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Abstract 13 

Metacommunities are the product of species dispersal and topology. Metacommunity 14 

studies often use spatially implicit models, implemented by fully connected topologies, 15 

in which the precise spatial arrangement of habitat patches is not specified. Few 16 

studies use spatially explicit models, even though real-world metacommunities are 17 

likely structured by topology. Here, we test whether a spatially implicit resource 18 

consumption model based on a fully connected topology could predict the structure of 19 

spatially explicit metacommunities. Having controlled for environmental 20 

heterogeneity, we focus specifically on the effects of species dispersal and topology 21 

on metacommunity structure. We classified the topologies according to the shortest 22 

path between the most distant nodes (i.e. the graph diameter). Topologies with small 23 

diameters are tightly connected, whereas large diameter graphs are loosely connected. 24 

Some general trends emerged with increasing dispersal rate, such as a hump-shaped 25 

pattern in 𝛼𝛼-diversity, and a plateau followed by a decline in 𝛾𝛾- diversity. However, 26 

the importance of topology was also apparent: 𝛼𝛼-diversity peaked at low dispersal 27 

rates in small diameter topologies, but at high dispersal rates in large diameter 28 

topologies. At low dispersal rates, 𝛼𝛼-diversity was higher in spatially implicit than in 29 

spatially explicit metacommunities. At medium dispersal we detected stronger species 30 
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sorting in the small diameter than in the large diameter topologies. Increasing 31 

dispersal caused 𝛼𝛼-diversity to decline more dramatically in small diameter topologies.  32 

Smaller metacommunities were dominated by regional competitors, whereas larger 33 

communities exhibited patterns of species biomass distribution leading to emergent 34 

niche structures. Increasing dispersal caused the mean productivity of each patch to 35 

undergo partial declines in spatially implicit metacommunities but continue to decline 36 

sharply in spatially explicit metacommunities. We conclude that spatially implicit 37 

models should be used cautiously when predicting the biodiversity, community 38 

composition or ecosystem functions of spatially explicit metacommunities at medium, 39 

and especially at high dispersal rates.   40 

Key words: spatially implicit, spatially explicit, metacommunity, topology, dispersal, 41 

diversity, productivity, community composition, resource-consumption model 42 

  43 
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1. Introduction 44 

Metacommunity theory integrates local and regional community dynamics, relating 45 

biodiversity and ecosystem functions at different spatial scales (Leibold & Chase 46 

2018; Thompson et al. 2020). Fundamental tenets of metacommunity theory include 47 

species dispersal and topology, which describes the spatial arrangement of patches 48 

(Leibold & Chase 2018).  49 

Species dispersal determines the rate of species movement within and between 50 

ecological communities (Massol et al. 2017; Thompson & Fronhofer 2019; Thompson 51 

et al. 2020; Vilmi et al. 2021; Zhang et al. 2021). Leibold et al. (2017) conceptualized 52 

three types of dispersal: dispersal limitation, dispersal sufficiency and dispersal 53 

surplus. Dispersal limitation prevents species from reaching patches where their 54 

productivity is the highest (Mouquet et al. 2002; Leibold et al. 2017). Dispersal 55 

sufficiency, the product of species sorting, allows each species to find its optimum 56 

patch, which increases the 𝛼𝛼-diversity of individual patches and leads to high 57 

productivity (Loreau et al. 2003; Mouquet & Loreau 2003; Leibold et al. 2017). 58 

Dispersal surplus counteracts the effects of dispersal limitation and dispersal 59 

sufficiency: in the short term poor competitors are able to coexist within patches, but 60 

eventually mass effects allow the best overall competitors to dominate individual 61 
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patches,  causing dramatic declines in both 𝛼𝛼- and 𝛾𝛾- diversity, and reducing mean 62 

productivity (Loreau et al. 2003; Mouquet & Loreau 2003; Leibold et al. 2017). A key 63 

point is that theoretical studies of dispersal limitation, dispersal sufficiency and 64 

dispersal surplus have all been based on spatially implicit models, in which the 65 

precise spatial location of habitat patches was not specified in the model (Leibold et al. 66 

2017; Suzuki & Economo 2021). 67 

In theoretical studies, if the dispersal rate is set to zero, all patches are 68 

isolated from each other, no information is transferred, and the system is closed. 69 

When the system is open, dispersal depends on topology (Economo & Keitt 2008). 70 

Topology determines how patches are arranged in relation to one another (Economo 71 

2011; Suzuki & Economo 2021). In the real world, topology describes the spatial 72 

distribution and connectedness of landscape patches, informing conservation 73 

strategies such as reserve size (Minor & Urban 2008; Van Teeffelen et al. 2012), and 74 

explaining spatial insurance effects, where species escape from competition in 75 

heterogeneous landscapes (Thompson et al. 2014). A second key point is that spatially 76 

implicit models always use fully-connected topologies in which all patches are 77 

connected directly with other patches (Loreau et al. 2003; Mouquet & Loreau 2003; 78 

Suzuki & Economo 2021). Real-world metacommunities, even those of relatively 79 
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simple natural microcosms such as ponds or epiphytes, are rarely this interconnected, 80 

which raises the question of whether spatially implicit models can be used to predict 81 

the structure of spatially explicit metacommunities. While some theoretical studies 82 

have applied complicated topologies to fit experimental metacommunities (e.g.Hubert 83 

et al. 2015; Thompson & Gonzalez 2017; Thompson et al. 2017), these topologies 84 

were highly susceptible to disturbance, and extensions or modifications were 85 

impossible.  86 

An effective way to model the spatial topologies of metacommunities would 87 

be to use graph theory (Newman 2003; Minor & Urban 2008). Relatively new to 88 

metacommunity ecology, graph theory has been used extensively for the study of 89 

computer networks (Minor & Urban 2008). Given that most studies of 90 

metacommunities are based on resource consumption models (Loreau et al. 2003; 91 

Shanafelt et al. 2015; Thompson & Gonzalez 2017; Thompson et al. 2017; Leibold & 92 

Chase 2018), we used a resource consumption model and six simple topologies taken 93 

from computing networks, i.e. fully connected (spatially implicit), star, line, ring, 94 

lattice and tree structures (Fig.1). We asked whether, under different levels of species 95 

dispersal, a spatially implicit model could predict trends in 𝛼𝛼- and 𝛾𝛾- diversity, 96 

community composition, ecosystem function, and even spatial variations in the 𝛼𝛼-97 
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diversity and ecosystem function of different patches in any of the six different 98 

topologies.  99 

Whilst environmental heterogeneity affects the structure of metacommunities 100 

(Leibold & Chase 2018; Ben-Hur & Kadmon 2020; Suzuki & Economo 2021; 101 

Thompson et al. 2021), that is outside the scope of this study, and we therefore 102 

controlled for environmental effects by assuming that, although environmental 103 

conditions differ between patches, overall environmental heterogeneity would be the 104 

same for all topologies. We anticipated that our spatially implicit model would predict 105 

diversity, ecosystem function and community composition under low and high 106 

dispersal rates. Species sorting under low dispersal would result in patches with 107 

similar environmental conditions being dominated by the best competitor, leading to 108 

consistent species composition, whereas dispersal surplus under high dispersal would 109 

result in superior competitors dominating all metacommunities, again leading to 110 

consistent composition (Loreau et al. 2003; Mouquet & Loreau 2003). Consequently, 111 

mean productivity within each patch would also be consistent for all topologies with 112 

similar environmental conditions. We believe relatively low dispersal rates prevented 113 

local diversity from declining in the spatially explicit topologies of Suzuki and 114 

Economo (2021) when they asked similar questions to us, but measured  species 115 
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diversity patterns only. However, we also anticipated that our spatially implicit model 116 

would fail to predict diversity, ecosystem function, and community composition at 117 

intermediate dispersal rates because of variations in the relative strength of species 118 

sorting and mass effects in different topologies.  119 

2. Methods 120 

We use the resource-consumption model (Loreau et al. 2003; Gonzalez 2009; 121 

Gonzalez et al. 2009; Shanafelt et al. 2015), which allows environmental conditions 122 

to fluctuate with time, whilst maintaining species diversity. As in previous studies, we 123 

assume that all species compete for a single limited resource, such as nitrogen, and 124 

convert it into new biomass. Unlike previous studies, our model allows environmental 125 

conditions to differ between patches, as though each patch was a different landscape, 126 

but overall environmental conditions remain constant. Each species has an optimal 127 

environmental value. Superior competitors exhibit a close match between their 128 

optimal environmental values and the environmental conditions of a patch and will 129 

therefore consume large amounts of resource. All metacommunities consisted of the 130 

same number of patches, with the same levels of environmental heterogeneity. 131 

Different topologies differed only in the connections between patches in various 132 

topologies. We set the unit of each parameter as Shanafelt et al. (2015). 133 
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2.1 Resource-consumption model 134 

In our resource-consumption model, biomass of species i on patch j at time t, 𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) 135 

(units as g) increases due to the presence of species converting resource into biomass. 136 

Mortality reduces biomass within a patch, as does species emigration from a patch. 137 

Biomass within a patch increases as species immigrate from other patches, defined as 138 

the solution of: 139 

𝑑𝑑𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑒𝑒𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑅𝑅𝑗𝑗(𝑡𝑡)𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) −𝑚𝑚𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑎𝑎 ∑ 𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑀𝑀𝑘𝑘

𝑀𝑀𝑗𝑗
𝑘𝑘=1,𝑘𝑘≠𝑗𝑗 − 𝑎𝑎𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡).  (1) 140 

 141 

𝑅𝑅𝑗𝑗(𝑡𝑡) (unit as ml, to distinguish from the unit of biomass) is the limited resource on 142 

patch j at time t; it is supplied from outside of the metacommunity at each time 143 

interval and declines due to lost and species consumption, defined as the solution of:  144 

𝑑𝑑𝑅𝑅𝑗𝑗(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝐼𝐼𝑗𝑗 − 𝑙𝑙𝑗𝑗𝑅𝑅𝑗𝑗(𝑡𝑡) − 𝑅𝑅𝑗𝑗(𝑡𝑡)∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡)𝑆𝑆
𝑖𝑖=1 .   (2) 145 

We numbered all patches from 1 to N (N is the number of patches, dimensionless), 146 

and all species from 1 to S, where S (dimensionless) is the initial number of species. 147 

𝑒𝑒𝑖𝑖𝑖𝑖 (g/ml) is the rate of species i converting the consumed resource into new biomass 148 

on patch j; 𝐶𝐶𝑖𝑖𝑖𝑖 (1/(g*h)) is the rate of species i consuming resource on patch j, defined 149 

as (Gonzalez et al. 2009):  150 

𝐶𝐶𝑖𝑖𝑖𝑖 = 0.15(1 − |𝐻𝐻𝑖𝑖−𝐸𝐸𝑗𝑗|
1.5

)    (3), 151 

immigration emigration new production mortality 
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where the baseline maximum consumption rate is 0.15(1/(g*h)), and it is scaled down 152 

based on the difference between 𝐻𝐻𝑖𝑖 and 𝐸𝐸𝑗𝑗. 153 

 𝐸𝐸𝑗𝑗 (dimensionless) is environmental condition of patch j, defined as: 154 

𝐸𝐸𝑗𝑗 = �
1,                  𝑗𝑗 = 1

𝐸𝐸𝑗𝑗−1 − 1 (𝑁𝑁 − 1)⁄ , 2 ≤ 𝑗𝑗 ≤ 𝑁𝑁    (4). 155 

𝐻𝐻𝑖𝑖 (dimensionless) is the optimal environmental value of species i, defined as:  156 

𝐻𝐻𝑖𝑖 = � 1,                  𝑖𝑖 = 1
𝐻𝐻𝑖𝑖−1 − 1 (𝑆𝑆 − 1)⁄ , 2 ≤ 𝑖𝑖 ≤ 𝑆𝑆   (5). 157 

𝐼𝐼𝑗𝑗 (ml/h) and 𝑙𝑙𝑗𝑗 (1/h) are the resource input and loss rate, respectively; 𝑚𝑚𝑖𝑖𝑖𝑖 (1/h) is the 158 

loss rate of biomass of species i on patch j; 𝑎𝑎 (1/h) is the dispersal rate of species; for 159 

the sake of simplicity we assume that all species have the same 𝑎𝑎 which determines 160 

the fraction of dispersers at each time interval; 𝑀𝑀𝑗𝑗 is the number of patches connected 161 

with patch j. 162 

Another popular, spatially implicit metacommunity model is Mouquet and 163 

Loreau (2003); the main difference between this model and our model is that in their 164 

model reproduction depends on dispersal rate, and only new species disperse. In our 165 

model, reproduction depends on the available resource, and all species have a chance 166 

to disperse.  167 

2.2 Six simple topologies 168 

We apply six simple topologies often seen in computer networks (Fig.1). A brief 169 
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introduction for each of them is as follows: 170 

Fully connected topology All patches are connected, meaning that species from a 171 

patch can disperse to other patches via an edge. In the real world, constructing a fully 172 

connected metacommunity would be laborious and expensive because of the large 173 

number of edges (𝑁𝑁(𝑁𝑁−1)
2

), and fully connected metacommunities are not easy to 174 

extend or modify. However, a fully-connected topology is the most reliable structure 175 

in the event that patches or edges are disturbed. We use this topology to represent a 176 

spatially implicit structure. 177 

Star topology All patches are connected to a central patch (e.g. patch 1 in Fig.1), and 178 

species disperse from one patch to another through the central patch, meaning the 179 

central patch plays a buffering role. With the exception of the central patch, this 180 

topology is easy to extend and modify. The number of edges is (N-1). The star 181 

topology is less resistant to disturbance than the fully connected topology, because 182 

when an edge or the central patch is removed, connectivity is lost. 183 

Lattice topology This type of topology is rarely seen in computer networks but is easy 184 

to design in experimental metacommunity studies. Lattice topologies are essentially 185 

grids, with patches located at the intersection of each edge. Patches are connected via 186 

several paths. If N patches are distributed as an 𝑁𝑁𝑟𝑟 × 𝑁𝑁𝑐𝑐 lattice (where 𝑁𝑁𝑟𝑟 and 𝑁𝑁𝑐𝑐 are 187 
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the number of patches in each row and column, respectively), then the number of 188 

edges in this lattice is 𝑁𝑁𝑟𝑟 × (𝑁𝑁𝑐𝑐 − 1) + (𝑁𝑁𝑟𝑟 − 1) × 𝑁𝑁𝑐𝑐. The lattice topology is more 189 

resistant to disturbance because the system remains connected even when several 190 

patches or edges are damaged.  191 

Tree topology The tree topology has root patches, and each root patch has two child 192 

patches in our model (see Fig. 1). Child patches can be added to a root patch which 193 

has fewer than two child patches, but the child patches will become unconnected if 194 

any root patches or edges are removed. The number of edges in this topology is N-1. 195 

Ring topology Each patch connects with two neighboring patches, which together 196 

form a ring shape. Species can disperse clockwise or counterclockwise (Meador 2008). 197 

Either way, dispersers must pass through all patches located between the patch they 198 

emigrate from and the  patch they immigrate to (Meador 2008). This topology is easy 199 

to set up, but the ring is temporarily broken during extension of the ring topology. The 200 

number of edges is N. If more than one patch or edge are removed, the system 201 

becomes unconnected. 202 

Line topology In the line topology, the first and last patch are unconnected, so there is 203 

only one route along which species can disperse. This structure is easy to extend but 204 

less resistant to disturbance since it becomes unconnected when any of the 205 
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intermediate patches or edges are removed. The number of edges is N-1. 206 

Topologies can be classified according to the number of edges of the shortest 207 

path between the most distant nodes, known as the graph diameter (West 2001). The 208 

diameters of our topologies can be classified into small, medium, and large groups: 209 

the fully connected and star topologies had graph diameters of 1 and 2; the tree and 210 

lattice topologies had diameters of 8 and 9; the ring and line topologies had diameters 211 

of 15 and 29. Topologies with small diameters consist of a series of tight connections, 212 

whereas larger graph diameters consist of loose connections. 213 

2.3 Simulations 214 

We set the number of patches to N=30 in all topologies and numbered each patch as in 215 

Fig. 1. Environmental conditions, defined by equation (4), were consistent within 216 

patches of a similar color, or numbered sequentially for different topologies. We set 217 

the initial species richness to S=30 and numbered the species from 1 to 30, setting the 218 

optimal environmental value of each species according to equation (5). All species 219 

had the same 𝑒𝑒𝑖𝑖𝑖𝑖 and 𝑚𝑚𝑖𝑖𝑖𝑖 (both values set to 0.2) for all patches (Loreau et al. 2003; 220 

Gonzalez et al. 2009), and all patches had the same 𝐼𝐼𝑗𝑗 and 𝑙𝑙𝑗𝑗, values set to 165 and 10 221 

respectively (Gonzalez et al. 2009). We set these parameters based on previous 222 

studies which applied the resource-consumption model. We set the dispersal rate 𝑎𝑎 to 223 
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37 different values, ranging from 0.0001 to 0.001 with intervals of 0.0001, ranging 224 

from 0.001 to 0.01 with intervals of 0.001, ranging from 0.01 to 0.1 with intervals of 225 

0.01, and ranging from 0.1 to 1 with intervals of 0.1. Hence, we have 37 (dispersal 226 

rates) *6 (topologies) = 222 simulations, with each simulation run for 2*10^7 time 227 

steps to reach equilibrium. We set a dynamic cutoff at 𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) = 0.01(g), meaning that 228 

species became extinct from a patch if their biomass fell below this value. The 229 

differential equations of (1) and (2) are simulated by using the forward Euler method 230 

with dt=0.001. We also tested the results for different dt, observing the same patterns 231 

when dt was relatively large, such as 0.005 and 0.01 (see the results of dt=0.01 in the 232 

Appendices), but the system was not at steady state when dt increased, for example 233 

greater than 0.1. We controlled for spatial heterogeneity using the fully connected 234 

(spatially implicit) topology, in which all patches were connected directly.  235 

2.4 Metrics 236 

We used the Bray-Curtis dissimilarity index to measure the community composition 237 

of each patch, comparing patches of the fully-connected topology with all other 238 

topologies. In addition, we measured the total biomass of each species (summing the 239 

biomass of that species across all patches) in the whole metacommunity, the 𝛼𝛼-240 

diversity (number of species) within each patch, the 𝛾𝛾-diversity of the 241 
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metacommunities, and the coefficient of variation (hereafter CV, defined as standard 242 

deviation/mean) of 𝛼𝛼-diversity across patches. We also measured the productivity of 243 

each patch j defined as the production of new biomass per unit time (g/h, Loreau et al. 244 

2003): 245 

𝜑𝜑𝑗𝑗(𝑡𝑡) = 𝑅𝑅𝑗𝑗(𝑡𝑡)∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖(𝑡𝑡)𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡)𝑆𝑆
𝑖𝑖=1 .   (6) 246 

As well as productivity per patch, we measured the cv of productivity between 247 

patches. Similations were implemented in Java, topologies and similarity of 248 

community composition were generated using the “igraph” and “vegan” packages in 249 

R, and data were analysed in R 4.0.4 (R 2021). All codes can be found in the 250 

Appendices.  251 

3. Results  252 

3.1 Community composition  253 

Under low dispersal, strong species sorting appeared in all topologies (see a=0.0001 254 

and a=0.001 in Fig.2). Under medium dispersal, mass effects increased the biomass of 255 

the inferior species, resulting in slight differences in community composition between 256 

topologies (see a=0.01 in Fig.2). However, the best competitor of the central patch in 257 

the star topology went extinct (i.e. in Fig.2 the color of the first species on the first 258 

patch is white when a=0.0001, but is red on all patches where a=0.01). Under high 259 
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dispersal in the fully connected, star, tree, and lattice topologies, whole 260 

metacommunities were dominated by a few species, and the optimal environmental 261 

values of these dominant species were located more centrally between 0 and 1 in the 262 

fully-connected topology than in the other topologies. In the line and ring topologies, 263 

species with extreme environmental values dominated the patches with extreme 264 

environmental conditions, whereas species with medium environmental values 265 

showed dominance in the patches with intermediate environmental conditions (see 266 

a=1 in Fig. 2). Overall, as the diameters of the topologies increased, dominant species  267 

exhibited more extreme environmental values.  268 

We compared community composition between two patches with the same 269 

environmental conditions; one from the fully-connected topology, and the other from 270 

one of the other topologies. In all topologies, increasing disperal rates caused reduced 271 

similarity in community composition (Fig. 3). Low dispersal rates resulted in almost 272 

the same community composition within patches across all topologies (a=0.0001 in 273 

Fig. 3). Medium dispersal rates (e.g. a=0.01) increased the similarity between patches 274 

with extreme environmental conditions more than other patches. High dispersal rates 275 

(e.g. a=0.1) caused patches with intermediate environmental conditions to become 276 

more similar than patches with extreme environmental condititions. When the 277 
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dispersal rate was 1, the overall similarity was zero (Fig. 3). However, similarity was 278 

greater than zero in the line and ring topologies (a=1 in Fig. 3). In contrast with the 279 

other topologies, the similarity of patch 1 in the star topology was lowest when 280 

dispersal rate was low, and highest when dispersal rate was 1 (Fig. 3).  281 

At around 100, total biomass of each species in the whole metacommunity was 282 

almost identical under low dispersal rates for all topologies (see a=0.0001 in Fig. 4). 283 

It differed slightly under medium dispersal rates for the large-diameter topologies, but 284 

remained the same for the fully-connected topology (see a=0.01 in Fig. 4). For the 285 

star topology, the total biomass of species with environmental values of H=1 was zero 286 

since they had been outcompeted as the best competitors of the central patch (patch 1, 287 

see also Fig. 2).  Total biomass differed greatly under high dispersal, especially for the 288 

topologies with medium to large diameters, with clumps of species appearing as one 289 

would expect from niche partitioning. The number of clumps increased from one to 290 

four in the tree, lattice, ring and line topologies, respectively (a=1 in Fig. 4). 291 

3.2 Diversity 292 

In line with other studies (Loreau et al. 2003; Mouquet & Loreau 2003; Shanafelt et 293 

al. 2015), increasing dispersal first increased and then decreased 𝛼𝛼-diversity, whereas 294 

𝛾𝛾- diversity remained constant before eventually decreasing in all topologies (Fig.5A 295 
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and B). Exact trends of 𝛼𝛼- and 𝛾𝛾-diversity varied between topologies. 𝛼𝛼-diversity was 296 

highest (30 species) in the widest dispersal window of the fully-connected topology, 297 

where the logarithm governing dispersal rates was between -7.5 to -2.5 (Fig.5A). The 298 

same result could be seen in the star topology, but with a narrower dispersal window 299 

(from -5.0 to -2.3 ) and a lower 𝛼𝛼-diversity (29 species). For the lattice and tree 300 

topologies, medium dispersal rates gave the highest 𝛼𝛼-diversity, whereas in the line 301 

and ring topologies 𝛼𝛼-diversity peaked at relatively higher dispersal rates. Also 302 

dependent on topology were the tipping points at which 𝛾𝛾- diversity started to decline. 303 

At high rates of dispersal, both 𝛼𝛼- and 𝛾𝛾- diversity were higher in the line and ring 304 

topologies than in other topologies (Fig 5A and B).  305 

𝛼𝛼-diversity varied between patches in the different topologies (Fig.5C and Fig. 306 

A.1). In all but the star topology, dispersal caused the cv of 𝛼𝛼-diversity to increase at 307 

first and then decrease (Fig. 5C). The key difference between the topologies was the 308 

point at which increasing dispersal caused the cv of 𝛼𝛼-diversity to peak. This peak 309 

occurred at low dispersal in the fully-connected topology, intermediate dispersal in the 310 

lattice and tree topologies, and high dispersal in the line and ring topologies (see 311 

insert panels in Fig. 5C). In the star topology, which differed completely from the 312 
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other topologies, increasing dispersal caused a decline in the cv of 𝛼𝛼-diversity within 313 

patches (Fig. 5C).  314 

3.3 Productivity 315 

Increasing dispersal caused the mean productivity of each patch to decrease in all 316 

topologies, and the rate of decline became steeper at higher dispersal rates (Fig.6A, 317 

see also the productivity of each patch across all topologies in Fig. A.2). In the fully 318 

connected topology, even under very high dispersal rates, mean productivity remained 319 

constant, whereas it declined sharply for the star topology, and remained relatively flat 320 

in the line and ring topologies.  321 

As with mean productivity, the cv of productivity between patches remained 322 

constant at first, but then increased with dispersal in all but the fully-connected 323 

topology (Fig. 6B), in which it declined slightly at very high dispersal rates. Under 324 

high dispersal rates, the cv of productivity increased sharply in the star topology, and 325 

remained flat in the line and ring topologies.  326 

4. Discussion 327 

We applied a resource-consumption model to six simple topologies: fully connected 328 

(spatially implicit), star, tree, lattice, ring, and line structures with different diameters 329 

to investigate whether a spatially implicit model could consistently predict the 330 
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structures of spatially explicit metacommunities. Under high dispersal, our spatially 331 

implicit model failed to predict the structure of spatially explicit metacommunities, 332 

including community composition, exact 𝛼𝛼- and 𝛾𝛾- diversity, patterns of total species 333 

biomass distribution, productivity, and cv of 𝛼𝛼-diversity and productivity. Some 334 

trends were apparent across all models, for example at low dispersal, strong 335 

environmental filtering led each patch to be dominated by its best competitor, whereas 336 

more inferior competitors appeared in all patches at medium dispersal, and whole 337 

metacommunities were dominated by several species due to mass effects at high 338 

dispersal. Consequently, 𝛼𝛼-diversity first increased and then decreased, and 𝛾𝛾- 339 

diversity remained constant and then decreased.  340 

  At low dispersal (e.g. a=0.0001), community compositions of given patches 341 

were consistent across topologies (Fig. 2-4) due to strong environmental filtering 342 

which allowed each patch to be dominated by its best competitor (Suzuki & Economo 343 

2021). 𝛾𝛾- diversity and mean productivity were also consistent across all topologies, 344 

and the cv of 𝛼𝛼-diversity between patches was low (Fig. 5 and 6). However, the high 345 

levels of connectedness between patches in the fully connected topology allowed 346 

more inferior species to appear in all patches even under very low dispersal rates, 347 

which is why the 𝛼𝛼-diversity was higher under the fully connected topology than in 348 
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other topologies (Fig. 5). Our spatially implicit model could not predict the 𝛼𝛼-349 

diversity of spatially explicit metacommunities, even under very low dispersal rates. 350 

Hence, 𝛼𝛼-diversity remained highest over the greatest range of dispersal in the fully 351 

connected topology than in other topologies. At medium dispersal (a=0.01), the 352 

number and identity of inferior species which appeared in each patch differed between 353 

patches and between topologies, which led the diversity and community composition 354 

to fluctuate within patches and topologies (Fig. 2-5), resulting in variable declines in 355 

productivity (Fig. 6, Mouquet & Loreau 2003; Leibold & Chase 2018). The central 356 

patch (patch 1) of the star topology represented a hub, meaning that all dispersers had 357 

to pass through this patch before reaching their destination, and these transient species 358 

converted resource and outcompeted the best competitor of the central patch.  359 

At high dispersal, the smallest diameter topologies were dominated by 360 

generalist species with medium environmental values (Fig. 2). These species were 361 

also the best competitors at the regional scale, consistent with other studies (Mouquet 362 

& Loreau 2002; Loreau et al. 2003; Mouquet & Loreau 2003; Gonzalez et al. 2009; 363 

Shanafelt et al. 2015). Contrary to our expectations, increasing dispersal caused 364 

extreme shifts in the community compositions of medium to large diameter topologies. 365 

For example, the patches with extreme environmental conditions in the large-diameter 366 
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topologies were completely dominated by a few species with extreme environmental 367 

values (Fig. 2). Fewer connections between patches meant that species could disperse 368 

only to neighboring patches, particularly at high dispersal rates. This process led to 369 

the emergent niche structure (Rael et al. 2018) observed in the large-diameter 370 

topologies (Fig. 4). Patches with medium environmental conditions had similarities 371 

greater than zero between the fully connected topology and the line and ring 372 

topologies (Fig. 3), because generalist species with medium environmental values also 373 

achieved greater biomass in patches with medium environmental conditions in the 374 

line and ring topologies (Fig. 2). As we predicted, both 𝛼𝛼- and 𝛾𝛾-diversity declined at 375 

very high dispersal rates in all topologies, but greater numbers of species could be 376 

maintained in the line and ring than in other topologies (Fig. 5), delaying the 377 

reduction in productivity (Fig. 6). In the fully connected topology, the best regional 378 

competitors dominated all patches at relative to very high dispersal rates, which kept 379 

mean productivity constant and caused slight declines in the cv of productivity (Fig. 380 

6).  381 

Metacommunities are the product of complex interconnections between 382 

species dispersal and network topologies, governed by environmental factors. Without 383 

these interconnections, metacommunities would exist as random patches, rather than 384 
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being the products of species sorting and mass effects (Leibold et al. 2004; Suzuki & 385 

Economo 2021). Species sorting and mass effects work together, and the relative 386 

importance of these mechanisms for diversity is contingent upon dispersal rates and 387 

environmental filtering (Suzuki & Economo 2021). Environmental filtering and 388 

dispersal play opposite roles in community assembly: environmental filtering 389 

strengthens interspecific competition, allowing the best competitors to exclude less 390 

competitive species and dominante in each patch (Ben-Hur & Kadmon 2020); 391 

dispersal allows species to escape from competitive exclusion, appearing in patches 392 

where they could not survive without dispersal (Amarasekare & Nisbet 2001; Leibold 393 

et al. 2017). Regardless of topology, mass effects are proportional to species dispersal, 394 

whereas species sorting is the opposite in our model. Suzuki and Economo (2021) 395 

proposed that topologies with few loops promote species sorting, and we have 396 

confirmed this at high dispersal rates (Fig.2, Fig 4 and Fig. A.3). On the contrary, 397 

under medium dispersal rates (e.g., a=0.01 in Fig. 2 and 4), we found species sorting 398 

to be stronger in the small-diameter topologies such as the fully connected and star 399 

topologies than in the large-diameter topologies (see Fig.2, Fig 4 and Fig. A.3). Under 400 

high dispersal, the emergent niche structure of species biomass distribution patterns 401 

(Rael et al. 2018) appeared in topologies with large diameters, a similar feature to that 402 
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mentioned in Suzuki and Economo (2021). In previous studies, species traits dictated 403 

whether niche structures emerged, further strengthening the heterogeneity of species 404 

interactions (Rael et al. 2018). In our model, species trait differences were consistent 405 

between topologies, but the spatial structure of the topologies altered the species 406 

interactions.  407 

Neither dispersal limitation nor dispersal sufficiency played a role in our 408 

model. Only dispersal surplus was occurring, with all species appearing in all patches 409 

from the start. Species sorting was at its most powerful when dispersal rate was zero 410 

(Leibold & Chase 2018), and environmental conditions were filtering out the best 411 

competitors from each patch. Our results appear to conflict with previous studies, in 412 

which dispersal sufficiency always caused species sorting, and dispersal surplus 413 

generated mass effects (Leibold et al. 2017; Leibold & Chase 2018). However, in 414 

these studies, species were distributed randomly between patches, meaning that the 415 

best competitors may not have existed in their preferred patches from the start. In 416 

models like ours, all species have equal opportunities to appear in all patches from the 417 

beginning. 418 

Conclusion Our spatially implicit model successfully predicted  community 419 

composition, 𝛾𝛾-diversity, and productivity at low dispersal rates for all topologies, 420 
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although 𝛼𝛼-diversity was higher in the spatially implicit than in any of the spatially 421 

explicit topologies. At high dispersal rates, and given that the success of each 422 

topology depends on the exact structure of metacommunities, none of these 423 

characteristics were successfully predicted. Our aim was to test the resource-424 

consumption model under various assumptions, in the hope of suggesting a general 425 

level of accuracy for this one spatially implicit model, and further tests involving 426 

various other models and parameters are needed. In the meantime, we tentatively 427 

conclude that spatially implicit models may be problematic in the study of spatially 428 

explicit metacommunities, especially at high dispersal rates.  429 
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7. Figure captions 528 

Figure 1 Six simple topologies were applied in our model; the number on each patch 529 

determines its environmental conditions, and the patches with similar colors have 530 

similar environmental conditions. Environmental conditions were consistent for all 531 

patches across all topologies. All topologies were classified into small diameter (fully 532 

connected and star topologies), medium diameter (lattice and tree topologies) and 533 

large diameter (line and ring topologies). D is the diameter of each topology. 534 

 535 

Figure 2 The distribution of biomass of each species in each patch under various 536 

topologies and dispersal rates. The x-axis represents the patch and the y-axis is the 537 

species. White color denotes high biomass, whereas red color denotes low biomass. 538 

 539 

Figure 3 The similarity of community composition between two patches with the 540 

same envionmental conditions under several dispersal rates; one patch is from the 541 

fully-connected topology and the other is from the other topologies. 542 

 543 

Figure 4 The distribution of total biomass across species environmental values under 544 

various topologies and dispersal rates.  545 
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 546 

Figure 5 Effects of dispersal on 𝛼𝛼-diversity (A), 𝛾𝛾- diversity (B) and the coefficient of 547 

variation of 𝛼𝛼-diversity across patches (C) in various topologies. To illustrate the 548 

trends in cv of 𝛼𝛼-diversity for the line, ring, lattice and tree topologies, we replot a 549 

nonlinear regression (P<0.001), inserted in panel C. The red, green and blue lines are 550 

for topologies with small, medium and large diameters, respectively. The x-axis is 551 

log10. 552 

 553 

Figure 6 Trends in mean productivity of each patch (A) and coefficient of variation of 554 

productivity within patches (B) with dispersal for all topologies. The color scheme of 555 

the lines is the same as in Figure 5. The x-axis is log10.  556 
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