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Summary

Performing epidemic inference at the individual scale is a difficult task because of the complex
interactions that are present. As the size of the considered system grows, its inherent com-
plexity makes the task practically infeasible, even with the computational capabilities available
today. This thesis is then devoted to the study of inference methods grounded in statistical
physics, that can perform this task efficiently and provide a good approximate solution to the
problem when an exact one is out of reach from the practical point of view.

The structure of the thesis follows the order in which the PhD program unfolded. In the first
chapter, after briefly discussing some of the theory of network science, the models for epidemic
spreading used in the thesis are introduced. In particular, the probabilistic individual-based
version of the Susceptible-Infected-Recovered model is defined and analysed, and the epidemic
inference problem is introduced on this particular model.

Then, the application of Autoregressive Neural Networks (ANNs) to this problem is dis-
cussed. This technique involves training artificial neural networks in order to generate epi-
demic cascades that are compatible with the observations made on a single outbreak. This ap-
proach is applied to three problems of epidemic inference, the patient zero detection problem,
the epidemic risk evaluation and the inference of epidemic parameters.

The following chapters deal with one of the challenges put forward by the COVID-19 pan-
demic. During the first and second epidemic waves of the disease (both in Europe and the
world), digital contact tracing has been developed as a mechanism to track the transmission
of the disease and isolate infectious individuals. However, in order to perform these task ef-
ficiently, the evaluation of the epidemic risk of every individual in the population is required.
A large part of the work of the PhD, then, has been dedicated to the application of epidemic
inference techniques derived from statistical physics, in order to show how they can improve
the detection of infected individuals during an epidemic outbreak.

In the third chapter, the methods are first applied to one particular agent-based model for
COVID-19. The focus of this investigation is on the containment capability of the methods,
that is their ability to identify the infectious individuals, who are then isolated preventing new
infections from occurring. In order tomake the containment experimentsmore realistic, several
features are introduced, such as the isolation of households, the test error rate and the impartial
collection of the individual contact network. The methods derived from statistical physics are
compared here to contact tracing, along with a control method.

In the next chapter, the analysis is expanded to other two agent-basedmodels for COVID-19.
The containment performance is investigated in these two other models, with the same features
introduced previously. Then, the statistical physics methods are applied to two other tasks, the
identification of super-spreaders (the individuals that are able to infect many others) and to
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the reconstruction of the propagations from the observations, both forward and backward in
epidemic time.

Finally, another method for epidemic inference is described, based on a small coupling ap-
proximation of the dynamic cavity approach to Susceptible-Infected epidemic process. After its
derivation, the method is tested for the prediction of the dynamics without observations, and
in the risk inference setting, in both synthetic and real contact graphs.
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Chapter 1

Introduction

1.1 A brief introduction to graph theory
A graph is a mathematical structure that describes the relationships between pairs of objects:
these are called vertices or nodes, and their set is denoted by 𝑉. While in principle the indexing
of nodes can be arbitrary, we will adopt the convention that each one is associated to an index
𝑖, so that 𝑉 = {1,2,3,… ,𝑁 }, where 𝑁 is the total number of objects. The relationships between
nodes are expressed as connections, or edges, which are represented as the pair of nodes that
are connected, (𝑖, 𝑗) for example. The set of all the edges of a graph is denoted by 𝐸. The graph
itself is then defined with the corresponding sets of vertices and edges, 𝒢 = (𝑉, 𝐸).

The graph formalism is very general, and can be applied in many different areas: from rep-
resenting physical connections between computers (computer networks, such as the Internet
[7]), electrical systems [60], or the road network [17], to more abstract connections, like social
networks [40], or in biology (gene regulation is a famous example [19]). In statistical physics
graphs usually represent the local connections between individual components of a system.

A given graph can be represented in different ways: the easiest is giving a list of all vertices,
and for each one a list of the other ones that it is connected to. This is called adjacency list.
Instead, one can write it in the form of matrix 𝐴𝑖𝑗, where

𝐴𝑖𝑗 = {
1 (𝑖, 𝑗) ∈ 𝐸
0 else

that is called the adjacency matrix. In the context of this thesis, a graph is forbidden to have
self-edges, which are edges that connect the same node, so by definition 𝐴𝑖𝑖 = 0 ∀𝑖 ∈ 𝑉.

If the direction of the edges of a graph is not important, then the graph is called undirected,
and the adjacency matrix is symmetric, while in the opposite case the graph is directed : each
edge is then defined as coming from a node 𝑖 and going to another node 𝑗, and is denoted as
𝑖 → 𝑗, or, when using simply a pair, the origin of the edge is put first, as in (𝑖, 𝑗). Two simple
examples of the two kinds of graphs are, in social network science, the Facebook friendships
and Instagram followers. In the former case, friendships are bilateral, so that if individual 𝑖 is
friend of 𝑗, the reverse is true, giving an undirected network for the friendships. In the latter
case, if profile 𝑖 follows 𝑗, the reverse is not true, therefore the followers networks is directed.
In the rest of the thesis, when a graph is not specified to be undirected or directed, it will be
implied to be of the former kind.
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The neighbours of a node 𝑖 in a graph 𝒢 are the nodes that share an edge with 𝑖; the set of
the neighbours will be called, in the following, 𝜕𝑖, with the formal definition

𝜕𝑖 = {𝑗 ∈ 𝑉 ∶ (𝑖, 𝑗) ∈ 𝐸} (1.1)

The degree of a node is the number of neighbours it has, 𝑘𝑖 = |𝜕𝑖|. In the case of a directed
network, the set of the neighbours is split into incoming neighbours, and outgoing neighbours,
based on whether the considered edge is pointing to 𝑖 or out of 𝑖. The same distinction is applied
to the degree, so that in the former case we have the in-degree, and in the latter the out-degree.
A graph is said to be complete when every node in the graph is connected to every other node.
Such graphs are usually indicated as 𝐾𝑛, where 𝑛 indicates the number of vertices, as no other
information is needed to characterize the graph. A graph clique is a subset of the nodes of the
graph, 𝑉 ′ ⊆ 𝑉, in which any node is connected to every other one. This means that the induced
subgraph 𝒢 ′, that is made by all the edges between the nodes in 𝑉 ′, is complete.

A graph is called bipartite when its vertices can be divided in two distinct sets, so that the
edges only connect nodes from one set to the other. In mathematical terms, we can write
𝐸 ⊆ {(𝑖, 𝑘) ∶ 𝑖 ∈ 𝑈, 𝑘 ∈ 𝑊 },where 𝑉 = 𝑈 ∪ 𝑊 and 𝑈 ∩ 𝑊 = ∅.

A walk in a graph, is a sequence of nodes such that every consecutive pair of nodes is
connected by an edge (in a directed graph, with the appropriate directionality). A path in a
graph is a walk that never intersects itself, so that all edges and vertices traversed in a path
are unique. In an undirected graph, two nodes 𝑢, 𝑣 are said to be connected if there is a path
starting from 𝑢 going to 𝑣 (or vice-versa). The whole graph is then said to be connected if
every pair of vertices is connected, otherwise, it is disconnected. Then, connected components
can be defined, that are the maximal connected sub-graphs of the original graph. From this
definition, the connected component of a node can be found taking the sub-graph of all the
nodes and edges that can be reached or traversed from that node. For directed graphs, the
definition of connected components is trickier, as it involves first deciding whether to ignore
the directionality of the edges (giving weakly connected components in doing so), and then how
to take the directionality into account, giving rise to several different definitions [62].

A path in a graph where the initial and final vertices are the same, is called a cycle. In the
thesis, the term loop will be used with the same meaning. If a graph is connected and does not
contain any cycle, it is called a tree, and it has special properties: first, it can be shown that a
tree of 𝑁 vertices has exactly 𝑁 −1 edges (which can be used as a definition of a tree, including
connectivity). Secondly, it can be shown that in a tree graph there is only one path between
any pair of nodes. This has important implications, as removing one of the edges effectively
disconnects two nodes, and the graph becomes disconnected.

1.1.1 Graph metrics
It is necessary to introduce a few metrics that are used when analysing a given graph, as they
will be used in the rest of the thesis. These metrics are often used to characterize a graph, and
distinguish between different kinds of graphs.

The density of a graph is a measure of how many edges it contains. In an undirected graph,
the maximum number of edges is given by the binomial coefficient (𝑁2 ), where 𝑁 = |𝑉 | is the
number of nodes. Then, the density 𝑑 is defined as

𝑑 =
|𝐸|

(𝑁2 )
=

2 |𝐸|
𝑁 (𝑁 − 1)

(1.2)
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In a directed graph, the edges are distinguished by direction, so it is possible to have double the
amount of edges, and the density thus reads

𝑑 =
|𝐸|

𝑁 (𝑁 − 1)
.

The clustering coefficient quantifies the propensity of the nodes of a graph to cluster to-
gether. Locally, it can be defined by looking at the neighbours of each node, and counting the
number of edges there are between them. In mathematical terms, if we consider a node 𝑖 and
its neighbourhood 𝜕𝑖, the number of possible edges that can exists between the neighbours are
𝑘𝑖 (𝑘𝑖 − 1) /2, 𝑘𝑖 = |𝜕𝑖| being the number of neighbours. Then, the local clustering coefficient is

𝐶𝑖 =
2 |{(𝑢, 𝑣) ∶ 𝑢, 𝑣 ∈ 𝜕𝑖, (𝑢, 𝑣) ∈ 𝐸}|

𝑘𝑖 (𝑘𝑖 − 1)
(1.3)

as has been first proposed by Watts and Strogatz [11]. This formula is valid only when 𝑘𝑖 ≥ 2,
when this is not true the local clustering is 𝑐𝑖 = 0. From this definition, it is possible to give a
clustering measure for the entire graph by averaging on the nodes:

𝐶avg =
1
𝑁
∑
𝑖∈𝑉

𝐶𝑖 (1.4)

Clustering coefficient measures have been found to be significantly important in the analysis
of real world networks, as they are often quite high in social networks [62].

1.2 Models for epidemic spreading
Mathematical models of epidemic spreading are largely used to forecast the evolution of out-
breaks at different spatial and temporal scales, to evaluate the effects of public-health inter-
ventions and to guide governments decisions [86, 102, 147, 22, 124, 15, 146]. The study of the
spreading of diseases started more than two centuries ago: one of the earliest models was, in
fact, developed by Bernoulli in 1760 for the diffusion of smallpox [1]. With the increasing avail-
ability of computational power, and motivated by the emergence of global epidemic outbreaks
(H1N1, SARS, and most recently COVID-19) and other severe transmissible diseases, like AIDS
or Ebola, the field of mathematical modelling of epidemic outbreaks has grown significantly
[33, 42, 56, 164, 162]. In this section, the models used in the thesis will be described, along with
the epidemic processes underpinning them.

1.2.1 The homogeneous SIR Model
One of the first mathematical models for the spreading of an infectious disease in a population
was formulated by Kermack andMcKendrick in 1927 [2]. It was originally called the xyz model,
the 𝑥,𝑦,𝑧 variables standing respectively for the number of susceptible (S), infected (I) and re-
covered (or removed, R) individuals in the population. This model has been a cornerstone for
mathematical epidemiology, and has also been applied outside of this field (in rumour spreading
[34], or cryptocurrency [58], for example).

The model divides the population into three different compartments: susceptible (𝑆) indi-
viduals are naive to the disease, so they can be infected and become ill when they come in
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contact with it. Infectious (or infected, 𝐼) individuals are the one carrying the disease, and they
can infect others (the susceptible ones, 𝑆). At the same time, they can heal from the disease,
gaining life-long immunity from the disease: in this new state, they can’t be infected any more,
and they are in the so-called Recovered (𝑅) compartment. This compartment is also called Re-
moved because 𝑅 individuals also can’t infect anyone, so they do not participate anymore in
the propagation process. Schematically, these transitions can be written like this:

𝑆 + 𝐼 → 2𝐼
𝐼 → 𝑅 (1.5)

Defining as 𝛽 the rate at which one 𝐼 individual is able to infect others, and 𝛾 the rate at
which he/she can recover, it is possible to write the following set of deterministic equations,
which define the SIR model by describing the time evolution of the number of individuals in
each compartment:

𝑑𝑆
𝑑𝑡

= −
𝛽
𝑁
𝑆 (𝑡) 𝐼 (𝑡) (1.6a)

𝑑𝐼
𝑑𝑡

=
𝛽
𝑁
𝑆 (𝑡) 𝐼 (𝑡) − 𝛾 𝐼 (𝑡) (1.6b)

𝑑𝑅
𝑑𝑡

= 𝛾 𝐼 (𝑡) (1.6c)

These equations also assume that the total number of individuals is constant over time:

𝑆 (𝑡) + 𝐼 (𝑡) + 𝑅 (𝑡) = 𝑁

where we define 𝑁 as the number of individuals.
While the time evolution depends on the initial conditions 𝑆 (0), 𝐼 (0), 𝑅 (0), which in prin-

ciple can be set to any value (providing their sum is 𝑁), the usual study case for this model is
when a new disease is introduced into a population, meaning that almost everybody is suscep-
tible, and only a few people are 𝐼, with no Recovered individuals. With this initial condition,
that implies 𝑆 (0) ≃ 𝑁, equation (1.6b) can be approximated as

𝑑𝐼
𝑑𝑡

≃ (𝛽 − 𝛾) 𝐼 (0)

This means that at the beginning, the number of infected will grow if 𝛽 > 𝛾, and it will
decline if the inverse is true (𝛾 > 𝛽). This leads to the define a fundamental ratio, the basic
reproduction number

𝑅0 =
𝛽
𝛾

(1.7)

which, in general, corresponds to the expected number of secondary infections generated by a
primary infection, in a non-immunized population.
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1.2 – Models for epidemic spreading

Figure 1.1: Examples of the homogeneous SIR Model: on the left, the solution of the SIR
deterministic system of equations (1.6a) - (1.6c) over a population of size 𝑁 = 1000. On the
right, only the number of infected (I) is shown as a thick line. Also, the solution of the stochastic
version of the same system is shown on the right pane, for the same parameters. In order to
appreciate the effect of random chance, 20 different possible trajectories of the stochastic system
are shown: in three of them, the number of infected drops to 0 shortly after the beginning of
the epidemic. The parameters used are: 𝛽 = 0.1, 𝛾 = 0.03, with initial values 𝑆 (0) = 𝑁 − 1,
𝐼 (0) = 1 and 𝑅 (0) = 0.

SI model

In the case of 𝛾 = 0, the number of recovered individuals is fixed to 𝑅 (0). In this case the R
state can discarded altogether, and equations (1.6a)-(1.6b) become

𝑑𝑆
𝑑𝑡

= −
𝛽
𝑁
𝑆 (𝑡) 𝐼 (𝑡) (1.8)

𝑑𝐼
𝑑𝑡

=
𝛽
𝑁
𝑆 (𝑡) 𝐼 (𝑡) (1.9)

with the conservation equation that now reads 𝑆 (𝑡)+𝐼 (𝑡) = 𝑁−𝑅 (0). So, in this case the number
of infected individual will grow, given that 𝐼 (0) > 0, until there are no susceptible individuals
left.

1.2.2 Stochastic SIR Model
The SIR model presented so far has been written as a set of deterministic dynamic equations.
However, the transitions in eq 1.5 can also be interpreted in a stochastic way, meaning that the
two processes, infection of a new individual, 𝑆 + 𝐼 → 𝐼 + 𝐼, or recovery, 𝐼 → 𝑅, can happen at
random with a certain probability rate each, which will be respectively called 𝑟𝑆𝐼 and 𝑟𝐼𝑅. In a
well-mixed population, 𝑟𝑆𝐼 = 𝛽/𝑁, and 𝑟𝐼𝑅 = 𝛾. The difference with the previous setting is that
now one process may happen before the other. Also, the number of individuals in each state is
not real-valued, but a discrete integer taking values in the interval [0,𝑁].

This kind of model can be simulated using methods derived from computational chemistry.
In particular, the Gillespie algorithm [4] allows to generate statically correct trajectories of
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the system. In Figure 1.1 the solution of the SIR deterministic equations is shown, along with
simulations of the stochastic system, starting from a single infected individual in a population
with size 𝑁 = 1000. In the figure it can be seen that, while the growth of the number of
infected individuals is immediate in the deterministic system, in the stochastic version this
number can grow sooner ormuch later. This is because of the possibility of a recovery transition
interrupting the growth: when the number of individuals are very few, this might even bring
the epidemic to an early stop.

1.3 Probabilistic SIR Model on a contact network
The general SIR model doesn’t consider explicitly every individual in a population, as it simply
describes the number or fraction of them in each compartment for the dynamics, thus giving
a coarse-grained vision of the epidemic spreading process. In this sense, it also works on the
assumption of homogeneous mixing, meaning that any individual has the same chance of meet-
ing any other individual at random, and this approximation is quite limiting, for example when
considering a population spanning several towns, where the assumption breaks down.

In order to model the interactions between individuals, a network of contacts, or graph,
𝒢 = (𝑉, 𝐸) is defined [18], where the individuals are the vertices 𝑖 ∈ 𝑉 and there is an edge
between individuals 𝑖 and 𝑗, (𝑖, 𝑗) ∈ 𝐸, if and only if they are in contact.

Now, we can represent the state of each individual at any time: in the following, we will use
the variable 𝑥 𝑡𝑖 ∈ {𝑆, 𝐼,𝑅} for the state of individual 𝑖 at time 𝑡, and the state of the whole popu-
lation at time 𝑡 will be written as x𝑡 = (𝑥 𝑡1, 𝑥 𝑡2,…𝑥 𝑡𝑁) (with 𝑁 = |𝑉 | the number of individuals).

In the following we will restrict ourselves to consider the epidemic process only at specific
uniform time intervals, taking snapshots of the epidemic process in between each interval, so
that 𝑡 will be an index representing the number of elapsed time steps (that could correspond to,
for example, the number of days elapsed since the beginning of the epidemic). We will consider
𝑡 = 𝑇 as the last time instant, starting from 𝑡 = 0 as the initial time.

The spreading process now under consideration is a stochastic one: defining 𝜆 as the (in-
stantaneous) probability of infection, and 𝜇 as the probability of recovery at every time instant,
the probabilistic SIR model on a contact graph follows Markov dynamics (i.e. the state of the
individuals as the next time instant depends on the current states, and not the states at previous
times). This is also valid when the parameters depend on the individual (𝜇𝑖) or the network edge
(𝜆𝑖→𝑗 ≐ 𝜆𝑖𝑗, of 𝑖 infecting 𝑗). Then, it’s possible to write the probability of an individual 𝑖 being
found in state 𝑥 𝑡+1𝑖 , given the states of everyone at the previous time 𝑡:

𝑝 (𝑥 𝑡+1𝑖 = 𝑆 ∣ x𝑡) = 𝕀 [𝑥 𝑡𝑖 = 𝑆]∏
𝑗∈𝜕𝑖

(1 − 𝜆𝑗𝑖𝕀 [𝑥 𝑡𝑗 = 𝐼]) (1.10a)

𝑝 (𝑥 𝑡+1𝑖 = 𝐼 ∣ x𝑡) = 𝕀 [𝑥 𝑡𝑖 = 𝑆] [1 −∏
𝑗∈𝜕𝑖

(1 − 𝜆𝑗𝑖𝕀 [𝑥 𝑡𝑗 = 𝐼])] + 𝕀 [𝑥 𝑡𝑖 = 𝐼] (1 − 𝜇𝑖) (1.10b)

𝑝 (𝑥 𝑡+1𝑖 = 𝑅 ∣ x𝑡) = 𝕀 [𝑥 𝑡𝑖 = 𝑅] + 𝕀 [𝑥 𝑡𝑖 = 𝐼] 𝜇𝑖 (1.10c)

where the product in the first and second equation runs over the neighbours of 𝑖 in 𝒢, 𝜕𝑖 =
{𝑗 ∈ 𝑉 ∶ (𝑖, 𝑗) ∈ 𝐸}, and 𝜆𝑗𝑖 = 𝜆𝑖𝑗 (written in the former way to emphasize the direction of
the spreading on the network). The 𝕀 is the indicator function, so that 𝕀[𝑏] = 1 only when its
argument 𝑏 is true, otherwise 𝕀 [𝑏] = 0.
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1.3 – Probabilistic SIR Model on a contact network

a) b) c)

Figure 1.2: Example of a SIR epidemic spreading on a contact network: In this case, the
contact network is a Random Regular Graph, with 20 nodes and fixed degree 𝑘 = 3. Blue nodes
are 𝑆, red nodes are 𝐼 and green nodes are 𝑅. Panel a) shows the initial state of the epidemic,
panel b) an intermediate snapshot (at 𝑡 = 3) and panel c) shows the final state (𝑡 = 6).

The probability of obtaining a given epidemic cascade x = (x𝑡=0,x𝑡=1,…x𝑡=𝑇), running
from time 0 to time 𝑇, can thus be written as

𝑝 (x) = 𝑝(x0)
𝑇

∏
𝑡=1

𝑁
∏
𝑖=1

𝑝 (𝑥 𝑡𝑖 ∣ x𝑡−1) (1.11)

where x0 is the initial state of the system. The difference with respect to the stochastic model of
section 1.2.2 is that now an individual cannot be infected by any other, but only by its neighbours
in the graph 𝒢. In order to obtain a situation similar to the stochastic homogeneous model, a
complete contact graph would be required, where everybody is in contact with everyone. Also
in this case, it’s possible to run simulations of this model using equations (1.10a) to (1.10c), with
a given contact graph and initial state. One example of such a simulation is given in figure 1.2.

It’s important to note that this epidemic process is irreversible: once an individual is infected,
they cannot go back to being susceptible, and the same is true for the recovered and infected
state, respectively. This characteristic is of essential importance in the inference of epidemics.

The probabilistic network-based SIR model, in contrast with the previous ones, also shows a
much higher degree of complexity. For example, if one would like to determine the probability
of an individual 𝑖 being in state 𝑋 ∈ {𝑆, 𝐼,𝑅} at some time instant 𝜏, it would be necessary to sum
on all the possible configurations available at time 𝜏 − 1:

𝑝 (𝑥𝜏𝑖 = 𝑋) = ∑
x𝜏−1

𝑝 (𝑥𝜏𝑖 = 𝑋 ∣ x𝜏−1) 𝑝 (x𝜏−1) (1.12)

and possible number of such configurations is 3𝑁.
Then, one might want to find such probability from the information about the probability

of the initial state 𝑝 (x0). For example, it might be that each individual is either susceptible or
infected, but not recovered, and the probability of each node being infected is 𝜂. This probability
is called patient zero probability, and gives the following probability distribution:

𝑝 (x0) =
𝑁
∏
𝑖=1

𝛾𝑖(𝑥0𝑖 ) (1.13)
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with

𝛾𝑖(𝑥) =
⎧

⎨
⎩

1 − 𝜂 𝑥 = 𝑆
𝜂 𝑥 = 𝐼
0 𝑥 = 𝑅

(1.14)

In order to compute 𝑝 (𝑥𝜏𝑖 ), then, it’s necessary to iterate equation (1.12), going backward in
time until 𝑡 = 0, summing on all possible configurations:

𝑝 (𝑥𝜏𝑖 = 𝑋) = ∑
x𝜏−1

𝑝 (𝑥𝜏𝑖 = 𝑋 ∣ x𝑡−1) ∑
x𝜏−2

𝑝 (x𝜏−1 ∣ x𝜏−2) ∑
x𝜏−3

𝑝 (x𝜏−2 ∣ x𝜏−3) 𝑝 (x𝜏−3)

= ∑
{x𝜏−1,x𝜏−2,…,x1,x0}

𝑝 (𝑥𝜏𝑖 = 𝑋 ∣ x𝜏−1)
𝜏−1
∏
𝑡=1

𝑝 (x𝑡 ∣ x𝑡−1) 𝑝 (x0)

= ∑
{x𝜏−1,x𝜏−2,…,x1,x0}

𝑝 (𝑥𝜏𝑖 = 𝑋 ∣ x𝜏−1)
𝜏−1
∏
𝑡=1

𝑝 (x𝑡 ∣ x𝑡−1)
𝑁
∏
𝑗=1

𝛾 (𝑥0𝑗 ) (1.15)

It can be seen that the number of configurations taken under consideration to perform the sum
grows exponentially with 𝜏 (more precisely as 𝑂 (3𝜏𝑁)), making this a very costly computa-
tion that becomes practically infeasible even with medium-sized systems. In the following, we
will discuss the simplest approximation that can be made to the model in order to avoid the
incumbency of summing on every state at every time.

1.3.1 Mean-field approximation
Computing the probability of a certain individual at a certain time is not computationally light
itself. From equation (1.12), the probability of being in state 𝑆 can be written as:

𝑝 (𝑥𝜏𝑖 = 𝑆) = ∑
x𝜏−1

𝑝 (𝑥𝜏𝑖 = 𝑆 ∣ x𝜏−1) 𝑝 (x𝜏−1)

= ∑
x𝑡−1𝜕𝑖

𝑝 (𝑥𝜏−1𝑖 = 𝑆,x𝜏−1𝜕𝑖 )∏
𝑗∈𝜕𝑖

(1 − 𝜆𝑗𝑖𝕀 [𝑥𝜏−1𝑗 = 𝐼]) (1.16)

where we have used the transition probability of the process (1.10a) and the fact that, since it
only depends on the neighbours of 𝑖, the probability of the state of the other individuals 𝑘 ∉ 𝜕𝑖
at time 𝜏 − 1 sums up to 1 (the variable x𝑡−1𝜕𝑖 thus represents the state of all the neighbours
of 𝑖 at time 𝜏). Now, in order to compute this probability exactly, one could perform the sum:
the number of states to consider then would still be growing exponentially in the number of
neighbours. To avoid the sum, then, one can employ a common approximation in statistical
physics, called Mean Field approximation. This amounts to treat all the variables in the system
as independent, thus neglecting all the correlations that are present. This in mathematical
terms means 𝑝 (x) ≈ ∏𝑖 𝑝 (𝑥𝑖). Applying this approximation to the probabilities in the above
equation, one gets that

𝑝 (𝑥𝜏−1𝑖 ,x𝜏−1𝜕𝑖 ) ≈ 𝑝 (𝑥𝜏−1𝑖 )∏
𝑗∈𝜕𝑖

𝑝 (𝑥𝜏−1𝑗 ) ,

which effectively decouples the probabilities between neighbours. Then, the summation in
(1.16) can be applied directly to each state 𝑥𝜏−1𝑗 , giving

𝑝 (𝑥𝜏𝑖 = 𝑆) ≈ 𝑝 (𝑥𝜏−1𝑖 = 𝑆)∏
𝑗∈𝜕𝑖

(1 − 𝜆𝑗𝑖𝑝 (𝑥𝜏−1𝑗 = 𝐼)) (1.17)
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1.4 – Epidemic spreading in temporal networks

Applying the same treatment to 𝑝 (𝑥𝜏𝑖 ) for the other states gives the equations for what, in the
following, will be called Individual-based Mean Field (IMF):

𝑝MF (𝑥 𝑡+1𝑖 = 𝑆) = 𝑝MF (𝑥 𝑡𝑖 = 𝑆)∏
𝑗∈𝜕𝑖

[1 − 𝜆𝑗𝑖𝑝MF (𝑥 𝑡𝑗 = 𝐼)] (1.18a)

𝑝MF (𝑥 𝑡+1𝑖 = 𝐼) = 𝑝MF (𝑥 𝑡𝑖 = 𝑆) [1 −∏
𝑗∈𝜕𝑖

(1 − 𝜆𝑗𝑖𝑝MF (𝑥 𝑡𝑗 = 𝐼))] + 𝑝MF (𝑥 𝑡𝑖 = 𝐼) (1 − 𝜇𝑖) (1.18b)

𝑝MF (𝑥 𝑡+1𝑖 = 𝑅) = 𝑝MF (𝑥 𝑡𝑖 = 𝑅) + 𝑝MF (𝑥 𝑡𝑖 = 𝐼) 𝜇𝑖 (1.18c)

These equations have the advantage of presenting an intuitive content which is easy to un-
derstand, as they reflect the equations of the transition probabilities. Iterating these equations
forward in time from 𝑝 (x𝑡=0), one can obtain a set of probabilities the whole epidemic propaga-
tion. However, neglecting the correlations between neighbouring nodes induces a lot of errors,
leading to an overestimation of the number of infected individuals in the system (see section
6.3). To tackle this issue, some methods have been developed that also avoid the costly sum on
the number of states and give much better approximations [39, 44].

1.3.2 Extension to the SEIR model
While the SIR model is detailed enough to well describe the spreading of diseases with lasting
immunity, in its Markovian formulation it might be insufficient to describe certain diseases,
which are subject to a non-negligible incubation period: in these cases, following infection,
an individual is not immediately able to immediately infect others [137]. To model this effect,
another compartment/state is introduced for exposed individuals: in the Susceptible-Exposed-
Infectious-Recovered (SEIR) model, exposed individuals count as infected, but they cannot in-
fect others. Therefore, the state transitions are

𝑆 + 𝐼 → 𝐸 + 𝐼
𝐸 → 𝐼
𝐼 → 𝑅

Then, for the probabilistic SEIRmodel on a contact networkwe need to introduce the probability
𝜂𝑖 for individual 𝑖 to pass from the exposed to infectious state in one time step. The full equations
read:

𝑝 (𝑥 𝑡+1𝑖 = 𝑆 ∣ x𝑡) = 𝕀 [𝑥 𝑡𝑖 = 𝑆]∏
𝑗∈𝜕𝑖

(1 − 𝜆𝑗𝑖𝕀 [𝑥 𝑡𝑗 = 𝐼]) (1.19a)

𝑝 (𝑥 𝑡+1𝑖 = 𝐸 ∣ x𝑡) = 𝕀 [𝑥 𝑡𝑖 = 𝑆] [1 −∏
𝑗∈𝜕𝑖

(1 − 𝜆𝑗𝑖𝕀 [𝑥 𝑡𝑗 = 𝐼])] + 𝕀 [𝑥 𝑡𝑖 = 𝐸] (1 − 𝜂𝑖) (1.19b)

𝑝 (𝑥 𝑡+1𝑖 = 𝐼 ∣ x𝑡) = 𝕀 [𝑥 𝑡𝑖 = 𝐼] (1 − 𝜇𝑖) + 𝕀 [𝑥 𝑡𝑖 = 𝐸] 𝜂𝑖 (1.19c)

𝑝 (𝑥 𝑡+1𝑖 = 𝑅 ∣ x𝑡) = 𝕀 [𝑥 𝑡𝑖 = 𝑅] + 𝕀 [𝑥 𝑡𝑖 = 𝐼] 𝜇𝑖 (1.19d)

1.4 Epidemic spreading in temporal networks
In many realistic cases, contacts between individuals change over time, with a time scale com-
parable to that of the epidemic spreading process. In these cases, we have a temporal network,
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Figure 1.3: A sample temporal network (𝑁 = 6, 𝑇 = 10) represented as a sequence of contacts.
At the top, the network is shown in a timeline fashion, with each edge drawn at its correspond-
ing time, while in the bottom several snapshots of the network are shown at different time
instants. In this case nodes are marked with letters, and the time indices start from 1. Figure
taken from [49], with Creative Commons 4.0 Attribution License, and unmodified.

that is generally defined as a network that has different edges at different time instants [30].
This means that for every pair of individuals 𝑖 and 𝑗, we have a list of the time instants they are
in contact: while these could well be real-valued, we will restrict ourselves to integer times, to
be consistent with our SIR spreading model. This means that the temporal networks considered
will be well described as a series of static graphs with different time indices, that will be the
temporal snapshots of the network.

Contrary to the static network case discussed so far, the additional dimension of time in
the network here contributes significantly to the spreading of an epidemic. In fact, it becomes
critical whether a node 𝑖 becomes infected before coming in contact with 𝑗, rather than after. This
sparsity of contacts further restricts the number of possible epidemic cascades: if one creates a
temporal network from a static one and tehn randomly drawing the times at which each edge
is present, it is easy to see that the number of possible spreading events is actually reduced. At
the same time, a temporal network collected in a real-world setting might see moments of sharp
increase in the number of contacts, like in the case of an event where large crowds are present.
A lot of effort has been put into the collection of proximity data in real-world scenarios in recent
years, in both human and animal populations [26, 61, 87, 143]. While the scale of the contact
datasets is somewhat limited, there are some studies that collected large-scale high-accuract
data [40, 67].

With an underlying temporal network, the formulation of the SIR model on a graph changes
slightly. Assuming that from the proximity data a temporal network can be defined, where each
edge represents a contact at each time instant and has an associated probability of infection 𝜆𝑡𝑖𝑗,

18



1.5 – Bayesian inference on the SIR model

we can rewrite equations (1.10a) and (1.10b) as:

𝑝 (𝑥 𝑡+1𝑖 = 𝑆 ∣ x𝑡) = 𝕀 [𝑥 𝑡𝑖 = 𝑆]∏
𝑗∈𝜕𝑖𝑡

(1 − 𝜆𝑡𝑗𝑖𝕀 [𝑥
𝑡
𝑗 = 𝐼])

𝑝 (𝑥 𝑡+1𝑖 = 𝐼 ∣ x𝑡) = 𝕀 [𝑥 𝑡𝑖 = 𝑆] [1 −∏
𝑗∈𝜕𝑖𝑡

(1 − 𝜆𝑡𝑗𝑖𝕀 [𝑥
𝑡
𝑗 = 𝐼])] + 𝕀 [𝑥 𝑡𝑖 = 𝐼] (1 − 𝜇𝑖) (1.20)

Where now the products run over the set 𝜕𝑖𝑡 of the individuals in contact with 𝑖 at the time
instant 𝑡.

1.5 Bayesian inference on the SIR model
Whenever there is a model for a certain process or event, along with a distribution that gives the
probabilities for the outcomes of this process, there is the issue of updating a the model when
new observations (or evidence) become available. Themodel should then be updated to account
for this new evidence, for example, if one wanted to predict the most probable outcomes, given
the previous observations, or to understand which factors were the most probable causes of
the events observed. When employing the Bayesian approach to probability theory, this is
in principle straightforward. Starting from a certain probability distribution describing the
process (in our case, equation (1.11)), it’s possible to update this distribution so that it reflects
the new evidence that we have on the process realization.

This is done by the use of Bayes’ rule, that says that given two events 𝐴 and 𝐵, and that
𝑝 (𝐵) > 0, if we have observed event 𝐵 has happened, we can compute the probability of 𝐴
happening as well:

𝑝 (𝐴 ∣ 𝐵) =
𝑝 (𝐵 ∣ 𝐴) 𝑝 (𝐴)

𝑝 (𝐵)
The first term in the numerator on the right-hand side is then called the likelihood, while the
𝑝 (𝐴) is called the prior probability. This is because this equation can be interpreted as updating
the probability 𝑝 (𝐴) with the information that event 𝐵 has happened, conveyed by 𝑝 (𝐵 ∣ 𝐴).
The left-hand side is called the posterior probability, and is the updated onewith the information
on what happened.

In the case of the SIR probabilistic model, our prior probability distribution is given by equa-
tion (1.11). So, calling 𝒪 the set containing the observations, the update rule with Bayes’ theo-
rem reads

𝑝 (x ∣ 𝒪) =
𝑝 (𝒪 ∣ x) 𝑝 (x)

𝑝 (𝒪)
(1.21)

Therfore, in order to apply this rule, one needs to compute both the likelihood 𝑝 (𝒪 ∣ x) and
the denominator 𝑝 (𝒪). The former can be written in a simple way: since it is assumed that
observations come in the form of medical tests performed on the individuals, it is acceptable to
assume that each one is independent from the others. Then the probability of a set of tests 𝒪
can be written as

𝑝 (𝒪 ∣ x) = ∏
(𝑖,𝑡,𝑧)∈𝒪

𝑝 (𝑥̃ 𝑡𝑖 = 𝑧 ∣ 𝑥 𝑡𝑖) (1.22)

Where we introduced the variables 𝑥̃ 𝑡𝑖 ∈ {𝑆, 𝐼,𝑅}, each one associated to an observation, which
is mathematically defined as the triplet of the time of observation 𝑡, the index 𝑖 and the observed
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state 𝑧 of the individual being tested. This way of writing the likelihood accounts for the fact
that the observations could be imprecise, like testing for a viral infection with a tool-kit that
provides a fast result but with a low accuracy [25, 160].

The prior probability of the observations, 𝑝 (𝒪), should account all the ways in which these
observations can be derived, without considering the specific epidemic realization. This in
practice amounts to consider every possible epidemic cascade:

𝑝 (𝒪) = ∑
x

𝑝 (𝒪,x) = ∑
x

𝑝 (𝒪 ∣ x) 𝑝 (x) (1.23)

It is plain to see that the term in the sum is just the numerator of Bayes’ rule, so 𝑝 (𝒪) can be
substituted with a normalization term. For this reason, from now on we will write equation
(1.21) as:

𝑝 (x ∣ 𝒪) = 1
𝑍

𝑝(x0)
𝑇

∏
𝑡=1

𝑁
∏
𝑖=1

𝑝 (𝑥 𝑡𝑖 ∣ x𝑡−1) ∏
(𝑖,𝜏,𝑧)∈𝒪

𝑝 (𝑥̃𝜏𝑖 = 𝑧 ∣ 𝑥 𝜏𝑖 ) (1.24)

where the normalization constant is called 𝑍 in analogy with statistical physics, and 𝑍 = 𝑍 (𝒪).
This means that in order to do exact Bayesian inference on the SIR Model, it is necessary, in

principle, to sum over all epidemic cascades that is possible to obtain on a given contact graph,
and then account for compatibilitywith the observations. This has a computational cost of order
𝑂 (3𝑁𝑇), so it rapidly becomes practically infeasible when the network or the number of time
intervals become large. Doing exact Bayesian inference at the individual level in epidemics
is thus an open problem, for which no reasonably fast techniques have been discovered yet.
Therefore, in order to find an efficient technique for inference, it is necessary to make some
approximations [76].

1.5.1 The source inference problem
It has been shown above that the inference of the whole epidemic cascade from a set of obser-
vations can be a difficult problem. While being able to know the posterior distribution (1.24)
would effectively solve any problem in epidemic inference, it should be noted that in the cases
where we do not need the entire epidemic cascade, but just the states at a specific time instant.
In these cases, a different solution can be formulated.

Let us now consider the case when the inference is focused on the initial state of the epi-
demic. In this case, it is important to find the individuals who were infected at the beginning,
called patient zeros. The posterior probability of the initial state can be written as:

𝑝 (x0 ∣ 𝒪) = ∑
x1,x2,…,x𝑇

𝑝 (x ∣ 𝒪)

= 1
𝑍

( ∑
x1,x2,…,x𝑇

𝑇
∏
𝑡=1

𝑁
∏
𝑖=1

𝑝 (𝑥 𝑡𝑖 ∣ x𝑡−1) 𝑝 (𝒪 ∣ x)) 𝑝(x0)

= 1
𝑍
𝑝 (𝒪 ∣ x0) 𝑝(x0) (1.25)

which corresponds to applying Bayes’ theorem to the initial state of the epidemic only. Analo-
gously, one can write Bayes’ rule for the case in which we consider only one individual infected
at the beginning of the epidemic and want to infer marginal source probabilities 𝑝(𝑠0 = 𝑖):

𝑝 (𝑠0 = 𝑖 ∣ 𝒪) ∝ 𝑝 (𝒪 ∣ 𝑠0 = 𝑖) 𝑝(𝑠0 = 𝑖) (1.26)
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1.5 – Bayesian inference on the SIR model

This formulation does not overly simplify the problem, as one still has to consider a large
number of possible realizations in order to compute the likelihood term, but it can lead to ap-
proximate methods for the calculation of the posterior which may be simpler and less compu-
tationally intensive then the one used for the inference of the full epidemic cascade.
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Chapter 2

Graphical models and Belief
Propagation

2.1 Factor graphs
In statistical physics, systems of many interacting variables are often found to exhibit interac-
tions that are local, and often mutually dependent. In many of these instances it is possible to
‘factorize’ the probability distribution of the system, that is writing it as the product of several
factors that depend on different sets of variables. In this case, one natural and efficient way to
represent the probability distribution is through the use of factor graphs [23].

Factor graphs are bipartite undirected graphs made of two types of vertices, which are the
variables and factors. Assume that there are 𝑁 variables 𝑥1, 𝑥2,… , 𝑥𝑁, and their probability
distribution can be written as

𝑃 (x) = 1
𝑍

𝑀
∏
𝑎=1

𝜓𝑎 (x𝜕𝑎) (2.1)

where 𝑀 factors 𝜓𝑎 can be identified, each one having a set of dependencies variables x𝜕𝑎. For
example, Let us consider a simple case in which there are 𝑁 = 7 variables:

𝑃 (x) = 1
𝑍

𝜓𝑎 (𝑥1, 𝑥2, 𝑥3, 𝑥6) 𝜓𝑏 (𝑥3, 𝑥4, 𝑥5) 𝜓𝑐 (𝑥5, 𝑥6, 𝑥7) 𝜓𝑑 (𝑥5) (2.2)

Then there are four factors, and the corresponding factor graph is depicted in Figure 2.1, where
each factor is connected to every variable it is dependent on. As a convention, in the rest of
the thesis squares will be used to represent factor nodes in a factor graph. Factor graphs are
the basis for the study of graphical models, which are often used not only in physics, but also in
combinatorial optimization, machine learning and Bayesian inference in general [8, 23, 12, 21,
31]. In this sense, the factors 𝜓 can also be called compatibility functions, and they only need to
give non-negative values, while 𝑍 has to be a positive constant.

A factor graph then is usually redefined as𝒢 = (𝑉, 𝐹, 𝐸), splitting the nodes into the variables
𝑉 and the factors 𝐹. When all the factor nodes have degree 2, a factor graph can be reduced to a
simple graph, as in this case each factor 𝜓𝑎 can actually be renamed 𝜓𝑖,𝑗 from the indices of the
variables to which it is connected, and so in the simplified graph it will be represented by an
edge (𝑖, 𝑗).
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a

b

c

d

Figure 2.1: Example of a factor graph with 7 variables and 4 factors

2.2 Belief Propagation
When dealing with a graphical model, it is often the goal to calculate the marginal distribution
of some of the variables in the factor graph. The most naive way to do this is to sum on all
the possible configurations, which has a time cost that goes exponentially with the number
of variables involved. However, when the factor graph of the complete distribution is a tree,
it is possible to compute marginal distributions of the variable, or alternatively the partition
function 𝑍, in a way that involves much less computational cost. The Belief Propagation (BP)
algorithm belongs to the class of message passing methods, that exploit the local natures of
the interactions of a model by using distributed computation. Its equations have been derived
several times in different fields: in physics, the idea was first put forward by Bethe [9]; in coding
theory, it has been used for error correction in low-density parity-check codes [3], while in
Bayesian inference the algorithm was proposed by Pearl [5].

Again, let us assume that there is a distribution of 𝑁 variables 𝑥1, 𝑥2,… , 𝑥𝑁, with the impor-
tant additional assumption now that the corresponding factor graph is a tree:

𝑝 (x) = 1
𝑍

𝑀
∏
𝑎=1

𝜓𝑎 (x𝜕𝑎) (2.3)

This is not the case for the previous example, as the graph in figure 2.1 has a loop, however it can
become a tree by removing one edge, thus changing the functional form of the corresponding
factor, like, for example, eliminating the dependency of 𝜓𝑎 on 𝑥3.

In the following, in order to use a light notation, the set of the variables that are connected to
a factor 𝑎 will be denoted as 𝜕𝑎, and analogously the set of the factors connected to a particular
variable 𝑖will be called 𝜕𝑖. Also, indices 𝑖, 𝑗, 𝑘will be used for node variables, and 𝑎, 𝑏, 𝑐 for factor
nodes.

The BP algorithm defines two types of messages, and one message of each kind for each
edge (𝑖, 𝑎) of the factor graph: one is 𝑚𝑎→𝑖 (𝑥𝑖), that goes from factor node to variable node, and
the other is 𝜈 𝑖→𝑎 (𝑥𝑖), that goes from variable to factor node. Each message takes values in the
space of probability distributions of the variable of the relative edge, so that 𝑚𝑎→𝑖 (𝑥𝑖) ≥ 0 (and
𝜈 𝑖→𝑎 (𝑥𝑖) ≥ 0), and is normalized, so that ∑𝑥𝑖 𝑚𝑎→𝑖 (𝑥𝑖) = 1 (and ∑𝑥𝑖 𝜈 𝑖→𝑎 (𝑥𝑖) = 1).
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2.2 – Belief Propagation

Figure 2.2: Graphical representation of the update of messages in belief propagation: on the
left, the update for the messages from variable to factor, on the right from factor to variable.
To update one outgoing message along an edge, the incoming messages on the other edges
are multiplied together (which are of the opposite type). In the examples, each node has 4
neighbours for convenience.

In the Belief Propagation scheme, messages 𝑚𝑎→𝑖 and 𝜈 𝑖→𝑎 are updated, edge by edge, from
the values of the messages from the other edges. The update rules are the following:

𝜈(𝑡+1)𝑖→𝑎 (𝑥𝑖) ∝ ∏
𝑏∈𝜕𝑖⧵𝑎

𝑚(𝑡)
𝑏→𝑖 (𝑥𝑖) (2.4)

𝑚(𝑡+1)
𝑎→𝑖 (𝑥𝑖) ∝ ∑

x𝜕𝑎⧵𝑖
𝜓𝑎 (x𝜕𝑎) ∏

𝑘∈𝜕𝑎⧵𝑖
𝜈(𝑡)𝑘→𝑎 (𝑥𝑘) (2.5)

where the superscript (𝑡) indicates the update round, and the shorthand 𝜕𝑎 ⧵ 𝑗 stands for all the
neighbour indices of factor 𝑎, excluding 𝑗 (analogously 𝜕𝑗 ⧵ 𝑎 stands for the neighbour factors
of variable 𝑗, excluding 𝑎). After doing many iterations of the above equations, it is possible to
give an estimate of the of a single variable marginals of the original distribution (2.3), by the
product of all the incoming messages in the variable node of the factor graph:

𝑏(𝑡+1)𝑖 (𝑥𝑖) =
1
𝑍𝑖

∏
𝑎∈𝜕𝑖

𝑚(𝑡)
𝑎→𝑖 (𝑥𝑖) (2.6)

These beliefs for the probability can be updated every time the messages are. The distribution
of the variables of a single factor can also be estimated as:

𝑏(𝑡+1)𝑎 (x𝜕𝑎) =
1
𝑍𝑎

∏
𝑖∈𝜕𝑎

𝜈(𝑡)𝑖→𝑎 (𝑥𝑖) (2.7)

Running (2.4) and (2.5) many times for all variables and factor nodes on a tree factor graph
ensures that the messages converge in a finite number of iterations 𝑡∗, and that at convergence
the beliefs obtained correspond exactly to the marginals, 𝑏∗𝑖 = 𝜇𝑖 (𝑥𝑖) and (see [23] for the proof).
It can also be shown that, when the factor graph is a tree, the probability distribution if all the
variables can be written as a product of the marginals:

𝑝 (x) = ∏
𝑎∈𝐹

𝜇𝑎 (x𝜕𝑎)∏
𝑖∈𝑉

𝜇𝑖 (𝑥𝑖)
1−|𝜕𝑖| (2.8)
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where 𝜇𝑎 (x𝜕𝑎) is the marginal probability distribution of all the variables that are connected
to factor 𝑎. In fact, these marginals correspond to the beliefs at convergence of the message
passing, 𝜇𝑎 = 𝑏∗𝑎 (x𝜕𝑎). This result can be proven by induction on the factor graph [23], and has
important consequences. For instance, the entropy 𝑆 [𝑝] = −∑x 𝑝 (x) log 𝑝 (x) can be expressed
as:

𝑆 [𝑝] = −∑
𝑎∈𝐹

∑
x𝜕𝑎

𝜇𝑎 (x𝜕𝑎) log 𝜇𝑎 (x𝜕𝑎) −∑
𝑖∈𝑉

(1 − |𝜕𝑖|)∑
𝑥𝑖

𝜇𝑖 (𝑥𝑖) log 𝜇𝑖 (𝑥𝑖) (2.9)

If the graphical model in (2.3) is treated as a physical system, each factor 𝜓𝑎 then can be
written as 𝜓𝑎 = exp {−𝛽𝐸𝑎 (x𝜕𝑎)}, where 𝐸𝑎 is the energy contribution of the factor, and 𝛽 is
the inverse temperature. This is done with probabilistic models by putting 𝛽 = 1, and this
convention will be used in the rest of the thesis, unless stated otherwise. However, if a graphical
model contains factors that could become 0, as is the case with hard constraints, special care
must be taken with the energy representation, as the energy 𝐸𝑎 corresponding to 𝜓𝑎 = 0 is
infinite.

Excluding systems with this kind of issues, the average energy 𝑈 can then be written

𝑈 [𝑝] = −∑
𝑎∈𝐹

∑
x𝜕𝑎

𝜇𝑎 (x𝜕𝑎) log 𝜓𝑎 (x𝜕𝑎) (2.10)

which leads to the free energy 𝔽 = 𝑈 − 𝑆 being calculated as:

𝔽 [𝑝] = −∑
𝑎∈𝐹

∑
x𝜕𝑎

𝜇𝑎 (x𝜕𝑎) log
𝜓𝑎 (x𝜕𝑎)
𝜇𝑎 (x𝜕𝑎)

−∑
𝑖∈𝑉

(|𝜕𝑖| − 1)∑
𝑥𝑖

𝜇𝑖 (𝑥𝑖) log 𝜇𝑖 (𝑥𝑖) (2.11)

When the factor graph is a tree, it is also possible to write 𝔽 as an expression of the BP
messages at convergence (2.4):

𝔽 = ∑
𝑎∈𝐹

𝔽𝑎 − ∑
(𝑎,𝑖)∈𝐸

𝔽𝑎𝑖 +∑
𝑖∈𝑉

𝔽𝑖 (2.12)

where:

𝔽𝑎 = log [∑
x𝜕𝑎

𝜓𝑎 (x𝜕𝑎)∏
𝑖∈𝜕𝑎

𝜈∗𝑖→𝑎 (𝑥𝑖)] (2.13)

𝔽𝑎𝑖 = log [∑
𝑥𝑖

𝑚∗
𝑎→𝑖 (𝑥𝑖) 𝜈∗𝑖→𝑎 (𝑥𝑖)] (2.14)

𝔽𝑖 = log [∑
𝑥𝑖

∏
𝑏∈𝜕𝑖

𝑚∗
𝑏→𝑖 (𝑥𝑖)] (2.15)

2.2.1 Bethe approximation and loopy belief propagation
In the case the factor graph is not a tree, but contains loops, it is not possible to use the messages
at convergence to compute the exact marginals or the free energy. However, the same expres-
sions can still be used to give an approximation, assuming that, locally, the graph is tree-like.
In fact, rewriting equation (2.11) substituting the marginals with the beliefs gives:

𝔽 [b] = −∑
𝑎∈𝐹

∑
x𝜕𝑎

𝑏𝑎 (x𝜕𝑎) log
𝜓𝑎 (x𝜕𝑎)
𝑏𝑎 (x𝜕𝑎)

−∑
𝑖∈𝑉

(|𝜕𝑖| − 1)∑
𝑥𝑖

𝑏𝑖 (𝑥𝑖) log 𝑏𝑖 (𝑥𝑖) (2.16)
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2.3 – Belief propagation for epidemic inference

which defines the Bethe free energy. The beliefs 𝑏 do not need to be defined as the fixed points
of the BP equations, but simply as non-negative distributions (𝑏𝑖 (𝑥𝑖) ≥ 0, 𝑏𝑎 (x𝜕𝑎) ≥ 0) that are
normalized (∑𝑥𝑖 𝑏𝑖 (𝑥𝑖) = 1, and ∑x𝜕𝑎 𝑏𝑎 (x𝜕𝑎) = 1), that respect the condition of being locally
consistent, that is the following marginalization:

∑
x𝜕𝑎⧵𝑖

𝑏𝑎 (x𝜕𝑎) = 𝑏𝑖 (𝑥𝑖) (2.17)

Then, from this definition it can be shown that the b = {𝑏𝑖, 𝑏𝑎} corresponding to the stationary
points of the Bethe free energy (2.16) do in fact also have one-to-one correspondence to fixed
points of the BP equations (2.4) - (2.5) [23]. This case is then called Loopy Belief Propagation
(sometimes abbreviated as LBP), even if the equations used for the fixed point calculation are
the same, because the exactness of the fixed points is lost, and even reaching the convergence
of the BP equation is not guaranteed.

However, loopy BP has found wide adoption in practice, as the result of the approximation
is generally better then simpler Mean Field methods [32, 36, 59].

2.3 Belief propagation for epidemic inference
In this section, a derivation of the belief propagation method for epidemic processes will be
shown [38, 37]. This method, which can perform approximate Bayesian inference of epidemics
with the SIR model on a graph, has been used extensively during the thesis’ work, either as a
comparison or for application on different epidemic models.

Let us recall now the probabilistic inference setting. We will consider epidemic cascades
spreading on a contact network according to the SIR model (see section 1.3). The probability
distribution 𝑝 (x) of one such cascade can be written as:

𝑝 (x) = 𝛾 (x0)
𝑇

∏
𝑡=1

𝑁
∏
𝑖=1

𝑝 (𝑥 𝑡𝑖 |x𝑡−1) (2.18)

where the 𝛾 is the probability of the initial state, and 𝑝 (𝑥 𝑡𝑖 |x𝑡−1) is the transition probability
given by the SIR model (1.10a) - (1.10c).

2.3.1 Infection times representation and factor graph
The irreversible nature of the SIR model makes it possible to explicitly map an epidemic cascade
x to a set of infection times 𝑡𝑖 = min {𝑡 ∶ 𝑥 𝑡𝑖 = 𝐼} and recovery times 𝑟𝑖 = min {𝑡 ∶ 𝑥 𝑡𝑖 = 𝑅} for
each individual 𝑖. In this definition, if an individual has never been infected (or, respectively,
recovered), her 𝑡𝑖 = 𝑇∞ (respectively, 𝑟𝑖 = 𝑇∞). This 𝑇∞ should in principle be infinite to
represent an event that never happened, however, since the final time of observation of the
epidemic is 𝑇, it is equally possible to use any larger value, like 𝑇∞ = 𝑇 + 1. Then, the mapping
between the times and the state is very simple:

𝑋 (𝑡, 𝑡𝑖, 𝑟𝑖) =
⎧

⎨
⎩

𝑆 if 𝑡 < 𝑡𝑖
𝐼 if 𝑡𝑖 ≤ 𝑡 < 𝑟𝑖
𝑅 if 𝑡 ≥ 𝑟𝑖

(2.19)
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It is however more intuitive to introduce the recovery delay for every individual 𝑔𝑖 = 𝑟𝑖−𝑡𝑖, that
is the time it takes for an infected individual to become recovered. In the SIR Markov model
(1.10a) - (1.10c), this follows a geometric distribution:

𝔾𝑖 (𝑔𝑖) = 𝜇𝑖 (1 − 𝜇𝑖)
𝑔𝑖−1 (2.20)

where 𝜇𝑖 is the recovery probability for each time interval. Now, in order to account for the
propagation of the disease, it is easy to see that, after a person 𝑖 has been infected, the dis-
ease propagates to 𝑗 with a transmission delay 𝑠𝑖𝑗. This delay follows a probability distribution
𝜔𝑖𝑗 (𝑠𝑖𝑗 | 𝑔𝑖), which is depending on 𝑔𝑖 because, once the individual has recovered, he/she cannot
infect any more. In the Markov SIR Model this distribution reads:

𝜔𝑖𝑗 (𝑠𝑖𝑗 | 𝑔𝑖) = {
𝜆𝑖𝑗 (1 − 𝜆𝑖𝑗)

𝑠𝑖𝑗 𝑠𝑖𝑗 < 𝑔𝑖
∑𝑠≥𝑔𝑖 𝜆𝑖𝑗 (1 − 𝜆𝑖𝑗)

𝑠 𝑠𝑖𝑗 = ∞
(2.21)

where the probability of all the other cases is concentrated on the infinite time case. Then,
infection times are now deterministic, that is, they have to satisfy the relation

𝑡𝑗 = 1 +min
𝑘∈𝜕𝑗

{𝑡𝑘 + 𝑠𝑘𝑗} (2.22)

With this framework, it is now possible, when given an initial state x0, to generate 𝑔𝑖 and 𝑠𝑖𝑗
and that correspond to an SIR epidemic cascade. Formally, the probability of such a cascade can
now be written as

𝑝 (t, g |x0) = ∑
s
𝑝 (t | s, g,x0) 𝑝 (s | g) 𝑝 (g)

= ∑
s
∏
𝑖,𝑗

𝜔𝑖𝑗 (𝑠𝑖𝑗 | 𝑔𝑖)∏
𝑖
𝜙𝑖 (𝑡𝑖, {𝑡𝑘, 𝑠𝑘𝑖}𝑘∈𝜕𝑖)𝔾𝑖 (𝑔𝑖) (2.23)

where
𝜙𝑖 (𝑡𝑖, {𝑡𝑘, 𝑠𝑘𝑖}𝑘∈𝜕𝑖) = 𝛿 (𝑡𝑖, 𝕀 [𝑥0𝑖 ≠ 𝐼] (1 +min

𝑘∈𝜕𝑖
{𝑡𝑘 + 𝑠𝑘𝑖})) (2.24)

enforces the dynamical constraint on each node 𝑖.
The probability distribution written so far (2.23), is problematic for applying Belief Propa-

gation, as the factor graph describing the distribution contains a lot of short range loops (see
Figure 2.3). In order to develop a BP method for the computation of the marginals of this distri-
bution, it would be ideal to reach a factor graph representation that retains the same topological
properties as the original contact graph. This solution then would also retain the convergence
guarantees when the contact graph is a tree.

In order to ”disentangle” the factor graph, it is necessary to introduce copy variables for the
infection times 𝑡(𝑗)𝑖 for each edge (𝑖, 𝑗) of the contact graph. These variables are set equal to 𝑡𝑖
with an extra constraint ∏𝑗∈𝜕𝑖 𝛿 (𝑡

(𝑗)
𝑖 , 𝑡𝑖) (where 𝜕𝑖 is the set of neighbours of 𝑖 in the contact

graph).
Then, since the factors 𝜙𝑖 depend on the infection times and delays only trough their sum,

it is more convenient to introduce 𝑡𝑖𝑗 = 𝑡(𝑗)𝑖 + 𝑠𝑖𝑗. Now the factors 𝜔𝑖𝑗 and 𝜔𝑗𝑖 can be put together
in the same factor 𝜙𝑖𝑗:

𝜙𝑖𝑗 = 𝜔𝑖𝑗 (𝑡𝑖𝑗 − 𝑡(𝑗)𝑖 | 𝑔(𝑗)𝑖 ) 𝜔𝑗𝑖 (𝑡𝑗𝑖 − 𝑡(𝑖)𝑗 | 𝑔(𝑖)𝑗 ) (2.25)
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Figure 2.3: The factor graph given by the probability distribution (2.23), with a fixed contact
graph that is a linear chain 𝑖 − 𝑗 − 𝑘 − 𝑙. Only a part of the factor graph is drawn, omitting the
𝑠𝑖𝑗, 𝑔𝑖 variables and related factors, but it can already be seen that this situation is far from ideal
for BP, as there are many short range loops.

where the copy variables (on the edges) for 𝑔𝑖 and 𝑔𝑗 have been introduced. The constraints for

𝑔(𝑗)𝑖 and 𝑔(𝑖)𝑗 can be collected with the others in another factor 𝜓𝑖:

𝜓𝑖 = 𝛿 (𝑡𝑖, 𝕀 [𝑥0𝑖 ≠ 𝐼])∏
𝑗∈𝜕𝑖

𝛿 (𝑡(𝑗)𝑖 , 𝑡𝑖) 𝛿 (𝑔
(𝑗)
𝑖 , 𝑔𝑖) (2.26)

Also, the probability of the initial state, 𝑝 (x0), can be assumed to be independent for each
individual 𝑖:

𝑝 (x0) = ∏
𝑖
𝛾𝑖 (𝑥0𝑖 )

𝛾𝑖 (𝑥0𝑖 ) = 𝛾𝛿 (𝑥0𝑖 , 𝐼) + (1 − 𝛾) 𝛿 (𝑥0𝑖 , 𝑆) (2.27)

The conversion function between states and times has to be introduced as another constraint:

𝜁 𝑡𝑖 = 𝕀 [𝑥 𝑡𝑖 = 𝑆, 𝑡 < 𝑡𝑖] + 𝕀 [𝑥 𝑡𝑖 = 𝐼, 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖 + 𝑔𝑖] + 𝕀 [𝑥 𝑡𝑖 = 𝑅, 𝑡 ≥ 𝑡𝑖 + 𝑔𝑖] (2.28)

so that is possible to write the full probability distribution

𝑄 (g, t, {𝑡𝑖𝑗} ,x0) =
1
𝑍
∏
(𝑖,𝑗)

𝜙𝑖𝑗∏
𝑖
𝜓𝑖𝔾𝑖𝛾𝑖𝜁 0𝑖 (2.29)

which has a factor graph representation (shown in Figure 2.4) that has the same topology of
the original contact graph.

2.3.2 Bayesian inference from observations
In order to account for observations, it is necessary to define a probability of making a cer-
tain observation given the full state of the epidemic x. It’s natural to assume observations are
independent, so for each observation at time 𝑡 of node 𝑖, there will be a probability factor

𝑝 (𝑧𝑡𝑖 |x) = 𝜂𝑡𝑖 (𝑧
𝑡
𝑖 | 𝑥

𝑡
𝑖)
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Graphical models and Belief Propagation

Figure 2.4: The new factor graph for the application of Belief Propagation. On the left, the
part of the graph corresponding to contacts between 𝑖 and 𝑗, related to factors 𝜓𝑖, 𝜓𝑗 and 𝜙𝑖𝑗. The
factors 𝛾𝑖, 𝜁𝑖,𝔾𝑖 are grouped on the left for simplicity: their structure is shown on the right pane.
In this example, the state of individual 𝑖 is observed at time 𝜏, which corresponds to factors 𝜁 𝜏𝑖 ,
for the conversion to the state 𝑥𝜏𝑖 , and 𝜂𝜏𝑖 , which accounts for the probability of observing 𝑧𝜏𝑖 .

that needs to be attached to the factor graph described so far. This is because if the inference
of the state of individuals at a particular time (say, 𝑡 = 0) is needed, the posterior probability
given by Bayes’ rule will be:

𝑝 (x0 | 𝒪) ∝ ∑
t,g,{𝑡𝑖𝑗}

𝑄 (g, t, {𝑡𝑖𝑗} ,x0) ∏
(𝑗,𝜏,𝜎)∈𝒪

𝜁 𝜏𝑗 (𝑡𝑗, 𝑔𝑗, 𝑥
𝜏
𝑗 ) 𝜂

𝜏
𝑘 (𝑧

𝜏
𝑗 = 𝜎 | 𝑥𝜏𝑗 ) (2.30)

This marginal can be calculated with belief propagation, which will converge to exact distri-
bution if the contact graph of the epidemic cascade is a tree. This approach can be used for
inference at any time instant, since it is possible to obtain marginals for 𝑡𝑖 and 𝑔𝑖. Moreover, it
is a very efficient approach, requiring a number of operations per update round which is poly-
nomial in the number of time instants and the number of edges in the original contact graph.
In particular, in this approach an optimized calculation of the messages results in a complexity
of 𝑂 (𝑇𝐺2|𝐸|) operations per BP iteration on the whole factor graph, where 𝐺 is the number of
time instants that are considered for the recovery delay, and |𝐸| is the original number of edges
in the original contact graph [38].

While writing the BP equations for this case is not the objective of this chapter, we remark
here that, while the method shown used the parameters of the Markovian SIR model, it is also
possible to use different parameters, redefining𝔾𝑖 and 𝜔𝑖𝑗 to account for non-Markovian spread-
ing. Moreover, the whole approach can be derived in the case of non-discrete time epidemics,
as has been done in [47].
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Chapter 3

Autoregressive Artificial Neural
Networks

While the Belief Propagation approximation of the posterior distribution (1.24) is efficient in
the calculation of the node marginals, the presence of loops in the contact graph structure can
be detrimental to the convergence of the algorithm, and the estimations of BP can thus become
quite inaccurate. This phenomenon could happen, for example, in dense and very structured
contact networks, and calls for the search of alternative inference methods which could over-
come such a limitation while maintaining comparable performances on sparse networks.

In this chapter we discuss a newmethod for inference that uses generative neural networks,
specifically autoregressive neural networks (ANNs), to learn the posterior probability of an
epidemic process and efficiently sample from it. In practice, the autoregressive neural network
can generate realizations of the epidemic process according to the stochastic dynamical rules
of the prior model but compatible with the evidence.

Deep autoregressive neural networks are used to generate samples according to a proba-
bility distribution learned from data, for instance for images [55], audio [51], text [13, 64] and
protein sequences [153] generation tasks and, more generally, as a probability density estima-
tor [28, 43, 54]. Autoregressive neural networks have recently been used to approximate the
joint probability distributions of many (discrete) variables in statistical physics models [68], and
applied in different physical contexts [106, 144, 98, 130]. Neural networks have already been
applied to epidemic forecasting [101, 66, 78] but rarely to epidemic inference and reconstruction
problems.

In this chapter, it will be shown how we used a deep autoregressive neural network archi-
tecture to efficiently sample from a posterior distribution composed of a prior, given by the
epidemic propagation model (even though the parameters of such model can be contextually
inferred), and from an evidence given by (time-scattered) observations of the state of a subset
of individuals. The work and the results presented in this chapter have been published in [158].
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Autoregressive Artificial Neural Networks

3.1 Learning the posterior probability using autoregressive
neural networks

Considering the posterior distribution of an epidemic cascade 𝑝 (x ∣ 𝒪) defined first in eq. (1.24),
under the hypothesis of independent observations it can be rewritten as

𝑝(x ∣ 𝒪) = 1
𝑝(𝒪)

𝑝(𝒪 ∣ x)𝑝(x)

= 1
𝑍

𝑁
∏
𝑖=1

𝑝(𝑥0𝑖 )
𝑇

∏
𝑡=1

𝑝 (𝑥 𝑡𝑖 ∣ x
𝑡−1
𝜕𝑖 , 𝑥 𝑡−1𝑖 )∏

𝑟∈𝒪
𝑝𝑟(𝑂𝑟 ∣ 𝑥

𝑡𝑟
𝑖𝑟 )

= 1
𝑍
∏
𝑖
Ψ𝑖 (x𝑖,x𝜕𝑖) (3.1)

highlighting the dependency of one individual’s trajectory x𝑖 on the ones of its neighbours x𝜕𝑖.
This suggests that, given a permutation 𝝅 = {𝜋1, 𝜋2,… , 𝜋𝑁} of the individuals of the system,
which imposes a specific ordering to the variables {x𝑖}, the probability of the realization x can
be written as the product of conditional probabilities (chain rule) in the form

𝑝(x ∣ 𝒪) =
𝑁
∏
𝑖=1

𝑝(x𝑖 ∣ x1,x2,… ,x𝑖−1,𝒪) (3.2)

where x𝑖 = {𝑥0𝑖 ,… , 𝑥𝑇𝑖 } and x<𝑖 = {x𝑗 ∣ 𝜋𝑗 < 𝜋𝑖} is the set of epidemic-state trajectories of
individuals with label lower than 𝑖 according to the given permutation 𝜋. The distribution (3.2)
can be approximated by a trial distribution 𝑞𝜽(x) with the same conditional structure

𝑞𝜽(x) = ∏
𝑖
𝑞𝜃𝑖𝑖 (𝑥𝑖 ∣ x<𝑖), (3.3)

which can be interpreted as an autoregressive neural network depending on a set of parameters
𝜽 = {𝜃𝑖 (𝒪)}. From the analytical expression of the posterior distribution 𝑝 (x ∣ 𝒪) defined in
Eq. (3.1), the operation of parameters learning can be performed using a variational approach
proposed in [68], in which the (reversed) Kullback-Liebler (KL) divergence

𝐷𝐾𝐿 (𝑞𝜽 ∥ 𝑝) = ∑
x

𝑞𝜽 (x) log
𝑞𝜽 (x)

𝑝 (x ∣ 𝒪)
(3.4)

is minimized with respect to the parameters 𝜽 of the trial distribution 𝑞𝜽 (x). The minimization
of the KL divergence can be performed using standard gradient descent algorithms. This thus
defines the loss function used for the training, 𝐹𝑞

𝐹𝑞 ≐ 𝐷𝐾𝐿 (𝑞𝜽 ∥ 𝑝) = ∑
x

𝑞𝜽 (x) [− log 𝑝 (x ∣ 𝒪) + log 𝑞𝜽 (x)] (3.5)

The computational bottleneck of these calculation in these equations is that the sum runs over
all possible epidemic realizations, a set that grows exponentially large with the size of the sys-
tem. This issue is avoided by exploiting the generative power of autoregressive neural networks
by generating a large sample dataset of epidemic cascades with them and using this data for

32



3.1 – Learning the posterior probability using autoregressive neural networks

Figure 3.1: Ancestral sampling of epidemic cascades. Left. Ancestral sampling of epidemic
cascades using artificial neural networks. For each individual 𝑖 there is a neural network ANN𝑖
that computes the probability 𝑞 (𝑥𝑖 ∣ 𝑥𝑖−1…𝑥1) of its time trajectory 𝑥𝑖 given the time trajectory
of previous individuals. The time trajectory 𝑥𝑖 is extracted from the conditional probability
𝑞 (𝑥𝑖 ∣ 𝑥𝑖−1…𝑥1) and passed to the following neural networks. Right. Each neural network is
composed of several fully connected layers (see section 3.3 for details).

training. This allows the averages over the autoregressive probability distribution to be approx-
imated as a sum over a large number of independent samples extracted from the autoregressive
probability distribution 𝑞𝜽. During the sampling, the conditional structure of the distribution
𝑞𝜽 allows to use ancestral sampling [50] to gather the samples for each individual, as shown
in figure 3.1. In section 3.4 it is described in detail how the learning is effectively performed
by minimizing the Kullback-Leibler divergence, and how an annealing procedure needs to be
introduced in order to avoid convergence issues due to very large values of the KL divergence
(3.4).

A common way to represent the conditional probabilities in Eq.(3.3) is by means of feed-
forward deep neural networks with sharing schemes architectures [54, 52] to reduce the num-
ber of parameters. Due to the possible high variability in the dependence of 𝑝(𝑥𝑖 ∣ x<𝑖) on
x<𝑖 [130], instead of adopting a sharing parameters scheme we reduce the number of param-
eters by limiting the dependency of the conditional probability to a subset of x<𝑖. This subset
that we consider is formed by all x𝑗 ∈ x<𝑖 such that 𝑗 is at most a second-order neighbour of
𝑖 in the contact network, that is the one in which there is an edge between two individuals if
and only if they are in contact at least once during the epidemic cascade. This is because of
the following reasoning: while the permutation order 𝝅 of the variables generally influences
the approximation, in the case of acyclic graphs, it is possible to define an order by which the
aforementioned second-order neighbours’ approximation is exact: the variables are ordered ac-
cording to a spanning tree computed starting from a random node chosen as a root (the proof is
given in appendix A). We thus imagine that the same procedure yields good approximations for
sparse interacting networks, but for general interaction graphs, we are unaware of arguments
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for choosing an order with respect to another. Therefore, also for the non-acyclic contact net-
works that are used throughout for the results, the same next nearest neighbours approximation
is used, using random permutations of the nodes. This introduces some losses in the accuracy
of the ANN technique, which are investigated in section 3.9.

3.2 Inferring the parameters of the propagation model
In a real case scenario, the epidemic parameters governing the propagation model are usually
unknown and they should be inferred from the available data. Calling Λ the set of these pa-
rameters (e.g. for uniform SIR models Λ = (𝜆, 𝜇)), the goal is to estimate them by computing
the values Λ∗ that maximize the likelihood function given the set of observations 𝒪, i.e.

𝑝(𝒪 ∣ Λ) = ∑
x

𝑝(𝒪 ∣ x)𝑝(x ∣ Λ) (3.6)

= ∑
x

∏
𝑖
Ψ𝑖(x𝑖) (3.7)

= 𝑍 (Λ) . (3.8)

The quantity 𝑍 is the same normalization constant introduced in Eq. (3.1), where the depen-
dence on the parameters was dropped. Formally,

Λ∗ = argmax
Λ

𝑍 (Λ) = argmax
Λ

log𝑍 (Λ) . (3.9)

Recalling that 𝑃(x ∣ 𝒪) = 𝑍−1∏𝑖 Ψ𝑖(x𝑖,Λ) and thanks to Gibbs’ inequality we have that

log𝑍(Λ) = ∑
x

𝑝(x ∣ 𝒪) log∏
𝑖
Ψ𝑖(x𝑖,Λ) −∑

x
𝑝(x ∣ 𝒪) log 𝑝(x ∣ 𝒪) (3.10)

≥ ∑
x

𝑞𝜽(x) log∏
𝑖
Ψ𝑖(x𝑖,Λ) −∑

x
𝑞𝜽(x) log 𝑞𝜽(x) (3.11)

= − ⟨𝐻⟩𝑞 + 𝑆𝑞 (3.12)

where we first replaced the probability function 𝑃(x ∣ 𝒪) with the variational probability dis-
tribution 𝑞𝜽(x) and defined the energetic and entropic terms

⟨𝐻⟩𝑞 = −∑
x

𝑞𝜽(x) log∏
𝑖
Ψ𝑖 (x𝑖,Λ) (3.13)

𝑆𝑞 = −∑
x

𝑞𝜽(x) log 𝑞𝜽(x). (3.14)

Since 𝑆𝑞 does not depend on Λ, minimizing ⟨𝐻⟩𝑞 with respect to parameters Λ corresponds to
maximizing log𝑍(Λ). The quantity ⟨𝐻⟩𝑞 and its derivatives w.r.t. Λ can be computed efficiently,
in an approximate way, by replacing the sum over all configurations with the average on the
samples extracted by ancestral sampling from the autoregressive probability distribution 𝑞𝜽.
Therefore, we use the following heuristic procedure, inspired by the Expectation-Maximization
(EM) algorithm, to infer the parameters, whileminimizing the KL divergence between 𝑞𝜽 and the
posterior probability 𝑝(x ∣ 𝒪). During the learning process, two sequential steps are performed:
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1. Update the parameters {𝜃𝑖} of the autoregressive neural network to minimize the KL di-
vergence in Eq. (3.4).

2. Update the parameters Λ to maximize the quantity ⟨𝐻⟩𝑞.

These steps are repeated until the end of the learning process. This approach has been inspired
by [38], where a similar method is applied to the Belief Propagation based inference algorithm.
As shown in that work, using the above heuristic of performing one step in the minimization of
the KL divergence and one step in the maximization of (3.13) yields good results in the inference
of parameters (shown in section 3.7.4).

3.3 Neural network architecture
Here, the structure used in the proposed method is discussed in more detail. In the autoregres-
sive approach, each conditional probability function 𝑝𝑖(x𝑖 ∣ x<𝑖) has to be approximated with
a neural network (NN) 𝑞𝜃𝑖𝑖 (x𝑖|x<𝑖). However, for monotonic models such as the SIR epidemic
model, the state-space representation of temporal trajectories as a sequence 𝑥𝑖 ∈ 𝒳 𝑇+1 of 𝑇 + 1
individual states (𝒳 = {𝑆, 𝐼,𝑅}) is redundant, and it turns out to be more efficient to repre-
sent them by the time instant 𝑡 𝐼𝑖 ∈ 𝒯 at which individual 𝑖 becomes infected and time instant
𝑡𝑅𝑖 ∈ 𝒯 at which it recovers, where 𝒯 = {0,1,… , 𝑇} ∪ 𝑇∞, the time 𝑇∞ corresponding to the
case of no infection or recovery occurred for 𝑖 in the interval [0, 𝑇 ]. More precisely, the case
(𝑡 𝐼𝑖 = 𝑇∞, 𝑡𝑅𝑖 = 𝑇∞) corresponds to individual 𝑖 being susceptible at every time of the epidemic

process, and (𝑡 𝐼𝑖 ≠ 𝑇∞, 𝑡𝑅𝑖 = 𝑇∞) corresponds to individual 𝑖 being infected but not recovering
in the time interval [0, 𝑇 ]. In practice, we can set 𝑇∞ = 𝑇 + 1 without loss of generality. This
parametrization reduces the state space that is explored during the training, decreasing the
number of incorrect time trajectories generated (for instances, time trajectory with transitions
from state 𝐼 to 𝑆).

In order to compute the probability of a trajectory of a single individual, there are now two
variables, 𝑡 𝐼𝑖 and 𝑡

𝑅
𝑖 . For thiswork, two neural networks are employed to encode the probabilities,

one for each variable. This is chosen to reduce the number of parameters needed in total for
the ANN method, and for ease of construction. These neural networks receive as input the
(already sampled) infection and recover times of previous individuals 𝑘 with 𝜋𝑘 < 𝜋𝑖, while
for the recovery probability NN, there are also the samples of the infection time for the same
individual. This way, the probability distribution of the trajectory of a single individual is split
into two conditional ones:

𝑞𝜃𝑖𝑖 (𝑡 𝐼𝑖 , 𝑡
𝑅
𝑖 | {𝑡 𝐼𝑗 , 𝑡

𝑅
𝑗 }𝜋𝑗<𝜋𝑖)

= 𝑞(𝐼)𝑖 (𝑡 𝐼𝑖 | {𝑡 𝐼𝑘, 𝑡
𝑅
𝑘 }𝜋𝑘<𝜋𝑖)

𝑞(𝑅)𝑖 (𝑡𝑅𝑖 | 𝑡 𝐼𝑖 , {𝑡 𝐼𝑘, 𝑡
𝑅
𝑘 }𝜋𝑘<𝜋𝑖)

and 𝜃𝑖,𝐼 and 𝜃𝑖,𝑅 are the respective weights of each network.
In our implementation, each neural network is a multi-layer perceptron (MLP) composed of

three hidden layers plus one output layer; each layer is fully connected, and can be written as
L𝑘+1 = 𝜎 (W𝑘L𝑘 + b𝑘)where L𝑘 is the input vector (output of layer 𝑘),W𝑘 ∈ 𝜃 is thematrix of the
weights, b𝑘 ∈ 𝜃 is the bias vector, and 𝜎 is the activation function, which is ReLU for the hidden
internal layers and Softmax for the last layer, which is needed to get a normalized probability
distribution. The width of each layer (the number of neurons) varies linearly from the input
size of each network to the output size. The input trajectories for each neural network are
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Figure 3.2: Actual implementation of a neural network. An example showing the lay-
ers of a neural network used for computing the conditional probability. The hidden layers,
represented in blue, are two, and the output layer, in green, is used to output the probability
distribution for 𝑡𝑅𝑖 . Hidden layers and output layer have different nonlinear functions. In this
example, 𝑇 = 2, so that the time instants are 0, 1, 2 and 𝑇∞ = 3.

converted into the one hot encoding representation: in this scheme, each infection or recovery
time of a sample is transformed into a vector of all zeros, except for that index which is 1. For
example, to represent 𝑡 𝐼𝑖 = 6, a vector of length 𝑇 + 2 is created where only the 7th element is 1
and the rest are zeros.

The size of the input and outputs of the neural networks used for each individual depends on
the observations and the contact graph in the following way: a) the input size depends on the
number of individuals with lower index that are considered (depending on the approximation
made, see section 3.9) and b) the observations made on an individual restrict the phase space
of the possible instants of infection (for example, if we observe individual 𝑖 is in the infected
state at time 𝑡𝑂, this means that his/her infection time 𝑡 𝐼𝑖 ≤ 𝑡𝑂 and the recovery time 𝑡𝑅𝑖 > 𝑡𝑂).
This last condition affects the size of the output of each network, but also the input size of the
networks for the individuals with higher index, whose conditional neural networks depends on
it: for example, if individual 𝑖 is observed in state 𝑆 at the final time 𝑇, when the observations are
noiseless, this implies that the infection and recovery times are fixed, 𝑡 𝐼𝑖 = 𝑇 + 1 and 𝑡𝑅𝑖 = 𝑇 + 1,
and the network will always give the same value for them. Thus, in this case, for all individuals
𝑗 with 𝜋𝑗 > 𝜋𝑖, the dependence of 𝑞(𝐼)𝑗 and 𝑞(𝑅)𝑗 on 𝑖 will effectively disappear.
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3.4 Learning procedures and regularization
The learning procedure involves the minimization of the Kullback-Leibler divergence, eq. (3.4),
between the posterior probability and the variational autoregressive neural networks. Starting
from equation (3.1), the expression of the posterior can be also factorized as a product over the
time instants as well as the individuals,

𝑝 (x ∣ 𝒪) ∝ ∏
𝑖
Ψ𝑖 (x𝑖,x𝜕𝑖) = ∏

𝑖,𝑡
𝜓 𝑡𝑖 (𝑥

𝑡
𝑖 ,x

𝑡−1
𝜕𝑖 )

where

𝜓 𝑡𝑖 (𝑥
𝑡
𝑖 ,x

𝑡−1
𝜕𝑖 ) = {

𝑝𝑡𝑖 (𝑥
(𝑡)
𝑖 |x𝑡−1𝜕𝑖 )∏(𝑖𝑟,𝑡𝑟)=(𝑖,𝑡) 𝑝𝑟(𝑂

𝑡𝑟𝑟 ∣ 𝑥 𝑡𝑖 ) 𝑡 > 0
𝑝𝑖(𝑥0𝑖 )∏(𝑖𝑟,𝑡𝑟)=(𝑖,𝑡) 𝑝𝑟(𝑂

𝑡𝑟𝑟 ∣ 𝑥 𝑡𝑖 ) 𝑡 = 0
(3.15)

Since the factor 𝜓 𝑡𝑖 can be zero for some epidemic configuration x, for example when they are
forbidden by dynamical constraints, the gradient of the training loss (3.5) can diverge preventing
the application of gradient descent algorithms. In these cases, the diverging term log 𝜓 𝑡𝑖 = −∞
is replaced with a regularization term log 𝜖 with 𝜖 ≪ 1. The gradient of the KL divergence with
respect to the parameters of the trial distribution reads

∇𝜽𝐹𝑞 = ∇𝜽∑
𝑥
𝑞𝜽 (x) [− log 𝑝 (x ∣ 𝒪) + log 𝑞𝜽 (x)] (3.16)

= ∑
𝑥
∇𝜽 𝑞𝜽 (x) [− log (∏

𝑖
Ψ𝑖 (𝑥𝑖,x𝜕𝑖)) + log 𝑞𝜽 (x)] +∑

𝑥
𝑞𝜽 (x) ∇𝜽 log 𝑞𝜽 (x) (3.17)

= ∑
𝑥
𝑞𝜽 (x) [− log (∏

𝑖
Ψ𝑖 (𝑥𝑖,x𝜕𝑖)) + log 𝑞𝜽 (x)] ∇𝜽 log 𝑞𝜽 (x) , (3.18)

where we used that
∑
x

𝑞𝜽 (x) ∇𝜽 log 𝑞𝜽 (x) = ∑
𝑥
∇𝜽 𝑞𝜽(x) = 0

and ∑x ∇𝜽 𝑞𝜽(x) = 0 due to the normalization ∑𝑥 𝑞𝜽(x) = 1. The presence of large negatives
values in the derivatives (e.g. due to log 𝜖 terms) reduces the ability of gradient descent algo-
rithms to explore all configurations compatible with the constraints. To overcome this issue,
an annealing procedure is adopted, in which a fictitious inverse temperature 𝛽 is introduced
in the computation the gradient of the KL divergence. Also, as already mentioned above, we
replace the sum over all configuration with the average on a large number of epidemic cascades
sampled from the ANN:

∇𝜃𝐹
𝛽
𝑞 ≈ 𝔼x∼𝑞𝜽 [(−𝛽 log (∏

𝑖
Ψ𝑖 (𝑥𝑖,x𝜕𝑖)) + log 𝑞𝜽 (x)) ∇𝜃 log 𝑞𝜽 (x)] . (3.19)

The minimization procedure starts with 𝛽 = 0, where all the configurations are allowed with
uniform probability, then the parameter 𝛽 is slowly increased until it reaches 𝛽 = 1, at which
the original expression of the loss function is recovered.

For all the results shown in the following, at each step of the training we generate 10 000
epidemic cascades from the ANN before updating the weights using the ADAM optimizer [57]
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with learning rate 𝑙𝑟 = 0.001. At each step 𝛽 increases linearly, and we perform 10 000 training
steps(except for the hospital case (see section 3.7) where we do 20 000 steps).

In the case of the risk inference problem, we also include a prior probability in the model,
with strength decreasing linearly with 𝛽. This prior is computed from the probabilities of each
individual being sampled as 𝑆, 𝐼 or 𝑅 at the last time instant 𝑡 = 𝑇, and it is designed in such a
way that, when 𝛽 = 0, the probabilities for the three states at the final time are equal.

The running time of the ANN algorithm on a single instance ranges from one hour to two
days on a single GPU (Nvidia TITAN RTX), depending on the structure of the observations 𝒪
and that of the underlying contact network. Our implementation using the PyTorch framework
[65] is publicly available in the repository [156]. The results presented in this chapter can be
reproduced using the code published in the repository [157].

3.5 Soft margin estimator
For the results we will also use the Soft Margin estimator from [41] for finding the patient zero.
This is a Monte Carlo based estimator, which applies Bayes formula to estimate the source
posterior probability 𝑃 (𝑠 = 𝑘 ∣ x𝑂) given a set of observations x𝑂 on an epidemic cascade:

𝑃 (𝑠 = 𝑘 ∣ x𝑂) ∝ 𝑃 (x𝑂 ∣ 𝑠 = 𝑘) 𝑃 (𝑠 = 𝑘) (3.20)

In order to evaluate the likelihood 𝑃 (x𝑂 ∣ 𝑠 = 𝑘), themethod uses𝑀Monte Carlo simulations
in which the source of the epidemic is 𝑘 and compares the resulting epidemic cascade x𝑖 with
the observations.

Since the original method in [41] was developed for the SI epidemic model, we devised an
extension for the likelihood calculation to the SIR model. In order to compute 𝑃 (x𝑂 ∣ 𝑠 = 𝑘), a
measure of the similarity to the observation is needed. For this we use the Jaccard similarity
function 𝜙𝑋 (x𝑖,x𝑂), relating which individuals are in state 𝑋 (either infected, 𝑋 = 𝐼 or recov-
ered, 𝑋 = 𝑅) in the generated cascade and the observations:

𝜙𝑋 (x𝑖,x𝑂) =
|𝑣𝑋 (x𝑖) ∩ 𝑣𝑋 (x𝑂)|
|𝑣𝑋 (x𝑖) ∪ 𝑣𝑋 (x𝑂)|

(3.21)

Defining 𝑣𝑋 (x) = {(𝑖, 𝑡) ∈ 𝒪 ∶ 𝑥 𝑡𝑖 = 𝑋}.
Clearly, if no individuals are observed in state 𝑋, then 𝜙𝑋 = 1 regardless of the realization.

Then, we can define an estimator 𝐿 of the likelihood of a given source:

𝐿 (x𝑂 ∣ 𝑠 = 𝑘) = 1
𝑀

𝑀
∑
𝑖=1

exp {−
(𝜙𝐼 (x𝑖,x𝑂) − 1)2 + (𝜙𝑅 (x𝑖,x𝑂) − 1)2

𝑎2
} (3.22)

where the coefficient 𝑎 regulates the sharpness of the peak around the case of perfect matching
of observations (𝜙𝐼 = 1 and 𝜙𝑅 = 1), where the corresponding value in the sum is 1. In particular,
when 𝑎 → 0 the exponential term is either 1 in the case that is just described, or 0. Thus, the
estimator 𝐿 reduces to the exact Monte Carlo likelihood probability:

𝐿 (x𝑂 ∣ 𝑘) ⟶
𝑎→0

𝑃 (x𝑂 ∣ 𝑠 = 𝑘) = 1
𝑀

𝑀
∑
𝑖=1

𝛿 (𝜙𝐼 (x𝑖,x𝑂) − 1) 𝛿 (𝜙𝑅 (x𝑖,x𝑂) − 1)
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which is much more difficult to estimate because a very large number of generated epidemics
give a zero contribution to the sum, even if the result is very close to the observations, and
getting the same exact observations has vanishing probability. For the patient zero problems,
we select the 𝑎 values that give better results (retrospectively) because they seem to be strongly
dependent on the contact graphs and the number of samples considered.

3.6 Contact graphs employed
Before showing the results of the ANN technique, we briefly discuss the contact graphs to
which this method is applied. We use both real-world and synthetic contact networks for the
generation of epidemic cascades to test our method on. For the former type, we consider one
network, taken from the dataset InVS13 [61], that has been collected in a work environment
(which we call work), and a second one that has been collected in a hospital (hospital) [45].
In both cases, the dataset used is the temporal list of contacts, respectively between 95 and 330
individuals, for a period of two weeks. Since the real duration 𝛿 𝑡𝑖,𝑗 of each contact is known, the
probability of infections between individuals 𝑖, 𝑗 at time 𝑡 is computed as

𝜆𝑡𝑖,𝑗 = 1 − 𝑒−𝛾𝛿
𝑡
𝑖,𝑗

where 𝛾 is the rate of infection. The obtained networks have been analyzed, and in Figure 3.3
the obtained metrics of the graphs are shown, like the fraction of active nodes, the density and
the average clustering coefficient [16].

We also consider two synthetic contact networks: a random regular graph (RRG) with
𝑁 = 100 individuals and degree equal to 10, and a random geometric graph (proximity), in
which 𝑁 = 100 individuals are randomly placed on a square of linear size √𝑁. In the latter, the
probability that individuals 𝑖 and 𝑗 are in contact is 𝑒−𝑑𝑖𝑗/𝑙, where 𝑑𝑖𝑗 is the distance between 𝑖
and 𝑗 and 𝑙 is a parameter (set to 𝑙 = 10) that controls the density of contacts.

3.7 Results
As a preliminary illustration of the ability of the proposed Autoregressive Neural Network
(ANN) to sample epidemic realizations from a given posterior distribution, we consider epi-
demic cascades generated on the hospital contact graph. These are depicted in figure 3.4,
where it can be seen that, even when starting from the same individual, different epidemic
cascades can have very different outcomes. When we train the ANN to learn the posterior
probability composed by the prior, i.e. the epidemic model that generates the cascade, and the
final configuration (at day 12) of one such epidemic (the blue one, in figure 3.4), we can then
sample more cascades from the ANN and compare the difference between them and the original
one. This is shown in Figure 3.5: the epidemic cascades generated by the ANN have Hamming
distances from the reference one that reduce to zero at day 12 (central-bottom plot) and a frac-
tion of them have prior probabilities larger than the probability of the (blue) epidemic cascade
taken as reference (right-bottom plot in Fig. 3.5) .This example suggests that the ANN approach
can generate epidemic cascades compatible with the observations and sampled according the
prior epidemic model.
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Figure 3.3: Characteristics of the real contact graphs: here some metrics of the two contact
graphs employed in the results, work and hospital, are shown. For each day, the metrics are:
the fraction of the nodes that are active 𝑛𝑎𝑐𝑡𝑖𝑣𝑒 (inactive nodes have no contacts), the density 𝐷
and the average clustering coefficient 𝐶𝑎𝑣𝑔 for the subgraphs made by the active nodes. For the
hospital graph, the number of connected components 𝑁𝐶𝐶 is also shown, while for the work
graph, there is always one connected component (except for days 5 and 6 when there are no
contacts).

In the following, we exploit the ability of the ANN to sample epidemic cascades from a
posterior distribution to tackle three challenging epidemic inference problems: i) the patient-
zero problem, in which the unique source of a partially observed epidemic outbreak has to be
identified, ii) the risk assessment problem, in which the epidemic risk of each individual has to
be estimated from partial information during the evolution of the epidemic process, and iii) the
inference of the epidemic parameters. The results are described in the following sections, where
the ANN performance in these tasks is compared with already existing methods in the field of
epidemic inference. We also evaluate how the efficiency of the ANN algorithm depends on the
size of the epidemic outbreak, measuring the number of generated epidemic samples necessary
to obtain nearly optimal results.

Comparison with other techniques We compare our technique, Autoregressive Neural
Network (ANN), against state of the art approaches for the problems that we consider, on both
random graphs and real-world contact networks. The Soft Margin (SM) estimator previously
described is applicable only to the patient zero problem. The Belief Propagation approach [37,
38], implemented in the SIB software [118, 151] provides exact inference on acyclic contact
networks and performs very effectively on sparse network structures. For the risk assessment
problem, we also compare ANN with the Simple Mean Field (SMF) and Contact Tracing (CT)
algorithms, that have been described in [118]. For all the comparisons we run, we generate SIR
epidemic cascades on the chosen contact graphswith a duration of 𝑇 = 15 days, withMarkovian
parameters.
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Figure 3.4: Simulated epidemic cascades in the hospital contact network. One thousand
epidemic cascades simulated (with the same epidemic parameters) on a real contact graph mea-
sured in a hospital [45] (see section 3.6). The epidemics started from the same individual. Two
samples (blue, and orange) of epidemic cascades are shown in the first and second rows of the
figure. The third row represents the distance between them, where in this case the blue dots are
the infected individuals present in the cascade 1 but not in cascade 2 and the orange ones are
those present in cascade 2 but not in cascade 1. In the third row, the total number of blue and
orange dots gives the Hamming distance between the two daily configurations. Left-bottom
plot. Cumulative number of infected individuals for 1000 epidemic cascades started from the
same individual. Right-bottom plot. Hamming distance (𝛿(1, 𝑖)) between the cascade 1 and
all the others 𝑖 ∈ [2,3… 1000]. Figure first shown in [158].

Because the final number of infected individuals in the chosen contact graphs fluctuates, we
choose the parameters of the epidemic model for the results in such a way to have, on average,
half of the individuals infected at the end of the epidemic propagation. This is done to reduce
the cases where very few or a large fraction of individuals are infected, as, in these cases, the
inference problems analysed become either too trivial or very hard to solve because of lack of
information.
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Figure 3.5: Epidemics cascades generated by the ANN. Epidemic cascades generated by the
ANN trained on a posterior probability composed by a prior, the epidemic model that generate
the blue cascade, and the evidence, its final configuration at day 12. The contact network is the
hospital graph (see section 3.6). An example of the epidemic cascade generated is shown in
second row (1𝐴𝑁𝑁, orange). The third row represents the Hamming distance between them,
showing individuals infected in the cascade 1 but not in 1𝐴𝑁𝑁 in blue, and the reverse (infected
in cascade 1𝐴𝑁𝑁 but not in 1) are shown in orange. Left-bottom plot. Cumulative number of
infected individuals for epidemic cascade simulated (blue curve) and generated by the ANN
(𝑖𝐴𝑁𝑁 ∈ [1,2… 1000]. Central-bottom plot. Hamming distance (𝛿(1, 𝑖𝐴𝑁𝑁) between blue
epidemic cascade and those generated by the ANN 𝑖𝐴𝑁𝑁 ∈ [1,2,…1000]. Right-bottom plot.
Distribution of the values of the prior probability of the generated epidemic cascades (𝑃𝐴𝑁𝑁).
The blue vertical line is the value of the prior probability of the blue cascade (log (𝑃𝑖)). Figure
first shown in [158].

3.7.1 The patient zero problem
Given the exact knowledge of the final state of the epidemics at time 𝑇, the patient-zero problem
consists in identifying the (possibly unique) source of the epidemics. In a Bayesian framework,
this problem can be tackled by computing for each individual the marginal probability of be-
ing infected at time 𝑡 = 0 given a set of observations 𝒪. This quantity can be estimated from
the posterior distribution (3.1) with all three algorithms (ANN, SIB, and SM) considered in this
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work. For each contact network (RRG, proximity, work, hospital), we considered 100 differ-
ent realizations of the epidemic model with only one patient zero. The three algorithms were
used to rank infected and recovered individuals in decreasing order according to the estimated
probability of being infected at time zero for each epidemic realization. Fig. 3.6 displays, for
each algorithm, the fraction of times, in 100 different realizations, the patient-zero is correctly
identified. The left plots show the fraction of times it is correctly identified at the first position

Figure 3.6: Results of the patient zero problem. The left bar plots, for each case, represent
the fraction of times, in 100 different epidemic cascades, the patient zero is correctly identified
at the first position of the ranking given by the algorithms. The right plots show the fraction of
times the patient-zero is found (in 100 different epidemic cascades) in a fraction of infected or
recovered individuals ranked according to the probability to be patient zero given by the three
algorithms ANN, SIB, and SM (the values of the area under the curve [AUC] are shown in the
insets). For the RRG we consider the following epidemic parameters 𝜆 = 0.04 and 𝜇 = 0.02
and for proximity 𝜆 = 0.03, 𝜇 = 0.02. In the case of the work graph, the parameters are
𝛾 = 10−3, 𝜇 = 0.02 and in the hospital case they are 𝛾 = 2 ⋅ 10−4, 𝜇 = 0.02.

of the infected or recovered individuals ranked according to the algorithms. The right plots
show the fraction of times the patient zero is found versus the fraction of infected or recov-
ered individuals ranked by the algorithms considered. The ANN algorithm outperforms all the
other methods as indicated by the larger area under the curve (AUC) obtained in all cases con-
sidered. The improvement is also evident when analyzing the fraction of patient zero correctly
identified by each algorithm (left bar plots in Fig. 3.6). For example, in the hospital case, ANN
correctly identifies the patient zero in the 74% of the instances, SIB in the 54% and SM in the
35% of them. In all cases, the ANN algorithm’s performances are comparable to or better than
those of the other approaches. The results on the patient zero problem reveal the ability of the
ANN algorithm to efficiently generate epidemic cascades according to the posterior probability
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defined in Eq. 3.1.

3.7.2 Scaling properties with the size of the epidemic outbreak
From the results presented in the previous subsection, Autoregressive Neural Networks seems
to be very effective in tackling classical epidemic inference problems, particularly on dense
contact networks, where the performances of BP-based methods are expected to decrease. It
is, however, critical to check how the convergence property of the learning processes scales
with the size of the epidemic outbreak. For this analysis, we consider the patient zero problem
on a tree contact network with a unique epidemic source and where the state of the system at
the final time 𝑇 is fully observed. With this choice, we ensure that the probability marginals
computed by the SIB algorithm are exact; hence they can be taken as a reference to compare
the performances of the other algorithms. The ANN algorithm with a second-order neighbours
approximation is exact when the interaction graph is acyclic (see supplementary material for
details), assuming that the architecture of the neural networks used is sufficiently expressive to
capture the complexity of posterior probability. On the other hand, since the SM algorithm is
based on a Monte Carlo technique, it can give estimates of marginal probabilities with arbitrary
accuracy when a sufficiently large sample of epidemic cascades is generated.
In the case of complete observation of the final state, the larger the epidemic size (i.e., the total
number of infected individuals at time 𝑇), the larger is the number of epidemic cascades that
are compatible with the observation. For instance, in an epidemic realization of duration 𝑇 time
steps in which 𝑛𝐼 individuals are tested infected and 𝑁 − 𝑛𝐼 tested susceptible at time 𝑇, the
number of epidemic configurations compatible with the observations scales as 𝑇 𝑛𝐼 . Both ANN
and SM rely on sampling procedures, so their performances could suffer from convergence is-
sues when the epidemic size (𝑛𝐼) increases. We compute the total number of samples generated
by the ANN during the learning process and the number of samples of epidemic cascades gen-
erated by SM in the Monte Carlo procedure. In both cases, we assume that convergence is
reached when ∑𝑖 |𝑃algo(𝑥

0
𝑖 = 𝐼 ∣ 𝒪) − 𝑃sib(𝑥0𝑖 = 𝐼 ∣ 𝒪)| < 0.1 where algo is either ANN or SM,

and 𝑃algo(𝑥0𝑖 = 𝐼 ∣ 𝒪) is the estimated marginal probability that individual 𝑖 is infected at the
initial time according to each method. The results on the scaling properties of the ANN and SM
as a function of the epidemic size on a tree contact network with degree and depth both equal
to 6 (tree) are shown in Figure 3.7. Here we set the duration of the epidemic cascades to 𝑇 = 15
days. The ANN algorithm has a quasi-linear dependence with the epidemic size; conversely,
the SM algorithm exhibits a very sharp increase in the number of simulations necessary for
good estimates of the marginals, and already for epidemic sizes of order ten individuals, good
estimates are difficult to obtain.

3.7.3 Epidemic risk assessment
The risk assessment problem consists in finding the individuals who have the highest probabil-
ity of being infected at a specific time given a partial observation 𝒪. For this particular task, we
only consider epidemic realizations of the SIR model with 𝜇 = 0 (i.e. only the states 𝑆 and 𝐼 are
available) where half of the infected individuals are observed (at random) at the final time 𝑇.

The results of the risk-assessment analysis obtained by means of the ANN algorithm are
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Figure 3.7: Scaling properties with the size of epidemic cascades. Number of samples
generated by the ANN and SM algorithms to reach convergence. We consider the estimation of
the marginal probabilities to be infected at initial time with interactions graphs given by a tree
of degree and depth both equal to 6 and spanning 15 days of duration. The epidemic cascade
are generated with 𝜇 = 0 and different values of 𝜆 (𝜆 ∈ [0.1, 0.6]). For the ANN algorithm,
we consider the number of samples generated during the training, that is 103 samples for each
annealing step. For each instance, we run the annealing process with 2𝑛 number of steps with
𝑛 ∈ {5,6,… ,18}. Each point is a single instance, and if the algorithm converges between 2𝑛−1 and
2𝑛 steps, we report the midpoint between the two values, multiplied by the number of samples
extracted at each step number, as the number of samples for ANN. For the SM algorithm, each
point in the plot is the average number of simulated epidemics necessary to reach convergence
to a good estimate of the marginals (worst 10% results were discarded). No point is reported
when more than ten infected individuals are observed, because more than 10% of the instances
did not converge within 2 ⋅ 108 simulated epidemics. Figure first shown in [158].

compared with those provided by the BP-based method and two other risk evaluation algo-
rithms that are proposed in [118]. The Simple Mean Field (SMF) algorithm is based on a mean-
field description of the epidemic process in which information about the observed individuals
is heuristically included. A more detailed explanation of the method is discussed in chapter
4. The Contact Tracing (CT) algorithm, instead, is a form of contact tracing that computes the
individual risks according to the number of contacts each individual has had with observed
infected individuals in the last 𝜏 = 5 time steps.

A measure of the ability to correctly identify the unobserved infected individuals at the
final time 𝑇 is represented by the area under the Receiving Operating Characteristic (ROC)
curve. This quantity, averaged over 100 instances of the epidemic realizations, is shown, for the
methods considered above, in figure 3.8, for different contact networks (RRG, proximity and
work). All algorithms perform similarly on random graphs, whereas ANN and SIB outperform
the other two methods in the case of the work contact network.
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Figure 3.8: Epidemic risk assessment results. Area under the Receiving Operating Char-
acteristic (ROC) curves for the risk assessment problem on random regular graphs (RRG, with
both 1 and 2 patient zeros for the generation of test instances), on the proximity random
graphs and work real-world contact network. The results are averaged over 100 different epi-
demic cascades generated with the same epidemic parameters. For each case, the ROC curve
for the classification of the unobserved infected individuals at the final time is computed. In
the RRG case, the epidemic parameters are 𝜆(1)𝑅𝑅𝐺 = 0.035 for the single patient zero case and

𝜆(2)𝑅𝑅𝐺 = 0.03 for the double patient zero case. For the proximity random graphs, 𝜆𝑝𝑟𝑜𝑥 = 0.03.
In the case of the work network, the model has rate of infection 𝛾work = 10−3. In all instances
considered we set 𝜇 = 0.

3.7.4 Epidemic parameters inference
The parameters Λ governing the epidemic process can be simultaneously inferred during the
learning process of the ANN algorithm using a heuristic method inspired by Expectation Max-
imization (see section 3.2). Other iterative algorithms, such as SIB, can incorporate such a
parameter likelihood climbing step during their convergence [63]. A comparison between the
performances of the two algorithms in learning the infectiousness parameter governing the
spreading process on different contact networks (tree, RRG, proximity and work) is dis-
played in Fig. 3.9 (left plot), in which we adopt the same setting of the patient-zero problem
where the states of all individuals are known at the final time 𝑇. The ANN algorithm largely
outperforms SIB in RRG and proximity graphs, obtaining comparable results for the tree and
work instances.

We also test the performance of parameters inference in a more challenging scenario where
the population is split into two classes, with two different rates of infections 𝛾1, 𝛾2 (which could
correspond, for instance, to a simplified scenario of vaccinated/not-vaccinated individuals). The
states of all individuals at final time 𝑇 = 14 are observed for ten epidemic cascades on the
hospital contact network. Then we infer the parameters with two different epidemic models:
in the first one, the population is correctly divided (we call this the true model); in the second,
we split the population randomly (null model). The goal is to verify whether the true model
has a larger likelihood than the null model, that is it can better explain the observations. In the
central plot of Fig. 3.9, we observe how well the true model can infer the correct values of the
infections rate of the two sub-populations. As expected, the two values of 𝛾 inferred with the
null model are similar to each other but different from the correct ones. From the rightmost
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Figure 3.9: Inference of epidemic infectiousness parameters. Left plot. Average relative
error in the inference of the infectiousness parameters over ten epidemic cascade per interaction
graph. On tree, RRG and proximity networks, the discrete-time SIR model has infection
probability respectively equal to 𝜆tree = 0.35, 𝜆rrg = 0.04, 𝜆proximity = 0.03. The work case has
rate of infection 𝛾work = 10−3. The initial conditions for the parameter learning process were
set to 𝜆init = 0.5 for tree, 𝜆init = 0.1 for RRG and proximity networks and to 𝛾init = 10−2
for the work network. Central plot. Box plot for the case of two classes of individuals with
different rate of infection 𝛾1, 𝛾2 inferred by the ANN. We consider two inference model where
the population is divided according the propagation model (true model) and randomly (null
model), see the text for details. The true model is able to correctly infer the parameters with only
ten different epidemic cascade. Right plot. Box blot of the log-likelihood difference between
the true and null model. Figure first shown in [158].

plot of Fig. 3.9, we observe that the log-likelihood of the true model is much larger of the one
of the null model, indicating the former better explains the observations. This example shows
how the ANN approach can therefore be used to select the epidemic model that best explains
the observations based on the estimate of their log-likelihood.

3.8 Robustness with respect to epidemic parameters
The scenarios in which we have run the ANN method depend on several parameters, which
could change the results of our analysis. For instance, in the case of patient zero problems, we
could vary the time 𝑇 of the observed snapshot, the number of individuals, or the degree of
the graphs in the case of synthetic interaction networks or the epidemic like the infectious or
recovery parameters. All cases analysed show strong fluctuations, imposing to average over a
large number of instances to have a proper statistical significance of the results and appreciate
the difference in the performance of the methods compared. As specified above, we chose the
infectious and recover parameters from having, on average, half of the infected individuals to
decrease the instances where very few or almost all of them are infected (see Fig. 3.10, right
plot). In these cases, the inference problems analysed become either trivial or impossible to
solve. On the other hand, our method has a computational cost that spans several hours on
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modern GPU to reach convergence for each instance analysed, limiting the possibility of ex-
ploring the large dimensional space of the parameters of our inference problems. Nevertheless,
we check how the performances of the method varies in the patient zero and the inference of
parameters problems, with respect to the infectious parameters (𝜆 or 𝛾), in order to check the
robustness of the results.

For the patient zero inference problem, we consider the work contact graph, and look at
the performance of the different algorithms used, changing the infectivity 𝛾. The figure 3.10
shows the area under the curves representing the fraction of times the patient zero is found, as
in Figure 3.6 (right plots). The ANN method shows consistent performance with changing 𝛾,
giving the best score or on par with others algorithms.

Then we check the robustness of the inference of parameters in the case of of RRG interac-
tion graph; the figure 3.11 shows that the inference of the infectiousness parameter 𝜆 remains
good when it is changed from 𝜆 = 0.02 to 𝜆 = 0.06.
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Figure 3.10: Accuracy in finding the patient zero while varying infectivity on the work
contact graph. On the left pane, the performance of the algorithms is measured as the area
under the curve (AUC) of the fraction of patient zeros found as a function of the fraction of
considered individuals (the same kind of curves shown in Fig. 3.6). We consider 20 different
epidemic realizations for the 𝛾 values 𝛾 = 0.6 ⋅ 10−3, 𝛾 = 0.8 ⋅ 10−3, 𝛾 = 1.2 ⋅ 10−3, 𝛾 = 1.4 ⋅ 10−3,
and 100 realizations for 𝛾 = 10−3, while the recovery rate is fixed 𝜇 = 0.02. On the right pane,
the boxplot shows the number of infected individuals with the different values of 𝛾, in a total
population of 95 individuals.

3.9 Approximations to the conditional dependencies
We now discuss the approximation to the dependency of the conditional probabilities for the
individuals’ trajectories. The probability of a whole epidemic cascade can be written in the
following autoregressive expression:

𝑞𝜽(x) = ∏
𝑖
𝑞𝜃𝑖𝑖 (x𝑖|x<𝑖) , (3.23)

48



3.10 – Discussion

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
bisec

ANN
es
t

Figure 3.11: Inference of parameters with different infectiousness. Inference of infec-
tiousness parameter 𝜆 in theRRG case (100 individuals interacting according a random regular
graph with degree 10 for 15 days). The problem setting is equal to the left panel in Fig. 3.9, and
is explained in subsection 3.2. The plot shows the infectious parameter 𝜆𝑒𝑠𝑡 inferred by ANN
with the perfect inference line 𝜆𝑒𝑠𝑡 = 𝜆 highlighted. ANN correctly estimates it within the error
margin.

The dependencies in the factors 𝑞𝜃𝑖𝑖 (x𝑖|x<𝑖) can be reduced, in the case of acyclic contact net-
works, to only those corresponding to the next-nearest neighbours with lower index (we rele-
gate the derivation to appendix A), but in the general case of contact networks with cycles it is
just an approximation, which we employ for all contact networks analysed in the present work.

In order to check this approximation, we have run several tests on the patient zero problem,
applied to the proximity random contact graphs. For this purpose, we train the ANN either (a)
considering the full dependencies on all nodes with lower permutation index (we call this ver-
sion full graph), (b) consider only the dependency on the first and second neighbours (called next
nearest neighbours approximation) with lower permutation index, which is the approximation
used in all the rest of this work, (c) considering only the first neighbours (nearest neighbours)
with lower permutation index, or (d) ignoring the dependency on the rest of the graph (called
mean field approximation). Figure 3.12 shows how the accuracy in finding the patient zero is
influenced by the approximation chosen, and the respective reduction of the number of param-
eters in the network, with respect to the full graph case. We see that the next nearest neighbours
approximation gives estimates which are on par with the full graph case, while employing less
parameters, thus reducing the space and time needed for the training.

3.10 Discussion
The work presented in this chapter shows how significant individual-based epidemiological in-
ference problems defined on contact networks can be successfully addressed using autoregres-
sive neural networks. In problems such as patient zero detection and epidemic risk assessment,
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Figure 3.12: Patient zero accuracy with different conditional dependence approxima-
tions. Left: Accuracy in finding the patient zero with different approximations of the de-
pendencies between individuals, compared with SIB (Belief Propagation) method and random
guessing of the source among the infected. The ”full graph” case is when no approximation on
the dependencies is made. The average is made over 100 epidemic cascades on contacts network
generated from a proximity random graph (see 3.6) with 𝑁 = 100 individuals. The epidemic
parameters used here are 𝜆 = 0.03 and 𝜇 = 0.02, with 𝑇 = 15 time instants. The legend also
shows the Area under each curve (AUC). Right: Percentage of parameters needed, on average,
when considering the approximation of the dependencies between individuals, with respect to
the case of no approximation as described in section 3.9.

the method proposed in the chapter exploits the generative power of autoregressive neural
networks to learn to generate epidemic realizations according to the epidemic model that are
simultaneously compatible with the observations. When the model parameters are unknown,
it can also infer them during the learning process. The approach is flexible enough to be easily
applied to other epidemic inference problems and with different propagation models. Also, the
proposed architectures for the autoregressive networks significantly reduce the number of nec-
essary parameters with respect to vanilla implementation. Moreover, convergence properties
are improved by means of a regularization method that exploits the introduction of a fictitious
temperature and an associated annealing process.

According to the results obtained on three different problems (patient zero, risk assessment,
and parameters inference) on both synthetic and real contact networks, the proposed method
equals other state-of-the-art methods in the literature on epidemic inference, outperforming
them in several cases. In particular, the ANN approach is computationally less demanding
than standard Monte Carlo methods, as shown in Figure 3.7, where the number of samples
generated to reach convergence scale almost linearly with the epidemic size. More efficient al-
gorithms based on message-passing methods, like SIB, might experience convergence issues on
dense contact networks like those measured in a hospital and a work office, and in these cases
ANN provides significantly better results, as figure 3.6 shows. The framework presented in this
chapter combines the high expressiveness of the neural networks to represent complex discrete
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variable probability distributions and the robustness of the gradient descent methods to train
them. Moreover, the technique is a variational approach based on sampling of the distribution,
which allows to compute an approximation of the log-likelihood, enabling model selection as
shown in Fig. 3.9. On the other hand, like most neural networks approaches, the proposed
framework suffers from some degree of arbitrariness in the choice of the neural network archi-
tecture and, consequently, the number of parameters. Also, an ordering of the variables has to
be chosen, which could influence the quality of the approximations. While there is an optimal
order for acyclic contact networks (see appendix A), it is unclear how to generalize this result on
different systems. Although showing suitable scaling properties with system size, the method
described so far reasonably needs improved architectural schemes and learning processes to be
applied in epidemic inference problems regarding more than few thousand individuals.

For all these reasons, the method seems very promising for epidemic inference problems
defined in small communities such as hospitals, workplaces, schools, and cruises, where contact
data could be available. In such contexts, it could detect the source of an outbreak, measure
the risk of individuals being infected to improve contact tracing, or estimate the channels of
contagion and the infectivity of classes of people, thanks to the possibility of inferring the
propagation parameters.
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Chapter 4

Epidemic containment with
statistical physics methods

In December 2019, an outbreak of a new kind of pneumoniawas reported inWuhan, China. This
disease, which was later renamed COVID-19 (CoronaVirus Disease 19), caused great concerns
because of its rapid spreading pace in China, reminding epidemiologists of the previous SARS
(Severe Acute Respiratory Disease) outbreak of 2002-2003 [114]. The coronavirus responsible
for the disease has been later named, because of the similarity to the original SARS virus, SARS-
CoV-2, and it has spread around the world since. At the end of January the disease was declared
a global health emergency [81], and on the 11th March 2020 it was declared a pandemic by the
World Health Organization (WHO) [80].

The response of governments all around the world was to resort to nation-wide lock-downs
[169]. While these were effective at containing the disease [145, 150], they also came at the huge
economic and social cost of closing down schools and workplaces for non-essential businesses,
banning social gatherings, and generally restricting travel, forcing people to stay at home [120].
In order to make the lifting of the lockdown possible, in order to restart the economy, while
minimizing the number of infections, the spread of the virus had to be contained in another
way. One such method is the so called test-trace-isolate measure, which relies on testing people
with symptoms, then, if they turn out infected, find all the people that have been in contact
with them and having them to be tested, too.

Before the new pandemic, the tracing of the contacts was done primarily through interviews
and questionnaires, relying on each individual to remember the people they had met. This
form of manual contact tracing works in the early stage of an epidemic outbreak and, when the
number of relevant contacts is low (like with sexually-transmitted diseases), it has been found
to be effective in controlling the spread of infections [14]. However, in the case of airborne
diseases, such as COVID-19, where many people can be infected during a short time, lot of
effort and resources are required to trace each infection [97]. Moreover, the relevant contacts
for the spreading of the virus can become too many for a person to recall from memory.

To work around this problem and bring contact tracing to scale, several ways to record
digitally the contacts between individuals have been developed, relying on the ever increas-
ing ubiquitous nature of smartphones. To combat the spread of COVID-19, in 2020 numerous
smartphone applications relying on Bluetooth Low Energy (BLE) to collect the contacts were
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released [92, 99, 108, 83, 69, 109] along with different protocols to perform digital tracing of the
contacts of each individual that turned out to be infected [111, 73, 74, 77]. The fact that these
applications could collect such detailed and personal information raised concerns for the users’
privacy [103, 89], so some of the proposed algorithms rely on decentralized communication and
storage protocols to mitigate this issue [104, 79, 73, 77, 74].

While it has been suggested that digital contact tracing can be effective in the containment of
COVID-19, its efficiency when dealing with a large epidemic size is still disputed [85, 133, 123].
One issue is that when dealing with a large number of infections, the number of tests needed to
check individuals that have been notified by digital contact tracing can be very high, surpassing
test capacity. Also, testing can be expensive, especially when using Real Time Polymerase
Chain Reaction (PCR), which, during the pandemic, was the preferred method for confirming
a COVID-19 infection [110, 107]. When the cost of testing becomes unbearable, the reasonable
choice is to put the newly-traced individuals into a very long quarantine, which, in the face of
exponential growth of an outbreak, could very well result in large fraction of the population
being placed in isolation [138].

In this chapter other methods are proposed to complement digital contact tracing, which
use probabilistic inference techniques derived from statistical physics. This allows for the eval-
uation of the risk of each individual to contract the disease, which is a more useful measure
when compared to the binary information about an individual who has or has not been in
contact with an infected person (which was the only information used by previous contact
tracing techniques). Throughout the chapter, it will be shown how these probabilistic methods
perform in controlling outbreaks with respect to risk-aware contact tracing, in the context of
limited testing capability. This will be shown first in simpler SIR epidemics on contact graphs,
and then with the OpenABM model, which reproduces COVID-19-like epidemic cascades.

The work and results presented in the rest of the chapter have been first published as Baker
et al. [118].

4.1 Risk inference with the SIR Model
As previously mentioned in the thesis, doing risk inference involves computing the risk of in-
fection for all individuals at a particular time instant, usually the current one. In the scenario of
controlling an ongoing epidemic outbreak, it’s quite possible that at some day 𝑡, a certain num-
ber of tests have been performed in the previous days, and new tests have to be done on the
population. Since it’s highly improbable that there is enough testing capability to test a large
part of the population for infection, it is then necessary to identify those individuals that have
the highest probability of being infected. Moreover, early identification of infected individuals
is much better than a late one, as it will prevent other individuals from getting infected. This is
because if a person is found positive after the test, he/she is put into quarantine, limiting his/her
contacts with other people, thus slowing down the propagation of the disease.

Let us suppose that the epidemic is spreading according to the SIR epidemic model. In this
case, the posterior distribution at time 𝑡 can be derived from the full SIR posterior distribution
(1.24):

𝑝 (x𝑡| 𝒪) ∝ ∑
x0,x1,…,x𝑡−1

𝑝 (x0)
𝑁
∏
𝑖=1

𝑡
∏
𝜏=1

𝑝 (𝑥𝜏𝑖 |x𝜏−1) ∏
(𝑖,𝜏,𝜎)∈𝒪

𝑝 (𝑧𝜏𝑖 = 𝜎 ∣ 𝑥 𝜏𝑖 ) (4.1)
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where the observations collected so far are gathered in the set 𝒪. This shows that it’s neces-
sary to marginalize the full epidemic cascade x on all the previous time instants 𝜏 < 𝑡, which
involves, at a first glance, summing on an exponential number of terms (that are all the com-
binations of 𝑥𝜏𝑖 ). A straightforward strategy to perform this evaluation would be simulating a
large number of instances of the propagation, and then estimating 𝑝 (𝑥 𝑡𝑗 = 𝐼) (for example) as the
fraction of instances where individual 𝑗 is in state 𝐼 at time 𝑡. This idea, however, would require
a centralized system, and large amounts of computing power, especially because the number of
simulated cascades compatible with the observations is very low with moderate time windows
and medium population sizes. This method is thus less appealing.

Here, instead, it will be shown how to use some approximate techniques from statistical
physics that allow for a good estimate of 𝑝 (𝑥 𝑡𝑗), namely the Simple-Mean-Field (SMF) algorithm
and the Belief Propagation (BP) algorithm. While the latter method has already been shown in
the thesis, it will be reformulated to account for missing contacts and non-Markovian spreading
parameters.

There are two main advantages of mean-field methods in this context. First, they are based
on systems of equations for the marginals of interests defined in (4.1) (or similar related quan-
tities), so they can directly provide the individual risks. Second, these systems can be (and
typically are) efficiently solved iteratively, which fits well with a distributed approach in which
computation is performed on individuals’ cellphones, with a relatively small, though regular,
exchange of information between individuals that have been in a contact.

As it will be shown, the BP method is much more accurate than SMF, but it is relatively
more complex and, in a decentralized implementation, it would require the exchange of a larger
amount of information between individuals.

4.1.1 Simple Mean Field approximation
The Simple-Mean-Field (SMF) method is a statistical physics inspired heuristic algorithm that
computes the marginal probabilities through an iterative process. The starting point of the SMF
heuristic is the Mean Field approximation of the SIR model, described in section 1.3.1. We recall
here that this approximation gives that the probability of the state of individual 𝑖 at time 𝑡 + 1
is given by:

𝑝𝑀𝐹 (𝑥 𝑡+1𝑖 = 𝑆) = 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝑆)∏
𝑘≠𝑖

(1 − 𝑝𝑀𝐹 (𝑥 𝑡𝑘 = 𝐼) 𝜆𝑘→𝑖(𝑡)) (4.2)

𝑝𝑀𝐹 (𝑥 𝑡+1𝑖 = 𝑅) = 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝑅) + 𝜇𝑖𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝐼) (4.3)

for the states 𝑆 and 𝑅, and that the probability of being infected is:

𝑝𝑀𝐹 (𝑥 𝑡+1𝑖 = 𝐼) = 1 − 𝑝𝑀𝐹 (𝑥 𝑡+1𝑖 = 𝑆) − 𝑝𝑀𝐹 (𝑥 𝑡+1𝑖 = 𝑅)

= 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝑆) [1 −∏
𝑘≠𝑖

(1 − 𝑝𝑀𝐹 (𝑥 𝑡𝑘 = 𝐼) 𝜆𝑘→𝑖(𝑡))] + (1 − 𝜇𝑖) 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝐼)

(4.4)

with the assumption that, in case 𝑘 is not in contact with 𝑖 at time 𝑡, 𝜆𝑘→𝑖 (𝑡) = 0.
In practice, considering that the probability of transmission is small, a further approximation

can be made to the MF algorithm, introducing the following linearised forms (which have been
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checked to hold in the regimes of epidemic propagation explored in the chapter):

𝑝𝑀𝐹 (𝑥 𝑡+1𝑖 = 𝑆) = 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝑆) (1 −∑
𝑘≠𝑖

𝑝𝑀𝐹 (𝑥 𝑡𝑘 = 𝐼) 𝜆𝑘→𝑖(𝑖)) ,

𝑝𝑀𝐹 (𝑥 𝑡+1𝑖 = 𝑅) = 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝑅) + 𝜇𝑖𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝐼) ,

𝑝𝑀𝐹 (𝑥 𝑡+1𝑖 = 𝐼) = 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝑆)∑
𝑘≠𝑖

𝑝𝑀𝐹 (𝑥 𝑡𝑘 = 𝐼) 𝜆𝑘→𝑖(𝑡)+

+ (1 − 𝜇𝑖) 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝐼) . (4.5)

This approach offers several advantages: first, every individual 𝑗 can estimate his/her proba-
bilities 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝑆), 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝐼), 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝑅) every day, by updating the equations (4.5), and
these probabilities can be stored in the user’s phone. For the update, individual 𝑗 needs to re-
ceive, during the contact with 𝑘, the information on 𝜆𝑘→𝑗(𝑡) and the information from 𝑘 about
his estimates of 𝑝𝑀𝐹 (𝑥 𝑡𝑘 = 𝑆) and 𝑝𝑀𝐹 (𝑥 𝑡𝑘 = 𝐼). The value of 𝜆𝑘→𝑗(𝑡) can be estimated with the
standard contact-tracing information, which estimates the encounter duration within a certain
distance, for instance based on Bluetooth signals between the phones of 𝑗 and 𝑘. On top of this,
the two individuals’ phones should exchange their estimate of the probabilities. In this way,
the information is fully distributed, and there is no need for a central system that stores the full
information.

Suppose that, at time 𝑡𝑜𝑏𝑠 an individual 𝑖 is tested or presents illness-associated syndromes.
Then the state of 𝑖 is known: 𝑧𝑡𝑖 ∈ {𝑆, 𝐼,𝑅} and

𝑝𝑀𝐹 (𝑥
𝑡𝑜𝑏𝑠
𝑖 = 𝜎) = 𝛿𝐾 (𝜎, 𝑧𝑡𝑖)

where 𝛿𝐾 is the Kronecker delta. In case of syndromes at time 𝑡𝑜𝑏𝑠 the probability 𝑝𝑀𝐹 (𝑥
𝑡𝑜𝑏𝑠
𝑖 ) is

updated on the basis of external medical data, namely the probability to be infected among all
people presenting the same set of syndromes. As explained previously, the information about
tests and syndromes must be propagated back in time and be used to update the risk levels of
the contacts of person 𝑖 in recent times. However, a simple inference heuristic that turns out
to be quite efficient consists in adapting the mean-field equations (4.5) in order to take into
account the results of tests and symptoms: assuming that we are estimating the probabilities
for each individual 𝑖 to be in each of the three states 𝜎 ∈ {𝑆, 𝐼,𝑅} at a given time 𝑡, 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝜎), it
suffices to run the mean-field equations (4.5) starting at time 𝑡 − 𝑡𝑀𝐹 with the whole population
in state 𝑆 (setting to 0 the probability for the other states), and imposing the constraints due to
the tests done in the interval [𝑡 − 𝑡𝑀𝐹, 𝑡] as follows. If 𝑗 is tested at a time 𝑡𝑜𝑏𝑠 in this interval,
and the result is state 𝑧, then:

if 𝑧 = 𝑆 ∶ 𝑝𝑀𝐹 (𝑥 𝑡
′
𝑖 = 𝑆) = 1 for 𝑡′ ∈ [𝑡 − 𝑡𝑀𝐹, 𝑡obs] (4.6)

if 𝑧 = 𝐼 ∶ 𝑝𝑀𝐹 (𝑥 𝑡
′
𝑖 = 𝐼 ) = 1 for 𝑡obs − 𝜏𝑀𝐹 ≤ 𝑡′ ≤ 𝑡obs (4.7)

if 𝑧 = 𝑅 ∶ 𝑝𝑀𝐹 (𝑥 𝑡
′
𝑖 = 𝑅) = 1 for 𝑡′ ≥ 𝑡obs (4.8)

This inference procedure then depends on two parameters: 𝜏𝑀𝐹 is the typical time between the
infection and the testing consecutive to the apparition of syndromes, and 𝑡𝑀𝐹 is the integration
time of the mean-field procedure.
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4.1.2 Belief propagation inference of epidemic risk
The Belief Propagation (BP) method developed for epidemic inference (presented in Chapter
2) can also be applied for the computation of the risk of infection (4.1). However, it is now
going to be derived again in a formulation in infection and recovery times (t, r) which is better
suited to the problem, especially for a temporal network of contacts (see section 1.4) and for
other cases which might occur while containing an outbreak (which will be explained later).
This approach, although somewhat convoluted, is able to infer the propagation of the epidemic,
treating the observations in a fully Bayesian way, thus achieving higher accuracy than SMF.

One major difference from the derivation in section 2.3 is that now it is assumed that the
epidemic is spreading in continuous time, which means that contacts between every pair of
individuals (𝑖, 𝑗) can be collected into a finite set of time instants 𝒯𝑖𝑗 ⊂ ℝ∞ = ℝ ∪ {∞}. These
contacts now define the time instants of interests, as it’s easy to see that, since contagion is
instantaneous, the time of infection of an individual will be 𝑡𝑖 ∈ 𝒯𝑖 = ⋃𝑗∈𝜕𝑖𝒯𝑖𝑗. Then, the case
𝑡𝑖 = ∞ means that 𝑖 is never infected.

To add more flexibility to the method, it’s also assumed that the probability of 𝑖 infecting
𝑗, given that 𝑖 is infected and 𝑗 susceptible at time 𝑠𝑖𝑗 ∈ 𝒯𝑖𝑗, depends on the absolute time of
transmission 𝑠𝑖𝑗 ∈ 𝒯𝑖𝑗, and the time of infection of 𝑖, 𝑡𝑖:

𝜆𝑖→𝑗 ≐ 𝜆𝑖𝑗 (𝑠𝑖𝑗, 𝑡𝑖) ,

keeping in mind that 𝒯𝑖𝑗 ≡ 𝒯𝑗𝑖, so that also 𝑠𝑗𝑖 ∈ 𝒯𝑖𝑗. The difference with the previous approach
of section 2.3 is that each 𝑠𝑖𝑗 now represents the absolute time of possible infection, instead
of the delay from the time of infection. The recovery time 𝑟𝑖 ∈ ℝ∞ is assumed to be drawn
from a continuous distribution: since recovery only happens after infection, it’s more useful to
model the recovery delay 𝑟𝑖 − 𝑡𝑖 and assume that its probability distribution is 𝑅𝑖 (𝑟𝑖 − 𝑡𝑖). Then,
the transmission time 𝑠𝑖𝑗 is going to depend on both 𝑡𝑖 and 𝑟𝑖, and its conditional probability
distribution 𝑆𝑖𝑗 (𝑠𝑖𝑗 | 𝑡𝑖, 𝑟𝑖) will be given by:

𝑆𝑖𝑗 (𝑠𝑖𝑗 | 𝑡𝑖, 𝑟𝑖) = 𝕀 [𝑡𝑖 < 𝑠𝑖𝑗 < 𝑟𝑖] 𝜆𝑖𝑗 (𝑠𝑖𝑗, 𝑡𝑖) ∏
𝑡𝑖<𝑠<𝑠𝑖𝑗

[1 − 𝜆𝑖𝑗 (𝑠, 𝑡𝑖)] + 𝕀 [𝑠𝑖𝑗 = ∞]∏
𝑠≥𝑟𝑖

[1 − 𝜆𝑖𝑗 (𝑠, 𝑡𝑖)] (4.9)

This truncated distribution is given by the fact that individual 𝑖 will be able to transmit the
disease in the open time interval (𝑡𝑖, 𝑟𝑖) and, once the time 𝑟𝑖 is reached, he/she won’t be able to
infect anyone, thus 𝑠𝑖𝑗 = ∞.

Within this formulation, the Markovian (i.e. memory-less) SIR model on a temporal net-
work can be obtained by setting an infection probability independent from the infection time,
𝜆𝑖𝑗 (𝑠𝑖𝑗, 𝑡𝑖) ≡ 𝜆𝑖𝑗 (𝑠𝑖𝑗), and an exponential recovery time distribution 𝑅𝑖 (𝑟𝑖 − 𝑡𝑖) = 𝜇𝑖𝑒−𝜇𝑖(𝑟𝑖−𝑡𝑖).

Modelling auto-infections

The formulation presented so far represents a closed system in which infections can occur only
through existing contacts between nodes. In order to account for the presence of an initial
number of infected seeds, it is necessary to introduce the possibility that individuals can infect
spontaneously, i.e. without having a contact with other infected people. Introducing such
probability will be useful in the case in which full knowledge of the contact network is not
possible (which will be discussed later in the chapter).
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A simple solution is to add fictitious contacts to a node that is always infected. In particular,
for each individual 𝑖 and each time 𝑡 ∈ 𝒯𝑖, a contact with the node 𝑖∗𝑡 is added, with an infection
transmission variable 𝑠𝑖∗𝑡 𝑖 that has the probability 𝑝𝑡 (𝑠𝑖∗𝑡 𝑖 = 𝑡) = 𝛾 𝑡𝑖 of infecting 𝑖 if he/she is
susceptible at that time (typically small), and 𝑝𝑡 (𝑠𝑖∗𝑡 𝑖 = ∞) = 1 − 𝛾 𝑡𝑖 with the other case1. For
ease of notation, all the auto-infection contacts probabilitywill be grouped together in the factor

𝐴𝑖 (s𝑖∗) = 𝐴𝑖 ({𝑠𝑖∗𝑡 𝑖}𝑡∈𝒯𝑖
) = ∏

𝑡∈𝒯𝑖⧵{∞}
𝑝𝑡 (𝑠𝑖∗𝑡 𝑖) .

For convenience, let us define 𝜕∗𝑖 as the enlarged neighbourhood of 𝑖 including all extra nodes
{𝑖∗𝑡 }𝑡∈𝑋𝑖

. Given {𝑠𝑘𝑖} for 𝑘 ∈ 𝜕∗𝑖, the infection time 𝑡𝑖 satisfies, in a deterministic way:

𝑡𝑖 = min
𝑘∈𝜕∗𝑖

𝑠𝑘𝑖 (4.10)

Then, we can write the joint probability distribution of t, r and s:

𝑝 (t, r, s) ∝ ∏
𝑖
𝛿 (𝑡𝑖,min

𝑘∈𝜕∗𝑖
𝑠𝑘𝑖)𝐴𝑖 (s𝑖∗) 𝑅𝑖 (𝑟𝑖 − 𝑡𝑖)∏

(𝑖𝑗)
𝑆𝑖𝑗 (𝑠𝑖𝑗 | 𝑡𝑖, 𝑟𝑖) (4.11)

where the delta functions enforce the dynamical constraint (4.10), and the product over (𝑖𝑗) runs
over all pairs of individuals, including the fictitious auto-infections nodes.

Factor graph representation

Combining all the previous terms with the observations 𝒪, the application of Bayes’ rule gives
the following posterior distribution:

𝑝 (t, r, s | 𝒪) ∝ ∏
𝑖
𝛿(𝑡𝑖,min

𝑘∈𝜕∗𝑖
𝑠𝑘𝑖)𝐴𝑖 (s𝑖∗) 𝑅𝑖 (𝑟𝑖 − 𝑡𝑖) 𝑝𝑂,𝑖 (𝒪𝑖 | 𝑡𝑖, 𝑟𝑖)∏

(𝑖𝑗)
𝑆𝑖𝑗 (𝑠𝑖𝑗 | 𝑡𝑖, 𝑟𝑖) (4.12)

in which 𝑝𝑂,𝑖 (𝒪𝑖 | 𝑡𝑖, 𝑟𝑖) is the likelihood of all the observations 𝒪𝑖 that have been made about the
state of individual 𝑖.

The naive interpretation of this probability distribution as a graphical model would intro-
duce many short cycles which were not present in the original contact graph. For example,
pairs (𝑡𝑖, 𝑠𝑗𝑖), (𝑡𝑖, 𝑠𝑖𝑗), (𝑡𝑗, 𝑠𝑖𝑗), (𝑡𝑗, 𝑠𝑗𝑖) share respectively factors with indices 𝑖, (𝑖𝑗) , 𝑗, (𝑗𝑖) , effec-
tively forming a small cycle. This is then solved (differently than in section 2.3) by regrouping
several factors into a single Ψ𝑖, and considering (𝑠𝑖𝑗, 𝑠𝑗𝑖) as a single variable:

Ψ𝑖 (𝑡𝑖, 𝑟𝑖, {𝑠𝑘𝑖, 𝑠𝑖𝑘}𝑘∈𝜕∗𝑖 ,𝒪𝑖) = 𝛿(𝑡𝑖,min
𝑘∈𝜕∗𝑖

𝑠𝑘𝑖)𝐴𝑖 (s𝑖∗) 𝑅𝑖 (𝑟𝑖 − 𝑡𝑖) 𝑝𝑂,𝑖 (𝒪𝑖 | 𝑡𝑖, 𝑟𝑖)∏
𝑗∈𝜕𝑖

𝑆𝑖𝑗 (𝑠𝑖𝑗 | 𝑡𝑖, 𝑟𝑖) (4.13)

which results in a factor graph for (4.12) in which variables (𝑠𝑖𝑗, 𝑠𝑗𝑖) have degree two and live in
the middle of the factors Ψ𝑖 and Ψ𝑗 , i.e. a topology that closely follows the one of the original
contact network:

𝑝 (t, r, s | 𝒪) = 1
𝑍(𝒪)

∏
𝑖
Ψ𝑖 (𝑡𝑖, 𝑟𝑖, {𝑠𝑘𝑖, 𝑠𝑖𝑘}𝑘∈𝜕∗𝑖 ,𝒪𝑖) (4.14)

1A particularly interesting case is with 𝛾 0𝑖 = 𝛾 → 0 and 𝛾 𝑡𝑖 = 0 for 𝑡 > 0: in this case individuals can be
self-infected only at time 0, representing a closed system with a single unknown seed at time 𝑡 = 0.
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The derivation of the message passing equations follows the approach described in section 2.2,
and gives rise to messages 𝑚𝑖𝑗 (𝑠𝑖𝑗, 𝑠𝑗𝑖) that goes from 𝜓𝑖 to 𝜓𝑗, and 𝑚𝑗𝑖 (𝑠𝑖𝑗, 𝑠𝑗𝑖) which will go in
the opposite direction. The full derivation of the messages and the beliefs for the infection
time, 𝑏 (𝑡𝑖), which represent effectively the risk of infection for each individual, is discussed in
Appendix B. The code for this method has been published on GitHub [151].

Finite-window approximation

In this BP-based epidemic tracing scheme, the number of messages exchanged between two
individuals grows quadratically with the number of temporal contacts occurred between them.
However, only recent contacts are important to determine marginal probabilities at present
time, therefore keeping only a short time window (about two or three weeks) is sufficient to
obtain quasi-optimal results. For better accuracy, information about contacts and observations
at the dropped times is included approximately as simple factorized priors applied at the start
of the window. This prior contains the posterior probability at the first non-dropped time com-
puted only using contacts and observations at the dropped time (and the prior computed in the
previous step). All simulations have been performed using a 21 days time window.

4.2 Mitigation of proximity-based epidemics
In this section, the theoretical capabilities of the SMF and BP techniques are going to be tested
first, in the context of SIR epidemic cascades on consecutive time instants with homogeneous
parameters (i.e. spreading according to equations (1.20) where 𝜆𝑡𝑖𝑗 = 𝜆 and 𝜇𝑖 = 𝜇). These
epidemics spread in a population of 𝑁 individuals, with a contact graph that is dynamical, and
generated as follows: the individuals are distributed uniformly in a square of side √𝑁, and at
each time step a contact can be established between two individuals 𝑖 and 𝑗 with a probability
𝑒−𝑑𝑖𝑗/ℓ, where 𝑑𝑖𝑗 is the Euclidean distance between the points and ℓ is a parameter that controls
the density of the contact graph. These graphs are called proximity-based in the following
because of this generation procedure.

Using this spreading model, it’s possible to test the accuracy of the statistical inference algo-
rithms in the most ideal situation, as the prior for the inference corresponds to the propagation
model. In order to see the efficacy in the containment of epidemics, an intervention framework
is developed following this procedure: at each time instant, spreading occurs according to the
above model, then each algorithm is run to determine the risk of individuals at that time. After-
wards, the 𝑛𝑟 individuals with the highest estimate of the risk are tested, and, if found infected,
are confined (which effectively means that they cannot have any future contacts), to stop trans-
mission of the disease. Results of the test are assumed to be available on the same time step and
are included in the observations used to adjust the probabilities of risk on the next time step.
In order to save tests, they are applied only to individuals who have not previously been found
infected. Also, in order to model a reaction time to the introduction of a new disease in the
population, a delay in the start of testing is considered (𝑡start time instants have to pass). At the
beginning of each simulation, every individual is susceptible, except for a number 𝑛𝑝𝑧 which
are infected (the ”patients-zero”). In the following, each time step will correspond to a day.

For estimating the risk, for the Simple Mean Field method, the probability of an individual
being infected, 𝑝𝑀𝐹 (𝑥 𝑡𝑖 = 𝐼), is used for the ranking, as computed by the algorithm. For the BP
method, instead, the probability of infection in the last 𝛿rank days is used (see Appendix B), as
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Figure 4.1: SIR model on proximity-based random network with 6 contacts on average per
day and 500 000 individuals. In the plot we show the average numbers (bold lines) of infected
individuals versus time among three different realizations (thin lines) of the epidemics with
200 patients zero. The epidemic parameters are the same as used by the inference algorithms:
𝜆 = 0.05, 𝜇 = 0.02. For the first 10 days the evolution is free, afterwards 1500 tests are applied
each day according to each algorithm. Also, 50% of the infected individuals are considered
severely symptomatic on each day, and are thus observed as infected 5 days after their infection.
The parameters used for these simulations are 𝜏 = 5 for both SMF and CT, and 𝑡MF = 15 for MF.
Image first shown in [118].

prioritizing recent infections can be more effective as it helps containing the ”boundary” of an
ongoing outbreak. In the following, 𝛿rank = 10 days.

Other than BP and SMF, an implementation of Contact Tracing (CT) is included for com-
parison. This method calculates the risk of infection of each individual at time 𝑡 by counting
the number of contacts with confirmed positive people that happened during the time interval
[𝑡 − 𝜏, 𝑡). In this way, it represents a slight improvement on the ”infectious contact notification”
method which was implemented as digital contact tracing after the first wave of COVID-19,
which does not account for the number of infectious contacts, but only for their presence.
Moreover, the last ranking strategy considered for comparison is Random Guessing (RG), in
which the risk of each individual is drawn at random.

This simulation framework, applied for three months to a population of 500 000 individuals
yields large fluctuations across runs (Figure 4.1). Nevertheless, one sees a very clear signal
indicating that the statistical physics-based inference methods, SMF and BP, largely improve
upon the usual CT, itself better than RG. The best inferencemethod is clearly BP, but the simpler
SMF is also quite successful. Even in this pessimistic regime, i.e. where a large fraction of the
population gets infected, both risk inference methods significantly slow down the epidemic
spread, when compared to classic contact tracing.

4.2.1 Robustness of the mitigation
Let us check now how robust the risk evaluation methods are when the spreading parameters
are different than the ones given to the algorithms. For this objective, three experiments have
been devised. For the following cases, we’ll consider twenty realizations of the SIR epidemics
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on the proximity model of 105 individuals (same as above), and apply our intervention protocol
from time 10 to time 50.

In the first experiment, we run the epidemic dynamics using a probability of infection
𝜆 = 0.05 and a probability of recovery 𝜇 = 0.02 and perform the inference procedure using
several values of mismatched probability of infection, in the range [0.001, 0.1]. To compare the
performances in the epidemic mitigation we measure the number of infected and recovered in-
dividuals at time 50, shown in Fig. 4.2(a). The random ranker (RG) and contact tracing (CT) do
not use the probability of infections 𝜆, so they are insensible to its variation. The SMF algorithm
performs equally well in the underestimation regime of 𝜆, and the performances slowly decay
as long as the probability of infection is overestimated. Remarkably, the BP algorithm performs
equally well in the range of 𝜆s considered.
In a second experiment, we perform the inference step using the SIR model with (𝜆, 𝜇) =
(0.05,0.02), while the 𝜆𝑡𝑖𝑗’s, for each time 𝑡, associated with the true contacts are now random
variables distributed according to a normal distribution with mean 0.05 and standard deviation
𝜎 ∈ [0.005, 0.03]. The latter simulation may mimic a realistic situation where the Bluetooth sig-
nal used by the app is affected by noise. The performances of all methods are shown in Figure
4.2(b). CT and RG performances are independently of the value of 𝜎, by construction, and their
results only vary due to the increasing heterogeneity of the true probability of infection. For
the other cases, we notice that even when the standard deviation of the probability of infection
reaches the value 0.03, that is when 𝜎 is almost equal to the mean value, the number of individ-
uals that got infected when using SMF or BP slightly increases if compared to the small noise
regime (i.e. for 𝜎 = 0.005). However, the linear regression curves, fitting the mean values over
the twenty realizations of the dynamics, appear almost flat in the studied regime, suggesting
that the inference-based methods are notably robust to a noisy detection of the contacts.
Finally, Let us treat the case where only a certain fraction of contacts is available to the risk
assessment methods. The set-up of this experiment is the one used for Figure 4.1. Specifically,
a fraction of the links of the network is randomly extracted (81%, 49%, and 36%) for each time
step of the dynamics, and given to the ranking algorithms.

The results are shown in Figure 4.3: for all the ranking procedures, the number of infected
individuals changes only slightly in all cases but 36%, suggesting that all methods are remark-
ably robust against partial information of the network contacts. Surprisingly, only for a very
small fraction of the known contacts (i.e. 0.36), the spreading is notably affected. This behavior
can be explained by the features of the proximity models: close neighborhoods are repeatedly
connected in short time windows, hence, even when a strong pruning is performed, the infor-
mation stored in the detected links suffices to perform an effective inference.

4.3 The OpenABMmodel
While the performance is good when the outbreaks follow the SIR model, real world epidemics
have several features that are not captured by this model. In fact, since the aim of this chapter
is to show the potential application of probabilistic methods like SMF and BP to COVID-19-like
epidemics, it is important to test those on a model that is able to show features of COVID-19
spreading. For this task, an agent based model is required, which is able to track the spread
of the disease at the individual level. In this sense, agent-based models provide stylized but
sufficiently reliable representations of the actual contact networks on which contagion between
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(a)

(b)

Figure 4.2: Average number of infected and recovered individuals among a population of 105
at time 50, while interventions start at time 10. In (a) the epidemic dynamics use a probability
of infection 𝜆 = 0.05 and a probability of recovery 𝜇 = 0.02, instead the inference algorithms
use different values for 𝜆 shown in the x-axis. In (b) the ranking strategies use 𝜆 = 0.05 while
the true probability of infection is a random variable distributed according to a Gaussian distri-
bution of mean 0.05 and a standard deviation 𝜎 in the range [0.005, 0.03] (x-axis). The number
of total infected (I+R) individuals slightly increases when the distribution of the 𝜆s becomes
broader as suggested by the linear regression curves in figure (b). Figure first shown in [118].
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Figure 4.3: Containingwith pruning of contacts. Number of infected individuals are shown
w.r.t. time for proximity model (same as Figure 4.1). Thick lines are the averages, while thin
lines are single realizations. From left to right, the percentage of links used within the inference
procedure is changed: 81%, 49% and 36%. All inference-based methods are remarkably robust
against a partial knowledge of the contact network: indeed, the number of infected individuals
notably increases with respect to the noiseless case (dashed lines) only when 36% of the contacts
is kept. Figure first shown in [118].

individuals could take place, thus becoming a natural and necessary tool for analyzing the
effects of interventions strategies. The OpenABM-Covid19model by R. Hinch et al. [131] (called
simply OpenABM for the rest of the thesis) is the one used in this chapter, and, apart from
capturing features of real contact networks, its aim is to model real epidemiological aspects of
COVID-19 spreading. This section describes some characteristics of the model that contribute
to that objective.

For starters, the𝑁 individuals in the OpenABMmodel are divided into 9 age classes, ranging
from (0-9) to (80+) years. For each of these groups, both the contacts and the transmission have
different parameters. The distribution of the population in each age group is constructed in
such a way to reflect UK demographics data [131]. Each individual is represented by a node
of a multi-layered network and takes part in three different subnets describing different social
contexts:

• The household network includes the interactions with family members at home and
is a fully connected graph. Household sizes range from 1 (living alone) to 6, and their
distribution on the population is matched to UK demographics.

• The workplace network models the interactions inside schools, offices, similar work-
places for adults and recurrent social activities for elderly people. Each network is con-
structed as a Watts-Strogatz small-world model [11]. Daily interactions in this network
vary according to the age class.

• The random network is included to consider interactions that occur once in a while,
independently, for each day. The number of random contacts for each individual is the
same each day and it is drawn from a negative-binomial distribution. The mean number
of connections within the population, however, depends on the age class. The negative-
binomial distribution is used to take into account the presence of super-spreaders in the
network.

For the infection dynamics, the OpenABM model follows a state evolution derived from the
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SEIR model (section 1.3.2) instead of the SIR, as the former is best suited for COVID-19 because
of the incubation period of the disease [96], with each time instant corresponding to a single
day. Instead of 4 states, however, there are 11, accounting for symptomatic status, hospitaliza-
tion and intensive care. The states and the possible transitions are shown in Figure 4.4, where
also the probabilities of moving from one state to the next are indicated. A susceptible indi-
vidual thus may become asymptomatic (𝐴), mildly symptomatic (𝑆𝑀) or severely symptomatic
(𝑆𝑆). In the last case, he/she may need to be hospitalized, and then, be taken to intensive care
units (ICUs). Only in these cases he/she may die, but it is always possible to recover from the
disease (although, more slowly from the ICU). The recovered (R) and dead (D) states are the only
absorbing ones. The time each individual takes for each transition is drawn from a gamma dis-
tribution (except for 𝑡ℎ𝑜𝑠𝑝, which follows a shifted Bernoulli distribution). The parameters for
all of these transitions have been fitted for COVID-19 progression, and can be found in tables
S7 and S8 of [131].

It is important to note that there is no exposed (E) state once an individual is infected. This
absence is justified by the fact that the transmission of the disease is modelled in such a way
that prevents an individual passing the disease the immediately after infection. This is achieved
through the dependence of the daily infection probability 𝜆𝑖𝑗 (𝑡) on a (discretized) gamma dis-
tribution that explicitly depends on the time passed since the infection. Also, the infection
probability depends on the symptomatic state of the potential infector, the age of the poten-
tial infected and the intrinsic infectiousness level of the virus. The interaction network is also
important: the infection strength of the contacts inside households is double that of other en-
vironments, to account for the typically longer duration of domestic interactions.

The model provides the possibility of intervention in order to slow down and, if possible,
contain the epidemic outbreak. In particular, it is possible to introduce interventions of in-
creasing severity, from case-based measures (e.g. quarantine for individuals which are positive
to swab tests and their housemates) to mobility restrictions for some categories of individuals
and lockdown scenarios. Moreover, the OpenABM model is very appropriate for the imple-
mentation of contact tracing strategies. This is due to the fact that, assuming that the contacts
are collected through a smartphone application, the model also provides for the possibility of
varying the adoption fraction of the app within the population, possibly introducing different
percentages of adoption in different age groups of individuals.

4.4 Epidemic containment of OpenABM outbreaks
In this section, the previously-described statistical physics based methods are applied for the
containment of COVID-19-like epidemics generatedwith the OpenABMmodel. The framework
used for this task is the one previously described: starting from a certain day, on each day risk
evaluation is performed using the information from tests performed until the previous day, and
the people with the highest risk of infection (the top 𝑛𝑟 ones) are tested and, if found positive
for COVID infection, are quarantined. The new tests results (which, again, are assumed to be
given without delay) are used in the risk evaluations of the following days. Again, tests are not
performed on previously-discovered infected individual to save capacity, and at the beginning
every individual is susceptible while a small number (𝑛𝑝𝑧) are infected.
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Figure 4.4: Disease progression in OpenABM. Image taken from [131] under the Creative
Commons Attribution License, with no modifications applied. The 𝜙 are the probabilities of
traversing each transition, from the previous state, the 𝜏 are instead the time taken for the
transition, each following (different) gamma distribution. These parameters can be found in
tables S7 and S8 of [131].

4.4.1 Reduction to the SIR model
In order to use the aforementioned algorithms (SMF, BP), an estimate of the infectiousness and
the recovery probability distribution has to be found. These parameters are obtained from a fit
of the experimental data produced by the OpenABM model. Since the SMF algorithm employs
the Markov SIR model, disregarding the dependence on the infection time of the infectiousness,
only two parameters (𝜆, 𝜇 are required). For the BP method instead it is possible to use non-
Markovian SIR parameters, and both the infectiousness and the recovery distribution are fitted
with a Gamma distribution.

For estimating the infectiousness, of all the parameters of the OpenABM model that give
a contribution, only the base information of the contact network can be derived from contact
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tracing (household contact are twice more infectious), while the rest can be estimated from
averages on the whole population. By including this, the probability distribution used for BP
was Gamma(𝑘𝐼=5.76, 𝜇𝐼 = 0.96), rescaled by 0.25. For MF, instead, the fit value was 𝜆 = 0.02.
The network information of contact weight 𝑔 (𝑔 = 2 for the household, 𝑔 = 1 else) was given
to all of the risk evaluation strategies, including BP and MF.

The estimation of the recovery distribution requires identifying all the states from which
an individual stops being infectious, which in the OpenABM case includes all the hospitalized
states (which include all those reachable from the hospitalized state in Figure 4.4). For the
equivalent SIR model, all these are mapped into the 𝑅 state (along with Recovered and Dead
states). Then, the distribution of the recovery time is obtained by averaging on all paths that
lead to the equivalent R states, using the distribution of the ages in the population. A fit of the
obtained curve gives a Gamma distribution with parameters 𝑘𝑅 = 10 and 𝜇𝑅 = 0.57 for the BP
method, and a recovery probability for the Markov SIR model of 𝜇 = 1/12, which is used in SMF.
Also, the values used for other parameters of the SMF method are 𝜏MF = 5 and 𝑡MF = 10.

4.4.2 Testing the algorithms
We will now discuss the performance of the each method of risk evaluation. In the following,
unless stated otherwise, the OpenABMmodel is run on 500,000 individuals with for 100 days. It
will be assumed that all individuals that develop severe symptoms (SS) are immediately tested,
and that 𝜌𝑆𝑀 = 50% (on average) of the new mildly symptomatic ones self-report for testing
each day. Each day, each risk evaluation strategy (RG, CT, SMF, BP) is going to run according to
the intervention framework described in section 4.2, with a fixed number 𝑛𝑜𝑏𝑠 of tests available,
which is equal among different strategies. It is important to note that the number of symp-
tomatic individuals that can be observed is not fixed, and it is not going to impact the number
of tests available to the ranking method.

From these settings, two scenarios are derived, differing only in the number of patient zeros
𝑛𝑝𝑧 and the starting day of intervention 𝑡start: scenario A has 𝑛𝑝𝑧 = 50 and 𝑡start = 10, while for
scenario B 𝑛𝑝𝑧 = 20 and 𝑡start = 7. For the time being, Let us assume that the results of the test
are noise-less and the full knowledge of the contact network is available, which corresponds
to an ideal scenario in which all individuals in the population have application enabling the
collection of contacts (contact tracing app) installed on the smartphone, and the results of the
test are 100% reliable.

Figure 4.5 shows the results of the containment for three independent realizations of the
epidemics (thick lines indicate the mean number of infected individuals). The number of tests
performed per day 𝑛𝑜𝑏𝑠 is varied from 625 to 5000, with four different values shown. It is possible
to see that the size of the epidemics, represented by the number of infected individuals, is
significantly reduced with the statistical-physics derived algorithms if compared to random
testing and also to the classic contact tracing, even with few tests. While the classic contact
tracing is able to slow down the epidemic, BP and SMF algorithms are able to reduce much
more the spread of the virus and even stop the propagation, while needing lower number of
observations per day. The BP-basedmethod is themost efficient, as it is able to stop the epidemic
spreading even with just 1250 observations per day. With higher testing, SMF is able to do the
same, although it achieves full suppression of the outbreak at later times. Only in the case with
𝑛𝑜𝑏𝑠 = 5000 the Contact Tracing method is able to slowly reduce the number of infected people,
instead of just shifting its peak to later times.
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Figure 4.5: Epidemic containment in the OpenABMmodel in scenario A (5×105 individu-
als, 𝑛𝑝𝑧 = 50 and 𝑡start = 10), with different values of the number of daily observations 𝑛𝑜𝑏𝑠 Thin
lines represent the results for single instances of the epidemics, while the thick lines represent
their averages. These four cases are selected within the daily observation range [625,5000] to
stress the qualitative differences among the methods. Here only tested positive individuals, and
not their cohabitants, are confined. Figure first shown in [118].

It is also possible to imagine an intervention strategy in which, in order to contain more
severely the spreading of the disease, when an individual tests as positive for infection, his/her
whole household (HH) is confined, too. The results for this more aggressive strategy in scenario
A are shown in Figure 4.6. Confining the households enables the SMF-based algorithm to reach
the same performance as BP. Also, the Contact Tracing method is able to contain the epidemic
with a lower number of daily tests when compared to the previous case (no HH confinement).

The same confinement settings have also been run in scenario B, with household confine-
ment included. This scenario, in which there is a lower number of starting patient zeros, and
intervention starts 3 days earlier, might represent cases when an outbreak is discovered in the
earlier stages. Results are shown in Figure 4.7, for both household and non-household confine-
ment, and indicate that the epidemic outbreak is easier to contain. In fact, it can be observed
that with just 500 daily tests, the BP-based method is able to fully contain the outbreak. The
SMF-based algorithm alsomanages to completely stop the epidemic spreading, but needs double
the number of tests. It also manages to do so with significant delay (≈ 20 days) when compared
with BP.

Confinement of the households (HH) also has a much higher impact in this scenario. For
example, the SMF method is able to contain the epidemic now in the 𝑛𝑜𝑏𝑠 = 500 case, while in
non-household confinement it is only able to delay the peak of infections. The same happens
with CT, but in the higher testing regime with 𝑛𝑜𝑏𝑠 = 1000.
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Figure 4.6: Epidemic containment in OpenABMwith household confinement, scenario
A. This figure shows the same experiments as in Figure 4.5, with the only difference being that
once an infected individual is found, his/her whole household is confined. Thin lines represent
the results for single instances, while the thick lines are the averages. It can be seen here that
the confinement of the households helps in slowing down the spread of the virus, enabling (for
example) CT to contain the outbreak with a lower number of tests. Figure first shown in [118].

Overall, the results obtained in scenario B confirm the patterns seen in scenario A, with the
differences being the number of tests required (1000 daily tests instead of 5000) for MF and BP
to both achieve full containment. However, while in scenario A with 𝑛𝑜𝑏𝑠 = 5000 the classic
contact tracing is able to slow down the spreading, in scenario B with 𝑛𝑜𝑏𝑠 = 1000 this is not
the case (confinement of the households is needed for CT to reduce the number of infected
individuals). Overall, both statistical physics-based methods are able to make better use of the
limited number of observations available.

4.4.3 Stability to false negative testing
The results obtained so far reflect the ideal case in which the tests are 100% accurate, however
this is often not the case in real scenarios. Let us now consider when the tests are subject to
some noise. The testing scenario considered here is the following: while susceptible individuals
always test negative for infection, when an individual is infected, it is possible that his/her test
turns out negative (susceptible), with a probability (or false negative rate, FNR). These settings
correspond to a test specificity of 1 (no false positives) and a sensitivity of 1 − FNR. The reason
for this choice is that while a non-negligible FNR means that less infectious individuals are
found, and thus there is a higher chance for the outbreak to go out of control, a non-zero false
positive rate (FPR) could give the opposite result, as more individuals get tested as infected and
quarantined. This makes investigating the case FNR > 0 more interesting than the dual case

68



4.4 – Epidemic containment of OpenABM outbreaks

0 20 40 60 80 100
Days

101

102

103

104

105

106

Nu
m

be
r o

f i
nf

ec
te

d

250 obs.
RG
CT
SMF
BP

0 20 40 60 80 100
Days

101

102

103

104

105

106

Nu
m

be
r o

f i
nf

ec
te

d

500 obs.
RG
CT
SMF
BP

0 20 40 60 80 100
Days

101

102

103

104

105

106

Nu
m

be
r o

f i
nf

ec
te

d

1000 obs.
RG
CT
SMF
BP

0 20 40 60 80 100
Days

101

102

103

104

105

106

Nu
m

be
r o

f i
nf

ec
te

d

250 obs. HH 
RG
CT
SMF
BP

0 20 40 60 80 100
Days

101

102

103

104

105

106
Nu

m
be

r o
f i

nf
ec

te
d

500 obs. HH 
RG
CT
SMF
BP

0 20 40 60 80 100
Days

101

102

103

104

105

106

Nu
m

be
r o

f i
nf

ec
te

d

1000 obs. HH 
RG
CT
SMF
BP

Figure 4.7: Epidemic containment in the OpenABM model in scenario B (5 × 105 indi-
viduals, 𝑛𝑝𝑧 = 20 and 𝑡start = 7), with different values of the number of daily observations 𝑛𝑜𝑏𝑠.
Here both the results with and without confinement of the households are included, the former
on the bottom row, the latter on top. Thin lines represent the results for 6 single instances
derived by changing the seed of the OpenABM simulation, while the thick lines represent their
averages. Figure first shown in [118].

FPR > 0.
While observations might give more information, this setting is the simplest case to test

inaccuracies. The BP-based method already includes the possibility of noisy observations in
the formulation, but the SMF method does not, in order to keep it as simple as possible. Figure
4.8 shows the results for containment in scenario A (𝑛𝑝𝑧 = 50, 𝑡start = 10), with 𝑛𝑜𝑏𝑠 = 2500 ob-
servations per day, with different values of the false negative rate, from very low (FNR = 0.09)
to significant error rate (FNR = 0.4). It can be seen how the increasing noise makes controlling
the epidemic significantly more difficult, as all algorithms (except RG) start by containing the
epidemic with lower values of the FNR, and eventually lose the ability of keeping the outbreak
in check. The SMF and CT-basedmethods are able to avoid exponential growth of the infections
until FNR = 0.19, while BP manages to do so until FNR = 0.31, losing control at higher values.
However, these results indicate how BP-based inference can be very resistant to noise, manag-
ing to significantly reduce the number of infected and even completely stop to epidemics even
with higher FNR. The same kind of simulations is run with scenario B, obtaining the results in
Figure 4.9. The picture is qualitatively the same as scenario A, with SMF and BP performing
better in the containment of the epidemic, when compared with classic contact tracing, and BP
being the most resistant method to the false negative rates of tests.

69



Epidemic containment with statistical physics methods

100

101

102

103

104

105

Nu
m

be
r o

f i
nf

ec
te

d

 FNR 0.09  FNR 0.19

0 20 40 60 80 100
Day

100

101

102

103

104

105

Nu
m

be
r o

f i
nf

ec
te

d

 FNR 0.31

0 20 40 60 80 100
Day

 FNR 0.4

RG
CT

SMF
BP

Figure 4.8: Effect of inaccurate tests in scenario A. Here, the intervention protocol and the
initial conditions are the same as in Figure 4.5 (𝑛𝑝𝑧 = 50, 𝑡start = 10), with 2500 daily tests and
household confinement. Containment experiments are shown for 4 different values of the false
negative rate (FNR). Thin lines represent single instances, thick lines are the averages. Figure
first shown in [118].

4.4.4 Effect of app adoption
Finally, Let us discuss the case when it is not possible to know all of the contacts between the
individuals, as a result of the fact that part of the population does not have the possibility to
track their contacts trough the smartphone. This might be either because they don’t have the
smartphone application installed, or they don’t own a smartphone. Partial knowledge of the
contact network might then hinder the containment of the disease: in fact, when an individual
is not taking part in the digital collection of contacts, all of his/her links with others are invisible
to a ranking algorithm, like he/she was effectively removed from the network.

This setting is going to be investigated now, by varying the adoption fraction (AF) of the
contact collection app in the OpenABM model. Random individuals are then hidden in the
contact network, so that only a fraction 𝜌AF of them, on average, is visible. The adoption
fraction is gradually reduced, from 90% to just 60%, resulting in a contact reduction that varies
significantly, ranging from 19% (with AF = 0.9) to 64% (with AF = 0.6).

The results for the experiments done in scenario A (𝑛𝑝𝑧 = 50, 𝑡start = 10) are shown in Figure
4.10, and those for scenario B (𝑛𝑝𝑧 = 20, 𝑡start = 7) are in Figure 4.11. Overall, they show that the
performance in containment in significantly affected by the adoption fraction. However, while
the statistical physics-based method are unable to contain the disease, they manage to delay
and lower the peak of the number of infected, way better than the classical contact tracing.
This “flattening of the curve” can give several benefits, like having more time to prepare the
healthcare system. In scenario B, however, the difference is not as large in scenario A: this could
be motivated by the lower number of tests (5 times more in scenario A), indicating that a high
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Figure 4.9: Effect of inaccurate tests in scenario B Here, the intervention protocol and the
initial conditions are the same as in Figure 4.7 (𝑛𝑝𝑧 = 20, 𝑡start = 7), with 1000 daily tests and
household confinement. Containment experiments are shown for the same values of the false
negative rate (FNR) as in Figure 4.8. Thin lines represent single instances, thick lines are the
averages.

testing rate is important when knowledge of the contact network is partial.

4.5 Discussion
In this chapter, it has been shown how themean field approximations of SIR epidemic spreading
on contact networks can be used for the containment of the outbreaks of different diseases.
Two methods, with different level of approximation, have been developed: the Simple Mean
Field algorithm, and the Belief Propagation-based approximation. While the former is simpler
to derive, and faster in practical application, the latter is more accurate, owing both to the
approximation of the epidemic process and the Bayesian treatment of the observations.

These probabilistic risk inference methods have been first compared with the classical con-
tact tracing when the spreading follows the same SIR model with homogeneous parameters. In
this case, it has been shown that, when it is not possible to conduct exhaustive testing in the
population, they are able to slow down the epidemic propagation in a much more effective way
than the simple contact tracing. The risk inference methods have also been tested in presence
of a mismatch between the spreading and the inference parameters: this analysis showed that
both the SMF and BP method are resistant to changes in parameters, with BP being the most
resistant of the two.

Then, these methods have been applied to a different spreading model, OpenABM, which
has been developed with the aim of describing COVID-19-like epidemic outbreaks using agent-
based simulation. It has been shown in the chapter that the disease progression of this model
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Figure 4.10: Effect of app adoption in scenario A The intervention scenario is the same as
in figure 4.6 (𝑛𝑝𝑧 = 50, 𝑡start = 10), with the highest number of test (5000) and the confinement
of the households. In these experiments the adoption fraction of the contact tracing app is
changed, starting from 0.9 until AF = 0.6. The bottom plots are in linear instead of log-linear
scale in order to show the difference of BP and SMF with respect to CT. Thin lines represent
the 3 single instances, thick lines are the averages.
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Figure 4.11: Effect of app adoption in scenario B The intervention scenario is the same as
in figure 4.7 (𝑛𝑝𝑧 = 20, 𝑡start = 7), with the highest number of test (1000) and the confinement
of the households. In these experiments the adoption fraction of the contact tracing app is
changed, starting from 0.9 until AF = 0.6. The bottom plots are in linear instead of log-linear
scale in order to better show the difference between the methods. Thin lines represent the 4
single instances, thick lines are the averages.
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has many characteristics that make it very different from an SIR model on a contact network.
However, in spite of this mismatch between the spreading model and the one used for inference
(which is much simpler), the results obtained show how employing these algorithms provides
large improvements over classical contact tracing techniques, when the epidemic is growing
and the number of observations is relatively small compared to the population size (which is
compatible with real testing capacity of many countries).

Of the two algorithms proposed in the chapter, themost performing is the Belief Propagation-
based one. This is mainly because a) the approximation used is more precise than the SMF in
inferring the risk of infection (although more suited to sparse contact networks) and b) the
treatment of the observations is much more accurate, because of the use of the Bayesian poste-
rior. This last factor is particularly important when the results of the tests is affected by noise,
as shown above. The BP method is able to take into account this inaccuracy, while the SMF al-
gorithm is not. Another advantage of BP is that it can deal with non-markovian SIR spreading
dynamics; this feature is essential to capture some specific properties observed in the SARS-
CoV-2 transmission. It could also be possible to learn the spreading parameters with BP, as
done in [38], however this is left for future work.

On the other hand, the SMF algorithm is a simpler approximation of the SIR process, trading
accuracy for simplicity and ease of computation. When the number of daily observations is high
enough, it can achieve the same containment efficacy of BP (while still performing significantly
better than classical contact tracing). It is, however, quite affected by testing noise.

Another inherent advantage of obtaining a good infection risk estimate, as provided by these
mean-field algorithms, is the possibility of implementing a diversified intervention strategy,
for example giving different suggestions to people (reduction of contacts, self-isolation, self-
testing) according to some thresholds of the individual’s risk value.

On a more computational standpoint, the deployment of these methods in a smartphone
application would require each individual sending and receiving messages with other individu-
als. We remark that the volume of daily exchanged messages per pair of individuals in the two
proposed methods is constant with respect to both the population size and time: in particular,
for the BP approach this is achieved by defining a fixed time-window over which the inference
step is carried out, as discussed in Section 4.1.2. A rough estimation of this volume gives about
1kB for MF and 1MB for BP per individual on each day (assuming ∼ 10 daily contacts): this
volume is very small when compared with normal data usage, and the computational load on
an a user’s phone would be minimal. With regard to privacy, it is worth emphasizing that the
proposed inference methods are in principle more protective than the manual tracing. In fact,
by identifying individuals who have the largest probability of being infected through a cumu-
lative process by which information is integrated, the direct attribution of potential infection
events to a given individual is made much harder. Moreover, the messages can be distributed
and encrypted, eliminating the need to upload the contacts on a public server. Details of such
fully privacy preserving implementation, along the lines of [111], are left for future work. Im-
plementation of the SMF and BP risk estimation algorithms and all the tests that follow can be
found at [88].

Both risk inference methods proposed in the chapter are severely affected by the lack of
knowledge of the contact network: when individuals do not install the contact collection app,
their contacts cannot be identified. This makes the risk inference less effective, leading in turn
to a worse mitigation of the epidemic. Despite the fact that a delay of the epidemic peak can
be observed even at smaller values of the adoption fraction, previously deployed applications
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for COVID-19 tracing still had adoption levels insufficient for these methods to be effective in
containing the epidemic spreading [113, 154].

Finally, it is important to consider that while the agent-based model considered in this chap-
ter is very detailed from the point of view of the disease progression, it exploits synthetic con-
tacts networks for the disease transmission from person to person. The resulting interaction
dynamics within the population are however quite realistic, due to the many networks of con-
tacts (household, workplace, and random) and to the calibration of the model. In order to
show the performance of the risk inference methods and interventions on real world contact
networks, it could be possible to perform experiments with virtual epidemics, running on vol-
unteers’ smartphones, virtually confining individuals as the (virtual) disease spreads. Using the
collected contacts a posteriori, instead, would make the obtained epidemic outbreaks less re-
alistic, as applying interventions would change the interaction dynamics. This kind of virtual
epidemic experiments has been already performed: some notable examples include the BBC
Four Pandemic [93] and Operation Outbreak [170].
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Chapter 5

Capturing epidemic features of
COVID-19 spreading

In the previous chapter it has been shown that risk inference methods derived from statistical
physics can be used to mitigate epidemics, and can also be applied to models for the spreading
of COVID-19. Then, it is important to understand how these methods can be helpful in the
reconstruction of the features of the spreading of the disease. Moreover, it is interesting to
compare them with more evolved forms of contact tracing that employ the informations of the
tests in a smarter way.

Also, one limitation of the work of previous chapter is that, with respect to COVID-19 epi-
demic spreading, only one model has been considered, which has its own set of assumptions in
the contact model and transmission of the disease. In this chapter, two additional models will
be used to test the inference methods in these diverse settings. As will be explained in the fol-
lowing, the models taken under consideration use very different assumptions for the spreading
of the disease and the infection dynamics.

5.1 Motivation
Much work has been done recently on investigating the effectiveness of digital contact tracing
(DCT), which is supplementing and replacing ”classical” manual contact tracing (MCT) using
smartphone applications. In fact, early computational models and theoretical results on DCT
have shown that it alone can ensure epidemic containment in large populations only in the
presence of high adoption [85, 94, 123, 167, 141]. Despite some controversial results [168], the
analysis of data obtained from early implementations of DCT applications has revealed that
they really contribute to epidemic containment, providing an additional quantitative and qual-
itative gain over MCT [105, 155, 148, 140, 139]. However, massive contact tracing comes with
the risk of the proliferation of exposure notifications and quarantines, which may result in high
cost-to-benefit ratio [75, 117, 119, 123, 125]. This is certainly the case, as the size of the outbreak
grows, when notification of exposure is provided as a consequence of every single contact with
tested positive individuals, regardless of the proximity or the duration of the contact, or the viral
load of the infected individual. In fact, current DCT implementations, such as Corona-Warn-
App [82] based on the Google/Apple API protocol [73], can use such additional information to
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compute risk levels and provide more individually-tailored tiered notifications. This is a first
step towards improving the efficacy of DCT and reducing notification redundancy. A major
improvement in this direction would be represented by inference-based contact tracing meth-
ods, which could naturally account for multiple exposures [71, 128, 118, 142]. Using a Bayesian
framework to include all the available observations of positive (and negative) tested individu-
als, an efficient and distributed method based on Belief Propagation has been put forward, as
shown in Chapter 4, to compute the individual probabilities of being infected that contribute
to the individual risk levels provided on the app.

Due to the peculiarity of COVID-19 of displaying overdispersion in secondary infections
[29, 116, 84, 95, 91, 72, 152, 136], it was claimed that backward tracing can significantly increase
the number of traceable individuals compared to forward tracing [112, 122], because positive
tested individuals are more likely to come from contagion clusters than to generate them [135].
Countries like Japan [100], South Korea [97] and Uruguay [107] are credited with successfully
implementing backward tracing in their contact tracing campaigns. This reveals a second limi-
tation of current app-based digital contact tracing implementations, as they primarily perform
forward tracing [127], meaning that the individuals being tracked are almost only those who
could have been infected by a tested positive individual. Innovative digital contact tracing
methods based on statistical inference, such as the one shown in the previous chapter, which
ground their predictive power on reconstructing causal relationships in transmission paths [37],
are instead expected to more efficiently discover backward traces and capture super-spreading
events. This is particularly effective when a possibly large number of cheap, low-sensitivity
rapid tests is available [132], as the prior information about the sensitivity of the tests can be
included in the Bayesian probabilistic approach [118].

5.2 Agent-based models for COVID-19
In the realm of mathematical models for epidemic spreading, agent-based models are able to
provide an individual-level description of the spreading of diseases, with sufficiently reliable
representations of the actual contact networks on which contagion between individuals could
take place. Among the agent-based models proposed since the beginning of the COVID-19 pan-
demic [70, 90, 131, 134, 162, 161], some of them can be considered exemplary for formulating
a critical analysis of the containment capabilities of the different contact tracing methods and
evaluate their cost-to-benefit ratio. In this chapter, apart from the already presented Open-
ABM model (see section 4.3), we will employ the Covasim model by Kerr et al. [134], and the
Spatiotemporal Epidemic Model (StEM) by Lorch et al. [162].

All the models considered are derived from the Susceptible-Exposed-Infected-Recovered
(SEIR) model, in which several states are included to account for various stages of infectious-
ness and disease severity. All the models considered are capable to reproduce the empirically
observed non-Poissonian statistics and overdispersion in contacts patterns and individual viral
loads. Since the OpenABM model has already been described in detail, in the following the
other two models will be described.
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5.2.1 Spatiotemporal Epidemic Model
The epidemic simulator put forward in Lorch et al. [162] consists of two interconnected pro-
cesses: a mobility simulation, in which the individuals can visit a number of sites and come in
contact with each other by being in the same place at the same time, and a proper epidemic
simulation, in which the virus spreads through the population due to some initially infected
individuals and the aforementioned contacts.
In this model, particular attention is devoted to producing mobility data that are as realistic
as possible. Once a city has been chosen, the first step of the mobility generator consists in
retrieving the population data, i.e. the population density (when publicly available, otherwise
individuals are located uniformly on the map), the age groups, and household composition
distributions of the overall population. These quantities are used to constitute and locate the
households on a map. The next step is to model the sites that the individuals can visit during
the mobility simulation. These venues belong to one of the following categories: education
(e.g. schools, universities), social activities (e.g. bars, restaurants, cafés), business (e.g. offices,
shops), supermarkets, and bus stops. Similarly to the households assignment, the number of
sites of each type and the location of each site are decided using the real distribution of these
venues in the city: this is accomplished using OpenStreetMap [165], which is able to provide
geolocation data for each of these place categories. The visits to specific places are then mod-
elled assuming that people visit only a modest subset of the possible venues, with a probability
that decreases with the site-household distances.
The epidemicmodel used is a generalization of the SEIRmodel in continuous time, withmultiple
infected states to account for the possibility of distinguishing among pre-symptomatic, symp-
tomatic, and asymptomatic individuals. The state evolution is modelled as a set of counting pro-
cesses and simulated using stochastic differential equations (SDE) with jumps (as this dynamic
requires discrete state transitions in continuous time). Only exposure events exploit the mo-
bility data by taking into account the concurrent presence of an infector in a pre-symptomatic,
symptomatic or asymptomatic state, and a susceptible individual in a certain venue. The ex-
posure counting process considers, together with a transmission rate that depends on the state
of the infector, a venue-dependent exposure rate and a kernel term that quantifies possible en-
vironmental transmissions (due to the presence of the virus in the air or on the surfaces). It is
worth noting that the presence of super-spreaders naturally occurs in the dynamic, indeed, the
number of transmissions is characterized by an over-dispersed distribution (see Figure 5.5).
The other events are individual-dependent with log-normally distributed typical transition
times, whose parameters reflect the data extracted from clinical COVID-19 literature.
For sake of simplicity, our simulations exploit daily mobility and epidemiological dynamics data
to build a test-and-isolate intervention measurement similar to what has been presented in the
previous chapter. The code used for these simulations is reported in the GitHub fork [159].

5.2.2 The Covasim model
The Covasim model [134] is a special variant of the SEIR model in discrete time, with sev-
eral states dividing infectious individuals in asymptomatic (AS) and symptomatic categories
(the latter is subdivided into pre-symptomatic (PS), mildly (MS), severely symptomatic (SS) and
critical (C), see Figure 5.1). The death of individuals is also accounted as a state which is reach-
able when the individual is in the critical stage of the disease. The transition times between
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the aforementioned states are drawn from log-normal distributions with different parameters
(described in detail in [134]).

The model can be used with several types of contact networks, and the contacts can be
divided into different layers. As default, the simulations run on simple Erdös-Rényi (ER) ran-
dom graph [62] with fixed average degree. However, as done in [133], in all the simulations
conducted in this work the Synthpops package (described in [134]) is used in conjunction with
King County epidemic data to obtain realistic contact networks. With this procedure, several
contact networks are randomly generated as ER graphs, each representing different environ-
ments (houses, workplaces, schools, and community spaces) and then modified to accounting
for statistics such as employment age in schools and workplaces. Also, a network representing
long-term care facilities (LTCF) is created by randomly sampling elderly people, whose interac-
tions are removed from the houses and workplaces networks, and younger workers. All of the
contact networks generated in this way are static, but during the simulations, the community
contacts are updated each day. Also, we limit the size of the generated population to either
50,000 or 70,000 people for practical reasons.

In the Covasim model, it’s possible to simulate epidemics for a very large population by
employing its ”dynamic rescaling” feature, as done in [133]. With this technique, a single in-
fected agent represents more than one individual, this number varying during the simulation,
depending on the number of infected agents [134]. This features is turned off in our simula-
tions, as it is not relevant for the investigation of individual contact tracing techniques. Also,
epidemic parameters for the model are taken from [133], where they have been derived using
King County epidemic data.

Pre-emptive quarantine

It is important to note that in the Covasim model individuals who are notified of a known
infected contact enter into a pre-emptive quarantine state that is accompanied by a reduction
in the infectivity (both for the source and target individuals of a possible infection) of 1−𝑓𝑄 (so
that with 𝑓𝑄 = 0.2 we have a reduction of 80%).

This intervention thus does not take into account whether an individual is infected or not,
and it ends when the individual is tested for infection: if the result is positive, he/she is put into
full isolation, otherwise he/she is released from quarantine. However, if an individual is not
tested in the following 14 days after notification, he/she is released from quarantine, too.

In practice, while 𝑓𝑄 could be different for different contact layers (e.g. higher for school and
workplace networks, and lower for the house), in this chapter it will be fixed and equal among
all contacts, for the sake of simplicity.

Infection modelling

The infectivity of single contacts in the Covasim model depends on a series of factors given
by global parameters, the status of the individual (including quarantine/isolation), individual
parameters (relative transmissibility 𝑇𝑟𝑒𝑙 and susceptibility 𝑆𝑟𝑒𝑙, for example) and the contact
layer. The exact formula giving the probability of infection from a source infectious individual
𝑖 to target susceptible individual 𝑗 is:

𝜆𝑖→𝑗 = 𝛽𝑔𝛽𝑐𝛽𝑙𝑎𝑦𝑇
(𝑖)
rel𝑉load (𝑡 − 𝑡(𝑖)inf)𝑀

(𝑖)
𝑄 𝑀 (𝑖)

Asy𝑀
(𝑖)
Iso𝑆

(𝑗)
rel𝑀

(𝑗)
𝑄 (1 − 𝐼 (𝑗)) (5.1)
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Figure 5.1: Schematic representation of the epidemic dynamics in the new models con-
sidered in this chapter. Colour codes identify how these states are considered with respect to
the SEIR model: red represents Infectious and light blue stands for Recovered. Infection of the
individual is graphically represented by a red dot, and the probability to undergo one of the
different infection pathways is always age-dependent on the three models.

Where 𝛽𝑔 is the global 𝛽 given to the simulation, 𝛽𝑙𝑎𝑦 varies with the contact layer (household,
long-term care facilities, work, and schools contacts being respectively 10 times, 5 times, 2
times more infectious than community contacts, as done in [133]), 𝛽𝑐 is the strength of each
contact, 𝐼 is the immunity level of the target individual. The 𝑀 factors model the effect of the
state of an individual on the infectivity: if individual 𝑖 is in quarantine, then 𝑀 (𝑖)

𝑄 = 𝑓𝑄, the

quarantine factor, otherwise 𝑀 (𝑖)
𝑄 = 1. The same logic is applied to 𝑀 (𝑖)

Iso and 𝑀 (𝑖)
Asy, which are

different than 1 when individual 𝑖 is in isolation (following diagnosis) or is asymptomatic, with
factor parameters 𝑓Iso and 𝑓Asym, respectively. The 𝑇rel and 𝑆rel parameters are fixed during
the simulations, and the former is used as the default viral load as explained in [134](see panel
(b) of figure 5.5 for the distribution of 𝑇rel). In all the simulations 𝑓Asym = 1, while both 𝑓𝐼 𝑠𝑜,
which models the reduction of infectiousness after isolation of an individual, and 𝑓𝑄 are fixed
to 𝑓𝐼 𝑠𝑜 = 0 and 𝑓𝑄 = 0.6 in the containment experiments. During all the simulations, also, the
immunity levels stay fixed once an individual recovers from the disease so that it is impossible
to have reinfections.

Viral load depends on the time elapsed since infection: 𝑉load (𝑡 − 𝑡inf), taking value only in
two different levels: in fact, it falls to half its initial value after a number of days corresponding
to 30% of the individual duration time of the disease or 4 days, whichever is shorter[134].
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5.3 Mapping of the models into SIR parameters
In order to apply the Simple-Mean-Field (SMF) and Belief Propagation (BP) methods for the
inference of the risk of infection, equivalent SIR model parameters have to be derived for each
agent-based model. In the following, it will be shown how this procedure was carried out in
the two models.

5.3.1 Recovery probability
Let us begin from the Covasim model. Since in this model there are Exposed and Infectious
states, they will both be mapped to the Infected state of the equivalent SIR model. Therefore,
the recovery time of the SIR, that is the time it takes to pass from the Infected to the Recov-
ered state, corresponds in the Covasim model to the total delay from becoming Exposed (E) to
entering either the Recovered (R) or the Dead (D) state. This means that all the possible paths
for the disease progression need to be considered for the calculation. Each path will reach the
R or D state with a different delay, and that can be computed by summing the transition times
according to the disease progression (shown in Figure 5.1):

𝜏𝐴𝑟 = 𝜏𝐸→𝐴𝑆 + 𝜏𝐴𝑆→𝑅 (5.2a)

𝜏𝑀𝑟 = 𝜏𝐸→𝑃𝑆 + 𝜏𝑃𝑆→𝑀𝑆 + 𝜏𝑀𝑆→𝑅 (5.2b)

𝜏 𝑆𝑟 = 𝜏𝐸→𝑃𝑆 + 𝜏𝑃𝑆→𝑀𝑆 + 𝜏𝑀𝑆→𝑆𝑆 + 𝜏𝑆𝑆→𝑅 (5.2c)

𝜏𝐶𝑟 = 𝜏𝐸→𝑃𝑆 + 𝜏𝑃𝑆→𝑀𝑆 + 𝜏𝑀𝑆→𝑆𝑆 + 𝜏𝑆𝑆→𝐶 + 𝜏𝐶→𝑅 (5.2d)

𝜏𝐶𝑑 = 𝜏𝐸→𝑃𝑆 + 𝜏𝑃𝑆→𝑀𝑆 + 𝜏𝑀𝑆→𝑆𝑆 + 𝜏𝑆𝑆→𝐶 + 𝜏𝐶→𝐷 (5.2e)

where the+ here indicates the sum of random variables, with each variable representing the de-
lay of the corresponding state transition (𝐴𝑆 for the asymptomatic state, 𝑃𝑆 for pre-symptomatic,
𝑀𝑆 for mild symptomatic, 𝑆𝑆 for severe symptomatic and 𝐶 for critical). Then, in order to obtain
an equivalent distribution for the SIR time of recovery, each path needs to be weighted by the
probability of an individual having that disease progression, and since the path probabilities
depend on the age of the individual, the results needs to be averaged on the age distribution
𝑝 (𝑎). The final distribution is then computed as:

𝑝 (𝜏𝑅) = ⟨𝜙𝑎𝑝 (𝜏𝐴𝑟 ) + (1 − 𝜙𝑎) 𝜙𝑆𝑀𝑅 𝑝 (𝜏𝑀𝑟 ) +

+ (1 − 𝜙𝑎) [ (1 − 𝜙𝑆𝑀𝑅 ) 𝜙𝑆𝑆𝑅 𝑝 (𝜏 𝑆𝑟 ) + (1 − 𝜙𝑆𝑀𝑅 ) (1 − 𝜙𝑆𝑆𝑅 ) 𝜙𝐶𝑅𝑝 (𝜏
𝐶
𝑟 ) +

+ (1 − 𝜙𝑆𝑀𝑅 ) (1 − 𝜙𝑆𝑆𝑅 ) (1 − 𝜙𝐶𝑅) 𝑝 (𝜏
𝐶
𝑑 ) ]⟩𝑝 (𝑎) (5.3)

The distribution obtained in this way can be applied to a non-Markovian SIR model. This is
supported by the BP method, and for simplicity reasons the the 𝑝 (𝜏𝑅) is passed to the method
by fitting it to a gamma distribution. Overall, the distribution of 𝜏𝑅 has mean ⟨𝜏𝑅⟩ = 14 and
standard deviation 𝜎𝑅 = 2.37. The SMF method instead relies on the Markovian SIR model,
thus needing a (time-independent) recovery probability 𝜇𝑅. The value of this probability is
obtained by a geometric distribution fit of 𝑝 (𝜏𝑅) (resulting in the estimate 𝜇𝑅 = 0.071).

The same procedure is applied to the StEM model to obtain the distribution of the recovery
delay 𝑝 (𝜏𝑅). In this case, however, there is also the Hospitalised state, in which an individual
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is already unable to transmit the virus to others, thus making it equivalent to the Recovered
state in the SIR model (see left pane of Figure 5.1). The recovery delay distribution obtained
has ⟨𝜏𝑅⟩ = 18.7 and 𝜎𝑅 = 2.37, while the equivalent recovery probability for the SMF method is
𝜇𝑅 = 0.083. The recovery delay distributions obtained in Covasim and StEM are shown in the
right pane of Figure 5.2, along with the one from the OpenABM model.

5.3.2 Infection probability
In order to give an estimate to the algorithms of the infection probability in Covasim, the pa-
rameters shown in Eq. 5.1 have to be given to the ranking algorithms. The factors 𝛽𝑐, 𝛽𝑙𝑎𝑦 and
the 𝑀𝑄, 𝑀Iso and 𝑀Asy modifiers will be given as weight 𝑤 𝑡

𝑖→𝑗 of each contact. This leaves 𝛽𝑔,

that is a global simulation parameter. The 𝑆(𝑗)𝑟𝑒𝑙 and 𝑇
(𝑖)
𝑟𝑒𝑙 depend on the individual, so they cannot

be known in a contact tracing scenario. Therefore, it is necessary to give an estimate based on
their distribution, obtained from a SynthPops population of 𝑁 = 225 × 103 individuals gener-
ated as described in section 5.2.2. For the 𝑆(𝑗)𝑟𝑒𝑙 , since the distribution obtained is fairly uniform,

the average value is given to the contact tracing methods (which is ≈ 1). For the 𝑇 (𝑖)𝑟𝑒𝑙 , however,
in order to take into account the skewness of the distribution (see panel b of figure 5.5), it’s
necessary to give the median 𝑇𝑀𝑟𝑒𝑙 = 0.41, instead of the average ⟨𝑇rel⟩ ≈ 1, to the algorithms.

It’s possible to account for the time dependence of the 𝑉load factor only in the BP algorithm,
that is able to work with a non-Markovian SIR Model. This information is also combined with
the waiting time for the transition 𝐸 → 𝐼, as in the 𝐸 state in individual is already infected.
These two temporal effects are modeled with two sigmoid functions: the first one is fitted on
the distribution of the 𝐸 → 𝐼 transition time, and the second one on the distribution of the time
of the switch from the high value 𝑉𝐻 to the low value 𝑉𝐿 of the 𝑉load.

Therefore, the probability of infection for each contact for the contact tracing methods can
be written as:

𝜆BP𝑖→𝑗 (𝑡) = 𝜆BP0 Λ(𝑡 − 𝑡(𝑖)inf) 𝑤
𝑡
𝑖→𝑗 = 𝛽𝑔𝑇𝑀𝑟𝑒𝑙 Λ(𝑡 − 𝑡(𝑖)inf) 𝑤

𝑡
𝑖→𝑗 (5.4)

with 𝑤 𝑡
𝑖→𝑗 being the weight of each contact that is given by the model, and

Λ (𝑡) = 𝑉𝐻 𝑆 (𝑔𝐻 𝑡 − 𝑡𝐻) + (𝑉𝐿 − 𝑉𝐻) 𝑆 (𝑔𝐿 𝑡 − 𝑡𝐿) (5.5)

with 𝑆 the sigmoid function, 𝑔𝐻 = 1.21, 𝑡𝐻 = 4.71, 𝑔𝐿 = 1.05 and 𝑡𝐿 = 7.28. For the SMF
algorithm, instead,

𝜆MF
𝑖→𝑗 (𝑡) = 𝜆MF

0 𝑤 𝑡
𝑖→𝑗

where 𝜆MF
0 is the average of all the factors in Eq. (5.4) excluding the weight 𝑤𝑖→𝑗.

In the StEM model, the probability of an infectious individual transmitting the disease to
a susceptible one depends on the time of residence in one of the mobility sites [162]. In this
case, no evident weight of each contact can be passed to the ranker, so the expression of the
infectiousness reduces to the prefactor (𝜆BP0 or 𝜆MF

0 ). The distribution of the time of the 𝐸 → 𝐼
state transition can be given to the BP method as

Λ (𝑡) = 𝑆 (𝑡 − 𝑡0) ,

with 𝑡0 = 3.22, and the values of the prefactors are found through averages obtained on a typical
realization of the epidemic dynamics with a large population size.
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Figure 5.2: Left: Time-dependent contribution to the infection probabilityΛ (𝑡) for Covasim and
StEM, where 𝑡 denotes the time elapsed since infection. Right: probability distribution of the
recovery time in the effective SIR reduction for the agent-based models. Both time-scales are
in days. The same curves are also shown for the OpenABM model for reference.

5.4 Epidemic containment in Covasim and StEM
We now discuss how to perform epidemic containment with the Covasim and StEM models,
as has been shown in the previous chapter with OpenABM. As previously explained, the aim
is to show how the methods derived from statistical physics, Simple-Mean-Field (SMF), and
Belief Propagation (BP), perform in the containment of epidemic cascades generated with the
two agent-based models. These methods have been derived in Sections 4.1.1 and 4.1.2 of the
previous chapter, respectively, and will be compared with two different implementations of
digital contact tracing: the first is a naive form, called simply DCT, in which all people that have
been in contact with a confirmed infectious individual are given the same rank; the second one,
called informed contact tracing (ICT), takes into account all the test results, both positive and
negative.

Then, during a simulation run of eachmodel, each algorithm is run every day (after an initial
waiting period of 𝑡st days) in order to produce a ranking of all individuals on the risk of being
infected. As previously done with the OpenABM model, on each run of the method the results
of the tests done in the previous days are available to the ranking method as observations,
along with the contacts up to the current day. These contacts are supposed to be collected with
a contact detection app, running on each individual smartphone. Only when both individuals
have this app, the contact is detected and given to the algorithms. After the ranking has been
obtained, a number of tests 𝑁test is performed on the individuals who have the highest risk of
being infected according to the algorithm, and who haven’t previously found infected. Also,
each day some of the symptomatic individuals are tested, with probability 𝑝sympt. Positively
tested individuals enter isolation, thus avoiding infecting others.

In this containment protocol, the tests results are affected by an error due to a non-zero
false-negative rate 𝜈𝑛. A relatively large value of false-negative rate can be associated with the
outcome of rapid COVID-19 tests which provides an inaccurate, but fast and low-cost, way to
ascertain contagion. The value, which is set to of 𝜈𝑛 = 0.285 in the present simulations, is a
rough estimate computed from data published in [126, 129].
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A standard testing strategy, applicable to all contact-tracingmethods, requires that the num-
ber of tests suggested by each ranker, and performed on a daily basis, is fixed at 𝑁test = 400. An
alternative testing strategy can be employed with probabilistic contact-tracing methods, such
as BP and SMF, and consists in observing the state of individuals whose estimated probability
of being infected is larger than a threshold value 𝑝𝑡ℎ (𝑝𝑡ℎ = 5 × 10−4 for StEM and 1.5 × 10−2 or
2.5 × 10−2 for Covasim). As a consequence, in this latter case, the number of ranker-based tests
changes adaptively in time.

For the Covasim model, a more effective version of manual contact tracing is available,
called Test-Trace-Quarantine (TTQ), which has been employed in [133]. This method exploits
the pre-emptive quarantine (PQ) available in Covasim, so that when manual contact tracing is
performed, the individuals reached by the MCT enter PQ, awaiting being tested. In the TTQ
strategy, then, individuals are tested with a probability that depends on their quarantine status,
and also by their symptoms: symptomatic individuals have higher probability of being tested
with respect to non-symptomatic ones, and those who have just entered PQ also have higher
probability than those who are not quarantined or are already in quarantine. Then, the number
of tests performed each day with the TTQ strategy is not fixed: in order to compare it with
the rankers-based testing, a version with fixed number of tests, called TTQ-N, has been created
where the individuals to be tested are sampled according to their probabilities. A first set of
preliminary results is shown in Figure 5.3, for the case when all the population participates in
the collection of the contacts (i.e. when the adoption fraction (AF) of the contact collection
app is 100%). While these results are not definitive, they indicate that probabilistic inference
algorithms are able to contain the epidemic cascades better then the two version of the contact
tracing used (DCT and ICT). In the StEM model, the BP method is the only one able to achieve
an effective reproduction number 𝑅𝑡 below 1, and its threshold testing version (indicated as
BP(𝑝𝑡ℎ)) is able to stop the epidemic outbreaks earlier and with a lower number of total tests.
In the Covasim model, both SMF and BP are able to stop the epidemic spreading before the
final time. Threshold testing with these two algorithms then leads to a degradation of the
containment performance, but with a much lower number of tests. While the SMF(𝑝𝑡ℎ) method
consumes less tests than BP(𝑝𝑡ℎ), it is able to contain much less, too, while the performance of
BP(𝑝𝑡ℎ) is close to its fixed daily test version.

The same containment framework is also tested when the adoption fraction (AF) of the
contact collection app is 80%. In this case, the contact tracing methods have partial knowledge
of the contact network, and it becomes harder to contain the epidemic outbreaks, as shown
in Figure 5.4. As a consequence, it can be seen that now the threshold testing version of BP
requires many more tests to keep the epidemic outbreak in check in the StEM model. Instead,
on the Covasim model both BP and SMF show a qualitatively better containment than contact
tracing methods or TTQ, with their threshold testing version requiring again less tests but with
a smaller performance gap than the AF = 100% case.

Overall, the probabilistic risk evaluationmethods seemmore effective on the Covasimmodel
than on the StEM: this could be due, among other factors, on the structure of the contact net-
works created by the models. In fact, while the Covasim model generates simple (albeit slightly
modified) random graphs, the contact graphs generated by the mobility simulations in StEM
are much more complex, making the reconstruction of the epidemic spreading more difficult.
Also, it’s clear that both Digital Contact Tracing and Informed Contact Tracing do not perform
well in all the simulations shown, and this is also due to the fact that they are easily fooled by
the false negatives in testing.
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Figure 5.3: Epidemic mitigation results for StEM and Covasim for 100% app adoption:
for each model (left for StEM, right for Covasim) the effective reproduction number 𝑅𝑡, the
cumulative number of infected individuals 𝑁𝐼 and the cumulative number of tests done 𝑁tests
are reported. For the StEM model, the simulations are done on the city of Tübingen, with a
population of 𝑁 ≈ 90 000 individuals. The number of patient zeros 𝑁𝑝𝑧 is 12 (3 in the exposed
state, 4 in the asymptomatic state, and 5 are pre-symptomatic individuals). A large fraction of
the symptomatic individuals is observed on a daily basis (𝑝𝑠𝑦𝑚 = 80%). In StEM, households
are confined whenever a member is tested positive. For the Covasim model, the population
size is 𝑁 = 70 000, and there are 𝑁𝑝𝑧 = 66 patient zeros, all starting in the exposed state.
Also, a fraction 𝑝𝑠𝑦𝑚 = 50% of the symptomatic individuals is observed each day. Lines reflect
the average behaviour of the metrics computed from a number of realizations (10 for StEM, 20
for Covasim) of the simulations while error bars report the associated standard error. The 𝑝𝑡ℎ
indicates that threshold testing is employed (𝑝𝑡ℎ = 5×10−4 for StEM and 2.5×10−2 for Covasim).
The BP results for Covasim have been obtained while computing the risk of infection as the sum
of the infection time beliefs in the last 𝜏 = 7 days (see appendix B).

5.5 Overdispersion and super-spreaders
This section is devoted to showing how probabilistic-based tracing methods encompass the
ability to effectively detect super-spreaders. For sake of clarity, and because of the diversity of
the agent-based models used as proving ground, it is first necessary to precisely define what is
meant by super-spreading transmission in this work.
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Figure 5.4: Epidemic mitigation results for StEM and Covasim for 80% app adoption.
For each model (left for StEM, right for Covasim) the effective reproduction number 𝑅𝑡, the
cumulative number of infected individuals 𝑁𝐼 and the cumulative number of tests done 𝑁tests
are reported. The parameters of the simulations are the same as in Figure 5.3, with the difference
that now the fraction of people using the contact collection app is just 80%. Also, in this case,
threshold probabilities for testing are adjusted for the Covasim model (𝑝𝑡ℎ = 1.5 × 10−2).

In OpenABM [131], super-spreading events arise as a result of over-dispersed contacts in one
of the three artificial contact networks used to model interactions within a population. Sim-
ilarly, in StEM [162], over-dispersion arises naturally from the contact graph, as a result of
the realistic mobility simulation that exploits geolocalized data within a city. In both cases,
the empirical distribution of the number of infections shows a significant non-Poissonian be-
havior, i.e. with a variance to mean ratio (VMR) larger than one (see Figure 5.5). For these
two models, individuals infecting at least 7 contacts within their infectious time window are
identified as super-spreaders, in accordance with the definition provided in Wong and Collins
[115]. Conversely, in Covasim [134], the over-dispersion of infections arises directly by virtue
of the individual’s viral load, which is drawn from a fat-tailed distribution (see Figure 5.5b):
super-spreaders can therefore be identified by looking at the individual relative transmission
intensity 𝑇rel (see equation 5.1), a quenched parameter not accessible to the tracing methods. In
particular, in each simulation, individuals displaying 𝑇rel ≥ 5were classified as super-spreaders.

The ability of the different contact tracing methods to detect super-spreaders among the
infected individuals was measured according to the following numerical experiment. For each
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epidemic realization, the propagation was left free to evolve without intervention up to a time
𝑇, whereupon the contact tracing methods are applied only once and the corresponding ranking
of potentially infected individuals is collected. The value of 𝑇 is here chosen of the order of few
weeks, i.e. the typical time-window for which contact information can be retained in the digital
contact tracing applications [118]. To gain some information about the infectious transmissions,
a fixed fraction of the symptomatic individuals was observed daily (see caption of Figure 5.6
for additional details). Individuals identified by means of the different contact tracing methods,
and ranked according to their epidemic risk, are then classified according to their real state of
infection, obtaining corresponding ROC curves. To fairly study the detection of super-spreaders
(and not any other infected individual), only the subset composed by (a posteriori determined
and non-observed) super-spreaders and susceptible individuals at time 𝑇 was considered (see
Figure 5.6a for a schematic representation of the setting). Super-spreaders recovering before
time 𝑇 are not taken into account (although their number is very small after 𝑇 ∼ 20 days).

Figures 5.6b-5.6d display the distributions of the AUC obtained from the same contact trac-
ing methods used above, over many epidemic realizations, for StEM, Covasim, and OpenABM.
In all the three models, probabilistic methods (SMF and BP) turn out to better differentiate
between non-infected and super-spreaders individuals as suggested by both the empirical dis-
tribution of the AUC (the mass of the distribution is significantly shifted to large values for SMF
and BP) and the average value of the AUC as shown in the legend. The distributions associated
with ICT, DCT (and TTQ for Covasim) predictions are conversely concentrated at low values,
confirming that super-spreaders exposures cannot be effectively traced by non-probabilistic
algorithms.

5.6 Backward, one-step and multi-step propagations
One of the intrinsic difficulties in performing contact tracing lies in identifying the direction of
the infection among confirmed cases. In particular, identifying the so-called backward propaga-
tions, e.g. the source of infections, may help in identifying the super-spreaders and, generally,
in mitigating the epidemic spreading [112, 122] at difference with the detection of forward prop-
agations, e.g. the new infections, that can be considered an easier task. To further highlight the
benefits carried by probabilistic contact-tracing methods, such as SMF and BP, it is interesting
to estimate the ability of the different contact-tracing methods to identify secondary and ter-
tiary infections, i.e. new (multi-step) infections at distances two and three from the observed
individuals in the propagation history.

The same experimental setting adopted in Figure 5.6 is used: for each epidemic realization,
the propagation is left free to evolve without intervention up to a time 𝑇 and a small fraction
of the symptomatic individuals is observed on a daily basis. The backward propagators are
defined to be the sources of infections of the observed symptomatic individuals (blue dots in
Fig. 5.7a.1), whereas forward propagators are defined to be their secondary infections (green
nodes in Fig. 5.7b.1). The new infections at two and three steps from the observed nodes are
displayed as orange nodes in the example in Fig. 5.7c.1.

To quantify the performances of the contact tracing methods, a comparison is performed
between the areas under the ROC curves associated with the classification of the infected in-
dividuals in a restricted array, where the false positive set is composed of all the non-infected
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Figure 5.5: Secondary infection capability distributions: Histograms of the secondary in-
fection distribution for (a) the Spatio-temporal model, and (c) OpenABM. The threshold used
to identify the super-spreaders is 7 in both models. The variance-to-mean (VMR) ratio is larger
than one in the two cases (the precise values are reported in panels (a) and (c)). In panel (b)
the empirical distribution of the relative transmission intensity 𝑇rel is shown for the Covasim
model. For this model, a super-spreaders in defined as an infector that has at least 𝑇rel = 5.

individuals (light grey nodes in Fig. 5.7a.1–5.7c.1) while the true positive set contains the back-
ward infectors, the forward infections or infections at steps two and three further along the
contagion chain. Other infected individuals that do not belong to one of these three categories
are not considered (e.g. tested-positive individuals, i.e. red nodes in Fig. 5.7a.1–5.7c.1). Al-
though with different performances on the three epidemic models, results in Figure 5.7 show
that probabilistic models such as BP and SMF are very effective in identifying forward and
backward propagations. For StEM (panels a.2–c.2) and OpenABM (panels a.4–c.4), the proba-
bilistic contact-tracing methods outperform the other ones, especially when seeking for back-
ward and multi-step propagations. In Covasim (panels a.3–c.3), probabilistic methods seem to
play a crucial role only in detecting multi-step propagations, because doing that using simpler
contact-tracing methods can be computationally excessively demanding.

5.7 Discussion
While social distancing, widespread use of masks and other hygiene measures are of the utmost
importance to contain the spreading of the SARS-CoV2 virus, contact tracing represents the
only non-pharmaceuticalmitigation policy that can prevent the deployment of socio-economically
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Figure 5.6: Detection of the super-spreaders. (a) Schematic representation of the ranking
setup. A posteriori, the super-spreaders individuals (the purple nodes) are identified as those
responsible for over-dispersed transmissions (see the main text for a proper definition for the
three models), here marked as dark grey nodes within the pink shadow. ROC curves are built
only for a subset of the individuals composed of the true super-spreaders and susceptible indi-
viduals (light grey nodes). Information about the epidemic dynamics entirely comes from the
contact network and the daily observation of a fixed fraction of symptomatic (red nodes). The
statistics of the AUC associated with the ROC curves obtained by different methods are shown
for (b) StEM, (c) Covasim and (d) OpenABM. Lines are kernel density estimation plots used as
guides for the eyes, while mean AUC values are reported in the legend. The duration of the
free epidemic propagation before estimation is set to 𝑇 = 10 for StEM, 𝑇 = 20 for Covasim and
OpenABM. The number of initially infected individuals is set to 𝑁pz = 200 for StEM, 𝑁pz = 66
for Covasim and 𝑁pz = 100 for OpenABM. The fraction of observed symptomatic individuals
is set to 𝑝sym = 0.1 for StEM and for Covasim, while for OpenABM all severe symptomatic
individuals are observed (𝑝ssym = 1.0) together with a fraction 𝑝msym = 0.3 of mild ones.

impactful measures such as lockdowns. In particular, digital contact tracing overcomes the lim-
itation of manual contact tracing by encompassing the ability to detect pre-symptomatic and
asymptomatic individuals outside of close and known relationships with tested individuals, a
key aspect in the prevention of COVID-19. The major drawback of current implementations
of digital contact tracing is that, for large outbreaks, the number of exposure notifications de-
livered drastically grows, thus the number of candidate individuals to be tested and possibly
confined, rendering the overall procedure impractical. A possible solution to this problem lies
in improving the risk assessment of the population, through the reconstruction of the conta-
gion channels and therefore through a more accurate estimate of the individual probability of
infection. Test procedures guided by probabilistic contact tracing have recently proven to be
more effective than the current standard implementations of digital contact tracing.
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Figure 5.7: Detection of the backward, one-step, and multi-step forward propagators.
Panels (a.1), (b.1), (c.1), and (d.1) show a schematic representation of the backward, one-step,
and multi-step forward propagations respectively. In each case, only symptomatic individuals
are observed (red dots), and the coloured nodes (backward, and one-step and multi-step for-
ward) are put as positive for detection of infection, and the non-infected ones are included as
negatives. The rest of the setup is the same as Figure 5.6, regarding the symptomatic obser-
vation probabilities, the number of initially infected individuals 𝑁𝑝𝑧 and the duration of free
epidemic propagation 𝑇. The statistics of the AUC associated with the ROC curves obtained by
different methods are shown for StEM in the second row, for Covasim in the third row and for
OpenABM in the bottom row. Lines are kernel density estimation plots used as guides for the
eyes, while mean AUC values are reported in the legend.
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In this chapter, a quantitative analysis of the extent to which such procedures outperform
other methods and the reasons behind this has been conducted, using as testing ground three
different epidemic models developed for COVID-19. While the results obtained are not final,
they strongly indicate that probabilistic contact-tracing methods can successfully mitigate on-
going outbreaks. This is evidenced by both the rapid decrease of the effective reproduction
number below the critical value of one and a considerably smaller cumulative number of in-
fected compared to other methods. This higher containing efficacy also comes with a similar
or significantly lower deployment of testing resources. In particular, there is evidence that em-
ploying probabilistic contact tracing with threshold testing can reduce significantly the level of
testing required for the containment of an ongoing epidemic outbreak.

The numerical experiments also revealed that probabilistic methods are more suitable than
others for the detection of super-spreading events, which are pointed to as one of the impor-
tant mechanisms for the spreading of SARS-CoV-2 virus. Epidemics characterized by over-
dispersion, both by innate variety of transmissibility and by heterogeneity of the contact net-
work, are expected to become more common in the future, necessitating the development of
tracing methods that can exploit such peculiarities. Because of super-spreaders, one would
also work backwards to identify who first infected the observed case, as it is likely that most
people have been infected by someone who also infected other individuals. In this respect,
probabilistic contact tracing methods were found to outperform other methods in correctly re-
constructing infection channels by backward tracing. Although their performances has been
evaluated here in regimes where the trace-test and isolate technique can successfully contain
most outbreaks, these methods are sufficiently flexible to be applied in more general situations
and cope with other measures for COVID-19 prevention and mitigation, especially with the
presence of vaccinated individuals.

The probabilistic contact tracing methods used in the chapter rely on the collection of con-
tacts via a smartphone application or other devices: while results show that epidemic contain-
ment could be possible with just 80% of the population installing the app, the level of adoption
during the COVID-19 pandemic has beenmuch lower in western countries [163]. However, this
is a subject of active research, with some work pointing to ways to increase the app adoption,
like better public campaigns for promotion and the inclusion of other useful features that could
transform the app into a gateway for public health informations and services [121, 163, 149].
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Chapter 6

Dynamic cavity methods in
epidemics

The Belief Propagation approach to individual-based epidemic processes can be classified as a
generalized mean-field method, because the epidemic trajectories of the neighbours of a given
individual are assumed to be conditionally independent. This hypothesis is correct only when
the dynamical process takes place on a contact network with a tree-like topology, but the
method has proved to be very effective also in epidemic inference problems defined on loopy
contact networks. This is the same assumption of the dynamic cavity approach [24, 27], which
has been applied to both recurrent and non-recurrent epidemic processes [46, 44, 166]. When
dealing with pure time-forward epidemic dynamics without observations, in the case of non
recurrent individual states, the BP/dynamic cavity approach simplifies into a dynamic message
passing technique that has been extensively used to study spreading processes on networks [44,
35]. Even the simpler individual-based mean-field method, also known as the 𝑁-intertwined
model, has been shown to provide moderately good approximations to time-forward epidemic
dynamics [20]. Recently, the individual-based mean-field method has been employed to pro-
pose a very simple inference method where the observations of individual states are heuristi-
cally taken into account [118]. Despite the absence of a correct Bayesian framework and the
simplicity of the approach, this method provides moderately good results for epidemic risk
assessment.

In this chapter, a novel generalized mean field approximation for Bayesian epidemic infer-
ence and risk assessment is proposed. For simplicity, themethod is developed for the Susceptible-
Infected (SI) model but its generalization to epidemic models including additional states, such
as Recovered and Exposed states, is possible.

6.1 Methodology
In this section, the individual-based SI model on a contact network is introduced, and then
rewritten in a way compatible for the dynamic cavity approach. Then, the dynamic cavity
equations are derived, and the small coupling expansion is obtained. From this expansion, an
approximation leads to the mean field formulation of the dynamic cavity method.
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6.1.1 Definition of the stochastic epidemic model and observations
The simplest non-trivial model employed in epidemic inference is the discrete-time stochastic
SI model. Let us consider then the dynamics of the SI model on a population of 𝑁 individuals
over a temporal window of 𝑇 time steps (e.g. days). The daily contacts are supposed to be
directly encoded in the set of parameters specifying the infection transmission, with 𝜆𝑡𝑖𝑗 being
the infection probability along the directed edge from individual 𝑖 to individual 𝑗 at time 𝑡. The
epidemic state of the population at time 𝑡 is represented by a binary array x𝑡 = (𝑥 𝑡1,… , 𝑥 𝑡𝑁), with
𝑥 𝑡𝑖 = 0 (resp. 𝑥 𝑡𝑖 = 1) meaning that 𝑖 is a Susceptible (resp. Infected) individual at time 𝑡. The
epidemic model is assumed to be Markovian, although this hypothesis can be relaxed. In the
Markovian setup, the time evolution of the probability 𝑝𝑡 [x𝑡] that the population is in state x𝑡
at time 𝑡 is given in terms of the master equation

𝑝𝑡+1 [x𝑡+1] = ∑
x𝑡

𝑊[x𝑡+1|x𝑡] 𝑝𝑡 [x𝑡] (6.1)

with transition rates 𝑊[x𝑡+1|x𝑡] = ∏𝑖𝑊𝑖 (𝑥 𝑡+1𝑖 |x𝑡) where

𝑊𝑖 (𝑥 𝑡+1𝑖 = 1|x𝑡) = 𝑥 𝑡𝑖 + (1 − 𝑥 𝑡𝑖) [1 −∏
𝑗
(1 − 𝜆𝑡𝑗𝑖𝑥

𝑡
𝑗)] (6.2a)

𝑊𝑖 (𝑥 𝑡+1𝑖 = 0|x𝑡) = (1 − 𝑥 𝑡𝑖)∏
𝑗
(1 − 𝜆𝑡𝑗𝑖𝑥

𝑡
𝑗) . (6.2b)

It is convenient to introduce local fields ℎ𝑡𝑖 = ∑𝑗 𝜈
𝑡
𝑗𝑖𝑥

𝑡
𝑗 , with 𝜈 𝑡𝑗𝑖 = log (1 − 𝜆𝑡𝑗𝑖), such that

∏
𝑗
(1 − 𝜆𝑡𝑗𝑖𝑥

𝑡
𝑗) = ∏

𝑗
(1 − 𝜆𝑡𝑗𝑖)

𝑥 𝑡𝑗 = 𝑒ℎ
𝑡
𝑖, (6.3)

and use them to provide an equivalent description to the master equation, based on a system
of discrete-time stochastic maps

𝑥 𝑡+1𝑖 = 𝑥 𝑡𝑖 + (1 − 𝑥 𝑡𝑖) 𝑟
𝑡
𝑖 (6.4)

in which 𝑟 𝑡𝑖 is a Bernoulli random variable with parameter 1 − 𝑒ℎ
𝑡
𝑖 , i.e.

𝑃 [𝑟 𝑡𝑖 |ℎ
𝑡
𝑖] = Bernoulli (1 − 𝑒ℎ

𝑡
𝑖) . (6.5)

The likelihood of the model can be defined by a set 𝒪 of statistically independent observa-
tions, each of themproviding information about the state of a certain node 𝑖 at the corresponding
observation time. The most general scenario admits multiple observations on the same node 𝑖
(at different times), encoded in the vectors 𝑂𝑖, and uncertainty on the outcome of the tests, the
latter being eventually quantified by false positive rate 𝜈𝑝 and/or false negative rates 𝜈𝑛. If node 𝑖
is observed at time 𝜏𝜇𝑖 , the corresponding likelihood over its epidemic trajectory 𝑥𝑖 = (𝑥0𝑖 ,… , 𝑥𝑇𝑖 )
reads

𝑝 (𝑂
𝜏𝜇𝑖
𝑖 ∣ 𝑥𝑖) =

⎧

⎨
⎩

(1 − 𝜈𝑝) 𝛿K (𝑥
𝜏𝜇𝑖
𝑖 − 0) + 𝜈𝑛𝛿K (𝑥

𝜏𝜇𝑖
𝑖 − 1) if 𝑂

𝜏𝜇𝑖
𝑖 = 0

𝜈𝑝 𝛿K (𝑥
𝜏𝜇𝑖
𝑖 − 0) + (1 − 𝜈𝑛) 𝛿K (𝑥

𝜏𝜇𝑖
𝑖 − 1) if 𝑂

𝜏𝜇𝑖
𝑖 = 1

(6.6)
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where 𝛿K(⋅) is the Kronecker delta function. The total likelihood over the full set of observations
𝒪 = {𝑂𝑖}

𝑁
𝑖=1can be rewritten as

𝑝 (𝒪 ∣ 𝑋) = ∏
𝑖
𝑝 (𝑂𝑖 ∣ 𝑥𝑖) = ∏

𝑖
∏
𝜇𝑖

𝑝 (𝑂
𝜏𝜇𝑖
𝑖 ∣ 𝑥𝑖) (6.7)

where each term in the last equation has the form (6.6). At the rightmost hand side, the second
product runs over all the observations on node 𝑖. In the above equation the quantity 𝑋 is a
short-hand notation to indicate the trajectories of all nodes, namely 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑁} =
{x0,x1,… ,x𝑇}. In the case of perfectly accurate tests, in which 𝜈𝑝 = 𝜈𝑛 = 0, the effect of the
observations is to enforce the dynamical trajectories to be compatible with the observed states.
The posterior probability of the trajectory X can be expressed using Bayes’ theorem as follows

𝑝 (X|𝒪) = 1
𝑝 (𝒪)

𝑝 (X) 𝑝 (𝒪 ∣ 𝑋) (6.8a)

= 1
𝑝 (𝒪)

𝑁
∏
𝑖=1

{𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[∑
𝑟 𝑡𝑖 ,ℎ𝑡𝑖

𝑃 [𝑟 𝑡𝑖 |ℎ
𝑡
𝑖] 𝛿K (𝑥

𝑡+1
𝑖 − 𝑥 𝑡𝑖 − (1 − 𝑥 𝑡𝑖) 𝑟

𝑡
𝑖 ) 𝛿 (ℎ

𝑡
𝑖 −∑

𝑗
𝜈 𝑡𝑗𝑖𝑥

𝑡
𝑗)]} 𝑝 (𝑂𝑖 ∣ 𝑥𝑖)

(6.8b)

∝ ∏
𝑖
{𝑝(𝑥0𝑖 )

𝑇−1
∏
𝑡=0

[∑
𝑟 𝑡𝑖 ,ℎ𝑡𝑖

𝑃 [𝑟 𝑡𝑖 |ℎ
𝑡
𝑖] 𝛿K (𝑥

𝑡+1
𝑖 − 𝑥 𝑡𝑖 − (1 − 𝑥 𝑡𝑖) 𝑟

𝑡
𝑖 ) 𝛿 (ℎ

𝑡
𝑖 −∑

𝑗
𝜈 𝑡𝑗𝑖𝑥

𝑡
𝑗) 𝑝 (𝑂

𝑡
𝑖 ∣ 𝑥

𝑡
𝑖)]}

(6.8c)

where in the last expression it is assumed the simplifying notation that the conditional proba-
bility 𝑝 (𝑂 𝑡

𝑖 ∣ 𝑥
𝑡
𝑖) = 1 also in the case in which there is no observation of the state of individual 𝑖

at time 𝑡, i.e. ∄ 𝜇𝑖 such that 𝑡 = 𝜏𝜇𝑖 . The same will be assumed in the rest of the paper.
The Bayesian inference problem consists in evaluating marginals of the posterior distri-

bution 𝑝 (X|𝒪), such as the quantity 𝑝 (𝑥 𝑡𝑖 = 𝑥|𝒪) representing the posterior probability that
individual 𝑖 is in state 𝑥 ∈ {0,1} at time 𝑡 given the set of the available observations 𝒪. The
posterior distribution is, in general, intractable but it is the starting point for the derivation of
approximate inference methods.

6.1.2 The Dynamic Cavity Equations for the SI model with observa-
tions

Starting from the posterior probability weight in Eq. (6.8c) and employing a cavity argument
by removing the node 𝑗 (and the corresponding trajectory 𝑥𝑗 = (𝑥0𝑗 ,… , 𝑥𝑇𝑗 )), the marginal prob-
ability 𝑐𝑖𝑗 [𝑥𝑖, 𝑠𝑖|𝒪], representing the probability of the pair of variable-field trajectories (𝑥𝑖, 𝑠𝑖) on
node 𝑖 in the cavity graph, can be computed bymeans of the following dynamic cavity equations:

𝑐𝑖𝑗 [𝑥𝑖, 𝑠𝑖|𝒪] =
1

𝑍𝑖𝑗 [𝒪]
𝑝(𝑥0𝑖 )∑

𝑥𝜕𝑖⧵𝑗
{[ ∏

𝑘∈𝜕𝑖⧵𝑗
𝑐𝑘𝑖 [𝑥𝑘, 𝜈𝑖𝑘𝑥𝑖|𝒪]]

×
𝑇−1
∏
𝑡=0

[𝛿K (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) 𝑒
𝑠𝑡𝑖+∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑡
𝑘𝑖𝑥

𝑡
𝑘 + 𝛿K (𝑥 𝑡+1𝑖 − 1) (1 − 𝑒𝑠

𝑡
𝑖+∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑡
𝑘𝑖𝑥

𝑡
𝑘)] 𝑝 (𝑂 𝑡

𝑖 |𝑥
𝑡
𝑖)},

(6.9)
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where 𝑥𝜕𝑖⧵𝑗 = {𝑥𝑘}𝑘∈𝜕𝑖⧵𝑗 is the set of trajectories on neighbors of 𝑖 except for 𝑗, the notation 𝜈𝑖𝑘𝑥𝑖
stands for the array (𝜈1𝑖𝑘𝑥

1
𝑖 ,… , 𝜈𝑇𝑖𝑘𝑥

𝑇
𝑖 ), and 𝑍𝑖𝑗 [𝒪] is a normalization term for the cavity marginals.

The equations (6.9), for which a derivation from Eq. (6.8c) is provided in Appendix C, are exact
when the underlying interaction graph (the time-independent projection of the contact net-
work) is a tree and provide a rather good approximation of the posterior distribution on sparse
loopy graphs. In agreement with the formulation of Belief Propagation equations on epidemic
trajectories, it is convenient to interpret 𝑠𝑖 as a proxy for the trajectory of the missing neigh-
bouring node 𝑗 in the cavity graph (more precisely 𝑠𝑖 ∝ 𝜈𝑗𝑖𝑥𝑗), and then normalize the marginal
over both arguments, by defining

𝑍𝑖𝑗 [𝒪] = ∑
𝑥𝑖,𝑠𝑖

𝑝(𝑥0𝑖 )∑
𝑥𝜕𝑖⧵𝑗

{[ ∏
𝑘∈𝜕𝑖⧵𝑗

𝑐𝑘𝑖 [𝑥𝑘, 𝜈𝑖𝑘𝑥𝑖|𝒪]]

×
𝑇−1
∏
𝑡=0

[𝛿K (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) 𝑒
𝑠𝑡𝑖+∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑡
𝑘𝑖𝑥

𝑡
𝑘 + 𝛿K (𝑥 𝑡+1𝑖 − 1) (1 − 𝑒𝑠

𝑡
𝑖+∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑡
𝑘𝑖𝑥

𝑡
𝑘)] 𝑝 (𝑂 𝑡

𝑖 |𝑥
𝑡
𝑖)}.

(6.10)

Completing the cavity and computing the total marginal over 𝑖 gives the posterior marginal
probability of one-site trajectories

𝑝𝑖 (𝑥𝑖|𝒪) ∝ 𝑝(𝑥0𝑖 )∑
𝑥𝜕𝑖

(∏
𝑘∈𝜕𝑖

𝑐𝑘𝑖 [𝑥𝑘, 𝑥𝑖𝜈𝑖𝑘|𝒪])

×
𝑇−1
∏
𝑡=0

{[𝛿K (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) 𝑒∑𝑘∈𝜕𝑖 𝑥
𝑡
𝑘𝜈

𝑡
𝑘𝑖 + 𝛿K (𝑥 𝑡+1𝑖 − 1) (1 − 𝑒∑𝑘∈𝜕𝑖 𝑥

𝑡
𝑘𝜈

𝑡
𝑘𝑖)] 𝑝 (𝑂 𝑡

𝑖 |𝑥
𝑡
𝑖)} (6.11)

6.1.3 Small-coupling expansion
It is convenient to express the cavity marginal in Eq. (6.9) in terms of the conjugate field tra-
jectory ℎ̂𝑖 = (ℎ̂1𝑖 ,… , ℎ̂𝑇𝑖 ), by introducing its Fourier transform (see Appendix C), which leads to
the following expression for the dynamic cavity equations

𝑐𝑖𝑗 [𝑥𝑖, ℎ̂𝑖|𝒪] =
𝑝 (𝑥0𝑖 )
𝑍𝑖𝑗[𝒪]

𝑇−1
∏
𝑡=0

{[𝛿 (ℎ̂𝑡𝑖 − i) (𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿 (𝑥
𝑡+1
𝑖 − 1)] 𝑝 (𝑂 𝑡

𝑖 |𝑥
𝑡
𝑖)}

× ∏
𝑘∈𝜕𝑖⧵𝑗

[∑
𝑥𝑘

∫𝐷ℎ̂𝑘𝑐𝑘𝑖 [𝑥𝑘, ℎ̂𝑘|𝒪] 𝑒
−i∑𝑡(𝑥

𝑡
𝑘𝜈

𝑡
𝑘𝑖ℎ̂

𝑡
𝑖+𝑥 𝑡𝑖 𝜈 𝑡𝑖𝑘ℎ̂

𝑡
𝑘)] (6.12)

In the spirit of Plefka’s approach [6, 48], one can add a perturbative parameter 𝛼 in the argument
of the exponential regarding the interaction term, and perform their Taylor expansion up to a
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certain order in 𝛼. To the second order in 𝛼, we get

𝑐𝑖𝑗 [𝑥𝑖, ℎ̂𝑖|𝒪] =
𝑝 (𝑥0𝑖 )
𝑍𝑖𝑗[𝒪]

𝑇−1
∏
𝑡=0

{[𝛿 (ℎ̂𝑡𝑖 − i) (𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿 (𝑥
𝑡+1
𝑖 − 1)] 𝑝 (𝑂 𝑡

𝑖 |𝑥
𝑡
𝑖)}

× ∏
𝑘∈𝜕𝑖⧵𝑗

[∑
𝑥𝑘

∫𝐷ℎ̂𝑘𝑐𝑘𝑖 [𝑥𝑘, ℎ̂𝑘|𝒪] 𝑒
−i𝛼 ∑𝑡(𝑥

𝑡
𝑘𝜈

𝑡
𝑘𝑖ℎ̂

𝑡
𝑖+𝑥 𝑡𝑖 𝜈 𝑡𝑖𝑘ℎ̂

𝑡
𝑘)] (6.13a)

≈
𝑝 (𝑥0𝑖 )

𝑍̃𝑖𝑗[𝒪]

𝑇−1
∏
𝑡=0

{[𝛿 (ℎ̂𝑡𝑖 − i) (𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿 (𝑥
𝑡+1
𝑖 − 1)] 𝑝 (𝑂 𝑡

𝑖 |𝑥
𝑡
𝑖)}

× ∏
𝑘∈𝜕𝑖⧵𝑗

∑
𝑥𝑘

∫𝐷ℎ̂𝑘𝑐𝑘𝑖 [𝑥𝑘, ℎ̂𝑘|𝒪] {1 − i𝛼 ∑
𝑡
(𝑥 𝑡𝑘𝜈

𝑡
𝑘𝑖ℎ̂

𝑡
𝑖 + 𝑥 𝑡𝑖 𝜈

𝑡
𝑖𝑘ℎ̂

𝑡
𝑘)

+𝛼2

2
∑
𝑡,𝑡′

(𝑥 𝑡𝑘𝜈
𝑡
𝑘𝑖 (−iℎ̂

𝑡
𝑖) + 𝑥 𝑡𝑖 𝜈

𝑡
𝑖𝑘 (−iℎ̂

𝑡
𝑘)) (𝑥

𝑡′
𝑘 𝜈

𝑡′
𝑘𝑖 (−iℎ̂

𝑡′
𝑖 ) + 𝑥 𝑡

′
𝑖 𝜈

𝑡′
𝑖𝑘 (−iℎ̂

𝑡′
𝑘 ))} , (6.13b)

where 𝑍𝑖𝑗[𝒪] is also consistently approximated at the second order by 𝑍̃𝑖𝑗[𝒪]. By performing the
averages over the dynamic cavity marginals 𝑐𝑘𝑖, one obtains

𝑐𝑖𝑗 [𝑥𝑖, ℎ̂𝑖|𝒪] =
𝑝 (𝑥0𝑖 )

𝑍̃𝑖𝑗[𝒪]

𝑇−1
∏
𝑡=0

{[𝛿 (ℎ̂𝑡𝑖 − i) (𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿 (𝑥
𝑡+1
𝑖 − 1)] 𝑝 (𝑂 𝑡

𝑖 |𝑥
𝑡
𝑖)}

× ∏
𝑘∈𝜕𝑖⧵𝑗

{1 + 𝛼 ∑
𝑡
(𝑚𝑡

𝑘⧵𝑖𝜈
𝑡
𝑘𝑖 (−iℎ̂

𝑡
𝑖) + 𝑥 𝑡𝑖 𝜈

𝑡
𝑖𝑘𝜇

𝑡
𝑘⧵𝑖) +

𝛼2

2
∑
𝑡,𝑡′

𝑉 (2)
𝑘⧵𝑖 (𝑡, 𝑡

′)} (6.14a)

≈
𝑝 (𝑥0𝑖 )

𝑍̃𝑖𝑗[𝒪]

𝑇−1
∏
𝑡=0

{[𝛿 (ℎ̂𝑡𝑖 − i) (𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿 (𝑥
𝑡+1
𝑖 − 1)] 𝑝 (𝑂 𝑡

𝑖 |𝑥
𝑡
𝑖)}

×∏
𝑡
exp {𝛼 ∑

𝑘∈𝜕𝑖⧵𝑗
(𝑚𝑡

𝑘⧵𝑖𝜈
𝑡
𝑘𝑖 (−iℎ̂

𝑡
𝑖) + 𝑥 𝑡𝑖 𝜈

𝑡
𝑖𝑘𝜇

𝑡
𝑘⧵𝑖) +

𝛼2

2
∑
𝑘∈𝜕𝑖⧵𝑗

∑
𝑡′

𝑉 (2)
𝑘⧵𝑖 (𝑡, 𝑡

′)} , (6.14b)

with the second order term 𝑉 (2)
𝑘⧵𝑖 being

𝑉 (2)
𝑘⧵𝑖 (𝑡, 𝑡

′) = −𝜈 𝑡𝑘𝑖 ℎ̂
𝑡
𝑖 𝜈

𝑡′
𝑘𝑖 ℎ̂

𝑡′
𝑖 𝐶

𝑡 𝑡′
𝑘⧵𝑖 + 𝜈 𝑡𝑘𝑖 (−iℎ̂

𝑡
𝑖) 𝑅

𝑡 𝑡′
𝑘⧵𝑖𝑥

𝑡′
𝑖 𝜈

𝑡′
𝑖𝑘 + 𝜈 𝑡

′

𝑘𝑖 (−iℎ̂
𝑡′
𝑖 ) 𝑅

𝑡′𝑡
𝑘⧵𝑖𝑥

𝑡
𝑖 𝜈
𝑡
𝑖𝑘 + 𝐵𝑡 𝑡

′

𝑘⧵𝑖𝑥
𝑡
𝑖 𝜈
𝑡
𝑖𝑘𝑥

𝑡′
𝑖 𝜈

𝑡′
𝑖𝑘 (6.15)

In the above equations, a set of one-time and two-time cavity quantities were defined by the
relations

𝑚𝑡
𝑘⧵𝑖 = 𝑚𝑡

𝑘⧵𝑖[𝒪] = ∑
𝑥𝑘

∫𝐷ℎ̂𝑘𝑐𝑘𝑖 [𝑥𝑘, ℎ̂𝑘|𝒪] 𝑥 𝑡𝑘

= ∑
𝑥𝑘

𝑐𝑘𝑖 [𝑥𝑘, 𝑠𝑘 = 0|𝒪] 𝑥 𝑡𝑘 (6.16a)

𝜇𝑡𝑘⧵𝑖 = 𝜇𝑡𝑘⧵𝑖[𝒪] = ∑
𝑥𝑘

∫𝐷ℎ̂𝑘𝑐𝑘𝑖 [𝑥𝑘, ℎ̂𝑘|𝒪] (−iℎ̂𝑡𝑘)

= ∑
𝑥𝑘

𝛿
𝛿𝑠𝑡𝑘

𝑐𝑘𝑖 [𝑥𝑘, 𝑠𝑘|𝒪]|
𝑠𝑘=0

. (6.16b)
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and

𝐶 𝑡 𝑡
′

𝑘⧵𝑖 = 𝐶 𝑡,𝑡
′

𝑘⧵𝑖[𝒪] = ∑
𝑥𝑘

∫𝐷ℎ̂𝑘𝑐𝑘𝑖 [𝑥𝑘, ℎ̂𝑘|𝒪] 𝑥 𝑡𝑘𝑥
𝑡′
𝑘

= ∑
𝑥𝑘

𝑐𝑘𝑖 [𝑥𝑘, 𝑠𝑘 = 0|𝒪] 𝑥 𝑡𝑘𝑥
𝑡′
𝑘 (6.17a)

𝑅𝑡 𝑡
′

𝑘⧵𝑖 = 𝑅𝑡 𝑡
′

𝑘⧵𝑖[𝒪] = ∑
𝑥𝑘

∫𝐷ℎ̂𝑘𝑐𝑘𝑖 [𝑥𝑘, ℎ̂𝑘|𝒪] 𝑥 𝑡𝑘 (−iℎ̂
𝑡′
𝑘 )

= 𝛿
𝛿𝑠𝑡′𝑘

∑
𝑥𝑘

𝑥 𝑡𝑘𝑐𝑘𝑖 [𝑥𝑘, 𝑠𝑘|𝒪]|
𝑠𝑘=0

(6.17b)

𝐵𝑡 𝑡
′

𝑘⧵𝑖 = 𝐵𝑡 𝑡
′

𝑘⧵𝑖[𝒪] = ∑
𝑥𝑘

∫𝐷ℎ̂𝑘𝑐𝑘𝑖 [𝑥𝑘, ℎ̂𝑘|𝒪] (−iℎ̂𝑡𝑘) (−iℎ̂
𝑡′
𝑘 )

= 𝛿2

𝛿𝑠𝑡𝑘𝜕𝑠
𝑡′
𝑘
∑
𝑥𝑘

𝑐𝑘𝑖 [𝑥𝑘, 𝑠𝑘|𝒪]|
𝑠𝑘=0

. (6.17c)

The quantity 𝑚𝑡
𝑘⧵𝑖 measures the average probability that node 𝑘 is infected at time 𝑡 in the ab-

sence of the interaction with 𝑖. Similarly, 𝐶 𝑡 𝑡
′

𝑘⧵𝑖 represents the two-time autocorrelation function
of node 𝑘 in the cavity graph, the quantity 𝑅𝑡 𝑡

′

𝑘⧵𝑖 is the response function on node 𝑘 at time 𝑡′ to
a perturbation due to an infinitesimal external field acting on node 𝑘 at time 𝑡′. The remaining
two quantities 𝜇𝑡𝑘⧵𝑖 and 𝐵𝑡 𝑡

′

𝑘⧵𝑖 are of less intuitive interpretation, as they measure the mean and
temporal correlations of fluctuations around the unperturbed single-site statistics in the cavity
graph. A direct calculation of the quantity ∑𝑥𝑘 ∫𝐷ℎ̂𝑘(−iℎ̂

𝑡
𝑘)𝑐𝑘𝑖[𝑥𝑘, ℎ̂𝑘|𝒪 = ∅] shows that, in the

absence of observations, 𝜇𝑡𝑘⧵𝑖 = 0. Similarly, 𝐵𝑡 𝑡
′

𝑘⧵𝑖 = 0 in the absence of observations. This
result, due to the causality of the dynamical process, does not hold any more when some ob-
servations are included. For notational convenience, the implicit dependence of all marginals
and normalization constants on the set of observations 𝒪 will not be further reported in the
following.

6.1.4 Mean-field approximation
A mean-field approximation can be obtained neglecting the second-order terms in Eq. (6.14b)
and focusing on the effects of the first-order ones. The expression of the dynamic cavity equa-
tions simplifies as follows (setting 𝛼 = 1):

𝑐𝑖𝑗 [𝑥𝑖, 𝑠𝑖] =
𝑝 (𝑥0𝑖 )

𝑍̃𝑖𝑗

𝑇−1
∏
𝑡=0

[∫ 𝑑ℎ̂𝑡𝑖𝑒
−iℎ̂𝑡𝑖(𝑠𝑡𝑖+∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖)𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥

𝑡
𝑖 𝜈 𝑡𝑖𝑘𝜇

𝑡
𝑘⧵𝑖

×{𝛿 (ℎ̂𝑡𝑖 − i) (𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿 (𝑥
𝑡+1
𝑖 − 1)}𝑝 (𝑂 𝑡

𝑖 |𝑥
𝑡
𝑖)] (6.18a)

∝
𝑝 (𝑥0𝑖 )

𝑍̃𝑖𝑗

𝑇−1
∏
𝑡=0

[{𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) 𝑒
𝑠𝑡𝑖+∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖 + 𝛿 (𝑥 𝑡+1𝑖 − 1) [1 − 𝑒𝑠

𝑡
𝑖+∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖]}

×𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥
𝑡
𝑖 𝜈 𝑡𝑖𝑘𝜇

𝑡
𝑘⧵𝑖𝑝 (𝑂 𝑡

𝑖 |𝑥
𝑡
𝑖)] (6.18b)
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where, using the definitions in Eqs. (6.16a) and (6.16b), the two quantities 𝑚𝑡
𝑖⧵𝑗 and 𝜇𝑡𝑖⧵𝑗 turn

out to satisfy the self-consistent equations

𝑚𝑡
𝑖⧵𝑗 = ∑

𝑥𝑖
𝑥 𝑡𝑖
𝑝 (𝑥0𝑖 )

𝑍̃𝑖𝑗

𝑇−1
∏
𝑡′=0

[{𝛿 (𝑥 𝑡
′+1
𝑖 − 𝑥 𝑡

′
𝑖 ) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡′
𝑘⧵𝑖𝜈

𝑡′
𝑘𝑖 + 𝛿 (𝑥 𝑡

′+1
𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡′
𝑘⧵𝑖𝜈

𝑡′
𝑘𝑖 ]}

×𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥
𝑡′
𝑖 𝜈 𝑡

′
𝑖𝑘 𝜇

𝑡′
𝑘⧵𝑖𝑝 (𝑂 𝑡

𝑖 ∣ 𝑥
𝑡
𝑖)] (6.19)

and

𝜇𝑡𝑖⧵𝑗 = ∑
𝑥𝑖

𝑝 (𝑥0𝑖 )

𝑍̃𝑖𝑗
(𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)) 𝑒∑𝑘∈𝜕𝑖⧵𝑗(𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖+𝑥

𝑡
𝑖 𝜈 𝑡𝑖𝑘𝜇

𝑡
𝑘⧵𝑖)

×∏
𝑡′≠𝑡

{𝛿 (𝑥 𝑡
′+1
𝑖 − 𝑥 𝑡

′
𝑖 ) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡′
𝑘⧵𝑖𝜈

𝑡′
𝑘𝑖 + 𝛿 (𝑥 𝑡

′+1
𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡′
𝑘⧵𝑖𝜈

𝑡′
𝑘𝑖 ]}

×𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥
𝑡′
𝑖 𝜈 𝑡

′
𝑖𝑘 𝜇

𝑡′
𝑘⧵𝑖𝑝 (𝑂 𝑡

𝑖 ∣ 𝑥
𝑡
𝑖)] . (6.20)

The normalization constant is chosen to ensure that the time-dependent cavity mean 𝑚𝑡
𝑖⧵𝑗 is

normalized in the cavity graph, that is

𝑍̃𝑖𝑗 = ∑
𝑥𝑖

𝑝 (𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[{𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖 + 𝛿 (𝑥 𝑡+1𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖]}

×𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥
𝑡
𝑖 𝜈 𝑡𝑖𝑘𝜇

𝑡
𝑘⧵𝑖𝑝 (𝑂 𝑡

𝑖 ∣ 𝑥
𝑡
𝑖)] . (6.21)

In addition, the total time-dependent marginal 𝑚𝑡
𝑖 of the posterior distribution on the full graph

is given by

𝑚𝑡
𝑖 =

1
𝑍̃𝑖

∑
𝑥𝑖

𝑝 (𝑥0𝑖 ) 𝑥
𝑡
𝑖

𝑇−1
∏
𝑡=0

[{𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) 𝑒∑𝑘∈𝜕𝑖 𝑚
𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖 + 𝛿 (𝑥 𝑡+1𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖 𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖]} 𝑒∑𝑘∈𝜕𝑖 𝑥

𝑡
𝑖 𝜈 𝑡𝑖𝑘𝜇

𝑡
𝑘⧵𝑖𝑝 (𝑂 𝑡

𝑖 ∣ 𝑥
𝑡
𝑖)]

(6.22)
with

𝑍̃𝑖 = ∑
𝑥𝑖

𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[{𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) 𝑒∑𝑘∈𝜕𝑖 𝑚
𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖 + 𝛿 (𝑥 𝑡+1𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖 𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖]} 𝑒∑𝑘∈𝜕𝑖 𝑥

𝑡
𝑖 𝜈 𝑡𝑖𝑘𝜇

𝑡
𝑘⧵𝑖𝑝 (𝑂 𝑡

𝑖 ∣ 𝑥
𝑡
𝑖)] .

(6.23)
Equations (6.19) and (6.20) represent the set of self-consistent equations defining a non-

causal (dynamic) MF approximation, that is valid for small values of the couplings. The dy-
namical equations are indeed of mean-field type, since correlations are neglected, but in the
presence of observations they describe a non-causal dynamical process. Because of the cav-
ity construction, the fundamental unknown of the equations, the one-time cavity marginals
𝑚𝑡
𝑖⧵𝑗 and the one-time cavity fields 𝜇𝑡𝑖⧵𝑗, are defined by means of local self-consistent condi-

tions, which can be implemented using a message-passing update scheme. A computational
bottleneck of Eqs. (6.19)-(6.20) is represented by the partial trace over single-site trajectories 𝑥𝑖,
that requires 𝑂(2𝑇) operations, meaning that a complete update of all cavity quantities requires
𝑂 (|𝐸|𝑇 2𝑇), where |𝐸| is the total number of non-zero weighted directed edges on the interaction
graph. This computational cost can be reduced by employing different representations of the
epidemic state, as is done in the following section.
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6.2 Infection times representation
In order to reduce the amount of computations required for the message-passing update, it’s
useful to pass to the infection time representation, as done in previous chapters. States 𝑥 𝑡𝑖 are
defined for 𝑡 ∈ {0,1,… , 𝑇 }, so it has 𝑇 + 1 values, and together form the time trajectory of
the individual. This can be described by the time of infection 𝑡𝑖 ∈ {0,1,… , 𝑇 } ∪ {∞} Then, the
correspondence is simply

𝑥 𝑡𝑖 = 𝕀 [𝑡 ≥ 𝑡𝑖] (6.24)

where 𝕀 is the indicator function. The following cases are shown as example of trajectories with
the corresponding value of 𝑡𝑖:

(0,0,… ,0,0) → 𝑡𝑖 = ∞
(0,0,… ,0,1) → 𝑡𝑖 = 𝑇
(0,0,… ,1,1) → 𝑡𝑖 = 𝑇 − 1
(0,1,… ,1,1) → 𝑡𝑖 = 1
(1,1,… ,1,1) → 𝑡𝑖 = 0

With this change of representation, it’s possible to rewrite the equations for the cavity mes-
sages. Equation (6.19) becomes:

𝑚𝑡
𝑖\𝑗 =

1
𝑍̃𝑖𝑗

𝑡
∑
𝑡𝑖=0

𝑝 (𝑂𝑖 | 𝑡𝑖) 𝜋0𝑖 (𝑡𝑖) [
𝑡𝑖−2
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖

(6.25)
with the normalization 𝑍̃𝑖𝑗 (6.21) now reading:

𝑍̃𝑖𝑗 =
𝑇+1
∑
𝑡𝑖=0

𝑝 (𝑂𝑖 | 𝑡𝑖) 𝜋0𝑖 (𝑡𝑖) [
𝑡𝑖−2
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖 (6.26)

and with 𝑝 (𝑂𝑖 | 𝑡𝑖) the probability of getting the set of observations 𝑂𝑖 when the individual has
been infected at time 𝑡𝑖. The case of no infection 𝑡𝑖 = ∞ can be modelled in practice with a finite
infection time 𝑇∞ > 𝑇 (and is considered actually 𝑇∞ = 𝑇 + 1). The function 𝜙 is defined as the
following:

𝜙 (𝑡𝑖) = {
1 1 ≤ 𝑡𝑖 ≤ 𝑇
0 else

For the cavity fields 𝜇, the result is:

𝜇𝑡𝑖\𝑗 =
1
𝑍̃𝑖𝑗

𝑇−1
∑
𝑡𝑖=𝑡

𝑝 (𝑂𝑖 | 𝑡𝑖) 𝜋0𝑖 (𝑡𝑖 + 2) [
𝑡𝑖

∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖 + 2) 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡𝑖+1
𝑘⧵𝑖 𝜈

𝑡𝑖+1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖+2

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖+

−
𝕀 [0 ≤ 𝑡 ≤ 𝑇]

𝑍̃𝑖𝑗
𝑝 (𝑂𝑖 | 𝑡 + 1) 𝜋0𝑖 (𝑡 + 1) [

𝑡
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖]

𝑇−1
∏
𝑟=𝑡+1

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖 (6.27)

These equations show the separation of the flow of information in epidemic time: for the
computation of the 𝑚𝑖⧵𝑗, the messages of the neighbours 𝑚𝑘⧵𝑖 are used up until time 𝑡𝑖 − 2,
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while for the times 𝑟 ≥ 𝑡𝑖, the information of the cavity fields 𝜇𝑘⧵𝑖 is used. The central factor in
equations (6.25) and (6.26) represents the correction that needs to be included if the individual
has been infected at 𝑡𝑖 > 0 (i.e., when it’s not a patient zero).

The marginals can also be written in the infection times representation, applying the same
treatment as to the cavity messages:

𝑚𝑡
𝑖 =

1
𝑍𝑖

𝑡
∑
𝑡𝑖=0

𝑝 (𝑂𝑖 | 𝑡𝑖) 𝜋0𝑖 (𝑡𝑖) [
𝑡𝑖−2
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖) 𝑒∑𝑘∈𝜕𝑖 𝑚

𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖

𝑒∑𝑘∈𝜕𝑖 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖 (6.28)

with 𝑍𝑖 as

𝑍𝑖 =
𝑇+1
∑
𝑡𝑖=0

𝑝 (𝑂𝑖 | 𝑡𝑖) 𝜋0𝑖 (𝑡𝑖) [
𝑡𝑖−2
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖) 𝑒∑𝑘∈𝜕𝑖 𝑚

𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖

𝑒∑𝑘∈𝜕𝑖 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖 (6.29)

The derivation of these equations is described in Appendix D, along with the details for the
implementation of the method. Using the above equations for the message passing makes it
possible to reduce the computational cost of one update to 𝑂 (|𝐸|𝑇). However, this kind of rep-
resentation is only suited to irreversible epidemic processes, like the SI and SIR models.

6.3 Recovering time-forward dynamics
Causality-breaking is a consequence of the existence of observations at later times, that have to
be taken into account in the mathematical model by a flux of information flowing backward in
time and conditioning thewhole history of the process. This property reflects in the existence of
non-trivial values for the one-time cavity fields 𝜇𝑡𝑖⧵𝑗. One can recover usual causal time-forward
mean-field dynamics when no observation is present and, consequently, all cavity fields 𝜇𝑡𝑖⧵𝑗
vanish. To show this, it is convenient to start from a particular form of the update equations
for the cavity marginals 𝑚𝑡

𝑖⧵𝑗 (see App.C.1 for a derivation),

𝑚𝑡
𝑖⧵𝑗 = 𝑚𝑡−1

𝑖⧵𝑗 + (1 − 𝑚𝑡−1
𝑖⧵𝑗 )

{1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 } 𝜌𝑖⧵𝑗𝑡← (1)

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 𝜌𝑖⧵𝑗𝑡← (0) + {1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 } 𝜌𝑖⧵𝑗𝑡← (1)

, (6.30)

where the messages 𝜌𝑖⧵𝑗𝑡← (𝑥) represent the backward probability that state 𝑥 𝑡𝑖 = 𝑥 ∈ {0,1} given
the dynamic constraints and the observations in the future. In the absence of observations (on
all nodes at all times 𝑡′ ≥ 𝑡) the backward probability is balanced, i.e. 𝜌𝑖⧵𝑗𝑡← (0) = 𝜌𝑖⧵𝑗𝑡← (1), and
(6.30) reduces to the usual time-forward mean-field equations,

𝑚𝑡
𝑖⧵𝑗 = 𝑚𝑡−1

𝑖⧵𝑗 + (1 − 𝑚𝑡−1
𝑖⧵𝑗 ) {1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 } (6.31a)

= 𝑚𝑡−1
𝑖⧵𝑗 + (1 − 𝑚𝑡−1

𝑖⧵𝑗 ) {1 − ∏
𝑘∈𝜕𝑖⧵𝑗

(1 − 𝜆𝑡−1𝑘𝑖 )
𝑚𝑡−1
𝑘⧵𝑖 } . (6.31b)
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For the total marginals 𝑚𝑡
𝑖, we obtain

𝑚𝑡
𝑖 = 𝑚𝑡−1

𝑖 + (1 − 𝑚𝑡−1
𝑖 ) {1 − 𝑒∑𝑗∈𝜕𝑖 𝑚

𝑡−1
𝑗⧵𝑖 𝜈 𝑡−1𝑗𝑖 } (6.32a)

= 𝑚𝑡−1
𝑖 + (1 − 𝑚𝑡−1

𝑖 ) {1 −∏
𝑗∈𝜕𝑖

(1 − 𝜆𝑡−1𝑗𝑖 )
𝑚𝑡−1
𝑗⧵𝑖 } (6.32b)

≈ 𝑚𝑡−1
𝑖 + (1 − 𝑚𝑡−1

𝑖 )∑
𝑗∈𝜕𝑖

𝜆𝑡−1𝑗𝑖 𝑚𝑡−1
𝑗⧵𝑖 . (6.32c)

We checked that applying the message passing with the infection time representation (Eqs.
(6.25) - (6.29)), converges to the same result obtained by running the above equation (6.31a): in
particular, since the latter does not require an iterative scheme, it is sufficient to run it starting
from 𝑡 = 0 in a single swipe.

A comparison between the Small Coupling Dynamic Cavity (SCDC) method proposed in
the chapter, the Individual-based Mean Field approximation (IMF) described in section 1.3.1
and the Belief Propagation (BP) method from chapter 4, together with the average of Monte
Carlo (MC) simulations (105 at most), is shown in Figure 6.1 for the forward dynamics. For
all the methods, the same prior is used, with each individual being infected at the initial time
𝑡 = 0 with probability 𝛾0 = 1/𝑁, independent on others. As an overall remark, it is important
to notice how all MF-like methods tend to overestimate the number of infected individuals:
in particular, SCDC seems to have better performance than Individual-based Mean Field but
worse than Belief Propagation, whose result is exact in the case of acyclic graphs (like the Bethe
lattice shown in the top-left panel). This effect is much more evident at later times, and shows
that mean field methods tend to represent epidemics with at least one infected individual in the
initial condition: in fact, a significant fraction of Monte Carlo simulations have no patient zeros,
and removing those yields a result that is much closer to the mean field methods. The Belief
Propagation method is able to reproduce exactly the MC result in the case of the Bethe lattice,
due to the absence of loops in the graph. Its performance degrades in the other cases, such
as the regular random (RRG) and proximity random graphs, when the contact graph contains
more and more loops, and becomes closer to the MF method.

6.4 Risk inference performance
In this section, the performance of the new method in the setting of risk inference will be
analysed. The risk inference problem has already been discussed in section 4.1, where two
methods for the approximate solution have been derived, the Simple Mean Field (SMF) and
Belief Propagation (BP) algorithms. In this section, the method proposed in this chapter, SCDC,
will be compared with these two methods.

In order to perform this task, in both the BP and SCDC method the marginal probabilities
produced by the algorithms will be used, after running the message passing until convergence.
For the SCDCmethod, however, if after several iterations (more then 1600) it has not converged,
the marginal probability of infection is computed as an average over many iterations of the
message passing.

In order to thoroughly test the SCDC method, several epidemic cascades have been gener-
ated with the SI model, on both synthetic and real-world contact networks. Then, observations
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Figure 6.1: Forward dynamics with SCDC and other mean field methods. Here, the frac-
tion of infected individuals is shown against the running time of the epidemic, with four differ-
ent static contact graphs. All the mean field methods tend to overestimate this quantity, with
respect to the Monte Carlo average. The probability of each individual being infected at time
𝑡 = 0 is 𝛾0 = 1/𝑁 for all methods. The proximity graph is obtained by placing nodes at ran-

dom in the unit square, and then connecting nodes that are at distance 𝑟 < 𝑟max = √
2.8
𝑁 with

probability 𝑝(𝑟) = 𝑒−𝑟. From top-left to bottom-right, each contact graph contains more and
more loops: while in the RRG the loops are long-range, in the proximity graph there are many
short-range loop and triangles. Very small values of the infectiousness 𝜆 are used: 𝜆bethe = 0.06,
𝜆RRG = 0.02 for 𝑑 = 5 and 𝜆RRG = 0.01 for 𝑑 = 10, 𝜆proximity = 0.04.

are made on the obtained epidemic cascade by randomly drawing a small number of individu-
als 𝑛𝑜𝑏𝑠 which are observed at the final time instant. To discover the accuracy of each method,
we compute the Receiver Operating Characteristic curve (ROC) on the probability of unob-
served individuals being infected at last time instant, with the simulated epidemic cascade as
the ground truth.

In Figure 6.2 the results for different kinds of synthetic contact graphs are shown. First, there
are two instances of static random graphs: Watts-Strogatz graphs (WS) [11] and soft random
geometric graphs [53], which will be called proximity graphs in the following. For both kinds,
we run epidemics with 𝑁 = 600 and observe only a fraction of the nodes at random at the final
time instant (𝑛obs = 20). Other parameters for the Watts-Strogatz graphs are the number of
neighbours each node is connected to in the beginning, 𝑑 = 4, and the probability for each edge

101



Dynamic cavity methods in epidemics

to be rewired, 𝑝𝑟𝑤 = 0.12. In the proximity random graphs, the nodes are placed at random in

the unit square, and then the nodes that are at distance 𝑟 < 𝑟max = √
2.8
𝑁 are connected with a

probability 𝑝 (𝑟) = 𝑒−𝑟. For each risk inference test instance that is run on these graphs, a new
random graph is generated.

Results are shown for two other synthetic contact networks that are extracted from two
agent-based models, the OpenABM-Covid19 [131] and Covasim [134] model, respectively. As
already mentioned in the thesis, these models are able to generate realistic contact networks
on large populations, that change during each day to reflect the dynamical nature of real-life
interactions. For each model, one such network is extracted with a moderate time scale, that
is then used to generate other epidemic cascades using the SI model. Also, in these models, to
each generated contact between individuals 𝑖 and 𝑗, a effective weight 𝑤𝑖𝑗 is assigned that reflects
the duration and the intensity of the interaction between 𝑖 and 𝑗. This weight is used to give
an estimate of the probability of infection 𝜆𝑖𝑗 used in the generation of epidemic cascades, as
𝜆𝑖𝑗 = 1−(1 − 𝛾)𝑤𝑖𝑗 . In Figure 6.2 it can be seen that, when a relative small number of observations
is given at last time instant, the SCDC method is able to outperform the Simple Mean Field
heuristic and achieve accuracy on par with the BP method.

The same testing framework is also employed on two real contact networks, that have been
collected with RFID tags in a school and in an office setting (respectively, the Thiers13 and
InVS15 datasets from [61]), with different time periods (one week for the school, two weeks for
the office dataset). These contacts are timestamped with a temporal resolution of 20 seconds,
allowing for coarse-graining at different time resolutions. When performing this procedure,
the number of contacts 𝑐𝑡𝑖𝑗 collected between 𝑖 and 𝑗 in time window 𝑡 is used to compute the

probability of infection between the two individuals at time 𝑡, 𝜆𝑡𝑖𝑗 = 1 − (1 − 𝛾)𝑐
𝑡
𝑖𝑗 , where 𝛾 is the

parameter describing the infectiousness of a single contact. Time window sizes vary with both
contact networks, ranging from 3 hours to a day. Four contact networks are obtained with this
procedure, that have moderately high number of individuals (𝑁 = 219 for the office, 𝑁 = 328
for the school) and span either 𝑇 = 12 or 𝑇 = 24 time instants for the office, and 𝑇 = 18 or
𝑇 = 36 time instants for the school. Risk inference results for real contact networks are shown
in Figure 6.3: here it can be seen that the SCDC method has a performance very close to the
BP method, and in general superior than the SMF heuristic, as in the case of random contact
graphs.

6.5 Discussion
In this chapter, a new method for epidemic inference has been presented. This method, based
on a small coupling expansion of the dynamic cavity equations for the SI model, belongs to the
mean-field algorithms class, like the Simple Mean Field and Belief Propagation methods that
have been previously discussed. While the newmethod is close to themean field approximation,
it incorporates the same Bayesian framework from which the BP method is derived, resulting
in a far more accurate treatment of observations than the Simple Mean Field. This is made
possible by the presence of the local fields 𝜇, that carry the information on the observations on
the neighbouring nodes backward in epidemic time. In fact, the message passing equations (see
for example eq. (6.19) and (6.20), or (6.25) and (6.27)) support this interpretation, with the 𝑚𝑖⧵𝑗
messages carrying the probability of infection forward in epidemic time.
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Figure 6.2: Risk inference accuracy on random contact graphs: in the top row, static ran-
dom graphs are used (proximity andWatts-Strogatz) with𝑁 = 600 nodes, and 𝑛𝑜𝑏𝑠 = 20 random
observations are made at the last time instant of the epidemic (𝑇 = 28 and 𝑇 = 25, respectively).
In the bottom row, the contact networks employed have been generated with the OpenABM
(𝑁 = 2000, 𝑇 = 21) and Covasim (𝑁 = 1000, 𝑇 = 24), with 𝑛𝑜𝑏𝑠 = 60 and 𝑛𝑜𝑏𝑠 = 40 the number
of individuals observed at random in each case, respectively. In all four cases, the distribution
of the area under the curve (AUC) for the ROC curves for 100 epidemic realizations is shown
as a violinplot. Epidemic parameters are 𝜆𝑝𝑟𝑜𝑥 = 0.08 for the proximity graphs, 𝜆𝑊𝑆 = 0.16 for
Watts-Strogatz; 𝛾 = 0.038 for Covasim, and 𝛾 = 0.026 for the OpenABM contacts.

Results obtained on the risk inference problem show that the SCDCmethod is able to exploit
the information given by the observations, achieving performance levels comparablewith Belief
Propagation. However, the implementation of themethod suffers of convergence issues in some
cases, requiring to perform an average of the marginals over the message passing in order to
get good results. The method is under active development, and this could lead to a resolution
of these issues. Moreover, while the infection times representation puts a limit on the possible
epidemic models utilized to only those with non-recurring epidemic states, the method can
be used without this representation, and it could be extended to recurring epidemic models
such the SIS and SIRS, in which one individual can become Susceptible once again after being
infected.
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Figure 6.3: Risk inference accuracy on real contact networks: in all plots, the area under
the curve (AUC) of the ROC curves is shown for all the methods, with the observed fraction
of infected in the x axis. For each pane, 100 epidemic realizations are made with a variable
number 𝑛𝑜𝑏𝑠 of individuals is observed at the last time instant (𝑛𝑜𝑏𝑠 = 15 for the office network,
and 𝑛𝑜𝑏𝑠 = 20 in the school network). Then, the AUCs are grouped together by the fraction
of infected (of each epidemic cascade) that has been observed. The shaded area represents the
error margin for the instances found in each infection fraction bin. The value of 𝛾 used for the
generation is the same for each contact network: 𝛾 = 6 ⋅ 10−4 for the office and 𝛾 = 7 ⋅ 10−5
for the school. For reference, the number of individuals is 𝑁 = 219 for the office and 𝑁 = 328
for the school network. Each plot also indicates the width of the time window 𝜏𝑤 used for the
coarse-graining of the contacts.
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Chapter 7

Conclusions and future
perspectives

This PhD thesis has focused on the subject of epidemic inference, that can be described as
exploiting the information of both the observations and the model of the epidemic process
in order to gain insight on an ongoing epidemic outbreak. This is an important subject in
the context of public health, where predictions of possible epidemics are often needed. The
COVID-19 pandemic in particular has highlighted the need for the study of these processes,
and provided an important application for inference methods. However, epidemic inference at
the individual scale is a highly non-trivial problem, even with simple stochastic models such
as the Susceptible-Infected-Recovered model, as the computational cost required becomes pro-
hibitive very fast with the scale of the considered system. For this reason, it is necessary to
find methods providing good approximate solutions. The already developed Belief Propagation
(BP) based method provides better performance then simpler mean field methods, but it suffers
of convergence issues with very dense contact networks.

One of the objectives of this thesis, then, has been the development of new techniques to
perform inference of the state of any individual at any time instant. The first of such methods
is derived from the application of Autoregressive Neural Networks (ANNs, chapter 3). This
approach leverages the generative power of ANNs to learn the posterior distribution, with a
peculiar training approach in which the epidemic cascade samples created by the ANNs are
employed. In this way, the neural networks encode the full distribution, which in the ideal
case is very similar to the true posterior. Then, the method is able to estimate the marginal
probabilities of any individual by the generation of new epidemic samples. This approach has
been revealed to be very good in the approximation of the posterior distribution, with perfor-
mance comparable to the BP method and better than other algorithms or heuristics, like Soft
Margin and Simple Mean Field. In particular in real contact graphs, in the patient zero detec-
tion problem the ANN approach delivered better results than BP. Moreover, the neural network
framework can be leveraged to perform inference of the epidemic parameters. In this task it
is able to achieve on par or much lower error than Belief Propagation, too. The method’s ac-
curacy, however, comes at a high computational cost. This is due to the training procedure,
which needs to generate a very large number of epidemic samples. Moreover, an annealing
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scheme has to be employed to help the gradient descent explore all the configurations com-
patible with the observations, which is time consuming. Overall, the ANN method is deemed
suitable for inference with small size contact networks (of ∼ 100 individuals). Future investi-
gations of the approach could focus on making the training faster and lowering the memory
footprint of method, so that it can be applied on larger systems. In particular, using different
neural network architecture or different deep learning frameworks could bring improvements
in this direction. The approach could also be applied to other epidemic spreading models.

Another approach investigated during the thesis is based on the dynamic cavity equations
(chapter 6). This treatment of the epidemic inference problem results in the Small Coupling
Dynamic Cavity (SCDC) method, whose set of local self-consistent equations can be solved us-
ing message passing. The distributed nature of the message passing solution makes the method
quite efficient in practice, enabling its application on moderate-sized contact networks. More-
over, the set of messages and coupled fields in the equations (𝑚 and 𝜇) lend themselves to the
physical interpretation of carrying the infection state information forward and backward in
epidemic time, starting from the observations. In fact, it has been proved that in the absence of
observations the 𝜇 fields vanish, and the method’s equations can be reduced to simpler mean
field ones. In practice, the method retains mean-field like performance in the forward problem
(without observations), and it is able to match Belief Propagation in the epidemic risk inference
problem, surpassing other mean field methods. In order to improve the method, more work
will be dedicated in the future to understand the properties of the convergence of the message
passing equations. Moreover, the method could be extended to more complex epidemic mod-
els, like the SIR or to recurring epidemic models such as the Susceptible-Infected-Susceptible.
In this latter case however it would not be possible to use the implementation derived in the
thesis, as it is valid only for non-recurring epidemic models.

During the course of the COVID-19 pandemic, it has become clear that it is of utmost im-
portance, when trying to containing the spread of a disease, to identify and isolate infectious
individuals as quickly and efficiently as possible. This led to the deployment of digital contact
tracing methods, in order to evaluate the risk of infection at the individual level. The other aim
of this thesis, then, has been to investigate the efficacy of epidemic inference methods derived
from statistical physics, such as Belief Propagation and Simple Mean Field (SMF), in enhancing
contact tracing. In chapter 4, these methods have been applied for the containment of both
simple SIR epidemic outbreaks and one COVID-19-like one, the OpenABM-Covid19 model. In
both cases, the simulated system size has been very large, accounting for 𝑁 ∼ 105 individuals
and 𝑇 = 100 days, and the methods have been shown to contain the outbreaks much better than
simple contact tracing. In the OpenABM model, in particular, containment experiments have
been run with different number of daily tests, in order to show that the probabilistic ranking al-
gorithms require less testing to completely stop an epidemic outbreak. Then, it has been shown
how they are resistant to testing noise: the BPmethod in particular is able to completely contain
an epidemic even with significant noise. However, reducing the fraction of contacts available
to the methods has shown that the containment performance degrades significantly.

The effectiveness of epidemic inference methods has been investigated more deeply in chap-
ter 5. Here, two newmodels for COVID-19 spreading have been introduced, the Spatiotemporal
Epidemic Model (StEM) and Covasim. On these models, the containment performance of the
algorithms has been investigated, with a containment setup in which a significant false nega-
tive error rate was applied to testing. Nevertheless, results showed that SMF and BP are able
to improve on contact tracing methods, and even stop the propagation of the disease. Most
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importantly, the threshold testing variant of both methods has been introduced, showing the
potential ability of containing the epidemic with lower testing requirements than their variant
with fixed number of tests per day. Two different implementations of contact tracing were also
used in this chapter of the thesis, the former being quite simple (DCT), and the latter more
through (ICT). Then, each algorithm has been tested for the ability to detect super-spreader
individuals during an epidemic outbreak. Finding and isolating super-spreaders is crucial for
arresting the spreading of COVID-19, and both SMF and BP have shown to improve in their
detection compared to contact tracing methods. Finally, the ranking algorithms have also been
applied to the reconstruction of transmission chains, with BP and SMF showing superior results
with respect to contact tracingmethods in the detection of backward and forward propagations.

As already mentioned, the results shown in chapter 5 are not final. More work will be
devoted the application of epidemic inference methods to these epidemic models. Epidemic
models like the Spatiotemporal Epidemic Model, in particular, provide an interesting challenge
because of the highly detailed description fromwhich epidemic features of COVID-19 spreading
emerge. One research question that could be addressed in the future relates to the drop in
performance efficiency (if any) that could arise because of testing delays, a factor which has
not been treated so far in our research. However, it is important to remember that any risk
inference method suffers from poor collection of contacts in the population. Therefore, it will
be fundamental in future large scale epidemic outbreaks, or pandemics like COVID-19, that
new ways are found to convince the general public of the benefits of digital contact tracing, so
that the majority of the population participates in the contact collection, without renouncing
to privacy.
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Appendix A

Simplified conditional probability
on acyclic graph

In this appendix it will be shown that in the case of epidemic spreading in a acyclic interaction
networks, it is possible to restrict the dependence of previous nodes in the conditional proba-
bilities of Eq. (3.3), to the second neighbours with lower index. This proof is part of the work
published in [158].

Let us consider the configuration 𝑥 of𝑁 variables, a probability distribution 𝑝(𝑥) = 1
𝑍 ∏𝑎 𝜓𝑎 (𝑥𝑎)

factorized over a set of factors 𝐴 = {𝑎}. We first demonstrate the following statements:

Lemma 1 (Markov blanket). Let 𝑝 (𝑥) = 1
𝑍 ∏𝑎 𝜓𝑎 (𝑥𝑎), and 𝐼 ∪ 𝐽 ∪ 𝐾 = {1,… ,𝑁} be disjoint and

assume no factor depends on 𝑥𝐼 and 𝑥𝐾 simultaneously. Then 𝑝(𝑥𝐼, 𝑥𝐾|𝑥𝐽) = 𝑝(𝑥𝐼|𝑥𝐽)𝑝(𝑥𝐾|𝑥𝐽).

Proof. Considering proportionality ∝ with respect to 𝑥𝐼 only, we have that

𝑝 (𝑥𝐼|𝑥𝐽, 𝑥𝐾) ∝ 𝑝 (𝑥𝐼, 𝑥𝐽, 𝑥𝐾) ∝ ∏
𝑎

𝜓𝑎 (𝑥𝑎) ∝ ∏
𝑎∈𝜕𝐼

𝜓𝑎 (𝑥𝑎)

and
𝑝 (𝑥𝐼|𝑥𝐽) ∝ 𝑝 (𝑥𝐼, 𝑥𝐽) ∝ ∑

𝑥𝐾
∏
𝑎

𝜓𝑎 (𝑥𝑎) ∝ ∏
𝑎∈𝜕𝐼

𝜓𝑎 (𝑥𝑎)

As both distributions are normalized with respect to 𝑥𝐼, they must be equal. This implies
that

𝑝 (𝑥𝐼, 𝑥𝐾|𝑥𝐽) = 𝑝 (𝑥𝐼, 𝑥𝐽, 𝑥𝐾) 𝑝 (𝑥𝐽)
−1

= 𝑝 (𝑥𝐼|𝑥𝐽, 𝑥𝐾) 𝑝 (𝑥𝐽, 𝑥𝐾) 𝑝 (𝑥𝐽)
−1

= 𝑝 (𝑥𝐼|𝑥𝐽) 𝑝 (𝑥𝐾|𝑥𝐽)

where the last line follows from the derivation above.

Lemma 2 (Separated neighborhood). Let 𝑝 (𝑥) = 1
𝑍 ∏𝑎 𝜓𝑎 (𝑥𝑎), and 𝐺 = (𝑉 ∪ 𝐴, 𝐸) be the

associated bipartite factor graph, with 𝐸 = {(𝑖, 𝑎) ∈ 𝑉 × 𝐴 ∶ 𝜓𝑎 depends on variable 𝑥𝑖}. Let
𝐼 ∪ 𝐽 ∪ 𝐾 ⊆ {1,… ,𝑁} be disjoint and assume that every path from 𝐼 to 𝐾 in 𝐺 must pass through 𝐽
(equivalently, removing vertices in 𝐽 leave 𝐼 and𝐾 separated). Then 𝑝(𝑥𝐼, 𝑥𝐾|𝑥𝐽) = 𝑝(𝑥𝐼|𝑥𝐽)𝑝(𝑥𝐾|𝑥𝐽),
and 𝑝(𝑥𝐼|𝑥𝐽∪𝐾) = 𝑝(𝑥𝐼|𝑥𝐽)
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Proof. Let 𝐼 ′ be the connected component of 𝐼 in 𝐺 ⧵ 𝐽 and 𝐾 ′ = 𝑉 ⧵ (𝐼 ′ ∪ 𝐽 ). As all paths
from 𝐼 to 𝐾 pass through 𝐽, no factors can depend on variables both in 𝐼 ′ and in 𝐾 ′. By
Lemma 1, 𝑝(𝑥𝐼 ′, 𝑥𝐾 ′ |𝑥𝐽) = 𝑝(𝑥𝐼 ′ |𝑥𝐽)𝑝(𝑥𝐾 ′ |𝑥𝐽). Then 𝑝(𝑥𝐼, 𝑥𝐾|𝑥𝐽) = ∑𝑥𝐼 ′⧵𝐼 ∑𝑥𝐾′⧵𝐾 𝑝(𝑥𝐼 ′, 𝑥𝐾 ′ |𝑥𝐽) =
∑𝑥𝐼 ′⧵𝐼 𝑝(𝑥𝐼 ′ |𝑥𝐽)∑𝑥𝐾′⧵𝐾 𝑝(𝑥𝐾 ′ |𝑥𝐽) = 𝑝(𝑥𝐼|𝑥𝐽)𝑝(𝑥𝐾|𝑥𝐽). Then 𝑝(𝑥𝐼|𝑥𝐾, 𝑥𝐽) = 𝑝(𝑥𝐼, 𝑥𝐾|𝑥𝐽)𝑝(𝑥𝐾|𝑥𝐽)−1 =
𝑝(𝑥𝐼|𝑥𝐽).

Corollary 1 (Restricted autoregression). By calling 𝐼 = {𝑖}, 𝐽 = {𝑗 < 𝑖 ∶ 𝑗 ∈ 𝜕𝑖} and 𝐾 =
{𝑗 < 𝑖 ∶ 𝑗 ∉ 𝜕𝑖}, we obtain that for an ordering of nodes such that 𝐽 separates 𝑖 from 𝐾 we get
𝑝(𝑥𝑖|{𝑥𝑗 ∶ 𝑗 ∈ 𝜕𝑖, 𝑗 < 𝑖}) = 𝑝(𝑥𝑖|{𝑥𝑗 ∶ 𝑗 < 𝑖}).

The last corollary is defined for a single node 𝑖. In considering the problem of approximating
the posterior probability of an epidemic spreading process (as done in chapter 3) we distinguish
two graphs: the first one, the contact graph, the nodes are the time trajectory of the states 𝑥𝑖 of
each individuals and the edges are the contacts between them. The second, the factor graph,
has as nodes, again, the time trajectory of individuals and as factors those ({Ψ𝑖}) in the equation
6 in the main text. If the contact graph is acyclic and the nodes are topological ordered [10]
then, thanks to the corollary 1, the following identity holds:

𝑃(x|𝒪) = ∏
𝑖
𝑃(𝑥𝑖|x<𝑖) = ∏

𝑖
𝑃(𝑥𝑖|x𝜕2<𝑖) (A.1)

where x𝜕2<𝑖 define the sets of nodes up to the next nearest neighbours (in the contacts graph)
with index lower than 𝑖. The set of nodes x𝜕2<𝑖 in the contact graph correspond to the x𝜕<𝑖 in the
factor graph. To better visualize the two graphs, in Fig.A.1 we show two cases of contact acyclic
graphs. The first one represents a linear chain defined by the contacts among individuals. The
corresponding contact graph is acyclic but the factor graph contains cycles. In this case, for in-
stance, considering the conditional probability of node 7we have that 𝑃(𝑥7|x<𝑖) = 𝑃(𝑥7|x𝜕2<𝑖) =
𝑃(𝑥7|𝑥4, 𝑥6). The node 4,6 separated the nodes 7 from the previous nodes in the factor graph, as
the corollary 1 require. Similarly, the same concept apply to the second case, where we consider
a tree graph. In both cases the nodes are ordered topologically so the equation (A.1) holds for
each conditional probability.
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Figure A.1: Two example of acyclic contact graphs ordered topologically. In a) there is a linear
chain, and in b) a tree. The squares represents the factorΨ𝑖 of the posterior probability distribu-
tion of the dynamical process we want approximate. The circle represents the time trajectory
of the states of each individual 𝑖. The black lines are the contacts among individuals, and in
both cases they generate a acyclic contact graph.
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Appendix B

BP equations for the SIR model

The message passing equations are now going to be derived for the factor graph described in
section 4.1.2 (we refer to section 2.2 for the theory of the Belief Propagation approach used).
Before writing the equations for themessages, however, notice that the distribution 𝑅𝑖 is contin-
uous and needs to be discretized. All terms in (4.12) - (4.14), except 𝑅𝑖, are constant as functions
of 𝑟𝑖 in any interval ( ̂𝑟𝑖, ̂𝑟 ′𝑖 ) of consecutive times in 𝒯𝑖: in other words, nothing can happen in
this time interval except the recovery of a certain individuals. This fact is exploited by writing
𝑟𝑖 = ̂𝑟𝑖+𝑢𝑖, where ̂𝑟𝑖 = max {𝑟 ∈ 𝒯𝑖 ∶ 𝑟 < 𝑟𝑖}. Then, integrating away the 𝑢𝑖 variables in (4.12), it’s
possible to obtain a fully discretized model for variables t, s, r̂, with an expression identical to
(4.12) but in which 𝑟𝑖 is replaced by ̂𝑟𝑖, and 𝑅𝑖 (𝑟𝑖 − 𝑡𝑖) is replaced by

𝑅̂𝑖 ( ̂𝑟𝑖 − 𝑡𝑖) = ∫
̂𝑟 ′𝑖 −𝑡𝑖

̂𝑟𝑖−𝑡𝑖
𝑅𝑖 (𝑢) 𝑑𝑢

For simplicity of notation, the ̂⋅ symbols will be dropped in the following. Now, the belief
propagationmessages for 𝜓𝑖 → (𝑠𝑖𝑗, 𝑠𝑗𝑖) and (𝑠𝑖𝑗, 𝑠𝑗𝑖) → 𝜓𝑗 can be condensed into a single message
from 𝜓𝑖 to 𝜓𝑗, since there are no other factors that are connected to (𝑠𝑖𝑗, 𝑠𝑗𝑖) (because of (2.4)).
Then, the message 𝑚𝑖𝑗 (𝑠𝑖𝑗, 𝑠𝑗𝑖) can be computed as:

𝑚𝑖𝑗 (𝑠𝑖𝑗, 𝑠𝑗𝑖) ∝∑
𝑡𝑖
∑
𝑟𝑖
𝑝𝑂,𝑖 (𝒪𝑖|𝑡𝑖, 𝑟𝑖) 𝑅𝑖 (𝑟𝑖 − 𝑡𝑖) 𝑆𝑖𝑗 (𝑠𝑖𝑗|𝑡𝑖, 𝑟𝑖) × (B.1)

× ∑
{𝑠𝑘𝑖,𝑠𝑖𝑘}

𝐴𝑖 (s𝑖∗) 𝛿(𝑡𝑖,min
𝑘∈𝜕∗𝑖

𝑠𝑘𝑖) ∏
𝑘∈𝜕∗𝑖⧵𝑗

𝑆𝑖𝑘 (𝑠𝑖𝑘|𝑡𝑖, 𝑟𝑖) 𝑚𝑘𝑖 (𝑠𝑘𝑖, 𝑠𝑖𝑘)

that shows its dependency on messages from other edges (𝑘, 𝑖). The marginals for 𝑡𝑖 are

𝑏𝑖 (𝑡𝑖) ∝∑
𝑟𝑖
𝑝𝑂,𝑖 (𝒪𝑖|𝑡𝑖, 𝑟𝑖) 𝑅𝑖 (𝑟𝑖 − 𝑡𝑖) 𝑆𝑖𝑗 (𝑠𝑖𝑗|𝑡𝑖, 𝑟𝑖) × (B.2)

× ∑
{𝑠𝑘𝑖,𝑠𝑖𝑘}

𝐴𝑖 (s𝑖∗) 𝛿(𝑡𝑖,min
𝑘∈𝜕∗𝑖

𝑠𝑘𝑖) ∏
𝑘∈𝜕∗𝑖

𝑆𝑖𝑘 (𝑠𝑖𝑘|𝑡𝑖, 𝑟𝑖) 𝑚𝑘𝑖 (𝑠𝑘𝑖, 𝑠𝑖𝑘)
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and similarly for 𝑟𝑖. A more efficient computation of the equations can be achieved by defining:

𝐺0
𝑘 (𝑡𝑖, 𝑟𝑖) = ∑

𝑠𝑘𝑖≥𝑡𝑖
𝑠𝑖𝑘>𝑡𝑖

𝑆𝑖𝑘 (𝑠𝑖𝑘|𝑡𝑖, 𝑟𝑖) 𝑚𝑘𝑖 (𝑠𝑘𝑖, 𝑠𝑖𝑘)

𝐺1
𝑘 (𝑡𝑖, 𝑟𝑖) = ∑

𝑠𝑘𝑖>𝑡𝑖
𝑠𝑖𝑘>𝑡𝑖

𝑆𝑖𝑘 (𝑠𝑖𝑘|𝑡𝑖, 𝑟𝑖) 𝑚𝑘𝑖 (𝑠𝑘𝑖, 𝑠𝑖𝑘)

and substituting the extra auto-infection neighbour messages

𝑚𝑖∗𝑡 𝑖 (𝑠𝑖∗𝑡 𝑖, 𝑠𝑖𝑖∗𝑡 ) = {
𝛾 𝑡𝑖 𝑠𝑖∗𝑡 𝑖 = 𝑡, 𝑠𝑖𝑖∗𝑡 = ∞
1 − 𝛾 𝑡𝑖 𝑠𝑖∗𝑡 𝑖 = ∞, 𝑠𝑖𝑖∗𝑡 = ∞

Equations (B.1), (B.2) can be then rewritten as

𝑚𝑖𝑗 (𝑠𝑖𝑗, 𝑠𝑗𝑖) ∝∑
𝑡𝑖
∑
𝑟𝑖
𝑝𝑂,𝑖 (𝒪𝑖 | 𝑡𝑖, 𝑟𝑖) 𝑅𝑖 (𝑟𝑖 − 𝑡𝑖) 𝑆𝑖𝑗 (𝑠𝑖𝑗 | 𝑡𝑖, 𝑟𝑖) × (B.3)

×∑
{𝑠𝑘𝑖,𝑠𝑖𝑘}

𝐴𝑖 (s𝑖∗) (∏
𝑘∈𝜕∗𝑖

𝕀 [𝑠𝑘𝑖 ≥ 𝑡𝑖] − ∏
𝑘∈𝜕∗𝑖

𝕀 [𝑠𝑘𝑖 > 𝑡𝑖]) ∏
𝑘∈𝜕∗𝑖⧵𝑗

𝑆𝑖𝑘 (𝑠𝑖𝑘 | 𝑡𝑖, 𝑟𝑖) 𝑚𝑘𝑖 (𝑠𝑘𝑖, 𝑠𝑖𝑘)

∝ ∑
𝑡𝑖<𝑠𝑗𝑖

∑
𝑟𝑖≥𝑡𝑖

𝑝𝑂,𝑖 (𝒪𝑖 | 𝑡𝑖, 𝑟𝑖) 𝑅𝑖 (𝑟𝑖 − 𝑡𝑖) 𝑆𝑖𝑗 (𝑠𝑖𝑗 | 𝑡𝑖, 𝑟𝑖) × (B.4)

×∏
𝑡<𝑡𝑖

(1 − 𝛾 𝑡𝑖 ) { ∏
𝑘∈𝜕𝑖⧵𝑗

𝐺0
𝑘 (𝑡𝑖, 𝑟𝑖) − (1 − 𝛾 𝑡𝑖𝑖 ) ∏

𝑘∈𝜕𝑖⧵𝑗
𝐺1
𝑘 (𝑡𝑖, 𝑟𝑖) }+

+ ∑
𝑟𝑖≥𝑠𝑗𝑖

𝑝𝑂,𝑖 (𝒪𝑖 | 𝑠𝑗𝑖, 𝑟𝑖) 𝑅𝑖 (𝑟𝑖 − 𝑠𝑗𝑖) ∏
𝑘∈𝜕𝑖⧵𝑗

𝐺0
𝑘 (𝑠𝑗𝑖, 𝑟𝑖)

𝑏𝑡𝑖 (𝑡𝑖) ∝∑
𝑟𝑖
𝑅𝑖 (𝑟𝑖 − 𝑡𝑖) 𝑝𝑂,𝑖 (𝒪𝑖 | 𝑡𝑖, 𝑟𝑖) × (B.5)

×∏
𝑡<𝑡𝑖

(1 − 𝛾 𝑡𝑖 ) {∏
𝑘∈𝜕𝑖

𝐺0
𝑘 (𝑡𝑖, 𝑟𝑖) − (1 − 𝛾 𝑡𝑖𝑖 )∏

𝑘∈𝜕𝑖
𝐺1
𝑘 (𝑡𝑖, 𝑟𝑖) }

𝑏𝑟𝑖 (𝑟𝑖) ∝∑
𝑡𝑖
𝑅𝑖 (𝑟𝑖 − 𝑡𝑖) 𝑝𝑂,𝑖 (𝒪𝑖 | 𝑡𝑖, 𝑟𝑖) × (B.6)

×∏
𝑡<𝑡𝑖

(1 − 𝛾 𝑡𝑖 ) {∏
𝑘∈𝜕𝑖

𝐺0
𝑘 (𝑡𝑖, 𝑟𝑖) − (1 − 𝛾 𝑡𝑖𝑖 )∏

𝑘∈𝜕𝑖
𝐺1
𝑘 (𝑡𝑖, 𝑟𝑖) }

Note that products ∏𝑘∈𝜕𝑖⧵𝑗 𝐺𝑘 can be computed simultaneously for 𝑗 ∈ 𝜕𝑖 in time 𝑂 (|𝜕𝑖|)

(by first recursively computing ∏ℓ′
ℓ=1 𝐺𝑘ℓ and ∏|𝜕𝑖|

ℓ=ℓ′ 𝐺𝑘ℓ for ℓ
′ = 1,… , |𝜕𝑖| and then ∏ℓ≠ℓ′ 𝐺𝑘ℓ =

∏ℓ′−1
ℓ=1 𝐺𝑘ℓ∏

|𝜕𝑖|
ℓ=ℓ′+1 𝐺𝑘ℓ). The resulting implementation of the update of all messages in factor Ψ𝑖

has complexity 𝑂 (|𝒯𝑖| ∑𝑗∈𝜕𝑖 (|𝒯𝑖| + |𝒯𝑖𝑗|
2)).

In practice, only a fixed (maximum) number of message passing rounds are done each time
new observations are collected. Once this procedure has finished, the marginal probabilities for
the SIR states can be computed. For an individual 𝑖, the probability to be in each state at time
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𝑡 ∈ 𝒯𝑖 can be computed as follows:

𝑝 (𝑥 𝑡𝑖 = 𝑆) = ∑
𝑡′≥𝑡

𝑏𝑡𝑖 (𝑡
′) (B.7)

𝑝 (𝑥 𝑡𝑖 = 𝑅) = ∑
𝑟 ′≤𝑡

𝑏𝑟𝑖 (𝑟
′) (B.8)

𝑝 (𝑥 𝑡𝑖 = 𝐼) = 1 −∑
𝑡′≥𝑡

𝑏𝑡𝑖 (𝑡
′) −∑

𝑟 ′≤𝑡
𝑏𝑟𝑖 (𝑟

′) (B.9)

where 𝑡′, 𝑟 ′ ∈ 𝒯𝑖. The simplest estimation of the infection risk for the individual would then
be the probability of infection at the current time, 𝑝 (𝑥 𝑡𝑖 = 𝐼) given from the above equation.
However, it has been found more convenient, given the characteristics of COVID-19, to use a
criterion that prioritizes recent infections, so that the risk is given by the sum of the marginal
probabilities 𝑏𝑡𝑖 (𝑡𝑖) over 𝑡𝑖 ∈ [𝑡 − 𝛿𝑟𝑎𝑛𝑘, 𝑡].
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Appendix C

Derivation of the dynamic cavity
equations for the SI model

In this appendix, a derivation of the dynamic cavity equations (6.9) is presented. For clarity
of exposition, the calculations are carried out for the case of pure time-forward dynamics; the
addition of observations is discussed afterwards. The derivation exploits a path-integral rep-
resentation of the stochastic epidemic dynamics of the SI model, that is based on interpreting
the (Markovian) update rule of the discrete-time stochastic process as a set of dynamical con-
straints for the degrees of freedom under study, i.e. the binary variables {𝑥 𝑡𝑖 }, and on defining a
dynamic partition function of the form

𝑍 = ∑
𝑋

𝑝 (𝑋) (C.1a)

= ∑
𝑋

𝑁
∏
𝑖=1

{𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[∑
𝑟 𝑡𝑖 ,ℎ𝑡𝑖

𝑃 [𝑟 𝑡𝑖 |ℎ
𝑡
𝑖] 𝛿K (𝑥

𝑡+1
𝑖 − 𝑥 𝑡𝑖 − (1 − 𝑥 𝑡𝑖 )𝑟

𝑡
𝑖 ) 𝛿 (ℎ

𝑡
𝑖 −

𝑁
∑
𝑗=1

𝜈 𝑡𝑗𝑖𝑥
𝑡
𝑗)]} (C.1b)

= ∑
𝑋,r

∫𝑑h𝑃 [r|h]
𝑁
∏
𝑖=1

{𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[𝛿K (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖 − (1 − 𝑥 𝑡𝑖 )𝑟
𝑡
𝑖 ) 𝛿 (ℎ

𝑡
𝑖 −

𝑁
∑
𝑗=1

𝜈 𝑡𝑗𝑖𝑥
𝑡
𝑗)]} (C.1c)

where 𝑃 [r|h] = ∏𝑁
𝑖=1∏

𝑇−1
𝑡=0 ∑𝑟 𝑡𝑖 ,ℎ𝑡𝑖 𝑃 [𝑟

𝑡
𝑖 |ℎ

𝑡
𝑖] and the time-dependent matrix {𝜈 𝑡𝑖𝑗} already defined

in Sec. 6.1.1 encodes the infection rates and possible interaction patterns over time. Using the
integral representation of Dirac’s and Kronecker’s delta functions and substituting the explicit
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expression of the conditional probabilities 𝑃 [𝑟 𝑡𝑖 |ℎ
𝑡
𝑖] in Eq. (6.5), we obtain

𝑍 = ∑
𝑋,r

∫𝑑h𝑃 [r|h]
𝑁
∏
𝑖=1

{𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[𝛿K (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖 − (1 − 𝑥 𝑡𝑖 )𝑟
𝑡
𝑖 ) 𝛿 (ℎ

𝑡
𝑖 −

𝑁
∑
𝑗=1

𝜈 𝑡𝑗𝑖𝑥
𝑡
𝑗)]} (C.2a)

= ∑
𝑋

𝑁
∏
𝑖=1

{𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[ ∑
𝑟 𝑡𝑖=0,1

∫
+∞

−∞
𝑑ℎ𝑡𝑖 ∫

2𝜋

0

𝑑𝑥̂ 𝑡𝑖
2𝜋

𝑒i𝑥̂
𝑡
𝑖(𝑥 𝑡+1𝑖 −𝑥 𝑡𝑖−(1−𝑥 𝑡𝑖 )𝑟 𝑡𝑖 ) (1 − 𝑒ℎ

𝑡
𝑖)
𝑟 𝑡𝑖 𝑒(1−𝑟

𝑡
𝑖 )ℎ𝑡𝑖 ∫

+∞

−∞

𝑑ℎ̂𝑡𝑖
2𝜋

𝑒iℎ̂
𝑡
𝑖(ℎ𝑡𝑖−∑

𝑁
𝑗=1 𝜈

𝑡
𝑗𝑖𝑥 𝑡𝑗)]}

(C.2b)

= ∑
𝑋

𝑁
∏
𝑖=1

{𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[ ∑
𝑟 𝑡𝑖=0,1

∫
2𝜋

0

𝑑𝑥̂ 𝑡𝑖
2𝜋 ∫

+∞

−∞
𝑑ℎ𝑡𝑖𝑒

i𝑥̂ 𝑡𝑖(𝑥 𝑡+1𝑖 −𝑥 𝑡𝑖−(1−𝑥 𝑡𝑖 )𝑟 𝑡𝑖 )+𝑟 𝑡𝑖(log(1−𝑒
ℎ𝑡𝑖)−ℎ𝑡𝑖)+ℎ𝑡𝑖

∫
+∞

−∞

𝑑ℎ̂𝑡𝑖
2𝜋

𝑒iℎ̂
𝑡
𝑖(ℎ𝑡𝑖−∑

𝑁
𝑗=1 𝜈

𝑡
𝑗𝑖𝑥 𝑡𝑗)]}

(C.2c)

= ∑
𝑋

𝑁
∏
𝑖=1

{𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[ ∑
𝑟 𝑡𝑖=0,1

∫
+∞

−∞

𝑑ℎ̂𝑡𝑖
2𝜋 ∫

+∞

−∞
𝑑ℎ𝑡𝑖𝑒

iℎ̂𝑡𝑖ℎ𝑡𝑖+𝑟 𝑡𝑖(log(1−𝑒
ℎ𝑡𝑖)−ℎ𝑡𝑖)+ℎ𝑡𝑖

∫
2𝜋

0

𝑑𝑥̂ 𝑡𝑖
2𝜋

𝑒i𝑥̂
𝑡
𝑖(𝑥 𝑡+1𝑖 −𝑥 𝑡𝑖−(1−𝑥 𝑡𝑖 )𝑟 𝑡𝑖 )−iℎ̂𝑡𝑖∑

𝑁
𝑗=1 𝜈

𝑡
𝑗𝑖𝑥 𝑡𝑗]} .

(C.2d)

It is convenient to proceed isolating the interaction terms and performing the sums over the
random variables 𝑟 𝑡𝑖 ,

𝑍 = ∑
𝑋

𝑁
∏
𝑖=1

{𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[ ∑
𝑟 𝑡𝑖=0,1

∫
+∞

−∞

𝑑ℎ̂𝑡𝑖
2𝜋 ∫

+∞

−∞
𝑑ℎ𝑡𝑖𝑒iℎ̂

𝑡
𝑖ℎ𝑡𝑖 ∫

2𝜋

0

𝑑𝑥̂ 𝑡𝑖
2𝜋

𝑒i𝑥̂
𝑡
𝑖(𝑥 𝑡+1𝑖 −𝑥 𝑡𝑖−(1−𝑥 𝑡𝑖 )𝑟 𝑡𝑖 )+𝑟 𝑡𝑖(log(1−𝑒

ℎ𝑡𝑖)−ℎ𝑡𝑖)+ℎ𝑡𝑖

×∏
𝑗>𝑖

𝑒−i(ℎ̂
𝑡
𝑖𝜈 𝑡𝑗𝑖𝑥 𝑡𝑗+ℎ̂𝑡𝑗𝜈 𝑡𝑖𝑗𝑥 𝑡𝑖)]} (C.3a)

= ∑
𝑋

𝑁
∏
𝑖=1

{𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[∫
+∞

−∞
𝑑ℎ̂𝑡𝑖 ∫

2𝜋

0

𝑑𝑥̂ 𝑡𝑖
2𝜋 ∫

+∞

−∞

𝑑ℎ𝑡𝑖
2𝜋

𝑒iℎ̂
𝑡
𝑖ℎ𝑡𝑖+ℎ𝑡𝑖 [1 + 𝑒−ℎ

𝑡
𝑖−i𝑥̂ 𝑡𝑖 (1−𝑥 𝑡𝑖 ) − 𝑒−i𝑥̂

𝑡
𝑖 (1−𝑥 𝑡𝑖 )] 𝑒+i𝑥̂

𝑡
𝑖(𝑥 𝑡+1𝑖 −𝑥 𝑡𝑖)

×∏
𝑗>𝑖

𝑒−i(ℎ̂
𝑡
𝑖𝜈 𝑡𝑗𝑖𝑥 𝑡𝑗+ℎ̂𝑡𝑗𝜈 𝑡𝑖𝑗𝑥 𝑡𝑖)]} (C.3b)

120



Derivation of the dynamic cavity equations for the SI model
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xi, ĥi

⌘ <latexit sha1_base64="ZAjdbunnl1ri6RVPUX5y9CPAsJs=">AAACH3icbVDLSgMxFM3UV62vqks3wSJUkDIjpbosunFZwT6gM5RMmunEZh4kd8Qy9E/c+CtuXCgi7vo3pu0sauuBkMM593LvPW4suALTnBi5tfWNza38dmFnd2//oHh41FJRIilr0khEsuMSxQQPWRM4CNaJJSOBK1jbHd5O/fYTk4pH4QOMYuYEZBByj1MCWuoVa7ZgHpRtNxJ9NQr0lz6Pe48X2PYJpIuyP9Y6tiUf+HDeK5bMijkDXiVWRkooQ6NX/LH7EU0CFgIVRKmuZcbgpEQCp4KNC3aiWEzokAxYV9OQBEw56ey+MT7TSh97kdQvBDxTFztSEqjplroyIOCrZW8q/ud1E/CunZSHcQIspPNBXiIwRHgaFu5zySiIkSaESq53xdQnklDQkRZ0CNbyyaukdVmxapXqfbVUv8niyKMTdIrKyEJXqI7uUAM1EUUv6A19oE/j1Xg3vozveWnOyHqO0R8Yk1/u8qQn</latexit>⇣
xj , ĥj

⌘

<latexit sha1_base64="Cxai2xYbaH2HtjdkSI2oPKEfaDY=">AAACH3icbVDLSsNAFJ3UV62vqEs3g0WoICWRUl0W3bisYB/QhDKZTpqhkwczN2IJ/RM3/oobF4qIu/6N0zYLbT0wzOGce7n3Hi8RXIFlTY3C2vrG5lZxu7Szu7d/YB4etVWcSspaNBax7HpEMcEj1gIOgnUTyUjoCdbxRrczv/PIpOJx9ADjhLkhGUbc55SAlvpm3RHMh4rjxWKgxqH+sqdJf3SBnYBA9lsOJlrHjuTDAM77ZtmqWnPgVWLnpIxyNPvmtzOIaRqyCKggSvVsKwE3IxI4FWxSclLFEkJHZMh6mkYkZMrN5vdN8JlWBtiPpX4R4Ln6uyMjoZptqStDAoFa9mbif14vBf/azXiUpMAiuhjkpwJDjGdh4QGXjIIYa0Ko5HpXTAMiCQUdaUmHYC+fvEral1W7Xq3d18qNmzyOIjpBp6iCbHSFGugONVELUfSMXtE7+jBejDfj0/halBaMvOcY/YEx/QHyIqQp</latexit>⇣
xk, ĥk

⌘

<latexit sha1_base64="bCD9PBIgoyfUvubmQmwjy/SNyp4=">AAACJXicbVDJSgNBEO2JW4xb1KOXxiAoSJiRoB48BL14jGAWyITQ06nJNOlZ6K4Rw5Cf8eKvePFgEMGTv2JnOWj0QdOP96qoquclUmi07U8rt7S8srqWXy9sbG5t7xR39xo6ThWHOo9lrFoe0yBFBHUUKKGVKGChJ6HpDW4mfvMBlBZxdI/DBDoh60fCF5yhkbrFK1eCj8euF8ueHobmyx5HXRekPKVuwDD76QSjmUVdJfoBnnSLJbtsT0H/EmdOSmSOWrc4dnsxT0OIkEumdduxE+xkTKHgEkYFN9WQMD5gfWgbGrEQdCebXjmiR0bpUT9W5kVIp+rPjoyFerKoqQwZBnrRm4j/ee0U/ctOJqIkRYj4bJCfSooxnURGe0IBRzk0hHElzK6UB0wxjibYggnBWTz5L2mclZ3zcuWuUqpez+PIkwNySI6JQy5IldySGqkTTp7IC3kjY+vZerXerY9Zac6a9+yTX7C+vgHuC6bB</latexit>⇣
x`, ĥ`

⌘

<latexit sha1_base64="YQF4CjM7asFASV0M1XLQXikTutk=">AAACH3icbVDLSsNAFJ3UV62vqEs3g0WoICWRUl0W3bisYB/QlDKZTpqhkwczN2IJ+RM3/oobF4qIu/6N0zYLbT0wzOGce7n3HjcWXIFlTY3C2vrG5lZxu7Szu7d/YB4etVWUSMpaNBKR7LpEMcFD1gIOgnVjyUjgCtZxx7czv/PIpOJR+ACTmPUDMgq5xykBLQ3MuiOYBxXHjcRQTQL9pU/ZILjAjk8g/S37mdaxI/nIh/OBWbaq1hx4ldg5KaMczYH57QwjmgQsBCqIUj3biqGfEgmcCpaVnESxmNAxGbGepiEJmOqn8/syfKaVIfYiqV8IeK7+7khJoGZb6sqAgK+WvZn4n9dLwLvupzyME2AhXQzyEoEhwrOw8JBLRkFMNCFUcr0rpj6RhIKOtKRDsJdPXiXty6pdr9bua+XGTR5HEZ2gU1RBNrpCDXSHmqiFKHpGr+gdfRgvxpvxaXwtSgtG3nOM/sCY/gD4gqQt</latexit>⇣
xm, ĥm

⌘

Figure C.1: Factor Graph for the graphical model interpretation of the dynamical partition
function in Eq. (C.4) with factors as given in Eqs. (C.5)-(C.6).

then performing the integrals over ℎ𝑡𝑖 and 𝑥̂ 𝑡𝑖

𝑍 = ∑
𝑋

𝑁
∏
𝑖=1

{𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[∫
+∞

−∞
𝑑ℎ̂𝑡𝑖 ∫

2𝜋

0

𝑑𝑥̂ 𝑡𝑖
2𝜋

[𝛿 (ℎ̂𝑡𝑖 − i) (𝑒i𝑥̂
𝑡
𝑖(𝑥 𝑡+1𝑖 −𝑥 𝑡𝑖) − 𝑒i𝑥̂

𝑡
𝑖(𝑥 𝑡+1𝑖 −1)) + 𝛿 (ℎ̂𝑡𝑖) 𝑒i𝑥̂

𝑡
𝑖(𝑥 𝑡+1𝑖 −1)]

×∏
𝑗>𝑖

𝑒−i(ℎ̂
𝑡
𝑖𝜈 𝑡𝑗𝑖𝑥 𝑡𝑗+ℎ̂𝑡𝑗𝜈 𝑡𝑖𝑗𝑥 𝑡𝑖)]} (C.4a)

= ∑
𝑋

𝑁
∏
𝑖=1

{𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[∫
+∞

−∞
𝑑ℎ̂𝑡𝑖 [𝛿 (ℎ̂

𝑡
𝑖 − i) (𝛿K (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿K (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿K (𝑥

𝑡+1
𝑖 − 1)]

×∏
𝑗>𝑖

𝑒−i(ℎ̂
𝑡
𝑖𝜈 𝑡𝑗𝑖𝑥 𝑡𝑗+ℎ̂𝑡𝑗𝜈 𝑡𝑖𝑗𝑥 𝑡𝑖)]} (C.4b)

= ∑
𝑋

∫𝐷ℎ̂
𝑁
∏
𝑖=1

{𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[[𝛿 (ℎ̂𝑡𝑖 − i) (𝛿K (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿K (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿K (𝑥
𝑡+1
𝑖 − 1)]

×∏
𝑗>𝑖

𝑒−i(ℎ̂
𝑡
𝑖𝜈 𝑡𝑗𝑖𝑥 𝑡𝑗+ℎ̂𝑡𝑗𝜈 𝑡𝑖𝑗𝑥 𝑡𝑖)]} (C.4c)

where ∫𝐷ℎ̂ = ∏𝑁
𝑖=1∏

𝑇−1
𝑡=0 (∫+∞−∞ 𝑑ℎ̂𝑡𝑖) for shortness of notation.

The probabilistic weight associated with the dynamic partition function 𝑍 is now in a form
that can be represented as a graphical model, in which the variable nodes correspond to the
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Derivation of the dynamic cavity equations for the SI model

spatio-temporal variables 𝑥𝑖 and ℎ̂𝑖 and there are two types of factor nodes (see Fig. C.1): single-
node factors

𝜙𝑖 [(𝑥𝑖, ℎ̂𝑖)] = 𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[𝛿 (ℎ̂𝑡𝑖 − i) (𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿 (𝑥
𝑡+1
𝑖 − 1)] (C.5)

and factors involving pairs of variables on neighboring nodes at the same time

𝜓𝑖𝑗 [(𝑥𝑖, ℎ̂𝑖), (𝑥𝑗, ℎ̂𝑗)] =
𝑇−1
∏
𝑡=0

𝑒−i(ℎ̂
𝑡
𝑖𝜈 𝑡𝑗𝑖𝑥 𝑡𝑗+ℎ̂𝑡𝑗𝜈 𝑡𝑖𝑗𝑥 𝑡𝑖). (C.6)

By grouping together single-node variables at all times, that is trajectories

(𝑥𝑖, ℎ̂𝑖) = ({𝑥0𝑖 ,… , 𝑥𝑇𝑖 }, {ℎ̂
0
𝑖 ,… , ℎ̂𝑇𝑖 }),

the resulting factor graph reproduces the topology of the underlying interaction graph. Notice
that, the fact that the locally-loopy structure of the factor graph associated to the space-time
problem is disentangled by this choice of variable grouping is a consequence of the linear cou-
pling between variables on neighboring nodes, obtained after introducing the auxiliary local
fields ℎ̂. A different but equivalent formulation of the dynamic cavity considers factor graphs
in which the variable nodes contain pairs of trajectories, e.g. (𝑥𝑖, 𝑥𝑗), of sites that are neighbors
on the underlying interaction graph. This is the formulation that leads to the BP method in
Refs [37, 38].

According to this graphical model construction, the following dynamic cavity equations rep-
resent an ansatz for describing the stochastic dynamics associated with the dynamic partition
function 𝑍 on a tree-like interaction graph,

𝑐𝑖𝑗 [𝑥𝑖, ℎ̂𝑖] =
1
𝑍𝑖𝑗

𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

[𝛿 (ℎ̂𝑡𝑖 − i) (𝛿K (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿K (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿K (𝑥
𝑡+1
𝑖 − 1)]

× ∏
𝑘∈𝜕𝑖⧵𝑗

{∫𝐷ℎ̂𝑘∑
𝑥𝑘

𝑐𝑘𝑖 [𝑥𝑘, ℎ̂𝑘] 𝑒
−i∑𝑡(ℎ̂

𝑡
𝑖𝜈 𝑡𝑘𝑖𝑥

𝑡
𝑘+ℎ̂

𝑡
𝑘𝜈

𝑡
𝑖𝑘𝑥

𝑡
𝑖)} (C.7)

where ∫𝐷ℎ̂𝑖 = ∏𝑇−1
𝑡=0 [∫+∞−∞ 𝑑ℎ̂𝑡𝑖]. Then, using the Fourier transforms

𝑐 [𝑥, 𝑠] =
𝑇−1
∏
𝑡=0

[∫
+∞

−∞
𝑑ℎ̂𝑡𝑒−i𝑠

𝑡ℎ̂𝑡] 𝑐 [𝑥, ℎ̂] (C.8)

𝑐 [𝑥, ℎ̂] =
𝑇−1
∏
𝑡=0

[∫
+∞

−∞

𝑑𝑠𝑡

2𝜋
𝑒i𝑠

𝑡ℎ̂𝑡] 𝑐 [𝑥, 𝑠] , (C.9)

the dynamic cavity equations can be written as

𝑐𝑖𝑗 [𝑥𝑖, 𝑠𝑖] =
1
𝑍𝑖𝑗

𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

{∫
+∞

−∞
𝑑ℎ̂𝑡𝑖𝑒−i𝑠

𝑡
𝑖 ℎ̂𝑡𝑖 [𝛿 (ℎ̂𝑡𝑖 − i) (𝛿K (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿K (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿K (𝑥

𝑡+1
𝑖 − 1)]

× ∏
𝑘∈𝜕𝑖⧵𝑗

[∑
𝑥 𝑡𝑘

∫
+∞

−∞
𝑑ℎ̂𝑡𝑘 ∫

+∞

−∞

𝑑𝑠𝑡𝑘
2𝜋

𝑒i𝑠
𝑡
𝑘ℎ̂

𝑡
𝑘𝑐𝑘𝑖 [𝑥𝑘, 𝑠𝑘] 𝑒

−i(ℎ̂𝑡𝑖𝜈 𝑡𝑘𝑖𝑥
𝑡
𝑘+ℎ̂

𝑡
𝑘𝜈

𝑡
𝑖𝑘𝑥

𝑡
𝑖)]}. (C.10)
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C.1 – Reduction to the time-forward equations in the absence of observations

The expression can be simplified by performing the integrals over the auxiliary variables {ℎ̂𝑘}
first,

𝑐𝑖𝑗 [𝑥𝑖, 𝑠𝑖] =
1
𝑍𝑖𝑗

𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

{∫
+∞

−∞
𝑑ℎ̂𝑡𝑖𝑒−i𝑠

𝑡
𝑖 ℎ̂𝑡𝑖 [𝛿 (ℎ̂𝑡𝑖 − i) (𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿 (𝑥

𝑡+1
𝑖 − 1)]

× ∏
𝑘∈𝜕𝑖⧵𝑗

[∑
𝑥 𝑡𝑘

∫
+∞

−∞
𝑑𝑠𝑡𝑘𝑐𝑘𝑖 [𝑥𝑘, 𝑠𝑘] 𝑒

−iℎ̂𝑡𝑖𝜈 𝑡𝑘𝑖𝑥
𝑡
𝑘 ∫

+∞

−∞

𝑑ℎ̂𝑡𝑘
2𝜋

𝑒iℎ̂
𝑡
𝑘(𝑠

𝑡
𝑘−𝜈

𝑡
𝑖𝑘𝑥

𝑡
𝑖)]} (C.11a)

= 1
𝑍𝑖𝑗

𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

{∫
+∞

−∞
𝑑ℎ̂𝑡𝑖𝑒−i𝑠

𝑡
𝑖 ℎ̂𝑡𝑖 [𝛿 (ℎ̂𝑡𝑖 − i) (𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿 (𝑥

𝑡+1
𝑖 − 1)]

× ∏
𝑘∈𝜕𝑖⧵𝑗

[∑
𝑥 𝑡𝑘

∫
+∞

−∞
𝑑𝑠𝑡𝑘𝑐𝑘𝑖 [𝑥𝑘, 𝑠𝑘] 𝑒

−iℎ̂𝑡𝑖𝜈 𝑡𝑘𝑖𝑥
𝑡
𝑘𝛿 (𝑠𝑡𝑘 − 𝜈 𝑡𝑖𝑘𝑥

𝑡
𝑖)]} (C.11b)

then over the variables {𝑠𝑘},

𝑐𝑖𝑗 [𝑥𝑖, 𝑠𝑖] =
1
𝑍𝑖𝑗

𝑝(𝑥0𝑖 )
𝑇−1
∏
𝑡=0

{∫
+∞

−∞
𝑑ℎ̂𝑡𝑖𝑒−i𝑠

𝑡
𝑖 ℎ̂𝑡𝑖 [𝛿 (ℎ̂𝑡𝑖 − i) (𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿 (𝑥

𝑡+1
𝑖 − 1)]

× ∏
𝑘∈𝜕𝑖⧵𝑗

[∑
𝑥 𝑡𝑘

𝑐𝑘𝑖 [𝑥𝑘, 𝜈𝑖𝑘𝑥𝑖] 𝑒−iℎ̂
𝑡
𝑖𝜈 𝑡𝑘𝑖𝑥

𝑡
𝑘]} (C.12a)

= 1
𝑍𝑖𝑗

𝑝(𝑥0𝑖 )∑
𝑥𝜕𝑖⧵𝑗

{[ ∏
𝑘∈𝜕𝑖⧵𝑗

𝑐𝑘𝑖 [𝑥𝑘, 𝜈𝑖𝑘𝑥𝑖]]

×
𝑇−1
∏
𝑡=0

[∫
+∞

−∞
𝑑ℎ̂𝑡𝑖𝑒

−iℎ̂𝑡𝑖(𝑠𝑡𝑖+∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑡
𝑘𝑖𝑥

𝑡
𝑘) (𝛿 (ℎ̂𝑡𝑖 − i) (𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)) + 𝛿 (ℎ̂𝑡𝑖) 𝛿 (𝑥

𝑡+1
𝑖 − 1))]}

(C.12b)

and finally over ℎ̂𝑖, to obtain a more natural form for the dynamic cavity equations

𝑐𝑖𝑗 [𝑥𝑖, 𝑠𝑖] =
1
𝑍𝑖𝑗

𝑝(𝑥0𝑖 )∑
𝑥𝜕𝑖⧵𝑗

{[ ∏
𝑘∈𝜕𝑖⧵𝑗

𝑐𝑘𝑖 [𝑥𝑘, 𝜈𝑖𝑘𝑥𝑖]]

×
𝑇−1
∏
𝑡=0

[𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) 𝑒
𝑠𝑡𝑖+∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑡
𝑘𝑖𝑥

𝑡
𝑘 + 𝛿 (𝑥 𝑡+1𝑖 − 1) (1 − 𝑒𝑠

𝑡
𝑖+∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑡
𝑘𝑖𝑥

𝑡
𝑘)]}. (C.13)

Due to the locality and independence of observations, the latter can then be included in the
above equations as an additional single-node factor term, a local likelihood, to obtain the dy-
namic cavity equations in Eq. (6.9).

C.1 Reduction to the time-forward equations in the ab-
sence of observations

A major consequence of the introduction of time-forward messages 𝜌𝑖⧵𝑗𝑡→ and time-backward
messages 𝜌𝑖⧵𝑗𝑡← is that, in the absence of observations, it is possible to prove that the quantities
𝜇𝑡𝑖⧵𝑗 have to vanish for all edges ∀(𝑖, 𝑗) and ∀𝑡 and then recover a purely time-forward dynamics.
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Derivation of the dynamic cavity equations for the SI model

Using the definition of 𝑚𝑡
𝑖⧵𝑗 by means of the quantities 𝜌𝑖⧵𝑗→𝑡 (𝑥 𝑡𝑖) and 𝜌

𝑖⧵𝑗
𝑡← (𝑥 𝑡𝑖), but performing

the slicing one time step later, we obtain

𝑚𝑡
𝑖⧵𝑗 =

1
𝑍+
𝑖𝑗

∑
𝑥 𝑡𝑖 ,𝑥 𝑡+1𝑖

𝜌𝑖⧵𝑗→𝑡 (𝑥 𝑡𝑖) 𝑥
𝑡
𝑖𝑀

𝑖⧵𝑗
𝑥 𝑡𝑖𝑥 𝑡+1𝑖

𝜌𝑖⧵𝑗𝑡+1← (𝑥 𝑡+1𝑖 ) (C.14a)

= 1
𝑍+
𝑖𝑗
𝜌𝑖⧵𝑗→𝑡 (1) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑡
𝑖𝑘𝜇

𝑡
𝑘⧵𝑖𝑝 (𝑂 𝑡

𝑖 ∣ 1) 𝜌
𝑖⧵𝑗
𝑡+1← (1) (C.14b)

with

𝑍+
𝑖𝑗 = ∑

𝑥 𝑡𝑖 ,𝑥 𝑡+1𝑖

𝜌𝑖⧵𝑗→𝑡 (𝑥 𝑡𝑖)𝑀
𝑖⧵𝑗
𝑥 𝑡𝑖𝑥 𝑡+1𝑖

𝜌𝑖⧵𝑗𝑡+1← (𝑥 𝑡+1𝑖 ) (C.15a)

= 𝜌𝑖⧵𝑗→𝑡 (0) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖𝑝 (𝑂 𝑡

𝑖 ∣ 0) (𝜌
𝑖⧵𝑗
𝑡+1← (0) − 𝜌𝑖⧵𝑗𝑡+1← (1))

+ [𝜌𝑖⧵𝑗→𝑡 (0) 𝑝 (𝑂 𝑡
𝑖 ∣ 0) + 𝜌𝑖⧵𝑗→𝑡 (1) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑡
𝑖𝑘𝜇

𝑡
𝑘⧵𝑖𝑝 (𝑂 𝑡

𝑖 ∣ 1)] 𝜌
𝑖⧵𝑗
𝑡+1← (1) (C.15b)

or slicing a time step earlier,

𝑚𝑡
𝑖⧵𝑗 =

1
𝑍−
𝑖𝑗

∑
𝑥 𝑡−1𝑖 ,𝑥 𝑡𝑖

𝜌𝑖⧵𝑗→𝑡−1 (𝑥 𝑡−1𝑖 ) 𝑥 𝑡𝑖𝑀
𝑖⧵𝑗
𝑥 𝑡−1𝑖 𝑥 𝑡𝑖

𝜌𝑖⧵𝑗𝑡← (𝑥 𝑡𝑖) (C.16a)

= 1
𝑍−
𝑖𝑗

∑
𝑥 𝑡−1𝑖 ,𝑥 𝑡𝑖

𝜌𝑖⧵𝑗→𝑡−1 (𝑥 𝑡−1𝑖 ) 𝑥 𝑡𝑖 {𝛿 (𝑥
𝑡
𝑖 − 𝑥 𝑡−1𝑖 ) 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 + 𝛿 (𝑥 𝑡𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 ]}

× 𝑝 (𝑂 𝑡−1
𝑖 ∣ 𝑥 𝑡−1𝑖 ) 𝜌𝑖⧵𝑗𝑡← (𝑥 𝑡𝑖) (C.16b)

= 1
𝑍−
𝑖𝑗
[𝜌𝑖⧵𝑗→𝑡−1 (0) {1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 } 𝑝 (𝑂 𝑡−1

𝑖 ∣ 0) 𝜌𝑖⧵𝑗𝑡← (1) + 𝜌𝑖⧵𝑗→𝑡−1 (1) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑡−1
𝑖𝑘 𝜇𝑡−1𝑘⧵𝑖 𝑝 (𝑂 𝑡−1

𝑖 ∣ 1) 𝜌𝑖⧵𝑗𝑡← (1)]

(C.16c)

with

𝑍−
𝑖𝑗 = ∑

𝑥 𝑡−1𝑖 ,𝑥 𝑡𝑖

𝜌𝑖⧵𝑗→𝑡−1 (𝑥 𝑡−1𝑖 ) {𝛿 (𝑥 𝑡𝑖 − 𝑥 𝑡−1𝑖 ) 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 + 𝛿 (𝑥 𝑡𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 ]}

× 𝑝 (𝑂 𝑡−1
𝑖 ∣ 𝑥 𝑡−1𝑖 ) 𝜌𝑖⧵𝑗𝑡← (𝑥 𝑡𝑖) (C.17a)

= 𝜌𝑖⧵𝑗→𝑡−1 (0) 𝑝 (𝑂 𝑡−1
𝑖 ∣ 0) (𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 𝜌𝑖⧵𝑗𝑡← (0) + {1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 } 𝜌𝑖⧵𝑗𝑡← (1))

+ 𝜌𝑖⧵𝑗→𝑡−1 (1) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑡−1
𝑖𝑘 𝜇𝑡−1𝑘⧵𝑖 𝑝 (𝑂 𝑡−1

𝑖 ∣ 1) 𝜌𝑖⧵𝑗𝑡← (1) . (C.17b)

Using the previous result it is possible to express 𝑚𝑡
𝑖⧵𝑗 as function of 𝑚𝑡−1

𝑖⧵𝑗 , where

𝑚𝑡−1
𝑖⧵𝑗 =

𝜌𝑖⧵𝑗→𝑡−1 (1) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑡−1
𝑖𝑘 𝜇𝑡−1𝑘⧵𝑖 𝑝 (𝑂 𝑡−1

𝑖 ∣ 1) 𝜌𝑖⧵𝑗𝑡← (1)

∑𝑥 𝑡−1𝑖 ,𝑥 𝑡𝑖 𝜌
𝑖⧵𝑗
→𝑡−1 (𝑥 𝑡−1𝑖 )𝑀 𝑖⧵𝑗

𝑥 𝑡−1𝑖 𝑥 𝑡𝑖
𝜌𝑖⧵𝑗𝑡← (𝑥 𝑡𝑖)

(C.18)
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to obtain

𝑚𝑡
𝑖⧵𝑗 = 𝑚𝑡−1

𝑖⧵𝑗 +
𝜌𝑖⧵𝑗→𝑡−1 (0) 𝑝 (𝑂 𝑡−1

𝑖 ∣ 0) {1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 } 𝜌𝑖⧵𝑗𝑡← (1)

𝑍−
𝑖𝑗

×
1 − 𝑚𝑡−1

𝑖⧵𝑗

1 − 𝑚𝑡−1
𝑖⧵𝑗

(C.19a)

= 𝑚𝑡−1
𝑖⧵𝑗 +

1 − 𝑚𝑡−1
𝑖⧵𝑗

𝜌𝑖⧵𝑗→𝑡−1(0)𝑝(𝑂 𝑡−1
𝑖 ∣0)𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 𝜌𝑖⧵𝑗𝑡←(0)+𝜌𝑖⧵𝑗→𝑡−1(0)𝑝(𝑂 𝑡−1

𝑖 ∣0){1−𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 }𝜌𝑖⧵𝑗𝑡←(1)

𝑍−
𝑖𝑗

×
𝜌𝑖⧵𝑗→𝑡−1 (0) 𝑝 (𝑂 𝑡−1

𝑖 ∣ 0) {1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 } 𝜌𝑖⧵𝑗𝑡← (1)

𝑍−
𝑖𝑗

(C.19b)

= 𝑚𝑡−1
𝑖⧵𝑗 + (1 − 𝑚𝑡−1

𝑖⧵𝑗 )

×
𝜌𝑖⧵𝑗→𝑡−1 (0) 𝑝 (𝑂 𝑡−1

𝑖 ∣ 0) {1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 } 𝜌𝑖⧵𝑗𝑡← (1)

𝜌𝑖⧵𝑗→𝑡−1 (0) 𝑝 (𝑂 𝑡−1
𝑖 ∣ 0) 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 𝜌𝑖⧵𝑗𝑡← (0) + 𝜌𝑖⧵𝑗→𝑡−1 (0) 𝑝 (𝑂 𝑡−1

𝑖 ∣ 0) {1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 } 𝜌𝑖⧵𝑗𝑡← (1)

(C.19c)

= 𝑚𝑡−1
𝑖⧵𝑗 + (1 − 𝑚𝑡−1

𝑖⧵𝑗 )
{1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 } 𝜌𝑖⧵𝑗𝑡← (1)

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 𝜌𝑖⧵𝑗𝑡← (0) + {1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡−1
𝑘⧵𝑖 𝜈

𝑡−1
𝑘𝑖 } 𝜌𝑖⧵𝑗𝑡← (1)

. (C.19d)

As already stressed in the main text, the last expression does not represent a time-forward
equation because the quantities 𝜌𝑖⧵𝑗𝑡←(𝑥) are computed backward in time from 𝑇 to step 𝑡. Time-
forward dynamics is recovered if the two time-backward messages are equal, which is expected
to occur in the absence of observations at later times. To prove this, one can first notice that
𝜇𝑡𝑖⧵𝑗 = 0 if the time-backward messages are equal, i.e. if 𝜌𝑖⧵𝑗𝑡+1← (0) = 𝜌𝑖⧵𝑗𝑡+1← (1). In the absence
of observation also the inverse implication is true: when the set of messages 𝜇𝑡𝑖⧵𝑗 at time 𝑡 are
zero and there is no observation also at time 𝑡, then the corresponding time-backward messages
𝜌𝑖⧵𝑗𝑡← (𝑥 𝑡𝑖) are also uniform.

Let us start from the time 𝑇 − 1, because by construction 𝜇𝑇𝑖⧵𝑗 = 0, then

𝜇𝑇−1𝑖⧵𝑗 = ∑
𝑥𝑖

𝑝 (𝑥0𝑖 )
𝑍𝑖𝑗

(𝛿 (𝑥𝑇𝑖 − 𝑥𝑇−1𝑖 ) − 𝛿 (𝑥𝑇𝑖 − 1)) 𝑒∑𝑘∈𝜕𝑖⧵𝑗(𝑚
𝑇−1
𝑘⧵𝑖 𝜈

𝑇−1
𝑘𝑖 +𝑥𝑇−1𝑖 𝜈𝑇−1𝑖𝑘 𝜇𝑇−1𝑘⧵𝑖 )

𝑁 𝑖
𝑂

∏
ℓ=1

𝑝 (𝑂 𝑡ℓ
𝑖 ∣ 𝑥 𝑡ℓ𝑖 )

×
𝑇−1
∏
𝑡′=0

{𝛿 (𝑥 𝑡
′+1
𝑖 − 𝑥 𝑡

′
𝑖 ) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡′
𝑘⧵𝑖𝜈

𝑡′
𝑘𝑖 + 𝛿 (𝑥 𝑡

′+1
𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡′
𝑘⧵𝑖𝜈

𝑡′
𝑘𝑖 ]} 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥

𝑡′
𝑖 𝜈 𝑡

′
𝑖𝑘 𝜇

𝑡′
𝑘⧵𝑖

(C.20a)

=
∑𝑥𝑇−1𝑖 𝑥𝑇𝑖

𝜌𝑖⧵𝑗→𝑇−1 (𝑥
𝑇−1
𝑖 ) (𝛿 (𝑥𝑇𝑖 − 𝑥𝑇−1𝑖 ) − 𝛿 (𝑥𝑇𝑖 − 1)) 𝑒∑𝑘∈𝜕𝑖⧵𝑗(𝑚

𝑇−1
𝑘⧵𝑖 𝜈

𝑇−1
𝑘𝑖 +𝑥𝑇−1𝑖 𝜈𝑇−1𝑖𝑘 𝜇𝑇−1𝑘⧵𝑖 )𝑝 (𝑂𝑇

𝑖 ∣ 𝑥𝑇𝑖 )

𝜌𝑖⧵𝑗→𝑇−1 (0) 𝑞
𝑖⧵𝑗
→𝑇−1 + 𝜌𝑖⧵𝑗→𝑇−1 (1) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑇−1
𝑖𝑘 𝜇𝑇−1𝑘⧵𝑖 𝑝 (𝑂𝑇

𝑖 ∣ 1)
(C.20b)

=
𝜌𝑖⧵𝑗→𝑇−1 (0) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑇−1
𝑘⧵𝑖 𝜈

𝑇−1
𝑘𝑖 𝑝 (𝑂𝑇

𝑖 ∣ 0) − 𝜌𝑖⧵𝑗→𝑇−1 (0) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑇−1
𝑘⧵𝑖 𝜈

𝑇−1
𝑘𝑖 𝑝 (𝑂𝑇

𝑖 ∣ 1)

𝜌𝑖⧵𝑗→𝑇−1 (0) 𝑞
𝑖⧵𝑗
→𝑇−1 + 𝜌𝑖⧵𝑗→𝑇−1 (1) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑇−1
𝑖𝑘 𝜇𝑇−1𝑘⧵𝑖 𝑝 (𝑂𝑇

𝑖 ∣ 1)
. (C.20c)
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where
𝑞𝑖⧵𝑗→𝑇−1 = 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑇−1
𝑘⧵𝑖 𝜈

𝑇−1
𝑘𝑖 𝑝 (𝑂𝑇

𝑖 ∣ 0) + [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑇−1
𝑘⧵𝑖 ̃𝜈𝑇−1𝑘𝑖 ] 𝑝 (𝑂𝑇

𝑖 ∣ 1) (C.21)

If no observation is provided on the final time, then 𝑝 (𝑂𝑇
𝑖 ∣ 𝑥𝑇𝑖 ) = 1 for 𝑥𝑇𝑖 = 0,1 and the

numerator vanishes, that is 𝜇𝑇−1𝑖⧵𝑗 = 0. Moreover,

𝜌𝑖⧵𝑗𝑇−1← (𝑥𝑇−1𝑖 ) = 1
𝑍 𝑖⧵𝑗
𝑇−1←

∑
𝑥𝑇𝑖

𝑀 𝑖⧵𝑗
𝑥𝑇−1𝑖 𝑥𝑇𝑖

𝑝 (𝑂𝑇
𝑖 ∣ 𝑥𝑇𝑖 ) (C.22a)

= 1
𝑍 𝑖⧵𝑗
𝑇−1←

{𝑀 𝑖⧵𝑗
𝑥𝑇−1𝑖 0𝑝 (𝑂

𝑇
𝑖 ∣ 0) + 𝑀 𝑖⧵𝑗

𝑥𝑇−1𝑖 1𝑝 (𝑂
𝑇
𝑖 ∣ 1)} (C.22b)

that is

𝜌𝑖⧵𝑗𝑇−1← (0) = 1
𝑍 𝑖⧵𝑗
𝑇−1←

{𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑇−1
𝑘⧵𝑖 𝜈

𝑇−1
𝑘𝑖 𝑝 (𝑂𝑇−1

𝑖 ∣ 0) 𝑝 (𝑂𝑇
𝑖 ∣ 0) + (1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑇−1
𝑘⧵𝑖 𝜈

𝑇−1
𝑘𝑖 ) 𝑝 (𝑂𝑇−1

𝑖 ∣ 0) 𝑝 (𝑂𝑇
𝑖 ∣ 1)}

(C.23)

𝜌𝑖⧵𝑗𝑇−1← (1) = 1
𝑍 𝑖⧵𝑗
𝑇−1←

{𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑇−1
𝑖𝑘 𝜇𝑇−1𝑘⧵𝑖 𝑝 (𝑂𝑇−1

𝑖 ∣ 1) 𝑝 (𝑂𝑇
𝑖 ∣ 1)} . (C.24)

Assuming that there is no observation at time 𝑇, the two quantities become

𝜌𝑖⧵𝑗𝑇−1← (0) = 1
𝑍 𝑖⧵𝑗
𝑇−1←

{𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑇−1
𝑘⧵𝑖 𝜈

𝑇−1
𝑘𝑖 𝑝 (𝑂𝑇−1

𝑖 ∣ 0) + (1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑇−1
𝑘⧵𝑖 𝜈

𝑇−1
𝑘𝑖 ) 𝑝 (𝑂𝑇−1

𝑖 ∣ 0)}

= 1
𝑍 𝑖⧵𝑗
𝑇−1←

𝑝 (𝑂𝑇−1
𝑖 ∣ 0) (C.25)

𝜌𝑖⧵𝑗𝑇−1← (1) = 1
𝑍 𝑖⧵𝑗
𝑇−1←

𝑝 (𝑂𝑇−1
𝑖 ∣ 1) (C.26)

meaning that 𝜌𝑖⧵𝑗𝑇−1← (0) = 𝜌𝑖⧵𝑗𝑇−1← (1) if no observation is included at time 𝑇 − 1. In this way,
the equality is guaranteed at time 𝑇 − 1 and one can proceed by induction. By assuming that,
in the absence of observations at times larger than 𝑡, the equality is valid for time 𝑡 + 1, i.e.
𝜌𝑖⧵𝑗𝑡+1← (0) = 𝜌𝑖⧵𝑗𝑡+1← (1) = 𝜌𝑖⧵𝑗𝑡+1← for all directed edges (𝑖, 𝑗), then one obtains that 𝜇𝑡𝑖⧵𝑗 = 0.
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C.1 – Reduction to the time-forward equations in the absence of observations

Computing the time-backward messages at time 𝑡,

𝜌𝑖⧵𝑗𝑡← (𝑥 𝑡𝑖) =
∑𝑥 𝑡+1𝑖

𝜌𝑖⧵𝑗𝑡+1← (𝑥 𝑡+1𝑖 )𝑀 𝑖⧵𝑗
𝑥 𝑡𝑖𝑥 𝑡+1𝑖

∑𝑥 𝑡𝑖 ,𝑥 𝑡+1𝑖
𝜌𝑖⧵𝑗𝑡+1← (𝑥 𝑡+1𝑖 )𝑀 𝑖⧵𝑗

𝑥 𝑡𝑖𝑥 𝑡+1𝑖

(C.27a)

=
𝜌𝑖⧵𝑗𝑡+1← (0)𝑀 𝑖⧵𝑗

𝑥 𝑡𝑖0
+ 𝜌𝑖⧵𝑗𝑡+1← (1)𝑀 𝑖⧵𝑗

𝑥 𝑡𝑖1

𝜌𝑖⧵𝑗𝑡+1← (0) 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖 + 𝜌𝑖⧵𝑗𝑡+1← (1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖] + 𝜌𝑖⧵𝑗𝑡+1← (1) 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑡
𝑖𝑘𝜇

𝑡
𝑘⧵𝑖

(C.27b)

=
𝜌𝑖⧵𝑗𝑡+1← (𝑀 𝑖⧵𝑗

𝑥 𝑡𝑖0
+ 𝑀 𝑖⧵𝑗

𝑥 𝑡𝑖1
)

𝜌𝑖⧵𝑗𝑡+1←𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖𝑝 (𝑂 𝑡

𝑖 ∣ 0) + 𝜌𝑖⧵𝑗𝑡+1← [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖] 𝑝 (𝑂 𝑡

𝑖 ∣ 0) + 𝜌𝑖⧵𝑗𝑡+1←𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑡
𝑖𝑘𝜇

𝑡
𝑘⧵𝑖𝑝 (𝑂 𝑡

𝑖 ∣ 1)
(C.27c)

=
𝑀 𝑖⧵𝑗

𝑥 𝑡𝑖0
+ 𝑀 𝑖⧵𝑗

𝑥 𝑡𝑖1

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖𝑝 (𝑂 𝑡

𝑖 ∣ 0) + [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖] 𝑝 (𝑂 𝑡

𝑖 ∣ 0) + 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑡
𝑖𝑘𝜇

𝑡
𝑘⧵𝑖𝑝 (𝑂 𝑡

𝑖 ∣ 1)
(C.27d)

=
𝑀 𝑖⧵𝑗

𝑥 𝑡𝑖0
+ 𝑀 𝑖⧵𝑗

𝑥 𝑡𝑖1

𝑝 (𝑂 𝑡
𝑖 ∣ 0) + 𝑝 (𝑂 𝑡

𝑖 ∣ 1) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑡
𝑖𝑘𝜇

𝑡
𝑘⧵𝑖
, (C.27e)

and using that all 𝜇𝑡𝑘⧵𝑖 vanish,

𝜌𝑖⧵𝑗𝑡← (𝑥 𝑡𝑖) = {

𝑝(𝑂 𝑡
𝑖 ∣0)

𝑝(𝑂 𝑡
𝑖 ∣0)+𝑝(𝑂 𝑡

𝑖 ∣1)
if 𝑥 𝑡𝑖 = 0,

𝑝(𝑂 𝑡
𝑖 ∣1)

𝑝(𝑂 𝑡
𝑖 ∣0)+𝑝(𝑂 𝑡

𝑖 ∣1)
if 𝑥 𝑡𝑖 = 1,

(C.28)

that is equal to 1/2 and independent of the value of 𝑥 𝑡𝑖 if no observation occurs also at time 𝑡. By
induction, this is true for every time, as long as no observation is included. Hence, it is possible
to conclude that, in the absence of observations, the equations (C.19d) for the cavity marginals
𝑚𝑡
𝑖⧵𝑗 reduce to the more standard time-forward mean-field equations in Eqs.(6.31a)-(6.31a).
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Appendix D

Dynamic cavity equations
implementation

In this appendix, the implementation for the infection times of the dynamic cavity mean field
method is derived. Recalling that:

𝑐𝑖𝑗 [𝑥𝑖, 𝑠𝑖] =
1
𝑍𝑖𝑗

𝑃 [𝑥0𝑖 ]
𝑇−1
∏
𝑟=0

{𝛿 (𝑥 𝑟+1𝑖 − 𝑥 𝑟𝑖 ) 𝑒
𝑠𝑟𝑖+∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖 + 𝛿 (𝑥 𝑟+1𝑖 − 1) [1 − 𝑒𝑠

𝑟
𝑖+∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖]} 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥

𝑟
𝑖 𝜈 𝑟𝑖𝑘𝜇

𝑟
𝑘⧵𝑖,

(D.1)

the expression for the cavity message 𝑚𝑡
𝑖\𝑗 reads

𝑚𝑡
𝑖\𝑗 =

1
𝑍𝑖𝑗

[∑
𝑥𝑖

𝑥 𝑡𝑖𝑃 [𝑥
0
𝑖 ]

𝑇−1
∏
𝑠=0

{𝛿 (𝑥 𝑠+1𝑖 − 𝑥 𝑠𝑖 ) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑠
𝑘⧵𝑖𝜈

𝑠
𝑘𝑖 + 𝛿 (𝑥 𝑠+1𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑠
𝑘⧵𝑖𝜈

𝑠
𝑘𝑖]} 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥

𝑠
𝑖 𝜈 𝑠𝑖𝑘𝜇

𝑠
𝑘⧵𝑖]

(D.2)
with

𝑍𝑖𝑗 = ∑
𝑥𝑖

𝑃 [𝑥0𝑖 ]
𝑇−1
∏
𝑡=0

{𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖 + 𝛿 (𝑥 𝑡+1𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖]} 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥

𝑡
𝑖 𝜈 𝑡𝑖𝑘𝜇

𝑡
𝑘⧵𝑖

(D.3)
Then, the fields 𝜇𝑡𝑖\𝑗 are defined as:

𝜇𝑡𝑖\𝑗 = ∑
𝑥 𝑡𝑖

𝜕𝑐𝑖𝑗
𝜕𝑠𝑡𝑖

|
𝑠𝑖=0

(D.4)

𝜇𝑡𝑖\𝑗 = ∑
𝑥𝑖

𝑃 [𝑥0𝑖 ]
𝑍𝑖𝑗

[𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)] 𝑒∑𝑘∈𝜕𝑖⧵𝑗(𝑚
𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖+𝑥

𝑡
𝑖 𝜈 𝑡𝑖𝑘𝜇

𝑡
𝑘⧵𝑖)

×
𝑇−1
∏
𝑟≠𝑡

{𝛿 (𝑥 𝑟+1𝑖 − 𝑥 𝑟𝑖 ) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖 + 𝛿 (𝑥 𝑟+1𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖]} 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥

𝑟
𝑖 𝜈 𝑟𝑖𝑘𝜇

𝑟
𝑘⧵𝑖 (D.5)
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Dynamic cavity equations implementation

Let us rewrite everything using the infection time representation. 𝑥 𝑡𝑖 is defined for 𝑡 ∈ {0,1,… , 𝑇},
so it has 𝑇 + 1 values. Remember that by construction 𝜇𝑇𝑖\𝑗 = 0.

Consider the term

𝐹𝑖\𝑗 (𝑥𝑖, 𝑟) = {𝛿 (𝑥 𝑟+1𝑖 − 𝑥 𝑟𝑖 ) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖 + 𝛿 (𝑥 𝑟+1𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖]} 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥

𝑟
𝑖 𝜈 𝑟𝑖𝑘𝜇

𝑟
𝑘⧵𝑖 (D.6)

Let us rewrite it in terms of the infection time, as 𝐹𝑖\𝑗 (𝑟, 𝑡𝑖) .At fixed 𝑡𝑖 we have (assume 𝜃 [0] = 1):

𝑥 𝑟𝑖 = 𝜃 [𝑟 − 𝑡𝑖]

Then,

𝛿 (𝑥 𝑟+1𝑖 − 1) = {
0 𝑟 < 𝑡𝑖 − 1
1 𝑟 ≥ 𝑡𝑖 − 1

= 𝜃 [𝑟 − (𝑡𝑖 − 1)]

and

𝛿 (𝑥 𝑟+1𝑖 − 𝑥 𝑟𝑖 ) = {
0 𝑟 = 𝑡𝑖 − 1
1 𝑟 < 𝑡𝑖 − 1 ∪ 𝑟 ≥ 𝑡𝑖

= 1 − 𝛿𝑟,𝑡𝑖−1

= 𝜃 [𝑟 − 𝑡𝑖] + 𝜃 [𝑡𝑖 − 2 − 𝑟]

Therefore, the 𝐹𝑖⧵𝑗 can be written as:

𝐹𝑖\𝑗 (𝑟, 𝑡𝑖) = {[1 − 𝛿𝑟,𝑡𝑖−1] 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖 + 𝜃 [𝑟 − (𝑡𝑖 − 1)] [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖]} 𝑒𝜃[𝑟−𝑡𝑖]∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖

= {(𝜃 [𝑟 − 𝑡𝑖] + 𝜃 [𝑡𝑖 − 2 − 𝑟]) 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖 + 𝜃 [𝑟 − (𝑡𝑖 − 1)] [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖]} 𝑒𝜃[𝑟−𝑡𝑖]∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖

= {(𝜃 [𝑟 − 𝑡𝑖] + 𝜃 [𝑡𝑖 − 2 − 𝑟] − 𝜃 [𝑟 − (𝑡𝑖 − 1)]) 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖 + 𝜃 [𝑟 − (𝑡𝑖 − 1)]} 𝑒𝜃[𝑟−𝑡𝑖]∑𝑘∈𝜕𝑖⧵𝑗 𝜈

𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖

(D.7)

Consider

𝜃 [𝑟 − 𝑡𝑖] + 𝜃 [𝑡𝑖 − 2 − 𝑟] − 𝜃 [𝑟 − (𝑡𝑖 − 1)] =
⎧

⎨
⎩

1 𝑟 ≤ 𝑡𝑖 − 2
−1 𝑟 = 𝑡𝑖 − 1
0 𝑟 ≥ 𝑡𝑖

So that finally

𝐹𝑖\𝑗 (𝑟, 𝑡𝑖) =
⎧

⎨
⎩

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖 𝑟 ≤ 𝑡𝑖 − 2

1 − 𝜙 (𝑡𝑖) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 𝑟 = 𝑡𝑖 − 1

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖 𝑟 ≥ 𝑡𝑖

𝜙 (𝑡𝑖) = {
1 1 ≤ 𝑡𝑖 ≤ 𝑇
0 else

As a final remark, we rewrite the initial condition 𝑃 [𝑥0𝑖 ] as 𝜋0𝑖 (𝑡𝑖) where

𝜋0𝑖 (𝑟) = {
𝛾 0𝑖 𝑟 = 0
1 − 𝛾 0𝑖 𝑟 > 0
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D.1 – The case of no observations

D.1 The case of no observations
Let us start from the case with no observations, because of the simplicity. Let us rewrite the
three terms 𝑍𝑖𝑗, 𝑚𝑡

𝑖\𝑗 and 𝜇𝑡𝑖\𝑗 in the infection time representation.

D.1.1 Formulation for the messages and normalization
Messages

Let us start with the normalization of the messages. Using the definitions above, we get

𝑍𝑖\𝑗 = ∑
𝑥𝑖

𝑃 [𝑥0𝑖 ]
𝑇−1
∏
𝑟=0

{𝛿 (𝑥 𝑟+1𝑖 − 𝑥 𝑟𝑖 ) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖 + 𝛿 (𝑥 𝑟+1𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖]} 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥

𝑟
𝑖 𝜈 𝑟𝑖𝑘𝜇

𝑟
𝑘⧵𝑖

=
𝑇+1
∑
𝑡𝑖=0

𝜋0𝑖 (𝑡𝑖)
𝑇−1
∏
𝑟=0

𝐹𝑖\𝑗 (𝑟, 𝑡𝑖)

=
𝑇+1
∑
𝑡𝑖=0

𝜋0𝑖 (𝑡𝑖) [
𝑡𝑖−2
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖 (D.8)

Let us now do the same for the messages 𝑚𝑖⧵𝑗. At each 𝑡 ∈ {0, 𝑇} ,𝑥 𝑡𝑖 = 𝜃 [𝑡 − 𝑡𝑖]:

𝑚𝑡
𝑖\𝑗 =

1
𝑍𝑖\𝑗

∑
𝑥𝑖

𝑥 𝑡𝑖𝑃 [𝑥
0
𝑖 ]

𝑇−1
∏
𝑟=0

{𝛿 (𝑥 𝑟+1𝑖 − 𝑥 𝑟𝑖 ) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖 + 𝛿 (𝑥 𝑟+1𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖]} 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥

𝑟
𝑖 𝜈 𝑟𝑖𝑘𝜇

𝑟
𝑘⧵𝑖

= 1
𝑍𝑖\𝑗

𝑇−1
∑
𝑡𝑖=0

𝜃 [𝑡 − 𝑡𝑖] 𝜋0𝑖 (𝑡𝑖) [
𝑡𝑖−2
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖

= 1
𝑍𝑖\𝑗

𝑡
∑
𝑡𝑖=0

𝜋0𝑖 (𝑡𝑖) [
𝑡𝑖−2
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖 (D.9)

Then for the fields 𝜇𝑡𝑖⧵𝑗:

𝜇𝑡𝑖\𝑗 = ∑
𝑥𝑖

𝑃 [𝑥0𝑖 ]
𝑍𝑖𝑗

[𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1)] 𝑒∑𝑘∈𝜕𝑖⧵𝑗(𝑚
𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖+𝑥

𝑡
𝑖 𝜈 𝑡𝑖𝑘𝜇

𝑡
𝑘⧵𝑖)×

×
𝑇−1
∏
𝑟≠𝑡

{𝛿 (𝑥 𝑟+1𝑖 − 𝑥 𝑟𝑖 ) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖 + 𝛿 (𝑥 𝑟+1𝑖 − 1) [1 − 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖]} 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑥

𝑟
𝑖 𝜈 𝑟𝑖𝑘𝜇

𝑟
𝑘⧵𝑖 (D.10)

𝛿 (𝑥 𝑡+1𝑖 − 𝑥 𝑡𝑖) − 𝛿 (𝑥 𝑡+1𝑖 − 1) =
⎧

⎨
⎩

1 𝑡 ≤ 𝑡𝑖 − 2
−1 𝑡 = 𝑡𝑖 − 1
0 𝑡 ≥ 𝑡𝑖

So, 𝑡𝑖 must be always 𝑡𝑖 ≥ 𝑡 + 1, but we have two different terms depending on the weight.
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𝜇𝑡𝑖\𝑗 =
1
𝑍𝑖\𝑗

𝑇+1
∑
𝑡𝑖=𝑡+2

𝜋0𝑖 (𝑡𝑖) 𝑒
∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖 [

𝑡𝑖−2
∏
𝑟=0
𝑟≠𝑡

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖+

− 1
𝑍𝑖\𝑗

𝕀 [0 ≤ 𝑡 ≤ 𝑇] 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖𝜋0𝑖 (𝑡 + 1) [

𝑡−1
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖]

𝑇−1
∏
𝑟=𝑡+1

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖

= 1
𝑍𝑖\𝑗

𝑇+1
∑
𝑡𝑖=𝑡+2

𝜋0𝑖 (𝑡𝑖) [
𝑡𝑖−2
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖+

− 1
𝑍𝑖\𝑗

𝕀 [0 ≤ 𝑡 ≤ 𝑇] 𝜋0𝑖 (𝑡 + 1) [
𝑡

∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖]

𝑇−1
∏
𝑟=𝑡+1

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖 (D.11)

Shifting time indices in the sum and products, the result is

𝜇𝑡𝑖\𝑗 =
1
𝑍𝑖\𝑗

𝑇−1
∑
𝑡𝑖=𝑡

𝜋0𝑖 (𝑡𝑖 + 2) [
𝑡𝑖

∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖 + 2) 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚

𝑡𝑖+1
𝑘⧵𝑖 𝜈

𝑡𝑖+1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖+2

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖+

− 1
𝑍𝑖\𝑗

𝕀 [0 ≤ 𝑡 ≤ 𝑇] 𝜋0𝑖 (𝑡 + 1) [
𝑡

∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖]

𝑇−1
∏
𝑟=𝑡+1

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖 (D.12)

The only non-zero configurations here are those with 𝑡𝑖 = 𝑇 and 𝑡𝑖 = 𝑇 +1with different weight.

Marginals

By analogy with the message 𝑚𝑡
𝑖\𝑗, we can write

𝑍𝑖 =
𝑇+1
∑
𝑡𝑖=0

𝜋0𝑖 (𝑡𝑖) [
𝑡𝑖−2
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖) 𝑒∑𝑘∈𝜕𝑖 𝑚

𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖

𝑒∑𝑘∈𝜕𝑖 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖

𝑚𝑡
𝑖 =

1
𝑍𝑖

𝑡
∑
𝑡𝑖=0

𝜋0𝑖 (𝑡𝑖) [
𝑡𝑖−2
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖) 𝑒∑𝑘∈𝜕𝑖 𝑚

𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖

𝑒∑𝑘∈𝜕𝑖 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖

D.2 Compact representation
Let us introduce now some definitions that are going to be used to rewrite the quantities in a
cleaner way, in the case where there are no observations. Let us define 𝑀 and 𝑁 for the cavity
messages:

𝑀𝜕𝑖\𝑗 (𝑟) = ∑
𝑘∈𝜕𝑖\𝑗

𝑚𝑟
𝑘\𝑖𝜈

𝑟
𝑘𝑖 (D.13)

𝑁𝜕𝑖\𝑗 (𝑟) = ∑
𝑘∈𝜕𝑖\𝑗

𝜇𝑟𝑘\𝑖𝜈
𝑟
𝑖𝑘 (D.14)

and also a non-cavity version of the above quantities:

𝑀𝜕𝑖 (𝑟) = ∑
𝑘∈𝜕𝑖

𝑚𝑟
𝑘\𝑖𝜈

𝑟
𝑘𝑖

= 𝑀𝜕𝑖\𝑗 (𝑟) + 𝑚𝑟
𝑗\𝑖𝜈

𝑟
𝑗𝑖 (D.15)
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𝑁𝜕𝑖 (𝑟) = ∑
𝑘∈𝜕𝑖

𝜇𝑟𝑘\𝑖𝜈
𝑟
𝑖𝑘

= 𝑁𝜕𝑖\𝑗 (𝑟) + 𝜇𝑟𝑗\𝑖𝜈
𝑟
𝑖𝑗 (D.16)

D.2.1 Messages
When there are no observations, the denominator of the messages is:

𝑍𝑖\𝑗 =
𝑇+1
∑
𝑡𝑖=0

𝜋0𝑖 (𝑡𝑖) [
𝑡𝑖−2
∏
𝑟=0

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑟
𝑘⧵𝑖𝜈

𝑟
𝑘𝑖] [1 − 𝜙 (𝑡𝑖) 𝑒

∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡𝑖−1
𝑘⧵𝑖 𝜈

𝑡𝑖−1
𝑘𝑖 ]

𝑇−1
∏
𝑟=𝑡𝑖

𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝜈
𝑟
𝑖𝑘𝜇

𝑟
𝑘⧵𝑖

In order to streamline the calculation, let us define

𝐺𝜕𝑖\𝑗 (𝑠) =
𝑠
∑
𝑟=0

𝑀𝜕𝑖\𝑗 (𝑟) (D.17)

𝑉𝜕𝑖\𝑗 (𝑠) =
𝑇−1
∑
𝑟=𝑠

𝑁𝜕𝑖\𝑗 (𝑟) (D.18)

Since 𝜙 (𝑡𝑖) = 1 only for 𝑡𝑖 ≥ 1, 𝜙 (𝑡) = 𝜃 (𝑡 − 1). Then it’s possible to define 𝐿𝜕𝑖\𝑗:

𝐿𝜕𝑖\𝑗 (𝑡) = 1 − 𝜙 (𝑡 + 1) 𝑒∑𝑘∈𝜕𝑖⧵𝑗 𝑚
𝑡
𝑘⧵𝑖𝜈

𝑡
𝑘𝑖 = 1 − 𝜙 (𝑡 + 1) 𝑒𝑀𝜕𝑖\𝑗(𝑡), (D.19)

which has the nice property:

log 𝐿𝜕𝑖\𝑗 (𝑡) = 𝜙 (𝑡 + 1) log (1 − 𝑒𝑀𝜕𝑖\𝑗(𝑡)) = 𝜃 (𝑡) log (1 − 𝑒𝑀𝜕𝑖\𝑗(𝑡)) (D.20)

Now the calculation of the 𝑍𝑖\𝑗 reads as:

𝑍𝑖\𝑗 =
𝑇+1
∑
𝑡𝑖=0

exp {𝐻𝜕𝑖\𝑗 (𝑡𝑖)} (D.21)

where
𝐻𝜕𝑖\𝑗 (𝑡) = log 𝜋0𝑖 (𝑡) + 𝐺𝜕𝑖\𝑗 (𝑡 − 2) + 𝑉𝜕𝑖\𝑗 (𝑡) + log 𝐿𝜕𝑖\𝑗 (𝑡 − 1) (D.22)

Also, the messages can be computed as

𝑚𝑡
𝑖\𝑗 =

1
𝑍𝑖\𝑗

𝑡
∑
𝑡𝑖=0

exp {𝐻𝜕𝑖\𝑗 (𝑡𝑖)} (D.23)

and the fields 𝜇 as:

𝜇𝑡𝑖\𝑗 =
𝕀 [0 ≤ 𝑡 ≤ 𝑇 − 1]

𝑍𝑖\𝑗
{
𝑇+1
∑
𝑡𝑖=𝑡+2

exp [𝐻𝜕𝑖\𝑗 (𝑡𝑖)] − 𝜋0𝑖 (𝑡 + 1) 𝑒𝐺𝜕𝑖\𝑗(𝑡)+𝑉𝜕𝑖\𝑗(𝑡+1)} (D.24)
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D.2.2 Marginals
For the marginals, it would be ideal to rewrite the calculation in a similar way, with

𝐻𝜕𝑖 (𝑡) = log 𝜋0𝑖 (𝑡) + 𝐺𝜕𝑖 (𝑡 − 2) + 𝑉𝜕𝑖 (𝑡) + log 𝐿𝜕𝑖 (𝑡 − 1) (D.25)

defining

𝐺𝜕𝑖 (𝑡) =
𝑡

∑
𝑟=0

𝑀𝜕𝑖 (𝑟) =
𝑡

∑
𝑟=0

𝑀𝜕𝑖\𝑗 (𝑟) +
𝑡

∑
𝑟=0

𝑚𝑟
𝑗\𝑖𝜈

𝑟
𝑗𝑖

𝐺𝜕𝑖 (𝑡) = 𝐺𝜕𝑖\𝑗 (𝑡) + 𝐾𝐹
𝑗\𝑖 (𝑡) (D.26)

where 𝐾𝐹
𝑗\𝑖 = ∑𝑡

𝑟=0 𝑚
𝑟
𝑗\𝑖𝜈

𝑟
𝑗𝑖. In the same way, 𝑉𝜕𝑖 is defined as:

𝑉𝜕𝑖 (𝑠) =
𝑇−1
∑
𝑟=𝑠

𝑁𝜕𝑖 (𝑟) =
𝑇−1
∑
𝑟=𝑠

𝑁𝜕𝑖\𝑗 (𝑟) +
𝑇−1
∑
𝑟=𝑠

𝜇𝑟𝑗\𝑖𝜈
𝑟
𝑖𝑗

𝑉𝜕𝑖 (𝑠) = 𝑉𝜕𝑖\𝑗 (𝑠) + 𝐾𝐵
𝑗\𝑖 (𝑠) (D.27)

with

𝐾𝐵
𝑗\𝑖 (𝑠) =

𝑇−1
∑
𝑟=𝑠

𝜇𝑟𝑗\𝑖𝜈
𝑟
𝑖𝑗 (D.28)

𝐿𝜕𝑖 poses a problem now, as 𝐿𝜕𝑖 (𝑡) = 1 − 𝜙 (𝑡 + 1) 𝑒𝑀𝜕𝑖(𝑡). This can be solved by defining a 𝐻̃𝑖

𝐻̃𝑖 (𝑡) = log 𝜋0𝑖 (𝑡) + 𝐺𝜕𝑖 (𝑡 − 2) + 𝑉𝜕𝑖 (𝑡) (D.29)

redefining the 𝐻s as:
𝐻𝜕𝑖 (𝑡) = 𝐻̃𝑖 (𝑡) + log 𝐿𝜕𝑖 (𝑡 − 1) (D.30)

and
𝐻𝜕𝑖\𝑗 (𝑡) = 𝐻̃𝑖 (𝑡) − 𝐾𝐹

𝑗\𝑖 (𝑡 − 2) − 𝐾𝐵
𝑗\𝑖 (𝑡) + log 𝐿𝜕𝑖\𝑗 (𝑡 − 1) (D.31)

which helps to reduce the computation required.

D.2.3 Summary

𝑍𝑖\𝑗 =
𝑇+1
∑
𝑡𝑖=0

𝑒𝐻𝜕𝑖\𝑗(𝑡𝑖) (D.32)

𝑚𝑡
𝑖\𝑗 =

1
𝑍𝑖\𝑗

𝑡
∑
𝑡𝑖=0

𝑒𝐻𝜕𝑖\𝑗(𝑡𝑖) (D.33)

𝜇𝑡𝑖\𝑗 =
𝕀 [0 ≤ 𝑡 ≤ 𝑇 − 1]

𝑍𝑖\𝑗
{
𝑇+1
∑
𝑡𝑖=𝑡+2

𝑒𝐻𝜕𝑖\𝑗(𝑡𝑖) − 𝜋0𝑖 (𝑡 + 1) 𝑒𝐺𝜕𝑖\𝑗(𝑡)+𝑉𝜕𝑖\𝑗(𝑡+1)} (D.34)

𝑍𝑖 =
𝑇+1
∑
𝑡𝑖=0

exp {𝐻𝜕𝑖 (𝑡𝑖)} =
𝑇+1
∑
𝑡𝑖=0

exp {𝐻̃𝑖 (𝑡𝑖)} × 𝐿𝜕𝑖 (𝑡𝑖 − 1) (D.35)

𝑚𝑖 (𝑡) =
1
𝑍𝑖

𝑡
∑
𝑡𝑖=0

𝑒𝐻̃𝑖(𝑡𝑖)𝐿𝜕𝑖 (𝑡𝑖 − 1) (D.36)
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D.3 Hard observations
Assume now observations are made on an epidemic cascade, and with each observation the
state of an individual is observed with the possibility of making errors. Let’ say that each node
is observed in two subsequent times, first as susceptible at time 𝜏0𝑖 and then infected at time

𝜏1𝑖 , such that 𝑥𝜏
𝑠
𝑖
𝑖 = 𝑠 with 𝑠 ∈ {0,1} and 𝜏1𝑖 > 𝜏0𝑖 . If node 𝑖 is observed only once in one of the

two states or never observed, we can nominally set 𝜏0𝑖 = −1 and/or 𝜏1𝑖 = 𝑇 + 1 if 𝑖 is never
observed susceptible (resp. infected). By construction 𝜏1𝑖 > 𝜏0𝑖 . The general expression of the
above formulas should be:

𝑍𝑖\𝑗 (𝜏0𝑖 , 𝜏1𝑖 ) =
𝜏 1𝑖
∑

𝑡𝑖=𝜏 0𝑖 +1
𝑒𝐻̃𝑖(𝑡𝑖)−𝐾 𝐹

𝑗\𝑖(𝑡𝑖−2)−𝐾
𝐵
𝑗\𝑖(𝑡𝑖)𝐿𝜕𝑖\𝑗 (𝑡𝑖 − 1) (D.37)

𝑚𝑡
𝑖\𝑗 (𝜏

0
𝑖 , 𝜏1𝑖 ) =

𝜃 [𝑡 − (𝜏0𝑖 + 1)]

𝑍𝑖\𝑗 (𝜏0𝑖 , 𝜏1𝑖 )

min(𝑡,𝜏 1𝑖 )

∑
𝑡𝑖=𝜏 0𝑖 +1

𝑒𝐻̃𝑖(𝑡𝑖)−𝐾 𝐹
𝑗\𝑖(𝑡𝑖−2)−𝐾

𝐵
𝑗\𝑖(𝑡𝑖)𝐿𝜕𝑖\𝑗 (𝑡𝑖 − 1) (D.38)

𝜇𝑡𝑖\𝑗 (𝜏
0
𝑖 , 𝜏1𝑖 ) =

1
𝑍𝑖\𝑗 (𝜏0𝑖 , 𝜏1𝑖 )

𝜏 1𝑖
∑

𝑡𝑖=max(𝑡+2,𝜏 0𝑖 +1)
𝑒𝐻̃𝑖(𝑡𝑖)−𝐾 𝐹

𝑗\𝑖(𝑡𝑖−2)−𝐾
𝐵
𝑗\𝑖(𝑡𝑖)𝐿𝜕𝑖\𝑗 (𝑡𝑖 − 1) +

− 1
𝑍𝑖\𝑗 (𝜏0𝑖 , 𝜏1𝑖 )

𝕀 [max (𝜏0𝑖 ,0) ≤ 𝑡 ≤ min (𝜏1𝑖 , 𝑇) − 1] 𝜋0𝑖 (𝑡 + 1) 𝑒𝐺𝜕𝑖(𝑡)−𝐾 𝐹
𝑗\𝑖(𝑡)+𝑉𝜕𝑖(𝑡+1)−𝐾

𝐵
𝑗\𝑖(𝑡+1)

(D.39)

𝑍𝑂
𝑖 =

𝜏 1𝑖
∑

𝑡𝑖=𝜏 0𝑖 +1
exp {𝐻̃𝑖 (𝑡𝑖)} × 𝐿𝜕𝑖 (𝑡𝑖 − 1) (D.40)

𝑚𝑖 (𝑡 ∣ 𝜏0𝑖 , 𝜏1𝑖 ) =
1
𝑍𝑂
𝑖

min(𝑡,𝜏 1𝑖 )

∑
𝑡𝑖=𝜏 0𝑖 +1

𝑒𝐻̃𝑖(𝑡𝑖)𝐿𝜕𝑖 (𝑡𝑖 − 1) (D.41)

𝑇+1
∑
𝑠=𝑡+2

𝑒𝐻(𝑠) =
𝑇−1
∑
𝑟=𝑡

𝑒𝐻(𝑟+2)

D.3.1 Rewrite with the compact formalism
Compute

𝑀𝜕𝑖 (𝑟) = ∑
𝑘∈𝜕𝑖

𝑚𝑟
𝑘\𝑖𝜈

𝑟
𝑘𝑖

𝑁𝜕𝑖 (𝑟) = ∑
𝑘∈𝜕𝑖

𝜇𝑟𝑘\𝑖𝜈
𝑟
𝑖𝑘

Then

𝐺𝜕𝑖 (𝑡) =
𝑡

∑
𝑟=0

𝑀𝜕𝑖 (𝑟)
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𝑉𝜕𝑖 (𝑠) =
𝑇−1
∑
𝑟=𝑠

𝑁𝜕𝑖 (𝑟)

Now we can calculate

𝐻̃𝑖 (𝑡) = log 𝜋0𝑖 (𝑡) + 𝐺𝜕𝑖 (𝑡 − 2) + 𝑉𝜕𝑖 (𝑡)

Actually, since 𝑡 ranges from 0 to 𝑇 + 1, and 𝐺𝜕𝑖 and 𝑉𝜕𝑖 range from 0 to 𝑇 − 1, we have to
put:

𝐻̃𝑖 (𝑡) = log 𝜋0𝑖 (𝑡) + 𝜃 (𝑡 + 2) 𝐺𝜕𝑖 (𝑡 − 2) + 𝜃 (𝑇 − 1 − 𝑡) 𝑉𝜕𝑖 (𝑡) (D.42)

These 𝜃 functions actually corresponds to the correct limits, as when 𝑡𝑖 < 2 the first term (cor-
responding to 𝐺𝜕𝑖) in the product of equation D.8 (or equation D.9) is absent, and the same is
true for 𝑡𝑖 > 𝑇 − 1 for the last product in the equation, representing 𝑉𝜕𝑖.

Considering the links, 𝑖𝑗,

𝐾𝐹
𝑗\𝑖 (𝑡) =

𝑡
∑
𝑟=0

𝑚𝑟
𝑗\𝑖𝜈

𝑟
𝑗𝑖

𝐾𝐵
𝑗\𝑖 (𝑡) =

𝑇+1
∑
𝑟=𝑡

𝜇𝑟𝑗\𝑖𝜈
𝑟
𝑖𝑗

The same goes for 𝐾𝐹 and 𝐾𝐵, so we now compute

𝐻𝜕𝑖\𝑗 (𝑡) = 𝐻̃𝑖 (𝑡) − 𝜃 (𝑡 + 2) 𝐾𝐹
𝑗\𝑖 (𝑡 − 2) − 𝜃 (𝑇 − 1 − 𝑡) 𝐾𝐵

𝑗\𝑖 (𝑡) + 𝜃 (𝑡 − 1) log [1 − 𝑒𝑀𝜕𝑖(𝑡−1)−𝑚𝑡
𝑗\𝑖𝜈

𝑡
𝑗𝑖]

(D.43)
for each 𝑡 in the sum in order to compute both

𝑍𝑖\𝑗 (𝜏0𝑖 , 𝜏1𝑖 ) =
𝜏 1𝑖
∑

𝑡𝑖=𝜏 0𝑖 +1
exp {𝐻𝜕𝑖\𝑗 (𝑡𝑖)} (D.44)

and

𝑚𝑡
𝑖\𝑗 (𝜏

0
𝑖 , 𝜏1𝑖 ) =

𝜃 [𝑡 − (𝜏0𝑖 + 1)]

𝑍𝑖\𝑗 (𝜏0𝑖 , 𝜏1𝑖 )

min(𝑡,𝜏 1𝑖 )

∑
𝑡𝑖=𝜏 0𝑖 +1

exp {𝐻𝜕𝑖\𝑗 (𝑡𝑖)} (D.45)

So for the equation of 𝜇 (eq D.39):

𝐻̃𝑖 (𝑡𝑖) − 𝐾𝐹
𝑗\𝑖 (𝑡𝑖 − 2) − 𝐾𝐵

𝑗\𝑖 (𝑡𝑖) = 𝐻̃𝑖 (𝑡𝑖) − 𝜃 (𝑡𝑖 + 2) 𝐾𝐹
𝑗\𝑖 (𝑡𝑖 − 2) − 𝜃 (𝑇 − 1 − 𝑡𝑖) 𝐾𝐵

𝑗\𝑖 (𝑡𝑖)

and also in the second part

𝑉𝜕𝑖 (𝑡 + 1) − 𝐾𝐵
𝑗\𝑖 (𝑡 + 1) = 𝜃 (𝑇 − 2 − 𝑡) [𝑉𝜕𝑖 (𝑡 + 1) − 𝐾𝐵

𝑗\𝑖 (𝑡 + 1)]

So that the mu update is:

𝜇𝑡𝑖\𝑗 (𝜏
0
𝑖 , 𝜏1𝑖 ) =

1
𝑍𝑖\𝑗 (𝜏0𝑖 , 𝜏1𝑖 )

𝜏 1𝑖
∑

𝑡𝑖=max(𝑡+2,𝜏 0𝑖 +1)
exp {𝐻𝜕𝑖\𝑗 (𝑡𝑖)} +

−
𝕀 [max (𝜏0𝑖 ,0) ≤ 𝑡 ≤ min (𝜏1𝑖 , 𝑇) − 1]

𝑍𝑖\𝑗 (𝜏0𝑖 , 𝜏1𝑖 )
𝜋0𝑖 (𝑡 + 1) 𝑒𝐺𝜕𝑖(𝑡)−𝐾 𝐹

𝑗\𝑖(𝑡)+𝜃(𝑇−2−𝑡)[𝑉𝜕𝑖(𝑡+1)−𝐾
𝐵
𝑗\𝑖(𝑡+1)]

(D.46)
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This can be written with an indices shift into:

𝜇𝑡𝑖\𝑗 (𝜏
0
𝑖 , 𝜏1𝑖 ) =

1
𝑍𝑖\𝑗 (𝜏0𝑖 , 𝜏1𝑖 )

𝜏 1𝑖 −2
∑

𝑠𝑖=max(𝑡,𝜏 0𝑖 −1)
exp {𝐻𝜕𝑖\𝑗 (𝑠𝑖 + 2)} +

−
𝕀 [max (𝜏0𝑖 ,0) ≤ 𝑡 ≤ min (𝜏1𝑖 , 𝑇) − 1]

𝑍𝑖\𝑗 (𝜏0𝑖 , 𝜏1𝑖 )
𝜋0𝑖 (𝑡 + 1) 𝑒𝐺𝜕𝑖(𝑡)−𝐾 𝐹

𝑗\𝑖(𝑡)+𝜃(𝑇−2−𝑡)[𝑉𝜕𝑖(𝑡+1)−𝐾
𝐵
𝑗\𝑖(𝑡+1)]

(D.47)

D.3.2 Numerical stability

The problem sometimes is that 𝑒𝐻𝜕𝑖\𝑗(𝑡𝑖) gets to infinity. This can be solved by removing a con-
stant factor 𝐶 in the computation of each message.

𝑍𝑖\𝑗 =
𝜏 1𝑖
∑

𝑡𝑖=𝜏 0𝑖 +1
𝑒𝐻𝜕𝑖\𝑗(𝑡𝑖) =

𝜏 1𝑖
∑

𝑡𝑖=𝜏 0𝑖 +1
𝑒𝐻

𝑐
𝜕𝑖\𝑗(𝑡𝑖)+𝐶 = 𝑒𝐶

𝜏 1𝑖
∑

𝑡𝑖=𝜏 0𝑖 +1
𝑒𝐻

𝑐
𝜕𝑖\𝑗(𝑡𝑖) (D.48)

𝑚𝑡
𝑖\𝑗 =

1
𝑍𝑖\𝑗

𝑧
∑
𝑡𝑖=𝑡

𝑒𝐻𝜕𝑖\𝑗(𝑡𝑖) = 𝑒𝐶

𝑒𝐶𝑍 𝑐
𝑖\𝑗

𝑧
∑
𝑡𝑖=𝑡

𝑒𝐻
𝑐
𝜕𝑖\𝑗(𝑡𝑖) = 1

𝑍 𝑐
𝑖\𝑗

𝑧
∑
𝑡𝑖=𝑡

𝑒𝐻
𝑐
𝜕𝑖\𝑗(𝑡𝑖) (D.49)

Where 𝑍 𝑐 and 𝐻 𝑐 are the ”reduced” versions of 𝑍 and 𝐻. The time constrained version of the 𝜇
then becomes:

𝜇𝑡𝑖\𝑗 (𝜏
0
𝑖 , 𝜏1𝑖 ) =

1
𝑍 𝑐
𝑖\𝑗 (𝜏

0
𝑖 , 𝜏1𝑖 )

𝜏 1𝑖 −2
∑

𝑠𝑖=max(𝑡,𝜏 0𝑖 −1)
exp {𝐻 𝑐

𝜕𝑖\𝑗 (𝑠𝑖 + 2)} +

−
𝕀 [max (𝜏0𝑖 ,0) ≤ 𝑡 ≤ min (𝜏1𝑖 , 𝑇) − 1]

𝑍 𝑐
𝑖\𝑗 (𝜏

0
𝑖 , 𝜏1𝑖 ) 𝑒𝐶

𝜋0𝑖 (𝑡 + 1) 𝑒𝐺𝜕𝑖(𝑡)−𝐾 𝐹
𝑗\𝑖(𝑡)+𝜃(𝑇−2−𝑡)[𝑉𝜕𝑖(𝑡+1)−𝐾

𝐵
𝑗\𝑖(𝑡+1)]

(D.50)

It’s easy to see that for the 𝜇𝑖⧵𝑗, the factor 𝑒𝐶 can be simplified only in the first part of the sum,
but not in the second. The value of 𝐶 can be defined as the maximum value of 𝐻̃𝑖 over all times
𝑡𝑖 that have to be considered.

D.4 Soft observations
Let us now say that with each observation that is made on the cascade, the probability of ob-
serving an individual 𝑖 in state 𝑠 is 𝑃 (𝑜 = 𝑠 ∣ 𝑡𝑖). Then, it’s now necessary to perform the sums
considering the whole time range of infection.

Let us defineℒ(𝑡) as the log-likelihood of infection time 𝑡, as the logarithm of the probability
of a set of observations 𝑂𝑖 that have been made on individual 𝑖:

ℒ𝑖 (𝑡𝑖) = log 𝑝 (𝑂𝑖 | 𝑡𝑖) = ∑
obs𝑖

log 𝑝 (𝑥 𝑡𝑜𝑖 = 𝑜 ∣ 𝑡𝑖)
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which, as written above, can be expressed as the sum of the logarithm of the probability, for
each observation, of finding an individual in state 𝑥 𝑡𝑜𝑖 given that he/she has been infected at
time 𝑡𝑖. This is equivalently the probability of making a mistake in an observations, as in the
noiseless case 𝑥 𝑡𝑜𝑖 = 1 ⟺ 𝑡𝑜 ≥ 𝑡𝑖. Then, remembering the definition of 𝐻̃𝑖,

𝐻̃𝑖 (𝑡) = log 𝜋0𝑖 (𝑡) + 𝜃 (𝑡 + 2) 𝐺𝜕𝑖 (𝑡 − 2) + 𝜃 (𝑇 − 1 − 𝑡) 𝑉𝜕𝑖 (𝑡) (D.51)

notice that, since the term 𝑝 (𝑂𝑖 | 𝑡𝑖) is missing from eq. (D.8) and (D.9), ℒ𝑖 needs to be added to
those equation:

𝑍𝑖\𝑗 =
𝑇+1
∑
𝑡𝑖=0

𝑒ℒ𝑖(𝑡𝑖)𝑒𝐻𝜕𝑖\𝑗(𝑡𝑖) (D.52)

𝑚𝑡
𝑖\𝑗 =

1
𝑍𝑖\𝑗

𝑡
∑
𝑡𝑖=0

𝑒ℒ𝑖(𝑡𝑖)𝑒𝐻𝜕𝑖\𝑗(𝑡𝑖) (D.53)

𝜇𝑡𝑖\𝑗 =
𝕀 [0 ≤ 𝑡 ≤ 𝑇 − 1]

𝑍𝑖\𝑗
{
𝑇−1
∑
𝑠=𝑡

𝑒ℒ𝑖(𝑠+2)𝑒𝐻𝜕𝑖\𝑗(𝑠+2) − 𝜋0𝑖 (𝑡 + 1) 𝑒ℒ𝑖(𝑡+1)𝑒𝐺𝜕𝑖\𝑗(𝑡)+𝑉𝜕𝑖\𝑗(𝑡+1)} (D.54)

𝑍𝑖 =
𝑇+1
∑
𝑡𝑖=0

𝑒ℒ𝑖(𝑡𝑖) exp {𝐻𝜕𝑖 (𝑡𝑖)} =
𝑇+1
∑
𝑡𝑖=0

𝑒ℒ𝑖(𝑡𝑖) exp {𝐻̃𝑖 (𝑡𝑖)} × 𝐿𝜕𝑖 (𝑡𝑖 − 1) (D.55)

𝑚𝑖 (𝑡) =
1
𝑍𝑖

𝑡
∑
𝑡𝑖=0

𝑒ℒ𝑖(𝑡𝑖)𝑒𝐻̃𝑖(𝑡𝑖)𝐿𝜕𝑖 (𝑡𝑖 − 1) (D.56)

Since the likelihood ℒ𝑖 needs to be included in both 𝐻𝜕𝑖 and 𝐻𝜕𝑖\𝑗, it can be incorporated right
into the definition of 𝐻̃𝑖 (𝑡):

𝐻̃𝑖 (𝑡) = log 𝜋0𝑖 (𝑡) + 𝐺𝜕𝑖 (𝑡 − 2) + 𝑉𝜕𝑖 (𝑡) + ℒ𝑖 (𝑡) (D.57)

In these way, the computation is streamlined, and a lot of boundaries calculations can be sim-
plified. In practice this case can be used also for noiseless observations, by putting a very small
probability of error, so that 𝑝 (𝑥 𝑡𝑜𝑖 = 1 ∣ 𝑡𝑖) = 𝜀 ≪ 1 when 𝑡𝑜 < 𝑡𝑖. Also, the same normalization
step can be applied here for numerical stability, thus improving the convergence.
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