed by the fluid, since a fraction of this area is occupied
by the solid medium. The ratio between the void and solid fraction is the porosity ε ,
and therefore a relationship between the pore scale velocity and the superficial one
can be written as follow:

U =
q
ε

(2.6)

Eq. 2.5 is very useful but it has a limited range of application, mainly in the field
of aquifer flows. In the field of chemical engineering the velocities considered are
much higher, thus it is necessary to characterize the flow regime. This can be done
by introducing the Reynolds number, as reported by Bear [46]:

Re =
qDg

ν
, (2.7)

where the term Dg is the characteristic length of the porous media. In case of a
granular bed it uniquely refers to the average grain diameter, however for materials
such as open-cell foams different characteristic lengths can be used: the average cell
diameter, the average windows diameter, or the hydraulic diameter, which represent
the ration between the surface area a sample of the porous media and the volume it
occupies, dh = A/V .

For conditions in which the inertial forces are more significant (Re > 10−20),
even if the flow is not fully turbulent, an additional term dependent on the superficial
velocity V can be added to the friction factor, which becomes γ = µ/ρk+ β |V |.
Substituting in Eq. (2.5) as before, this yields the Darcy-Forchheimer’s Equation:

∆P
L

=−µ|V |
k

− ρ|V |2

k1
(2.8)
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where k1 = 1/βI is the inertial flow parameter or inertial permeability and like k
depends only on the micro-structure of the porous medium.

2.2 Particle Transport and Deposition/Filtration

The description of the concentration of particles transported by the fluid, within a
porous medium, is of great interest to describe phenomena such as the filtration of
colloidal particles in the soil or capture/deposition of microscopic particles from
flow-streams that can be detrimental to subsequent steps of an industrial process.

Depending on the dimensions of the particles to capture, different models can be
used: if the particles are orders of magnitude smaller than the characteristic length
of the flow or the obstacle, and unaffected by gravitational forces, then a Eulerian
framework can be used. This is the case of of colloidal particles with sub-micrometer
average size On the other hand, if the particles are larger and the density difference
between solid and fluid is not negligible, then a Lagrangian framework must be
adopted.

2.2.1 The Eulerian Framework

When using a Eulerian approach particle concentration and deposition can be de-
scribed by a scalar transport and reaction equation. This is the case of the well-known
advection-diffusion-reaction equation, which at the micro-scale is written as:

∂c
∂ t

+
∂

∂xi
(Uic)−

∂

∂xi

(
D

∂c
∂xi

)
= kbc on Ωb ⊂ Ω ⊂ R3 (2.9)

with Ωb the volume of fluid, Ω the total volume, c is the scalar concentration ,
U is the pore-scale velocity, which can be obtained by Eq. (2.2), and kb is the bulk
reaction coefficient. The diffusion coefficient D , in the case of colloidal particles,
is the diffusion due to the Brownian motion, and can be estimated using Einstein
equation [47]:

D =− kBT
3πµdp

(2.10)
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where kB is the Boltzmann constant, T is the system temperature, and dp is the
particles average diameter. This equation can be used to model the transport of
colloidal particles under the assumption that the system concentration is low enough
to be considered dilute, enabling to describe the diffusive flux with Fick’s law. More-
over, the diameter of the particles in exam must be much smaller than the collector
characteristic length, dc, namely (dp/dc ≈ 10−3), as pointed out by Boccardo and
co-authors [35]. Another necessary assumption for this kind of treatment is that
the particles will follow the motion of the fluid along its streamlines: the particles
Stokes number, namely the ratio between the characteristic time of the fluid flow
and the relaxation time of the particles transported, will be very small, St ≪ 1. This
condition is met for particles with average dimension around 1 µm or lower. Under
certain conditions, such as those present in the early stages of filtration before a
noticeable solid cake or deep solid deposits are formed, the deposition of colloidal
particles on the solid wall of a collector (grains in a granular bed or struts of open-
cell foams), can be modelled as an instantaneous reaction at the solid walls, where
all the transported particles which come into contact with the collecting solid will
irreversibly react (i.e. deposit) and disappear from the system. This is called then
clean-bed filtration model of filtration [1]. This can be achieved in a numerical
model by an homogeneous Dirichlet boundary condition c = 0 on the solid surface,
meaning that all the colloids impacting on the walls of the collector are captured.
The reacting term kb in Eq. 2.9, is referred to a first-order homogeneous bulk reaction
occurring in the fluid volume Ωb, and for a system as the one in exam it will be
considered equal to zero, since at the micro-scale all the reactions occur at the wall
of the porous medium, and no bulk reaction is considered.

In analogy to the equation of motion, Eq. 2.9 has a corresponding macro-scale
equation, obtained with the volume averaging procedure used for Eq. 2.4. This
equation read as follow:

∂ ⟨c⟩ε
∂ t

+
∂

∂xi
(Vi⟨c⟩)−

∂

∂xi

(
Dh

∂ ⟨c⟩ε
∂xi

)
= Kd⟨c⟩ (2.11)

The averaging procedure is carried out over the whole porous domain Ω, and thus ⟨c⟩
is the average concentration of the scalar within the porous material, Dh is the scalar
hydraulic dispersion, which is a tensor quantity, and Kd is the reaction/deposition
rate at the macroscopic scale within the porous medium bulk. This last quantity takes
into account all the reactive phenomena taking place within the porous matrix, either
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at the solid walls, as in case of particle deposition or instantaneous reaction, or in the
liquid domain at the pore scale.

2.2.2 The Lagrangian Framework

In a system with dispersed solid particles moving through a continuous medium,
the trajectories of such particles can be solved with a Lagrangian approach, namely
solving the balance of forces acting on individual particles. This method is imple-
mented in the computational fluid dynamics software Ansys Fluent [48], through
the equations that follow, which are those used for the simulations carried out in
this work. This approach requires that the dispersed phase occupies a low volume
fraction in the system, even if the mass flow-rate of the solid fraction is high, for
instance in case of solid particle with density much higher than the fluid transporting
them. Under such circumstances the particle is modelled as a point mass, that is a
zero-dimensional point with a mass associated to it, traveling along the fluid flow, as
reported by Loth [49]. The individual particle force balance is written as:

mp
dUp,i

dt
= mp

Ui −Up,i

τr
+mp

gi (ρp −ρ)

ρp
+Fi (2.12)

where g is the gravitational acceleration, mp is the individual particle mass, Up,i is
the particle velocity, ρp is the solid density, whereas Ui and ρ are the fluid pore-scale
velocity and density, respectively. The particle relaxation time τr, is the characteristic
time of a particle transported by a continuous fluid, and it is expressed as:

τr =
ρpdp

2

18µ
(2.13)

where dp is the particle diameter and µ is the fluid viscosity. The term Fi in Eq. 2.12
indicates additional forces that may play an important role on the particles of the
systems in exam. Notable examples are those due to the movement of the fluid
surrounding the particle in motion, known as virtual mass forces, or the force
caused by the pressure gradient in the fluid. For the system taken into exam, both
aforementioned forces are negligible. However, an additional Brownian force is
included, to take account of the random effect on the motion of the smallest particles.
This force is expressed as:
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Fb j,i = mpζ j

√
πS0

∆t
(2.14)

where ζ j is a random zero-average, unitary variance Gaussan random number. The
term S0 is the intensity of the Brownian white-noise applied to the trajectory of the
particle and is written as:

S0 =
216νkBT

π2ρdp
5
(

ρp
ρ

)2
Cc

(2.15)

where ν is the cinematic viscosity, kB is the Boltzmann constant, T is the system
temperature, and Cc is the Cunningham correction to the Stokes’ drag law for
spherical objects and is written as:

Cc = 1+
2λ

dp

(
1.257+0.4exp

(
−1.1

dp

2λ

))
(2.16)

where λ is the molecular mean free path. In the case of the Lagrangian approach, the
capture of particles is modelled using a trapping boundary condition. This means
that when the trajectory of the zero-dimensional particle is calculated, if it goes
through the walls surface, the trajectory is terminated and the fate of the particle is
marked as trapped.

2.2.3 Particle Deposition and Filtration

For the design of process equipment for the filtration of solid particulate it is required
to have a good estimate of the rate of deposition coefficient as well as the efficiency
of deposition on the collector. To calculate these quantities, in analogy to what was
done for the transport of momentum in section 2.1, the micro-scale concentration
profiles of the transported particles must be interpreted according to macro-scale
models. An important framework for the interpretation of such processes is given
by the constitutive equation proposed by Yao et al. [1] in its seminal paper. This
publication was originally proposed for filtration of solids and colloids in water
through simple spherical granular beds systems, common in the field of water
treatments and purification. It makes use of the fluid dynamic structure of flow past



20 Governing Equations

a simple spherical collectors, first proposed by Levich [50], and later expanded for
multiples collectors through the work of [51]. The original model was later improved
and expanded by several authors in the field of filtration theory ([52–54]). According
to this model, the expression for the particle deposition rate onto the solid wall of
the porous medium can be written as:

kd =
3
2

q
Dg

1− ε

ε
αDη0, (2.17)

where η0 is the collection efficiency and αD is the attachment efficiency. This
latter parameter, that can assume values 0 ≤ αD ≤ 1, is an indication of the balance
between the attractive and repulsive forces acting on the particles approaching the
solid collector. It is the result of the sum of viscous drag forces, hydrodynamic
friction between the fluid and the wall, and London attraction forces ([50], [52],
[55]). In this work it will be considered the case where chemical conditions are
favorable to the perfect attachment of the particles and thus αD = 1. This deposition
rate is equivalent to the reaction coefficient in the right-hand side of Eq. 2.11.

The collection efficiency η0 of a single collecting element, otherwise known
as single collector efficiency, is defined by Yao [1] as the ratio between the rate of
collision of particles with the collector and the rate of particles flowing towards it:

η0 =
rate of particles colliding the collector

qC0

(
πDg

2

4

) , (2.18)

where the term C0 indicate the inlet particle concentration, or the concentration at a
long distance upstream the collector. The single collector efficiency is the sum of
three deposition mechanism: Brownian diffusion, interception and sedimentation.

Fig. 2.1 shows a graphical representation of the three sedimentation mechanism,
as proposed by Yao. The diffusion mechanism is the phenomenon which brings
particles to settle on the collector, due to their random Brownian motion while
transported by the fluid flow. This is the relevant mechanism for nano-particles
up to 1 µm in size. The interception mechanism is the steric effect occuring when
particles moving along the fluid streamlines get in contact with the collector at a
certain distance depending on their finite dimension, where they stick to the surface
of the solid. Finally, the sedimentation mechanism occur when a particle directly



2.2 Particle Transport and Deposition/Filtration 21

Fig. 2.1 A graphical representation of the three particle deposition mechanism as proposed
by Yao [1]. The velocity V0 is the upstream velocity at a long distance from the collector.
The latter is represented by an isolated spherical grain on which particles impacts according
to the different mechanisms. The present image is taken from [1].

impacts with the solid collector surface as it deviates by its transporting streamline
direction, owing to additional inertial or gravitational forces. The latter is the leading
deposition mechanism for bigger particles, with average particle size of at least
5 - 10 µm. A single collector efficiency can be written for each of the individual
transport mechanisms reported above, namely ηB for the Brownian diffusion, ηI for
interception and ηG for sedimentation. An analytical expression for these efficiencies
is reported by Yao [1] in its seminal paper on particle deposition. This expression
is not the only possible one and it should be considered valid only in the simplified
condition for which it was developed, namely a single spherical collector immersed
in an infinite fluid field in creeping flow. These expressions are:

ηB = 4.04Pe−
2
3 , (2.19)

ηI =
3
2

(
dp

Dg

)2

, (2.20)

ηG =
(ρp −ρ)gdp

2

18µq
, (2.21)
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η0 = ηB +ηI +ηG, (2.22)

where Pe is the Peclet number, namely the ratio between the advective and diffusive
transport mechanisms. The ratio dp/DG is often referred to as NR. Eq. 2.22 report
the total single collector efficiency of Eq. 2.18 as a function of the single individual
mechanisms. It is worth noting that over the years different approaches has been used
for the analytical expression of the collection efficiency, between which is import to
mention the modification [52] to ηB using the coefficient proposed by Happel [56]:

ηB = 4As
1
3 Pe−

2
3 , (2.23)

ηI =
3
2

AsNR
2, (2.24)

with the As coefficient being:

As =
2
(
1− γH

5)
2−3γH +3γH 5 −2γH 6 , (2.25)

with the coefficient γH being a function of the porous medium porosity and its written
as γH = (1− ε)

1
3 . Another important mention is the work by Konstandopoulos and

co-authors [57], which is based from the analysis made by Kuwabara [58], developed
for an arrangement of cylinders instead of spheres, and introduces another porosity
coefficient in the expression of the Brownian and interception efficiencies:

ηB = 3.5g(ε)Pe−
2
3 , (2.26)

ηI =
3
2

NR
2

(1+NR)
s g(ε), (2.27)

with the exponent s = (3−2ε)/(3ε) and g(ε) is the Kuwabara porosity function:

g(ε) =

(
ε

2− ε − 9
5(1− ε)

1
3 − 1

5(1− ε)2

)
(2.28)
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A global approach

A global approach to the problem of particle sedimentation can be used, taking into
account Eq. 2.11, in steady-state conditions and considering only the macroscopic
particle fluxes entering and exiting the control volume containing the porous me-
dia collector. Following this approach, Boccardo and co-authors [35] derived an
expression for an effective particle deposition rate Kd , in the case of sole superficial
reaction (again kb = 0). This results in:

Kd =
F in

tot(c)−Fout
tot (c)

|Ω|⟨c⟩
, (2.29)

where the numerator represents the total effective flux of the scalar c through the
system, ⟨c⟩ is the average scalar concentration and |Ω| is the total volume of the
system. This expression is a valid substitute of Eq. 2.17 since it is easier to calculate
the total particle flux across the system in exam. Moreover, since it depends on
the total volume and the average particle concentration, it is scalable with differ-
ent equipment sizes and dimension. Finally it is useful to introduce an advective
Damköhler number Da, defined as:

Da =
Kd ·DG

q
(2.30)

where Kd is the deposition rate previously defined, q is the superficial velocity and
Dg the diameter of the mean grain or pore of the geometry in exam. This latter
coefficient can be used in substitution of the single collector efficiency η0 as an
indication of the system deposition rate or in case of a superficial instantaneous
reaction.

2.3 Generation of Open-Cell Foam Geometries

Different models can be used to represent the structure of an open-cell foams and
several methods can be implemented to generate in-silico structures, with the help
of some Python code and different software that will be mentioned in detail in the
following sections. A foam can be represented by the ideal polyhedron devised by
Lord Kelvin,the Kelvin’s Cell, or the basic skeleton can be obtained by using the
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diagram, composed of nodes and edges, produced by a random tessellation. The
same basic skeleton can be used for the creation of geometries with different degree
of description of the real foam solid surface: a ball-and-sticks model is similar to a
foam but is not an exact reproduction of the real porous medium, since it lack a good
description of the foam struts and nodes matter distribution.

Finally, a real geometry can be obtained by the processing of stack images
obtained from exposing a foam sample to an X-ray tomography. This images, if
properly treated, can be used to generate a three-dimensional model which is an
approximation of the foam in exam but, at the same time, is the closest digital
representation of a real foam. Before diving deep into these model, it is useful
to mention the concept of Representative Elementary Volume (REV), which is,
according to Whitaker [44], the smallest volumetric portion of a porous medium
for which a certain property remain unchanged at increasing dimensions. Most
commonly, a REV based upon the porosity ε is identified in the field of porous
media, an this would be the one employed throughout this manuscript.

2.3.1 The Kelvin’s Cell

This ideal approach to the modeling of solid foams, the Kelvin’s Cell, was first
proposed by Lord Kelvin as the shape taken by bubbles during the formation of
liquid foams, being the configuration which attains the minimal surface tension. It
consists of a tetrakaidecahedron, an ideal polyhedron, with 14 faces, 36 edges and
periodic in space. The coordinate of its 24 vertices are all the possible combination
of the numbers {0,±1,±2} combined as coordinates in three-dimension. The
connectivity between vertices is then easily obtainable. Given an edge of length a,
the cell diameter is equal to dC =

√
(2)a

Because of its periodicity the REV coincide with the cell itself. Its properties are
also used as comparison in the analysis of random generated geometries, to assess
how closely this structure resemble ideal shapes.

2.3.2 The Voronoi-like models

Modeling open-cell foams by means of ordered lattice is often not sufficient to catch
some of the important properties, result of their embedded randomness, and therefore
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other approaches were conceived in order to cope with the higher level of complexity.
The creation of foam-like geometries is process involving several steps and touching
different fields in computational geometry. Among these there is the use of random
Voronoi tessellation which create cellular-like structures, subdividing the space into
regions or cells. These structures have comparable randomness to that of real foams
and can be used as a skeleton for the final model. The Voronoi Diagram is a well
known type of random tessellation which, starting from an initial set of point, the
seeds, subdivide space into convex polyhedra in such a way that the region around a
seed consists of all the points closer to that seed than to any other. More rigorously,
given a starting set of N random seeds S = {P1,P2, ...,Pn} ⊂ R3 and considering a
generic point x ∈ R3, being d(x, Pi) the Euclidean distance, a generic Voronoi region
R(x, Pi) is defined by

R(x,Pi) = {x ∈ R3 | d(x,Pi)< d(x,Pj), j ̸= i} (2.31)

Power Diagrams are another important type of cellular-like geometric graphs.
They are a generalization of a Voronoi tessellation, introducing a weighing factor
w(Pi) to the initial seeds, as reported by Aurenhammer [59]. In particular, the
Laguerre-Voronoi tessellation is a second order Power Diagram whose weighing
factors are the square of the radii ri of the spheres centered in the initial set of seeds
S = {P1,P2, ...,Pn} ⊂ R3, resulting in Eq. (2.32):

R(x,Pi) = {x ∈ R3 | d(x,Pi)− r2
i < d(x,Pj)− r2

j , j ̸= i} (2.32)

The use of a mono-disperse set of spheres combined with a Voronoi tessellation
results in a structure with regular-shaped and homogeneous cells, closer to the
ideal structure of the Kelvin’s Cell. This kind of structure is attained whenever
the foam creation process allows the structure to reach the mechanical equilibrium.
However, most production processes result in foams with irregular-shaped and
widely heterogeneous cells. The use of the Laguerre-Voronoi tessellation coupled
with poly-disperse spheres packing, together with a wise choice of the cells volume
distribution, can result in more realistic geometrical structures, able to better describe
the phenomena occurring in such materials.



26 Governing Equations

The tessellation algorithm

The computation of the tessellation is carried out using the python module Tess
[60], which is a Python binding to the C++ code voro++, developed by Rycroft [2], a
software library which carries out three-dimensional Voronoi and Laguerre-Voronoi
tessellations. This code carries out cell-based calculations, storing all the outputs in
the class tess.Cell, which contains information regarding vertices and centroids
locations, facets connectivity and neighbour cells, to cite a few. The input parameters
are the initial seeds coordinates and the bounding box coordinates; in the case of
Laguerre-Voronoi diagrams the spheres radii acting as the tessellation algorithm
weights. Additionally, the code can compute a periodic or non-periodic diagram,
by enabling or disabling a Boolean parameter. The output is in the form of a list of
instances of the Cell class, each corresponding to the convex polyhedron computed
starting from the initial sphere packing. An additional feature to compute and list
each edge by its vertices was added, both for singular cells and the global structure,
inspired by the code developed by Gostick [61]. Finally, a list of all the edges is
computed (purged of all the duplicates) containing the arrays of the coordinates of
each pair of vertices defining an edge. Then, this list can be safely passed as input to
the next step of the workflow which generates the geometry file.

2.3.3 The starting seeds generation

The random points to be used as starting seeds for the Voronoi-like tessellations can
be created with different methods. A classical approach is to use a sphere packing
process, which simulate the settling of a group of Nsph

tot spherical objects being
poured inside a rigid container. The results of this type of simulations, following
the Discrete Element Method (DEM), is a randomly closed pack of spheres, whose
main drawback is the high computational cost, because all the interactions/collisions
between sphere-sphere and sphere-container must be calculated. This method works
well with both mono or poly-disperse population of spheres. An alternative and
innovative method is the use of an aggregation algorithm, which uses a stochastic
process to position the spherical objects inside the computational domain. This
method has a very low computational cost, if the sphere size is mono-disperse.
However, the heterogeneity of the sphere spacial location is achieved varying the
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total compactness of the aggregate inside the containing box. The principle governing
each of these methods will be reported in the following sections.

The Sphere Packing Process

The creation of a mono-disperse or a poly-disperse hard-sphere packing is carried out
using the open-source code BSand, first proposed by Boccardo and co-authors [34].
It uses the computer graphics code Blender which solves the Newton’s equation
of motion for each of the N input objects. The dynamics of collisions of a system
of N rigid-body spheres is solved by means of the Bullet Physics Library (BPL).
This collection of codes provides several iterative algorithms to simulate the packing
process of a large number of elements in a robust and accurate way, in a relatively low
computational time. The geometrical input parameters to be set are: the container
shape, its size, and the hard-spheres size distribution main parameters. For the
generation of the random sphere packings of Chapter 3 of this manuscript, the grain
size distribution chosen is Gaussian. A random variable X is normally distributed
when its associated probability density function is:

fX (x) =
1

σS
√

2π
exp

(
−1

2
(x−µS)

2

σ2
S

)
(2.33)

CV (x) =
σS

µS
(2.34)

where µS and σS are respectively the mean value and the standard deviation of
the random variable. For such distribution one can define the coefficient of variation
CV (x), reported in Eq. (2.34), the ratio between the standard deviation and the mean
value of the distribution. Such coefficient, together with the mean sphere diameter
µS are the input parameters provided to Blender, by means of python code, to
compute the sphere packing. Finally, the locations and dimensions of each sphere
inside the container are retrieved.
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The Sphere Aggregation Process

For the present work a novel method for the generation of the starting seeds is
introduced. This innovative procedure is based on the a aggregation model devel-
oped by Moreaud and co-authors [62], in which spherical objects are sequentially
inserted in the domain following a stochastic process. The fractal dimension of the
aggregate is tuned by means of two compactness parameters, namely α and β . In
this aggregation process objects can be either in contact or at a pre-defined repulsion
distance Repul. The location of already positioned objects is used to calculate the
positions of the ones that follow, taking into account potential concave locations
in the aggregate. Thus, the probability that the next sphere will be positioned in
a concave zone is α , whereas the probability that a concave zone is closer to the
center of mass is governed by β . Despite the fact that the radius of the spheres
population is kept constant, the virtually infinite amount of combinations between α ,
β , and Repul leads to multiples different realizations of a stochastic process - each
one with different degree of heterogeneity - that can be used as seed for a random
tessellation, similar to what can be achieved using poly-disperse spheres populations.
Most importantly, this requires very low computational cost, since this model is
purely geometrical, based on spheres of constant radius on a discrete grid, and does
not require a sedimentation simulation.

2.3.4 Digital reconstruction from x-ray tomography

A tomography image of a foam sample can obtained using the x-ray technique.
This results in a three-dimensional stack of grey-scale images, in TIFF format,
representing cutting planes of the sample along the depth coordinate. The amount of
voxels, i.e. three-dimensional pixels, for each x-y plane and the amount of planes
in the z-direction depend on the voxel resolution of the measurement device. A
three-dimensional reconstruction of the sampled foam can be obtained from the
TIFF image, by application of a segmentation algorithm which provide a threshold
value within the grey-scale voxel distribution, allowing the determination of the
void and the solid phases, resulting in a binary the stack image. Afterwards, a
contouring algorithm can be used to obtain the solid surface of the foam sample,
in a format that can be eventually used by a meshing software for the creation of a
computational domain. The threshold selection method used for all the sample used
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throughou this work is the one developed by Otsu [63] which, given the initial image
grey-scale color distribution histogram, returns a threshold value which separates
the pixels/voxels of an image into two classes, background and foreground. In the
case of x-ray tomographies this represents the void and solid phases. Once a binary
image is obtained the solid surface of the foam sample can be reconstructed using the
well known Marching cubes algorithm [64], which creates a triangulated iso-surface
representing an approximation of the original real surface, that can be exported in
the commonly used .stl file format.

2.3.5 Morphological operations on binary three-dimensional vol-
umes

The solid geometry representing an open-cell foam can be defined within a binary
framework. The latter is charactrized by a three-dimensional structured grid divided
into cells, called voxels, that can assume a binary value, namely 1 or 0, which
usually refer respectively to the solid or void fraction. This type or representation
is in toto similar to the geometry obtainable from tomography images, once the
segmentation algorithm is applied, as reported in section 2.3.4. Thus, an open-cell
foam is represented by a subset of the overall volume, and its geometry can be
modified using specific functions defined by morphological theory.

Morphological operations are functions commonly used in the domain of binary
images processing, that transform the starting object according to the four basic
operators, i.e. Erosion, Dilation, Opening and Closing. These operators works on
sets in space. First the working set of points is introduced as X = {z ∈ R3}, with
its complementary Xc = {z ∈ R3,z /∈ X} and its position, denoted as the position
of one of its points in R3. Then, the following additional set can be defined: Xz =

{x+ z;x ∈ X} is the set translated at point z, and X̆ = {−x,x ∈ X} is the transposed
set of X . The dilation operator of a set Y by X is denoted as δX(Y ) and the erosion
as εX(Y ). These are reported in Eq.2.35 and Eq. 2.36, as defined by Serra [65]:

δX(Y ) = {z : X̆z ∩Y ̸= /0} (2.35)

εX(Y ) = ∩{Yz,z ∈ X̆z}. (2.36)
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Dilation is the locus of the possible z positions of the X̆z transposed element when
the latter intersect Y , whereas erosion is the location of the possible z positions of the
Xz element when it is contained in Y , as reported by Moreaud et al. [62]. The closing
operator φ = ε(δ (Y )) is defined as the combination of a dilation followed by an
erosion operator of the set Y by X . Analogously, the opening operator γ = δ (ε(Y ))
is the combination of an erosion, followed by a dilation operation of the set Y by X .
Thus, given a structuring element of arbitrary shape, most commonly a voxelized
cube, sphere or cross of given dimension, it is possible to modify the starting
geometry. In particular, the closing operation creates "bridges" across the binary
volume, which are essential in transforming a foam skeleton, into a morphologically
realistic foam geometry.



Chapter 3

A Simplified Approach To Open-cell
Foams Modelling

Fig. 3.1 A graphical representation of the workflow proposed in the present chapter.

As already mentioned in the Introduction of this manuscript (§1.3.1 and §1.3.2),
many authors in literature developed method to reproduce open-cell foam geometries
using computational methods. Most of the aforementioned software can produce
good results, however, to the best of the authors’ knowledge, there is no example
in literature of any open-source tools which fit in a unique platform the geometry
generation and the transport simulation workflow, for the modeling of this kind
of foams. Therefore, the work detailed in this chapter is to introduce, test and
validate an open and flexible in-silico tool, that is able to reproduce a great variety
of structures, exploring large parameter ranges, in order to be able to optimize the
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geometric structure according to the different application areas. Fig. 3.1 is a graphical
abstract of the work presented in this chapter, that has been published in form of
peer-reviewed article [3].

This tool rely only on the open-source computer graphics code Blender and on
Python programming language code to calculate and create the final geometry. The
initial set of random points are generated by a random sphere packing (either mono-
or poly-dispersed), following an already validated workflow proposed by Boccardo
et al. [34]. The position of the edges and nodes of the tessellation, generated from
the starting random seeds, is retrieved from the Voronoi algorithm. Then Blender
creates cylinders and sphere at the supplied coordinates to generate the foam structure.
The resulting geometry will be used to define a computational domain in which to
run CFD simulations in the OpenFOAM environment. First, the flow field is solved, to
estimate the pressure drop and hydraulic permeability of the generated geometries.
Then, micro-scale mass transfer simulations are carried out to explore transport and
surface reaction through these porous media. This problem is of great importance
in chemical and environmental engineering, and as such it has been investigated by
many authors dealing with a variety of applications, such as particle deposition in
filtration [1], catalytic processes through filter beds in the automotive industry [66],
aquifers remediation [67], to cite a few.

This work will focus on phenomena of fast deposition/reaction of colloidal
particles on the solid surface. This circumstance usually occurs either in the event of
clean-bed filtration [1] or in case of a very fast catalytic reaction, whose coefficient
of reaction tends to infinity. In this particular cases deposition is driven by Brownian
motion and steric interception mechanisms. Following the model and methodology
proposed by Boccardo and co-authors [32, 35], and then used in subsequent works
by Marcato et al. [68] and Crevacore et al. [69], the results of the scalar transport
simulations will be used to calculate an effective macroscopic particle deposition rate
coefficient Kd , which would be used to estimate the efficiency of clean-bed filtration
of open-cell foams.

3.1 Test cases and numerical details

The current section will describe the different test cases explored for this work,
along with the operating conditions and numerical details of the simulations. The
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generation of the geometry will be described first, then the meshing strategy, and
finally the simulations setup. All the technical information regarding hardware
and computational times are reported in the Supporting information available in
Appendix A.

3.1.1 Geometry model generation

The geometry creation is carried out by the open-source software Blender, which
takes as input the edges coordinates previously computed by Python code using
the Voronoi and Voronoi-Laguerre algorithm. The output is a .stl file which is
then ready to be meshed and used as input for the CFD code. The geometrical
model explored for this work are of two types: the Kelvin’s Cell simplified model
(a truncated octahedron), and structures originated from random tessellation, in
particular Voronoi and Laguerre-Voronoi tessellation. For each type of geometry four
values of pore per inch (PPI) have been considered, namely PPI = {10,20,30,45},
and five values of porosity ε , namely ε = {0.77,0.79,0.85,0.89,0.95}, for a total of
20 cases.

The Kelvin’s Cell geometry creation is straightforward, since all vertices positions
are permutations of (0,±

√
2/2,±

√
2), resulting in a tetrakaidecahedron with edge

length equal to 1. The connectivity between nodes is simply obtained from observing
the figure and the edges are calculated as the vectors linking vertices. In the case
of foams generated by random tessellation, the geometry aims instead to represent
a small cubic portion belonging to the bulk of the real structure. First the random
sphere packing is generated using the code Bsand, as reported in the previous section.
In order to assure independence from any wall effects due to the container, a very
large packing is generated with up to 6000 grains packed inside a cubic container
with side dimension equal to 15 times the average grain diameter µS. This procedure,
despite computationally burdensome, ensures random disposition of the spheres in
the bulk part of the packing, whose resulting distance from the container walls is
around 4 to 5 times mean grain diameters, as reported in [34] and also ensure that
the most inner part, which is the one from which the random seed are extracted, has
dimension at least equivalent to five mean grain diameter. More details regarding the
dimension of this part is given in Section 3.2.1 where the REV grid independence
study is described.



34 A Simplified Approach To Open-cell Foams Modelling

(a) Packed spheres (b) Resulting foam

Fig. 3.2 Example of the two main steps in the creation of a foam REV. In (a) it is reported
the original random sphere packing. In (b) the resulting open-cell foam, obtained with a
periodic Laguerre-Voronoi algorithm, is reported overlapped to its generating sphere packing.
Larger spheres have a larger area of influence, hence their resulting "cells" are much larger.

In the case of mono-disperse sphere packings, the grains are constituted by
spheres with unitary diameter. In the case of poly-disperse packing, two different
instances have been generated with same mean sphere volume E(V ), which is equal
to the volume of sphere with unitary diameter, and two values of the coefficient
of variation CV (V ), namely 0.2 and 0.35. Once the packings are generated, the
coordinates and dimensions of the spheres are used to calculate the tessellation over
a small cubic portion at the core of the volume. The two steps of this procedure are
visualized in Fig. 3.2.

The dimension of this portion and its choice would be discussed in details in the
next Section. The output of the code is a collection of all the cell edges and nodes, in
the form of point coordinates in space. The information regarding nodes and edges
position and orientation are passed to Blender, via a Python script, which places
cylinders and spheres in to reproduce struts and vertices. In order to achieve the
chosen pore density (PPI), the geometry file is scaled down, either using Blender or
OpenFOAM, by a factor calculated as follow:

fscale =

(0.0254
PPI

)
Dtess,mean

(3.1)
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where the numerator is the pore size (in meters) of a foam having a certain PPI and
the denominator is the mean cell size of the tessellation, calculated as the diameter
of sphere having the same volume as the average cell. The strut diameter is chosen
so as to reach the desired foam porosity, which is calculated from the computational
volume mesh generated by OpenFOAM. By a trial-and-error procedure, a correlation
between the strut dimension and the porosity ε has been derived.

3.1.2 Mesh generation

Once the foam geometry is generated it is exported in .stl format. An .stl file describe
a solid volume by means of its surface, which is discretized by a triangulated mesh.
This type of file formatting, being supported by a wide range of CAD/CAE software,
is very common and portable. It is also the format of choice to define geometries
to be meshed in OpenFOAM. The geometry exported from Blender represents the
solid fraction of the domain, whereas the void/fluid fraction in-between is the part
to be meshed by OpenFOAM. The meshing procedure is carried out in two main
steps: first a background structured hexahedral mesh is generated by the OpenFOAM
utility blockMesh. This hexahedral mesh is used as a starting point to build a
body-fitted grid generated bythe utility snappyHexMesh, also part of the OpenFOAM
suite. The computational grids created in this manner are predominantly constituted
by hexahedral cells, ensuring good numerical performance for the solver, and are
then subsequently refined close to the solid walls, resulting in cells of increasing
dimension moving farther away from the walls, towards the bulk of the fluid. This
allows to have a large number of small cells in the areas where gradients are higher,
whereas in the bulk of the fluid, where stresses are lower, the cell density is lower,
thus reducing the total computational cost. The mesh generation process and the
choice of optimal parameters are crucial steps in order to obtain a grid independent
solution and an accurate representation of the original geometry. The strategy to
achieve an accurate computational grid is to compromise between small initial
background cells dimension, the refinement level and the amount of cells in each
refinement layer. This is particularly true for geometrical structures such as open-cell
foams, which have a void fraction ranging from 70% to well beyond 90%, meaning
that a very large amount of cell is required to properly describe the fluid motion
within the foam pores. In order to achieve solution grid independence, the mesh
was progressively refined, both by decreasing the background cell dimension and
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increasing the refinement level on the solid surface. The comparison between the
different meshes is carried out by confronting the values of porosity obtained as well
as the solution of the flow field. For this work it has been determined that the optimal
number of background cells per pore diameter of around 22, the best refinement
level value is R = 2, with 4 consecutive layers of refined cells from the solid surface.
The details of the grid independence work would be shown in the next section.

3.1.3 Fluid flow simulations

As previously mentioned, the numerical simulations were carried out using the
open-source CFD code OpenFOAM 7. The computational domain used in all the
simulations carried out for this work has cubic shape with side L, with the origin of
the axis at its center, with the diagonal vertices respectively xmin, ymin, zmin =−L/2
and xmax, ymax, zmax = L/2. The flow field is initialized by setting a fixed pressure
difference ∆P/ρ in x-normal direction between the inlet and the outlet patches of the
domain, which are x-normal surfaces with coordinates respectively xinlet = −L/2
and xoutlet = L/2. The value of L is equal to the linear dimension of the REV (defined
as a cubic volume), which in the case of the Kelvin Cell coincide with the cell itself,
whereas for the random foam was determined with a study which is thoroughly
explained in the next section. This allows to have a fully developed flow field inside
a small computational domain; although in this set-up there is no a-priori knowledge
of the characteristic velocity of the system (and thus of the Reynolds number), it can
be estimated using equation (2.5). A no-slip condition for the velocity U is applied
at the solid surface of the foam, a condition of zero gradient at the outlet patch,
whereas at the remaining sides of the domain a symmetry boundary conditions is
applied, implying no fluid motion across those. The Newtonian incompressible fluid
here considered is water, with density ρ = 997.78 kg m−3, kinematic viscosity µ =
9.77 × 10−4 kg m−1s−1. The system is solved using the solver simpleFoam, at a
constant temperature T = 293K (the energy equation was not solved) in steady-state
condition, under laminar flow regime (1 · 10−4 < Re < 1 · 10−3). The Reynolds
number for this work is defined as Re =U ·Dpore/ν , with Dpore being the mean pore
diameter of the foam, defined as the diameter of a sphere having the same volume as
the mean pore.
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3.1.4 Scalar transport simulations

The results of the momentum transport simulations have been used for the mass
transfer simulations solving Eq. (2.9), using the same mesh. Five different operating
conditions, for each combination of pore density and porosity, have been explored,
changing the Pe number, namely Pe =

{
5,5

√
10,50,50

√
10,500

}
, which was used

to estimate the value of the diffusivity D from:

D =
UDpore

Pe
(3.2)

The system is solved at constant temperature, in steady-state condition using
the solver scalarTransportFoam. The colloidal particles are represented by a
scalar, acting as the normalized concentration, with an inlet value C0 set equal to 1, a
condition of zero gradientat the outlet patch and at the remaining sides of the domain
a symmetry boundary condition is applied. On the solid walls a Dirichlet boundary
condition, with a normalized concentration with a fixed value Cwalls equal to 0, was
imposed. The effective deposition rate coefficient Kd is estimated by the solver from
the fluxes on the solid surfaces, using Eq. (2.29).

3.2 Results and discussion

3.2.1 Grid independence study

The meshing procedure used during all the simulation campaign was presented in
section 3.1.2. The first goal of this study was to determine the optimal meshing
strategy by tuning two parameters: the number of the starting blockMesh background
cells and the level of refinement R performed by snappyHexMesh on the cells close
to the solid surface.

In order to reduce the computational cost of such investigation, it was chosen to
perform these simulations on the simplified Kelvin’s Cell model, which is a single-
pore periodic geometry. The values of the subdivision of the initial bounding box
considered were Cbackground = {10,12,15,17,20,25,30,35,45,55,75,85} and the
values of the refinement level taken into account were R = {0,1,2}. The grid inde-
pendence study, whose results are reported in Fig. 3.3 show the calculated value for
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Fig. 3.3 Values of calculated permeability with increasing overall mesh refinements ex-
pressed as number of background cells per equivalent pore diameter. Curves with different
lines represent three different levels of mesh refinement close to the foam walls (R=0 means
no refinement, R=2 means two subsequent refinements).

the permeability k as a function of the blockMesh background cells number. For val-
ues of the refinement parameter R> 1 and for more than 25 background cells/pore the
permeability reaches an asymptotic value. The best performance overall is achieved
with R=2 because of the inferior wall-clock time for the solution to converge, in-
dicating that a good trade off between accuracy and computational time could be
achieved, with a number of subdivision ranging of 22. An additional grid indepen-
dence investigation at different porosity values, ε = {0.77,0.79,0.85,0.89,0.95}
and R = 2, was carried out to ensure that the accuracy of the solution, previously
calculated, remained in the same range of error varying the porosity. Fig. 3.4, re-
porting the relative error with respect to the asymptotic value of the permeability,
er = |kas − k|/kas, illustrate how the error lies below 2% except for the highest value
of porosity (ε = 95%), where it slightly depart from the other curves.

The results previously obtained were used to tune the meshing procedure for
the randomly generated geometries. In particular, the aim was to determine the
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Fig. 3.4 The relative error of the permeability er, for increasing overall mesh refinements,
again expressed as number of background cells per equivalent pore diameter. Curves with
different colors represent five different values of porosity ε = {77,79,85,89,95}

dimensions of the Representative Elementary Volume (REV), in terms of the number
of foam pores contained. Flow field simulations were run on increasingly larger
cubic portion of the same monodisperse foam, with sides respectively equal to the
length of 2, 3, 4 and 5 pore diameters. The values of porosity ε , superficial porosity
εs and permeability k were considered in order to determine the optimal size of the
computational domain. Following the meshing strategy exposed above, to generate
the computational grid were used 20 mesh-cells per pore and R = 2, while the
simulations were run at Re = 1e−03, in steady-state condition.

The results are reported in Tab. 3.1. Considering the rapidly increasing compu-
tational costs and the small incremental geometrical differences between the two
bigger computational domains, the choice was made to consider a cubic foam portion
whose side equals four equivalent pore diameters to be a representative elementary
volume for the cases considered in this work.
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Pores/side ε εs k (m2) er,k (%) Mesh Cells
2 0.900 0.878 3.24×10−9 3.73 8.7×105

3 0.908 0.903 3.53×10−9 5.01 2.8×106

4 0.902 0.917 3.32×10−9 1.26 6.7×106

5 0.905 0.893 3.36×10−9 0.00 1.3×107

Table 3.1 The results of computational domain dimension study carried out increasing
progressively the dimensions of the computational domain. Along with the number of mesh
cells, the table reports the calculated values for the porosity ε , the superficial porosity εs,
permeability k and the error er,k with respect to the most accurate case (5 pores/side)

Finally, a grid independence study was also carried out for the scalar transport
cases. The value used to compare the results was the scalar total flux, defined as
Ftot = F in

tot −Fout
tot . These simulations were run, again, on the Kelvin’s Cell geometry,

considering the same range of subdivision Cbackground as previously mentioned, with
a refinement level R = 2. The operating condition used were Re = 1e−03, Pe = 50,
in steady-state conditions. The simulations were carried out for a high value of
porosity, ε = 0.89,in order to account for effects on the colloidal deposition due to
the great void fraction of the system. The plot in Fig. 3.5 show the error relative to
the asymptotic value, er,F = |Fas

tot −Ftot |/Fas
tot , as parameter for comparison between

the different meshes, in analogy to the momentum transport study.

The results showed that 20 cells per pore were an adequate trade off to describe
scalar transport phenomena, with an error with respect to the asymptotic value
er ≈ 1%. Therefore, for grid independent simulations on a computational domain
representing a REV for the considered foams, this would results in meshes size of
approximately eight to nine million cells.

3.2.2 Numerical analysis

An example of the flow field simulations is reported in Fig. 3.6 for the case of 30
PPI and porosity ε = 85%. The results for the permeability k, reported in Fig. 3.8,
confirm the fact that the higher the porosity, the higher the permeability, which
instead decreases rapidly with increasing PPI. Moreover the histogram show how
the poly-disperse cases systematically present a higher permeability with respect to
more ideal cases such as Kelvin’s Cell or mono-disperse foams.
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Fig. 3.5 The relative error of the total flux Ftot , er, for increasing overall mesh refinements.

A global overview of the simulations and geometry is illustrated in Fig. 3.7 where
there are reported and example of scalartTransportFoam solution together with
foam solid structure.

From the scalar transport simulations a macroscopic measure of the filtration
efficiency can be obtained. An example of the solution of the simulations is reported
in the contour plot of Fig. 3.9 for the case of 30 PPI and porosity ε = 85%. Fig. 3.10
shows the relationship between the advective Damköhler number Da, defined in
Eq. (2.30), as a function of the Péclet number.

In particular, Da number is reported for the all values of PPI (10, 20, 30, 45) as
well as for different geometrical models. However, it can be noticed that keeping
constant the Pe value and the geometry model, the Da values for different PPI
collapse to the same point. This comes from the fact that the Damköhler number
normalizes the deposition rate with respect to the dimension of the computational
domain and that in laminar regime these cases are proportionally scaled. Globally,
at increasing Pe number, the quantity of colloids impacting on the solid surface
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(a) z-normal slicing plane location

(b) KC (c) MONO

(d) CV = 0.2 (e) CV = 0.35

Fig. 3.6 Contour plots of the velocity magnitude U (m/s) for the four different geometrical
models (30 PPI and ε = 85%). In (a) an exemplification of the computational domain is
reported in order to show the location of the z-normal slicing plane (at coordinate z = 0)
used to extract the following contours: (b) Kelvin’s Cell, (c) mono-disperse Voronoi, (d)
poly-disperse Voronoi-Laguerre with CV = 0.2, (e) poly-disperse Voronoi-Laguerre with CV
= 0.35
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(a) KC (b) Voronoi-Laguerre

Fig. 3.7 Contour plots of normalized concentration C for foams with 30 PPI and ε = 95%:
(a) Kelvin’s Cell, (b) poly-disperse Voronoi-Laguerre with CV = 0.35. The slicing plane is at
x = 0

of the foam decreases following a power law, which was expected to some extent,
considering the results of previous studies [1] on Brownian clean-bed filtration. At
Pe > 100, the difference between the different geometrical models is very small.
This comes from the fact that the corresponding colloidal particle size is closer to
the micrometer and and the molecular diffusion coefficient becomes very small. At
lower Pe number the difference between the four different model is not negligible
and it should be investigated further. A new coefficient, CKC = DaKC/DaVOR, the
ratio between the Damköhler number obtained from the Kelvin’s cell model and
the ones derived from Voronoi tessellations, was introduced to more easily explore
the effect of foam randomness specifically and also investigate the relationship with
macro-scale parameters such as porosity ε , specific surface SV and tortuosity τ . The
latter defined as in Eq. (3.3):

τ =

∫
|U|dx∫
Uxdx

(3.3)

where U is the local velocity vector and Ux is the local velocity component along
the main flow direction ([70, 71]). The values of τ are reported in Fig. 3.13, which
show how for such materials with very high void fraction and for the operating
condition chosen, i.e. very low values of Re, the tortuosity depart slightly from unity.

A first approach was to try to interpret CKC (which, for clarity, we remind the
reader, it describes a particle deposition efficiency by means of a Damköler number)
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Fig. 3.8 Permeability k vs. porosity, with each subplot representing the results for the
four different values of PPI. Different colors represent a different geometry: Kelvin’s Cell,
mono-disperse Voronoi and poly-disperse Voronoi-Laguerre foams with different coefficient
of variation. For an effective interpretation of this bar plot, the reader is advised to refer to
the color version of this paper available online

according to well known constitutive equations as function of the porosity, developed
for fluid motion across solid obstacles, namely Happel [56] for spherical collectors
and Kuwabara [58] for cylindrical collectors 1. The results of CKC, as a function
of Pe number, were normalized by the values of the cited functions, which depend
on porosity. The results were then fitted according to a power law, in the form
f (ε,Pe) = a ·Peb. This was done to ascertain if these sole available relationships,
which are capable of exactly predicting the impact of porosity on particle deposition

1The two cited seminal papers, together with [50] mainly explored the fluid dynamic structure of
flow past different arrangements of collectors. For the reader specifically interested in the evolution
of different approaches in obtaining constitutive equations for particle deposition efficiency by
implementing different simplified geometrical models, we point out to (among others): the already
cited [1], then [52], [53], [54], [72], and [35]
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(a) z-normal slicing plane location

(b) KC (c) MONO

(d) CV = 0.2 (e) CV = 0.35

Fig. 3.9 Contour plots of the normalized concentration C for the four different geometrical
models (30 PPI and ε = 85%) In (a) an exemplification of the computational domain is
reported in order to show the location of the z-normal slicing plane (at coordinate z = 0)
used to extract the following contours: (b) Kelvin’s Cell, (c) mono-disperse Voronoi, (d)
poly-disperse Voronoi-Laguerre with CV = 0.2, (e) poly-disperse Voronoi-Laguerre with CV
= 0.35
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Fig. 3.10 Particle deposition efficiency, as Da at constant porosity (ε = 0.85) for the four
different geometries showing a power-law relationship between the Damköhler number and
the Péclet number.

for simplified geometries, can be used effectively for catalytic foams. However, this
strategy didn’t bring out any significant relationship, since the global relative error,
calculated as the sum of the mean squared relative errors of the data with respect to
the fitting at each Pe value, showed values well over 100%: for reference, if these
correlations were able to perfectly describe the influence of porosity on particle
deposition, the normalized results would collapse in a single Da-Pe power-law curve,
reducing the error to zero. The underperformance of these analytical correlations
was already highlighted by Boccardo et al. [32] and while it was also expected in
those cases (porous foams composed of cylindrical struts) for the "Happel" model
(developed for spheres arrangements), a better performance could be expected
of the models based on the "Kuwabara" correlation (developed for arrangements
of cylinders). Then, abandoning analytical but simplified correlations, a second
approach was attempted trying to normalize the CKC coefficient by adimensional
numbers, i.e. ε , SV and τ , all raised to the power of n, with the latter varying in the
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Fig. 3.11 This figure highlights the effect of the porosity on the deposition efficiency: the
rate of deposition decrease for the foam with higher porosity, regardless of the geometrical
model.

range [−10;10]. Once again the results were fitted according to a power law model
and the global error was calculated. Even so, no significant relationship could be
obtained. A more detailed description of this analysis, along with the correlated plots
can be found in the Supporting Information available in Appendix A. Therefore, the
results show how this kind of (usually employed) macroscopic geometric features
are insufficient in explaining the variations in filtration performance, highlighting
the need for more detailed exploration using pore-scale simulations, the objective
for which this workflow was developed. Moreoever, as it is shown by Boccardo
et al. [35] , the external boundary fluxes estimation have an important effect in
the definition of effective parameters. In future works, more rigorous and precise
definitions of the effective parameters will be considered (based for example on



48 A Simplified Approach To Open-cell Foams Modelling

Fig. 3.12 The Kelvin’s Cell coefficient CKC, as function of Pe, for the poly-disperse case:
this geometry was generated from a sphere packing with a normal distribution of the mean
sphere diameter and coefficient of variation CV = 0.35. The trend line of the data set and its
global error are also reported.

[73]), studying more deeply the effect of the inlet (advective and diffusive) fluxes,
and the asymptotic and pre-asymptotic flow and mass transfer upscaled regimes.

3.3 Conclusions

This work shows the features of an open-source workflow which is able to generate
and characterize open-cell solid foams. This in-silico tool, developed with computer
graphics software Blender and Python language scripting, gives the opportunity
to use different models with growing complexity in terms of pore size distribution.
The choice of models ranges from the ideal periodic Kelvin’s cell to random foams
generated with random weighted Voronoi tessellations and poly-disperse pore size
distributions. These features give the user the possibility to use this tool to investigate
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Fig. 3.13 Tortuosity, calculated with Eq. (3.3): each series of colored points is the value of
τ calculated at different porosity ε for the four geometrical models (Kelvin’s Cell, mono-
disperse Voronoi, poly-disperse Voronoi-Laguerre with two different coefficient of variation.

several different morphologies and eventually optimize them, while the computa-
tional costs remain low. The geometries thus created have been used to perform CFD
simulations, using the open-source code OpenFOAM, and later, as a test case, the event
of an instantaneous superficial reaction/superficial deposition of colloidal particles,
occurring on the solid surface, has also been investigated. The results obtained in this
work by employing these models highlight that the macroscopic parameters, such as
porosity, specific surface, or tortuosity alone are not enough to derive macroscopic
relations to describe the particle deposition during early filtration; neither by using
available and widely used (albeit simplified) analytical correlations, nor by develop-
ing new simple bespoke correlations based on these geometrical parameters. Thus,
while we consider the value of the presented workflow to lie in the capacity for users
to create numerical analysis campaigns at a limited cost, in particular decreasing
the overhead of the foam modeling, the study of the different geometrical models
and their performance in terms of colloidal particles deposition is conceived as an
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example of the exploration capabilities of this workflow which we choose to limit
to the work here presented. Future perspectives on this topic are then to further
improve the understanding of the transport phenomena occurring inside these foams,
by exploring in-silico a wider number of cases and especially by better discerning
the geometrical peculiarities of each - beyond simple, and oft-used, descriptors like
porosity or tortuosity. This motivates the choice of making the source code of this
simulation platform, as well as the test cases for the simulations here presented,
public and available to the community of researchers and practitioners, in order both
to expand the technical capabilities of the workflow and increase the simulation data,
which will prove invaluable in gaining a full understanding for these systems.



Chapter 4

An Improved Workflow For
Open-Cell Foams Modelling

The aim of this Chapter is to present an innovative workflow, based on Python
programming language and the signal and image processing software PlugIm!
(https://plugim.fr/) to generate open-cell foam geometries using an improved version
of the procedure presented in Chapter 3 and published in [3].

This improved workflow is able to reproduce a great variety of structures, like
ceramic and metallic foams, and directly characterize them from the point of view
of common macroscopic descriptors used for porous media, namely porosity ε ,
specific surface SV and tortuosity τ . This innovative workflow makes use of a
different approach for the creation of the initial seeds of the tessellation, namely
the aggregation of spheres using a stochastic procedure proposed by Moreaud et
al. [62]. Once the basic foam skeleton is calculated, the solid faction is modified
using morphological operations, which results in realistic open-cell foam structures.
This linking of a parametrizable procedure for the initial disposition of the spheres
(hence, the foam cells) and controllable morphological operations results in a very
flexible tool which gives the user the capability to represent a wide variety of open-
cell foams geometries, in a format ready for use in subsequent fluid simulation
software.

Moreover, the three-dimensional geometries thus obtained are validated from
the geometric point of view as well as from a fluid dynamic point of view: both
their geometric features and their transport properties are proven to be realistic.
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Pressure drops calculated from the numerically solved flow field using the CFD codes
OpenFOAM and Ansys Fluent are compared to those obtained from experimental
measurements carried out on a set of two ceramic Al2O3 foams and two metallic
NiCr ones. Additionally, CFD simulations are carried out using the reconstructed
three-dimensional geometries of the experimental foam samples, obtained using the
X-ray tomography technique.

4.1 Experimental and numerical details

4.1.1 Experimental set-up

Measurements of pressure drops were carried out on a vertical custom-built column
packed with foam pellets in which distilled water was circulated. All the foams
pellets were of cylindrical shape, having diameter equal to 44 mm and depth equal
to 19 mm. The pellets were fitted co-axially inside a thermoplastic polymeric pipe,
with length equal to 60 cm. This pipe was then heated in order to make it closely
adhere to the pellets shapes and thus avoid any possible lateral flow bypassing the
foam packing. This pipe was then fitted into a rigid polymeric pipe, with diameter
equal to 6 cm and length equal to 70 cm, supported by two rubber gaskets which
separated the packed column from the external pipe. The reason for this arrangement
is to provide a buffer zone in both the inlet and the outlet of the packed pipe where
pressure drops probes could be placed.

The custom-built column was connected to a water tank and a volumetric pump
using 1/4 inch plastic pipe and the water flow-rate was adjusted using a needle valve.
The differential pressure measurements were carried out by a differential pressure
gauge connected to the inlet and outlet buffer zones of the packed column. The
measuring device model is EMERSON with a working range of 0 - 620 mbar or 0 -
4 bar. Measurements in the range 5 - 60 mbar have a confidence interval of ± 1.1
mbar whereas measurements between 50 and 1000 mbar have a confidence interval
of ± 4.9 mbar. A schematic representation of the experimental set-up is reported in
Fig.4.1.
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(a) PFD diagram (b) A detailed view of the packed column

Fig. 4.1 The experimental set-up of the experimental measurements of the pressure drops
across a foam packed column are here reported. When heated the pipe adhere firmly on the
outer foam pellets surface, avoiding any lateral bypass. The packed pipe is then fitted inside
a larger poly-carbonate pipe, thanks to a custom printed rubber gasket (represented in black
in 4.1b).

4.1.2 Real foam samples details

For this work four different open-cell foams were investigated, two ceramic Alumina
foams (Al2O3), respectively 20 and 40 PPI, and two metallic Nickel-Chrome foams
(NiCr) respectively 14 and 30 PPI. For the latter the manufacturer provided an
approximate measure of the specific surface and porosity, whereas for the ceramic
foams no geometrical details were available.

In order to get a more rigorous description of the geometric parameters, the
foam micro structure was obtained using the X-ray tomography technique. The
stacked grey-scale TIFF images were segmented into binary ones using the Otsu
thresholding method [74]. The binary images can be then easily exported into three-
dimensional array in Python and used to perform micro-scale analysis to extract the
size distribution respectively for the foam cells, windows and struts diameters (dC,
dW , dS), as well as calculate the porosity, the specific surface and the Representative
Elementary Volume (REV) and the geometric tortuosity. To perform these analysis
two main tools were used: the already cited free-software Plug Im! and the Python
module PoreSpy [75] and the open-source software Paraview [76].

These softwares have a large library of functions and algorithms that are essential
in the analysis of binary images of porous media. Images were first pre-processed
using the flowing bilateral filter [77], available in Plug Im!, which reduces the
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noise due to X-ray scattering on the solid surface of the foams, especially in the
case of the metal ones, homogenizing the color intensity of the solid areas, allowing
more precise void/solid threshold definition. Once the image is segmented and
imported in a Python environment as a 3D binary array, in which the value 0 was
arbitrarily assigned to the solid fraction and 1 to the void fraction, the porosity is
easily computed as the mean value of the whole array. In some cases, the foams
samples present solid structure with inner voids, due to the destruction of the original
polymer foam during the manufacturing process. These internal voids must be filled
otherwise they will unphysically increase the values of ε and SV : while these zones
are in fact void, they are not available to the fluid flow and as such are effectiely to
be counted together with the solid zone. This is easily achievable since most of the
codes used provide an hole-removing function which fills all void areas not directly
connected to the edges of the array.

The REV can be computed by sampling the porosity of a n cubic sub-array of
random size across the whole matrix, using a PoreSpy function which implements
a method proposed by Bachmat et al. [78]. Within the same environment, the
pore-network of the foam can be extracted using a method proposed by Gostick
et al. [79]: this operation subdivide the overall geometries in sub-regions which
represents the macro-pores, corresponding the the foam cells, and throat connecting
these sub-regions, which correspond to the foam windows. The algorithm calculates
the equivalent diameter of each of such pores and throats. The same calculation can
be performed on the inverted image to obtain a size distribution on the solid fraction,
from which the struts size-distribution can be calculated.

The geometric tortuosity of the structures, defined as the ratio between the
geodesic and euclidean distance between two random points τ = δgeod/δEucl , was
estimated using the Plug Im! function Graph-based Tortuosity [80, 81], which after
calculating the pore-network of the geometry, with an analogous operation as the one
performed by PoreSpy, used the pores centers as nodes of a discrete graph and their
connections as edges. Considering a couple of random nodes in the void fraction
of the volume, the geodesic distance δgeod is the sum of the graph edges connecting
the two nodes. Finally, the specific surface can be calculated by extracting the solid
surface applying the Marching Cubes algorithm and then computing the solid surface
of the foam, divided by the sample volume. A synthesis of the properties of the
investigated foams is reported in Tab. 4.1.
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Foam label NiCr14 NiCr30 Al2O320 Al2O340

Material NiCr NiCr Al2O3 Al2O3

PPI
14 30

20 40
11−17 (mfr.) 27−33 (mfr.)

ε (%)
91.9 (Tomo X) 92.1 (Tomo X)

75.9 75.7
92 (mfr.) 92.2 (mfr.)

SV (m2 / m3)
1054 (Tomo X) 3091 (Tomo X)

852 1715
1000 (mfr.) 2800 (mfr.)

τ (–) 1.24 1.22 1.2 1.17
Sample size (mm) 16.9 9.0 19.3 19.3

dC (mm) 2.4 0.79 3.3 1.8
dh (mm) 3.5 1.2 3.6 1.8
dW (mm) 0.95 0.37 1.8 0.92
dS (mm) 0.4 0.25 1.95 0.55

Tomo X sampling
(voxels/µm) 24 16.9 50 50

Table 4.1 The physical and macroscopic properties of the foam samples used in this work.
For both the metallic NiCr foams the values of PPI, ε and SV are reported as nominally
declared by the manufacturer and as measured from the X-ray tomography images analysis.
For the ceramic foams only the values obtained from the image analysis were available. The
values of dC, dW and dS represent the average value calculated from the size distributions
obtained by performing pore-network analysis using the PoreSpy software.
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4.1.3 Foam generation workflow

The generation of digital replicas of the examined open-cell foams is carried out
using a procedure already delineated in Chapter 3, but here heavily updated in order
to achieve a realistic representation of the foam structure at the pore-scale. The
procedure can be summarized as follows: first a set of spherical objects is packed
inside a confined space. Afterwards, the positions of these spheres are retrieved
and used as starting seeds for the computation of a Voronoi tessellation, which
subdivides the space of the initial box into cells around the initial spheres. Then,
spheres are placed at the nodes of the tessellation and cylinders at its corresponding
edges connecting two nodes, thus generating a foam skeleton, with a ball-and-sticks
model. Finally, the initial skeleton is modified to achieve the more realistic features
that characterize an open-cell foam.

The novelty of this workflow resides in the fact that all the geometric proce-
dures, i.e. the first, third and fourth steps, are carried out in voxelized binary
three-dimensional volume, which allows for fast and powerful computations over
solid binary volumes, compared to other methods which works over the solid surface
[3], or the software Surface Evolver [31]. Moreover, there is a great deal of user
freedom in the use of this tool, as these steps are extensively parametrizable, resulting
in deep control on the obtained structures geometry and features.

The workflow to generate geometries as described above, makes use of Python
scripting and, most importantly, several modules of the free software Plug Im!
[82], which is used for the initial spheres generation procedure and the binary
geometry manipulation. The theoretical background and the equations involved in the
generation of digital foam models, namely the Voronoi algorithm, the morphological
operators and the spheres aggregation process are reported in Section 2.3.2, as well
as the procedure for the processing of tomography images to obtain reconstructed
three-dimensional real foam geometries.

From the analysis on the pore network of the foams samples studied in this work,
carried out using the PoreSpy, useful information can be extracted for the generation
of digital replicas of the structures in exam. In particular, it is possible to define
the dual structure of a foam, namely the foam pores’ equivalent spheres packing,
composed by the largest spheres fitting inside the foam cells and having their same
volume. From this dual entity two key properties are identified: the dual packing
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LBox V = LBox
3 Vsph ≈ 0.3VBox

VGrainCsph

Rsph Ntot,sph

Repulmean

α,β

Sphere packing

Fig. 4.2 This flowchart describes the strategy used to derive the values of the number of
spheres NTot,Sph, their radius RSph and the repulsion, Repulmean used as input parameters for
the sphere aggregation process. Given an initial box dimension, a sphere concentration CSph
it is possible to obtain retrieve the number of spheres and their radii to be aggregated. The
repulsion and the concentrations are, in turns, calculated from the analysis of the tomography
images of the foam sample in exam. The compactness parameters of the aggregate, α and β

can be taken arbitrarily to satisfy the sphere concentration constraints.

porosity εdual , defined as the ratio between the void fraction of the packing and the
volume of the containing bounding box, and the spheres concentration Csph,dual ,
defined as the ratio between the total number of spheres and the volume of the
bounding box, the latter expressed in cubic voxels. An important result is the fact
that independently of the foam sample the value of εdual ≈ 0.3, which is is a typical
value for a very dense sphere packing where the spheres may overlap.

The information extracted from real foams equivalent sphere distribution were
used to obtain the spheres aggregate that could then be used to generate in-silico
structures to replicate the original foams. A flowchart representing the calculation of
the parameters needed for the sphere aggregation process is reported in Fig.4.2. The
volume of a single grain in the aggregation step is obtained with the hypothesis of
representing roughly the 30% of the total available volume and complying with the
sphere concentration constraint. This leads to grain radius Rsph and the maximum
number of spheres to be packed. The choice of α , β and the repulsion Repul
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Fig. 4.3 The foam generation workflow graphical representation: a sphere aggregate is
obtained using plugIm!(step 1) as the seeds of the tessellation. Voronoi algorithm is
computed and edges and nodes of the cells are extracted. A three-dimensional voxelized
binary image is created by assigning cylinder and spheres to struts and nodes respectively, to
create a balls & sticks foam skeleton (step 2). The skeleton is modified by a morphological
closing operation (step 3). The final three-dimensional geometry is generated by contouring
the solid surface with the Marching Cubes algorithm, obtaining an .stl file (step 4).
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parameters, introduced in 2.3.3 is not unique, but several combinations of these
aggregation parameters lead to a starting sphere packing compliant with the initial
constraints.

So called aggregation maps, comprising all the possible instances of the random
spheres aggregation process, can be obtained. Each of the positive cases can lead to
a different realization of the random aggregation process, possibly giving geometries
that can vary in topology but having similar macro-descriptors. An examples of
these maps is reported in Fig.4.4. The shape of the admissible areas, marked with an
x symbol, is such that if α increases, namely the probability of a sphere being placed
into a convex zone of the aggregate, β , i.e the probability of the convex location being
closer to the center of mass of the aggregate, decreases. This is actually intuitive,
since the goal of desired aggregate is to distribute sphere as heterogeneously as
possible inside the computational box. The inverse is also true, meaning that higher
β values requires lower values of α . The admissible zone decreases in dimension
for increasing values of repulsion as demonstrated by Fig.4.4b. This aspect was not
investigated further for this work.

Once an aggregate is chosen randomly between all the possible instances, the
spheres centroid are extracted, a Voronoi tessellation is computed and the edges and
nodes of the tessellation are extracted. On a binary voxelized domain, with the same
lateral dimension L as for the initial packing, the nodes are represented by spheres
and the edges by cylinders. This structure is the foams skeleton. The diameters of
these initial shapes are chosen empirically in order to fit the final desired porosity ε .
For metal foams the node-to-edge ratio Rnode/Redge ≤ 2, whereas for ceramic foams
this ratio can be higher than 3. This initial skeleton must be further modified using
a Closing operator (cf. §2.3.5). The dimension of the structuring element for this
operation is also empirically adjusted in order to generate a foams structure whose
macro-descriptor, porosity ε , specific surface SV and tortuosity τ , matches those of
the original foam sample. A graphic representation summarizing the described steps
is reported in Fig. 4.3.

4.1.4 CFD simulations

The solution of Eq. 2.1 and Eq. 2.2 to calculate the flow field inside the foams ge-
ometries is carried out using the CFD numerical simulation software Ansys Fluent
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(a) Compacity map at fixed repulsion

(b) Positive values at varying repulsion

Fig. 4.4 An example of the compacity maps are here reported: The contour plot of Fig.4.4a
represent the sphere concentration parameter CSph relative to the expected parameter for a
given foam as a function of α and β aggregation parameters, at a given value of repulsion.
The coloring indicated how close or distant is a certain realization of sphere aggregates from
the aim CSph value. The values marked with an x symbol represents those instances where
the values was within a 2% error with respect to the target. The second image collects all
the acceptable combination of α and β , varying the repulsion between the spheres of the
aggregate.



4.1 Experimental and numerical details 61

2020 R2 [83], based on the finite volume method, with computational grids gener-
ated using utilities available within the OpenFOAM 7 software. From the obtained
solution the pressure drops per unit length across a foam sample was calculated.
In the first paragraph of this section, a brief description of the computational mesh
generation is reported, while in the second paragraph the simulation set up and the
boundary condition used are described.

Mesh generation Once a foam geometry is created, either deriving from tomo-
graphic images or generated in-silico using the workflow described in section 4.1.3,
it is exported in .stl format. This file format describes the discretized surface of a
solid structure by means of a triangulated mesh and it is also the format of choice to
define geometries to be meshed in OpenFOAM 7.

The void/fluid fraction meshing procedure is carried out in two main steps:
first a background structured hexahedral mesh is generated by the OpenFOAM utility
blockMesh. This hexahedral mesh is used as a starting point to build a body-
fitted grid generated by the utility snappyHexMesh, also part of the OpenFOAM suite.
Given the main flow direction, which is arbitrarily chosen in the x-axis direction, the
blockMesh bounding box has the same dimension of the foam sample in the y- and
z-axis directions, whereas along x, on both inlet and outlet direction, a buffer zone is
considered, amounting to around 5% of the total foam sample length.

The meshing strategy follows the same procedure described in section 3.1.2,
adapted to the larger size of the geometries considered, thus resulting in computa-
tional grids with a number of cells raging between 5 to 7 millions, constituted mainly
by hexahedral cells, ensuring good numerical performance for the solver.

The mesh is more refined closer to the solid walls, while moving farther away
from the solid towards the bulk of the fluid, cells have increasing dimension. Thus,
the resulting computational grid have a larger number of small cells where gradients
are higher, whereas in the bulk of the fluid, where stresses are lower, the cell density
is lower, thus reducing the total computational cost.

Flow field solution Numerical simulations were carried out using the CFD code
Ansys Fluent 2020 R2. The computational domain used in all the simulations
performed for this work has dimensions Lx×Ly,z×Ly,z and is symmetrically centered
at the origin of the axes with the diagonal vertices respectively xmax/min =±Lx/2 and
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ymax/min, zmax/min =±Ly,z/2. Whereas the latter are chosen in order to make the foam
sample completely fit inside the computational box, along the x-axis direction extra
volumes are added on both sides of the foam geometry, to create pre/post-mixing
areas.

The flow field is initialized by setting the inlet velocity equal to the superficial
macroscopic velocity V on the inlet patch, a x-normal surfaces with coordinates
xInlet = −Lx/2. At the outlet, with coordinates xOutlet = Lx/2, a relative gauge
pressure equal to 0 is specified. A no-slip condition for the velocity U is applied
at the solid surface of the foam, whereas at the remaining sides of the domain a
symmetry boundary conditions is applied, implying no fluid motion across those.
The specific dimensions of each foam sample are reported in Tab. 4.1. A schematic
graphical representation of the computational domain is reported in Fig.4.5.

The Newtonian incompressible fluid here considered is water, with density ρ =
997.78 kg m−3, kinematic viscosity µ = 9.77 × 10−4 kg m−1s−1; being the solver
used incompressible these quantities only serve to derive the specific simulation
Reynolds number. The system is solved using the solver SIMPLE, at a constant tem-
perature T = 293K (the energy equation was not solved) in steady-state conditions.
The Reynolds number for this work is defined as Re =U ·Dh/ν , with the hydraulic
diameter of the foam, dh = 4ε/SV , where SV is the ratio between the volume and the
surface of the solid.

The flow is solved with a laminar viscous model for up to Re≤ 150∼ 200, values
over which the flow has too much instabilities for this model and it is necessary to
use a model for turbulence [40]. The turbulent model used for higher Re number
simulations is Realizable κ-ε with a standard wall function.

4.2 Results analysis and discussion

In this section the results of the foam generating workflow are presented, and the
pressure drops calculated using numerical simulations and experimental measure-
ments are compared. The first part will be dedicated to comment the results of the
geometry generation, whereas in the second part the results of pressure drops will be
discussed.
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Inlet Outlet

Foam

Pre-mixing Post-mixing

Fig. 4.5 The figure is a schematic representation of the computational domain and the
boundary condition used: the inlet coincide with the negative x-normal face, followed by
the pre-mixing volume. Conversely, the outlet coincide with the positive x-normal face,
preceded by the post-mixing zone. A no-slip condition is used at the solid walls surface of
the foam.
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4.2.1 Geometrical validation

The workflow presented in section 4.1.3 was used to generate a digital replica of
a sample of the foams used for the pressure drop experiments and tomography
investigation, reported in Table 4.1. The generation parameters were varied in order
to obtain foam structures such that their macroscopic descriptors (ε , SV , τ) will have
a relative error compared to the data extracted from the tomography images, no
greater than 5 to 10 %. The foam samples obtained are then scaled to match the
tomography data in order to perform a comparison. The results of this procedure are
summarized in Table 4.2 and the corresponding input parameters used are reported
in Table 4.3.

The geometries obtained are in good agreement with the original foams: the
relative errors, for each of the target parameters, are well within the acceptability
range. This shows how the generation procedure can be fine tuned to create the
digital foam that replicates the desired descriptors with great accuracy. It should be
noted that each set of the generating parameters reported in Table 4.3 represent one
of the possible sets that can lead to the same result.

As reported in 4.1.3 and shown in Fig.4.4, the values of α , β and Rep are not
unique, so different combinations can lead to foam structures different at the local
scale but with the same macroscopic parameters. The computational cost for each
sample is always very small, approximately 300/400 seconds in single-core runs on
a Windows 7 workstation with a Intel Xeon E5-2620 @ 2.00GHz CPUs on 6 cores
and 48 GB of RAM.

Figure 4.6 and Fig. 4.7 show a graphical comparison between the three-dimensional
reconstructed foams and their digital replica. It is evident that this workflow is able
not only to capture the macroscopic descriptors most commonly used to classify
porous materials, but it also creates a realistic geometry from a qualitative point of
view. Moreover, it can be observed that for the case of the metal foams (NiCr14 and
NiCr30), the struts shows the typical triangular cross-section profile associated with
them. Figure 4.8 compare a local portion of the NiCr14 foam and its replica, the first
obtained from a slice of the tomography, the second from the .TIFF file generated by
the workflow. These images as well as the previous ones show that this phenomenon
tends to be more evident closer to the struts-nodes intersection, rather than at the
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Target foam
ε SV τ er,ε er,SV er,τ

(%) (m2 / m3) (–) (%) (%) (%)

NiCr14 92.5 996 1.17 0.6 3 5.6
NiCr30 92.2 2714 1.17 0.1 4.7 4
Al2O320 75.2 854 1.19 0.9 0.3 0.1
Al2O340 74.3 1737 1.18 2 1 0.9

Table 4.2 The table summarizes the macro-descriptors of the foam digitally generated with
the presented workflow. The error with respect to the original foam samples are also reported.
The relative errors are in all cases within an acceptable 10% error range and below.

Target foam
Sphere aggregation Foam skeleton

Closing morphing
α β R Rep N S tv

NiCr14 0.5 0.45 32 16 10 4 18
NiCr30 0.55 0.95 17 9 5 2 15
Al2O320 0.55 0.75 25 20 11 9 15
Al2O340 0.7 0.7 14 6 7 3 8

Table 4.3 The table reports the input parameters of the workflow used to obtained the final
digitally generated foam replicas. The values of α and β are probabilities (cf. 2.3.3), thus
ranging between 0 and 1, whereas the values for R, Rep, N, S, tv are reported as integer
numbers indicating voxels, since they are referred to the three-dimensional voxel matrix used
within the plugIm! environment to generate and modify geometries (cf. 4.1.3).

very center of the struts, where it conserves the initial circular cross-section given by
the initial skeleton.

The authors deem this a remarkable feature, which is not intended by design, but
is the direct result of the Closing morphological operation, which seems to modify
the solid fraction of the binary image in the same way as the superficial tension
distributes the solid during the creation process of a real foam. This peculiarity
is not present on the ceramic foams replicas (Al2O320 and Al2O340), which have
lower void fractions. These results confirm that the workflow is able to generate
realistic foam structures on different level of quantitative, qualitative, and geometrical
description.
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(a) NiCr 14 PPI Tomography (b) NiCr 14 PPI PlugIm!

(c) NiCr 30 PPI Tomography (d) NiCr 30 PPI PlugIm!

Fig. 4.6 A comparison between the original metallic foam geometries and their replicas:
Fig.4.6a and 4.6b for the NiCr 14 PPI foam and Fig.4.6c and 4.6d for the NiCr 30 PPI foam.
The slender and boen-like structure of the struts and strut-node intersection is well captured
by the generation process thanks to the intrinsic properties of the morphological closing
operation.
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(a) Al2O320 PPI Tomography (b) Al2O320 PPI PlugIm!

(c) Al2O340 PPI Tomography (d) Al2O340 PPI PlugIm!

Fig. 4.7 A comparison between the original ceramic foam geometries and their replicas:
Fig.4.7a and 4.7b for the Al2O320 PPI foam and Fig.4.7c and 4.7d for the Al2O340 PPI foam.
In this comparison can be remarked how the relatively lower solid fraction, around 75%,
lead the morphological operation to the fusion of several close objects, namely cylinders for
struts and spheres for nodes, into a unique feature, just like in real foams. This would be
not possible if defining the single edges and nodes of the tessellations as separate objects, as
done for instance in [3].
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(a) NiCr14 PPI Tomography slice detail (b) NiCr14 PPI PlugIm! slice detail

Fig. 4.8 The figure show a comparison between the details of a slice of the TIFF staked-
images from the NiCr14 tomography and the NiCr14 replica. It is remarkable how the
closing operation, manages, for this highly porous structure, to smear and modify the solid
fraction to the point that the cross-section of the struts and struts-nodes intersection have
a triangular shape, reproducing a feature present only for metal foams, without any pre-
determined shape or parameter.

4.2.2 Pressure drop results

Despite the importance of the notable results obtained from a geometrical point
of view reported in the previous section, these macroscopic descriptors, used as
a validation parameter for the workflow, are a volumetric average measure of the
geometric features of the porous media. Although very important for the charac-
terisation of such materials, they may not be sufficient in describing the transport
phenomena occurring inside the foams at the pore-scale. These phenomena are
strongly influenced by the local heterogeneity of the structure, and as such they may
not be captured by these commonly used descriptors widely used in this field.

Therefore, it is important to investigate and compare the pore-scale fluid flow
inside the foams and the resulting pressure drop. An experimental approach at the
scale of the pores is, in most cases, complex and expensive, because of the need
of set-ups coupling index of refraction and laser-diagnostic techniques [84]. CFD
numerical simulation can be used instead to simulate the pore-scale fluid dynamics
in porous media [3, 34] at reduced costs.
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Average operating conditions for NiCr30, Al2O320 and Al2O340

QL (L/hr) 12.5 25 50 100 200 400 600 800 1000
VL,S (mm/s) 2.3 4.6 9.2 18.4 36.5 73 110 150 180

Average operating conditions for NiCr14

QL (L/hr) 12.5 25 50 100 158 251 350 520 705 850 950
VL,S (mm/s) 2.3 4.6 9.2 18.4 30 46 64 95 129 155 174

Table 4.4 The operating conditions, namely volumetric flow-rate and resulting superficial
macroscopic velocity in the packed column, used for the experimental measurement and to
solve the flow-field using the CFD numerical simulations.

For this work the single-phase flow field of a liquid, i.e. water, is solved across a
foam sample, obtained from x-ray tomography images, using numerical simulation
over a wide range of operating conditions, varying the water flow rate. The pressure
drop per unit length ∆P/L across the sample is also calculated. These results are
compared with differential pressure drop measurement carried out on a column
mono-axially packed with foam pellets using the set-up described in 4.1.1.

Finally, the same set of simulations are carried out using the foam replicas
produced by the workflow described in the previous section and the results are
compared. The simulations were carried out on HPC@POLITO cluster Legion
(https://www.hpc.polito.it/legion_cluster.php) composed by 57 computing nodes of
2x Intel Xeon Scalable Processors Gold 6130 2.10 GHz with 16 cores. The cases
has been solved in parallel mode, using 8 cores per case, resulting in a wall-clock
time per case of around 2 hours with Ansys Fluent 2020R2.

The operating flow rates taken into account for the experiments, later replicated
with the simulations, range between 12.5 and ∼ 1000 L/hr, resulting in superficial
velocities ranging between 2 and 18 mm/sec. The Reynolds number values differ
for each foam, based on their hydraulic diameter dh. Tab. 4.4 report the complete list
of the average values of QL and V used for the experiments.

The results for the ∆P/L, calculated from the experimental measurements and the
simulations, as a function of the Reynolds number, are reported in Fig. 4.9, together
with the values obtained from two common literature correlations developed for
open-cell foams and based on a wide collection of experimental values, proposed by
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(a) NiCr14 PPI (b) NiCr30 PPI

(c) Al2O320 PPI tomo (d) Al2O340 PPI

Fig. 4.9 The figure show the results and comparison of the ∆P/L experimental measurements
and calculations derived from the numerical CFD simulations for the real foam samples,
obtained elaborating X-ray tomography images, and the digital generated geometries using
the workflow proposed in this Chapter.

Inayat et al. [85] or a mix of experiments and CFD results, proposed by Bracconi et
al. [86].

The experimental pressure drop values measured for this work are in agreement
with the those predicted by the correlations, despite a general shift towards higher
values. This is to be attributed to the column set-up that may have created additional
losses not caused by the foam packing itself. Because of the particular arrangement it
was not possible to correctly estimate these additional shifts. The results of the CFD
simulations carried out on the geometries extracted from the tomography images are
in very good agreement with the correlations showing how this method can give an
accurate description of the macro-scale phenomena using simulations over a small
(but representative) sample of foam.
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Finally, also the numerical simulation results obtained from the geometries
generated by the workflow presented in this work show a good agreement with
correlations, simulations on the original samples and experimental results. The only
case where the difference in ∆P/L is greater is for the Al2O320 case, despite the
fact that in terms of geometric structure (i.e. their integral descriptors) this is the
replica showing the smallest error of all. A possible interpretation can be the fact that
despite good agreement in terms of macro-descriptors, the micro-structure is still not
well captured by the the digital twin. Overall, this present foam generation workflow
shows its potential in creating open-cell foams structures replicas, which have good
results in terms of pressure drops prediction, in agreement with different levels of
validation: geometric, experimental, literature correlations and CFD analysis of
tomography data.

4.3 Conclusions

This work proposes an innovative workflow for the generation of cellular porous
material like open-cell foams with different set of morphological features, most often
associated with the foam material. The procedure describing the generation of the
geometries is reported in detail. The generated structures are validated both in terms
of geometric macro-descriptors and micro/macro-scale transport phenomena, in
particular momentum transport. For the latter, pressure drop measurements obtained
through different methods are compared: experimental differential pressure over a
foam pellets packed column, CFD simulation through a real foam sample obtained
from X-ray tomography technique and also on a structure digitally generated making
use of the newly proposed workflow. Moreover, pressure drops correlations from the
recent literature [85, 86] are also used as reference.

The performance of the new workflow is promising: using the right set of input
parameters it is able to generate a digital twin of a target foam sample with a good
level of accuracy in terms of geometric macro-descriptors (ε , SV and τ) of the real
open-cell foam, as well as a good qualitative/graphical reproduction of the features
of such materials, e.g. struts with triangular cross-section of metallic highly porous
foams. Moreover, this digital replica has very good performance in predicting the
pressure drops ∆P/L, calculated by means of numerical CFD simulations, of the real
foam, indication of good accuracy in catching the micro-scale transport phenomena.
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The results of this work show that presented workflow, if correctly tuned, is
flexible and effective in the creation of a digital model of metallic and ceramic
open-cell foams, not only by generating a geometry that accurately capture the target
values of the descriptors often used for the characterization of porous media, porosity,
specific surface and tortuosity, but also from a topological and and morphological
point of view of view. The first step of the workflow, namely the generation of
the initial seeds of the Voronoi tessellation, is attained thanks to a versatile sphere
aggregation process, unlike most of the other works found in literature [3, 25, 26, 28,
87, 88]. This aggregation process, is easily adjustable and leads to a great number of
arrangements, characterized by different values of compactness and heterogeneity,
which can lead to a foam geometry with similar properties. The second step leads
to the creation of the foam final geometry starting from a ball and sticks skeleton,
using a procedure that does not make hard assumption on the micro-structure itself,
as in [20, 25], such as a predetermined surface function describing the axial and
cross-sectional shapes of the struts or nodes of the foams, or their intersection. The
realistic output shapes are owed to the intrinsic properties of the volume modifying
morphological operations used.

The validation of the output geometries of the workflow is important because it
allows the use of such procedure for the creation of new foam structures with a close
resemblance and relationship to real foams. Thus, this workflow uses innovative tools
to create accurate in-silico models for open-cell foams, making use of innovative
tools for the creation of the cellular structure and for the modification of the foam
morphology.

This is achieved at limited computational costs available in any regular laptop
computer. Future perspectives on this topic are then to further improve the under-
standing of how the input parameters influence the output features by exploring a
wider number of cases and especially by better discerning the geometrical peculiari-
ties of each - beyond simple, and oft-used, descriptors like porosity or tortuosity. This
could be also improved with linking the operating conditions used by manufactures to
achieved foams with specific characteristics, with the sphere aggregation procedure
at the beginning of the workflow. This investigation could lead to the formulation of
input-output parameters correlations that would allow the optimization of the foam
structure for different field of applications,e.g. filtration, catalysis or heat transfer.



Chapter 5

A Filtration Industrial Application

The focus of this chapter is on the the phenomena occurring during the filtration
of ferrous particulate, transported by hydrocarbons stream, in granular beds and
open-cell foams. Ferrous particulates are a common impurity carried by hydrocar-
bon streams in the refining industry, that can be detrimental, for instance, to the
performance of catalytic hydro-treatment reactors. Indeed, this solid particulate,
with particles size ranging between 5 and 20 µm, can act as a poison for the catalytic
particles or plug up the reactor bed to the point the head losses are too high and
the the reactor bed must be changed. Therefore the removal of such particles is an
important pre-treatment step to carry out. Granular beds are a common configuration
for a particulate filters in this kind of operations, since they are very efficient in
particle removal. However, the pressure drops associated to such systems tends to
increase exponentially with time, during filtration, due to the formation of a particu-
late cake at the inlet of the device. For this reason, it is interesting to investigate the
filtration performances of ceramic open-cell foams, which may be efficient and at the
same time reduce the head loss showed by granular bed configuration, as they allow
more depth filtration allowing for longer operation time before maintenance. The
open cellular structure of ceramic open-cell foams can be tortuous enough to have
good performances as a filter and simultaneously reduce the total pressure drops
due to the high porosity associated with these materials. The filtration process is
modeled using CFD numerical simulations to solve the momentum equation for
the continuum phase (the liquid hydrocarbon). Then, under the hypothesis of a
dilute system, Lagrangian discrete particle model (DPM) simulations are used to
calculate the trajectories of solid particulate. At first the simulations were carried
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out using classic mono-disperse granular bed configuration, with spherical packed
bed generated in-silico using the DEM software Yade [89], following a procedure
proposed and validated by Marcato et al. [90]. The results of these simulations
are compared with the model proposed by Yao et al. [1], for the filtration of solid
particles carried along by a liquid continuum through granular bed system. The
results showed a good agreement between the model and the CFD/DPM simula-
tions in describing the particle capture phenomena, validating the model. Therefore,
multiple simulations at different operating condition were carried out using ceramic
open-cell foams geometries digitally reconstructed into three-dimensional models
using images obtained from x-ray tomographic sampling (cf. section 2.3.4).

5.1 Operating conditions and numerical details

The system taken into exam for this investigation relies on simplifying hypothesis
that can be assumed in light of the particular operating conditions taken into account:

• the flow regime is not turbulent, meaning that for a system such as a spherical
packed bed or open-cell foams the Reynolds number Re ≤ 150− 200 [40].
This is in accordance with the hypothesis of the filtration model used as
reference;

• the solid particle load is such that the system can be considered in dilute
conditions. This means that, despite the high density of the ferrous particles,
they occupy a negligible volume with respect to the continuum phase;

• particle dimension is mono-dispersed and their average size ranges between
5 and 20 µm. These particles are big enough for the Brownian diffusion
phenomenon of Eq. 2.19 to be negligible compared the other phenomena
driving the deposition of the solid particle on the porous media matrix, i.e.
gravitational deposition and steric interception;

• the attachment rate of the solid particles on the filters walls αD, introduced
in §2.2.3, is unitary, meaning that if a particle impacts on the filtering media
walls it is instantly and irreversibly captured.

The previous hypotheses allow the use of one-way coupling model [49] between
discrete particles and liquid hydrocarbon, implying that the solid particle have no
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influence on the flow field, but are only transported themselves by the fluid, following
the streamlines. Introducing the flow Stokes number St, defined as:

St =
τ0V0

L0
(5.1)

with V0 the superficial macroscopic velocity at long distance from the filter collector,
equivalent to q. L0 is the characteristic length of the solid collector and τ0 is the
relaxation time of the particle transported by the fluid. The latter is defined by
Eq. 2.13.

This dimensionless number indicates the ratio between the characteristic time of a
particle and the fluid in motion. High values of St indicates that particle have high
inertia, and are typical of systems such as solid particles transported by gaseous
stream. In this case, an abrupt change in direction of the fluid is not followed by
the solid particles which have a longer characteristic time and thus continue travel
along their own trajectories. Instead, if the value of St is low and smaller than
unity, the particles are transported by the fluid and have lower inertia. In case of
sudden changes in direction, most of the solid particulates follow the fluid along its
streamlines. For the case in exam, the system fall within the conditions of the latter
case, with St ≪ 0.01 in all the combinations of operating conditions explored. In
light of the hypotheses listed above, the remaining driving deposition mechanisms,
according to Eq. 2.22, are the interception and the gravitational deposition. However,
it was verified, by comparing the values of the single collector ηI and ηG for each
of the operating conditions simulated (cfr. §5.2 and Fig. 5.3), that for the collector
geometries taken into account, the interception mechanisms is negligible compared
to the gravitational one, ηI ≪ ηG. Introducing the solid particle terminal velocity
Up, written as:

Up =
(ρp −ρ)gdp

2

18µ
(5.2)

Eq. 2.22 can be written in normalized form, as reported in by Olson and Martins [6]:

η0 = ηG =
Up

V0 +Up
. (5.3)
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This is the expression used for the analysis of the results of the simulations performed
for this investigation.

5.1.1 Geometries and computational domain

For this work three different ceramic alumina (Al2O3) open-cell foams were em-
ployed, respectively with size 20, 40, and 60 PPI. In order to get a more rigorous
description of the geometric parameters, the foam micro structure was obtained
using the X-ray tomography technique. The method of reconstruction is analogous
to the one described in section 2.3.4 and 4.1.2. Also the method for computing the
tortuosity, i.e. the graph-based tortuosity, is the same introduced in section 4.1.2.

A synthesis of the properties the investigated foams is reported in Tab. 4.1.
The characteristic dimensions reported are referred to the cells, windows, struts,
respectively dC, dW , dS, the hydraulic diameter dh = 4ε/SV and the Sauter diameter
d3,2 = 6(1− ε)/SV . The latter indicates the diameter of an equivalent packing of
spheres having the same porosity and specific surface. Finally, the granular bed
geometry used for this study are generated by the DEM software Yade, using mono-
dispersed spheres, enclosed in a computational box with lateral size equivalent
to 15 unitary diameter spheres (where the box constitutes the bounding limits for
the DEM packing simulations). The packing has a porosity ε = 0.39, specific
surface SV = 3600 m2 m−3 and tortuosity τ = 1.35. The geometry obtained is then
isotropically scaled to obtain beds with grains diameter Dg = {1,2,4} mm.

5.1.2 CFD and DPM simulations

The solution of the Eq.2.1 and Eq.2.2 to calculate the flow field inside the foams
geometries is carried out using the finite-volume CFD numerical simulation software
Ansys Fluent 2021R2, with computational grids generated using utilities available
within the OpenFOAM software. After the flow field is solved, the solution of the
particle trajectories across the foam sample is calculated. The meshing procedure
and the flow field solution are carried out as already reported in sections 4.1.4 and
4.1.4.

The meshing results in computational grids with a number of cells raging between
5 to 7 millions, constituted mainly by hexahedral cells, ensuring good numerical
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Foam label Al2O320 Al2O340 Al2O360

PPI 20 40 60
ε (%) 75.9 75.7 81

SV (m2 / m3) 852 1715 2100
τ (–) 1.2 1.17 1.45

Sample size (mm) 19.3 19.3 16.32
dC (mm) 3.3 1.8 1
dh (mm) 3.6 1.8 1.5
dW (mm) 1.8 0.92 0.54
dS (mm) 1.95 0.55 0.31

d3,2 (mm) 1.7 0.85 0.56
Tomo X sampling

(voxels/µm) 50 50 25.5

Table 5.1 The physical and macroscopic properties of the foam samples used in this work.
For both the metallic NiCr foams the values of PPI, ε and SV are reported as nominally
declared by the manufacturer and as measured from the X-ray tomography images analysis.
For the ceramic foams only the values obtained from the image analysis were available. The
values of dC, dW and dS represent the average value calculated from the sie distributions
obtained by performing pore-network analysis using the PoreSpy software.
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(a) Al2O320PPI tomo (b) Al2O340PPI Tomo

(c) Al2O360PPI Tomo

Fig. 5.1 The ceramic foam geometries used for the present work: respectively Al2O320 PPI,
Al2O340 PPI and Al2O360 PPI. The images here reported are the result of the three-
dimensional reconstruction of the foam structure using the procedure highlighted in section
2.3.4.
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performance for the solver. The mesh is more refined closer to the solid walls, while
moving farther away from the solid towards the bulk of the fluid, cells have increasing
dimension. In accordance with what is reported by Loth [49], in its sistematic review
of coupled Eulerian/Lagrangian simulation for one-way coupling systems, the mesh
cell size is kept well above that of the discrete particle dimension in order to avoid
numeric dependence of the Lagrangian particles trajectory solution. The flow field is
initialized by setting the inlet velocity equal to the superficial macroscopic velocity
V0 on the inlet patch, a x-normal surface with coordinates xinlet = −Lx/2. At the
outlet, a surface with coordinates xoutlet = Lx/2, a relative pressure equal to 0 is
specified. A no-slip condition for the velocity U is applied at the solid surface of the
foam, whereas at the remaining sides of the domain a symmetry boundary condition
is applied, implying no fluid motion across those. The specific dimension of each
foam sample is reported in Tab.5.1. A schematic graphical representation of the
computational domain is the same as reported in reported in Fig. 4.5. The Newtonian
incompressible fluid here considered is n-heptane, with density ρ = 684 kgm−3 ,
kinematic viscosity µ = 3.89 × 10−4 kgm−1 s−1. The system is solved using the
SIMPLE algorithm, at a constant temperature T = 293 K (the energy equation was not
solved) in steady-state condition. Gravity vector is collinear with the inlet velocity
direction, that is normal to the inlet boundary surface, and its magnitude is 9.81
ms−2. The Reynolds number for this work is defined as Re =U ·dh/ν . Specifically,
the choice made in this definition is to use the hydraulic diameter (among all the
otherwise defined diameters mentioned above) as the characteristic length in the
definition of the Reynolds number. The flow is solved with a laminar viscous model
for up to Re ≤ 150 ∼ 200. The inlet velocity values used for the simulations are
V0 = {0.16,0.5,1.6,2.5,5,8,10.5,16,50} mms−1.

Particles trajectories solution The calculation of the particle trajectories is carried
out with the DPM model, present in Ansys Fluent 2021 R2. Solid particulate is
hypothesized to be iron oxide, a common material entrained in refinery hydrocarbons
and poisonous for a variety of catalysts, with density ρp = 5745 kgm−3. Four
mono-dispersed classes of spherical particles are simulated, with diameter dp = {5,
10, 15, 20} µm. The trajectories are calculated for each class of particle size, in
four separate simulations, and for each value of inlet velocity V0, with a total solid
concentration of particles equal to 17 ppm, based on the liquid inlet mass flow-rate.
This values are compatible with common operating conditions found in the refining
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industry and fulfill the hypothesis of a dilute system. The trajectories are calculated
in pseudo steady-state conditions solving Eq.2.12, subsequently and independently to
the flow field equation, thanks to the one-way coupling assumption. An example of
the solution obtained using the methods describe in this section is shown in Fig. 5.2.

5.2 Results analysis

The simulations carried out to obtain the following results were performed on the pri-
vate calculation cluster ENER440, kindly made available by IFP Energies nouvelles,
the industrial partner of this research. The cluster is composed by Intel Skylake
G-6140 processors with 2.3 GHz base frequency, each calculation node equipped
with 2 processors composed by 18 cores and 96 GB of RAM. The simulations are
performed in parallel mode on one calculation node, with an average wall-clock time
per case (flow-field and trajectories solutions) of 120 minutes.

The results obtained from the CFD/DPM simulations are here compared with the
filtration model in terms of global efficiency, that is expressed as ηglob = 1−Cz/C0,
where C0 is the inlet concentration and Cz is the outlet concentration at the boundaries
of the computational domain. The single collector efficiency, expressed as in Eq. 5.3,
is calculated from the operating conditions, that is particulate size dp and superficial
velocity V0. This value is used to calculate the global efficiency from the integration
of the concentration balance of a single spherical collector, written as:

dC
dL

=−3
2
(1− ε)

d
η0αDC (5.4)

Fig. 5.3 shows the value of the ratio ηG/ηI , with ηI =
3
2

(
dp
Dg

)2
and Dg is the charac-

teristic diameter of the porous media related to the deposition phenomenon. This
ratio is calculated over the whole range of operating conditions of the simulations
performed for this investigation. The value of the ratio remains in all cases well
above unity, thus ηG ≫ ηI .

This validates the assumption made in the previous section regarding the primary
driving mechanism in the deposition of the solid particles. Thus, in Eq. 5.5 the only
mechanism taken into account is gravitational deposition. Thus the integral form of
the concentration balance over the whole computational domain is:
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(a) Sphere packing 1 mm

(b) Al2O340 PPI Tomography

Fig. 5.2 The image shows an example of the simulation results obtained with the methods
detailed in this chapter. The first figure displays the particle trajectories on the granular bed
configuration, Dg = 1 mm with V0 = 5 mm/s and dp = 5 µm. The second image analogously
shows the trajectories results for the Al2O340 PPI foam, with V0 = 0.5 mm/s and dp = 5 µm
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Fig. 5.3 The ratio between ηG and ηI is plotted for all the cases taken into account. Because
the ratio remains well above unity, it is safe to assume that the only driving mechanism of
particles deposition is the gravitational one.
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Fig. 5.4 The figure show the plot of the Stokes number St calculated for the solid particles
for all the foam cases simulated. St is always well below unity, implying that the solid
particles move transported by the fluid, following its streamlines and are deposed on the
collectors wall because of the sole gravitational forces.

ln
Cz

C0
=−3

2
(1− ε)ηG

L
d

(5.5)

with unitary attachment rate αD and single collector efficiency as in Eq. 5.3. L is the
domain total length. The global efficiency is:

ηglob = 1− Cz

C0
= 1− exp

(
−3

2
(1− ε)ηG

L
d

)
(5.6)

It must be specified that this balance equation, as reported by Yao [1] and as
later clarified by [53], was based on the solution of the flow field around a regular
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arrangement of spherical collectors, as proposed by Levich [50] and Pfeffer [51].
The results obtained from the simulations performed in the random sphere packing
system can be compared with high accuracy, even if the system has randomly
disposed spheres, as attested by the numerous articles in literature [34, 35, 68]. In
the case of the open-cell foams, this comparison is spurious since there is not a single
constitutive entity that can be used, because of the particular morphology, where
struts, cells and windows are all part of the same solid matrix. It is for this reason
that the open-cell geometries are, for this work, characterized based on the hydraulic
and Sauter diameters, defined in section 5.1.1, which refer to the diameter of spheres
in a packing with equivalent properties to the foams. Therefore this comparison is
nonetheless useful, since Eq. 5.6 contains information regarding the characteristic
length associated to the deposition phenomena, in the form of the single collector
diameter d.

Fig. 5.4 shows the Stokes number of the particles, cfr. Eq. 5.1. The values of St
remains for all the cases taken into account well below 1, meaning that the particle
tends to move in accordance to the streamlines of the fluid, separating only at close
distance to the collectors walls, where they are captured at the surface because of the
gravitational forces.

5.2.1 Filtration in random sphere packings

The results of the CFD simulations of the flow field coupled with Lagrangian DPM
simulation show that the efficiency predicted by the computational model is in
good agreement with the results obtained from the particle deposition model. The
superficial velocities taken into account range between 0.16 and 50 mm/s, the
particle size from 5 to 20 µm, the sphere packing considered have collectors of 1, 2
and 4 mm. The global deposition efficiency for all the cases is reported in Fig. 5.5.
The Yao model prediction results in a single line, since the the L/d ratio in Eq. 5.6
remains constant at increasing spheres diameter, as explained in section 5.1.1 (due
to the different geometries coming from isotropic scale-down procedures from the
original packing created with Yade). . The larger solid particles are more efficiently
captured by the granular bed with respect to the smallest ones, which approach
the 1 µm limit, which according to Yao [1] is the dimension at which the single
collector efficiency, and therefore the global one, are at its minimum. The grain size
influence on ηglob is more pronounced for the smallest particles, whereas for higher
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Fig. 5.5 The results of the CFD/DPM simulations campaign on the granular bed configuration
are reported as colored circles: the blue, yellow and red represent respectively grain with
size 1, 2 and 4 mm.The predictions obtained from the deposition model, the black line, are
overlapped because in Eq. 5.6 the L

d ratio remains constant.

particulate diameters this values are almost coincident. It is also important to stress
how at higher values of superficial velocity V0, the system has more instabilities as
it approaches the turbulent regime, and for this reason the values of 1−Cz/C0 are
higher than those predicted by the model. This indicate that the hypothesis listed in
section 5.1 does not hold true anymore in these cases with high superficial velocities,
and as such these results should not be held in account.

5.2.2 Filtration in open-cell foams

Coupled CFD/DPM simulations were carried out on the three alumina open-cell
foams object of this work, respectively Al2O320, Al2O340, Al2O360. Some additional
inlet velocities V0 are considered, with respect to the simulation on the granular
bed configuration, as specified in section 5.1.2. Given the fact that there is not
a unique characteristic length that can be used to described open-cell foams, the
comparison with the particle deposition model must be carried out using multiple
predictions with different assumptions. As a matter of fact, there is no evidence
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Fig. 5.6 The plot show the global efficiency ηglob calculated from CFD/DPM simulations
for the Al2O320 PPI foam, yellow circle, and the deposition model prediction calculated for
single collector diameter equal to dh, dC, dW , dS, d3,2, respectively.

Fig. 5.7 The plot show the global efficiency ηglob calculated from CFD/DPM simulations
for the Al2O340 PPI foam, yellow circle, and the deposition model prediction calculated for
single collector diameter equal to dh, dC, dW , dS, d3,2, respectively.

about which of the three diameters describing the mean size of the geometric features
(struts, windows, cells), or the equivalent diameters used (hydraulic, Sauter), is
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Fig. 5.8 The plot show the global efficiency ηglob calculated from CFD/DPM simulations
for the Al2O360 PPI foam, yellow circle, and the deposition model prediction calculated for
single collector diameter equal to dh, dC, dW , dS, d3,2, respectively.

the most relevant to the description of the deposition phenomena at the micro-
scale. In light of this, comparing the results of the simulations with the predictions
given by the model using different definitions for the single collector diameters not
only gives information regarding the validity of this modelling of the deposition
phenomena, but could also provide important insights regarding the most descriptive
characteristic length for these systems. Again, this information is important not
only for a better understanding of the phenomenon, but is crucial for the design
of industrial equipment. Fig. 5.8 summarizes the results obtained for the three
foams in exam, showing the global efficiency ηglob as a function of the operating
conditions, namely the inlet velocity and the particle size. It is evident how, despite
the overall good performance of the CFD/DPM results in predicting the efficiency,
none of the five characteristic lengths proposed can be used alone to describe the
overall behaviour. None of the efficiencies obtained from the simulations deviate
significantly from the different models predictions, approximately in a range of
±20% with respect to the different models lines, considering that between the
smallest diameter, usually dS or d3,2, and the greatest, usually dC or dh, the ratio
lies within 2 and 4. The analysis of the diagrams of Fig. 5.8 reveal that a common
trend can be highlighted: the simulations results tends to be closer to the predictions
based on the smallest characteristic lengths, d3,2, dW and dS, when the velocity
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are lower and/or the particles size is greater, dp ≈ 15−20 µm. On the contrary, if
the velocity is higher or the particles are smaller, the simulations results tends to
agree more with the theoretical results using from dC or dh. An attempt to find a
unique correlation between the deposition efficiency, the operating conditions and
the characteristic lengths was done, but it was ineffective: whereas d3,2 and dh are
equivalent diameters and have not direct physical relationship with the geometric
features of the open-cell foams, it is also true that only dS refers to an actual foam
structuring element, the average diameter of the struts (and in the literature ,the
definition of this can change from author to author). Regarding dC and dW , indeed
they have a physical relationship with the real geometry, however they describe the
average size of void entities, referred to the different void features of the foams, the
cells and the windows connecting them. Since the two equivalent diameters seems to
be at the two limits of the deposition model prediction, an attempt to find functional
correlation for the phenomenon containing these two parameters was made to obtain
the characteristic length of the deposition phenomenon, written as:

dcoll = d3,2ηG
a +(1−ηG

a)dh (5.7)

where the exponent a is varied in order to minimize the global error, comparing the
collector diameter obtained from Eq. 5.7 and the one obtained from Eq. 5.5. however
the correlation error was always well above 30%. Another attempt was to describe
the results through functional forms depending on the tortuosity, similarly to what
was done for the results presented in chapter 3.2.2. However none of the attempts
yielded correlations with acceptable errors. This outcome is similar to what already
reported and concluded at the end of Chapter 3. The reasons reside in the complexity
of the porous solid structure of the foams which, unlike granular beds of spheres, that
can be described by the grains average size Dg, are characterized by multiples ones.
In particular, the three characteristics length usually employed for the description of
the foams, dC, dW and dS, are related to geometric features very different between
each other: dS is an indication of the average solid ligaments size, whereas dC, dW

are linked to the void fraction of the porous medium, representing respectively the
characteristic lengths of the pores and of the channels connecting the latter.
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5.3 Conclusions

In this part of the work ferrous particles deposition carried by liquid hydrocarbon
flow in porous media was explored. The particles dimension taken into exam ranges
between 5 and 20 µm, whereas the fluid velocity ranges between 0.5 and 50 mm/s.
The fluid flow has been investigated using computational fluid dynamics (CFD)
simulations, whereas the particles trajectories have been obtained with a Lagrangian
discrete particles method (DPM) simulations. Different combinations of operating
conditions are explored by varying the inlet superficial velocity V0 and the discrete
particle diameters dp over a large range of values. The overall filtration efficiency
has been calculated from results of the simulations and it has been compared to
the prediction given by the deposition model firstly proposed by Yao et al.[1]. At
first, the validity of the computational method has been tested using a granular bed
configuration with mono-dispersed spheres, for three different grains sizes. These
results show that the deposition phenomenon is well reproduced when the operating
conditions remain within the limits of the model hypothesis, that is the system
is dilute and the flow regime remains within the laminar limits. Afterwards, the
simulation workflow has been used to explore the deposition phenomenon inside
a different type of porous media: ceramic open-cell foams. Materials of this type
are appreciated, between other characteristics, for theirs open cellular structure
which, coupled with their medium-high tortuosity, can operate successfully as a
solid particulate filter at reduced pressure drop compared to classical granular bed
configurations. Three type of ceramic foam geometries have been used to carry
out CFD/DPM simulations, respectively Alumina (Al2O3) 20, 40, 60 pores per
inch, with the same operating conditions as for the granular bed configuration. The
results are again compared with the deposition model predictions: since open-cell
foams inherently have more than one characteristic length, the global efficiency of
deposition is calculated for each of the describing diameters, namely dh, dC, dW , dS,
d3,2. This comparison shows that the CFD results are well within the limits of the
model, with ηCFD

glob within the curves obtained from the deposition model varying
the single collector diameter. In particular, the computational results are closer to
the the predictions based on using the smallest diameters (dW , dS, d3,2) when the
solid particles are large and/or the velocity is lower, whereas at increasing fluid
velocity and/or decreasing particle size, the efficiency tend to approach the higher
describing diameters (dh, dC). Some attempts to investigate this behaviour have
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been made, for instance by trying a power law functional form between ηglob as
a function of dh and d3,2, representing the two limit behaviours. However, these
attempts have been unsuccessful in finding a constitutive equation for the deposition
phenomenon in open-cell foams as well as in determining which of the multiple
describing characteristic length is the most important for the description of the
filtration phenomena as well as for the design of the industrial equipment. Once
again, as already reported in section 3.3, the results of this work highlight how the
usual descriptors used to characterize a porous materials, some macroscopic, such as
ε and τ , and some microscopic, such as the characteristic diameters, are not enough
to thoroughly described clean bed particle filtration and further investigation are
necessary. There may be several future perspectives on this topic: one is further
exploring the deposition phenomena by using a wide number of geometries, produced
by means of the workflow proposed in chapter 4, over a wide range of the macro
and micro-descriptors values, in order to determine the influence on the deposition
phenomenon and gain a full understanding of the system. Another interesting
follow up will be to use the data obtained in this work to calculate the mass transfer
dispersion coefficients of the solid particulate as well as the macroscopic pressure
drops coefficient contained in the Darcy-Forchheimer equation, cfr. Eq. 2.8, to
perform numerical simulation of a macroscopic filtration vessel packed with foam
pellets and compare the results with a system packed with granular materials. This
type of investigation will help to determine the range of parameters where the use
of foam pellets is more beneficial in terms of energy consumption and process
efficiency.



Chapter 6

Conclusions

In this manuscript, the modeling of open-cell foams using both computational and
experimental methods is discussed, with particular focus in the field of filtration
and particle deposition. These porous media has seen an increasing interest during
the last twenty and more years, in particular in the field of the process industry,
where they have been used in many different applications. Catalyst supports, heat
exchanger packings and filtering media are but a few examples. The knowledge on
the relevant parameters of more classical types of porous materials, such as granular
beds packings, is vast and detailed, as testified by the huge amounts of scientific
papers on the subject, from experimental to fully computational studies. This allowed
an extensive use of these media in the process industry, allowing optimization of
the equipment design and efficiency. In the case of ceramic and metallic foams, this
knowledge and understanding is still very much empirical and limited to particular
applications. This is, without a doubt, the result of the peculiar geometrical and
morphological structure characterizing open-cell foams, and also due to the great
heterogeneity with which these porous media are fabricated and labeled by the
industrial manufacturers.

As already stated in the introduction of this manuscript, the most common “label”
(meaning, a descriptive quantity) used for solid foams are the pores per inch, which
gives an approximate estimation of the density of the solid matrix. However, the
PPI parameter can not be directly used for the estimation of the design parameters
commonly used by practitioners in the field of process engineering: the already
mentioned porosity, specific surface and eventually tortuosity. On the other hand, it



91

is not an easy task to reduce the micro-scale geometrical descriptors of the foams,
commonly identified in literature as the average diameters of the cells, windows and
struts, to a single parameter, since they describe different feature of the geometry.

Granular beds are usually described by the dimensions of the packed spherical
beads, if mono-disperse, or the average diameter if poly-disperse. In case of more
exotic shapes, such as cylinders or trilobes, an equivalent diameter can be calculated,
taking onto account the sphericity of the object. These diameters take into account
the size of the obstacle the fluid encounters while flowing through the porous matrix.
In open-cell foams, the solid obstacle is represented by the struts, whose diameter is
related to the size of the ligaments of the solid matrix. However, while for highly
porous foams (ε ≥ 0.85− 0.9), and especially metallic ones, this description is
straightforward, since the structure is thin and struts and nodes are well defined, for
lower porosity the structure is much more heterogeneous, ligaments and nodes are
fused together and less defined. In these cases, particularly common for ceramic
foams, the average strut diameter is an indication of the average solid matrix size,
but can vary widely between the thinner part of the ligaments and the thick fused
nodes. Similarly, the cell and windows diameters are characteristic lengths related
to the void part of the structure, therefore not describing the obstacle but rather the
open channels and volumes encountered by the fluid in its path.

These observations are here reported, as done throughout the whole manuscript,
not to highlight the problems encountered when dealing with such complex materials,
but rather to remark that, in alternative to reducing the description of the porous
matrix to a single geometric parameter, a rational approach to the modeling of open-
cell foams is the use of computational methods for the description of the porous
structure, its digital replication and to investigate the transport phenomena occurring
when a fluid flows through it for different application. Therefore, this manuscript
report the different approaches, tools and strategies employed to achieve this aim.

A primary aim of this research is to propose a digital platform for modeling
of the solid foams which is able to generate a wide range of geometries and carry
out computational fluid dynamics simulations to investigate the flow field and the
transport phenomena inside open-cell foams. This is the object of both Chapter 3
and Chapter 4, where two different methodologies for the generation of foam three-
dimensional models are proposed, tested and validated. The first workflow is flexible
and effective to explore a great number of different types of geometries by changing
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the type of size distribution for the initial set of seeds, however the use of a simpli-
fied model for the description of the solid matrix can represent a limitation in the
applicability. The second workflow, instead, was developed to overcome some of the
limitations of the previous one, in several directions. First, it employs a novel method
for the generation of the initial seeds of the tessellation which is fast and flexible in
creating multiple configurations that can lead to different foams realizations. Then,
it uses in an innovative fashion procedures and methods borrowed from the field
of image processing. These techniques are, once again, fast and very effective in
generating foam models that can replicate real foam samples at the macro-descriptors
level, with a very small error. The very positive results of the validation presented in
Chapter 4 show that this is achieved without making any strong assumptions on the
foam geometry, but is the results of the generation process itself.

The other main purpose for this research work was to investigate the transport
phenomena inside open-cell foams and what is the influence of the different macro (ε ,
SV and τ) and micro (dC, dW , dS) features characterizing this porous medium. This
analysis is carried out using numerical CFD simulations that allows the exploration of
a wide range of operating conditions and allows the acces to information on the fluid
dynamics at the micro-scale level, otherwise very difficult and expensive to obtain
by experimental methods. The focus is put on the mass transfer occurring at the wall
surface of the foam in case of a fast wall reaction, phenomena that can take place
during instantaneous catalytic reactions or during particle deposition in clean bed
filtration. This topic is first addressed in Chapter 3, where the geometries generated
in-silico are tested for the clean bed filtration of colloidal particles transported by
Brownian mechanism, which is simulated by a scalar transported by the fluid. The
four geometrical models tested show different values of the deposition efficiency, and
that this value varies, as expected, with porosity and geometrical model. However,
none of the strategies used to correlate this efficiency to the macroscopic foam
parameters, ε , SV and τ), or their functional power law forms, gave positive results.
A more industrial-oriented application is investigated in Chapter 5, where the topic
investigated is the deposition of microscopic ferrous particles transported by hydro-
carbon streams. This system is common in the refinery industry, where these particles
act as a poison for catalytic reactions, e.g. hydro-treatment reactions, and therefore
must be separated. In this particular case, the deposition mechanism is driven by the
gravitational force and therefore, to models this phenomena, Lagrangian simulations
of the particles trajectories are coupled with CFD for the solution of the flow field.
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This model is first tested for a granular bed configuration, to verify its validity, and
then particle filtration is simulated using three foam geometry, digitally reconstructed
from real ceramic foams samples. The analysis of the results is focused on verifying
if one of the characteristic length of the foams (dh, dC, dW , dS, d3,2) can be used to
described and parameterize the filtration phenomenon. The results show that, as for
the case in exam in Chapter 3, each of the aforementioned diameters has a different
relationship with the deposition mechanisms, and therefore it is not possible to
develop a unique correlation to assist the design of filtration equipment, and further
investigations on the topic are required.

Future perspectives on this topic are multiple and all can have positive impact
on the improvement in the use of open-cell foams in the field of process industry.
An improvement in the understanding of the geometric structure of the foams and
its influence on the transport phenomena could be achieved by using the workflow
firstly proposed in Chapter 3 and significantly improved in Chapter 4. This tool is
fast and effective in replicating the foams structure, as it has been shown, and could
easily generate a large data-set of foam structures with different characteristics. This
data-set can be used improve the knowledge on the geometry itself or the transport
phenomena, by coupling CFD and artificial intelligence methods, a strategy that has
already been successfully used for granular bed systems [68, 90]. This knowledge
and these tools could be used, in a second moment, to optimize the structure of
the foams for specific applications, once the main influencing factors are isolated.
This procedure could be then used to improve the manufacturing process of solid
foams. Finally, the experimental data obtained for the validation of the workflow of
Chapter 4 and the results on filtration obtained from Chapter 3 and Chapter 5 can be
used to develop a multi-scale model of a porous medium having the characterists
of open-cell foams and be used to perform simulation of, for instance, a packed
bed reactor, filled with pellets of foams and retrieve the macro-scale efficiency of
filtration or reaction for an industrial scale reactor. The multi-scale approach could
be used to compare the performance of different types of reactors packings, and the
characteristics of the foam could be improved by using the results of the parametric
analysis proposed before.
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Appendix A

Supporting Information to Chapter 3

A.1 Technical details: hardware and computational
costs

A.1.1 Hardware information

Both the pre-processing (meshing) and the flow and transport simulations were
performed on the following systems:

• Fujitsu Workstation: CPU with 2× 12 cores Intel Xeon Gold 5118 at 2.30
GHz.

• HPC@Polito Legion Cluster: CPU 2x Intel Xeon Gold 6130 at 2.10 GHz 16
cores

• CINECA Galileo Cluster: 2 x 18-cores Intel Xeon E5-2697 v4 at 2.30 GHz

A.1.2 Computational costs

Fujitsu Workstation: (2×12 cores Intel Xeon Gold 5118 at 2.30 GHz)
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Random sphere packing

The process of packing around 6000 spheres in a box of side equal to 15 Blender
units (i.e. 15 mean sphere diameters) with BSand takes 5913 seconds in a single-core
configuration.

Voronoi tesselations

The tessellation algorithm for the REV portion of the packing takes about 5 seconds
in single-core configuration.

Foam model creation

The foam model creation with Blender, using cylinders as edges and sphere at the
nodes, for an average of 3500 edges and 1800 nodes takes around 30 seconds in
single-core configuration.

Meshing

The meshing procedure for a REV with 4 equivalent pore diameters length per
side resulted on average in about 7 ·106 cells and the process take 3500 seconds to
complete in single-core configuration .

Fluid flow simulations

The momentum transport simulations using the solver simpleFoam in parallel, using
4 cores (with domain decomposition method Scotch, takes 3 hours.

Scalar transport simulations

The scalar transport simulations using the solver scalarTransportFoam in parallel,
using 4 cores (with domain decomposition method Scotch, takes 45 minutes.
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A.2 Colloidal particle deposition: results overview

The results of particle deposition simulations can be reported in a plot representing
the dependence of the Damköhler number Da with respect to the Péclet number Pe,
reported in Figure A.1.

Fig. A.1 Da vs Pe at porosity ε = 85%.

In order to research a possible correlation between between the results data-series
for different geometric models, it has been decided to investigate the difference
between the random models, which have more input parameters, with respect to
the ideal , i.e. the Kelvins’s Cell. Da values of the KC serie divided by each of the
mono, poly02 and poly035 series respectively, obtaining a new coefficient, named
CKC. The results of this operation are reported in Figure A.2, where the KC factor is
compared between the three random models derived from Voronoi tessellations.

In particular the values of the poly-disperse foam with highest coefficient of
variation, CV = 0.35 is further from unity than the other results sets. Thus, the
decision was made to work mainly on this set of data and in particular to investigate
the trend at varying porosity ε . Figure A.3 show the values of CKC for the poly035
data at different porosity values. It can be noticed that the higher the porosity the
closest the values of the KC factor to the unity, i.e. the closest to the ideal model.
The scatter plots (this and subsequent Figures) also feature a trend line, representing
the power law least square fitting of the data. The global error Er,glob of the fitting is
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Fig. A.2 CKC for mono, poly02, poly035 series at porosity ε = 85%.

calculated as the sum of the fitting error at each value of Pe. The general idea of this
analysis was to normalize the CKC by a combination of parameters, such as ε , SV or
τ , and to find the correlation which minimized the global error.

A.2.1 Results analysis: Dimensionless coefficients

The first approach taken in consideration was to subdivide CKC by dimensionless
groups derived from the main parameters, namely porosity ε , permeability k, mean
pore diameter dp and the specific surface SV,bulk, which is calculated with respect to
the bulk volume, i.e. the sum of the solid and liquid volumes. The following groups
were obtained:

f1 = SV,bulk ·dp (A.1)

f2 =
k ·SV,bulk

dp
(A.2)

f3 =
k

SV,bulk ·d3
p

(A.3)
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Fig. A.3 CKC for the poly035 set

The results, reported in Figure A.4, show that none of these dimensionless
quantities is able to give a good interpretation of the results of the simulations,
yielding global errors which are greater than that of the CKC alone.

A.2.2 Results analysis: analytical principle correlations

The second approach adopted was to interpret the data according to first principle,
analytical correlations developed in the field of colloid filtration for the fluid flow
across solid collectors. In particular, the Kuwabara correlation, reported in Eq.(A.4),
was developed for flow across cylindrical collectors, whereas the Happel correlation,
reported in Eq.(A.5), relates to fluid flowing across spherical obstacles.

g(ε) =
ε

2− ε − 9
5(1− ε)

1
3 − 1

5(1− ε)2
(A.4)
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(a) (b)

(c)

Fig. A.4 The dimensionless groups derived by dividing CKC by Eq.(A.1) in (a), Eq.(A.2) in
(b) and Eq.(A.3) in (c)
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(a) (b)

(c) (d)

Fig. A.5 CKC divided by Kuwabara correlation from Eq.(A.4) in (a). The dimensionless
groups, derived by dividing by Eq.(A.1), Eq.(A.2) and Eq.(A.3), divided by Kuwabara
correlation respectively in (b), (c) and (d)

As(ε) =
2(1− γ5)

2−3γ +3γ5 −2γ6 , with

γ(ε) = (1− ε)
1
3

(A.5)

These functions were applied to all the previously obtained groups, namely CKC

and the ones obtained with f1, f2, f3. The results relative to Eq.(A.4) are reported
in Figure A.5(a - d) and the ones relative to Eq.(A.5) are reported in Figure A.6 (a
- d). Once again, the resulting fitting error for all these combinations is very high
and, thus, it is clear that the approaches applied thus far were not able to extract any
relevant correlation between the macroscopic parameters and the results for the mass
transfer simulations.
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(a) (b)

(c) (d)

Fig. A.6 CKC divided by Happel correlation from Eq.(A.5) in (a). The dimensionless groups,
derived by dividing by Eq.(A.1), Eq.(A.2) and Eq.(A.3), divided by Happel correlation
respectively in (b), (c) and (d)
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A.2.3 Results analysis: fitting error optimization with arbitrary,
geometric-dependent, functional forms

The final approach taken into account was to try to find a functional form dependent
on ε , τ , or SV which could result in minimal error. The obvious choice for this
functional form analysis fell on the power-law, which allows to vary the exponent n
in a wide range. The functions used are reported in Eq.(A.6), A.7, A.8:

h(ε) = ε
n (A.6)
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(
SV,bulk

)
= f1

n =
(
SV,bulk ·dp

)n (A.7)

h(τ) = τ
n (A.8)

where n ∈ IR is the exponent. The results of this error optimization operation are
reported in the Figures A.7(a - f), which show the global er,glob as function of the
porosity ε . These plots clearly shows how none of the functions in Eq.(A.6), A.7,
A.8 is able to reduce the error to an acceptable value. The results that come from
employing functional forms of functional forms of the macroscopic parameters, such
as porosity, specific surface, or tortuosity alone are not enough to derive macroscopic
relation to describe the particle deposition during early filtration.
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Fig. A.7 The global error trend as a function of the exponent n for the functional form
reported in Eq.(A.6), Eq.(A.7) and Eq.(A.8).


