
Mid-Western Educational Researcher Mid-Western Educational Researcher 

Volume 9 
Issue 4 Regression Analyses Article 5 

1996 

Precision Power and Its Application to the Selection of Precision Power and Its Application to the Selection of 

Regression Sample Sizes Regression Sample Sizes 

Gordon P. Brooks 
Ohio University 

Robert S. Barcikowski 
Ohio University 

Follow this and additional works at: https://scholarworks.bgsu.edu/mwer 

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know! 

Recommended Citation Recommended Citation 
Brooks, Gordon P. and Barcikowski, Robert S. (1996) "Precision Power and Its Application to the Selection 
of Regression Sample Sizes," Mid-Western Educational Researcher: Vol. 9: Iss. 4, Article 5. 
Available at: https://scholarworks.bgsu.edu/mwer/vol9/iss4/5 

This Featured Article is brought to you for free and open access by the Journals at ScholarWorks@BGSU. It has 
been accepted for inclusion in Mid-Western Educational Researcher by an authorized editor of 
ScholarWorks@BGSU. 

https://scholarworks.bgsu.edu/mwer
https://scholarworks.bgsu.edu/mwer/vol9
https://scholarworks.bgsu.edu/mwer/vol9/iss4
https://scholarworks.bgsu.edu/mwer/vol9/iss4/5
https://scholarworks.bgsu.edu/mwer?utm_source=scholarworks.bgsu.edu%2Fmwer%2Fvol9%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://bgsu.az1.qualtrics.com/jfe/form/SV_82fhWfkYQAvjIEu
https://scholarworks.bgsu.edu/mwer/vol9/iss4/5?utm_source=scholarworks.bgsu.edu%2Fmwer%2Fvol9%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages


Precision Power and Its Application to the Selection of 
Regression Sample Sizes 

Gordon P. Brooks and Robert S. Barcikowski, Ohio University 

Abstract 

Because of contradictions among the various methods, sample size selection in multiple regres­
sion has been problematic. For example, how does one reconcile the difference between a 15: 1 subject­
to-variable rule and a 30: 1 rule? The purpose of this paper is to analyze the advantages and disadvan­
tages of the various methods of selecting sample sizes in regression. A discussion of the importance of 
cross-validity to prediction studies will be followed by descriptions of the three categories of sample size 
methods: cross-validation approaches, rules-of-thumb, and statistical power methods., A rationale will 
then be developed for the application of precision power to multiple regression, leading to the presenta­
tion, through multiple examples, of the precision power method for sample size selection in prediction 
studies. 

Most researchers who use regression analysis to de­

velop prediction equations are not only concerned with 
whether the multiple correlation coefficient or some particu­
lar predictor is significant, but they are also especially con­
cerned with the generalizability of the regression model de­
veloped. However, the process of maximizing the correla­
tion between the observed and predicted criterion scores re­
quires mathematical capitalization on chance; that is, the 
correlation obtained is a maximum only for the particular 
sample from which it was calculated. If the estimate of the 
population multiple correlation decreases too much in a sec­
ond sample, the regression model has little value for predic­
tion. Because of this possibility, researchers must ensure 
that their studies have adequate power so that results will 
generalize; the best way to ensure this power, and therefore 
stable regression weights, is to use a sufficiently large sample. 

Despite encouragement from scholars, many research­
ers continue to ignore power in their studies (Cohen, 1992; 
Sedlmeier & Gigerenzer, 1989; Stevens, 1992b). This situ­
ation is compounded for multiple regression research even 
though several methods exist for choosing sample sizes for 
power. These methods can be grouped loosely into three 
categories: rules-of-thumb, statistical power methods, and 
cross-validation methods. Unfortunately, as Olejnik noted 
in 19 84 and was confirmed recently (Brooks & Barcikowski, 
1994), many regression textbooks do not discuss the issue 
of sample size selection (e.g., Dunn & Clark, 1974; 
Kleinbaum, Kupper, & Muller, 1987; Montgomery & Peck, 
1992; Weisberg, 1985) or simply provide a rule-of-thumb 
(e.g., Cooley & Lohnes, 1971; Harris, 1985; Kerlinger & 
Pedhazur, 1973; Tabachnick & Fidell, 1989), possibly be­
cause there are problems and contradictions among the vari­
ous methods. 

For example, how does one reconcile differences be­
tween a statistical power method that suggests 16 subjects 

and a 15:1 subject-to-variable ratio rule that recommends 
60? Furthermore, the many rules-of-thumb lack any mea­
sure of effect size, which is generally recognized as a criti­
cal element in the determination of sample sizes. Cohen's 
( 1988) methods are derived from a fixed model and statisti­
cal power approach to regression; however, a random model 
and cross-validation approach, like Park and Dudycha's 
( 197 4 ), may be more appropriate in the social sciences, where 
a prediction function is often desired. This is because 
generalizability is the primary consideration for the devel­
opment of a prediction model, whereas statistical power is 
the main concern when regression is used to test hypotheses 
about relationships between variables. 

Therefore, the purpose of this paper is to analyze the 
advantages and disadvantages of the various methods of se­
lecting sample sizes in regression. A discussion of the im­
portance of cross-validity to prediction studies will be fol­
lowed by descriptions of the three categories of sample size 
methods: cross-validation approaches, rules-of-thumb, and 
statistical power methods. A rationale will then be devel­
oped for the application of precision power to multiple re­
gression, leading to the presentation, through multiple ex­
amples, of the precision power method for sample size se­
lection in regression studies designed to develop prediction 
models. 

Cross-Validation and Shrinkage 

Because the expected value of the sample multiple 
correlation (i.e., an average correlation over many samples) 
is an overestimate of the population multiple correlation, 
researchers have employed a number of methods to "shrink" 
R2 and thereby provide better estimates of true population 
multiple correlations. Formula methods of shrinkage are 
typically preferred to empirical cross-validation ( data-split­
ting) so that the entire sample may be used for model-build-
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ing. Indeed, several common formula estimates have been 
shown superior to empirical cross-validation techniques 
(Cattin, 1980a; 1980b; Kennedy, 1988; Murphy, 1982; 
Schmitt, Coyle, & Rauschenberger, 1977). 

Two types of formulas have been developed: shrink­
age estimates and cross-validity estimates (see Table 1). 
Shrinkage formulas are used to estimate more accurately the 

rion when applying the sample regression function to future 
samples. 

The most common estimate of shrinkage reported in 
the literature (and in statistical packages) is an adjusted R2 

that is attributed most frequently to Wherry (1931). How­
ever, when researchers are interested in developing a regres­
sion model to predict for future subjects, they should report 

squared population mul­
tiple correlation, p2, also 
called the coefficient of 
determination. The mul­
tiple correlation, p, is the 
correlation between the 
criterion and the regres­
sion function if both are 
measured in the popula­
tion (Herzberg, 1969; 
Stevens, 1992a). For ex­
ample, a researcher who 
calculates a sample 
R2 = .3322 with 121 sub-

Table 1 
both R.2 (for descriptive 
purposes) and R/, which 
indicates how well their 
sample equation may pre­
di ct in subsequent 
samples (Cattin, 1980b; 
Huberty & Mourad, 
1980). Indeed, Uhl and 
Eisenberg (1970) found 
that a cross-validity esti­
mate (which they at­
tribute to Lord, 1950) was 
consistently more accu­
rate than Wherry's 
shrinkage formula in this 
regard. Some of the more 
familiar cross-validity 
formulas are those by 
Stein (1960), Darlington 
(1968), Lord (1950), 
Nicholson (1960), and 
Browne (1975). 

jects and 3 predictors 
might use an adjusted R2 

formula to conclude that, 
in the population, the 
multiple correlation be­
tween the criterion and 
the predictors is approxi­
mately p = .5613, since 
R 2=.3151. 

a 

Examples of Cross-Validation and Shrinkage Formulas 

Formula 

R
0

2 = 1 - (N-l)(l-R 2) 
(N-p) 

R.2 = 1 - (N-l)(l-R 2) 
(N-p-1) 

R.2 = R2 - p (1-R2) 
(N-p-1) 

R.2 = R2 - p (1-R2) 
(N-p') 

R
0

2= l-(N-l)(N+p+l)(l-R 2) 
(N-p-1) N 

Attributed To: 

Wherry (1931) 

Wherry (1931); 
Ezekiel (1930); 
McNemar (1962); 
Lord & Novick (1968); 
Ray (1982, p. 69) [SAS] 

Norusis (1988, p. 18) 
[SPSS] 

Dixon (1990, p. 365) 
[BMDP]l 

Nicholson (1960) 
Lord (1950) 

Cross-validity for­
mulas, which are based 
on estimates of the mean 
squared error of predic­
tion, provide more accu­
rate estimates of the 
squared population 
cross-validity coeffi-

R
0

2 = 1 - (N-1) (N-2) (N+ 1) (l-R2) 
(N-p-1) (N-p-2) N 

Stein (1960) 
Darlington (1968) 

Multiple Regression 
Sample Size Methods 

There are three pri­
mary types of sample size 
methods available for 

R
0

2 = 1 - (N+p)(l-R 2) 
(N-p) 

R/ = 1 - (N+p+ l)(l-R 2) 
cient, Pt The values of (N-p-l) 
R/, the sample estimates 

Rozeboom (1978) 

Uhl & Eisenberg (1970) 
(who cite Lord, 1950) 

multiple linear regression: 

of cross-validity, will 
vary from sample to 
sample; however, the ex­
pected value of R/ (that 

Note: R; represents an estimate ofr2; R; is an estimate ofr;. 
p' = p + I with an intercept, p' = p if the intercept= 0. 

cross-validation ap­
proaches, rules-of-thumb, 
and statistical power ap­
proaches. The following 
sections describe each 
briefly, with emphasis on 
the aspects of each that 

is, the average over many samples) approximates Pt This 
cross-validity coefficient can be thought of as the squared 
correlation between the actual population criterion values 
and the scores predicted by the sample regression equation 
when applied to the population or to another sample 
(Kennedy, 1988; Schmitt et al., 1977). For example, a re­
searcher who calculates a sample R2 = .3322 with 121 sub­
jects and 3 predictors might use a cross-validity formula to 
calculate the sample cross-validity coefficient as R/ = .2916. 
This cross-validity coefficient implies that the researcher 
would explain 29%, not 33%, of the variance of the crite-

pertain to the precision power method described later. 

Cross-Validation Approach to Sample Sizes 

Park and Dudycha (1974) took a cross-validation ap­
proach to calculating sample sizes. They noted that such a 
cross-validation approach is applicable to both the random 
and the fixed models of regression; however, because the 
fixed model poses no practical problems, they emphasized 
the random model. In the random model, both the predic­
tors and the criterion are sampled together from a joint mul­
tivariate distribution. The fixed model, on the other hand, 
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assumes that the researcher is able to select or control the 
values of the independent variables before measuring sub­
jects on the random dependent variable. The random model 
is usually more appropriate to social scientists, because they 
typically measure subjects on predictors and the criterion 
simultaneously and therefore are not able to fix the values 
for the independent variables (Brogden, 1972; Cartin, 1980b; 
Claudy, 1972; Drasgow, Dorans, & Tucker, 1979; Herzberg, 
1969; Park & Dudycha, 1974; Stevens, 1986). It is impor­

Rules-of-Thumb for Selecting Sample Sizes 

tant to recognize that the 
misapplication of fixed 
model data to the random 
model may cause biased es­
timates of the population 
parameters (Claudy, 1972). 
For a more complete discus-
sion of the random and fixed 
models, the reader is re­
ferred to Afifi and Clark 
(1990), Brogden (1972), 
Dunn and Clark (1974), 
Johnson and Leone (1977), 
and Sampson (1974). 

Park and Dudycha 
(1974) derived the follow­
ing sample size formula: 

(1 p2) 8 2 
N~ 1 +p+2, 

p2 

where p is the anticipated 
population correlation, and 
8/ is the noncentrality pa­
rameter for the t-distri­
bution. Researchers deter­
mine the probability with 
which they want to approxi­
mate p within some chosen 
error tolerance. The for­
mula for this probability is: 

The most extensive literature regarding sample sizes 
in regression analysis is in the area of experiential rules. 
Many scholars have suggested rules-of-thumb for choosing 
sample sizes that they claim will provide reliable estimates 
of the population regression coefficients. That is, with a 
large enough ratio of subjects to predictors, the estimated 
regression coefficients will be reliable and will closely re­

Table 2 

Rules-of-Thumb for Sample Size Selection 

flect the true population pa­
rameters since shrinkage 
will be slight (Miller & 
Kunce, 1973; Pedhazur & 

Rule 

N~ lOp 

N~ 15p 

N~20p 

N~30p 

N~40p 

N~ 50+p 

N ~ lOp + 50 

N > 100 (or 200) 

Author(s) 

Miller & Kunce, 1973, p. 162 
Halinski & Feldt, 1970, p. 157 
Neter, Wasserman, & Kutner, 1990, p. 467 

Stevens, 1992, p. 125 

Tabachnick & Fidell, 1989, p. 128 
Halinski & Feldt, 1970, p. 157 

(for identifying predictors) 

Pedhazur & Schmelkin, 1990, p. 447 

Nunnally, 1978 (inferred from examples) 
Tabachnick & Fidell, 1989, p. 129 

(for stepwise regression) 

Harris, 1985, p. 64 

Thorndike, 1978, p. 184 

Kerlinger & Pedhazur, 1973, p. 442 

N ~ (2K2-l) + K2p Sawyer, 1982, p. 95 (K is an inflation 
(K2

- 1) factor due to estimating 
coefficients) 

Note: In the formulas for sample size above, N represents the suggested 
sample size and p represents the number of predictors (independent vari­
ables) used in the regression analysis. 

Schmelkin, 1991; Tabach­
nick & Fidell, 1989). This 
is true because as the num-
ber of subjects increases 
relative to the number of 
predictors, both R2 and p/ 
converge toward p2, and 
therefore the amount of 
shrinkage decreases ( Cartin, 
1980a). 

Rules-of-thumb typi­
cally take the form of a sub­
ject-to-predictor (Nip) ratio. 
Table 2 shows that statisti­
cians have recommended 
using as small a ratio as I 0 
subjects to each predictor 
and as large a ratio as 40: 1. 
For example, Stevens 
(1986) recommended a 
15: 1 subject-to-variable ra­
tio, which he based prima­
rily on an analysis of Park 
and Dudycha's (1974) 
tables. Harris (1985) noted, 
however, that ratio rules-of­
thumb clearly break down 
for small numbers of pre-
dictors. Some scholars 
have suggested that a mini­

The researcher chooses (a) an assumed p2 as the effect 
size, (b) the absolute error willing to be tolerated, E, and ( c) 
the probability of being within that error bound, y. The tables 
provided by Park and Dudycha (most of which were reprinted 
in Stevens, 1986, 1992a) then can be consulted with these 
values. Unfortunately, their tables are limited to only a few 
possible combinations of sample size, squared correlation, 
and epsilon. Also unfortunately, their math is too complex 
for most researchers to derive the information they would 
need for the cases not tabulated. Additionally, there is no 
clear rationale for how to determine the best choice of either 
E or the probability to use when consulting the tables (al­
though Stevens, 1992a, implied through examples that .05 
and .90, respectively, are acceptable values). 

mum of 100, or even 200, subjects is necessary regardless 
of the number of predictors ( e.g., Kerlinger & Pedhazur, 
1973). Indeed, Green (1991) found that a combination for­
mula such as N > 50 + 8p was much better than subject-to­
variable ratios alone. Additionally, Sawyer (1982) devel­
oped a formula based on limiting the inflation of mean 
squared error. Sawyer's formula, however, easily simpli­
fies into a combination rule once the inflation factor, k, is 
chosen. Finally, perhaps the most widely used rule-of-thumb 
was described by Olejnik (1984): "use as many subjects as 
you can get and you can afford" (p. 40). 

The most profound problem with many rules-of-thumb 
advanced by regression scholars is that they lack any mea-
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sure of effect size. Indeed, even Sawyer's inflation factor is 
not an effect size. It is generally recognized that an esti­
mated effect size must precede the determination of appro­
priate sample size. Effect size enables a researcher to deter­
mine in advance not only what will be necessary for statisti­
cal significance, but also what is required for practical sig­
nificance (Hinkle & Oliver, 1983 ). The next section includes 
a more complete discussion of effect size and its importance 
in power analysis. 

Statistical Power Approach to Sample Size 

"The power of a statistical test is the probability that it 
will yield statistically significant results" (Cohen, 1988, p. 
1 ). That is, statistical power is the probability of rejecting 
the null hypothesis when the null hypothesis is indeed false. 
Several scholars have proposed regression sample size meth­
ods based on statistical power (e.g., Cohen, 1988; Cohen & 
Cohen, 1983; Gatsonis & Sampson, 1989; Kraemer & 
Thiemann, 1987; Milton, 1986; Neter, Wasserman, & Kutner, 
1990). 

Statistical power analysis requires the consideration 
of at least four parameters: level of significance, power, 
effect size, and sample size. These four parameters are re­
lated such that when any three are fixed, the fourth is math­
ematically determined (Cohen, 1992). Therefore, it becomes 
obvious that it is necessary to consider power, alpha, and 
effect size when attempting to determine a proper sample 
size. This is a fixed model approach to regression, however, 
and is most useful when researchers use regression as a means 
to explain the variance of a phenomenon in lieu of analysis 
of variance orto determine the importance of individual pre­
dictors. It is useful, though, to discuss effect size regardless 
of the approach to regression that is taken. 

In any statistical analysis, there are three strategies for 
choosing an appropriate effect size: (a) Use effect sizes found 
in previous studies, (b) Decide on some minimum effect that 
will be practically significant, or ( c) Use conventional small, 
medium, and large effects (Cohen & Cohen, 1983). Cohen 
(1988) defined effect size in fixed model multiple regres­
sion as a function of the squared multiple correlation, spe­
cifically 

R2 
P=--­

l-R2 

Since R2 can be used in the formulas directly, Cohen 
also defined effect sizes in terms ofR 2 such that small effect 
R2 = .02, medium effect R2 = .13, and large effect R2 = .26. 
Cohen's (1988) sample size is calculated as 

N = A (1-R2) 
R2 ' 

where A is the noncentrality parameter required for the 
non central F-distribution. Cohen's (19 88) tables provide the 
A needed for the sample size formula. 

For prediction studies, the fundamental problem with 
Cohen's (1988) method, and Green's (1991) formula based 
on Cohen's method, is that it is designed for use from a fixed 
model, statistical power approach. And although Gatsonis 
and Sampson (1989) use the random model approach, their 
method is also based on a statistical power approach to sample 
size determination. Unfortunately, statistical power to re­
ject a null hypothesis of zero multiple correlation does not 
inform us how well a model may predict in other samples. 
That is, adequate sample sizes for statistical power tell us 
nothing about the number of subjects needed to obtain stable, 
meaningful regression weights (Cascio, Valenzi, & Silbey, 
1978). Therefore, selecting a sample size based on statisti­
cal power tests may be useful in selecting predictors to in­
clude in a final model, but it will not ensure adequate sample 
size to allow a regression equation to generalize to other 
samples from the given population. 

Precision Power 

While several scholars have used the term predictive 
power (e.g., Cascio et al., 1978; Kennedy, 1988; Nunnally, 
1978; Stevens, 1986, 1992a), only Cartin (1980a) has pro­
vided a formal definition. Cattin (1980a) noted that the two 
common measures of predictive power are the mean squared 
error of prediction and the cross-validated multiple correla­
tion. However, Cartin was discussing predictive power in 
regard to the comparison and selection of competing regres­
sion models. Stevens (1992a), who discussed predictive 
power as an aspect of model validation, used the term to 
mean how well a derived regression equation will predict in 
other samples from the same population. Therefore, a "loss 
in predictive power" to Stevens is simply the size of the de­
crease in the sample R2 when an appropriate slrrinkage or 
cross-validity formula is applied. 

Although both Catlin's and Steven's definitions of 
predictive power could be applied to the problem of sample 
size in some fashion, neither would provide any sense of the 
magnitude of error as compared to the original R2 value. 
For example, a loss in predictive power (as Stevens defines 
it) of .20 suggests drastically different results if the sample 
R2 is .50 than if the sample R2 is .25. Because they desire a 
regression model that predicts well in subsequent samples, 
researchers hope to limit shrinkage as much as possible rela­
tive to the sample R2 value they attained. Therefore, a con­
cept is required that provides more information about the 
magnitude of shrinkage relative to sample values. 

The term precision power is proposed to indicate how 
well a regression function is expected to perform if applied 
to future samples. The term is adapted from Darlington 
( 1990), who used the phrase "precision of estimates" to op­
pose the "power of hypothesis tests" (i.e., statistical power) 
while introducing a chapter on choosing sample sizes (p. 
379). Precision power is defined more precisely as R//R 2

, 

which can be inferred and adapted from an example used by 
Stevens (1992a, p. 100). With a larger sample, this fraction 
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would be larger because less shrinkage occurs with larger 
samples, all else remaining constant. Using Stevens' ex­
ample, a 61.8% shrinkage from R2 = .50 to R/ = .191 oc­
curs with a sample size of 50; when the sample is increased 
to 150, there is only a 15.8% shrinkage from R2 = .50 to 
R/ = .421. Tue precision power in the first case would be 
.191/.50 = .382, and precision power in the second case is 
.421/.50 = .842. 

Tue formulaic defmition of precision power, 

R2 
PP= __ c 

R2 ' 

Tue methods described earlier in the paper (a) provide 
contradictory sample size recommendations (see Table 3), 
(b) either oversimplify the issue or are too mathematically 
complex for many researchers to use, and ( c) are not all based 
on the random model. Indeed, a Monte Carlo study that 
examined several of the methods from a precision power 
perspective found that none of the methods provided con­
sistently accurate power rates (Brooks & Barcikowski, 1994 ). 
Therefore, the precision power method was developed and 
verified (Brooks & Barcikowski, 1995). Tue precision power 
method was determined to be both consistent and accurate 

across all levels of expected 

can be manipulated algebra­
ically into the formula 

Table 3 
R2, numbers of predictors, and 
actual p2• 

Sample Sizes Suggested by Several Methods 
Precision Power Method (R2 R 2) 

pp= 1- C • (2) 
R2 

E(R2
) 

K Method :12. _j_Q .25 .J.Q 
Tue fraction, (R2 

- R/)/R 2
, 

can be interpreted as the pro­
portional decrease, or propor­
tional shrinkage (PS), in the 
squared multiple correlation 
after an appropriate cross-va­
lidity estimate is made. There­
fore, 1 - PS provides an esti­
mate of the precision power, 
and therefore generalizability, 
of the regression equation. 
For example, if sample 
R2 = .50 and R/ = .10, the pre­
cision power for that regres­
sion model would be 1 - (.40/ 
.5) = .20; this suggests very 
little generalizability for the 
regression model because the 
R2 value shrank by 80%. A 
precision power value of .90, 
on the other hand, would in­
dicate a highly generalizable 
model. 

4 Precision Power (6 = .2R2) 22 55 155 455 

Tue theory underlying 
the precision power sample 
size method is that the re­
searcher, knowing shrinkage 
is likely to occur, can set a 
limit as to the amount of 
shrinkage that will result. Al­
gebraic manipulation and sim­
plification of a cross-validity 
formula provides the tool 
needed to limit this expected 
shrinkage (Brooks & 
Barcikowski, 1995). Restruc­
turing the cross-validity for­
mula to solve for sample size 
yields: 

Precision Power (6 = .05) 55 105 155 305 
Park & Dudycha (p = .90) 37 66 93 173 
Sawyer 22 30 55 130 
30:1 120 120 120 120 
50+ 8p 82 82 82 82 
15:l 60 60 60 60 
Cohen 8 16 48 144 
Gatsonis & Sampson 14 25 55 165 

8 Precision Power (6 = .2R2) 39 99 279 819 
Precision Power (6 = .05) 99 189 279 549 
Park & Dudycha (p = .90) 68 124 171 311 (p+l)(2-2R 2 +6) 
Sawyer 38 53 
30:1 240 240 
50+ Sp 114 114 
15: l 120 120 
Cohen 12 20 
Gatsonis & Sampson 19 32 

98 
240 
114 
120 
61 
69 

233 
240 
114 
120 
183 
205 

N:2: 13 (3) 

where p is the number of pre­
dictors, R2 is the expected 
sample value (i.e., an effect 
size), and 13 is an acceptable 
amount of shrinkage, 
13 = R2 

- R 2
• This value of 13 

Precision power thus Note: K represents the number of predictors in the model. allows re;earchers to decide 
describes how well a regres- how closely to estimate p / 
sion equation will predict in ____________________ _, from expected R2 : either as 

other samples relative to its ability to predict in the deriva- an absolute amount of acceptable shrinkage {e.g., 13 = .05) 
tion sample. Because the term power has special meaning or a proportional decrease (e.g., 13 = .2R2

, which represents 
in the research literature, a word of warning may be prudent shrinkage of20%). This is similar to the method employed 
at this time. Precision power as defmed here, 1 - PS, is simi- by Park and Dudycha ( 197 4 ). 
lar in form to the theoretical defmition of statistical power, 
1 - 13, where I3 is the probability of a Type II error. How­
ever, PS is not the probability of error but the tolerance level 
for error, or more precisely, cross-validity shrinkage. Fur­
thermore, the term statistical power is used in reference to a 
test of a hypothesis; the term precision power, on the other 
hand, applies not to a statistical test, but to an evaluation of 
the generalizability of a regression equation. 

Through changes in the shrinkage tolerance, 13, the pre­
cision power formula has the capacity for simplification. For 
example, if the researcher does not want the sample R2 to 
decrease by more than .05 no matter what the expected value 
ofR 2

, formula (3) simplifies to 

N :2: 20 (p + 1) (2.05 - 2R2
) ; 
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or if the researcher does not want sample R2 to decrease by 
morethan.03,then 

N ~ 33 (p + 1) (2.03 - 2R2
) • 

For example, ifthere are four predictors in the model 
and expected R2 = .50, N should be chosen greater than 
33*5*(2.03 - 2* .50) = 170. If a researcher wants an esti­
mate of p / not less than 80% of the sample R2 value, for­
mula (3) can be reformulated using E = R2 

- .8R2 = .2R2
, such 

that 

(p + 1)(2 - 1.8 R2
) 

N~--------
.2R2 

or if the researcher wants a p/ estimate not less than 75% of 
the sample R2 value, the formula can be reformulated such 
that E = .25R2

: 

(p + 1)(2 - 1.75 R2
) 

N~......C.------ . 
. 25 R2 

As an example, with five predictors and an anticipated 
R2 of .40, at least 78 subjects should be used to attain ex­
pected precision power of . 7 5. 

Other values for E can be chosen by substituting E for 
the quantity (R2 

- R/) in formula (2). Formula (2) can be 
rewritten as 

and therefore 

E 
PP= 1- -

R2 

E = R2 - (PP * R2
) • 

(4) 

(5) 

For example then, if researchers wanted the R/ after 
shrinkage to be no less than 87% (i.e., a decrease in R2 ofno 
more than 13%) of the expected sample R2 of .53 with four 
predictors, they would set PP= .87, and calculate E = .069 
to use in sample size formula (3). Plugging the values into 
formula (3) provides a sample size of 

N ~ 5 (2 - 2 (.53) + .069) = 
73 

.069 

Thus, 73 subjects should provide a large enough 
sample so that expected R/ > .46, which is 87% of the as­
sumed p2 = .53. 

Conclusions 

The seriousness of concern about sample sizes and 
precision power in regression is not obvious--after all, re­
searchers have shrinkage and cross-validity formulas avail­
able to "correct" for inadequate sample sizes. However, a 
prediction model produced using a larger sample size will 
better estimate both p2 (using R.2) and p/ (using R/); more 
importantly, it will provide more stable regression weights. 
Therefore, such a model will predict better in future samples 
because the efficiency of a prediction model depends not on 

the estimates of p2 and p/, but on the stability of the regres­
sion coefficients. 

The primary goal of precision power analysis is to re­
duce the upward bias of R2

, thereby better estimating both 
p2 and p /, so that results are not sample specific. The preci­
sion power method provides researchers with a means to 
determine the optimum sample size for prediction studies. 
Assuming the researcher can make a reasonable estimate of 
the population p2

, the precision power method provides the 
most consistent precision power rates of all existing meth­
ods. It should be noted thatBrooks and Barcikowski' s (1995) 
results apply only to standard regression analysis, where all 
predictors are entered into the model simultaneously. Many 
researchers agree, however, that even larger samples are re­
quired when preselection or best subset regression analyses 
are used (Halinski & Feldt, 1970; Nunnally, 1978; 
Tabachnick & Fidell, 1989). 

Unfortunately, no sample size method can eliminate 
all problems. When researchers choose an expected R2 that 
overestimates p2 

( either explicitly by choice of an inflated 
effect size or implicitly by use of an inappropriate rule-of­
thumb ), power rates are unacceptably low. Similarly, when 
researchers choose an expected R2 which is much lower than 
the population p2

, power rates are unnecessarily high (more 
subjects than necessary are recommended). Therefore, if 
the researcher cannot make a reasonable estimate of p2

, no 
sample size method will work well. In other words, effect 
size is just as critical when choosing sample sizes in mul­
tiple regression as it is with other statistical methods, be­
cause all methods are inadequate when expected R2 deviates 
too far from p2

• 

Researchers who hope to develop an efficient predic­
tion model using multiple regression must be concerned with 
the size of their derivation samples, starting with an appro­
priate effect size, probably in the form of an expected R2

• It 
may be worth noting that although Stevens ( 1992a) suggested 
an effect size of p2 = .50 as a reasonable guess for the social 
sciences when a better estimate is unavailable, Rozeboom 
(1981) believes that p2 = .50 may be an upper bound and 
Cohen (1988) offers p2 = .26 as a large effect size. Of course, 
the best choice of effect size is based on evidence from the 
research literature or from past research experience. Clearly, 
effect size impacts the selection of sample size in complex 
ways. Such discrepancies make it more obvious why some 
scholars have recommended sample sizes of 100, 200, and 
even 500, no matter how many predictors, and others have 
suggested subject-to-variable ratios as large as 40: 1 ( e.g., 
Kerlinger & Pedhazur, 1973; Nunnally, 1978; Pedhazur, 
1982; Tabachnick & Fidell, 1989). 

Another concern that researchers must consider is the 
question of a priori precision power rate. It is useful to re­
member that "for both statistical and practical reasons, then, 
one wants to measure the smallest number of cases that has 
a decent chance of revealing a significant relationship if, 
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indeed, one is there" (Tabachnick & Fidell, 1989, p. 129). 
Given the current state of the research, there are no clear 
guidelines as to what precision power rate to choose. Simi­
lar to choices regarding statistical power and Type I error 
rates, the importance of generalizability to a study must be 
considered by researchers. For example, if it is critical that 
the expected R2 value not shrink much, the researcher may 
wish to choose a very high precision power rate. 

Summary 

Sample sizes for multiple linear regression, particu­
larly when used to develop prediction models, must be cho­
sen so as to provide adequate power both for statistical sig­
nificance and also for generalizability of the model. It is 
well-documented and unfortunate that many researchers do 
not heed this guideline, probably often choosing instead to 
abide by the rule cited by Olejnik (1984): use as many sub­
jects as you can get. Possibly more tragic are the cases where 
researchers have used a groundless rule-of-thumb to choose 
their sample sizes or have neglected to report an appropriate 
"shrunken" R2

; these studies probably provide inaccurate 
conclusions regarding the topics under investigation. 

For whatever reasons, empirical study into power for 
multiple regression has been lacking. Rules-of-thumb have 
existed for decades with little empirical or mathematical sup­
port. Indeed, both studies by Brooks and Barcikowski (1994, 
1995) have found very limited value for rules-of-thumb in 
regression. Additionally, sample size methods offered by 
Park and Dudycha (1974), Cohen (1988), Gatsonis and 
Sampson (1989), and Sawyer (1982) were each found lack­
ing in some way. The only method which provided consis­
tently accurate power for generalizability was the precision 
power method. 

It is hoped that the information presented within this 
paper encourages researchers to consider more seriously the 
issues of power and sample size for multiple linear regres­
sion studies. Because power in prediction studies has more 
meaning than for other statistical designs, it is an even more 
important consideration. Researchers must recognize the 
potential danger of choosing an inappropriate effect size ( ei­
ther implicitly or explicitly) or ignoring effect size entirely. 
Further, no statistical analysis or correction (such as an ad­
justed R2

) can repair damage caused by an inadequate sample. 
Researchers must remember that a sample must not only be 
large enough, but that it must also be random and appropri­
ately representative of the population to which the research 
will generalize (Cooley & Lohnes, 1971; Miller & Kunce, 
1973). 
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