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Semi-Partial Correlations: 
I Don't Need Them; You Can Have Them 

Thomas R. Knapp, The Ohio State University 

Prologue 

I have been teaching statistics and associated topics (measurement, research design) for 37 
years and have contributed to the methodological literature on such matters. During that time I have 
managed to get along without knowing or caring very much about a variety of techniques, most notably 
exploratory data analysis, Bayesian inference, expected values of mean squares, and item response theory. 
In the essay that follows I talk about another one: semi-partial correlations. 

What are semi-partial correlations? 

As explained very nicely by Cohen and Cohen (1983), 
Darlington (1990), and others, a semi-partial correlation be­
tween an independent variable X and a dependent variable 
Y, is the correlation between Y and the "residualized" vari­
able X. W for which the effect of a covariate W on X has 
been removed (partialled out, statistically controlled, etc.) 
from X (but not from Y). This semi-partial correlation ( called 
a "part" correlation by some authors, e.g., McNemar, 1962) 
and its square are said to be the best indicators of an inde­
pendent variable's "unique" contribution to the prediction 
or explanation of the dependent variable. Darlington lists 
five ways for determining the relative order of importance 
of independent variables in a multiple regression analysis, 
and he comes down in favor of focussing on semi-partial 
correlations. 

Cohen and Cohen include in their text several Venn 
diagrams, or "ballantines" (named after the logo for a beer 
that is no longer brewed), that are alleged to be helpful in 
determining "variance accounted for" and in distinguishing 
semi-partial correlations from partial correlations. 

Why I don't need them 

There are several reasons why I have little or no inter­
est in semi-partial correlations. First and foremost, an inde­
pendent variable's semi-partial correlation with a dependent 
variable can be shown to be mathematically identical to the 
square root of the difference in R-squares for the "full model" 
hierarchical regression in which the variable under consid­
eration is entered last and the "reduced model" that includes 
all of the other variables (covariates) that are to be statisti­
cally controlled. (See, for example, Pedhazur (1982), pp. 
119-123.) I am a strong advocate of hierarchical regression 
analysis. I believe that the most interesting educational re­
search questions are of the form: "What is the effect of __ 
over and above the effect of __ ?". I accordingly find 
change in R-square to be a more intuitively appealing no-

tion than a squared semi-partial correlation coefficient, and 
since the two m mathematically identical I prefer the former. 

Another reason I don't like to emphasize semi-partial 
correlations has to do with the concept of a residualized vari­
able. Intellectualizing raw variables, deviation variables, 
standardized variables, log-transformed variables, etc. is dif­
ficult enough. The notion of"X without W'', which under­
lies the proper interpretation of a semi-partial correlation, 
boggles my mind. 

A third reason why I don't get excited about semi­
partial correlations is that unlike partial correlations they seem 
to be useful only in regression analyses. Everybody cares 
about the partial correlation between, say, height and read­
ing achievement, with age partialled out from both variables, 
as a device for detecting spurious relationships. But semi­
partial correlations only arise in a regression context where 
one of the variables is a response and all of the others are 
explanatory. 

A fourth reason has to do with those "ballantines". The 
variance of Y is not a thing that can be sliced up; it is an 
abstract statistical entity. By depicting overlapping circles 
with one piece "accounted for" by this and another piece 
"accounted for" by that, there is a serious danger of imput­
ing causality that may not be warranted (in most non-ex­
perimental research, for example). 

A fifth reason, associated with my second reason, is 
that I already have enough important statistical concepts to 
clutter up my brain without adding another one unless it is 
absolutely necessary. As Yogi Berra once said, a baseball 
player has just so many hits coming to him each year, so 
why waste any of them in spring training. 

You can have them (if you want them): An example 

Consider the simple hypothetical example exploited 
by Darlington in Chapter 2 of his excellent regression text. 
A researcher is interested in the effect of exercise on weight 
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loss over and above (statistically controlling for) food intake. 
The sample data for 10 subjects are displayed in Table 1. 

Table 1. 

Some data for illustrating semi-partial correlation 
(Darlington, 1990, p. 33) 

ID Exercise (X)* Food intake (W)* Weight loss (Y) 

1 0 2 6 

2 0 4 2 

3 0 6 4 

4 2 2 8 

5 2 4 9 

6 2 6 8 

7 2 8 5 

8 4 4 11 

9 4 6 13 

10 4 8 9 

* Darlington calls these two variables X
1 

and X
2

, respec­
tively, but I prefer the X and W notation. 

Darlington provides the reader with eight informative 
plots of the data. The first is a simple scatter-plot ofY against 
W. The next two are the conventional three-dimensional 
plots, one without and one with the best-fitting plane super­
imposed. The fourth figure again plots Y against W, with 
the X values shown by parallel lines in the body of the fig­
ure; the fifth figure plots Y against X, with the W values 
shown by parallel lines. The sixth figure is a simple scatter­
plot of X against W. The seventh figure plots Y against 
W.X; and the eighth figure, which is the key figure regard­
ing the semi-partial correlation for the research question, plots 
Y against X.W. 

I need only the first three figures to make geometrical 
sense of what is going on. (How about you?) And algebra­
ically (or arithmetically) I need the Pearson rand its square 
for the reduced-model first plot (they are .047 and .002, re­
spectively-the covariate W actually had very little effect) 
and the multiple Rand its square for the full-model second 
and third plots (they are .915 and .838, respectively). There­
fore the magnitude of the effect of X on Y over and above 
Wis given by the difference between the .838 and the .002 
(.836, which is equal to the squared semi-partial correlation) 
and/or the square root of that difference (.914, which is the 
semi-partial correlation itself). 

At the end of Chapter 2 Darlington gives equivalent 
formulas for semi-partial correlations, as well as formulas 
for partial correlations and beta weights. I don't need those 
formulas for semi-partial correlations (do you?), but in fair­
ness to those who do, it is instructive to note the similarities 
among the formulas for semi-partial correlations, partial 
correlations, and beta weights (same numerators, different 
denominators). 

Later in his text Darlington discusses hypothesis test­
ing and estimation for various regression statistics (Chapter 
5) and provides his argument for preferring semi-partial cor­
relations (Chapter 9) as indicators of the relative importance 
of independent variables in a regression (as opposed to 
change in R-square and three other methods for ranking re­
gressors). Reference to semi-partial correlations per se is 
interestingly absent in Chapter 5, but he does provide the 
formula for testing the significance of change in R-square 
(which implicitly tests the significance of a semi-partial cor­
relation). 

Epilogue 

The probability is very small that the foregoing re­
marks will sway all readers of this journal to my point of 
view. I am a methodological loner (you should hear me ex­
pound on my idiosyncratic notion of validity!) and I rather 
enjoy being in that position. But if nothing else I hope that 
this essay may serve to generate some interesting discus­
sion. Isn't that what it's all about? 
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