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Regression Analyses for ABAB Designs in Educational Research 

T. Mark Beasley, St. John's University, New York 

Abstract 

Too many practitioners interpret ABAB research based on visual inspection rather than statistical analy­
ses. This article illustrates the techniques and importance of regression analyses on a hypothetical single­
case study group given Cooperative Learning as an instructional strategy for increasing cooperative 
behavior. 

The ABAB design has become one of the most com­
monly used designs in single-case research because it is be­
lieved to control for the confounding effects of history and 
maturation (Barlow & Hersen, 1984). Hence, the researcher 
can be reasonably sure that the results cannot be attributed 
to extraneous factors or confounding variables. Unfortu­
nately, most practitioners of single-case methodologies take 
little precaution against the potential of their results being 
attributed to chance. That is, they overwhelmingly interpret 
their results based on visual inspection rather than statistical 
analysis (Busk & Marascuilo, 1992). 

Though practically simple, the validity of visual in­
spection is questionable (e.g., Park, Marascuilo, & Gaylord­
Ross, 1990). Many researchers extol the virtues of visual 
inspection and graphic analysis of data, asserting that an "im­
portant" effect will be manifest in an obvious manner, and 
that in applied settings only marked effects have practical 
significance (Baer, 1977). However, it has been suggested 
that the presentation of both visual and statistical analyses 
gives more credence to research findings (Huitema, 1985; 
Park et al., 1990). Yet, no consensus on what constitutes an 
appropriate analysis has been reached. Variants of the re­
peated-measures analysis of variance (ANOV A) have been 
suggested (Shine & Bower, 1971; Gentile, Roden, & Klein, 
1972). However, based on simulation results (Toothaker et 
al., 1983), these tests are not recommended because they 
seriously inflate the Type I error rate when there is nonzero 
autocorrelation. Furthermore, an important assumption of 
linear models, however, is independence of error terms for 
all observations. Therefore, statistical analysis of single-case 
data becomes problematic when dependency exists in the 
data (see Busk & Marascuilo, 1992). 

To circumvent the violation of the independence of 
errors assumption (i.e., autocorrelation), interr,upted time­
series analysis has been recommended for the analysis of 
single-subject data (Jones, Vaught, & Weinrott, 1977). Al­
though this approach has the advantage of accounting for 
serial dependency, it raises new difficulties. Namely, the 

modeling process may become quite complex, to the point 
that it is difficult to make inferential decisions or even iden­
tify the null hypothesis being tested (Gorsuch, 1983). How­
ever, many single-case researchers contend that data from 
behavioral experiments can be analyzed with the simplest 
of the time-series models and that time-series and least­
squares methodologies can be combined (Home, Yang, & 
Ware, 1982). 

Huitema (1985) contends that little evidence exists to 
indicate that serial dependency is a major threat to single­
case behavioral researchers; however, this contention has 
met with substantial resistance and rebuttal. Moreover, time­
series analyses typically require a minimum of 50 to 60 data 
points per phase (Jones et al., 1977), yet single-case experi­
ments provide far fewer observations for the entire study. 
Several nonparametric approaches to time-series data have 
also been suggested (see Edgington, 1992; Levin, Marascuilo, 
& Hubert, 1978); however, most of these tests were not de­
veloped to assess the effects of treatment on trends. Since 
the detection and control of dependency or autocorrelation 
involves an investigation of overall and within-phase trends, 
discussion will focus on regression-based trend models. For 
the sake of simplicity and to make these suggestions con­
crete, an ABAB design will be presented. 

Hypothetical Example of an ABAB Design 

Based on an experiment using Cooperative Learning 
groups as an instructional strategy for integrating autistic 
students into a fourth-grade social studies class (Dugan et 
al., 1995), hypothetical data for one student from an ABAB 
reversal design were created. Suppose data were obtained 
from a three-week initial baseline period in which students 
received a 40-minute teacher lecture four times per week. 
Five-minute time-sampling probes were systematically con­
ducted to assess the cooperative behavior of the subject. The 
number of seconds engaged in appropriate interaction dur­
ing the probe was used as the dependent measure of the 
student's ability to cooperate. During this initial baseline, 
n,

1 
= 10 observations were made. A four-week Cooperative 
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Learning (B) phase, which involved a 10-minute whole class 
lecture followed by the construction of Cooperative Learn­
ing groups of four students, yielded nb 1 = 12 data points for 
this student. A three-week reversal phase yielded n

32 
= 8 

cooperation measures. A five-week reinstatement of Coop­
erative Learning groups yielded nb

2 
= 9 data points. The 

total time-series of T= 39 cooperation measures is displayed 
in Figure 1. Descriptively, the Cooperative Learning condi­
tions appear to increase cooperation for this student. Dur­
ing the initial baseline, cooperation was at a mean level of 
43.40 seconds of interaction (SD= 25.33). After the initial 
Cooperative Learning intervention, the mean number of sec­
onds engaged in appropriate interaction drastically increased 

autocorrelated due to the subject's acclimation to the class­
room, which is substantiated by the trends in the first Coop­
erative Leaming phase where cooperation measures are 
trending upwards as phases are changed. This being the case, 
we cannot be completely confident that the apparent results 
are a function of the treatment and not merely a function of 
cycles or errors that are correlated with these variables. 
However, because of the small number of observations within 
each phase, one must consider the low power of investigat­
ing within-phase autocorrelation. Therefore, autoregressive 
analyses would not be considered valid and trend models 
would be preferred. 

300 Baseline Baseline 

One cause of autocorrelation 
in single-case observations is the 
failure to specify elements in the 
model which represent all the in­
fluences at work. If the statistical 
model is a regression analysis, these 
trends can be included as a 
covariate. The effect of an inter­
vention, however, may result in a 
change in slope as well as a change 
in level, or in some cases just a 
change in slope (Kazdin, 1984). 

250 

200 
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100 
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Kelly, McNeil, and Newman 
(1973) proposed a comprehensive 
approach that assesses shifts in 
level and slope. This approach uses 
time of observation (t) as a 
covariate, dummy codes(~) to rep­
resent the phases, and an interac­
tion term involving the multiplica­
tion of t and ~ to estimate the 
change in slope. However, t and 

0 t--...- ........ -....- ............... -....--..----T"----1-...----,,,:::;.....;;;-...--.-----t Xj are necessarily correlated in the 
0 5 10 15 20 25 30 35 40 ABAB design, which often makes 

Treatment Sessions (in four Phases) 
the separation of baseline and post­
treatment effects difficult. There­
fore, the use of a piecewise regres-Figure 1. Seconds oflnteraction (Cooperation) as a function of Treatment phases. 
sion, akin to regression-discontinu­
ity models (Trochim, 1984), has 

Dotted lines represent the within-phase regressions solved in Equations 2 through 6. 

to 212.92 (SD= 77.68). During the reversal phase, coop­
eration reduced to a mean of21.88 (SD= 17.51). When 
Cooperative Learning groups were reinstated, cooperation 
increased to a mean level of217.22 (SD= 46.04). 

Trend Analysis for Single-Case Data 

Similar to changes in level and slope, autocorrelation 
is frequently difficult to detect through visual inspection 
alone. In examining the cooperation data in Figure 1, the 
potential confound of autocorrelation is plausible when we 
consider the nature of the variables. That is, the reliability 
of the cooperation may be questionable, which could lead to 
autocorrelated errors. Furthermore, the effects of coopera­
tive groups could be obscured because during the initial 
baseline phase, the amount of interaction may be 

been recommended. Thus, a researcher interested in statis­
tically controlling autocorrelative trends and assessing 
changes in slope may use some variant of the following 
Model: 

Y, = b0 + b 1Xu + b2X2, + b3~, + b4t* + bJ'ut* + b6X2, t* + b~, t* + e, , 

(1) 

where X
1
,, X 2,, and X 3, are dummy codes for each phase fol­

lowing the initial baseline. That is, observations belonging 
to the initial baseline received zeros on all three dummy 
codes. Based on the idea of centering, t is rescaled such that 
t* = 1 at the start of each phase thus reducing the correlation 
oft*, Xj, and the interaction ( change in slope) term. For the 
entire time-series, t* = t. For observations in the first treat­
ment phase, t* = (t - n.1), t* = (t - n.1 - nb 1) for the reversal 
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phase observations, and t* = (t - n.1 - nb1 - n.) for the fourth 
phase, where n.l' nbl' and na2 are the number of data points in 
each of the first three phases, respectively. It should be noted 
that other approaches to rescaling t have been suggested 
(Gorsuch, 1983; Huitema, McKean, & McKnight, 1994; 
Kelley et al., 1973); however, all versions lead to the same 
full-model R2 and test statistics, only the interpretation of 
the regression coefficients and tests of specific hypotheses 
differ. For model (1 ), the initial baseline level of behavior is 
estimated by b0• Also in this model, b

1
, b

2
, and b

3 
estimate 

should be mentioned that if a researcher is interested in mul­
tiple comparisons, corrections for the inflation of Type I er­
rors (i.e., Bonferroni adjustment) is strongly suggested. In 
this case with four phases, six pairwise comparisons are pos­
sible. Thus, the Bonferroni adjusted significance level is a= 
.05/6 = .0083. 

For the cooperation data in Figure 1, the statistical trend 
Model (1) was employed to control dependency. The Ap­
pendix gives the raw data in Figure 1 and the SAS (1993) 

the respective changes in level 
as compared to the initial 
baseline. The three interaction 
terms (b

5
, b

6
, and b

7
) estimate 

changes in slope as compared 
to the baseline regression (b

4
). 

For those more familiar with 
other types of analyses, Model 
(1) gives parameter estimates 
and test statistics equivalent to 
an ANCOV A with time (t) as a 
covariate. It should be noted 
that in ANCOV A models, a sig­
nificant time by phase interac­
tion indicates that slopes signifi­
cantly change (are not parallel) 
across treatment which is the re­
gression equivalent to rejecting 
the following null hypothesis, 
H

0
: b

5 
= b

6 
= b

1 
= 0. This sig­

nificant heterogeneity of regres­
sion effect may obscure the in­
terpretation of Phase main ef­
fects in single-case designs. 

Through the regression 
approach, pairwise tests of re­
gression coefficients are also 
available. For example in 
model (1 ), the test of b 

4 
= 0 as­

sesses whether the initial 
baseline regression significantly 
differs from zero. Tests of b

5 
= 

0, b
6 

= 0, and b
7 

= 0, assess 
whether the slopes of the first 
treatment phase, removal phase, 
and second treatment phase sig­
nificantly differ from the initial 
baseline regression ( b 

4
), respec­

tively. Furthermore, testing b
5 

= b 
6 

assesses whether the slope 
changes between the first treat­
ment and removal phases. 
Likewise, testing b

6 
= b

7 
as­

sesses whether slope changes 
between removal phases and the 
second treatment phase. It 

20 

Dependent Variable: COOP 

Source 
Model 

DF 
7 

31 

Analysis of 
Sum of 
Squares 

387087. 71324 
23593.72266 

410681.43590 

Variance 
Mean 

Square 
55298.24475 

761.08783 

F Value 
72.657 

Prob>F 
0.0001 

Error 
C Total 38 

Root MSE 
c.v. 

27.58782 R-square 
Adj R-sq 

0.9425 Dep Mean 
0.9296 

131.25641 
21. 01827 

Parameter Standard 
Variable 
INTERCEP 
X1 
X2 

X3 
TSTAR 
X1T 
X2T 

X3T 

DF 
1 
1 
1 
1 
1 
1 

1 
1 

Estimate 
13 .466667 
73.881818 
38.140476 

139 .172222 
5.442424 

13.875758 
-12.049567 

7.474242 

Error 
18.84606907 
25.36661513 
28.58781834 
27. 51108071 

3.03731905 
3.81413155 
5.22938292 
4.68082302 

Dependent Variable: COOP 
Test: INTERACT Numerator: 8549.6306 DF: 

Denominator: 761.0878 DF: 

Test: B5EQB6 Numerator: 21820.3648 DF: 
Denominator: 761. 0878 DF: 

Test: B5EQB7 Numerator: 1732.0356 DF: 
Denominator: 761.0878 DF: 

Test: B6EQB7 Numerator: 9417.3669 DF: 
Denominator: 761.0878 DF: 

Test: IMPACTBl Numerator: 2348.1142 DF: 
Denominator: 761.0878 DF: 

Test: NB1EQ2 Numerator: 5916. 7740 DF: 
Denominator: 761. 0878 DF: 

Test: NB1EQ3 Numerator: 11648.5775 DF: 
Denominator: 761.0878 DF: 

Test: NB1EQ12 Numerator: 98605.1992 DF: 
Denominator: 761.0878 DF: 

Test: IMPACTA2 Numerator: 74059.4949 DF: 
Denominator: 761.0878 DF: 

Test: NA2EQ8 Numerator: 17396.4649 DF: 
Denominator: 761. 0878 DF: 

Test: IMPACTB2 Numerator: 35023.3343 DF: 
Denominator: 761.0878 DF: 

Test: NB2EQ9 Numerator: 91856.6676 DF: 
Denominator: 761.0878 DF: 

T for HO: 
Parameter=0 

0.715 
2.913 
1.334 
5.059 
1. 792 
3.638 

-2.304 
1.597 

3 F value: 
31 Prob>F: 

1 F value: 
31 Prob>F: 

1 F value: 
31 Prob>F: 

1 F value: 
31 Prob>F: 

1 F value: 
31 Prob>F: 

1 F value: 
31 Prob>F: 

1 F value: 
31 Prob>F: 

1 F value: 
31 Prob>F: 

1 F value: 
31 Prob>F: 

1 F value: 
31 Prob>F: 

1 F value: 
31 Prob>F: 

1 F value: 
31 Prob>F: 

Prob > l Tl 
0.4802 
0.0066 
0.1919 
0.0001 
0.0829 
0.0010 
0.0281 
0.1205 

11. 2334 
0.0001 

28.6700 
0.0001 

2.2757 
0.1415 

12.3736 
0.0014 

3.0852 
0.0889 

7.7741 
0.0090 

15.3052 
0.0005 

129.5582 
0.0001 

97.3074 
0.0001 

22.8574 
0.0001 

46.0175 
0.0001 

120.6913 
0.0001 

Figure 2. Edited SAS Output for Analysis of Data in Figure 1. 
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commands for performing the following analyses. Figure 2 
shows a SAS output for Model (1), which yielded the fol­
lowing regression solution: 

Y, =13.467 + 19.458X1, - 81.593X2, - 24.101x;, + 5.442t* + 
l3.876XI, t* - l2.050X2, t* + 7.474x;, t* . (2) 

As can be seen in Figure 2, the first two interaction 
regression coefficients(~ andX 2) were significantly differ­
ent from zero indicating that the slopes in the first treatment 
phase and the reversal phase changed from the regression 
slope of the initial baseline, respectively. Also, ANCOVA 
model with t as the covariate showed a statistically signifi­
cant interaction of time and phase (HO: b

5 
= b

6 
= b

1 
= 0), 

F(3,31) = 11.23, p < .000 l, which indicates that the slopes 
changed significantly across phases. 

With this statistical interaction, one might choose to 
plot each phase separately, for descriptive purposes. Fur­
thermore, in the presence of significant interactions (i.e., 
changes in slope), however, one should be cautious in inter­
pretation of changes in level. Since, in the dummy coding 
process baseline observations were given values of zero 
across XI' X2, andX 3, their respective regression coefficients 
are not weighted. Thus for the baseline data: 

Y Al = 13.467 + 5.442t* (3) 

For the data in the first Cooperative Learning phase, 
only X

1 
was assigned values of 1, X

2 
and x; were assigned 0; 

thus, the regression equation for the acquisition phase is: 

Y Bl = 13.467 + 73.882 + 5.442t* + l3.876t* 

Since, t* = (t - n.
1
) in the first treatment phase, 

Y Bl = 87.348 + 19.318t* (4) 

Using this same process, the regression solution for 
the reversal phase is, 

y A2 = 51.607 - 6.607t* , (5) 

and for the last treatment phase, 

Y 
82 

= 152.639 + 12.917!* ; (6) 

Other pairwise tests show that the slope in the reversal 
phase was significantly different than the slopes in the first 
[F(l,31) = 28.67, p < .0001] and second treatment phases, 
F(l,31) = 12.37,p = .0014. The slopes of the two treatment 

· phases did not significantly differ, F(l,31) = 2.28,p= .1415. 
Therefore, it seems that the removal of Cooperative Learn­
ing groups changed rate of cooperation to a negative slope. 
When Cooperative Learning groups were reinstated the rate 
of cooperation over time again became an increasing func­
tion. Thus, cooperative behavior increases more rapidly 
when the student is part of a Cooperative Learning group. 

As in ANCOV A models, when a significant interac­
tion of the independent variable and the covariate is present, 

the use of some follow-up analysis such as the Johnson­
Neyman technique is suggested. In single-case research, this 
means that one searches for observation points within a phase 
where the values of the dependent variable are significantly 
changed as compared to some other phase, while statisti­
cally controlling the effects of the within-phase regression. 
Rogosa (1980) contends that researchers should select points 
of theoretical interest, which allows for tests of very specific 
hypotheses. In single-case research, an experimenter may 
wish to test all observation points in the phase for statistical 
significance. Thus, Rogosa's (1980) pick-a-point method 
was used to investigate at what observation point after chang­
ing phases did cooperation significantly change. However, 
this requires many statistical tests. For this example, a 
Bonferroni adjustment was used so that a = .0017. 

To assess the immediate impact of the first Coopera­
tive Learning phase, one must compare the first observation 
(t* = 1) of the treatment phase (b

1
) as compared to the last 

observation (t* = 10) in the initial baseline phase (see Equa­
tions 1 and 2). Thus, a method similar to regression-discon­
tinuity analysis (Trochim, 1984) was employed to test the 
following null hypothesis: 

(7) 

The results showed that the first treatment phase did 
not immediately increase cooperation over the last observa­
tion of the baseline, F(l, 31) = 3.09, p = .0889. To test 
whether significant differences occur through any of the nb1 
points in the first treatment phase, null hypotheses of the 
following general form can be used: 

(8) 

Given that n.
1 

= 10, testing (8) from nb1 = 2 to 12, 
showed that the amount of time engaged in social interac­
tion did not significantly increase by the second observation 
in thetreatmentphase,F(l, 31)=7.77,p= .0090. However, 
cooperation was significantly increased over the last baseline 
observation by the third treatment observation, F(l, 31) = 
15.31, p = .0005 (see Figure 2 for results). This increased 
level of cooperation continued through the rest of the first 
treatment phase (ps < .0001 ). This indicates that the imple­
mentation of Cooperative Learning groups, which has strong 
effects on the rate of cooperative behavior, had a gradual, 
but permanent effect on the level of cooperation. 

To assess whether a statistically significant reduction 
in cooperation occurred at any point (n J during the removal 
phase as compared to the last observation of the first treat­
ment phase (nb1 = 12), null hypotheses of the following gen­
eral form can be tested: 

H0: b1 + nb1b4 + nb1b5 = b2 + na2b4 + na2b6 • (9) 

Statistical tests for na2 = 1 to 9 showed that the removal 
of Cooperative Learning groups immediately lowered co­
operative behavior as compared to the last observation in 
the second baseline, F(l, 31) = 97.31,p < .0001. This re-
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duction in cooperation remained statistically significant 
throughout the reversal phase (see Figure 2). 

To assess whether a statistically significant increase 
in cooperation occurred during the last treatment phase as 
compared to the last observation of the removal phase (na2 = 
8), null hypotheses similar to (9), with na2 substituted for nb 1 

and nb 2 substituted for na2, were formed. The results indicate 
that the re-instatement of Cooperative Leaming groups im­
mediately increased cooperative behavior over the last ob­
servation in the second baseline, F(l, 31) = 46.02, p < 
. 0001 (see Figure 2). This significant increase in the num­
ber of seconds engaged in social interaction remained through 
last treatment phase (ps < .0001). The reader is referred to 
Rindskopf (1984) and Rogosa (1980) for more details on 
testing specific linear hypotheses of this form. Jennings 
(1988) provides a very usable guide to AN COVA follow-up 
procedures and test of linear hypothesis. 

In summary, despite the claims that single-case data 
are not amenable to regression-based methods, the models 
presented provide a flexible approach to the statistical analy­
sis of single-case data. Furthermore, regression-based mod­
els provide a way of statistically controlling the confound­
ing effects of autocorrelation. It should also be noted that if 
nonlinear processes are suspected within phases they can 
also be modeled statistically (Kelly et al., 1973; Trochim, 
1984). In the presence of autocorrelative or nonlinear pro­
cesses, as with other analytic models, it would be important 
to obtain a sufficient number of baseline observation so that 
the within-phase trends could be modeled. In situations 
where the baseline series were not of adequate length, non­
parametric tests of single case intervention effects may be 
employed ( e.g., Edgington, 1992; Levin et al., 1978). Many 

studies have shown the benefits of nonparametric and ran­
domization tests, however, least-squares regression ap­
proaches to analyzing single case designs have fared well in 
simulation studies (Huitema et al., 1994). Moreover, regres­
sion models can be generalized to many single case designs 
including multiple baseline, and alternating treatment de­
signs (see Kelly et al., 1973). One caveat that must be ad­
dressed, however, is that the assumptions of linear regres­

sion apply. Therefore, regression diagnostics such as in­
spection of residuals and tests/corrections for 
heteroscedasticity are important. Future simulation studies 
should focus on comparing the statistical properties ofleast­
squares regression methods to nonparametric and random­
ization tests under situations that occur most frequently in 
single-case research. 
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APPENDIX 
SAS Commands for Analyzing Data in Figure 1. 

data one;options ls=73; 
input coop@@; 
nal=10;nb1=12;na2=8;nb2=9; 
t=_n_; 
if t <= nal then phase=l; 
if t > nal & t <= (nal+nbl) then phase=2; 
if t > (nal+nbl) & t <= (nal+nbl+na2) then phase=3; 
if t > (nal+nbl+na2) then phase=4; 
Xl=O ;x2=0 ;X3=0; 
if phase=2 then xl=l; 
if phase=3 then x2=1; 
if phase=4 then x3=1; 
tstar=t; 
if phase=2 then tstar=t-nal; 
if phase=3 then tstar=t-nal-nbl; 
if phase=4 then tstar=t-nal-nbl-na2; 
xlt=xl*.tstar ;x2t=x2*tstar ;x3t=x3*tstar; 
cards; 

10 5 52 25 75 30 50 80 55 52 
85 95 150 200 150 2!,50 200 300 280 290 
50 35 40 20 10 5 10 5 

155 175 170 225 250 230 275 195 280 

285 270 

proc reg;model coop= xl x2 x3 tstar xlt x2t x3t; 
interact: test xlt=0,x2t=O,x3t=O;** Test of interaction, Ho: b5=b6=b7=0 

b5EQb6: test xlt=x2t;** Pairwise test of b5 b6 
b5EQb7: test xlt=x3t;** Pairwise test of b5 = b7 
b6EQb7: test x2t=x3t;** Pairwise test of b6 = b7 

** Introduction of Treatment(Phase 2) Compared to Initial Baseline(Phase 1) ; 
impactbl: test lO*tstar l*tstar + xl + l*xlt;*Test of Eq. 7, 10b4=bl+b4+b5; 

nbleq2: test lO*tstar 2*tstar + xl + 2*xlt;*Test of Eq. 8, nal=lO nb1=2; 
nbleq3: test lO*tstar 3*tstar + xl + 3*xlt;*Test of Eq. 8, nal=lO nb1=3; 

nbleq12: test lO*tstar =12*tstar + xl +12*xlt; 
** Test of Eq. 8, nal=lO nbl=l2; 

*** Reversal Effects (Phase 3) Compared to Treatment (Phase 2) ***; 
impacta2: test 12*tstar + xl + i2*xlt = l*tstar + x2 + l*xlt; 

** Test of Eq. 9, nbl=12 na2=1; 

na2eq8: test 12*tstar + xl + 12*xlt = 8*tstar + x2 + 8*xlt; 
** Test of Eq. 9, nb1=12 na2=8; 

*** Effect of Treatment (Phase 4) Compared to Reversal )Phase 3) ***; 
impactb2: test 8*tstar + x2 + 8*x2t = l*tstar + x3 + l*x3t;**Test of Eq. 9, 

na2 substituted for nbl, nb2 substituted for na2, na2=8 nb2=1; 

nb2eq9: test 8*tstar + x2 + 8*x2t = 9*tstar + x3 + 9*x3t;**Test of Eq. 9, 
na2 substituted for nbl, nb2 substituted for na2, na2=8 nb2=9; 

proc glm;class phase; 
model coop= phase tstarphase*tstar/solution; 
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