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Estimating the True Accuracy of Regression Predictions 

Richard B. Darlington, Cornell University 

Abstract 

Given the lack of mathematical proof to decide upon the best estimation technique, the author presents 
his comparison of four closed-formula estimators (Burkett, Claudy, Rozeboom, Browne) and the omit­
one method for estimating TRS, the true shrunken correlation (not to be confused with TR, the true 
multiple correlation). The recommendations are based on artificial populations with known TRS. 

We must distinguish between two concepts that are 

usually confused: the true multiple correlation that I shall 
denote TR, and the true shrunken correlation that I shall de­
note TRS. Both of these differ from the observed multiple 
correlation R, which is simply the correlation in the present 
sample between the true criterion or dependent variable Y, 
and the estimates of Y made from the regression. 

TR answers this question: If we derived the same re­
gression in the total infinite population, thereby finding the 
true regression slopes, what value would we observe for R? 

TRS answers a different question: Given that we have 
derived the regression in the sample, and have presumably 
not found the true population regression weights, what cor­
relation would we find between Y and Y if we were to apply 
this set ofregression weights to the entire population? 

The first question asks in effect how good these vari­
ables are at predicting Y, while the second asks how good 
these weights are. When we ask about the variables, we 
pretend we could find the true population weights. But when 
we ask about the weights, we are asking about the weights 
we have already found. 

The question about variables (involving TR) is usu­
ally of most interest in questions involving cause and effect, 
e.g., How important is education in determining income or 
attitude toward abortion? The question about weights (in­
volving TRS) is usually of most interest in practical predic­
tion problems. Ifwe derive a regression in one sample, and 
use that regression to estimate the future performance of stu­
dents or workers not in the original sample, what will be the 
correlation between our estimates and their actual perfor­
mance? 

TRS is always below TR, because in estimating TR we 
are asking what R would be if we found the true population 
weights. But by definition those weights are the best weights 
for the population, and are thus almost certainly better than 
the weights we have found in one particular sample. TRS is 
asking how well those sample weights would work, and they 
almost certainly would not work as well as the true weights. 

Therefore our estimate of TRS is always somewhat below 
our estimate of TR. 

The standard formula for estimating TR is 

AdjustedR 2 =ARS =R 2 - P(l-R
2
) 

N-P-1 

This formula is used in nearly every standard regres­

sion program. Note that N is sample size, and Pis number of 
predictors. 

The irrelevance of collinearity 

At first it seems obvious that TR and TRS would fall 
further below R when collinearity is high than when it is 
low. After all, collinearity increases the errors with which 
individual regression slopes are estimated, and these errors 
are what cause TR and TRS to be below the observed mul­
tiple correlation R. Therefore it at first seems obvious that 
since collinearity increases those errors, it must increase the 
amount by which TR and TRS fall below R. 

Surprisingly, however, collinearity can be ignored in 
estimating TR and TRS. The point that is ignored in the last 
paragraph is that under collinearity, errors in individual re­
gression slopes tend to cancel each other out. This is one of 
the most remarkable features of regression. To explain it 
we will consider the simple case in which the regression has 
only two predictor variables X, and X

2
, which we will as­

sume are highly correlated positively. Let b
1 

and b
2 

denote 
the regression slopes of these two variables. 

It turns out that the errors in b 
1 

and b 
2 

are not indepen­
dent. In samples in which b 

1 
overestimates its true value, on 

the average b 
2 

underestimates its true value, and vice versa. 
But sinceX, andX

2 
are highly correlated the overestimation 

in one slope tends to cancel out the underestimation in the 
other slope, with the result that on the average Yis estimated 
as accurately as if there had been no collinearity. The greater 
the collinearity, the more errors will cancel each other out. 

The result is that even though individual slopes tend 
to be estimated less accurately under collinearity, Y and R 
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are estimated no less accurately. Thus the observed mul­
tiple correlation R tends to be no higher, relative to TR and 
TRS, under collinearity than when the predictor variables 
are mutually independent. There are rigorous mathematical 
proofs of this claim, in books like Draper and Smith (1981) 
and Graybill (l 961 ). 

Four Closed-Formula Estimators ofTRS 

There is no clear agreement about the best way to es­
timate TRS. The remainder of this article describes and 
evaluates five estimates of TRS. Three of the formulas are 
quite simple. One by Burket (1964) is 

Burket estimate = ~ N R 
2 

-P)P 
R(N-

An estimator by Claudy (1978) is 

Claudy estimate = 2 ./ARS -R 

An estimator by Rozeboom (1978) is 

Rozeboom estimate=~ 1- N+P (1-R 2) 
N-P 

A slightly more complicated procedure by Browne 
(1975) requires the user to first compute an estimate of the 
fourth power of TR, by the formula 

Rho4 =ARS2 - 2P(1-ARS)2 
(N-l)(N-P+ 1) . 

If this formula yields a negative value for Rho4, then 
set Rho4 = 0. Then TRS is estimated by 

Browne estimate = (N -P- 3)Rho4 + ARS 
(N-2P-2)ARS+P 

When these four estimates are plotted against the ob­
served multiple correlation R for fixed values of N and P, 
they all approach R as R approaches 1. Thus the right end of 
each curve approaches a straight line with a slope of 1. As R 
declines, all four curves gradually get steeper until they hit 
the horizontal axis. It is unreasonable to estimate a negative 
value of TRS, so all four estimates are taken to be O if the 
above formulas yield negative estimates of TRS or TRS2• 

When the estimators are ranked from most liberal to most 
conservative, they generally fall in the order: Burket (most 
liberal), Browne, Claudy, Rozeboom. 

The Omit-one Method for Estimating TRS 

All the previous formulas assume multivariate normal­
ity. We now describe an alternative approach that dispenses 
with this requirement. I call it the omit-one approach. Its 
computation is considerably more complex than for any of 
the previous approaches. 

Imagine omitting one case from a sample of N cases, 
fitting the regression in the remaining sample ofN-1 cases, 

and then using that regression to estimate Y for the one case 
that was omitted. Let the difference between the actual and 
estimated Y-scores for that one case be denoted DCR, for 
"deleted-case residual". Imagine computing DCR for every 
case in the sample, by running the regression N times, each 
time with one case omitted. If you then use the N values of 
DCR to estimate the accuracy of the regression predictions, 
you are using the "omit-one" approach. 

Surprisingly, it turns out that one can compute the N 
values of DCR without actually computing the N omit-one 
regressions. Nearly every standard regression program com­
putes residuals, and a great many programs will compute 
for each case a value that is called either LEVERAGE or H. 
This value measures the "atypicalness" ofa case's scores on 
the predictor variables; a case whose predictor scores all fall 
exactly at the means has the lowest possible value of LE­
VERAGE. But for our purpose here, the important fact about 
LEVERAGE is that it can be used to compute DCR via the 
formula 

DCR = RESIDUAL/(! - LEVERAGE) 

Then Y - DCR gives the estimates of Y computed by 
the omit-one regressions, but without the work of actually 
repeating the regression N times. 

At first it would seem that simply correlating these 
values of Y - DCR with the actual Y values would give a 
good estimate of TRS. However, it turns out that this ap­
proach actually gives an overly conservative estimate of TRS. 
The reason is that if one case has an exceptionally high value 
of Y, then omitting it will lower the Y-mean of the remaining 
sample, and will thus lower the estimate of Y for that one 
case. This will tend to lower the correlation just mentioned. 
But errors in estimating means do not lower the true value of 
TRS at all, so we want to somehow correct for this lowering. 
You can do this with the help of the formula: 

Mean ofremaining sample= M*Nl(N-1) - Yl(N-1) 

where the "remaining sample" is the sample after the 
deletion of the one case, and Mis the mean of the total sample. 
This formula shows that by adding Yl(N-1) to each of the 
(N-1) other scores, we would change their mean to M*N/(N-
1). That would fix the problem, since that value is indepen­
dent of Y. But adding Yl(N- I) to the (N-1) other scores 
changes the residual of the deleted case Y by that same 
amount. Thus we can instead adjust the residual by that 
amount. But we use the residual simply to compute the pre­
dicted value of Y, so we can instead adjust that value by the 
same amount. The "bottom line" of this reasoning is that we 
can compute an "adjusted deleted-case prediction" ADCP 
for each case from the formula 

ADCP = Y- RESIDUAL/(1-LEVERAGE) + Y/(N-1) 

Correlating these ADCP values with the original Y 
values then gives an estimate of TRS. 
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Comparison of the five estimators 

Sometimes an estimator can be proven mathematically 
to be the best possible estimator. No such proof is available 
for any of the estimators of TRS, so I have compared them 
numerically. I used a 7 x 6 x 16 array of values of the sample 
size N, the number of predictors P, and TR respectively. I 
let N range from 40 to 100 in increments of 10, let P range 
from 5 to 30 in increments of 5, and let TR range from .05 to 
.80 in increments of.05. For each of these 7 x 6 x 16 or 672 
combinations of N, P, and TR, I drew 1000 samples and fit­
ted a multiple regression in the sample. Because the true 
population regression slopes were known for the artificial 
populations I used, I could compute the exact value of TRS 
for each sample regression. I then used each of the five 
estimators in turn to estimate TRS. For each estimator I com­
puted two statistics, LIBCOUNT and RMSE, for each of the 
672 combinations. LIBCOUNT was defmed as the number 
of times the estimate of TRS exceeded the true TRS for that 
sample, and RMSE was the root mean squared difference 
between true and estimated values of TRS. 

In a typical problem the investigator of course knows 
N and P, but does not know TR. It seems unreasonable to 
average RMSE or other measures of accuracy across the vari­
ous values of TR, because this assumes that these values occur 
with equal frequency in real problems. Since the Burket 
and Rozeboom formulas are respectively the most liberal 
and most conservative of the four closed-formula estima­
tors, Burket tends to be best when TR is high, while 
Rozeboom tends to be best when TR is low. To avoid this 
problem I always used the worst value of LIBCOUNT or 
RMSE across the 16 values of TR studied for a given combi­
nation of N and P, calling these worst values LIBMAX and 
RMSEMAX respectively. By this means, the 672 values of 
LIBCOUNT and RMSE for each method are reduced to 42 
values of LIBMAX and RMSEMAX. 

Clearly the worst value of RMSE is the largest. For 
each estimator these largest values always occured for TR 
values between .30 and .70; they were never at the highest 
or lowest values of TR studied. I also defmed LIBMAX as 
the largest of the 16 values of LIBCOUNT, rather than the 
value farthest from 500. (500 is half the number of samples 
used for each combination of N and P.) This seems reason­
able to me because the whole purpose of estimating TRS is 
to avoid an overly liberal estimate of a regression's predic­
tive power, and RMSE provides an alternate statistic that treats 
overestimates and underestimates equally. 

It seems reasonable to consider LIBMAX values of 
550 and below as acceptable. This allows for a little random 
error caused by the fact that only 1000 samples were used, 
and also allows a modest amount of nonrandom error. By 
this criterion all 42 values of LIBMAX were acceptable for 
Browne and for Omit-one; their highest values of LIBMAX 
were 549 and 546 respectively. For all five methods the 
highest LIBMAX value came at the highest P and lowest N 

studied, with P = 30 andN= 40. For Burket, LIBMAXwas 
acceptable only if P = 5, or if P = 10 and N:?: 80; its highest 
LJBMAXvalue otherwise was 877. For Claudy, LIBMAX 
was acceptable only if P = 5, or if P = IO and N:?: 70, or if 
P= 15 and N:?: 80; its highest LIBMAX value otherwise was 
759. For Rozeboom, LIBMAXwas acceptable only if P = 5, 
or if P = 10 and N:?: 60, or if P = 15 and N:?: 80; its highest 
LIBMAX value otherwise was 730. 

For each of the 42 combinations of N and P, I also 
identified the method with the lowest value of RMSEMAX. 
With one apparently random exception, the Burket method 
was always best by this criterion when P = 5; and with two 
apparently random exceptions, the Omit-one method was 
always best by this criterion when P:?: IO. When the Omit­
one method is ignored as too complex, it turns out that with 
one exception at the margin, the Burket method is best when 
NIP> 3.5, while the Browne method is bestwhenN/P<3.5. 

In summary, though Claudy and Rozeboom do give 
moderately good estimates, there seems to be no good rea­
son to use those estimators, since others consistently do bet­
ter by both the LIBMAX and RMSEMAX criterion. The re­
maining three methods can be ranked in terms of simplicity, 
with Burket simplest, Browne next, and Omit-one most com­
plex. When multivariate normality can be assumed and NIP 
> 8, the simple Burket rule is quite satisfactory since its 
LIBMAX value stays below 550. When multivariate nor­
mality can be assumed and NIP< 8, Browne seems superior. 
All 42 of its RMSEMAX values exceeded those of Omit-one, 
but never by as much as 10%. But if computing power is no 
major obstacle then Omit-one seems the clear choice. None 
of its RMSEMAX values exceed those of Burket by more 
than 1.5%, and none at all exceed those of Browne. And 
Omit-one has the further major advantage of requiring no 
assumption of multivariate normality-an assumption that 
is quite important for the competing methods. 
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