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Sniffing Out the Secret Poison: Selection Bias in Educational 

Research 
 

Daniel A. Showalter 

Luke B. Mullet 

Eastern Mennonite University 

 

Selection bias is a persistent, and often hidden, problem in educational research. It is 

the primary obstacle standing in between increasingly available large education datasets 

and the ability to make valid causal inferences to inform policymaking, research, and 

practice (Stuart, 2010). This article provides an accessible discussion on the importance 

of understanding selection bias in educational research. Although a general explanation 

on how to remove selection bias is beyond the scope of this article, the reader is guided 

through an example of this removal process. Specifically, a propensity score analysis is 

used on a nationally representative dataset to examine whether high school course taking 

in the algebra-calculus pipeline has a causal effect on placing out of postsecondary 

remedial mathematics. Several visualizations of the selection bias, and the process of its 

removal, are provided to give readers a sense of its impact on analyzing observational 

data.  

 

Introduction 

 

Consider this fundamental problem in educational research: We would like to estimate the 

effectiveness of a particular policy, initiative, or pedagogical approach, but it would be 

impractical or unethical to conduct a true experiment by randomly assigning students to a group 

for the sake of research. Thus, we leave students in their existing groups, collect observational 

data on some variables of interest, and then run some correlational analyses to look for patterns. 

Finally, we report our results responsibly, reminding our readers that the results that we 

discovered should not be interpreted as implying causality, but rather a correlation.  

Switch perspectives now to the eventual reader of the study who needs to make a decision about 

a particular policy, initiative, or pedagogical approach and is combing the research literature for 

advice. The reader comes across our study, finds the results attractive, and optimistically treats 

them as if we had indeed discovered a causal effect. One of the greatest problems with this 

process is selection bias. 

Selection bias occurs when differences in average outcomes between treatment groups stem from 

differences in characteristics between group members rather than from the treatment. For 

example, say we want to determine the relationship between taking private hockey lessons and a 

hockey player’s odds of playing professionally. Basic statistics would show a correlation 

between these two variables—hockey players who take private lessons are more likely to play 

professionally than those who do not. However, there is strong potential for selection bias 

because the characteristics and opportunities of hockey players who take private lessons are 

substantially different than those who do not. For example, the average strength, speed, and 

coordination of those who start taking private hockey lessons is likely greater than the average 

strength, speed, and coordination of the general public. This stronger, faster, more coordinated 
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group is more likely to become professional hockey players—regardless of whether or not they 

take private lessons. Therefore, we should not jump to the conclusion that there is a causal 

relationship before somehow isolating the effect of the lessons. 

Selection bias has been described as the primary threat to validity when attempting to make 

causal claims with observational data (Schneider, Carnoy, Kilpatrick, Schmidt, & Shavelson, 

2007). On the other hand, unless educational research can make valid causal claims, the 

temptation is just to make decisions based on correlational results instead—a practice which can 

result in seriously flawed decisions (Stuart, 2010). For many years, educational researchers 

claimed that a causal question could be answered adequately only with a true experiment (e.g., 

see Light, Singer, & Willett, 1990). Fortunately, this assertion has been shifting as causal 

inference methods have been designed and refined for use with observational data. These newer 

methods attempt to assess causality when the research design does not include random 

assignment to treatment groups. 

 

Reducing Selection Bias in Observational Data 

 

Several statistical methods exist that can be used to help identify and reduce selection bias. For 

example, including covariates (variables that offer alternate explanations to why some groups 

have a better outcome than others) into a regression model has the potential to reduce selection 

bias, although it is often less reliable at identifying selection bias and less effective at removing it 

than other techniques (Rosenbaum & Rubin, 1983; Schneider et al., 2007). Other methods have 

been designed primarily to remove selection bias in order to make causal inferences with 

observational data. In a handbook published by the American Educational Research Association, 

Schneider et al. (2007) detailed four of these methods: fixed effects, instrumental variables, 

regression discontinuity, and propensity scores. A brief description of each method follows, but 

the interested reader is encouraged to consult Schneider et al.’s handbook for more thorough 

coverage. 

 

Fixed Effects  
 

Fixed effects methods attempt to account for influential variables that may be hard to observe or 

even identify but that do not change over time. This is particularly attractive when dealing with 

potential selection bias, because the model can effectively control for both observed and 

unobserved variables.  

 

Consider the following scenario. A school principal is trying to decide between two after-school 

math programs, Mathatia and Numerate. Both programs have been used over the past several 

years, by the school’s three math teachers. Pretests and posttests were administered each time 

one of the programs was offered. Mathatia seems to yield higher average improvement scores, 

but the difference is not statistically significant, and its curriculum is also more expensive. How 

can the principal get a better sense of how effective Mathatia actually is?  

 

One solution would be to use a fixed effects model. It’s likely that there is a substantial “teacher 

effect”; even using the same curriculum, some teachers will communicate the material more 

effectively than others. Rather than compare all the Mathatia courses with all the Numerate 

courses directly, we could separate the improvement scores by teacher. For example, what was 
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the average improvement in Mathatia courses with Mrs. Mullet and how did this compare to the 

average improvement in Numerate courses with Mrs. Mullet? If we assume that Mrs. Mullet’s 

teaching style is “fixed,” this comparison would effectively control for all of the variables related 

to the teacher such as student-teacher relationships, teaching style, educational background, and 

content knowledge. Thus, some of the selection bias related to students selecting into Mrs. 

Mullet’s class could be filtered out. 

 

Fixed effects allows the researcher to control for both observed and unobserved variables that 

might cause selection bias. The disadvantages are that (a) it can be hard to find variables that are 

truly fixed (e.g., what if Mrs. Mullet gains experience over time and changes her teaching 

style?), (b) using fixed effects often drastically reduces the sample size, and (c) the results may 

not generalize to parts of the population. 

 

Instrumental Variables 

 

The instrumental variables approach attempts to identify a variable (the “instrument”) that is 

highly correlated with the treatment but is uncorrelated with the outcome other than indirectly by 

way of the treatment (Leigh & Schembri, 2004). Statistical techniques can then be used to 

remove the variation in the treatment variable that is correlated with the instrumental variable. 

This allows the researcher to more precisely estimate how much of the treatment effect can 

reasonably be attributed to the treatment. The Venn diagram in Figure 1 shows the variation of 

an instrument, a treatment, and an outcome variable. A naïve statistical analysis might attribute 

everything in both the shaded and lined portions to an effect of the treatment on the outcome. 

However, part of this “effect” stems instead from selection bias, specification error, 

measurement error, and sampling error. The ideal instrumental variable (see the lined part of 

Figure 1) would filter out these error sources to yield the true effect of the treatment on the 

outcome.  

 

This process is more easily understood with an example. Continuing with the example used to 

illustrate fixed effects, let’s say that we wanted to estimate the effect of attending the Mathatia 

after-school program on improvement on a standardized math test. We need to find a variable 

that is highly correlated with whether a student joins the after-school program, but uncorrelated 

with how much their math score improves (except indirectly through their participation in the 

after-school program). This is not an easy task. Consider a variable such as whether or not the 

students have a parent or guardian who can pick them up after the program. This ride availability 

could be correlated with whether they enroll in the Mathatia program, but it would probably also 

be correlated with their math scores through variables such as home environment and family 

socioeconomic status. What if the Mathatia program offered free pizza as an incentive? Then, a 

student’s preference for pizza might be a potential instrument. Students who enjoy pizza might 

be more likely to enroll in the program, and it is unlikely that preference for pizza would be 

correlated with math scores otherwise. 

 

The primary advantage of using an instrumental variable model is that the removal of the excess 

variance reduces the selection bias. The main disadvantage is that it can be quite difficult to 

identify a variable that is highly correlated with the treatment and uncorrelated with the outcome 

variable (Schneider et al., 2007). 
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Figure 1. Venn diagram illustrating how an instrumental variable can filter out selection bias and 

other error sources. 

 

Regression Discontinuity 

 

A third method of causal inference, regression discontinuity, has been adopted increasingly in 

recent years. Regression discontinuity takes advantage of a situation where people below (or 

above) a certain cutoff point on a quantitative pretest are given a treatment.  

 
Figure 2. Fictional illustration of how regression discontinuity can be used to estimate a causal 

effect.  

 

For example, say a group of students take a math pretest and are required to take a Mathatia 

course (the treatment) if their score was less than 70 (cutoff point). The students who scored 

above 70 do not take the Mathatia course. Then, the students take a math posttest. The regression 

slopes between the pretest and posttest performance for the two groups of students are then 

compared, and any “jump” that occurs at the cutoff point is attributed to the effect of the 

Mathatia course. Figure 2 demonstrates the discontinuity between the regression slopes of the 

two groups at the cutoff point. Similar to the fixed effects model, regression discontinuity 
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attempts to cut through the potential variables causing selection bias and pinpoint the treatment 

effect.  

 

Propensity Scores 

 

Propensity score analysis combines a set of covariates into a single number that estimates how 

likely each participant was to receive the treatment. This estimated propensity score is then used 

to compare participants who received the treatment with other participants who had a similar 

propensity score but did not receive the treatment.  

 

Returning to our after-school program example, propensity score analysis would mean analyzing 

numerous variables (such as gender, race, math ability, socioeconomic status, etc.) to predict 

how likely any given student was to enroll in the Mathatia program. Students who entered the 

program could then be compared with students who did not enter the program, but who had a 

similar likelihood of entering the program. In this way, students would be “fairly” compared to 

other students who were similar to them in gender, race, math ability, socioeconomic status, etc. 

If there were any differences in math improvement, we could attribute these effects to 

participating in the Mathatia program, since the students were similar on all the other variables 

we observed. Of course, some of these effects might be related to differences in variables that we 

didn’t observe, rather than the Mathatia program itself; this is a caution that one should always 

keep in mind when assessing how well a propensity score analysis did at removing selection 

bias. 

 

Propensity score analysis typically works well with large datasets, where there are many 

observed variables for each individual. It is also helpful to have a large sample size that can 

afford to be reduced if it turns out that certain individuals are so different from others on the 

observed variables that they cannot reasonably be compared with each other.  

 

Summary of Limitations on Using Causal Inference Methods 

 

Just because causal inference methods such as the above are designed to reduce selection bias 

does not mean that they work well in every situation. The major disadvantage of using fixed 

effects methods is that there must exist multiple measurements of the outcome variable for each 

individual on which an effect is being estimated. This is impractical for many existing datasets 

and, when it is possible, can result in a substantial loss of the sample size (Aughinbaugh, 2012; 

Currie, 2003). Researchers who have attempted to use instrumental variables readily admit the 

delicate dependence of their results on the reliability of the instrumental variable (e.g., Altonji, 

1995; Goodman, 2012; Rose & Betts, 2004). Regression discontinuity requires a standardized 

cutoff above which everyone is given a treatment and below which no one is given the 

treatment.1 This scenario is relatively rare in practical settings. Propensity score analysis is 

impractical with small sample sizes and ineffective when there are not a sizable number of 

variables collected on each individual. Moreover, although propensity score analysis can 

                                                           
1 There does exist a modified version of regression discontinuity known as fuzzy regression discontinuity which 

relaxes the assumption of a strict cutoff. 
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effectively remove selection bias from the observed variables, it only removes bias on the 

unobserved variables in as much as they are correlated with the observed variables.  

 

In short, each of these four major causal inference methods has limitations on when it can be 

used. However, when the conditions are favorable, the methods offer powerful new options for 

filtering out selection bias and getting a more accurate picture of causation within educational 

research. 

 

An Example with High School Mathematics Coursetaking 

 

We now move to a timely example in educational research to truly understand how selection bias 

works, how a causal inference method can help remove it, and what the implications are of 

failing to remove it. Specifically, we will estimate the effect of high school students taking math 

courses in the algebra-calculus pipeline on the likelihood of placing out of remedial mathematics 

in college. 

 

Background 

 

Ever since algebra was first included in the public school curriculum in the 1800s, it has been a 

subject of debate (National Education Association, 1894; Reys & Reys, 2009). One of the most 

persistent debates centers on how many courses in the algebra-calculus pipeline all students 

should be required to take in high school. A major reason cited for requiring higher-level 

coursework is to reduce the billions of dollars spent on postsecondary remediation each year 

(Strong American Schools, 2008). Essentially, if students are required to take courses such as 

Algebra II and Precalculus in high school, they may be less likely to need remediation in 

postsecondary school—remediation that incurs financial costs (Scott-Clayton, Crosta, & 

Belfield, 2012; Strong American Schools, 2008 and psychological stigmas (Bailey, 2009), and 

allegedly decreases the chance of obtaining a degree (Adelman, 1999, 2006, Deil-Amen & 

Rosenbaum, 2002).  

 

On the other hand, raising mathematics coursetaking requirements for high school graduation 

may have undesirable side effects such as lowering the quality of education for all students 

(Loveless, 2013) or raising high school dropout rates (St. John & Chung, 2006). Such risks might 

be tolerated more readily if mathematics coursetaking could be shown to have positive effects on 

postsecondary outcomes such as readiness for college mathematics.  

 

Research has yet to demonstrate to what degree high school coursetaking in the algebra-calculus 

pipeline reduces the likelihood of postsecondary remediation, especially for students who would 

be unlikely to take upper-level courses in the pipeline unless they were required to do so in order 

to graduate. Moreover, whether or not to raise graduation requirements in mathematics has been 

a volatile issue in state policymaking recently; between 2004 and 2015, 19 states began requiring 

all students to take Algebra II (or even higher-level math courses), although two states (Texas 

and Florida) later retracted this requirement (Achieve, 2008; Kim, Kim, DesJardins, & McCall, 

2015; J. Zinth, personal communication, April 25, 2016). 
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Previous Research 

 

Studies have consistently shown that high school students who take upper-level courses in the 

algebra-calculus pipeline are less likely to need remedial mathematics in college (ACT, 2007; 

Adelman, 1999, 2006; Barber, 2011; Hoyt, 1999; Hoyt & Sorenson, 2001). The unanswered 

question is to what degree this reduced need for remediation comes from actually taking the 

mathematics coursework in high school and to what degree it is a byproduct of unrelated 

characteristics such as family socioeconomic status, mathematical aptitude, race, locale, or 

perseverance level. This is an important distinction, because if a sizeable effect is derived from 

the coursework itself, it would be much more logical to require all students to take the 

coursework as an act of social justice—especially if this effect was experienced even by students 

who were least likely to enroll in upper-level courses voluntarily. If, on the other hand, the 

difference is due to unrelated characteristics, then it would not make sense to force students to 

take the additional coursework (at least for the purpose of increasing their readiness for college 

mathematics).  

 

One of the first studies to attempt to look beyond the obvious correlations to answer this question 

was done by Hoyt and Sorenson (2001). They used a logistic regression model to predict the 

likelihood of students in the Utah Valley State College system needing remedial mathematics 

coursework in college. As one of the independent variables in their model, the highest 

mathematics course taken in high school predicted 8% of the variance in a student’s likelihood 

for needing mathematics remediation. Roth, Crans, Carter, Ariet, and Resnick (2001) also used a 

logistic regression model to study the question, but on a sample of students from Florida. They 

found that a student’s highest-level mathematics course was a better predictor of reduced need 

for postsecondary mathematics remediation than was the student’s overall high school GPA.  

 

Consistent with these two localized studies, a third regression-based study on an even larger 

sample (n = 73,000) of Florida students found that the highest mathematics course taken in high 

school explained over 30% of the gap between whites and minorities, and between low-SES and 

high-SES students, in terms of need for postsecondary remediation (Long, Iatarola, & Conger, 

2009). In addition to using a large sample, Long and his colleagues made some additional 

attempts to reduce selection bias through the use of fixed effects. Although these studies, 

especially that of Long et al., are suggestive of possible effects, they were each conducted within 

a single state. Single state research does not generalize well because states have a lot of power in 

determining educational policy. Due to policy differences, a possible relationship in a single state 

does not necessarily hold in another state. In addition, Long et al. (2009) made no clear attempt 

to show why the relationship was not just a correlation. 

 

Barber (2011), using a nationally representative dataset, found that progression along the 

algebra-calculus pipeline was significantly associated with reduced need for postsecondary 

remedial mathematics even after controlling for a wide range of student- and school-level 

variables. However, aware of regression’s inefficiency at adequately removing selection bias, she 

pointed out that her study should not be used as causal evidence of an effect. 
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Estimating a Causal Effect with a Large Dataset 

 

To further inform state policymakers beyond what the previous research has done, we need to 

use a dataset that is both nationally representative and suitable for a statistical method that can 

remove selection bias. The National Center for Education Statistic’s Educational Longitudinal 

Study of 2002:06 (ELS) meets both of these conditions.  

 

Dataset. The ELS comprises four waves of data collection. The first wave was in 2002, when a 

nationally representative sample of high school sophomores was selected. Each participant was 

interviewed and took standardized tests in reading and mathematics; a parent, English teacher, 

and mathematics teacher were interviewed for each student; and interviews were conducted with 

an administrator and a media specialist at each school. The follow-up waves involved 

longitudinal data collection on these same students in 2004, 2006, and 2012. A more complete 

description of the ELS can be found in U.S. Department of Education (2004).  

 

Method I: (Mostly) ignore the selection bias. If we were to follow suit with much of 

educational research, we might do the following with the ELS. We could run a logistic regression 

(or perhaps some non-parametric equivalent) to see how well the highest math class a student 

took predicted whether they were placed into remedial math classes in college. Knowing that we 

want something more than a pure correlation, we would control for a few variables like 

socioeconomic status, standardized math ability, and perhaps a handful of others. Indeed, this 

would trim out a bit of the selection bias, but it would also entail a lot of guesswork and 

extrapolation as we will see later in the article. Nevertheless, we would have a result—probably 

a significant one based on what others have found (see, for example, Adelman, 2006 and Barber, 

2011). So what does it really matter if it would contain some selection bias?  

 

The problem would be that we would never have found a convincing answer to our question as 

to how effective it is to require students to take classes such as Algebra II or Precalculus in terms 

of their postsecondary preparedness. States might then assume that requiring all students to take 

Algebra II or Precalculus would improve postsecondary readiness among low-performing 

students and implement laws accordingly. Unfortunately, these decisions carry risks of increased 

dropout rates, higher barriers for struggling students, and a one-size-fits-all curriculum (Lillard & 

DeCicca, 2001; Loveless, 2013; St. John & Chung, 2006)—all without reasonable evidence of 

expected benefits for the students who were unlikely to enroll in these classes.  

 

Method II: Account for selection bias. Of the four causal inference methods described earlier, 

propensity score analysis is a logical choice for answering our question since there are numerous 

variables collected on a sample of over 16,000 students. A general outline of propensity score 

analysis using a dataset such as the ELS is as follows:  

1. Trim the dataset down to covariates related to the treatment and the outcome. 

2. Use the remaining covariates to determine how likely each participant was to receive the 

treatment (i.e., their propensity score2). 

                                                           
2 In the actual study, the logit of the estimated propensity score was used because of its statistical properties. 

However, the estimated propensity score is a much easier concept to grasp conceptually, and because the precise 

difference is irrelevant to the scope of this article, the estimated propensity score was used throughout the 

discussions. 
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3. Identify individuals with others who had a similar chance of receiving the treatment and 

then divide into groups based on which treatment they received. 

4. Remove from the sample individuals who have no counterparts (individuals with similar 

propensity scores) in other treatment groups.  

5. Run any desired statistical tests just as if the treatment groups had been assigned 

randomly.  

 

In theory, if data could be collected on every possible variable, equivalent student groups could 

be created that would be even more balanced than what could be obtained through random 

assignment. In other words, we could use math to do more precisely what randomization does in 

the long run. Although the ELS certainly does not have data on every possible variable, it does 

provide substantial information from various perspectives on each student’s home life, school 

activities, and personal characteristics. After removing students who are missing data either on 

the treatment variable (highest mathematics course taken in the algebra-calculus pipeline) or the 

outcome variable (whether the participant had taken any remedial mathematics coursework in 

college) we are left with an analytic sample of 9,416 students.3 The goals of propensity score 

analysis are to take full advantage of the observed information on this sample to identify and 

group together students who are comparable on the observed variables. Returning to our hockey 

example, this would be like identifying a group of strong, fast, coordinated people who had taken 

private hockey lessons and a group of similarly strong, fast, coordinated people who had not. If 

the first group had become professional hockey players at a higher rate, then it probably was due 

to either the private lessons or to some unobserved variable (i.e., a variable other than speed, 

strength, or coordination). 

 

Calculating the estimated propensity scores. The first task in reducing the selection bias is to 

select a subset of the variables to use as covariates in the propensity model. These are the 

“alternate explanations” for why students may place out of remedial math in college (other than 

due to their high school math coursework). In our case, we looked for covariates without too 

much missing data (less than 25%) that had theoretical connections to both the treatment and the 

outcome (Hirano, Imbens, & Ridder, 2003). For example, math self-efficacy has been tied to 

both coursetaking patterns and to placement in remedial courses in college, so we kept it as a 

potential covariate.  This allowed us to boil the 2,604 variables in the public-use ELS: 2002/06 

dataset down to 230 variables. To select from among these 230 variables for our final model, we 

automatically included variables of strong theoretical interest, such as sex, race, socioeconomic 

status, and locale. Beyond that, we kept the variables with the 100 highest cross products—

though somewhat arbitrary, this number is high enough to capture most of the variance related to 

the observed variables without creating a model that was overly complicated. It is worth noting 

that there was no need for each of these variables to contribute to the predictions in a statistically 

significant way; one of the advantages of propensity score analysis is that there is very little 

“cost” for each additional variable added to the model. It is much more important to find a set of 

covariates that works together to provide accurate estimates of the propensity scores. 

                                                           
3 Most of the removed students were students who had never attended college, meaning that they were never even 

asked the question about taking remedial mathematics coursework in college.  
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The second step was to use our 108 covariates to estimate each student’s propensity for 

eventually enrolling in Precalculus or higher during high school.4 In a basic propensity score 

analysis, this would have entailed plugging our covariates into a logistic regression model. 

However, there were two hurdles to overcome in our case. The first hurdle was that we could 

have no missing data in order to run an ordinal logistic regression. Deleting every student who 

was missing data on even a single variable would have substantially hurt our ability to generalize 

our results, and we didn’t want to do that! Thankfully, modern software offers several viable 

methods for dealing with missing data, such as multiple imputation and maximum likelihood. In 

our case, we used multiple imputation to fill in the missing data based on our information about 

each student (Allison, 2002; Graham, 2009).5 The second hurdle was that our treatment was an 

ordinal variable (a categorical variable with an ordered scale of possible values), but the standard 

logistic regression model is based on a true/false outcome. In our case, there were several levels 

of mathematics a student could enroll in during high school: Prealgebra, Algebra I, Geometry, 

Algebra II, and Precalculus or higher. We handled this by running an ordinal logistic regression 

(a version of logistic regression that allows for an ordinal variable outcome). Specifically, we 

used SPSS to put our 108 variables in as predictors as well as the level of the highest math 

course taken as the outcome.  

 

Our ordinal logistic regression provided us with an estimate of each student’s propensity for 

taking Precalculus during high school.6 Keep in mind that the dependent variable of the 

regression was the highest mathematics course taken during high school, and the independent 

variables were our 108 covariates. In other words, we had not touched anything to do with 

postsecondary remedial mathematics yet! Our regression was just a preliminary method to 

remove selection bias before we conducted the actual statistical tests.  

 

Interpreting the estimated propensity score. Before proceeding, let’s get a rough sense of 

what is represented by a propensity score. Consider a fictitious student, Pat. Knowing nothing 

about Pat—in essence, Pat could be absolutely any student who was a sophomore in a U.S. 

school in 2002—we would estimate Pat’s propensity (tendency) to eventually take Precalculus 

as .580. We would guess this because the ELS tells us that 58% of the students in the country 

would eventually take Precalculus. Upon discovering that Pat is a female, we might adjust our 

estimate to .572 because the ELS shows us that females were slightly less likely to enroll in 

Precalculus than were males. Specifically, an estimated 57.2% of females who were sophomores 

in 2002 eventually took Precalculus in high school. However, we would raise our propensity 

score estimate to .614 when we find out that Pat attended high school in an urban area, because 

urban students were more likely to take Precalculus than non-urban students.  

 

                                                           
4 The highest-level mathematics group consists of the students who enrolled for at least one semester in 

Trigonometry, Precalculus, or Calculus. For simplicity’s sake, these students are referred to as the “Precalculus” 

students throughout this article. 
5 Any process used to fill in missing data should be used cautiously. In our case, we created 25 predictions for each 

missing data value, and then used the average of these predictions. We then ran a series of sensitivity analyses to 

evaluate the accuracy of these predictions and the potential impact on the estimated propensity scores. 
6 Although the data can now be analyzed by any method suitable for experimental data, the reader is reminded that 

the ability to make a causal claim depends on the assumption that the unobserved variables do not contain 

substantial selection bias. 
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The more information we learn about a student, the more accurately we are able to estimate their 

propensity for eventually taking Precalculus. As our estimate approaches the student’s true 

propensity score, additional pieces of information tend to alter our estimate less and less. We 

become more confident that any selection bias contained in the unobserved variables would not 

substantially impact our estimates of a student’s tendency to take Precalculus (Hong, 2004; 

Rubin, 1976). The value of the true propensity scores cannot be overstated; if we had access to 

the true propensity scores, we would be able to achieve balance in treatment groups on all 

variables just as well as random assignment does (Rosenbaum & Rubin, 1983).  

 

What does it mean to have “balanced treatment groups”? Let us assume that, after accounting for 

Pat’s data on the 108 covariates in our model, our estimate of her propensity score shifts 

from .614 to .602. If we were to scan our analytic sample of 9,416 students, it is quite possible 

we could find another student with a propensity score of .602. Would it be reasonable to infer 

that this new student was probably also a female who attended an urban school and shared many 

of the same characteristics as Pat? Not at all! However, say that we found a collection of 200 

students with a propensity score of .602. Perhaps 60 of these students took courses through 

Precalculus, 40 took through Algebra II, 50 through Geometry, 30 through Algebra I, and 20 

through Prealgebra. What we could say with reasonable confidence is that the proportion of 

females in the Precalculus group would be unlikely to differ significantly from the proportion of 

females in the Geometry group. And, the average standardized English test score of the 

Prealgebra group would be unlikely to differ significantly from that of the Algebra II group. 

  

In other words, on average, groups of students who share the same propensity score are 

reasonably similar to each other on all of the covariates we included in our model, regardless of 

how far they eventually progressed in the algebra-calculus pipeline. How could this be? The 

details are beyond the scope of this article, but Rosenbaum and Rubin (1983) proved 

mathematically that this process achieves the same balance on the observed variables that would 

be possible if we could randomly assign each participant to a treatment group. The gist of their 

proof is that, in order to have the same propensity scores, students would have to have similar 

values on predictors that carried the most weight in the logistic regression. But why is it 

important to have balanced treatment groups? Let’s say that two groups have essentially the 

same average value on every explanatory variable except that everyone in one group got 

Treatment A and everyone in the other group got Treatment B (or no treatment at all). If we then 

observe significant differences in the outcome between the two groups, the most logical 

explanation for the cause of the difference is the treatment itself. In other words, we have 

successfully extracted the selection bias! 

 

In Pat’s hypothetical scenario where we grouped together students with estimated propensity 

scores of .602, selection bias would be essentially removed and balance would be achieved 

between the groups in the algebra-calculus pipeline, at least in terms of the 108 covariates in our 

model. Of course, the magic of propensity scores only covers the observed variables; it’s 

possible that the groups would be imbalanced on some variable that we didn’t measure. This is 

the main justification for including a wide range of covariates with theoretical connections to the 

treatment and outcome in our model. 
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Removing selection bias to create balanced treatment groups. Unfortunately, Pat’s example 

is more illustrative than realistic. There are two problems with attempting to match students with 

all other students sharing the same estimated propensity score. First, it is very possible that all (or 

none) of the students at a certain propensity score went beyond certain points in the algebra-

calculus pipeline. Among our .602’ers, there may be several who took Precalculus, but none 

whose highest math course was Prealgebra. In fact, maybe none of the students who stopped at 

Prealgebra had high propensities to eventually reach Precalculus (we’ll soon see that this was 

exactly what happened in our dataset). Second, it is highly unlikely that 200 of our 9,416 

students have an estimated propensity score of .602, regardless of what course they ended up in. 

There’s nothing magical about the hypothetical .602 either. In a large group of people, you may 

have two or three that were born on the day at the same time, but you probably won’t have that 

many; in the same way, it is unlikely for large clusters of our students to have exactly the same 

propensity score. 

 

The first problem is a serious one related to selection bias that is often overlooked in research. 

There are certain limits to what can be done with even the most powerful statistics. One of these 

limits is that we should not compare students who are too different from each other on important 

variables—at least when we’re trying to estimate the effect of some treatment or program (Ho, 

Imai, King, & Stuart, 2007). If we do, we’ll never know how much of our presumed “effect” is 

due to the treatment, and how much is due to the pre-existing differences between the students. 

What should be done instead? Since the goal is to minimize selection bias, the most 

recommended option is to remove the incomparable students and be sure to note the implications 

when generalizing the results to the population (Lechner, 2002).  

 

The second problem of not finding enough students with a given propensity score is more 

manageable. One possibility is to group together all students with estimated propensity scores 

within a certain range, say from .600 to .650; the wider the range, the greater the sample size 

within each treatment level. The tradeoff is that, as our range widens, the differences between 

propensity scores increase, and our balance on the observed covariates steadily decreases. 

Statistical techniques exist to restore some of the balance such as inverse probability of treatment 

weighted (IPTW) and marginal mean weighting through stratification (MMW-S). Our use of 

MMW-S followed the steps described by Hong (2012).  

 

The art of this process is in creating enough propensity score strata to achieve balance (and thus 

remove selection bias), but not so many that we lose statistical power by small or nonexistent 

sample sizes for each treatment level within any stratum. Figure 3 demonstrates hypothetically 

how increasing the number of strata increases balance on socioeconomic status between the 

Precalculus and Algebra 1 groups, while simultaneously decreasing the sample size within each 

stratum. The data here is a fictional set of 32 students. Broken down by SES, there are 10 in the 

upper third, 11 in the middle third, and 11 in the lower third. By highest math class taken in high 

school, 17 of these students took through Precalculus and 15 took through Algebra I. Each 

student’s horizontal placement in each of the three strata scenarios is determined by their 

estimated propensity to eventually take Precalculus as of their sophomore year, when they were 

surveyed.  
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Figure 3. Achieving balance of socioeconomic representation within each stratum, by increasing 

the number of strata. 

 

With just one strata, there is heavy imbalance between the top and the bottom in terms of 

proportion of students in each socioeconomic class. For example, about 41% of the students who 

completed through Precalculus were in the highest SES third, but only 20% of the students 

completing through Algebra were in the highest SES third. That difference opens the door to 

selection bias. With two strata, the SES balance gets better: In the lower of the 2 strata, 17% of 

the students who eventually took Precalculus are high SES (with 0% of Algebra as high SES), 

but in the upper of the 2 strata, the percentages are 55% and 60%. Finally, with three strata, the 

percentage of the eventual Precalculus students who are high SES in each strata are 0%, 25%, 

and 67%—the same as the respective percentages among the students who only completed 

through Algebra.  

 

So, more strata equals more balance, with the caveat being that with too many strata, sample 

sizes are too small to run a statistical test for each stratum. With the selection bias removed, or at 

least greatly reduced, it is possible to analyze the groups for causal effects, just as if the 

treatment groups had been formed through random assignment. 
 

Visualizing Selection Bias with Figures  

 

Because selection bias is an abstract concept, it can be helpful to visualize how it takes shape in 

our data. Using the aforementioned process on our analytic sample from the ELS, we estimated a 

propensity score for each of our 9,416 students; the longitudinal nature of the ELS allows us to 

track these students and see what their actual highest mathematics course was in high school. 

 

Selection bias in histograms. Figure 4 shows us how far students in the ELS were predicted to 

go in the algebra-calculus pipeline based on their covariate data, as well as how far they actually 

went. The top histogram shows the distribution of the 245 students whose highest mathematics 

course, by the end of high school, was Prealgebra, General Math, or Consumer Math. The further 

a bar is to the left, the less likely it was that the students represented by that bar would eventually 

take an upper-level mathematics course. For example, since the bars in the top histogram are 
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positioned mostly to the left, we know that most of these students were unlikely to ever enroll in 

Precalculus. In contrast, the bottom histogram shows the distribution of the 5,038 students whose 

highest course was Trigonometry, Precalculus, or Calculus.  

 

 
Figure 4. Distributions of logit propensity score by highest mathematics course taken. Histogram 

bars between the two vertical lines indicate relative frequency of students who can be compared 

to students in any of the other four groups based on similar pretreatment characteristics. The 

percentage of the analytic sample within each group is shown in parenthesis.  
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Three points are worth noting about Figure 4. First, the students who only completed through a 

lower-level math course had propensity score estimates that were quite different from those who 

took through an upper-level math course. In other words, for a majority of the students, knowing 

characteristics about these students early in high school would allow one to accurately predict 

how far they would progress in the math pipeline (or at least which category they probably 

would not end up in). Our ability to do this should raise some red flags that selection bias should 

be a concern.  

 

Second, the greater the differences in propensity scores (i.e., the further apart the bars on the 

histograms), the higher the risk of selection bias distorting any actual effects; in particular, only 

the students in-between the vertical bars were deemed “comparable” by the research standards 

described earlier. Unfortunately, 6,245 students, or 66.3% of the analytic sample, were outside 

these boundaries. Regardless of the statistical method used, these students cannot be accurately 

analyzed for any potential treatment effect—but a researcher unaware of selection bias would 

have blindly included them in the study along with the remainder of the students who are similar 

enough to be compared. So, with regards to these 6,245 students, we’ve advanced from being 

unaware that we don’t know to knowing that we don’t know. While following in the footsteps of 

Socrates may bring some comfort, our situation is even more hopeful. We are also saying that we 

can accurately estimate an effect for the remaining 3,000+ students. In our case, this works out 

perfectly, because it’s precisely this portion of the population (i.e., students unlikely to take 

Precalculus) who we want to find out about anyway. They are the students who would be 

impacted by a policy change requiring them to take more upper-level math. 

 

Third, a researcher using OLS regression or logistic regression, the methods that have often been 

used to conduct studies in this domain, would not have been able to see the data in this way. 

More importantly, they would erroneously have to make the assumptions that the shapes of these 

five distributions are essentially the same (Stuart, 2010). This would mean that it should be 

possible to draw a vertical line through Figure 4 that would come near the highest point of each 

of the five histograms. This is clearly not the case, indicating that selection bias should be a 

serious concern for any causal analysis of this entire group of students. 

 

Selection bias in boxplots. The entire analytic sample of 9,416 is represented in Figure 4. The 

boxplots in Figure 5 show the distribution of propensity scores, within each highest math course 

category, only for the 3,171 statistically comparable students. These are the students who, based 

on characteristics present early in high school, could have plausibly ended up in any of the five 

categories along the algebra-calculus pipeline. However, even within this subsample, the groups 

of students were imbalanced. An ANOVA to test for differences in average propensity score 

between the treatment groups was significant, F(4, 3166) = 178.869, p < .001. If the five groups 

had been comparable, we would expect these five boxplots to look the same (i.e., the boxes 

would be of similar height and location on the vertical axis, and the whiskers would start and end 

at roughly the same vertical location). Clearly, this is not the case. The boxes are much higher in 

the higher mathematics groups (on the far right of Figure 5), meaning that, in their sophomore 

year, the students who eventually took an upper-level class such as Algebra II or Precalculus 

were already very different in categories such as race, gender, and teacher expectations than their 

peers whose eventual highest mathematics class was Prealgebra or Algebra I. To more precisely 

gauge these differences, we ran an ANOVA to test for differences on each of the covariates. Of 
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the 108 ANOVA tests, only 3 were not statistically significant at an alpha level of .05. The other 

105 contain a significant amount of imbalance between the students in different treatment 

groups. Therefore, even after identifying the students who could reasonably be compared to each 

other, we still had a major selection bias problem to address. 

 

 
Figure 5. Distribution of logit propensity score by highest mathematics course taken in the 

analytic sample. If the five groups were balanced on all pretreatment characteristics (i.e., no 

selection bias), the boxplots would appear identical to each other.  
 

However, there is an important difference between the imbalance shown among the entire 

analytic sample (in Figure 4) and the imbalance shown among only the comparable students (in 

Figure 5). The latter imbalance can be “fixed” using appropriate statistical methods, whereas the 

former imbalance is due to differences inherent in the students themselves and cannot be 

convincingly corrected for regardless of the statistical method used. 

 

Because the 3,171 students in the subsample at least had a reasonable chance of ending up 

anywhere along the algebra-calculus pipeline, it is now possible to separate them into relatively 

balanced groups based on their estimated propensity scores. We can accomplish this balance by 

using increasingly smaller strata until there is no significant difference found between the 

estimated propensity scores among the five treatment groups within each strata. In this particular 

example, it took 11 strata to achieve this balance. At this point, marginal mean weights (Hong, 

2010, 2012) were applied to privilege the valuable information provided by students such as low-

propensity students who, against all odds, completed through Precalculus (or high-propensity 

students who took no classes above Prealgebra). The resulting five distributions are shown in 

Figure 6. The balance visualized here represents the overall balance when students are only 

compared to other students within their same propensity score stratum. A one-way ANOVA 

found no significant differences in average propensity score between treatment groups, F(4, 

3165) = 0.066, p = .992. 
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Figure 6. Distribution of logit propensity score by highest mathematics course taken after 

applying marginal mean weights. In contrast with the boxplots in Figure 5, the boxplots shown 

here are similar to each other, suggesting that selection bias has been essentially removed by 

applying the marginal mean weights.  

 

Checking whether selection bias has been removed. An overall balance on the propensity 

scores does not guarantee balance between individual groups on any given variable. For 

example, within a particular stratum, is there a significant difference between the Prealgebra 

students and the Precalculus students in terms of the proportion that reported thinking math is 

fun, or the proportion of females, or how far their parents expect them to go in their education? 

Let’s check!  

 

In total, this resulted in over 10,000 pairwise comparisons, 92.1% of which had no significant 

difference between the group means. The results of the pairwise difference, by stratum, are 

presented in Table A1 of the Appendix. Hypothetically, if random assignment could have been 

used to assign students how far to go in the algebra-calculus pipeline, we would expect about 

95% of these pairwise comparisons to be nonsignificant at an alpha level of .05. In general, our 

groupings did almost as good as random assignment, except for in the top two strata. Let’s take a 

look at the results both with and without the effect sizes of these strata included. 

 

Double checking whether selection bias has been removed. There are several ways to double 

check whether we adequately removed selection bias on the observed variables. Ho et al. (2007) 

recommended that standardized differences between means (e.g., Cohen’s d) be calculated for 

the most influential predictors in the propensity model. In plain English, we want to see how 

different our group averages are on the important variables, and we want to see all of these 

differences on the same scale. To be safe, we should look at more than the averages; we should 

also make sure the data is roughly spread out in the same way for each variable (Imai, King, & 

Stuart, 2008). The standardized differences in means and variances can be found in Table A2 in 

the Appendix. If MMW-S has functioned as intended, all of the treatment groups within each 
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propensity score stratum will have similar means and variances on influential predictors. There is 

no commonly-accepted standard on what constitutes “similar,” but a Cohen’s d of 0.25 or less is 

the standard used by the What Works Clearinghouse (2013) to indicate that groups may be 

reasonably compared.  

 

Selection bias in the unobserved variables. We can now be confident that essentially all of the 

selection bias related to the observed covariates has been removed. But how much selection bias 

remains due to group differences in the unobserved variables? Unfortunately, we cannot be sure. 

This uncertainty is what separates propensity score analysis from a true experiment. However, 

Shadish, Clark, and Steiner (2008) devised an ingenuous method to test the validity of using 

causal inference methods, and propensity score analysis in particular, to make causal inferences. 

They randomly assigned a sample of 445 university students to a true experiment or to an 

observational study. They randomly assigned students in the true experiment to a training session 

in mathematics or to one in vocabulary, but they allowed the second group to select a training 

session. They then analyzed the experimental data and compared it with a variety of propensity 

score techniques on the observational data. The degree to which propensity score techniques 

removed selection bias varied wildly, with one type reducing only about half of the bias and 

another reducing about 95% of the bias; however, it is important to note that the former was a 

result of only including a few covariates in the propensity model. Shadish and his colleagues 

(2008) concluded that most of the propensity score techniques used in their study had been 

suitable for making causal inferences in their study (i.e., there wasn’t much selection bias left 

after accounting for the bias in the observed variables), but recommended that researchers who 

use propensity score techniques include more than a small set of demographic variables. Lucky 

for us, we used our 108 covariates! 

 

Analyzing the sample after selection bias has been removed. After removing the selection 

bias, it is possible to run any statistical test for an effect just as if the balance had been achieved 

by random assignment in an experiment.6  Therefore, we can finally get to the actual statistical 

tests in our example. Essentially, this entails conducting a separate experiment within each 

stratum, and obtaining a separate effect size for each stratum. Because we have an ordinal-level 

treatment and a dichotomous outcome, we can calculate an effect size known as Kendall’s tau b. 

A minimum practically significant effect would be roughly around a tau of 0.2 and a moderate 

effect would be about 0.5. Effect sizes for each stratum are presented in Table 1.  

 

The average effect size for all 11 strata is tau = .04, 95% CI [–.10, .17]. Among the lower nine 

strata, for which we can be confident that the selection bias on the observed covariates has been 

removed, the average effect size is tau = .02, 95% CI [–.12, .16]. Among the lowest four strata, 

the average effect size is tau = –.03, 95% CI [–.19, .13]. Sensitivity analyses can help us gauge 

how much these effect sizes might differ if a portion of the students had misreported whether 

they had taken any remedial mathematics in college. The greatest threat to the results would be 

low-propensity students claiming not to have taken remedial mathematics in college even though 

they actually did (Adelman, 1999; Kirst, 2007); however, even if 30% of the Prealgebra and 

Algebra I students did misreport and none of the high-propensity students misreported, the 

average effect size would still have only been tau = .10 among the 11 strata and tau = .04 among 

the lowest four strata.  
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Table 1 

Estimated Effect of Highest Mathematics Class on Placement out of Postsecondary Remedial 

Mathematics, by Stratum 

 Number of students 
Covariate 

balance Tau 

95% 

error 

margin Stratum Prealgebra Algebra I Geometry Algebra II Precalculus 

 54 50 48 45 14 98.1% –0.05 0.18 

2 19 45 66 61 20 98.8% –0.12 0.17 

3 18 39 65 69 21 98.8% 0.03 0.16 

4 23 36 86 141 30 98.6% 0.02 0.14 

5 18 27 83 137 53 98.9% 0.06 0.14 

6 11 30 68 145 63 97.6% 0.06 0.13 

7 4 20 63 151 80 90.4% –0.04 0.13 

8 5 13 56 171 72 91.8% 0.05 0.14 

9 8 10 42 160 97 94.8% 0.13 0.12 

10 5 3 40 156 113 79.1% 0.06 0.12 

11 2 4 38 160 113 66.0% 0.12 0.11 

Note. Prealgebra group includes students whose highest reported class was Prealgebra, General Math, or 

Business Math; Precalculus group includes students whose highest reported class was Precalculus, 

Trigonometry, or Calculus. Covariate balance is the percentage of pairwise comparisons on covariate 

means between the five treatment groups that are not significantly different. Effect size (tau) is weighted 

by marginal mean weights. Error margins account for the inflated variance due to the design effect. Effect 

sizes for top two strata may still include selection bias on the observed variables. 

 

Thus, none of the averaged effects reach the minimum practical effect size of tau = .20 set forth 

by Ferguson (2009). In other words, these results suggest that mathematics coursetaking in the 

algebra-calculus pipeline does not have a practical effect on helping a student place out of 

remedial mathematics in college. Moreover, any effect that does exist is particularly weak for the 

students least likely to take an upper-level mathematics course.  

 

Selection bias in a scatterplot. Because propensity scores and effect sizes can both be 

considered quantitative variables, it is possible to plot their relationship on a scatterplot. This 

allows us to visually check for an interaction between propensity score stratum and effect size. 

Simply put, do our results suggest that lower-propensity students receive a different degree of 

treatment effect than the higher-propensity students? This is a particularly relevant question for 

policymakers who, by mandating that all students take certain math classes in order to graduate, 

would mostly be affecting the students least likely to take the upper-level classes otherwise. The 

scatterplot is shown in Figure 7. 

 

The leftmost 11 points in Figure 7 represent the effect sizes within the strata for the comparable 

students. These are the same effect sizes that were presented in Table 1, but the scatterplot allows 

us to see the interaction between effect size and propensity score stratum more clearly. Within 

this subsample of comparable students, we see that there was very little effect observed, 

particularly for the students least likely to enroll in upper-level mathematics courses. The points 

in the gray box at right are not based on actual data; the ELS lacks the counterfactual data needed 

to create reliable estimates for these effect sizes. Instead, these hypothetical effect sizes have 
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been extrapolated based on the assumption that the trendline found for the first 11 strata 

continues throughout the other two thirds of the analytic sample.  

 

 
Figure 7. Estimated effect sizes for the entire analytic sample. Effect sizes for all strata in the 

gray box are extrapolated based on the linear trend in the strata from the sample of comparable 

students. In the strata based on available data, the effect size generally did not reach practical 

significance. In the strata based on extrapolation, most of the effect sizes did reach practical 

significance. Any actual results obtained in the extrapolated region would be at high risk for 

selection bias. 

 

The word extrapolation should raise warning flags for those with even a modest background in 

statistics. There is no guarantee that the effect sizes for the students without common support 

were as shown in Figure 7; they could have been much smaller or much larger. The ELS, as well 

as any currently available nationally representative dataset, lacks the data needed to estimate 

effect sizes for these students. However, the absence of these important data is obscured when 

using methods such as regression that can produce a numerical result with or without common 

support (Stuart, 2010). 

 

Moreover, even if the effect sizes did continue as extrapolated, a simple average of the estimated 

effect overlooks the interaction between effect size and propensity. Why is this interaction 

important? It tells us that students who were least likely to take advanced mathematics classes in 

high school benefitted the least from actually taking them (see the lower strata in Figure 6 and 

Figure 7). Similarly, students who were more likely to take advanced mathematics but did not, 

on average, missed out on an opportunity that might have been particularly beneficial to them 

(relative to their peers). Extrapolating effect sizes for students who lack counterfactual data 

leaves the door wide open to selection bias.  

 

Generalizing the unbiased results back to the population. After calculating the estimated 

effect sizes within each propensity score stratum, we can generalize the results back to the 

population. Since we removed students who never attended college and those whose propensity 
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scores were too high to be comparable to other students, these results apply to the third of 

college-bound sophomores from 2002 who were least likely to ever take Precalculus. It is 

important to note that these are precisely the students who are impacted by state mandates to take 

upper-level courses (the mandates won’t have much impact on students who are likely to take the 

upper-level courses anyway). Do these results generate to the high school students of today, or of 

tomorrow? Not necessarily—system-wide changes have occurred in the past 15 years that may 

impact these results. But the results do update currently cited results on the topic which all (a) 

compared incomparable students, (b) were at high risk for heavy selection bias, or (c) were only 

conducted on the students within a particular state. 

 

In this final step of generalizing results to the population, observational datasets such as ELS 

enjoy a major advantage over most true experiments. Because the sample was chosen randomly 

from the population rather than at convenience, the findings can be applied confidently to the 

population. In other words, a true experiment produces unbiased results for the sample, but 

invokes a margin of error when extended to the population; causal inferences made from 

randomly sampled observational data yield results with a margin of error but can be extended 

back to the population in an unbiased manner.  

 

Concluding Remarks 

 

Why does it matter that selection bias may be present in many results in the broader educational 

context? The disheartening racial and socioeconomic inequities published in the Coleman Report 

(Coleman et al., 1966) half a century ago are just as present in the education system of today 

(ACT, 2007; Gutstein, 2006; Schoenfeld, 2002). These inequities, combined with the prohibitive 

costs and ethics of conducting randomized control trials, place educational studies at particularly 

high risk for contamination from selection bias. So what? This means that we often assume that 

what works for the majority of students works for all students—a shaky claim when we are 

designing programs for those who are struggling most, either financially or academically. Even 

worse, we deem treatments as effective that really did not have a practically significant effect for 

anyone. This can result in pouring large amounts of time and energy into ineffective solutions; 

time and energy that could instead be invested more meaningfully.  

 

Though several options exist to help filter out selection bias from observational data, most of 

them can be quite intimidating for the casual researcher. Yet, there is hope! A researcher could 

partner with someone who is knowledgeable about causal inference methods. Or, if such a 

partnership was not practical, the researcher could at least identify important variables, use 

software to impute the missing values, and then run a logistic regression with the treatment as the 

dependent variable. This would produce good enough propensity score estimates to allow the 

researcher to get a feel for how much selection bias could impact the results—and then report 

this risk accurately, even if he or she did not plan to remove it. But most importantly, educators 

should simply be aware of the constant risk of selection bias to be able to use a sniff test when 

they read studies where (a) causal effects are claimed on observational data without mentioning 

how selection bias was addressed or (b) too much weight is given to correlational results even 

though it is fairly clear that the students in one treatment group are likely quite different from 

those in another treatment group (or the control).   
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The mere fact that treatment groups are incomparable does not necessarily mean that selection 

bias will change the significance or the effect size of a treatment. Negligible selection bias is 

reasonable to assume when correlational studies and causal studies on a topic yield similar 

results. Differing results, on the other hand, are suggestive of the influence of selection bias on 

the correlational results, although competing explanations include issues of data quality or 

methodological accuracy.  

 

Educational decisions are often dependent on an assumption that Treatment A (e.g., a law, an 

intervention, funding) will increase the likelihood of Outcome B. And, if the most relevant 

studies on a particular topic only show an association, the decision maker either embraces the 

association as causation or is left uncertain about the validity of the results as they apply to a 

causal inference. This is not to imply that correlational research is useless or that researchers 

working with observational data should always attempt to make a causal claim—this wouldn’t be 

practical for small scale studies like action research, nor is it necessary for making low stakes 

decisions that do not substantially impact students’ lives or require major resource allocation. 

However, researchers working with observational data should be expected to account for or at 

least identify the presence of selection bias to the degree that the data permit it. At a minimum, 

every educational researcher should become informed about the concerns surrounding selection 

bias and explicitly warn the reader of selection bias when it hasn’t been sufficiently accounted 

for. And every reader of educational research should learn to have a healthy skepticism when 

reading observational studies that made no attempt to account for selection bias.  
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Appendix 

 

Table A1 
Weighted Covariate Balance by Propensity Score Stratum 

Stratum 
Nonsignificant pairwise 

differences (%) Students 
Minimum 

propensity score 
Maximum 

propensity score 
 

1 98.1 211 .01 .03  

2 98.8 211 .03 .05  

3 98.8 212 .05 .08  

4 98.6 316 .08 .11  

5 98.9 318 .11 .15  

6 97.6 317 .15 .19  

7 90.4 318 .19 .24  

8 91.8 317 .24 .28  

9 94.8 317 .28 .32  

10 79.1 317 .32 .37  

11 66.0 317 .37 .42  

Note. Within each stratum, Games-Howell pairwise difference tests were conducted between every two 

groups on every covariate. All data were weighted with marginal mean weights before conducting 

significance tests. Random assignment would, on average, result in 95% of the pairwise differences being 

nonsignificant; achieving roughly this same number with our propensity scores would reassure us that we 

have successfully removed the selection bias, at least in terms of the observed covariates. As seen in the 

second column, we achieved this goal in all but the final two strata; there is still risk for selection bias in 

these two strata. 
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Table A2 
Standardized Differences in Means and Variances of Influential Predictors Before and After Applying 

Marginal Mean Weights 

   Cohen’s d (M) SD Cohen’s d (Var) 

Predictor SD Before After  (quadratic) Before After 

Math IRT score 11.15 0.79 0.17 907.62 0.72 0.14 

Math score, standardized test 9.22 0.79 0.17 981.58 0.73 0.15 

Math teacher’s expectations 1.22 0.88 0.21 10.50 0.80 0.18 

Math proficiency, level 4 0.37 0.49 0.09 0.35 0.41 0.07 

Western region 0.39 0.17 0.26 0.39 0.17 0.26 

Recommended for AP/honors class 0.39 0.39 0.07 0.38 0.35 0.03 

Reading IRT score 9.10 0.69 0.25 568.59 0.63 0.21 

Math self-efficacy 0.90 0.32 0.25 1.06 0.13 0.20 

English teacher’s expectations 1.23 0.83 0.20 10.84 0.76 0.17 

Reading proficiency, level 2 0.38 0.64 0.22 0.40 0.57 0.19 

Math proficiency, level 5 0.09 0.13 0.00 0.07 0.09 0.00 

Uses graphing calculators in math class 1.65 0.26 0.20 10.11 0.26 0.18 

Writing ability 0.90 0.65 0.19 1.09 0.18 0.18 

Midwest region 0.44 0.09 0.27 0.44 0.09 0.27 

Southern region 0.48 0.25 0.36 0.48 0.25 0.36 

% 10th graders on college prep path 30.97 0.32 0.31 3636.26 0.32 0.30 

Asian/Pacific Islander 0.31 0.15 0.23 0.31 0.15 0.23 

% 10th graders receive remedial math 7.89 0.26 0.29 294.49 0.20 0.29 

Type of school student plans to attend 0.43 0.67 0.30 1.58 0.61 0.29 

Thinks math is fun 0.77 0.23 0.22 4.11 0.22 0.24 

Note. Effect sizes shown are the standardized averages of all pairwise differences between treatment 

groups. Standardized averages after the application of marginal mean weights are calculated based on a 

weighted mean of average differences within each stratum. The SD used to standardize the differences in 

means and the SD used to standardize the differences in variances are both taken from the analytic sample 

and used for all comparisons as suggested by Stuart (2008). Quadratic terms were formed by squaring 

each data point for each variable. The small values of Cohen’s d overall suggest that selection bias has 

been reduced to an acceptable level on these influential variables. 
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