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The topic of this presidential address was motivated 
primarily by my work as the editor of Measurement and 
Evaluation in Counseling and Development (MECD)―the 
official journal of the Association for Assessment in Coun-
seling and Education (AACE). A particular concern in my 
editorial experience has been that, despite the availability of 
contemporary approaches to evaluating scale reliability and 
validity, a large number of manuscripts still involve outdated 
methods that yield potential threats to valid interpretations 
and decision making in education, psychology, and related 
fields. I will leave to your judgment whether this is also the 
case in some (if not most) dissertations at graduate schools 
of education nationwide. Typical problems relate to a lack 
of testing for assumptions in evaluating reliability, limited 
perspective on measurement precision, and methodological 
drawbacks in validation processes. I hope that this presenta-
tion will provide highlights that can be useful to researchers 
in studies that involve evaluation of scale reliability and 
validity for assessment in education. 

 Highlights on Contemporary  
Treatment of Reliability

What is Reliability?

In general, the reliability of measurements indicates the 
degree to which they are accurate, consistent, and replicable 
when (a) different people conduct the measurement, (b) using 
different instruments that purport to measure the same trait, 
and (c) there is incidental variation in measurement condi-
tions. That is, the reliability of scores shows the degree to 
which they are “free” of random error. Before I comment on 
limitations of traditional approaches (e.g., using Cronbach’s 
alpha) and advantages of some contemporary approaches 
to evaluating scale reliability in the classical (true-score) 
framework, the introduction of some basic concepts seems 
appropriate.

True-Score Model 

A basic assumption in the classical (true-score) model 
of measurement is that the observed score, X, is a sum of a 
true score, T, and random error, E. That is, 

X = T + E.	 (1)
In general, a person’s true score, T, is the mean of the theoreti-
cal distribution of scores that would be observed in repeated 
independent measurements using the same test. Clearly, T 
is a hypothetical concept because it is not practically pos-
sible to test the same person infinity times in independent 
repeated measurements, given that each testing could influ-
ence the subsequent testing (e.g., due to “carry over” effects 
of practice or memory). From the definition of true scores, it 
follows that the variance of the observed scores is a sum of 
the variance of the true scores and the error variance (e.g., 
Zimmerman, 1975). That is, 

2 2 2 .X T Es s s= + 	 (2)
As to the error scores (residuals), E, it is assumed that they 
are random and follow a normal distribution with a mean of 
zero and a variance 2

Es , that is ( )20, EE N s . 
The reliability of a measurement scale, denoted here 

ρXX, is defined as the correlation between the observed scores 
on two parallel tests―i.e., tests with equal true scores and 
equal error variances for every population of examinees tak-
ing both tests. Equivalently, ρXX indicates what proportion of 
the observed score variance is true score variance. That is,

2
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X
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= 	 (3)

Perfect reliability (ρXX = 1) can theoretically occur when 
2 2
T Xs s=  or, equivalently, when 2

Es = 0. The error standard 
deviation, sE, referred to also as the standard error of mea-
surement (SEM), is typically estimated as

1 .E X XXs s r= - 	 (4)
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The assumptions underlying scale reliability and its 
estimation involve the concepts of congeneric measures, 
parallel measures, tau-equivalent measures, and essentially 
tau-equivalent measures. To better understand the mean-
ing of these concepts, they are defined here in a latent trait 
framework. For simplicity, let’s consider the case depicted 
in Figure 1, where three test items, X1, X2, and X3, serve as 
indicators of a single latent trait, h, being measured by the 
test (e.g., h can be reading ability, test anxiety, etc.)

Analytically, the observed scores X1, X2, and X3 in Figure 
1 can be presented as follows:
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where the expression in parentheses (lh + a) represents the 
predicted value of the observed score, X, from the latent trait, 
h, via a simple linear regression, and E stands for the error 
term. As the predicted value of an observed score is, in fact, 
the true value for this score, T, we have: 
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Thus, the true scores T1, T2, and T3 on the three items that 
measure a single latent trait, h, are obtained by regressing 
the observed scores (X1, X2, and X3) on h. The regression 
coefficients, referred to also as factor loadings, are l1, l2, 
and l3, and the intercepts are a1, a2, and a3. 

Congeneric Measures

Congeneric measures represent the most general case 
of unidimensional measures in the sense that they may have 
different scale origins, different units of measurement and 
may vary in precision. In the context of Figure 1 (see also 

Equations 6), (a) different scale units means that the regres-
sion coefficients (l1, l2, and l3) may differ, (b) different scale 
origins means that the intercepts (a1, a2, and a3) may differ, 
and (c) variation in precision means that the variances of the 
error terms, VAR(E1), VAR(E2), and VAR(E3), may differ. 

Parallel Measures

Parallel measures represent the most restricted case of 
unidimensional measures in the sense that they have the same 
units of measurement, scale origins, and error variances. 
In the context of Figure 1, X1, X2, and X3 would be parallel 
measures under the following restrictions

l1 = l2= l3,
a1 = a2 = a3, and
VAR(E1) = VAR(E2) = VAR(E3). 	 (7)

As one can also notice, parallel measures have equal true 
scores and equal error variances. 

Tau-equivalent measures

Tau-equivalent measures have the same units of mea-
surement and scale origins, but their error variances may 
differ. In Figure 1, X1, X2, and X3 would be tau-equivalent 
measures under the following restrictions

l1 = l2= l3 and
a1 = a2 = a3.	 (8)

Essentially tau-equivalent measures

Essentially tau-equivalent measures have the same units 
of measurement, but dissimilar origins and unequal error 
variances. In Figure 1, X1, X2, and X3 would be essentially 
tau-equivalent measures under the following restrictions:

l1 = l2= l3.	 (9)

Limitations of Cronbach’s alpha

It would be fair to say that Cronbach’s alpha (Cronbach, 
1951) is still the most commonly used index of internal 
consistency reliability. It should be emphasized, however, 
that Cronbach’s alpha is an accurate estimate of the popula-
tion scale reliability only under the assumptions that (a) the 
measures are essentially tau-equivalent and (b) there are no 
correlated error terms. In case that the latter assumption is 
in place, but the measures are not essentially tau-equivalent 
(i.e., the measures may differ in units of measurement), 
Cronbach’s alpha underestimates the population scale reli-
ability (e.g., Novick & Lewis, 1967; Raykov, 1997). In case 
of correlated errors Cronbach’s alpha typically overestimates 
the population scale reliability (e.g., Zimmerman, Zumbo, & 
Lalonde, 1993). Correlated errors may occur, for example, 
with adjacent items in a multicomponent instrument, with 
items related to a common stimulus (e.g., same paragraph 
or graph), or with tests presented in a speeded fashion 
(Komaroff, 1997; Raykov, 2001). Thus, Cronbach’s alpha 
cannot be in general considered a dependable estimator of 
scale reliability. Presented next is a contemporary approach 

Figure 1. A unidimensional construct h, as measured by three 
indicators X1, X2, and X3

1 
 

Figure	1. A unidimensional construct, δ, as measured by three indicators (items) X1, X2, and X3
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to evaluating reliability in the general case of congeneric 
measures (i.e., measures that may have different scale origins, 
different units of measurement, and unequal error variances). 

Evaluation of Scale Reliability Using Latent Variable 
Modeling

For specificity, consider again the unidimensional test 
model depicted in Figure 1 (see also Equations 5 and 6). In 
this context, if X = X1 + X2 + X3 is the total test score, Equa-
tion 3 for the reliability of X, rXX, can be translated as follows 
(e.g., Bollen, 1989):

( )
( ) ( ) ( ) ( )
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2
1 2 3 1 2 3

.XX
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l l l

+ +
=

+ + + + +
	(10)

With correlated errors (assuming model identification), the 
right-hand side of Equation 10 needs to be extended by add-
ing twice the sum of error covariances in the denominator 
(Bollen, 1989, p. 220). This extension assumes that the model 
with the added error covariances is identified.

A readable discussion of the latent variable modeling 
approach to evaluating reliability through the use of Equation 
10 is provided by Raykov (2009). He also provides a syntax 
code in the computer program Mplus (Muthén & Muthén, 
2008) for point and interval estimation of scale reliability of 
congeneric measures. A different approach to point evalua-
tion of reliability for scales with binary items is proposed by 
Dimitrov (2003). This approach allows researchers to evaluate 
the reliability of the composite scale for a test, as well as the 
reliability of individual test items, based only on estimates 
of the items parameters obtained with the one-, two-, or 
three-parameter model in items response theory (IRT). Using 
formulas developed by Dimitrov (2003), Raykov, Dimitrov, 
and Asparouhov (in press) applied the latent variable model-
ing approach to point and interval estimation of reliability for 
scales with binary items. 

Multiple Aspects of Precision in Measurement

In a seminal article on precision of measurements, Kane 
(1996) argued that the standard error of measurement and 
reliability coefficients are very useful, but do not capture all 
aspects of the precision of measurements. He noted that “a 
more fundamental way to evaluate precision is to compare 
errors of measurement with the tolerance for error in a par-
ticular context. The tolerance for error specifies how large 
the errors can be before they interfere with the intended use 
of the measurement procedure and is based on an analysis of 
the requirements for precision in that context” (Kane, 1996). 

Error-Tolerance Ratio (E/T)

To address the evaluation of tolerance for errors, Kane 
(1996) introduced the error-tolerance ratio (E/T). In the 
context of the classical true-score model, he defined E/T 
as the ratio “error standard deviation to true-score standard 
deviation,” that is

.E

T

E / T s
s

= 	 (11)

The rational behind this definition of E/T was that “the 
tolerance for error for each individual can be defined as the 
individual’s true deviation score, and in this context, the root 
mean square tolerance is simply the standard deviation of the 
true scores” (Kane, 1996). 

Signal-to-Noise Ratio (S/N)

The inverse of the E/T is referred to as signal-to-noise 
ratio (S/N), that is

.T

E

E / T s
s

= 	 (12)

The signal-to-noise ratio (S/N) provides somewhat different 
perspective on precision in the sense that differences among 
examinees in the population are taken as the “signals” to be 
detected, and the true-score standard deviation is taken as 
an index of the overall strength of this signal. On the other 
hand, the errors are viewed as noise, and the standard error 
is taken as an index of the potential impact of this noise in 
obscuring the signal (Kane, 1996). 

It is important to note that the scale reliability can be 
represented as an explicit function of the error-tolerance ratio 
(E/N) or the signal-to-noise ratio (S/N). Specifically,

2

2 2
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1 ( / ) ( / ) 1XX

S N
E T S N
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+ +

	 (14)

Relative Errors within a Margin of Tolerance

As noted earlier, Kane (1996) argued that a more fun-
damental way to evaluate precision is to compare errors of 
measurement with the tolerance for error in a particular con-
text. He also indicated that “the tolerance for error for each 
individual can be defined as the individual’s true deviation 
score” (Kane, 1996). In the original metric of measurement, 
this view on precision translates into the ratio E/(T – m) which 
shows what proportion is the measurement error for an indi-
vidual from the true-deviation score for that individual. In this 
ratio, E and T are the error and true score, respectively, for an 
individual, whereas m is the population mean of true scores 
(which is also the population mean of observed scores, X). 
That is, E/(T – m) represents the relative error of measurement 
(REM) for an individual true deviation score. 

An important question is then what percent of the popula-
tion scores have REM which is smaller in absolute value than 
a prespecified margin of tolerance, δ. In probability parlance, 
this question translates as follows “What is the probability 
that a randomly selected score will have REM between –d 
and d?” (the margin of tolerance is a positive number, d > 
0). Denoting this probability PREM(δ), Dimitrov (2009) 
showed that

2( ) ,T

E

EPREM P arctan
T

s
d d d d

m p s
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	(15)



26	 Mid-Western Educational Researcher 	 Volume 23, Number 1  · Winter 2010

where p is the well known mathematical constant (p ≈ 
3.1416), arctan(.) stands for arctangent ― the inverse of the 
trigonometric function tangent, tan (.), and d is a prespecified 
margin of tolerance for the relative error. By representing 
the signal-to-noise ratio (sT/sE), which appears in Equation 
15, as a function of the reliability, rXX, Equation 15 becomes

2( ) .
1

XX

XX

PREM arctan r
d d

p r

æ ö÷ç ÷ç= ÷ç ÷÷ç -è ø
	 (16)

Thus, given the scale reliability, rXX, researchers can 
determine what percent of the population scores have a toler-
able relative error, 100*PREM(d), which will allow them to 
better generalize the precision of measurements in making 
validity judgments. Moreover, PREM(d) can be computed 
using hand-held calculators that have the arctan(.) function; 
(tan–1 is used to denote arctan in some calculators). 

The margin of tolerance, d, is selected by the researcher 
based on his/her judgment about how much relative error is 
tolerable to allow for valid interpretations of the measures 
within a specific context. Interestingly, if we select d = sE/ sT, 
i.e., the Kane’s (1996) error-tolerance ratio (see Equation 11) 
and use Equation 15, we obtain PREM(d) = 0.5. Thus, 50% of 
the individual relative errors, E/(T – m), are smaller than the 
Kane’s E/T in absolute value. In other words, E/T represents 
the population median of the distribution of absolute relative 
errors (Dimitrov, 2009). 

From another angle, suppose the scale reliability is rXX 
= .90 and we want to know what percent of the population 
scores have a relative error, E/(T – m), smaller than 0.1 in 
absolute value. Replacing d with 0.1 and rXX with .90 in 
Equation 16, we obtain:

2 0.9( ) 0.1* 0.1855.
1 0.9

PREM arctand
p

æ ö÷ç ÷= ç =÷ç ÷÷ç -è ø
 

Thus, PREM(d) indicates that 18.55 percent of the rela-
tive errors in the population of individual scores are smaller 
in absolute value than the prespecified margin of tolerance 
(d = 0.1). 

It is important to note that the relative error of measure-
ment, E/(T – m), remains invariant across linear transforma-
tions of the scores thus allowing to generalize findings about 
the percent of relative errors within a margin of tolerance, 
PREM(d), across such transformations. 

Highlights on Contemporary  
Treatment of Validity

What is Validity?

While reliability of scores deals with their accuracy and 
consistency, validity has to do with whether an instrument 
measures what it purports to measure. One validates not a 
test, but an interpretation of data arising from a specified 
procedure (Cronbach, 1971). Historically, there are three 
major stages in the development of validity models: 

1.	 Criterion-based model (e.g., Cronbach & Gleser, 1965) 
in which validity of measures is viewed as the degree to 
which these measures are consistent with (or “predict”) 
the measures on a specific “criterion,” 

2.	 Construct-based model (Cronbach & Meehl, 1955) 
which considers three different types of validity― con-
tent validity, criterion validity, and construct validity, and 

3.	 Unified construct-based model of validity (Messick, 
1989, 1995). 
Under the criterion-based model, the validity of test 

scores was depicted as the degree to which these scores were 
accurate representations of the values of a specified criterion. 
A major drawback of the criterion-based conception of va-
lidity is that (a) it is too limited and does not capture some 
basic (e.g., content-related) aspects of validity and (b) it is 
not possible to identify criterion measures in some domains. 

While the construct-based model of validity does a 
better job in this regard, it’s major problem is that content 
validity, criterion validity, and construct validity are depicted 
as different types of validity. This can mislead test users to 
believe that these three “types of validity” are comparable 
or, even worse, that they are equivalent and, thus, collecting 
evidence for any of them is sufficient to label a test as valid. 
Messick (1995) argued that the different kinds of inferences 
from test scores require different kinds of evidence, not dif-
ferent kinds of validity. 

The unified construct-based model of validity is based 
on a definition of validity provided by Messick (1989): “Va-
lidity is an integrated evaluative judgment of the degree to 
which empirical evidence and theoretical rationales support 
the adequacy and appropriateness of inferences and actions 
based on test scores or other modes of assessment” (p. 13). 
This conception of validity represents a unified construct-
based model of validity, by providing a comprehensive view 
that integrates content-related and criterion-related evidence 
into a unified framework of construct validity and empirical 
evaluation of the meaning and consequences of measurement. 

A comprehensive definition of the construct under 
validation allows one to identify the behavioral boundar-
ies of the construct, differentiate the construct from other 
(similar or dissimilar) constructs, and specify relationships 
between the construct and other constructs. For example, the 
construct measured by the reading comprehension section on 
the verbal part of a large-scale standardized test is defined as 
“one’s ability to reason with words in solving problems,” and 
it is expected that “reasoning effectively in a verbal medium 
depends primarily on ability to discern, comprehend, and 
analyze relationships among words or groups of words and 
within larger units of discourse such as sentences and written 
passages” (ETS, 1998). 

Typically, the core definition of a construct is embedded 
into a more general theory and then refined and operation-
alized in the context of the theory and practice in which 
inferences and decisions are to be made based on assessment 
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scores. Based on the adopted construct definition, instrument 
developers should build a detailed construct model that 
specifies (a) the internal structure of the construct—i.e., its 
componential structure, (b) the external relationships of the 
construct to other constructs, (c) potential types of indicators 
(items) for measuring behaviors that are relevant to assess-
ing individuals on the construct, and (d) construct-related 
processes—e.g., causal impacts that the construct is expected 
to have on specific behavior(s). 

Messick (1995) specifies six aspects of the unified con-
ception of construct validity—content, substantive, structural, 
generalizability, external, and consequential aspects. In addi-
tion, responsiveness and interpretability aspects of validity 
were proposed by the Medical Outcomes Trust (1995) to 
complete these six criteria under the unified construct-based 
model of validity. 

Content Aspect of Validity

The content aspect of validity includes evidence of 
content relevance, representativeness, and technical quality. 
In educational assessment, evidence of content validity is 
gathered primarily through curriculum analysis and inquiry 
into the nature of knowledge, skills, and other characteristics 
targeted with the assessment. 

Substantive Aspect of Validity

The substantive aspect of validity refers to theoretical 
rationales for the observed consistencies in test responses, 
including process models of task performance along with 
empirical evidence that the theoretical processes are actually 
engaged by respondents in the assessment tasks. Evidence 
about the substantive aspect of validity can be collected 
through cognitive modeling of the examinees’ response pro-
cesses, observations of behaviors exhibited by the examinees 
when answering the items, analysis of scale functioning, 
consistency between expected and empirical item difficulties, 
and other relevant procedures. 

Structural Aspect of Validity

The structural aspect of validity appraises the fidelity of 
the scoring structure to the structure of the construct domain 
at issue. Typically, evidence of the structural aspect of valid-
ity is sought by correlational and measurement consistency 
between the constructs and their indicators (test items). This 
is done primarily through the use of factor analysis. An 
exploratory factor analysis (EFA) is used when there is no 
enough theoretical or empirical information to hypothesize 
how many constructs underlie the initial set of items and 
which items form which factor. EFA is typically used earlier 
in the process of scale development and construct validation. 

A confirmatory factor analysis (CFA) is used in later 
phases of scale validation after the underlying structure 
has been established on prior empirical and/or theoretical 
grounds. Thus, CFA is employed when the goal is to test the 
validity of a hypothesized model of constructs (factors) and 

their relationships with a set of observable variables (items, 
indicators).

Generalizability Aspect of Validity

The generalizability aspect of validity examines the ex-
tent to which score properties and interpretations generalize 
to and across population groups, settings, and tasks, includ-
ing validity generalization of test criterion relationships. 
To collect evidence related to the generalizability aspect of 
validity means to identify the boundaries of the meaning of 
the scores across tasks and contexts. Typical procedures for 
collecting such evidence deal with testing for invariance of 
targeted constructs across groups and/or time points, item 
bias, consistency of predictions across groups, contextual 
stability, and reliability. 

External Aspect of Validity

The external aspect of validity includes convergent and 
discriminant evidence from multitrait-multimethod compari-
sons, as well as evidence of criterion relevance and applied 
utility. The operational definition of a construct is based on 
a specific theory and, therefore, the validity of the measur-
able indicators of the construct depends on the correctness 
of this theory. For example, if we adopt Rosenberg’s (1965) 
theoretical argument that a student’s level of “self-esteem” 
is positively related to participation in school activities, high 
positive correlation between students’ scores on Rosenberg’s 
self-esteem scale and measures of their involvement in school 
activities will provide convergent evidence of the external 
aspect of validity for the self-esteem scale. 

Consequential Aspect of Validity

The consequential aspect of validity appraises the value 
implications of score interpretations as a basis for action as 
well as the actual and potential consequences of test use, 
especially in regard to sources of invalidity related to issues 
of bias, fairness, and distributive justice. Both short-term and 
long-term consequences should be evaluated. It is important 
to make sure that negative consequences have not resulted 
from drawbacks of the assessment such as (a) construct un-
derrepresentation―the assessment is too narrow and fails 
to measure important dimensions or facets of the construct, 
and/or (b) construct-irrelevant variance―the assessment 
allows for variance generated by sources unrelated to the 
target construct (e.g., item bias). 

Responsiveness and Interpretability Aspects 	
of Validity

Responsiveness and interpretability are proposed by the 
Medical Outcomes Trust (1995) to complement the six crite-
ria described by Messick (1995) under the unified construct-
based model of validity (see also Wolfe & Smith, 2007a; 
2007b). While responsiveness is considered for support to 
the external aspect of validity, interpretability is considered 
as an aspect of validity which reveals the degree to which 
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qualitative meaning can be assigned to quantitative measures. 
Thus, the interpretability aspect of validity indicates how 
well the meaning of assessment scores is communicated to 
people who may interpret the scores but are not necessarily 
familiar with the psychometric terminology and concepts 
in assessment. For example, the proper communication of 
norm-referenced versus criterion-referenced assessment 
scores is critical for their valid interpretation by a relatively 
large audience (e.g., practitioners, clients, parents, social 
workers, policy makers, etc.).

Conclusion

I hope that this presentation provides some important 
highlights on the contemporary treatment of reliability and 
validity in educational assessment. In addressing reliability 
issues, I tried to focus your attention on two major issues. 
First, researchers should be aware of potential problems and 
limitations of the (still) commonly used Cronbach’s alpha 
as an index of scale reliability. A more accurate and flexible 
approach to evaluating scale reliability, which works in the 
general case of congeneric measures (i.e., different origins, 
units of measurement, and error variances), is available in 
contemporary treatments of scale reliability using latent 
variables modeling (e.g., Raykov, 1997, 2009; Raykov, Dimi-
trov, & Asparouhov, in press). Second, I tried to emphasize 
the argument that, along with reliability and standard error 
of measurement, important aspects of the precision of mea-
surements are addressed via evaluating error-tolerance ratio 
(E/T), signal-to-noise-ratio (S/N), and proportion of relative 
errors of measurement that are smaller in absolute value than 
a prespecified margin of tolerance, PREM(δ). Researchers can 
use information on the precision of measurements provided 
by E/T, S/M, and PREM(δ) in making validity judgments. 

Speaking of validity, my concern is that the contempo-
rary treatment of validity, based on the unified construct-
based model of validity (e.g., Messick, 1989, 1995), still does 
not seem to dominate designs, procedures, and terminology 
involved in developing, validating, and using instruments for 
assessment in education. I hope that this presentation will 
sharpen the focus of educational researchers and practitioners 
on this issue and will help them in reaching higher standards 
of quality in education. 

References

Bollen, K. A. (1989). Structural equations with latent vari-
ables. New York: Wiley.

Cronbach, L. J. (1951). Coefficient alpha and the internal 
structure of tests. Psychometrika, 16, 297-334.

Cronbach, L. J., & Gleser, G. C. (1965). Psychological tests 
and personnel decisions (2nd ed.). Urbana, IL: University 
of Illinois Press.

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in 
psychological tests. Psychological Bulletin, 52, 281-302.

Dimitrov, D. M. (2003). Marginal true-score measures and 
reliability for binary items as a function of their IRT 
parameters. Applied Psychological Measurement, 27, 
440-458. 

Dimitrov, D. M. (2009). Estimation of some familiar and 
new indexes of precision of measurements: A latent vari-
able modeling approach. A manuscript submitted for 
publication.

Kane, M. (1996). The precision of measurements. Applied 
Measurement in Education, 9(4), 355-379. 

Medical Outcomes Trust Scientific Advisory Committee 
(1995). Instrument review criteria. Medical Outcomes 
Trust Bulletin, 1-4. 

Messick, S. (1989). Validity. In R. L. Linn (Ed.), Educational 
measurement (3rd ed., pp. 13-103). 

Messick, S. (1995). Validity of psychological assessment: 
Validation of inferences from persons’ responses and 
performances as scientific inquiry into score meaning. 
American Psychologist, 50, 741-749. 

Novick, M. R., & Lewis, C. (1967). Coefficient alpha and 
the reliability of composite measurement. Psychometrika, 
32, 1-13. 

Raykov, T., Dimitrov, D. M., & Asparouhov, T. (in press). 
Evaluation of scale reliability with binary measures using 
latent variable modeling. Structural Equation Modeling. 

Raykov, T. (2009). Evaluation of scale reliability for uni-
dimensional measures using latent variable modeling. 
Measurement and Evaluation in Counseling and Develop-
ment, 42(3), 223-232. 

Wolfe, E. W., & Smith, E. V. (2007a). Instrument develop-
ment tools and activities for measure validation using 
Rasch models: Part I―Instrument development tools. 
Journal of Applied Measurement, 8(1), 97-123. 

Wolfe, E. W., & Smith, E. V. (2007b). Instrument develop-
ment tools and activities for measure validation using 
Rasch models: Part II―Validation activities. Journal of 
Applied  Measurement, 8(2), 204-234.

Zimmerman, D. W. (1975). Probability measures, Hilbert 
spaces, and the axioms of classical test theory. Psy-
chometrika, 40, 221-232.

Zimmerman, D.W., Zumbo, B. D., & Lalonde, C. (1993). 
Coefficient alpha as an estimate of test reliability under 
violation of two assumptions. Educational and Psycho-
logical Measurement, 53, 33-49.


	Contemporary Treatment of Reliability and Validity in Educational Assessment
	Recommended Citation

	tmp.1694459162.pdf.Z5LGa

