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Abstract
This paper addresses the electricity pricing problem with demand-side flexibility. The interaction between an aggregator and
the prosumers within a coalition is modeled by a Stackelberg game and formulated as a mathematical bi-level program where
the aggregator and the prosumer, respectively, play the role of upper and lower decision makers with conflicting goals. The
aggregator establishes the pricing scheme by optimizing the supply strategy with the aim of maximizing the profit, prosumers
react to the price signals by scheduling the flexible loads and managing the home energy system to minimize the electricity
bill. The problem is solved by a heuristic approach which exploits the specific model structure. Some numerical experiments
have been carried out on a real test case. The results provide the stakeholders with informative managerial insights underlining
the prominent roles of aggregator and prosumers.

Keywords Pricing problem · Aggregator · Prosumers · Bi-level optimization

1 Introduction

In recent years, decentralized and renewable electricity
generation has increased all around the world. Residen-
tial consumers have been playing an increasingly active
role becoming energy producers, typically from renewable
energy sources. The termused to denote this newplayer of the
liberalized energy market is “prosumer”. By the deployment
of smart meters and taking advantage of the advance-
ment of Information and Communication Technology (ICT)
infrastructures, prosumers are now able to dynamically con-
trol and optimize their electricity consumption. Harnessing
this new potential, a smooth transition from the traditional
supply-follows-demand paradigm to a new, demand-follows-
supply approach can be already observed. In this context,
increasing the demand flexibility represents a very important
issue to improve the coordination of the electricity system.
Demand Side Management (DSM) is a series of activities
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that utilities undertake to change habitual users’ consumption
pattern to achieve power grid efficiency. With the liberaliza-
tion of the energy market, the DSM has evolved into two
main approaches, namely Energy Efficiency and Demand
Response (DR). While the first approach aims to reduce the
overall energy consumption (Behrangrad 2015), the DR aims
to change consumers’ electricity usage from their habitual
consumption patterns in response to economic signals. For
an extensive discussion about the DSM, interested readers
are referred to Good et al. (2017); Paterakis et al. (2017).

There are twomain complementary approaches for theDR
classified as explicit and implicit DR. In the explicit case,
the result of the DR actions is sold upfront on the market,
either directly (for example, in the case of large industrial
consumers) or by service providers. This scheme is some-
times called “incentive-based” since consumers receive a
specific reward in exchange of their flexibility. In the implicit
DR, consumers decide to be exposed to electricity prices
that may vary over time. In this case, their flexibility is
rewarded by a reduction of the electricity bill. A compre-
hensive survey on the DR is proposed in Deng et al. (2015)
where the authors review the main mathematical models
and the potential challenges. Other contributions (see, e.g.,
Gerami et al. 2020 and the references therein) investigate
the challenges of the DR programs in some application con-
texts.
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The definition of proper pricing policies is one of the main
factors for the success of the DR programs as consumers
could be motivated to change the timing of the load opera-
tions as long as a reduction in the electricity bill is guaranteed.

This contribution focuses on pricing problems in electric-
ity supply considering the interaction between two agents,
aggregator and prosumer. The aggregator represents a new
player in the liberalized electricity market, where the cre-
ation of prosumers’ communities is a growing phenomenon
(Espe et al. 2018). It can be seen as an agent which aggregates
in a collaborative system more customers who decide to act
together. Like the classic retailer, the aggregator faces the
problem of designing competitive rates compared to those
offered by other potential suppliers to ensure that prosumers
remain within the coalition. However, unlike the retailer who
typically acts as an intermediary, i.e., purchasing energy from
the market and reselling it to its customers, the aggregator
owns an energy system to optimally manage which guaran-
tees the coverage (at least partial) of the coalition’s demand.
As a result, the offered tariffs depend not only on the market
prices (as for the retailer), but also on the supply plan that
the aggregator decides to implement (see, e.g., Ferrara et al.
2020) This feature makes the pricing problemmore involved
creating additional challenges, only marginally investigated
in the scientific literature. Furthermore, the prosumer is
assumed to own local resources, consisting of a system of
photovoltaic (PV) panels and a storage device. As a result,
demand flexibility is further increased: the storage system
can be used to decouple energy production and/or purchas-
ing from consumption and controllable loads may be shifted
in response to pricing signals.

Over the last decades, different pricing strategies have
been investigated by researchers and practitioners. Interested
readers are referred, for example, to the recent contribution
(Grimm et al. 2020) where the authors analyze and compare
different pricing schemes providing interesting managerial
insights. In this paper,we focus on a dynamic pricing scheme,
which unlike the static one typically contracted for long peri-
ods (e.g., one year) is based on electricity tariffs announced
with short antecedence. In particular, we assume that the
rates are communicated the day before and are differentiated
according to the Time of Use (ToU). The tariffs (e.g., for
each hour) are valid for the subsequent day without any vari-
ation regardless of the energy demand which, in any case, is
assumed to be bounded by contract.

The interaction between the two agents involved in the
pricing problem is modeled as a Stackelberg game and for-
mulated as aBi-Level (BL) problem (Stackelberg et al. 1952).
The aggregator represents the Upper Level (UL) decision
maker, i.e., the leader, who sets the pricing scheme by opti-
mizing the procurement plan, taking also into account the
possible reaction of the prosumer. This latter plays the role
of follower, i.e., the Lower Level (LL) decision maker, who

may react to the offered rates by optimally managing the
home energy system and/or scheduling the flexible loads.
Leader and follower have conflicting goals: while the aggre-
gator’s aim is to maximize the total profit, defined as the
difference between the revenue obtained from selling energy
and procurement costs, the prosumer aims at minimizing the
electricity bill.

The inclusion of realistic features, mainly related to the
management of local resources,makes the problemvery chal-
lenging. The UL model is a mixed-integer problem with
an objective function including bilinear terms, while the
structure of the LL problem prevents the adoption of stan-
dard approaches used to derive a single-level reformulation
(Gümüş and Floudas 2005). In this paper, we present a simple
heuristic approach that exploits the problem structure and is
based on the idea of generating a pool of BL feasible solu-
tions from which the best one is chosen. The approach has
been tested on a virtual coalition derived from the analysis of
a real configuration including different types of prosumers,
e.g., residential, commercial, public utilities. For the numer-
ical experiments, only the class of residential prosumers that
are similar in terms of energy requirement, demand response
profiles and available facilities has been considered.

To summarize, the main contributions of the paper are
the following. We propose a new comprehensive BL model
for the electricity pricing problem modeling the interaction
between aggregator and prosumer; we design and test a sim-
ple heuristic approach that exploits the specific structure of
the problem; we provide extensive computational experi-
ments carried out a real case study and discuss a number
of practical insights that can support the aggregator in the
electricity pricing problem.

The rest of the paper is organized as follows. Section 2
reviews the relevant scientific literature on electricity pricing
problem. Section 3 describes the problem and presents the
mathematical formulation. Section 4 introduces the heuris-
tic solution approach. The results of extensive computational
experiments are presented and discussed in Sect. 5. Finally,
conclusions and future research directions are drawn in
Sect. 6.

2 Literature review

This section is devoted to the review of themost relevant con-
tributions on the BL optimization for the electricity pricing
problem. Interested readers are also referred to a recent sur-
vey where the authors present a comprehensive review of the
main BL models and methods (Antunes et al. 2020). These
contributions mainly differ in the nature of the decision mak-
ers involved in the pricing problem, i.e., retailer/aggregator
and consumer/prosumer, and the possibility to manage local
resources and scheduling flexible loads.
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In Kovács (2019), the author proposes a BL model for
the definition of ToU energy tariffs where the LL problem
refers to a prosumer who reacts to the pricing signals by
optimally managing the home energy system. The problem
is solved by a tailored approach which exploits the primal-
dual reformulation of the follower problem used to derive
a single-level quadratically constrained problem. A DSM
model to determine optimized electricity rates has been pro-
posed in Alekseeva et al. (2018). Here the pricing policy is
aimed at modifying the consumer’s behavior by shifting the
loads from peak to off-peak hours. A more recent contribu-
tion byAussel et al. (2020) presents aDSMmodelwhere four
decision makers, including suppliers, local agents, aggre-
gators, and end-users are involved. The authors formulate
the problem as a tri-level single-leader-multi-follower model
that is transformed into a new BL problem and solved
using three different approaches. In Grimm et al. (2020), the
authors compare various flexible tariffs, i.e., ToU, critical-
peak-pricing, real-time-pricing tariff, and fixed-price. The
follower is represented by a prosumer owing an energy gen-
eration system and storage facilities who aims to maximize
the total revenue from electricity production minus total cost
of electricity purchase from the retailer. The problem is refor-
mulated into a single-levelmodel and solved by a commercial
solver.

In all the aforementioned contributions, the LL problem
contains only continuous decision variables. The introduc-
tion of binary variables, typically used to account for the
scheduling of flexible loads, makes the problem even more
challenging, requiring the design of solution approaches to
exploit the specific problem structure.

In Alves and Antunes (2018), the authors propose an
extension of the model proposed in Alves et al. (2016),
where the LL problem is formulated as a bi-objective mixed-
integer model minimizing the consumer consumption costs
and the dissatisfaction caused by rescheduling the operation
of the flexible appliances. The UL problem only contains
continuous decision variables related to the ToU electricity
tariffs and maximizes the retailer’s profit. A hybrid genetic
algorithm is applied on the UL problem, while the LL sub-
problem is solved using a commercial solver. In Soares et al.
(2020), Soares et al. present amore involvedmodelwhere the
LL problem accounts for the rescheduling of flexible loads
(shiftable, interruptible, and thermostatically controlled) in
response to the price signals. The authors develop a hybrid
approach based on a population-based algorithm that calls
a commercial solver to deal with the LL problem. A new
solution method based on the optimal-value function refor-
mulation was proposed in Soares et al. (2021) and applied
to solve the same problem. The solution strategy consists of
generating a series of convergent upper and lower bounds
for the UL objective function until the difference between
the bounds is below a given threshold. The extension of the

model proposed in Soares et al. (2020) to the multi-follower
case is presented in Soares et al. (2019) where the authors
propose two population-based heuristics (a genetic algorithm
and a particle swarm optimization algorithm) to deal with the
ULproblemboth encompassing an exact solver to address the
LL problem. We also mention the contribution by Le Cadre
et al. (2019) where analyzed the relation between aggrega-
tor and consumers joined into a coalition and modeled it as
a Stackelberg game. In the model, the aggregator does not
own energy assets and aims to maximize the daily revenue
gained by selling energy to consumers while no consumer
leaves the coalition and a fairness criterion imposed by a
cost-sharing mechanism is met. Consumers reacts to pricing
signals rescheduling the flexible loads.

The model we propose is linked to the aforementioned
contributions since it assumes as, for example, in Grimm
et al. (2020), that the follower is equipped with his home
energy system and as, for example, in Soares et al. (2020)
the presence of flexible appliances whose operations could
be rescheduled. Thus, more realistically, the follower is a
smart prosumer who can more effectively react to the price
signals by integrating the two sources of flexibility. More
importantly, the leader is not simply a retailer buying energy
from the market and reselling it to the customers, but an
entity who possesses generation and storage devices whose
optimal management influences the procurement cost and
consequently the profit that can be gained.

3 Problem definition andmathematical
formulation

We consider a coalition of prosumers managed by an aggre-
gator that faces the problem of defining electricity tariffs
for the coalition members. In a real setting, the coalition
is composed of heterogeneous prosumers, e.g., residential,
commercial, and industrial end-users. Here we model the
interaction between the aggregator and the class of residen-
tial prosumers. In particular, our reference is a family with
a home energy system composed of PV panels and a stor-
age device (battery). The proposed formulation also applies
when considering the interaction with other classes of pro-
sumers provided that the follower’s constraints are redefined.
The generalization to the multi-follower case, where differ-
ent classes of prosumers are jointly considered, is the subject
of our ongoing research.

In our setting, the aggregator does not have direct access
to the prosumers’ resources, but is responsible to ensure the
energy supply (Beraldi et al. 2018). To this end, the aggre-
gator should define the procurement plan, optimizing the
management of his own resources (conventional production
plant and/or renewable energy sources), and/or purchasing
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energy from the energy market, e.g., the Day Ahead (DA)
market and/or using bilateral contracts, if signed in advance.
We consider a dynamic pricing scheme, announced the day
before. The planning horizon denoted by the set T =
{1, ..., t, . . . , T } is divided into time steps of equal length
(e.g., one hour). The problem is solved every day using
updated data for the market price, the solar production, and
the operations of the flexible appliances. Table 4 in Appendix
reports the complete nomenclature.

The interaction between aggregator and prosumer is mod-
eled as a Stackelberg game. The aggregator plays the role
of leader who has full control on tariff setting considering
the prosumer’s response, while the prosumer behaves as a
follower who optimally manages the energy resources and
schedules the flexible loads reacting to the offered electricity
rates. The leader and follower problems are introduced in the
next subsections.

3.1 The aggregator problem

The price profile offered by the aggregator depends on the
supply strategy. Self-produced energy should be eventually
integrated by additional electricity amounts purchased from
the market. Besides a system of PV panels with a production
profile ψa

t , we assume that the aggregator owns a small pro-
duction plant. For each time period t , we denote by αt the
production level and by χt the binary variable related to the
state (on/off) of the plant. Constraints (1) impose that when-
ever the plant is on, the produced amount should be within
some bounds depending on the plant’s capacity:

εχt ≤ αt ≤ ε χt ∀t ∈ T (1)

The aggregator is also supposed to own a battery storage
device that should be properly managed. Hereafter, we use
the superscript a to refer to the variables pertaining to the
aggregator. In particular, for each time period t , variables
socat , in

a
t , out

a
t refer to the state of charge and to the amount

of energy charged in and discharged from the battery. More-
over, binary variables γ ia

t and γ oa
t are introduced to avoid

the simultaneous charge and discharge. Constraints (2)-(7)
model the management of the aggregator’s storage system.
In particular, the flow balance constraints (2) relate the state
of charge between two subsequent time periods. Constraint
(3) requires that the aggregator’s battery level at the last
time period is equal to a specified amount (soca0) that is
supposed to be present at the beginning of the planning
horizon. Constraints (4) impose lower and upper bounds on
the state of charge. In a similar way, constraints (5) and (6)
bound the amount of power charged into and discharged from
the battery, respectively. Finally, constraints (7) prevent the
simultaneous charge and discharge.

socat = socat−1 + ηi in
a
t − 1

ηo
outat ∀t ∈ T (2)

socaT = soca0 (3)

Ca
min ≤ socat ≤ Ca

max ∀t ∈ T (4)

inat ≤ θ1 C
aγ ia

t ∀t ∈ T (5)

outat ≤ θ2 C
aγ oa

t ∀t ∈ T (6)

γ ia
t + γ oa

t ≤ 1 ∀t ∈ T (7)

Besides using self-produced energy, the aggregator may sat-
isfy the prosumer’s demand by purchasing electricity from
the DA market and/or by bilateral contracts. For each time
period t , we denote by βt and δt the corresponding deci-
sion variables. On these latter, bounding conditions can be
imposed reflecting contractual and/or aggregator’s previ-
ously defined strategies:

δt ≤ δt ≤ δt ∀t ∈ T (8)

The aggregator’s supply should guarantee the satisfaction of
the prosumer’s demand, denoted by the variable rt under the
follower control:

αt + βt + δt + ψa
t + outat − inat ≥ rt ∀t ∈ T (9)

The daily aggregator’s expense depends on the individual
costs of the different supply sources, that may change from
day to day. We denote by uα

t , u
β
t and uδ

t the unitary produc-
tion cost, the DA price and the price of bilateral contracts,
respectively. Thus, the overall cost, denoted by TC, is defined
as:

TC =
T∑

t=1

(
uα
t αt + uβ

t βt + uδ
t δt

)
(10)

The aggregator aims at maximizing the profit defined as the
difference between revenue and cost. Clearly, the revenue
depends on the electricity rates, denoted by the continu-
ous variables pt . The set of constraints (11)-(12) bound the
offered tariff and impose a limit on its daily average value;
by imposing the lower bound pt , we ensure that a minimum
revenue for the aggregator is obtained while imposing the
upper bound pt reflects the competitive environment in the
energy market. In addition, as in Zugno et al. (2013), we
assume that the aggregator and the prosumer have signed an
agreement in advance that specifies the lower and the upper
bounds and the average value Δ that the rates could attain
during the day:

pt ≤ pt ≤ pt ∀t ∈ T (11)

1

T

T∑

t=1

pt ≤ Δ (12)

123



A bi-level model for the design...

Finally, the aggregator’s objective function is defined as:

max zA =
T∑

t=1

pt rt − TC (13)

3.2 The prosumer problem

The prosumer reacts to the tariffs offered by the aggregator by
optimizing the management of the local resources and prop-
erly scheduling the loadswith the aimofminimizing the daily
electricity bill. In particular, we classify the prosumer’s loads
into two main groups, referred to as base and flexible loads.
Lighting, tv, refrigerator, etc., belong to the first group and are
not deemed for control. For each period t , bt denotes the cor-
responding amount of required electricity. On the contrary,
flexible loads are associated with controllable appliances.
These, in turn, are divided into shiftable and interruptible
loads. The first ones refer to loads having an operation cycle
that, once initiated, cannot be interrupted, e.g., dishwasher,
washing machine or clothes dryer, while the second ones
are loads whose operations can be temporarily interrupted
provided that a given amount of energy is supplied during a
specified time slot, e.g., the battery of electric vehicle.

The sets of shiftable and interruptible loads are denoted
by J = {1, · · · , J } (indexed by j) and K = {1, · · · , K }
(indexedby k), respectively. For eachflexible load (either j or
k), a comfort time window ([l., u.]) reflecting the prosumer’s
preferences is specified. Additional data, reported in Table 4,
refer to the duration and to energy required.

The scheduling of the flexible loads entails the intro-
duction of binary variables. For each shiftable load j , we
introduce the binary variable z jt that takes the value 1 if the
appliance starts operating at time t and 0 otherwise. Clearly,
each appliance can start operation only one time within its
time window and once started, it should be active for the next
subsequent N j periods to complete its cycle. We model this
condition by the following constraints:

u j−N j+1∑

t=l j

z j t = 1 ∀ j ∈ J (14)

We assume that the energy required during each period by
appliance j is a constant value denoted by m j . Thus, the
quantity of electricity required by appliance j in period t can
be expressed as:

m j

t∑

s=max (l j ,t−N j )

z js (15)

We should note that the assumption on the constant energy
required by each load within its operation cycle is a very
common feature frequently considered in the energy con-
text (see, for example, Liu et al. 2019 and also the references

therein). On the other hand, we canmodel loads for which the
operation cycle consists several stages with different power
requirements (as in Violi et al. 2022), but this requires the
introduction of additional variables and constraints contribut-
ing to the model complexity.

To model interruptible load k, we introduce the binary
variable ykt corresponding to the state of appliance k. Obvi-
ously, these variables assume value 0 outside the time
window. By constraints (16) we impose that the total amount
of energy consumed by each load k within its comfort win-
dow does not exceed the total request Qk :

uk∑

t=lk

mk ykt ≥ Qk ∀k ∈ K (16)

wheremk denotes the power required by appliance k for each
time period.
Besides rescheduling the flexible loads, the prosumer can
react to the price signals optimizing the management of the
storage system. Here, we introduce some variables and con-
straints similar to those considered for the aggregator. In
particular, for each time period t , variables socpt , inp

t , out pt
refer to the state of charge and the amount of energy charged
in and discharged from the battery. Moreover, the binary
variables γ

ip
t and γ

op
t are introduced to avoid the simulta-

neous charge and discharge. The following constraints with
the same meaning of constraints (2)-(7) are introduced for
the prosumer’s side:

socpt = socpt−1 + ηi in
p
t − 1

ηo
out pt ∀t ∈ T (17)

socpT = socp0 (18)

C p
min ≤ socpt ≤ C p

max ∀t ∈ T (19)

inp
t ≤ θ1 C

pγ
ip
t ∀t ∈ T (20)

out pt ≤ θ2 C
pγ

op
t ∀t ∈ T (21)

γ
ip
t + γ

op
t ≤ 1 ∀t ∈ T (22)

The prosumer’s residual demand, rt , to be purchased from
the aggregator, is defined by constraint (23):

rt = bt +
K∑

k=1

mk ykt +
J∑

j=1

m j

t∑

s=max (l j ,t−N j )

z js −

ψ
p
t − out pt + inp

t ∀t ∈ T (23)

Here the first three terms account for the total amount of
base and flexible loads, ψ

p
t denotes the amount of energy

produced by the PV panels within time slot t , and the last
two terms are related to the storage system.

The prosumer is asked to provide in advance an estimation
of his demand for the next day; obviously, for residential
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customers, such amount is always belowapre-specifiedvalue
mentioned in the contract.
The prosumer’s objective function aims at minimizing the
total electricity expenses defined as:

min zP =
T∑

t=1

pt rt (24)

4 Solution approach

The proposed model belongs to the class of the BL prob-
lems with mixed integer variables at both the upper and
lower levels. In addition, the leader and follower objec-
tive functions contain bilinear terms, further increasing the
computational complexity. Problems in this class are con-
sidered as the most challenging ones since, as shown in
Köppe et al. (2010), an optimal solution may not be attain-
able unless specific assumptions are satisfied (Fischetti et al.
2017). We point out that the nature of the decision vari-
ables prevents the application of standard techniques (relying
on the Karush–Kuhn–Tucker conditions) to derive a single-
level reformulation, calling for the design of tailored solution
approaches that may exploit the problem structure. Here, we
propose a heuristic scheme relying on the optimal-value-
function reformulation. Other approaches as, for example,
the one proposed in Soares et al. (2021), rely on the same
reformulation. Another class of heuristic approaches is rep-
resented by hybrid methods, (see, e.g., Soares et al. 2020,
2019), that integrate metaheuristic algorithms (e.g., genetic
algorithm and particle swarm optimization algorithm) to
explore the UL search space and apply exact solvers to find
optimal LL solutions.

The basic idea of our heuristic scheme is to generate a
pool ofBL feasible solutions by exploiting the optimal-value-
function reformulation (Kleinert et al. 2021). In order to
describe themethod, we reformulate our BL problem inmore
general terms:

max
xU∈XU xL∈XL

F(xU , x L) (25)

H(xU , x L) ≤ 0 (26)

x L ∈ arg min
x ′L∈XL

{ f (xU , x ′L) : h(x ′L) ≤ 0} (27)

Here, the variables xU , defined on set XU are the leader’s
variables, while the variables x L defined on set XL are the
follower’s variables, as reported in Table 4 in Appendix.
H(xU , x L) and h(x L) are the UL and LL constraint func-
tions defined by the set of constraints (1)-(12) and (14)-(23),
respectively. Finally, F(xU , x L) and f (xU , x L) are the UL
and LL objective functions defined by (13) and (24). The
BL model (25)-(27) can be equivalently represented as:

max
xU∈XU xL∈XL

F(xU , x L) (28)

H(xU , x L) ≤ 0 (29)

h(x L) ≤ 0 (30)

f (xU , x L) ≤ Ψ (xU ) (31)

where the follower value function, Ψ (·), for a given xU , is
defined as:

Ψ (xU ) = min
x L∈XL

{ f (xU , x L) : h(x L) ≤ 0} (32)

Wenote that, in our formulation both theULandLLobjective
functions involve bilinear terms resulting from the product
of the UL variables related to the tariffs, pt , and the LL vari-
ables related to the residual demand rt . Interestingly, once
the tariffs are released, the bilinear terms in the LL objective
function turn into linear ones allowing to solve the corre-
sponding problem by using off-the-shelf solvers.

Finally, we also point out that we follow an optimistic
approach as common in many BL contributions (Soares et al.
2021) to break the tie (in case the LL problem has multiple
optimal solutions) in favor of the UL decision maker.

The proposed heuristic approach generates a pool of BL
feasible solutions. A solution (x̄U , x̄ L) is said to be BL
feasible (Lozano and Smith 2017) if it satisfies the set of
constraints (29)–(31). We note that dropping the constraint
(31) from model (28)–(31) leads to the so-called High Point
Relaxation (HPR) problem. It is easy to clarify that a feasible
solution of the HPR problem provides an upper bound (UB)
to the BL problem; also, any BL feasible solution (x̄U , x̄ L),
is nothing but a lower bound (LB). We remark that the LL
constraints do not depend on any UL variables; this prop-
erty is essential to guarantee the correctness of the proposed
algorithm. At each iteration of the algorithm a BL feasi-
ble solution (x̄U , x̄ L), is generated and the LB= F(x̄U , x̄ L)

value is computed. The new solution is added to the pool,Ω ,
and the incumbent, denoted by LBB , is updated whenever an
improving lower bound is obtained (F(x̄U , x̄ L) > LBB).

The pseudocode of the proposed heuristic scheme is
sketched in Algorithm 1. At the first iteration, we find
the optimal solution of the HPR, denoted by (x̂U , x̂ L) and
we compute the initial UB= F(x̂U , x̂ L). The UL decision
variables x̂U related to the tariffs are injected into the LL
subproblem that is solved to optimality. If the LL optimal
solution x̄ L amended with x̂U is feasible with respect to the
constraints (9), then (x̂U , x̄ L) is accepted as a BL feasible
solution, otherwise we may repay the UL solution to retain
feasibility. To this end, we may, for example, modify the
exchange with the DA market over some time periods that
is the value of the βt variables which are not restricted in
the UL constraints. Clearly, in the latter case the UL objec-
tive function should be re-evaluated. To move to another BL
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feasible solution,we add cut (33) into theHPR in order to find
another UL solution accounting for the follower’s reaction:

f (xU , x L) ≤ f (xU , x̄ L) (33)

where x̄ L is the feasible LL solution determined at the previ-
ous iteration. Then, we solve the HPR amended with the new
constraint (33) and repeat the procedure until a stopping cri-
terion is met. In practice, we could end the algorithm before
Itermax iterations if at least one of the two following condi-
tions holds: the gap between the initial upper bound value
and the current best lower bound falls below a given thresh-
old τ or for a specified number of consecutive iterations (let
say NT), no new BL feasible solution is found.

Algorithm 1 Heuristic pseudocode.
1: Initialization: Ω ← ∅, LB, LBB ← −∞, UB, i t ← 1
2: Solve the HPR problem (28)-(30), obtain the optimal solution

(x̂U , x̂ L ) and compute the upper bound UB = F(x̂U , x̂ L )

3: while (i t < I termax ) do
4: Fix the UL variables xU ← x̂U

5: Solve the LL problem and get the optimal solution (x̂U , x̄ L )

6: if ( (x̂U , x̄ L ) is feasible with respect to UL constraints (9) ) then
7: Add it to the current pool Ω ← Ω ∪ {(x̂U , x̄ L )}
8: else
9: Perturb the UL solution to retain a BL feasible solution

(x ′U , x̄ L )

10: (x̂U , x̄ L ) ← (x ′U , x̄ L )

11: Ω ← Ω ∪ {(x̂U , x̄ L )}
12: end if
13: Compute the LB = F(x̂U , x̄ L )

14: if (LB > LBB) then
15: Update LBB = LB
16: Update the best current solution x BL = (x̂U , x̄ L )

17: end if
18: if ( (UB − LBB <

τ) or (LBB did not update over NT last iterations) ) then
19: return x BL

20: else
21: Generate cut (33) and add it to problem defined by (28)-(30)
22: i t ← i t + 1
23: end if
24: end while
25: return x BL

Wefinally comment on the bilinear structure of theUL and
LL objective functions. The linearization has been carried
out by applying the dual reformulation, that it is proved to
provide tighter approximation compared to theMcCormick’s
inequalities (Costa et al. 2017). In particular, we introduce
the auxiliary variableωt that replaces the nonlinear term ptrt ,
and we add the following constraints:

pt = (λt1 + λt2) pt + (λt3 + λt4) pt (34)

rt = (λt1 + λt3) rt + (λt2 + λt4) rt (35)

ωt = λt1 pt rt + λt2 pt rt + λt3 ptrt + λt4 pt rt (36)

4∑

j=1

λtj = 1 (37)

λtj ≥ 0, j = 1, ..., 4 (38)

Here pt and pt are proper bounds on the tariffs (see con-
straints (11)), whereas for the residual demand, the lower
bound rt is typically set to 0, and the upper bound, denoted
by rt , is fixed by contract.

5 Case study

This section is devoted to the presentation and discussion
of the computational experiments carried out to assess the
effectiveness of the proposed approach on a real case study.
The model and the heuristic scheme have been implemented
in GAMS 24.4.6 (Bussieck and Meeraus 2007), and CPLEX
has been used to solve, once linearized, the generated mixed
integer problems. All the experiments have been performed
on an Intel ®Core i7 2.6GHz,with 16.0GBofRAMmemory.
In the following,we first introduce the case study and thenwe
present and analyze the numerical results. Finally, we com-
ment on the performance of the proposed solution approach.

5.1 Experimental setting and data

The computational experiments have been carried by using
real data collected as part of an Italian-funded research
project ”COMESTO: Community Energy Storage”. The
proposed model is solved every day by using updated infor-
mation. In the experiments, we have considered hourly tariffs
to reflect the organization of the Italian market taken as ref-
erence, but finer granularity (e.g., half-hour intervals) and/or
longer time horizons (weekly) can be considered.

The aggregator is assumed to own traditional gas-fueled
plants, a system of PV panels and some lithium battery stor-
age devices. The data used in the experiments are reported
in Appendix. Besides self-production, the aggregator may
satisfy the prosumer’s demand by eventually using bilateral
contracts and/or purchasing electricity from the DA market
(Beraldi et al. 2017). In the model, the DA electricity prices,
increased by a fee accounting for transmission and distribu-
tion, have been used as the lower bound values pt , whereas
the upper bound values, pt , have been set by considering the
rates offered by potential market competitors. Finally, the
value of Δ has been set to 0.15e/kWh. Figure 1 reports the
hourly DA prices (Single Nationwide Price -PUN) recorded
in the Italian market for a winter day (23 Jan 2020) used in
the experiments.
As regards for the LL problem, the reference prosumer is
represented by a family of five persons living in the South-
ern Italy who owns a home energy system consisting of PV
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Fig. 1 The DA market prices

Fig. 2 Aggregator’s procurement plan

panels and a storage device. The detailed data used in the
experiments are reported in Appendix 1. In addition to the
base load (e.g., lighting, refrigerator) that cannot be con-
trolled and that amounts on average to 13 kWh per day,
flexible loads associated with 5 appliances have been consid-
ered. In particular, the first four are labeled as shiftable, i.e.,
Laundry Machine (LM), Clothes Dryer (CD), Dishwasher
(DW) and Vacuum Cleaner (VC), while the last one as inter-
ruptible, i.e., Electric Vehicle (EV). For each flexible load, a
comfort time window is specified by the end-user based on
his specific needs, that may change eventually from day to
day. The details are reported in Table 6 of the Appendix 1.

5.2 Numerical results

The numerical results reported hereafter have been collected
considering a working day in winter.

We analyze the results from the aggregator’s side first.
Figure 2 reports the aggregator’s procurement plan and the
prosumer’s residual demand (red line).

Looking at the results, we may observe that during the
first hours of the day, when the electricity prices are lower,
the market is the only source of procurement. In particu-
lar, when the market price reaches the minimum value (at 5
a.m), the aggregator purchases an extra quantity of electric-
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Fig. 3 Aggregator: storage management

ity which is stored and then used to satisfy the demand over
the subsequent time periods. The management of the storage
device is detailed in Fig. 3 that reports the state of charge and
the amounts of electricity charged in and discharged from the
system in each time period.Wemay notice the use of the bat-
tery to decouple production from consumption. For example,
the unused energy produced during the central hours of the
day (10 a.m-2 p.m) is stored and used later in the evening.

Figure 4 shows the offered electricity rates for the con-
sidered day. We may notice that the tariffs follow the market
trendwith lower prices during the early hours of the daywhen
the electricity price in the market is lower. In response to the
price signals, the prosumer optimizes the management of the
local resources and the scheduling of the flexible loads, as
shown in Fig. 5 where the blue line represents the prosumer’s

Fig. 4 Offered tariff for a working winter day
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Fig. 5 Management of the home energy system

Fig. 6 Management of the prosumer’s storage device

load and the red bars denote the amount of energy purchased
from the aggregator.

Looking at the results, we may observe that flexible loads
are mainly scheduled (also according to the specified time
windows) during the first hours of the day when the offered
rates are lower. During some hours, e.g., 5–6 a.m., the pro-
sumer purchases an extra amount over the demand which is
kept in the storage system for later use. Production from PV
panels is partially used to satisfy the demand, during the cen-
tral hours of the day, whereas the unused amount is charged
into the battery and used later in the evening, as evident in

Fig. 6 that reports the management of the prosumer’s storage
device.

In what follows, we report the results of some additional
tests carried out with the aim of evaluating the impact of
different elements on the suggested pricing tariffs and the
management plans.

5.2.1 The impact of different interactions

The proposed model is quite general and encompasses, as
special cases, other possible configurations, such as the
retailer at the UL and the consumer at the lower one.
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Fig. 7 Retailer versus aggregator: offered tariffs

Fig. 8 Retailer versus aggregator: prosumer’s electricity purchase

Wefirst discuss the retailer case assuming that the follower
is still represented by a prosumer. Retailer-prosumer is a
classic interaction presented in other contributions, although
typically either the flexibility deriving from the controllable
loads or that related to the management of the storage sys-
tem is considered, but not both. The results provided by our
model are meaningful and optimize the prosumer’s response
to the retailer’s price signals.

Figure 7 shows the rates offered by the aggregator com-
pared to those applied by the retailer. We may notice that

during some time periods the prices are the same whereas
during others there is a slight variation. This results in a dif-
ferent response, in terms of the amount of electricity that the
prosumer purchases from the leader, as shown in Fig. 8. The
cost incurred by prosumer in both the configurations is the
same (4.33)whereas, as expected, the profit for the retailer is
lower since he actually purchases more electricity from the
market. In the case of the aggregator, energy is purchased
from the market only if the DA price is lower than the pro-
duction cost.

123



P. Beraldi, S. Khodaparasti

Fig. 9 Consumer versus Prosumer: purchased energy amount

When the follower is represented by a consumer, the
only response to the price signals is related to the possi-
bility of optimizing the scheduling of the flexible loads.
As expected, the aggregator’s profit is higher since the
amount of the electricity purchased by the follower increases.
In particular, the aggregator’s profit increase is around
21%.
Figure 9 reports the electricity required by the consumer. As
evident, during some hours of the day the prosumer buys
an amount in excess to the demand to store in the battery
and uses it in subsequent time periods. The cost incurred
by the consumer is around 30% higher than that of the pro-
sumer. This result confirms the importance of investing in the
home energy system. In addition to the obvious economic
advantage, there are environmental benefits which should be
considered in the spirit of moving towards sustainable solu-
tions.

5.2.2 The impact of the tariff structure

Final experiments have been carried out to assess the impact
of the tariff scheme. In particular, we have compared the
results of the hourly differentiated tariffs with those of the
classic ToU blocks. Following the organization of the Italian
market, we have considered three ToU blocks denoted as
peak (8 a.m.–6 p.m.), intermediate (7 a.m. and 7–10 p.m.)
and off-peak (1–6 a.m. and 11–12 p.m.).

The results are reported in Figs. 10 and 11 that show the
proposed ToU rates and the prosumer’s plan. As expected,
the prosumer optimizes the consumption pattern in response
to the offered tariffs. For the considered test cases, we have
observed a slight increase in the profit achieved by the leader
and a worsening of the prosumer objective function. This
behavior can be explained by observing that in the case of
rates differentiated for blocks of hours the prosumer’s reac-
tion might be less effective.

5.3 Managerial insights

The proposed BL model can be used as the core element of
a system to support decision makers in dealing with electric-
ity pricing problems. The model allows to consider different
stakeholders in the upper and lower levels and various tar-
iff schemes. Since the aim is to provide dynamic rates, the
model should be solved in an iterative manner, using updated
information on the main parameters involved in the decision-
making process in each execution in order to provide more
accurate solutions.

The analysis of the large set of numerical results clearly
shows that the problem solutions provide the stakeholder
with informative managerial insights on how the aggrega-
tor can set the electricity rates to maximize the profit and
how the prosumer can optimize the home energy system to
minimize the electricity bills.
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Fig. 10 ToU block versus hourly pricing schemes

Fig. 11 Prosumer plan

The results underline that greater benefits for the follower
side can be observed when considering a prosumer. The
greater flexibility, resulting from the possibility of accumu-
lating energy in the storage system in addition to scheduling
flexible loads, results in a decrease of the prosumer electricity
bill.

To have a more precise idea, we have run the experi-
ments for four typical days (as the representatives of the four
seasons) and we have then calculated the annual values by

multiplying the daily figures of a typical day for the number
of the typical days in each season. We have not considered
the difference between working and not working days.

Table 1 reports the average values of the aggregator and
prosumer objective functions for a typical day in each season.

The results show a slight reduction of the electricity bill
for the summer due to the higher production from renewable
sources, while higher costs are observed in the winter.
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Table 1 Results for all the
seasons

zA zP

Winter 2.497 4.510

Spring 2.083 3.516

Summer 2.029 3.389

Autumn 2.486 4.186

Table 2 Numerical results

Iteration LB LBB zP

1 2.689 2.688 4.223

2 2.628 2.688 4.136

3 2.773 2.773 4.281

4 2.824 2.824 4.332

5 2.773 2.824 4.281

6 2.682 2.824 4.139

Compared to the values recorded for the consumer, a
reduction of the annual electricity bill around 30% can be
observed. This substantial saving underscores the importance
for the follower to invest in domestic technologies.

5.4 Computational effort

Finally, we comment on the computational effort required
for solving the proposed BL problem. The results reported
below refer to the test case for the winter day, but similar
performance in terms of solution quality and computational
effort has been obtained also for the other test cases.

In the experiments, the maximum number of iterations
Itermax has been set to 50. Table 2 reports the results for the

Table 3 Results for all the
seasons

CPU (s)

Winter 31.09

Spring 30.06

Summer 31.13

Autumn 21.91

first 6 iterations, after which no improvement of the solu-
tion has been registered. In particular, the second and third
columns of the table, specified by the headings LB and LBB ,
report the UL objective function value associated with the
BL feasible solutions and the best UL objective value found
so far, respectively.
The last column shows the prosumer objective function asso-
ciated with the generated solutions. We should note that the
UL objective function value associated with the solution of
the initial HPR problem, which provides an upper bound, is
equal to 3.578.
Looking at the results, we may note that, as expected, an
improvement in the leader’s objective function (i.e., increase
in the aggregator’s profit) is associated with the deteriora-
tion of the follower’s objective (increase of the prosumer’s
electricity bill).

Figure 12 shows the objective function value of the first
30 BL feasible solutions. The solution corresponding to the
first iteration clearly shows the reaction of the follower to the
originally proposed tariff scheme. A deterioration of around
25% can be observed.
The plot shows that no trend can be observed in the solutions
generated by the heuristic approach. For the considered test,

Fig. 12 BL feasible solutions: aggregator’s profit
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Table 4 Nomenclature
Sets

T = {1, · · · , T } Set of time slots

J = {1, · · · , J } Set of shiftable loads

K = {1, · · · , K } Set of interruptible loads

Indices

t, t ′ Indices for T
j Index for shiftable loads in J
k Index for interruptible loads in K
Parameters

[l j , u j ] Comfort time window for shiftable appliance j

[lk , uk ] Comfort time window for interruptible appliance k

bt Base load at time slot t

N j Total duration required by appliance j

m j Required amount of electricity to be dedicated to appliance j

mk Required amount of electricity to be dedicated to appliance k

Qk Energy consumption of appliance k

C p Capacity of the prosumer’s battery

θ1 Storage system charge coefficient

θ2 Storage system discharge coefficient

C p
min Lower bound on the state of charge in the prosumer’s battery

C p
max Upper bound on the state of charge in the prosumer’s battery

socp0 Initial energy level in the prosumer’s battery

ψ
p
t Energy production of prosumer’s PV panels at time slot t

ψa
t Energy production of aggregator’s PV panels at time slot t

ηi Charging efficiency of the prosumer’s battery

ηo Discharging efficiency of the prosumer’s battery

Ca Capacity of the aggregator’s battery

Ca
min Lower bound on the state of charge in the aggregator’s battery

Ca
max Upper bound on the state of charge in the aggregator’s battery

soca0 Initial energy level in the aggregator’s battery

Δ Average tariff

ε Maximum energy production at time slot t

ε Minimum energy production at time slot t

pt Upper bound for tariff at time slot t

pt Lower bound for tariff at time slot t

δt Upper bound for energy purchased from bilateral contracts at time slot t

δt Lower bound for energy purchased from bilateral contracts at time slot t

uα
t Unitary production cost at time slot t

uβ
t The DA price at time slot t

uδ
t The price of energy purchased using bilateral contract at time slot t

Decision variables

Upper level decision variables

pt Tariff set by the aggregator at time slot t

inat Energy charged to the aggregator’s battery at time slot t
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Table 4 continued
outat Energy discharged from the aggregator’s battery at time slot t

socat State of charge for the aggregator’s battery at time slot t

γ ia
t Binary variables that indicates if the aggregator’s battery is charged at time slot t

γ oa
t Binary variables that indicates if the aggregator’s battery is discharged at time slot t

χt Binary variable that indicates the status of the aggregator’s production plant at time slot t

αt Amount of energy produced by the production plant at time slot t

βt Energy purchased from the DA market at time slot t

δt Energy purchased from the bilateral contract at time slot t

Lower level decision variables

zjt Binary variable indicating if appliance j starts operating at time slot t

ykt Binary variable corresponding to the state of the appliance k at time slot t

rt The amount of electricity that prosumer purchases from the aggregator at time slot t

inp
t Energy charged into the prosumer’s battery at time slot t

out pt Energy discharged from the prosumer’s battery at time slot t

socpt State of charge for the prosumer’s battery at time slot t

γ
ip
t Binary variables that indicates if the prosumer’s battery is charged at time slot t

γ
op
t Binary variables that indicates if the prosumer’s battery is discharged at time slot t

the best solution is registered during the first iterations (red
point).

In terms of the computational time, the algorithm is quite
fast. For a fixed value of the UL variables, the LL problem
becomes a MIP that can be solved by CPLEX in a few sec-
onds. The results for the test cases referring to all seasons are
shown in Table 3.

As evident, for all the tested instances, the computational
effort is limited and the average solution time is lower than
25 seconds.

6 Conclusions

In this study, we addressed the electricity pricing problem
with demand-side flexibility. We have modeled the interac-
tion between an aggregator and a prosumer as a Stackelberg
game formulated using a mathematical BL program. At the
UL, the aggregator optimizes the daily price profile with the
aim of maximizing the total profit. At the LL, the prosumer
modifies his consumption pattern by scheduling the flexible
loads and exploiting the available resources (PV system and
storage device).
The presence of integer variables at the LL prevents us
from applying the single-level reformulations that represent
a classical approach in the BL optimization literature. We
presented a heuristic method based on the optimal-value-
function reformulation which consists of generating a pool
of BL feasible solutions from which the best is chosen.
A large number of numerical experiments have been carried
out on real test cases. The results provide the stakehold-

ers with informative managerial insights and underline the
prominent roles of the aggregator and prosumer.

An extension of the proposed model could consider a
multi-follower variant where different types of prosumers
are jointly managed in the coalition.

An interesting research line of research would be the defi-
nition of BL formulations that take into account the uncertain
nature of some of the parameters involved in the decision-
making process, such as the spot market energy price and the
production from renewable energy sources.
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Appendix

The following table reports the nomenclature used in the
proposed BL model.

The data reported below refer to the local resources of the
aggregator. In particular, the production plant is assumed to
have a capacity of 3.5 kW, with a production cost of 0.053e
/ kWh. As for the PV panels, we have considered a system
of 3 kW with an average daily production of 11 kWh. Fig-
ure 13 reports the energy production for a typical day, one
for each season. Table 5 reports the data referring of the stor-
age system. A similar system has been considered for the
aggregator.
Data referring to the flexible loads are reported in Table 6.

Table 5 Input parameters:
storage system

Symbol Value

C p 3.8

C p
min 0.05 × C p

C p
max 0.95 × C p

socP0 0.19

θ1 0.95

θ2 0.95

ηi 0.98

η0 0.98

Table 6 Input parameter: Flexible loads

Shiftable load Interruptible load
LM CD DW VC EV

Required power: m. 0.6 1 0.9 0.5 3.7

Required duration: N. 2 2 2 1 –

Total amount: Q. – – – – 22.2

Time window [7,14] [19,24] [1,8] [8,15] [1,8]

Fig. 13 Electricity production from PV panels for a typical day of each season
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