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ABSTRACT A precise Quality-of-transmission (QoT) estimation of a Lightpath (LP) before its deployment
is a key step in effective network design and resource utilization. Deep neural network-based methods have
recently shown promising results for QoT estimation tasks. However, these methods contain a large number of
parameters and require heavy computational resources for accurate predictions. To this end, we propose a novel
Knowledge distillation (KD) based compression method to obtain a compact and more accurate model for QoT
estimation. Our simulation results demonstrate that the model trained using KD significantly improves accuracy
with reduced parameters and computational complexity. To the best of our knowledge, this is the first time that
the knowledge distillation technique has been used to estimate the QoT of an unestablished LP.
Keywords: Quality-of-transmission, Machine learning, Knowledge distillation.
1. INTRODUCTION

The estimation of the QoT of an LP is vital to the effective design and operation of optical networks. The
adoption of Machine Learning (ML) approaches for QoT estimation is a contemporary substitute to analytical
models, like the Gaussian Noise (GN) model, which applies conservative ways to cater to the model deficiencies
and adjust generalizations [1]–[3]. Most of these data-driven strategies are based on deep learning models,
which involve multiple neural network layers to discover the underlying patterns of the data. Generally, deep
learning-based complex models with a large number of parameters demonstrate excellent performance in terms
of accuracy and generalization, but they are challenging to deploy in a real operational network due to their
large storage requirements and enormous computational complexity. Additionally, training these huge models
is time-consuming. To tackle this problem, the authors in [4] first presented compression as a solution to this
problem to transfer knowledge from the larger model to the smaller model without degrading the performance.
Recently, Knowledge distillation (KD) has gained a lot of attention from the research community; it aims to
transfer knowledge from a large model (teacher model) that performs best into a smaller model (student model)
in terms of size, computational resources, and prediction performance [5]. Fig. 1 depicts the general framework
of KD between teacher-student networks. The basic idea is that the student model imitates the teacher model
to achieve better performance. The key components of the KD system include teacher architecture, the KD
algorithm, and student architecture. KD is a promising solution to reduce the model complexity while keeping
its generalization capabilities as much as possible. The effectiveness of the KD technique is demonstrated in a
wide range of applications such as machine translation quality estimation [6], wind-power estimation [7], and
acoustic-event detection [8]. Generally, for QoT estimation tasks, previous works employ similar models for the
training and deployment stages even though both stages have pretty different requirements [9]. We can train the
complex model to extract important knowledge, but it is not necessarily required to deploy the same model in
a real operational network because it utilizes a significant amount of computational resources and takes more
time to make predictions.

In this direction, we propose the novel KD-based framework to classify LP QoT as good or bad before
deployment. The basic idea is to directly distill the larger QoT model into a smaller, lightweight student model
with different architecture. To the best of our knowledge, it is the first time the KD approach has been proposed
for a QoT estimation task. The main contribution of our work is to develop a novel KD-based framework for
classifying the LP QoT into good or bad before deployment. We propose a response-based KD approach that
mimics the teacher model’s final layer outputs for knowledge distillation.

2. SIMULATION AND DATASET GENERATION

This work considers a software-defined optical network with an Optical line system (OLS) serving as the
edges and Re-configurable optical add-drop multipliers (ROADMs) acting as the nodes. The OLSs assumed are
running at their optimal operating point, and the amplifier’s noise figure and ripple gain are the sole variables
accounting for the physical layer’s perturbation behavior—the spectral load changes, which causes the gain-
ripples to oscillate. OLS controllers can thus ensure that they operate at the nominal operating point even
with considerable working point variability. During transmission, the LPs are affected by several impairments,
but Amplified-spontaneous noise-(ASE) and Non-linear interference (NLI) is particularly notable. Statistically,
independent ASE noise is introduced at each In-line amplifier (ILA), and it builds up as the signal travels
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Figure 1: Knowledge Distillation Framework.

Model Number
of epochs

Accuracy
(EU)

Accuracy
(USA)

Teacher 100 0.979 0.887
Student 90 0.993 0.899
Teacher 90 0.969 0.877
Student 80 0.992 0.887
Teacher 80 0.957 0.866
Student 70 0.987 0.872
Teacher 70 0.938 0.857
Student 60 0.970 0.856
Teacher 60 0.915 0.849
Student 50 0.965 0.850
Teacher 50 0.890 0.837
Student 40 0.947 0.845
Teacher 40 0.878 0.817
Student 30 0.943 0.831
Teacher 30 0.844 0.817
Student 20 0.921 0.827

TABLE I: Detailed performance analysis of teacher-
student models.

across the network. However, there is a statistically significant relationship between the NLI of each span and
another The QoT metric is expressed as the GSNR of each LP traversing across the OLS taking into account
both ASE and NLI, using GSNRi =

PS,i

PASE(fi)
+PNLI,i(fi)

, where for the ith channel with central frequency
fi, PS,i is the signal launch power, PASE(fi) is the amplified spontaneous emission while PNLI,i(fi) is fiber
nonlinear interference. Furthermore, the overall GSNR of a given LP traversing across the OLS: is given by

1
GSNR =

∑
n

1
GSNRn

where n is the number of OLSs, the LP passed along a specific path. The ASE and
NLI over the particular path are taken into account by the GSNR metric. The GSNR precisely determines the
Bit error rate (BER) by examining the transceiver’s back-to-back profile. The simulation scenario considers a
grid size of 50 GHz with 76 C-band channels. Due to a lack of processing resources, only 76 channels with
a total bandwidth of approximately 4 THz are considered. A root-raised cosine filter shapes the 32 GBaud
signals generated by the transmitter. Operating in a constant output power mode of 0 dBm per channel, an
Erbium-doped fiber amplifier (EDFA) maintains the launch power of the signal at 0 dBm. The EDFA noise
figure remains constant between 3.5 dB and 4.5 dB, while the ripple gain varies by no more than 1 dB. All
links are expected to use conventional single-mode fiber (SSMF). Also included are fiber impairments such as
attenuation (α) = 0.2dB/km and dispersion (D) = 16ps/nm/km.

The physical layer abstraction is provided by an open-source GNPy package that is utilized to simulate the
scenario and generate synthetic datasets [10]. The GNPy package generates physical layer network models
utilizing an end-to-end simulation environment. Two unique network topologies are used to build the synthetic
dataset: the European Union (EU) network and the United States (US) network. Regarding fiber and optical
network elements, both networks are identical. However, they differ concerning the amplifier’s sensitive charac-
teristics (noise and ripple gain) and fiber insertion losses. The spectral load realization for each simulated link
in a dataset is a subset of 276, where 76 is the number of channels. We evaluated 3000 realizations of arbitrary
traffic flows, including between 34% and 100% of the total operating bandwidth for each source-to-destination
(s → d). The dataset for this study contains 6 pairs (s → d) pairs from the EU network and 11 (s → d) pairs
from the USA network. Thus, the EU network topology generates 18,000 realizations, while the US network
topology generates 33,000.

3. KNOWLEDGE DISTILLATION FRAMEWORK FOR QOT ESTIMATION

This work estimates the QoT of an unestablished LP before its deployment. The more extensive Artificial
neural network (ANN) model (teacher) is trained to extract the underlying relationship in the data and then
employ the KD training approach to transfer the learned knowledge from the larger ANN model to the smaller
ANN model (student), which is more appropriate for deployment in a real operational network.

Both the teacher and student models are well-trained on the large dataset obtained from the EU and US
networks. The input feature space for teacher and student ANN models includes power, number of spans, ASE
noise, and NLI for classifying LP into good or bad QoT. The proposed framework is developed using the high-
level Keras Application program interface, built on the TensorFlow platform. Several sections of the proposed
framework are described below.
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Figure 2: Performance comparison of student model trained with KD approach and model trained from scratch
using conventional training scheme on EU (left) and US (right) network.

ANN teacher Model: The proposed ANN teacher model consists of an input layer with 306 neurons, three
hidden layers with 128, 64, and 64 neurons, respectively, and an output layer with two neurons. Each hidden
layer employs a ReLU-based activation function, whereas the softmax activation function is implemented at
the output layer for the QoT score prediction of the LP. The model is trained for 100 epochs on 10,000 data
samples obtained from the EU network and 21,000 samples from the US network using an adaptive learning
rate optimizer (ADAM) and cross-entropy loss function.
ANN student Model: The proposed lightweight ANN-based student model consists of an input layer with 306
neurons, one hidden layer with 32 neurons, and an output layer with two neurons. The ReLU-based activation
is applied in the hidden layer and softmax is used in the output layer. The student model is trained using the
knowledge distillation technique (described in next section) with 90 epochs.
Knowledge Distillation: The proposed KD framework works as follows: Initially, the dataset related to LP
QoT is fed to the huge teacher model to pre-train it to learn the underlying data representations and to produce
the prediction results. The learned knowledge is transferred to a lightweight student model in the next step. An
intuitive method to transfer the learned knowledge or generalizability of a bigger teacher model to a simpler
student model is to use the teacher model’s class probabilities as "soft targets" to train the student model. With
soft targets, we get significantly better distillation results than hard targets. The hard target provides information
only about the predicted label, whereas the soft target gives information about the predicted probabilities of
all the given classes, which enhances the distillation performance significantly [5]. We propose applying a
response-based KD approach for the given LP QoT estimation. This approach’s key idea is to accurately mimic
the teacher model’s final-layer outputs. The distillation loss for the response-based KD approach is defined as
follows:

LD(zteacher, zstudent) = LDL(zteacher, zstudent) , (1)

where zteacher and zstudent indicate the logits of teacher and student and LDL represents the divergence loss of
logits, respectively. It is to note that logits represent the output of the last fully connected layer of the ANN. We
compute the soft targets that give us the probabilities for each class to which the input belongs. The softmax
function is applied to compute soft targets as : pi =

exp(zi/T )∑
j exp(zj/T ) , where zi denotes the logits for i-th class,

and T is the temperature factor introduced to regulate the significance of each soft target [5]. When T is set
to a larger value, it generates a softer probability distribution across classes. This equation is used to transfer
the knowledge learned from the teacher to a student model. The student model is trained using the soft targets
produced by the teacher model. Soft targets carry useful hidden knowledge from the teacher model. In light of
this, distillation loss for soft logits is redefined as follows:

LD(pteacher, pstudent) = LDL(pteacher, pstudent) , (2)

To compute divergence loss LDL(pteacher, pstudent), we optimize Eq. 2 to match the student and teacher logits.
We use the cross entropy loss for the student model which computes the difference between true label (y)
and the soft logits of the student model as follows: Lstudent(y, (pstudent)) . Our knowledge distillation solution
involves increasing the temperature T of the final softmax layer of the teacher model until it generates the
appropriate soft targets. The smaller student model is then trained to mimic the soft targets using the same value
of T. We set the T value to 10 for our simulation.

4. PERFORMANCE EVALUATION

In this section, we assess the performance of the KD training approach to estimate QoT. Our proposed method
allows the operator to predict the QoT (GSNR) state of the forthcoming LP before its deployment. The proposed
solution functions as a binary classifier and performs the LP classification based on the GSNR estimation. Eq. 4.
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Model Number of
Parameters

Train time (sec) Prediction time
(sec)

Teacher 145,784 47.122 0.607
Student 96,416 20.525 0.408

TABLE II: Performance comparison of teacher-student models
The OSNR sensitivity threshold at the receiver taken into consideration in this research is based on [11] where
GSNR > OSNRRx −→ 1 (otherwise 0). The performance of the proposed framework is evaluated on EU
and US networks using an accuracy metric. We consider 8000 test samples acquired from the EU network
and 12000 test samples from the US network. Firstly, we compare the performance of the teacher model with
the student model, which is trained using the KD approach. Our simulation results are reported in Tab. I. We
can see that the student model can achieve better accuracy with fewer epochs than the teacher model for both
considered networks, i.e., the EU and US. We further compare the performance of the teacher and student model
in terms of several parameters and train and prediction time, as given in Tab. II. Our student model has fewer
parameters, leading to less training and prediction time. It is noted that the train and test time is computed for
100 epochs. The results reported in Tab. I and Tab. II validate the effectiveness of the KD approach for the
given QoT scenario. The student model is more compact, fast, and accurate than the teacher model. To further
analyze the performance of a proposed KD approach, we compare the performance of a student model with the
scratch model, which is considered a baseline model trained from scratch while using the traditional training
method. Our proposed student model and the scratch model use the same ANN architecture. In Fig. 2, we plot
the accuracy achieved by the student and scratch model against the number of epochs. We varied the number
of epochs from 20 to 100. As we increase the number of epochs, the performance of both models increases.
As we can see, our proposed student model achieves 99% accuracy with 100 epochs for the EU network and
91% accuracy for the US network. Analyzing the results shows that the model trained with the KD approach
outperforms the model trained from scratch using the conventional training approach.

5. CONCLUSION AND FUTURE WORK

This work explored the novel ML model training framework, which utilizes the KD teacher-student approach
to train the compact, fast, and more accurate model. We validated this approach’s effectiveness for classifying
LP QoT into good or bad. It is demonstrated in the results that the proposed lightweight KD-based model
achieves significantly better results than the teacher model and the scratch model. Furthermore, it is a more
suitable model for deployment in real-time networks operation because of its small size, better accuracy, and
faster evaluation speed. For future work, it is worthwhile to investigate the transfer learning approach with KD
for QoT estimation to fully realize this approach’s potential.
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