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Abstract—In the last few years, robotics highly benefited from
the use of machine and deep learning to process data stream
captured by robots during their tasks. Yet, encoding data in
grids (images) or vectors (time-series) significantly limits the type
of data that can be processed to euclidean only. To unlock the
potential of deep learning also to unstructured data, such as
point clouds or functional relations, a rising - yet under-explored
- approach lies on the use of graph neural networks (GNNs).
With this manuscript, we intend to deliver a brief introduction
to GNNs for robotics applications, together with a concise revision
of notable applications in the field, with the aim of fostering the
use of this learning strategy in a wider context and highlighting
potential future research directions.

Index Terms—Graph Neural Networks, Robotics, Deep Learn-
ing, Human-Machine Interaction

I. INTRODUCTION

Robotics represent the perfect ultimate application for deep
learning methods, where theoretical methods can meet realistic
and challenging applications. Recently, in robotic learning has
emerged the necessity to use a richer knowledge representa-
tion, able to represent three-dimensional data, functional and
geometrical representation in contrast to a simple embedding
of bi-dimensional or temporal sequence representations. A
promising approach, inspired from the signal processing and
computer vision communities, rely of graph representations.
Graph neural networks are powerful mathematical tools for
knowledge representation, able to encode structured and un-
structured information through nodes which model entities,
and edges that encode their spatial, temporal or functional re-
lationship. In computer vision, learning on graphs has emerged
as an effective approach to deal with data lying on irregular
domains, such as point clouds [1], [2], to uncover non-local
similarities in the data [3], and video understanding [4], [5].
In the last few years, these methods have gained the attention
of the robotic community, opening interesting perspectives
for novel tasks and applications, ranging from grasping and
manipulation, where three-dimensional data are predominant,
to robot-object interaction, where graphs can be used to model
the environment, the objects and their relationships. Notably,
GNNs showed promising results also in the context of rein-
forcement learning, showing interesting abilities in predicting
future states based on current state and action signals. One
of the main limitation of deep reinforcement learning is the
limited generalisation ability, and GNNs are able to naturally
overcome this issue and learn robust policies across scenarios
[6]–[8].

II. PRELIMINARIES ON GRAPH NEURAL NETWORKS

Learning on graph structures has gained significant rele-
vance in the community, thanks to their ability to process
data lying on irregular domains, spatio-temporal and functional
relationships [9]–[11]. A graph is defined as a set of nodes, the
entities of the space under observation, and edges, the connec-
tions between nodes. Each node and edge can be associated
with a feature vector to encode information about elements and
their relationship. GNNs process data represented on graph
structures by performing a local share of information, also
known as message-passing, in order to update the elements
features. A graph convolution operation can be formulated in
two different domains, spectral or spatial. The first family of
methods [12]–[16] usually exploits graph Fourier transform,
eventually complemented with polynomial approximations to
reduce the computational burden [14], [15]. Among these, it
is worth mentioning the Graph Convolutional Network (GCN)
[15], which demonstrated notable results for semi-supervised
problems. However, a critical limitation of this formulation
is the inability to generalise the learned filters, computed
over the spectrum of the graph Laplacian, to a variable graph
structure. The second class of approaches defines the graph-
convolution operation in the spatial domain. In this case, the
graph convolution is defined as a local, i.e. computed over
a neighbourhood, weighted aggregation of signals. Since the
interaction between nodes is local, this formulation is suitable
for any type of signal that can be defined over a graph, even
with a variable graph structure. Several definitions have been
presented in the literature, among which it is worth mentioning
[1], [2], [18]–[24]. Typically, the formulations differ on the
computation of the weights used in the aggregation. For a
compact overview, the reader is referred to Fig. 1 where we
show different graph convolution formulations.

III. ROBOT APPLICATIONS

We identified two main macro-problems in which GNNs
represent a valid learning tools. The first, which we refer to
as ”Single-Agent Systems”, collects cases where the graph
is used to model only one intelligent system (single-robot or
human), or passive body (objects modelling). One of the most
important tasks in this scenario is modelling of bodies. When
we interact with an object very likely it will suffer a non-linear
deformation, and modelling its dynamic and deformation poses
several challenges such as the high-dimensionality of the
configuration space, complex dynamic of materials and self-
occlusions. One promising approach [25], [26] consists in
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Fig. 1. Comparison of different information sharing mechanisms. MPNN [17] implements message passing conditioned by edge attributes. GCN [15]
implements a simple aggregation of the k-nn nodes. GAT [18] exploits self-attention to weight the contributions of the k-nn. ECC [1] implements an edge-
depended weighting function to weight the contribution of each node in the neighbourhood. DGCNN [2] aggregates by means of learned edge features.

describing the body as a collection of keypoints. This approxi-
mated representation is suitable to a graph construction, where
each keypoint is a node and the edges represent the spatial
and kinetic relationships between them, able to describe the
dynamic behaviour of the body. Recently, graph-based learning
control policies from deformable objects keypoints has gained
attention [26]–[31] thanks to their effective low-dimensional
representation. One challenge of modelling deformable objects
rely on the object connectivity, due to the large number
of degree of freedom and self-occlusion. Graphs can easily
overcome this issue by directly learning the connectivity from
the visual data [32], [33]. Furthermore, graphs represent one
of the most suitable choice to process three-dimensional visual
data, such as point cloud and meshes, and recently this type
of data - especially mesh - have gained attention for particles
and keypoints representation, promoting even more the use of
GNNs in the context of body modelling [32]–[35]. Similarly to
keypoints object representations, graphs can be used to model
the robot itself, exploiting the natural discrete graph structure
of human, humanoid or animal bodies, where nodes are joints
and edges their physical dependencies [36], [37]. Once we
have learned how to model robots and objects it is important to
learn how to interact safely and effectively with them. Albeit
being a research problem for decades [38], [39], in robotic
grasping and manipulation several problems are still open,
such as learning to interact with objects in motion or in clutter
[40]–[42] with partial observability, novel objects and human-
robot or multi-robot co-manipulation [43]–[46]. In the last
few years, learning for graphs has provided interesting results
in tackling many open problems in this field. Graphs can
efficiently model the environment and the interaction between
objects [47], [48], learn semantic global information to build
knowledge graphs [49]–[51] or process unstructured data input
[52]–[54]. Graph-based structures have been also profitably
used to encode spatial relations in complex scenes, where
multiple objects are present and/or the environment is only
partially observable [48], [55]–[62].

The second macro-problem we identified refers to the
modeling of fleets of intelligent systems (a.k.a. Multi-agent
systems). This scenario comes with the additional challenge

that an effective coordination and communication between
robots is of paramount importance to enable a fruitful coop-
eration, which is clearly critical for several downstream tasks.
Traditionally, this problem has been addressed by exploiting
centralised approaches, where all the intelligence and com-
putation complexity is centralised on a common controller
node. Such approach has the strong benefits of reasoning on
the status of whole set of agents and requiring only little
computation on the device. However, it also comes with
the limitations of i) a low fault tolerance, and ii) a poor
scalability w.r.t. the number of agents [63].To address these
issues, decentralised approaches, where each agent learns its
set of actions according to environmental data and shared
information from other agents, have gained attention. In this
configuration, each robot has to deal with limited observability
and partial communication, but GNNs offer generalized and
flexible structural representations of the elements to face
such limitations. Many notable works [64]–[74] focus the
attention on the communication between robots and exploit
graph encoding to efficiently model inter-agents relationships.
Other methods, instead, propose to encode the information
related to the environment topology, in the form of waypoints
or point-of-interest [6], [7], [75]–[78]. Works as [6], [7], [75]
focus on the spatio-temporal relationship between entities in
the environment to build a graph, and use GNNs to learn envi-
ronmental features for the robot. Differently, [76], [77] propose
a more comprehensive topological representation where both
robots and environments are directly encoded in the graph.

IV. FUTURE PROSPECTIVES

After a literature analysis, it is evident how graph-based
representations opened interesting research perspectives, such
as for the modelling of functional, spatial, or temporal rela-
tionships between passive or active elements. Interestingly, we
observed an exponential increase in the use of this learning
method for robotics applications, which at the moment is
consolidated as one of the most prominent for complex tasks.
For the field to progress to a higher maturity phase, however,
we strongly believe that some aspects still deserve additional
work. First, the analysis we performed strongly motivates a



more extensive and informed use of graphs as a convenient
tool. Yet, it is often used in a naive fashion. Furthermore,
graph learning could unlock many novel tasks, going from
action recognition to modelling of soft-bodes. We believe that
robotics should not only be an harbour for graph learning
applications, but also actively contribute in the development
of novel techniques that better face real-world problems.
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