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Dual-Stage Planning for Elastic Optical Networks
Integrating Machine-Learning-Assisted QoT

Estimation
Matteo Salani1, Cristina Rottondi2, Leopoldo Cerè1 and Massimo Tornatore3

Abstract—Following the emergence of Elastic Optical Networks
(EONs), Machine Learning (ML) has been intensively investi-
gated as a promising methodology to address complex network
management tasks, including, e.g., Quality of Transmission (QoT)
estimation, fault management, and automatic adjustment of
transmission parameters. Though several ML-based solutions for
specific tasks have been proposed, how to integrate the outcome
of such ML approaches inside Routing and Spectrum Assignment
(RSA) models (which address the fundamental planning problem
in EONs) is still an open research problem.

In this study, we propose a dual-stage iterative RSA op-
timization framework that incorporates the QoT estimations
provided by a ML regressor, used to define lightpaths’ reach
constraints, into a Mixed Integer Linear Programming (MILP)
formulation. The first stage minimizes the overall spectrum occu-
pation, whereas the second stage maximizes the minimum inter-
channel spacing between neighbor channels, without increasing
the overall spectrum occupation obtained in the previous stage.
During the second stage, additional interference constraints are
generated, and these constraints are then added to the MILP at
the next iteration round to exclude those lightpaths combinations
that would exhibit unacceptable QoT. Our illustrative numerical
results on realistic EON instances show that the proposed
ML-assisted framework achieves spectrum occupation savings
up to 52.4% (around 33% on average) in comparison to a
traditional MILP-based RSA framework that uses conservative
reach constraints based on margined analytical models.

Index Terms—Machine Learning; Routing and Spectrum As-
signment; QoT estimation;

I. INTRODUCTION

To cope with the never-ceasing growth of Internet traffic [1],
optical network design and management tools must constantly
evolve and incorporate new technical advances. In particu-
lar, the new paradigm of Elastic Optical Networks (EONs)
is characterized by the adoption of coherent transmission
technologies [2] (enabling higher spectral efficiency, e.g., by
means of adjustable modulation formats) and of a flexible
spectrum grid [3] that partitions the optical spectrum in fine-
grained frequency slots to better adapt channel bandwidths to
traffic requests. Overall, EONs achieve a much more effec-
tive spectrum utilization than traditional Wavelength Division
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Multiplexed (WDM) networks [4], but they come with a much
larger number of configurable transmission parameters that
sternly increase complexity of network management. The most
relevant of these parameters are:

• modulation format, baud rate and forward error correction
(FEC) code to be used for transmission.

• optical channel width and inter-channel spacing (i.e.,
spectral width between spectrally-adjacent channels),
which can now be finely tuned thanks to the flex-grid
paradigm.

The fundamental EON planning problem is the Routing
and Spectrum Assignment (RSA), which consists in assigning
to every traffic demand a lightpath (i.e, an all-optical end-
to-end circuit) connecting its source node to its destination
node over a commensurate spectral bandwidth. To check the
feasibility of an EON RSA solution, the Quality of Trans-
mission (QoT) of each candidate lightpath must be estimated
prior to its deployment, to evaluate which modulation format
can be safely used. In fact, the QoT of a lightpath is affected
by physical-layer impairments such as amplifier spontaneous
noise emission (ASE) and non-linear impairments (NLI) along
the route from source to destination. Hence, QoT estimation is
a fundamental preliminary phase, that is typically conducted
before running the RSA algorithm. State-of-the-art techniques
for QoT estimation usually rely on analytical models (such as
the Gaussian Noise (GN) model [5]), whose estimation accu-
racy substantially depends on how accurate is the knowledge
of transmission parameters that characterize the physical layer,
such as the type of used fiber, the noise figure of amplifiers,
the amount of interference generated by spectrally-adjacent
channels etc. Unfortunately, several of these parameters are
unlikely to be precisely known in real network deployments,
e.g., due to an incomplete equipment inventory, to deviations
from datasheet specs caused by aging, or to the unavoidable
ripple effect in amplifiers [6]. Inaccurate estimations then
translate in the need of adding conservative estimation margins
to account for uncertainties that, in turn, lead to significant
underutilization of network resources1.

Alternative QoT estimation approaches (as those based on
the Split Step Fourier Transform [8]) rely on direct simulation
of the signal propagation along the optical path and can

1Ref. [7] reports that throughput gains from 25% up to 300% - depending
on the network topology - can be achieved by avoiding margins traditionally
introduced to account for the uncertainty of physical-layer parameters.



achieve accurate estimations, but incur too heavy computa-
tional burden to ensure scalable and real-time decision making.

Recently, Machine Learning (ML) has been extensively
investigated as alternative methodology for QoT estimation,
potentially capable of avoiding the shortcomings of existing
techniques. ML directly leverages the knowledge extracted
from field data (e.g., the pre-FEC Bit Error Rate (BER), or the
Optical Signal to Noise Ratio (OSNR) of existing lightpaths
acquired by means of Optical Performance Monitors (OPMs)
[9]). Once trained with such data, supervised ML models are
then able to predict the QoT associated to previously unseen
lightpath configurations with very high accuracy and negligible
computational time. Low prediction timings are particularly
desirable when a wide range of what-if scenarios with large
network topologies need to be evaluated in constrained time,
e.g. for dynamic resource allocation or fault restoration pur-
poses.

Though several studies in the field of ML-based QoT
estimation and RSA have already appeared (see next Section),
the two tasks have been typically addressed separately, while
frameworks that integrate QoT prediction tools in RSA al-
gorithms have started appearing only recently. In particular,
coupling black-box ML models with explicit mathematical
formulation of combinatorial problems is an open research
topic (see [10]). This study moves towards the integration of
ML-based QoT estimation inside the optimization tools used to
solve RSA by explicitly adding constraints to avoid infeasible
solutions, by considering different features for the ML-based
QoT estimator, and by modeling secondary objective functions
that are eliciting promising solutions among equivalent ones,
for the sake of QoT satisfaction. We propose a dual-stage
iterative framework that ingests the QoT predictions of a ML
regressor as input for the definition of iteratively added inter-
ference constraints in a Mixed Integer Linear Program (MILP)
formulation for RSA, while considering multiple modulation
formats. During the first stage, a preliminary solution is found
with the aim of minimizing the overall spectrum occupation.
At the second stage, an enhanced version of the regressor
(that considers features characterizing the neighbor channels of
each lightpath, information which was not available initially)
is invoked to improve the QoT estimation by taking into
account inter-channel interference. This allows to generate
additional interference constraints that are added to the MILP
formulation to prevent the deployment of neighboring channels
that would lead to unacceptable QoT levels. Moreover, in
the second stage, the objective of the optimization procedure
is the maximization of the minimum inter-channel spacing
between two spectrally adjacent lightpaths, without increasing
the spectrum occupation value achieved in the first stage. We
show that, in our case study, the proposed framework saves
up to 52% in spectrum occupation with respect to a traditional
RSA solution with margined reach computations.

The rest of the manuscript is structured as follows. Re-
lated scientific literature is overviewed in Section II, whereas
Section III reports some background notions. In Section IV
the proposed iterative optimization framework is described,
whereas the MILP model that solves the Routing, Modulation
format and Spectrum Assignment (RMSA) problem and the

integration of MILP formulation and QoT classifier are de-
scribed in Section V and assessed in Section VI. Finally, the
last Section offers some conclusive remarks.

II. RELATED WORK

A. Machine Learning for RSA
In the last few years, ML has been widely investigated as

alternative methodological approach to accomplish a variety
of tasks required in optical network design, automation and
management. For a thorough review, the reader is referred to
the survey papers [11]–[13]. Focusing on RSA applications,
ML approaches have been devised to address the following
tasks:

a) QoT estimation in support of RSA: QoT estimation
can be applied either to forecast the transmission quality of
unestablished lightpaths by relying on observations collected
from the already deployed ones, or to monitor QoT excursions
of existing lightpaths for fault detection/identification scopes.
In this paper, we focus on the former scenario, where the
prediction problem can be formulated either as a binary
classification problem (i.e., the ML tool outputs a yes/no
answer, depending on whether the quality metrics of the
lightpath candidate for deployment are expected to satisfy a
predefined system threshold), or as a regression problem (i.e.,
the ML tool outputs the predicted numerical value for the
considered quality metric). The ML outputs can be ingested
by a network planning framework to take informed decisions.
The ML framework adopted in this study formulates the QoT
estimation task as a regression problem.

b) Lightpath routing: finding the best path in a graph is a
well-known optimization problem and several ML frameworks
devoted to such scope have recently appeared. The vast ma-
jority of them adopt graph-based neural networks, which are
specifically designed to embed the topological characteristics
of a graph in a latent space. Chapter 5 of the survey paper
[14] offers a complete overview on such techniques.

c) Spectrum assignment: once ligthpath routing is de-
fined, spectrum/wavelength assignment can still be performed
by means of ML approaches: Ref. [15] proposes a ML-
based wavelength reconfiguration method aimed at assigning
wavelengths to minimize channel power excursions during
optical circuit switching. The trained neural network is capable
of recommending wavelength assignments exhibiting power
excursions below 0.5 dB with above 99% precision.

d) Joint routing and spectrum assignment: The two tasks
of identifying a suitable route and a commensurate spectrum
portion for a traffic demand can be addressed by a ML
framework even jointly. Authors in [16] propose to convert the
standard Routing and Wavelength Assignment (RWA) problem
in a supervised classification problem. Given as input traffic
matrix in an optical WDM network, either a logistic regressor
or a deep neural network maps each traffic demand to a
sequence of links and wavelength assignments. The study
shows that nearly optimal solutions can be obtained, while
drastically reducing computational time in comparison to a
traditional ILP approach.

In [17], a deep neural network is used to implement RSA
strategy selection for a given traffic demand, under preliminary



calculation of a predefined number of shortest paths. The ML
framework also takes into account a spectrum fragmentation
index. Results show that the achieved blocking probability and
spectrum fragmentation are both lower than those obtained by
a traditional combination of shortest path selection plus first
fit spectrum allocation.

Moreover, reinforcement learning frameworks for routing,
modulation format and spectrum assignment have been de-
vised for dynamic network scenarios [18], also implementing
survivable design approaches [19].

All the references mentioned so far (except [16]) consider
heuristic design approaches for dynamic traffic scenarios,
which do not provide any guarantee of optimality. Differently,
this study focuses on a static traffic scenario and ensures
minimum spectrum occupation, assuming the availability of
multiple modulation formats. With respect to [16], which
considers a traditional WDM grid, we model a flexi-grid and
use dedicated constraints to capture the interference caused
by spectrally-adjacent channels: the QoT estimator is called
iteratively to enrich a MILP formulation for RMSA, whose
constraints gradually gain knowledge on intereference caused
by neighbor channels, based on the optimal network config-
uration calculated at the previous round. Moreover, all the
studies above do not consider the optimization of inter-channel
spacing between spectrally adjacent optical channels, whereas
in our dual-stage framework we optimize the inter-channel
spacing with the aim of minimizing inter-channel interference
without increasing the index of the rightmost occupied slice
in the whole network. Note that, though advanced exact
algorithms based on Dantzig-Wolfe decomposition and column
generation have been proposed in [20] and [21], the purpose of
the present study is not to provide a faster and more scalable
algorithm for RSA, but rather to move some steps towards
the integration of ML-based models in exact or heuristic
algorithms for RSA.

B. Integration of QoT predictors in RSA frameworks
Several approaches to solve RSA in EONs have been

investigated in the past decade (see [22], [23] for a recent
survey). A consistent literature body on impairment-aware
RSA is also available, though the vast majority of the QoT
estimation methods therein adopted do not leverage ML, but
analytical formulas such as those based on the GN model.
Indeed, only a few studies have investigated how to integrate
the outputs of ML-based QoT estimators in traditional RSA
frameworks. Table I provides a taxonomy of QoT estimation
and RSA methodologies and categorizes illustrative references,
that are briefly reviewed in the remainder of this Section.
In the following, we will adopt the acronyms used in the
Table to identify the six categories therein reported, i.e., ML-
HA, AM-HA, ML-LP, AM-LP, ML-RL, AM-RL. Note that,
depending on the specific QoT estimation method and RSA
algorithm being adopted, the interaction between the two
methodological components may vary significantly. More in
detail, from the functional point of view we can categorize
the types of interactions in three broad groups:

• Group 1: QoT-aware RSA approaches where QoT esti-
mations (mainly, signal reaches) are pre-calculated and

leveraged as inputs to RSA algorithms (either heuristics
or linear programs) with no further involvement of the
QoT estimation tools during the RSA computation phase;

• Group 2: QoT-aware reinforcement learning frameworks
for RSA, in which QoT estimations are instrumental for
the learning phase of a reinforcement learning algorithm
to compute the agent’s rewards, but are not considered
during the execution of the RSA algorithm itself;

• Group 3: iterative approaches where QoT estimations are
given as inputs to RSA heuristic algorithms or linear pro-
grams and the algorithms’ outputs are further exploited
to refine a next round of queries to the QoT estimation
tool, in a closed-loop fashion, until a given optimality
condition is met or no further improvements are obtained.

To the best of our knowledge, this study represents the first
attempt of iterative integration of a ML-based QoT estimator
in a linear program for RSA (i.e., it falls in the category ML-
LP of Table I and in Group 3), which couples the advantages
of avoiding over-conservative predictions (and, hence, under-
utilization of network resources) typical of margined analytical
approaches, with the optimality (or close-to-optimality with
known gap) of solutions found by linear program solvers. It is
worth mentioning that closed-loop approaches falling in Group
3 have already been adopted to tackle other problems in optical
networking, e.g., the optimization of launch powers [24] and
the modeling of gain ripple and filter penalties in erbium-
doped fiber amplifiers [25].

Among the studies that belong to category ML-HA, in [26]
the output of a neural-network-based Q-factor estimator is
exploited by a heuristic algorithm for dynamic routing and
spectrum assignment in a multicast scenario. The algorithm
first identifies a lightpath/ligthtree from the source to the set
of destinations and a feasible wavelength assignment, then
queries the classifier to learn whether the predicted Q-factor
is above a predefined threshold. If yes, the traffic demand is
allocated, otherwise a new routing and spectrum allocation is
identified and the classifier is queried again, until a feasible
allocation is found or the request is blocked. Note that an
infeasible outcome does not trigger any rearrangement of the
already deployed traffic.

Authors of [27] propose a ML-based approach for inter-core
crosstalk estimation in optical networks with multicore fibers.
The proposed regressor is queried by a heuristic algorithm
for core, route and spectrum assignment. In [29], a fuzzy C-
means clustering algorithm is adopted to evaluate candidate
lightpath configurations in an optical network with multicore
fibers: for a newly incoming traffic request, once the set of
feasible options in terms of route, spectrum and core allocation
are identified, the ML algorithm chooese the most suitable
option for the service’s transmission needs, depending on its
associated service level, which is then exploited by a heuristic
algorithm for resource allocation. In both studies, the heuristic
algorithms adopt working principles analogous to those of the
algorithm in [26].

In [28], a ML-based traffic predictor and a QoT estimator
leveraging deep neural networks are integrated in a Rout-
ing, Modulation format and Spectrum Assignment (RMSA)
heuristic algorithm implemented in the broker plane for multi-



TABLE I: Taxonomy of illustrative studies integrating QoT estimation techniques in RSA routines

RSA approach
Heuristic Algorithm (HA) Linear Progam (LP) Reinforcement Learning Agent (RL)

QoT estimation approach Machine Learning (ML) [26] [27] [28] [29] This study [30]
Analytical Models (AM) [31] [32] [33] [34] [35]

domain EONs. Again, the QoT estimator is leveraged in an
open-loop fashion and its performance is benchmarked against
a traditional transmission-reach-based RMSA scheme. Note
that, from the functional point of view, all the above mentioned
studies belong to Group 1.

Considering now category AM-RL, in [35] a QoT-aware
dynamic resource allocation scheme in EONs based on deep
reinforcement learning is proposed. The reinforcement learn-
ing agent is fed with information about the incoming traffic
request and the overall network state. The feasibility of the
attribution of a given modulation format is determined based
on the GN model and used to calculate the agent’s rewards.
A similar reinforcement learning approach is adopted in [30]
for impairment-aware modulation format and wavelength as-
signment in a WDM network, but in this study the QoT
prediction model leverages neural networks (i.e., it falls in
category ML-RL). Note that, in both studies, the outcome of
the reinforcement learning model is not a QoT prediction but
an action such as deploying/dropping a channel. The QoT
estimation phase is instead used to determine the agent’s
rewards. From the functional point of view, the two latter
studies belong to Group 2.

Moving to category HA-LP, in [31] analytical formulas are
leveraged in a 3-stages RSA procedure for path computation
and modulation format assignment (stage 1), followed by
path selection (stage 2) and spectrum assignment (stage 3)
performed via heuristic approaches. QoT estimations are used
as inputs to stage 1 for modulation format assignment.

For what concerns category AM-LP, authors of [32] leverage
precomputed crosstalk and non linear impairments values,
based on the GN model, as input parameters to a mixed integer
linear program for RSA in EONs. Functionally speaking, these
two references belong again to Group 1.

In [33], [34], an iterative approach is proposed to solve
a physical-impairment-aware linear program for routing and
wavelength assignment in WDM optical networks. The first
fundamental methodological difference with our study is that
in those papers the iterative approach is aimed at fixing
and rounding variables, and not at refining QoT estimations.
Physical layer impairments are taken into account by dedicated
variables and constraints in the mathematical formulation,
where margined QoT thresholds (obtained using analytical
formulas) are adopted as bounds to the maximum amount of
tolerable interference/noise. So, despite adopting an iterative
resolution approach, since the iterations do not involve the
QoT estimation phase, from the functional point of view
these studies also belong to Group 1. Differently, in our
proposed approach we adopt a ML-based QoT estimation
method, which reduces margins due to its accurate prediction
capabilities. Moreover, the iterative approach adopted in the
second stage of our dual-stage framework is instrumental to

adding new constraints with the aim of excluding lightpaths
with unacceptable QoT, evaluated by means of a different ML
model that adopts a wider set of input features with respect to
that adopted in the first stage, thus taking into account also the
impact of spectrally-adjacent lightpaths. Since every iteration
implies a new set of queries to the QoT estimator, our approach
falls into Group 3.

Note that a preliminary version of this study appeared in
[36]. With respect to [36], we move from a classification-
based to a (more practical) regression-based ML framework
for QoT estimation and we evolve the iterative optimization
framework therein proposed in a two-stage procedure, which
drastically reduces the number of iterations required to achieve
a feasible solution. Furthermore, we consider a slice-based
RSA MILP formulation, which explicitly enumerates spectral
slots, allowing to decrease the complexity of the MILP.

III. BACKGROUND

A. QoT ML Regressor

In this study we adopt two ML regressors for BER estima-
tion inspired by the QoT classifier described in [37], which
predicts the probability that the BER of a candidate lightpath
will remain below a predetermined acceptability threshold
(note that reference [37] also provides a detailed discussion
on the choice of the learning algorithm to be adopted by the
classifier and a thorough performance evaluation of the achiev-
able classification accuracy). While in [36] we consider a ML
classifier, in this study we prefer ML regression that possesses
some advantages over classification: since a classifier outputs
the probability that a lightpath configuration belongs to a given
class, in order to convert this probability in a binary decision
(i.e., whether the configuration is feasible), an acceptance
threshold must be defined. Such threshold is provided as
input during the training phase and must be properly tuned
to achieve the best trade-off between false negatives and false
positives. Conversely, when adopting a regressor, it is sufficient
to specify a desired BER threshold “ex-post” as input to
the MILP model to define the acceptability of a lightpath
configuration based on the predicted BER value. Therefore,
changing the BER threshold value does not impose to retrain
the regression model, whereas a classification model would
require a new training phase.

During the training phase, a set of lightpath instances
constituted by a number of features is provided as input



to the regression algorithm2. More in detail, the features
characterizing a given lightpath k include:

• the lightpath total length, Lk;
• the length of the longest link included in the lightpath,

Lmax
k ;

• the number of links traversed by the lightpath, lk;
• the amount of traffic to be served, d;
• the modulation format to be adopted for transmission, m.

Each training instance is associated to a BER value. In the
rest of the paper, we will call a ML-regressor fed only with
features of the incoming lightpath (or “ML regressor par-
tial knowledge”). Optionally, additional features characterizing
the spectrally nearest left and right neighbor channels, co-
propagating along at least one link of lightpath k may be
provided as input. Those include:

• the size of the left/right inter-channel spacing separating
lightpath k from its nearest neighbor channels, gl, gr (note
that gl, gr are integer multiples of the slice width and
must be at least as large as the guardband size, which is
equal to one spectrum slice);3

• the traffic volume served by the left/right neighbors,
dl, dr;

• the modulation format adopted for transmission along the
left/right neighbors, ml,mr.

In the rest of the paper, we will call a ML regressor trained
also with features pertaining to interferers as “ML regressor
with complete knowledge”).

For a newly incoming traffic request, multiple queries can
be issued to the regressor to evaluate the suitability of dif-
ferent deployment configurations in terms of route, spectrum
allocation and modulation format.

B. Etool for Framework Validation

Due to the unavailability of public datasets containing a
large enough amount of BER measurements gathered by
operators from ligthpaths deployed in their optical network
infrastructures, in this study we leverage data synthetically-
generated by means of the Etool presented in [37]. The
Etool simulates a linear optical communication system affected
by chromatic dispersion and additive white Gaussian noise
(AWGN) and outputs the value of the uncoded BER at the
input of the FEC soft decoder (pre-FEC BER). Note that,
under the AWGN assumption, the pre-FEC BER depends on
the pre-FEC signal-to-noise ratio (SNR) and on the modulation
format.

Given a lightpath, the pre-FEC SNR is estimated by means
of the link budget, which accounts for the transmitted power,

2Without loss of generality, in this study we assume that the regression
algorithm is well-trained, i.e., that the size of the training dataset is adequate
to achieve satisfactory prediction accuracy and that the training samples are
uniformly distributed across the whole feature space. A discussion on how
to deal with training datasets of reduced size is out of the scope of this
paper: the interested reader is referred, e.g., to [38], [39] for a discussion on
active/transfer learning techniques that can be adopted to cope with training
data scarcity.

3Note that, due to spectrum fragmentation, two spectrally-adjacent channels
sharing one or multiple links could be separated by more than one unoccupied
spectrum slice.
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gains and losses along the route. In particular, the Etool
assumes transparent links constituted of dispersion uncompen-
sated standard single-mode fibers and that the signal power is
restored by identical optical amplifiers, equally spaced over the
links (100 km), with gain 20 dB and noise figure 5 dB. On top
of this link budget, a negative-exponential random additional
penalty with 1 dB average is added, mimicking uncertainty
in transmission parameters knowledge. According to [40], in
the remainder of the paper we will set the pre-FEC BER
threshold to th = 4 · E−3. Readers are referred to [37] for
additional insights on the Etool assumptions and calculations.
The calculation of the QoT of a deployed lightpath with the
Etool requires about 60 to 80 seconds. Hence, the evaluation
of the QoT of a single solution provided by our proposed
framework would require hours (about 3 hours for the Japan
network topology considered in Section VI) rendering it an
impractical choice as a direct solution exploration tool.

IV. INTEGRATED ITERATIVE PLANNING FRAMEWORK

In the following subsections, we first formally state the RSA
problem version solved in this study. Then we provide a high-
level view of our proposed planning framework and describe
benchmark frameworks that will be considered for comparison
in the performance assessment reported in Section VI. Those
include a baseline MILP-based RMSA solving method and
two novel frameworks to incluce interference constraints with
ML intelligence, first proposed in [36].

A. Problem Statement

The RSA problem can be defined as follows: given a
directed graph representing a network topology and a number
of traffic requests between source-destination nodes belonging
to the graph, for every request a lightpath must be identified
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to convey the traffic from the source node to the destina-
tion node and a spectral channel must be attributed to the
lightpath to allocate the optical signal in a commensurate
spectral bandwidth. Spectrally neighbouring channels must be
separated by guardbands to allow for proper signal filtering
and switching. Note that the severity of the inter-channel
interference between spectrally adjacent channels depends
on the inter-channel spacing: for this reason, interference
constraints need to be inserted to prevent configurations that
would lead to unacceptable degradation of the lightpaths’ QoT.
Each channel must be equipped with a number of optical
transceivers, which depends on the amount of traffic to be
served and on the spectral efficiency of the modulation format
adopted for transmission. If multiple modulation formats can

be used, the problem evolves in RMSA and must incorporate
reach constraints that define the feasibility of the deployment
of a ligthpath along a given route4.

B. Baseline Design Framework with Margined Reach Con-
straints

In existing MILP models for RMSA, reach constraints are
defined based on pre-computed reach values calculated by
means of margined analytical formulas (see Fig. 1). Such
margins are required to account for a number of unavoidable
uncertainties discussed in Section I. Margined reach computa-
tions ensure an acceptable QoT, but the added margins may be
too conservative, thus leading to underutilization of network
resources. In this case, there is not need for interference
constraints, as margined formulas ensure reachability also in
case of maximum interference (“full load assumption”). In the
following, this design framework will be named as margined.

C. ML-Based Reach Constraint Design Framework

A simple integration of a QoT estimation algorithm in a
MILP model for RMSA [36] is depicted in Fig. 2. It consists
in replacing the margined reach computations with a ML-based
regressor with partial knowledge that, on input of a query for
every possible combination of traffic volume, route and mod-
ulation format, estimates whether the considered combination
is feasible. Based on such prediction, reach constraints can
be defined and included in the MILP model. Unfortunately,
also this integration does not consider interference between
lightpaths, which may lead to infeasible solutions. We report
this possible integration for the sake of completeness but
we do not use it in our computational study. Indeed, in
[36] we showed the superiority of an iterative framework,
described in the next subsection, at finding feasible solutions
with substantial spectrum savings with respect to the margined
approach.

D. ML-Based Iterative Reach Constraint Design Framework

The ML-based regressor with partial knowledge discussed
in the previous subsection may be subject to errors, due
to lack of information about the value of some features
not considered by the learning model. Such errors could be
reduced, if the ML-based regressor with complete knowledge is
used, as it is fed with additional information on the spectrally
adjacent channels co-propagating along the liks traversed by
the considered lightpath (such as, e.g., their traffic volume,
modulation format and inter-channel spacing). Unfortunately,
even considering only the spectrally nearest left and right
neighbor channels, an a-priori ML-based estimation for all
possible configurations of a lightpath and its neighbor channels
is computationally infeasible in realistic scenarios. As an
example, let us assume that traffic demands may have 8
different sizes (e.g., from 50 Gbps to 400 Gbps with 50
Gbps granularity), that 6 modulation formats are available and
that inter-channel spacings may have 10 different widths, for

4Note that higher traffic means a larger number of transceivers in the same
optical channel, hence higher intra-channel interference.



each ligthpath the feasibility of 63 · 83 · 102 = 11,059,200
configurations should be pre-computed. Therefore, integrating
information on interference of neighboring channels in RMSA
models introduces huge scalability issues5.

To overcome such limitations, in [36] we proposed an
iterative procedure that, after finding a solution to the ini-
tial RMSA formulation, for each lightpath in the solution,
issues a query to the ML-based QoT estimator containing
the exact features of that lightpath and of its neighboring
channels (hence, there is no need to account for all possible
cases as in the previous example). If the estimator returns a
negative outcome (i.e., the ligthpath QoT is not acceptable), an
additional constraint is added that excludes from the RMSA
solution the unacceptable deployment of the ligthpath and of
its neighbors. The process is repeated iteratively, until either
a feasible solution for all lightpaths is found, or a maximum
number of iterations is reached. In the following sections, this
framework will be referred to as iterative. Fig. 3 provides a
graphical representation of this iterative procedure.

E. ML-Based Dual-stage Iterative Design Framework

In this study, we enhance the iterative procedure in [36],
using a dual-stage framework, as shown in Fig. 4. The goal
of the dual-stage framework is to reduce the number of
iterations required to obtain a valid solution, with the scope
of improving the scalability to larger network topologies. To
this aim, the idea is to introduce an additional optimization
stage after the initial resolution of an RMSA instance, to
increase the probability that every lightpath belonging to the
selected network configuration exhibits sufficiently low BER.
While the framework proposed in [36] leads to a degradation
of the quality of the solution as it assigns lower modulation
formats to the lightpaths with unacceptable BER, the proposed
framework tries to re-optimize the spectral assignment of those
paths. In this way, since larger inter-channel spacings reduce
crosstalk between spectrally-adjacent channels, the duration of
the subsequent iterative phase required to find a valid solution
is expected to be reduced, thus shortening the execution time
and preserving the quality of the solution. In case the new
spectral assignment is still inadequate to provide a valid
solution, also the new framework resorts to less efficient
modulation assignments as done in [36].

F. Complexity discussion

All four frameworks illustrated in Figs. 1 to 4 rely on
commercial solvers to optimize the MILPs associated with the
RMSA problem. RMSA is a problem belonging to the class of
NP-Hard problems. Unless P = NP , the solution of RMSA
requires, in the worst case, an exponential time in the size of
the instance. Anyway, modern solvers (such as Gurobi [41],
used in the following experiments) show acceptable behavior

5In our considered scenarios, for the case of the Japan network topology
with 14 nodes and 22 links reported in fig. 5, the overall number of QoT
pre-computations considering an all-to-all traffic matrix would be in the order
of 109. Since the evaluation of the QoT of a deployed lightpath via the Etool
requires about 60-80 seconds, that would lead to a computational time of
roughly 1900 years.

for moderate sized instances. Furthermore, for the purpose of
this study, reaching proven optimality is not strictly necessary.
We thus accept solutions with an optimality gap proven by the
solver below 2%.

Note that the RMSA problem solved by the iterative frame-
works, illustrated in Figs. 3 and 4, is a relaxation of the
RMSA solved by the margined framework illustrated in Fig.
1, because all modulation and path selection pairs that are
acceptable for the margined framework are also acceptable
for the iterative frameworks. As a consequence, if a feasible
solution for the margined framework exists, it is guaranteed
that by eliminating modulation and path selection pairs that
result infeasible in terms of QoT with the addition of con-
straints, the iterative frameworks eventually converge to the
same feasible solution of the margined framework, in the worst
case. Anyway, as already shown in [36], we expect that these
frameworks find feasible and more efficient solutions than the
margined framework adding just a few constraints. We also
expect that iterative frameworks are capable of finding feasible
solutions for problems that cannot be solved by the margined
framework due to the limited optical bandwidth.

The iterative frameworks eliminate a different modulation
and path selection pair per iteration. Thus, the theoretical
number of iterations required to convergence is bounded by a
function of order O(|M |2 · |K|2). While this number is finite,
the size of the constraint set can grow quite dramatically with
the size of the instance. For this reason, reducing the number
of iterations is of paramount importance for the practical
application of the proposed frameworks. The purpose of the
proposed dual stage framework of Fig. 4 is to minimize the
number of additional constraints necessary to converge to a
feasible solution.

Despite the above mentioned theoretical shortcomings, the
numerical assessment provided in Section VI shows that, in all
our practical case studies, integrating a fast but accurate QoT
estimation in the RMSA results in large spectrum savings and
feasible solutions in terms of QoT.

V. THE RMSA PROBLEM FORMULATION

A. Assumptions and Notations

We consider an arbitrary network topology represented by
an undirected graph G = (V, E), where V is the set of nodes
and E is the set of bidirectional links. Each link e ∈ E is
characterized by a length Le. A static traffic matrix D = [dsd]
of traffic requests between each node pair (s, d) ∈ T =
{V×V : s ̸= d} defines the traffic volume generated by source
node s and directed to destination node d. To simplify the
notation, in the following a traffic request between the (s, d)
pair will be denoted as an element t of set T . For each request
t, a set of candidate lightpaths Kt is predefined. We assume
that such set contains the k shortest paths (i.e., |Kt| = k).
The length of a lightpath is defined as Lk =

∑
e∈k Le.

For each lightpath, the length of its longest link is denoted
as Lmax

k = maxe∈k Le. The number of links traversed by
lightpath k is denoted as lk = |{e ∈ E : e ∈ k}|. We assume
that optical fiber spectrum is subdivided in a flexible grid with
standard slice width of F GHz and elastic transceivers with



optical bandwidth of B GHz (where B is an integer multiple
of F ). Note that in the formulation we adopt a slice-based
model to represent spectrum occupation. Superchannels with
multiple adjacent transceivers are used to serve traffic demands
exceeding the capacity of a single transceiver. Spectrally
neighboring (super)channels are separated by an optical inter-
channel spacing of G GHz (where G is an integer multiple
of F ). Transceivers operate at one of the modulation formats
within a given set M , which results in a capacity of rm Gbps.

B. MILP Formulation

Let us introduce the MILP formulation of the slice-based
RMSA problem.

Sets:
• T , set of (s, d) pairs
• Kt, set of feasible lightpaths between (s, d) pair t ∈ T
• K = ∪t∈TKt, set of all lightpaths
• M , set of modulation formats
• O ⊆ K×K as the set of path pairs such that (k1, k2) ∈ O

if and only if k1 and k2 share at least one link. We assume
k1 < k2, that is O is a set of ordered pairs of paths.

Parameters:
• Q, positive constant (greater than the maximum number

of transceivers that could be needed to serve a demand)
• G, inter-channel spacing size
• B, bandwidth of a transceiver
• λm

k , 1 if modulation m ∈ M is compatible with path
k ∈ K, 0 otherwise

• dt, traffic demand for (s, d) pair t ∈ T
• rm, transceiver capacity operating at modulation m ∈ M
• S, the available bandwidth as a multiple of the slice size

F .
Variables:
• bmk , integer, number of transceiver pairs (one installed

at node s, another at node d) with modulation format
m ∈ M serving traffic t ∈ T on path k ∈ Kt

6

• βm
k , binary, 1 if modulation m ∈ M is used to serve

traffic t ∈ T on path k ∈ Kt

• 0 ≤ Smax ≤ S, index of the rightmost slice occupied
along any network link

• fk ≥ 0, starting frequency of transmission on path k ∈
Kt as a multiple of the slice size F .

• dk1,k2, binary, 0 if starting frequency on path k1 is lower
than the starting frequency on path k2, (k1, k2) ∈ O

Objective Function:

z1 = minα1 · Smax + α2 ·
1

|T |
·B ·

∑
m∈M

∑
k∈K

bmk (1)

The objective function (1) minimizes a weighted sum of two
contributions: the first component is the index of the right-
most slice occupied along any network link (this objective is
commonly employed with the goal of leaving room for future
connections), the second summation computes the average
spectrum occupation per lightpath.

6Note that, as path k is uniquely associated to a source-destination pair
t = (s, d), subscript t is omitted to simplify the notation in all the variables.

Constraints:∑
m∈M

∑
k∈Kt

βm
k = 1 ∀t ∈ T (2)

bmk ≤ λm
k ·Q · βm

k ∀m ∈ M,∀k ∈ K (3)∑
m∈M

∑
k∈Kt

rm · bmk ≥ dt ∀t ∈ T (4)

fk +
∑
m∈M

B · bmk +G ≤ Smax ∀k ∈ K (5)

fk1 +
∑
m∈M

B · bmk1 +G− fk2

≤ S · dk1,k2 ∀(k1, k2) ∈ O (6)

fk2 +
∑
m∈M

B · bmk2 +G− fk1

≤ S · (1− dk1,k2) ∀(k1, k2) ∈ O (7)

Constraints (2) state that each traffic demand uses only
one modulation format; constraints (3) impose that all the
transceivers installed on lightpath k use the same modulation
format m and that modulation format m can be used on
lightpath k only if compatible with its length; constraints
(4) state that traffic demand t must be satisfied by the total
capacity of the transceivers installed at the two end nodes;
constraints (5) state that all lightpaths must be routed within
the available bandwidth; constraints (6) and (7) state that
two lightpaths sharing at least one link should not spectrally
overlap.

In [36] we proposed a ML classifier to set the value of the
paremeter λm

k . As described in section III-A, in this paper we
instead use a ML regressor. More in detail, for the margined
framework, we compute λm

k with state-of-the-art margined
formulas where the reach (i.e. maximum distance) coverable
for a given modulation format and traffic volume is obtained
as in [40], whereas in the ML-based iterative frameworks, we
compute λm

k based on the output of the ML regressor.
In particular, given a reference value BERmax, λm

k is set
as follows:

λm
k =

{
1 if BER(Lk,Lmax

k , lk, dt,m) ≤ BERmax

0 otherwise

In Section VI we explore different values of BERmax.

C. Iterative Slice-based RMSA Model
When the solution check step illustrated in Fig. 3 returns

a negative outcome for a given solution (i.e., at least one
ligthpath exhibits a non acceptable QoT), the framework adds
additional constraints. Let β∗ be the vector of optimal path
selection and modulation assignment variables. Let K ′ be
the set of infeasible lightpahts. For each pair (m′, k′) ∈
M × K ′|β∗m′

k′ = 1 (i.e. each pair of modulation format
and path selected in the solution) let kl′ and kr′ be the
closest spectrally adjacent deployed lightpaths thus forming an
infeasible triplet (k′, kl′, kr′) and their respective modulation
formats (m′,ml′,mr′). The framework adds the following
constraints:

βm′

k′ + βml′

kl′ ≤ 1 (8)

βm′

k′ + βmr′

kr′ ≤ 1 (9)



These cuts prevent the selection of the same solution, fun-
damentally by reducing the spectral efficiency of the allotted
modulation format on a given pair of network paths.

D. Two-stage Slice-based RMSA Model

Let z∗ be the optimal solution of problem (1) s.t. (2) -
(7) and β∗m

k , b∗mk and S∗
max be the optimal values of the

variables. Let wk1,k2, for (k1, k2) ∈ O, be new variables
representing the distance between assigned frequency slots for
paths k1 and k2 (i.e., the inter-channel spacing size, expressed
as multiple of the slice size F ). The second stage model
aims at designing new starting frequencies for the deployed
paths with the guarantee of achieving the same performances
in terms of spectrum occupation (i.e. value of the objective
function (1)). We therefore want to maximize a function of the
distance between pairs of paths sharing at least one link. The
formulation of the second stage model is defined as follows:

z2 = maxh(wk1,k2)

fk +
∑
m∈M

B · b∗mk +G ≤ ξ · S∗
max ∀k ∈ K (10)

fk1 +
∑
m∈M

B · b∗mk1 +G− fk2

≤ S · dk1,k2 ∀(k1, k2) ∈ O (11)

fk2 +
∑
m∈M

B · b∗mk2 +G− fk1

≤ S · (1− dk1,k2) ∀(k1, k2) ∈ O (12)

wk1,k2 ≤ fk1 − fk2
∑
m∈M

B · b∗mk2

−G+ S · (1− dk1,k2) ∀(k1, k2) ∈ O (13)

wk1,k2 ≤ fk2 − fk1 −
∑
m∈M

B · b∗mk1

−G+ S · dk1,k2 ∀(k1, k2) ∈ O (14)

where h(·) is a function that will be defined later and ξ ≥ 1
is a design parameter. When ξ = 1 the objective function z1
cannot be worsened by the optimization of z2 under constraints
(10) - (14), indeed β∗m

k , b∗mk and S∗
max are constants for this

model and for the same reason constraints (2), (3) and (4) are
no longer needed.

Constraints (10)-(12) guarantee that only the available spec-
trum is used and that lightpaths sharing at least one link do
not spectrally overlap. Constraints (13) and (14) compute the
spectrum distance in slices between any pair of lightpaths
sharing at least one link. Note that at optimality, as variables
wk1,k2 are not constrained elsewhere in the model and the
objective function is a maximization, constraints (13) and (14)
will be satisfied at equality, thus wk1,k2 models the inter-
channel spacing size that separates paths k1 and k2 along their
common link(s).

In this paper we explore two possible objective functions h
for the second stage model. The first one is defined as:

z12 = max
∑

(k1,k2)∈O

ηk1,k2 · wk1,k2

which is a simple linear function of the spectrum inter-
channel spacing, where the coefficient ηk1,k2 equals 0 for
feasible lightpath pairs in the solution of (1) - (7) and is pro-
portional to the estimated BER violation for infeasible ones.
More in detail, let γk1,k2 be the BER violation normalized
between -0.5 and 0.5 with respect to the worst BER violation
found. The parameter ηk1,k2 is set to:

ηk1,k2 = 1− γk1,k2

That is, all paths violating the BER threshold get a positive
weight, which is higher for those that are more problematic.
We refer to this model as MIN-SUM.

The alternative objective function we consider is:

z22 = max min
(k1,k2)∈O

wk1,k2

which aims at maximizing the smallest inter-channel spacing
between any pair of paths. It is a non-linear function that can
be trivially linearized as follows, with the help of an auxiliary
variable and a set of constraints:

z22 = maxw

w ≤ wk1,k2 ∀(k1, k2) ∈ O (15)

We refer to this model as MAX-MIN.

VI. NUMERICAL RESULTS

A. Simulation Framework

We consider the Japan network topology depicted in Fig. 5,
with 14 nodes and 22 links. We assume the usage of a
flexible grid with standard slice width of F = 12.5 GHz [4]
and elastic transceivers operating at 28 Gbaud with optical
bandwidth B = 37.5 GHz (i.e., 3 slices). The minimum inter-
channel spacing size, i.e., the guardband size, is set to one
slice, i.e., 12.5 GHz. The available spectrum over each link is
4 THz (i.e., 320 slices). The set M of modulation formats
includes dual polarization (DP)-BPSK, DP-QPSK and DP-
n-QAM, with n = 8; 16; 32; 64, resulting in capacities of
50, 100, 150, 200, 250, 300 Gbps, respectively. We consider 8
all-to-all traffic matrices (i.e., |T | = 14 × 13 = 182) with
random traffic requests uniformly distributed among the sam-
pling set M = {50, 100, 150, 200, 250, 300, 350, 400} Gbps.
It follows that, in our instances, superchannels consisting of
up to 8 adjacent transceivers can be deployed (e.g., in the
case of a 400 Gbps request served with DP-BPSK). Margined
transmission reaches for each combination of traffic volume
and modulation format are reported in Table II. It should be
noted that the usage of multiple spectrally-adjacent transceiver
pairs in a superchannel leads to a significant increase in
the intra-channel interference due to nonlinear interactions,
which is numerically evaluated using the approach provided
in [42]. For example, a 100 Gbps request can be served using
one transceiver pair operating with QPSK modulation format
(which occupy 37.5 GHz), or two transceiver pairs operating
with BPSK modulation format (which occupy 37.5 · 2 = 75
GHz). However, with the former configuration, the maximum



achievable transmission reach is 3300 km, whereas with the
latter only 1700 km.

Instances are listed in Table III, characterized by their
maximum and average traffic per request and total traffic.
The instances we consider are representative of a nation-
wide network with link distances in order of hundreds of
kilometers (e.g., from 40 to 320) and traffic matrices ranging
from low congested cases, with average traffic of 76.65 Gbps
per request, to high congested cases of up to 264.0 Gbps
per request. Note that, since reaches depend not only on
modulation formats but also on traffic volumes, traffic requests
are generated so that, for the corresponding shortest path, there
exists at least one feasible modulation format able to carry the
traffic considering the margined reach values. In other words,
for long distance pairs, large traffic volumes are excluded
from set M (as an example, according to Table II, for traffic
generated by node 1 and destined to node 13, the shortest path
is 1120 km long, which imposes that at most 150 Gbps can
be transmitted using BPSK).

As candidate paths to satisfy the end-to-end demand,
we selected either the set of shortest paths (named
1PATH) or the set of shortest and second shortest
paths (2PATHS) for each pair of source/destination
nodes. Furthermore, for ML-based frameworks, five
different thresholds of acceptance BERmax are defined:
{4.00E−3, 3.50E−3, 3.10E−3, 3.05E−3, 3.01E−3}.
Therefore, an overall of 80 (8 · 2 · 5) different instances
are evaluated for the ML-based frameworks while 16 (8 · 2)
instances are evaluated for the margined framework, as it is
insensitive to BERmax.

In the MILP objective function we set α1 ≪ α2, to 1
and 1000 respectively, i.e., we privilege the minimization
of the bandwidth occupation of installed transceivers, but,
if multiple optimal solutions exist, the one minimizing the
overall spectrum usage is selected. The parameter ξ is set to
1, i.e., we do not allow any worsening of the objective function
z1. The commercial solver Gurobi [41] has been used to solve
the related MILPs. Computation of the first stage is not limited
in time but an acceptance threshold for the percentage duality
gap (mipgap) has been set at 2%. For the second stage both
a time limit of 30 seconds and a mipgap of 2% have been
set. Futhermore, the solver has been tuned to work more on
improving feasibility of solutions. Iterations of both iterative
frameworks have been limited to 30.

To verify the feasibility of the identified solutions, we
calculate the received BER of the lightpaths included in
the optimal solution (i.e., the ground truth) using the Etool
described in Section III-B the validation of a solution requires
about 3 hours of computation.

RMSA optimization runs are carried out on the margined
framework, the ML iterative framework and the two-stage
ML framework according to the variants of the objective
function adopted in the second stage. Table IV clarifies the
abbreviations used in the current section.

The iterative phase of the two iterative frameworks is inter-
rupted if convergence is not reached within 30 iterations, i.e.
in the case the solution still includes one or multiple lightpaths
lightpaths exhibiting an estimated BER above BERmax.

TABLE II: Margined reaches (R) expressed in km and capaci-
ties (C) expressed in Gbps for different amounts of transceiver
pairs and modulation format in use (computed as in [40])

Number of transceiver pairs
1 2 3 4 5 6 7 8

BPSK R 3400 1700 1200 900 700 600 500 400
C 50 100 150 200 250 300 350 400

QPSK R 3300 1700 1100 900 700 600 500 400
C 100 200 300 400 500 600 700 800

8-QAM R 1300 700 400 300 300 200 200 100
C 150 300 450 600 750 900 1050 1200

16-QAM R 1000 500 300 200 200 200 100 100
C 200 400 600 800 1000 1200 1400 1600

32-QAM R 500 200 100 100 100 100 0 0
C 250 500 750 1000 1250 1500 1750 2000

64-QAM R 300 100 100 100 0 0 0 0
C 300 600 900 1200 1500 1800 2100 2400

TABLE III: Instances of the problem

Instance Max [Gbps] Avg [Gbps] Total [Tbps]

1 100 76.65 13.95
2 200 128.02 23.30
3 200 146.70 26.70
4 300 185.44 33.75
5 300 235.71 42.90
6 400 204.67 37.25
7 400 211.26 38.45
8 400 264.01 48.05

B. Feasibility results

Considering instances with 1PATH and 2PATH routing
choices, we report the aggregated number of feasible and
infeasible instances in Table V. MARGINED fails to solve 3
instances out of 16, since it uses modulation formats with low
spectral efficiency, and hence available spectrum is not suffi-
cient to accommodate all the traffic in high load instances. MLI
still fails to find the solution for two instances, even though it
significantly improves the number of feasible instances with
respect to MARGINED. MLI2A and MLI2B always manage to
find a feasible solution for each considered instance.

C. Spectrum occupation and computational time results

Let us now compare the results obtained by MARGINED,
MLI and MLI2A, MLI2B in terms of spectrum occupation and
computational time. We consider MARGINED as a baseline
and report the relative percentage savings obtained by the
other frameworks in Table VI and Table VII, for 1PATH and
2PATH, respectively. Note that each table row reports results
averaged over five runs for every considered instance, where
the BERmax is varied as discussed in the beginning of this
section. In the rows marked with an asterisk, MLI could not
solve at least one instance. In the rows where the savings are
reported with a dash, MARGINED could not find any feasible
solution.

Tables VI and VII show that MLI and both MLI2A,
MLI2B greatly reduce spectrum occupation with respect to
MARGINED, with savings up to 48.1% in the best case and
above 33% on average. The best results are obtained with



TABLE IV: Abbreviations

MARGINED Margined framework of Fig. 1
MLI ML iterative framework of Fig. 3

MLI2A ML it. framework of Fig. 4 with z12 (MIN-SUM)
MLI2B ML it. framework of Fig. 4 with z22 (MAX-MIN)

Fig. 5: Japan network topology

MLI2B. Indeed, the second stage allows to reduce the aver-
age number of iterations necessary to converge. Remarkably,
MLI2B always converges in just one iteration.

Tables VIII and IX report the computational times required
by the considered frameworks. MARGINED is faster, as it
solves the MILP problem only once, but it fails to find a feasi-
ble solution for several instances and the solved ones exhibit
higher spectrum occupation. Under the 1PATH assumption,
MLI, MLI2A and MLI2B require longer time to converge (up
to 37.5 s on average), but this is the price to pay for achieving
lower spectrum occupation. Here, the second stage of MLI2A
and MLI2B is the one requiring the highest computational
time. Under the 2PATH assumption, the computational times
of MLI and MLI2A further increases by about one order or
magnitude. This is due to the higher complexity of the model
and to the increased number of iterations to reach convergence.
Instead, MLI2B always requires just one iteration to converge.
Sometime MLI2B is even faster than MARGINED because the
first stage model converges very quickly and this compensates
the extra time necessary to solve the second stage model.

D. Comparison between MIN-SUM and MIN-MAX objective
functions

In this section we compare MLI2A and MLI2B aggregating
results per instance and varying the acceptance threshold
BERmax, under the 2PATH assumption, in terms of overall
spectrum occupation and computational time. Fig. 6 shows
that, for instances 1-7, both objective functions achieve re-
markable savings with respect to MARGINED, with MLI2B
performing slightly better than MLI2A (note that instance
8 is excluded, since MARGINED could not find a feasible
solution). As previously remarked, MLI2B is around one order
of magnitude faster w.r.t. MLI2A. Fig. 7 reports the impact
of the value of the BER acceptance threshold on the overall
spectrum occupation and computational times. We observe
that lowering the BER acceptance threshold, i.e. accepting
more conservative lightpath configurations in the first MILP
stage, does not affect the quality of the solutions. Indeed,
savings with respect to MARGINED are always above 34%,
on average. As for the computational time, the acceptance

TABLE V: Instance feasibility achieved with different frame-
works.

Framework
Feasible

Inst.
Infeasible

Inst.
Infeasible
Inst. [%]

MARGINED 13 3 18.8
MLI 78 2 2.6
MLI2A 80 0 0.0
MLI2B 80 0 0.0

TABLE VI: Average iterations and spectrum occupation sav-
ings achieved by MLI, MLI2A and MLI2B on instances with
1PATH, using the MARGINED framework as baseline.

Inst.
MLI
Iter.

MLI2A
Iter.

MLI2B
Iter.

MLI
Sav.
[%]

MLI2A
Sav.
[%]

MLI2B
Sav.
[%]

1 3.0 1.8 1.0 25.0 25.4 25.4
2 9.0 4.0 1.0 33.9 34.2 35.0
3 5.0 6.4 1.0 39.0 38.7 40.5
4 6.6 5.6 1.0 40.8 41.0 42.4
5 5.0 2.6 1.0 22.3 22.5 22.7
6 5.0 3.6 1.0 42.8 42.7 43.5
7 4.6 5.2 1.0 - - -
8 5.6 2.8 1.0 - - -

AVG 5.5 4.0 1.0 33.9 34.1 34.9

threshold reduction favors the MLI2A framework only. The
average computation time is reduced as a direct consequence
of the reduction of the average number of iterations required to
converge. Still, the improvement is not sufficient to reach the
performances obtained with the MAX-MIN objective function
implemented in MLI2B.

E. Solution validation

We finally verify the validity of the solutions obtained by
MARGINED, MLI, MLI2B. MLI2A is not considered here
because clearly dominated by MLI2B. To this aim, for each
lightpath configuration included in the solution, we compute
the BER using the Etool presented in [37] and compare it to
the BER acceptance threshold value, which is set to 4E−3.
If the computed BER is above threshold, the lightpath is
considered invalid. This procedure constitutes an “a posteriori”
validation that, in real scenarios, would be replaced by a post-
deployment BER measurement along every installed lightpath.
In order to provide a fair comparison, the number of solved
instances should be considered. Note that it is sufficient that
one lightpath shows a BER above the threshold to invalidate
the solution. Table X reports the number of a-posteriori
infeasible instances and the fraction of infeasible instances
and infeasible lightpats, for the instances that are considered
feasible by the different frameworks, respectively. We observe
that MARGINED never produces an infeasible solution among
the solved instances but we recall that MARGINED is not able
to solve 18.8% of the available instances . Instead, ML-based
frameworks are less conservative. However, when adopting
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Fig. 6: Comparison of MIN-SUM and MIN-MAX objective functions per instance
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Fig. 7: Comparison of MIN-SUM and MIN-MAX objective functions per acceptance threshold

MLI, despite a few threshold violations (30 over more than
14000 evaluated paths), the large majority of deployed paths
(above 99.7%) are within the prescribed threshold. As for the
MLI2B framework, we remark that over more than 14000
evaluated lightpaths, only one lightpath (< 0.01%) exhibits
above threshold BER, thus making one instance infeasible.

The obtained distributions of BER values is plotted in Fig.
8, where we can observe that the MARGINED framework,
being more conservative, exhibits lower BER values than the
ML-based ones.

Fig. 9 reports the number of unacceptable lightpath config-
urations over all the solved instances for MLI, MLI2A and
MLI2B, depending on the value of the acceptance thresh-
old BERmax provided as input to the MILP model (we
remark that the a posteriori validation via the Etool always
assumes a BER threshold th = 4E−3). Results show that,

with acceptance thresholds lower than 3.5E−3, MLI2A and
MLI2B always produces acceptable lightpath deployments for
all instances, while MLI still yields a few unacceptable ones.

F. Scalability assessment on larger networks

In order to evaluate the scalability of the considered frame-
works we run some tests on larger networks obtained from the
Survivable fixed telecommunication Network Design library
SNDLib [43], [44]. We perform experiments on the optical
networks of France and Germany, basic information on such
networks is reported in table XI. As for the Japan network,
we selected either the set of shortest paths (1PATH) or the set
of shortest and second shortest paths (2PATHS) for each pair
of source/destination nodes as candidate paths to satisfy each
end-to-end demand. We used demands reported in the SNDLib



TABLE VII: Average iterations and spectrum occupation sav-
ings achieved by MLI, MLI2A and MLI2B on instances with
2PATHS, using the MARGINED framework as baseline.

Inst.
MLI
Iter.

MLI2A
Iter.

MLI2B
Iter.

MLI
Sav.
[%]

MLI2A
Sav.
[%]

MLI2B
Sav.
[%]

1 7.8 7.0 1.0 25.8 25.8 26.2
2* 20.7 10.0 1.0 34.1 34.2 35.4
3 18.8 18.0 1.0 39.4 39.0 42.1
4 19.8 18.4 1.0 41.4 40.9 43.0
5 3.6 5.0 1.0 23.0 22.8 23.1

6* 23.7 8.4 1.0 43.2 43.0 43.9
7 19.4 15.8 1.0 47.0 46.7 48.1
8 4.2 2.8 1.0 - - -

AVG 14.8 10.7 1.0 36.3 36.1 37.4

TABLE VIII: Average execution time on instances with
1PATH for MARGINED, MLI, MLI2A and MLI2B.

Inst.
MARGINED

Time [s]
MLI

Time [s]
MLI2A
Time [s]

MLI2B
Time [s]

1 4.2 7.4 9.0 35.5
2 4.0 19.8 33.1 35.9
3 4.5 12.0 56.4 35.6
4 4.7 12.9 44.1 35.2
5 10.2 26.6 17.1 46.8
6 4.4 12.1 20.4 35.7
7 - 11.0 32.8 35.3
8 - 24.2 69.7 39.5

AVG 5.3 15.8 35.3 37.4

as a reference but scaled them so that transmission feasibility
is guaranteed for the MARGINED method on the selected set
of paths according to the reach constraints reported in table
II. Summary statistics of the demand matrices are reported in
Table XII.

In the experiments, we compared the MARGINED, MLI, and
MLI2B frameworks. After some preliminary experiments, we
tuned the algorithm to be slightly more conservative for both

MARGINED MLI MLI2B

10 17

10 14

10 11

10 8

10 5

10 2

Fig. 8: Comparison of BER distributions obtained with the
three considered frameworks

TABLE IX: Average execution time on instances with 2PATHS
for MARGINED, MLI, MLI2A and MLI2B.

Inst.
MARGINED

Time [s]
MLI

Time [s]
MLI2A
Time [s]

MLI2B
Time [s]

1 121.9 610.6 578.0 107.0
2* 96.1 2141.0 1527.3 163.7
3 120.7 1734.7 2077.0 126.2
4 214.2 1985.0 2390.3 110.2
5 135.4 320.0 407.3 129.9
6* 97.7 2239.7 970.5 114.2
7 354.0 2134.7 2193.7 120.4
8 - 551.2 320.5 148.2

AVG 162.8 1464.6 1308.1 127.5

TABLE X: Infeasible instances and BER per framework.

Framework
Total
Inst.

Inf.
Inst.

Inf.
Inst.
[%]

Inf.
Lightp.

[%]

Average
MAX
BER

Average
BER

MARGINED 13 0 0.00 0.00 1.91E-03 3.14E-05
MLI 78 19 21.59 0.21 5.59E-03 2.28E-04
MLI2B 80 1 1.11 0.01 3.32E-03 1.63E-04

MLI and MLI2B setting the acceptance threshold of unestab-
lished lightpaths to 1E−3. Consequently, both frameworks
showed very good convergence properties while still ensuring
major spectrum savings. Furthermore, for all frameworks, we
tuned the Gurobi solver to stop computation when the solution
was proven to be less than 2% from the optimum.

As reported in Tables XIII and XIV, all instances were
solved within the time limit set to 1800 seconds. As expected,
the MARGINED framework is faster but too conservative. Sav-
ings between 47.8% to 52.4% are observed for the ML based
frameworks with respect to the MARGINED approach for the
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Fig. 9: Number of infeasible solutions depending on the BER
acceptance threshold



France network. Slightly better savings are obtained by the
MLI2B framework but more computational time is required.
For the German network, spectrum savings are lower, between
15.5% and 22.3%. While computational times are larger than
those of the French network, both ML frameworks show good
convergence properties. The instance Germany 2 Paths proved
to be very challenging to solve by all frameworks.

For both the French and German networks, the ML frame-
works converged in just 1 iteration when routing the demand
among the shortest and second shortest paths (2PATH), thus
favoring the “basic” MLI framework in terms of computational
time. Instead for the 1PATH case the MLI2B framework
showed better convergence properties but, having to solve two
optimization problems instead of one, the computational times
are comparable to those of MLI.

As a general conclusion, we observe that the ML frame-
works behave acceptably compared to the MARGINED one on
large networks. Scaling to even larger networks or considering
a larger routing choice, would imply the adoption of a faster,
probably heuristic, optimization algorithm. We remark that this
would be required for the MARGINED approach as well. The
MLI frameworks, with little effort, can be adapted to work
with heuristic solvers.

TABLE XI: Details of France and Germany networks from
SNDLib.

Name Nodes Links OD Pairs

France 25 45 300
Germany 50 88 662

TABLE XII: Details of France and Germany demand statistics.

Instance Max [Gbps] Avg [Gbps] Total [Tbps]

France 1 Path 500 237.9 71.4
France 2 Paths 500 222.9 66.9

Germany 1 Path 500 137.4 91.0
Germany 2 Paths 500 133.9 88.6

VII. CONCLUSION

We propose a MILP-based planning framework for routing,
spectrum and modulation format assignment in EONs that
integrates ML-based QoT estimation to estimate lightpath
feasibility while avoiding conservative QoT overestimations.
A dual-stage iterative procedure is adopted, in which sup-
plementary constraints are added to the MILP based on the
outputs of iterated additional queries issued to the estimator,
which include as features some characteristics of the neighbor
channels. Results show spectrum savings up to 52% with
respect to traditional frameworks based on margined reach
computations. By properly tuning the value of the bit error
rate acceptability threshold provided as input to the model,
network configurations characterized by different risk levels -
which are quantified by the number of lightpaths that exceed
the threshold - can be obtained.

TABLE XIII: Iterations and spectrum occupation savings
achieved by MLI and MLI2B on SNDLib instances, using
the MARGINED framework as baseline.

Inst.
MLI
Iter.

MLI2B
Iter.

MLI
Sav.
[%]

MLI2B
Sav.
[%]

France 1 path 3.0 1.0 51.3 52.4
France 2 paths 1.0 1.0 47.8 47.8
Germany 1 path 3.0 1.0 21.7 22.3
Germany 2 paths 1.0 1.0 15.5 15.5

TABLE XIV: Execution time on SNDLib instances for
MARGINED, MLI and MLI2B.

Inst.
MARGINED

Time [s]
MLI

Time [s]
MLI2B
Time [s]

France 1 Path 12.5 58.4 99.6
France 2 Paths 66.7 99.9 166.8
Germany 1 Path 40.4 241.4 155.3
Germany 2 Paths 472.2 617.3 685.9
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