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Abstract

Biologicalmotor control involvesmultiple objectives and constraints. In this

thesis, I investigated the influence of uncertainty on biological sensorimotor

control and decision-making, considering various objectives.

In the first study, I used a simple biped walking model simulation to

study the control of a rhythmic movement under uncertainty. Uncertainty

necessitates a more sophisticated form of motor control involving internal

model and sensing, and their effective integration. The optimality of the

neural pattern generator incorporating sensory information was shown

to be dependent on the relative amount of physical disturbance and sen-

sor noise. When the controller was optimized for state estimation, other

objectives of improved energy efficiency, reduced variability, and reduced

number of falls were also satisfied.

In the second study, human participants performed regression and clas-

sification tasks on visually presented scatterplot data. The tasks involved

a trade-off between acting on small but prevalent errors and acting on big

but scarce errors. We used inverse optimization to characterize the loss

function used by humans in these regression and classification tasks, and

found that these loss functions change systematically as the data sparsity

changed. Despite being highly variable, there were overall shifts towards
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Abstract

compensating for prevalent small errorsmorewhen the sparsity of the visual

data decreased.

In the third study, I extended the pattern recognition tasks to include

visually mediated force tracking. When participants tracked force targets

with visual noise, we observed a slight yet consistent force tracking bias. This

bias, which increased with noise, was not explained by commonly hypothe-

sized objectives such as a tendency to reduce effort while regulating error.

Additional experiments revealed that a model balancing error reduction

and transition reduction tendencies effectively explained and predicted

experimental data. Transition reduction tendency was further separated

into recency bias and central tendency bias. Notably, this bias disappeared

when the task became purely visual, suggesting that such biases could be

task-dependent.

These findings across the three studies provide useful insights into un-

derstanding how uncertainty changes objectives and their trade-offs in

biological motor control, and in turn, results in a different control strategy

and behaviors.
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Chapter 1

Introduction

All animals, however insignificant, have a mission to perform—a

destiny to fulfil; and their manner of doing it cannot be a matter

of indifference (...) it is but natural we should take an interest in

the movements of our fellow-travellers.

James Bell Pettigrew. Animal Locomotion: Or, Walking,

Swimming, and Flying, with a Dissertation on Aëronautics.

1.1 Background andmotivation

Understanding principles of biological motor control could contribute to

expanding our knowledge of the world and ourselves (Haldane, 1949; Elft-

man, 1966), helping people and animals with motor disorders (Abbruzzese

and Berardelli, 2003; Piek and Dyck, 2004), and improving technologies

that are related to biological movements (Ackermann and Van den Bogert,

2010; Zhang et al., 2017). One of the challenges in studying goal-directed

motor control is that it often involves multiple objectives and constraints,

which could be competing or in alignment with each other. Even seemingly

1



1. Introduction

mundane movements, such as scratching our own body, require precise

control over the force and trajectory of our extremities: it requires a fine

balance between feeling good and damaging the skin, executed within the

capacities and limitations of our physical bodies.

One way to model the movement control is to view it as an optimal

solution among other feasible solutions when it is evaluated with some

measurable criteria (Baron and Kleinman, 1969; Kleinman et al., 1970). For

example, human and animal movement controls seem to be energetically

optimal in many cases, especially during movements that they repetitively

perform throughout their lives. One common example is locomotion. It

has been reported that humans and animals choose a gait that minimizes

metabolic energy consumption (Alexander, 1989). People tend to choose a

step length at a given speed that minimizes metabolic energy expenditure,

which means, increasing or decreasing the natural step length results in

increased metabolic energy expenditure (Atzler and Herbst, 1927; Bertram

and Ruina, 2001). When speed is not constrained, people seem to choose

an optimal walking speed that minimizes metabolic energy expenditure

per distance travelled (Margaria, 1968). People and animals seem to select

a mode of gait that minimizes metabolic cost at a given speed (Hoyt and

Taylor, 1981), and people switch between walking and running and the

switch is roughly associated with metabolic cost minimization albeit with

some small hysteresis (Long III and Srinivasan, 2013; Diedrich andWarren Jr,

1995).

However, there also are abundant examples showing that human and

animal behaviors seem to be suboptimal in terms of a particular measure.

That is, some criterion that was regarded as a control objective sometimes

2



1. Introduction

turned out to be not a good descriptor of the behaviors to various degrees

(Alexander, 1958; Zamparo et al., 1995). This suboptimality with respect

to one criterion could mean that humans and animals are optimal in a

different way, but sometimes there might not be a simple alternative expla-

nation to their behaviors. For example, while non-pathological gaits seem

to be energetically optimal, pathological gaits could be sometimes better

explained by minimizing apparent abnormality or minimizing pain, rather

than minimizing metabolic energy consumption (Winter et al., 1990; Tesio

et al., 1991). On the other hand, sometimes people and animal behaviors

seem to be simply irrational (Ellis, 1975; Arkes and Ayton, 1999), let alone

the absurdity of the concept of living (Nagel, 1971).

Despite these complications, because motor behaviors are usually not

totally random but are goal-directed at least on a macroscopic level, it is

reasonable to look for useful tools to describe them. This thesis aims to

improve our current knowledge of how uncertainty shapes control and

decision-making strategies. Here, uncertainty includes unexpected dis-

turbances from the environment, noise in neural information, imperfect

execution of motor commands in muscles, or even vagueness in the task

itself. The effects of such uncertainty could sometimes be eliminated if

the system properly reacts to it, may introduce variability to the final result

without significantly altering overall behavior, or could drastically change

the result. Some studies on biological motor control do not take uncertainty

into account and still provide useful insights. However, when uncertainty

adds more than mere variability to the system, its omission may lead to

misleading results. A strategy that works great only if everything is perfect

might not be a good strategy in most cases in life.

3



1. Introduction

1.2 Summary of chapters

In the research projects presented in the following chapters, I will discuss

the principles of motor control under uncertainty in the context of agreeing

or competing objectives. Twomain approaches I used were: 1) performing

optimization onmovement simulationmodels and 2) applying inverse opti-

mization analysis to experimental data collected from human participants

performing sensorimotor or decision-making tasks. Optimization is the

process of seeking the best decision parameters given certain criteria, or in

other words, the objective function. Optimization of a biped walking model

will be presented in Chapter 2, demonstrating both optimal and suboptimal

behaviors in terms of multiple performance criteria. Inverse optimization

is the process of searching for a formulation of an optimization problem

whose result best describes the observations. I applied inverse optimiza-

tion analysis to characterize how human participants performed pattern

recognition tasks and force tracking tasks, as discussed in Chapters 3 and 4.

In the three studies presented here, I investigated a range of tasks, includ-

ing rhythmic tasks (such as walking), discrete or episodic tasks involving

pattern recognition, and tasks that fall in between, which involve tracking

continuously changing forces (Hogan and Sternad, 2007).

In Chapter 2, I will discuss howmultiple control objectives can be satis-

fied through an optimal combination of signals that come from sensors and

from a central pattern generator (CPG) for locomotion control in the pres-

ence of noise. We used a simplified biped locomotion model simulation to

demonstrate the trade-off between sensor information and CPG signal, and

how this combination could be optimized for certain objectives. Here, the

4



1. Introduction

CPG is a neural circuit that is capable of generating rhythmic patterns even

without any sensor inputs, which is observed in animal studies. However,

further investigation is needed to understand its structure and integration

with sensors. We modeled this circuit as a forward predictor that uses an

internal model of the movements — forward prediction of the body dy-

namics is obtained by combining current body configurations with muscle

actions, and its performance is affected by motor disturbances. The ad-

vantage of this perspective is that sensor information can be systematically

integrated, since the measurement using sensors is another source of infor-

mation on the configurations of the body. Sensor performance is affected by

sensor noise, thus there is an optimal balance between sensor information

and forward predictions depending on the relative strength of sensor noise

andmotor disturbance. We predicted the optimal CPG based on an even

more simplified model of the walking model using classical control theory,

and then applied it to a more complicated model. The CPG controller that

minimized the estimation error of a simplified model also minimized the

estimation error of the more complicated nonlinear model which under-

goes collision with the ground. For the model considered, this combination

yielded the best walking performance that had minimum energetic cost,

step length variability, and least frequent fallings.

InChapter 3, I will discuss howhumans perceive visually presentednoisy

data in the context of simple ‘machine learning’ or ‘statistical inference’

tasks. Motor control involves error regulations — for example, deviation

from the posture one tried to hold, or deviation from the motion trajectory

one wanted to perform, need to be reduced for a better execution of the task.

As a particularly simplified special case, we studied how humans perceive

5



1. Introduction

and perceptually penalize errors when they perform simple regression and

classification tasks. Specifically, we presented scattered dots to participants

and asked them to draw a line that best describes the dots (regression). We

also showed scattered dots of two colors and asked participants to draw

a line that best separated dots into two groups (classification). Our aim

was to capture the trade-off people made while performing the task: some

lines capture the majority of data well but make a huge error on a few ex-

ceptional dots, while some lines reduce this exceptionally big error on a

few dots at the cost of making slightly more errors on many dots. We used

inverse optimization approach to quantitatively characterize how humans

performed the task. That is, we modeled people’s responses as a solution of

an optimization problem, and investigated which optimization objective

function would produce the results closest to what humans did. Despite

being largely variable, we could explain average behavior using inverse op-

timization method. There was a systematic shift in the behavior and the

inferred loss function when subjects were presented with less sparse data.

In Chapter 4, I will discuss how humans execute a sensorimotor task,

specifically a force-exertion task, which involves the perception of noisy vi-

sually presented data similar towhat we used in Chapter 3. We asked human

subjects to produce force following the loosely defined visual targets that

changed force requirements every few seconds. Our aimwas to characterize

the trade-off between performance-enhancing tendency and energy-saving

tendency during force tacking tasks. This form of optimization is commonly

used in human behavior modeling, robot motion planning, and biome-

chanical simulations. We found shifts towards producing less force when

the force requirement increased and when the vagueness of the target in-

6
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creased. However, unexpectedly, we also found that subjects consistently

made an error in a way that seemed like they wasted energy in some cases.

We investigated how different models of force tracking error may or may

not capture the observations, by conducting additional prospective experi-

ments that were designed to distinguish different models. We could explain

the observations using a model of force production bias, which seems to

be a previously overlooked phenomenon. Similar biases were reported in

visual perception studies, but we did not observe a significant bias when

wemade the task almost fully visual, suggesting that these biases may be

task-dependent.

Statement of contribution. In Chapter 2, I implemented and performed

simulations, analyzed results, produced figures, contributed to the concep-

tualization of the project, and prepared the manuscripts and publication

process. In Chapters 3 and 4, I contributed to the conceptualization of

the idea, development of the experimental protocols, data collection and

analysis, and preparation of figures andmanuscripts.

7



Chapter 2

An optimality principle for

locomotor central pattern

generators

2.1 Abstract

Two types of neural circuits contribute to legged locomotion: central pat-

tern generators (CPGs) that produce rhythmic motor commands (even in

the absence of feedback, termed “fictive locomotion”), and reflex circuits

driven by sensory feedback. Each circuit alone serves a clear purpose, and

the two together are understood to cooperate during normal locomotion.

The difficulty is in explaining their relative balance objectively within a

control model, as there are infinite combinations that could produce the

same nominal motor pattern. Here we propose that optimization in the

presence of uncertainty can explain how the circuits should best be com-

bined for locomotion. The key is to re-interpret the CPG in the context of

8



2. An optimality principle for locomotor central pattern generators

state estimator-based control: an internal model of the limbs that predicts

their state, using sensory feedback to optimally balance competing effects

of environmental and sensory uncertainties. We demonstrate use of opti-

mally predicted state to drive a simple model of bipedal, dynamic walking,

which thus yields minimal energetic cost of transport and best stability.

The internal model may be implemented with neural circuitry compatible

with classic CPG models, except with neural parameters determined by

optimal estimation principles. Fictive locomotion also emerges, but as a

side effect of estimator dynamics rather than an explicit internal rhythm.

Uncertainty could be key to shaping CPG behavior and governing optimal

use of feedback.

2.2 Introduction

A combination of two types of neural circuitry appears responsible for the

basic locomotory motor pattern. One type is the central pattern generator

(CPG; Fig. 2.1A), which generates pre-programmed, rhythmically timed,

motor commands (Brown, 1914; Wilson, 1961; Wilson andWyman, 1965).

The other is the reflex circuit, which produces motor patterns triggered by

sensory feedback (Fig. 2.1C). Although they normally work together, each is

also capable of independent action. The intrinsic CPG rhythm patterns can

be sustainedwithno sensory feedback andonly a tonic, descending input, as

demonstratedbyobservationsof fictive locomotion (Grillner, 1975; Feldman

and Orlovsky, 1975). Reflex loops alone also appear capable of controlling

locomotion1, particularly with a hierarchy of loops integrating multiple

sensory modalities for complex behaviors such as stepping and standing

9



2. An optimality principle for locomotor central pattern generators

Figure 2.1: Three ways to control bipedal walking. (A) The central pattern
generator (CPG) comprises neural oscillators that can produce rhythmic
motor commands, even in the absence of sensory feedback. Rhythm can
be produced by mutually inhibiting neural half-center oscillators (shaded
circles). (B) In normal animal locomotion, theCPG is thought to combine an
intrinsic rhythm with sensory feedback, so that the periphery can influence
the motor rhythm. (C) In principle, sensory feedback can also control and
stabilize locomotion through reflexes, without need for neural oscillators.
The extreme of (A) CPG control without feedback is referred to here as pure
feedforward control, and theopposite extreme (C)withnooscillators as pure
feedback control. Any of these schemes could potentially produce the same
nominal locomotion pattern, but some (B) combination of feedforward and
feedback appears advantageous.

control (Sherrington, 1910; Pringle, 1940). We refer to the independent

extremes as pure feedforward control and pure feedback control. Of course,

within the intact animal, both types of circuitry work together for normal

locomotion (Fig. 2.1B) (Büschges, 2005). However, this cooperation also

presents a dilemma, of how authority should optimally be shared between

the two (Bässler and Büschges, 1998).

The combination of central pattern generators with sensory feedback

has been explored in computational models. For example, some models

have added feedback (Liu et al., 2012; Habib et al., 2009; Auddy et al., 2019;

Cristiano et al., 2015) to biologically-inspired neural oscillators (e.g., Mat-

suoka (1987)), which employ networks of mutually inhibiting neurons to

10



2. An optimality principle for locomotor central pattern generators

intrinsically produce alternating bursts of activity. Sensory input to the

neurons can change network behavior based on system state, such as foot

contact and limb or body orientation, to help respond to disturbances.

The gain or weight of sensory input determines whether it slowly entrains

the CPG (Iwasaki and Zheng, 2006), or whether it resets the phase entirely

(Nassour et al., 2014; Tsuchiya et al., 2003). Controllers of this type have

demonstrated legged locomotion in bipedal(Morimoto et al., 2006) and

quadrupedal robots (Kimura et al., 2007; Righetti and Ijspeert, 2008), and

even swimming and other behaviors (Bliss et al., 2012). A general observa-

tion is that feedback improves robustness such as against uneven terrain

(Endo et al., 2004). And the addition of feedforward into feedback-based

control has been used to vary walking speed (Dzeladini et al., 2014), adjust

interlimb coordination(Owaki and Ishiguro, 2017), or enhance stability (Da-

ley et al., 2007). However, a disadvantage is that the means of combining

CPG and feedback is often designed ad hoc. This makes it challenging to

extend the findings from one CPG model to another or to other gaits or

movement tasks.

Optimization principles offer ameans for amodel to be uniquely defined

by quantitative and objective performance measures (Alexander, 1996). In-

deed, CPG models have long used optimization to determine parameter

values (Dzeladini et al., 2014; Kimura et al., 1993; Taylor et al., 2000). How-

ever, the most robust and capable models to date have tended not to use

CPGs or intrinsic timing rhythms. For example, human-like optimization

models can traverse highly uneven terrain (Geyer and Herr, 2010; Heess

et al., 2017; Peng et al., 2017) using only state-based control, where the con-

trol command is a function of system state (e.g., positions and velocities

11



2. An optimality principle for locomotor central pattern generators

of limbs). In fact, reinforcement learning and other robust optimization

approaches (e.g., dynamic programming (Bellman, 1954; Bryson, 1975)) are

typically expressed solely in terms of state, and do not even have provision

for time as an explicit input. They have no need for, nor even benefit from,

an internally generated rhythm. But feedforward is clearly important in

biological CPGs, suggesting that some insight is missing from these optimal

control models.

Theremay be a principled reason for a biological controller not to rely on

state, as measured, alone. Realistically, a system’s state can only be known

imperfectly, due to noisy and imperfect sensors. The solution is state esti-

mation (Bryson, 1975), in which an internalmodel of the body is used to pre-

dict the expected state and sensory information, and feedback from actual

sensors is used to correct the state estimate. The sensory feedback gains

may be optimized for minimum estimation error separate from control.

The separation principle(Bryson, 1975) of control systems shows that state-

based control may be optimized for control performance without regard to

noisy sensors, and nevertheless combine well with state estimation(Bryson,

1975). In practice, actual robots (e.g., bipedal Atlas(Kuindersma et al., 2016)

and quadrupedal BigDog(Wooden et al., 2010)) gain high performance and

robustness through such a combination of state estimation driving state-

(estimator)-based control. In fact, state-estimator controlmay be optimized

for a noisy environment(Bryson, 1975), and has been proposed as a model

for biological systems (Kuo, 2005, 1995; Todorov, 2005). The internal model

for state estimation is not usually regarded as relevant to the biological

CPG’s feedforward, internal rhythm, but we have proposed that it can po-

tentially produce a CPG-like rhythm under conditions simulating fictive

12
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locomotion(Kuo, 2002b). Here the rhythmic output is interpreted not as

the motor command per se, but as a state estimate that drives the motor

command. We demonstrated this concept with a simple model of rhyth-

mic leg motions(Kuo, 2002b) and a preliminary walking model(O’Connor,

2009). This suggests that a walking model designed objectively with state

estimator-based control might produce CPG-like rhythms that objectively

contribute to locomotion performance.

The purpose of the present study was to test an estimator-based CPG

controller with a dynamic walking model. We devised a simple state-based

control scheme to produce a stable and economical nominal gait, producing

stance and swing leg torques as a function of the leg states. Assuming a

noisy system and environment, we devised a state estimator for leg states. A

departure from other CPGmodels is that we optimize sensory feedback and

associated gains not for walking performance, but for accurate state estima-

tion. The combination of control and estimation define our interpretation of

a CPG controller that incorporates sensory feedback in a noisy environment.

Moreover, this same controller may be realized in the form of a biologically-

inspired half center oscillator (Matsuoka, 1987), with neuron-like dynamics.

Because the control scheme depends on accurate state information for its

stability and economy, we expected that minimizing state estimation er-

ror (and not explicitly walking performance) would nonetheless allow this

model to achieve better walking performance. Scaling the sensory feedback

either higher or lower than theoretically optimal would be expected to yield

poorer performance. Such a model may conceptually explain how CPGs

could optimally incorporate sensory feedback.

13
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2.3 Results

Central pattern generator controls a dynamic walking

model

The CPG controller produced a periodic gait with a model of human-like

dynamic walking (Fig. 2.2A). The model was inspired by the mechanics

and energetics of humans(Kuo et al., 2005), whose legs have pendulum-

like passive dynamics(Alexander, 1995) (the swing leg as a pendulum, the

stance leg as inverted pendulum), modulated by active control. Model

parameters such as mass distribution and foot curvature, and the resultant

walking speed and step length were similar to human walking. The nominal

step length for a given walking speed also minimized the model’s energy

expenditure, as also observed in humans (Kuo, 2001). Acting on the legs

were torque commands (𝑇1 and𝑇2, Fig. 2.2B) from theCPG, designed to yield

a periodic gait (Fig. 2.2C), by restoring energy dissipated with each step’s

ground contact collision (Donelan et al., 2002; Kuo, 2002a). The leg angles

and the ground contact condition ("GC", 1 for contact, 0 otherwise; Fig.

2.2C) were treated as measurements to be fed back to the CPG. Each leg’s

states (𝒙𝒊
Δ
= [\𝑖 , ¤\𝑖 ]𝑇 ) described a periodic orbit or limit cycle (Fig. 2.2D),

which was locally stable for zero or mild disturbances, but could easily be

perturbed enough to make it fall (Fig. 2.2E).

The resulting nominal (undisturbed) gait had approximately human-like

walking speed and step length. The nominal walking speed was equivalent

to 1.25 m/s with step length 0.55 m (or normalized 0.4 (𝑔 𝑙 )0.5 and 0.55𝑙 ,

respectively; 𝑔 is gravitational constant, 𝑙 is leg length). The corresponding

14
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Figure 2.2: Dynamic walkingmodel controlled by CPG controller with
feedback. (A) Pendulum-like legs are controlled by motor commands for
hip torques𝑇1 and𝑇2, with sensory feedback of leg angle and ground con-
tact “GC” relayed back to controller. (B) Controller produces alternating
motor commands versus time, which drive (C) leg movement \ . Sensory
measurements of leg angle and ground contact in turn drive the CPG. (D)
Resulting motion is a nominal periodic gait (termed a “limit cycle”) plotted
in state space ¤\ versus \ . (E) Discrete perturbation to the limit cycle can
cause model to fall.

mechanical cost of transport was 0.053, comparable to other passive and

active dynamic walking models (e.g., Kuo (2001); McGeer (1990); Collins

et al. (2005)).

This controller had four important features for the analyses that fol-

low. First, the gait had dynamic, pendulum-like leg behavior similar to

humans(Kuo et al., 2005; Alexander, 1995). Second, the controller stabi-

lized walking, meaning ability to withstand minor perturbations due to its

state-based control. Third, the information driving control was produced

by the controller including CPG, whose entire dynamics and feedback gains

were objectively designed by optimal estimation principles, with no ad hoc

design. And fourth, the overall amount of feedback could be varied con-

tinuously between either extreme of pure feedforward and pure feedback
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(sensory feedback gain 𝑳 ranging zero to infinity), while always producing

the same nominal gait under noiseless conditions. This was to facilitate

study of how parametric variation of sensory feedback affects performance,

particularly under noisy conditions.

Pure feedforward and pure feedback are both susceptible to

noise

The critical importance of sensory feedbackwas demonstratedwith a distur-

bance acting on the legs (Fig. 2.3A). Termed process noise, it represents not

only disturbances but also any uncertainty in the environment or internal

model. For this demonstration, the disturbance consisted of a single impul-

sive swing leg angular acceleration (amplitude 5 (𝑔 /𝑙 ) at 15% of nominal

stride time). The pure feedforward controller failed to recover (Fig. 2.3A

left), and would fall within about two steps. Its perturbed leg and ground

contact states becamemismatched to the nominal rhythm, which in pure

feedforward does not respond to state deviations. In contrast, the feedback

controller could recover from the same perturbation (Fig. 2.3A right) and

return to the nominal gait. Feedback control is driven by system state, and

therefore automatically alters the motor command in response to perturba-

tions. Our expectation is that even if a feedforward control is stable under

nominal conditions (with zero or mild disturbances), a feedback controller

could generally be designed to be more robust.

We also applied an analogous demonstration with sensor noise (Fig.

2.3B). Adding continuous sensor noise (standard deviation of 0.1 for each

independent leg) to sensory measurements had no effect on pure feedfor-
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Figure 2.3: Demonstration of pure feedforward and pure feedback. Pure
feedforward and pure feedback (left and right columns, respectively) are
adversely affected by (A) process and (B) sensor noise. Process noise refers
to disturbances from the environment or imperfect actuation, and sensor
noise refers to imperfect sensing. Plots show ground contact condition, leg
angles, commanded leg torques, and noise levels versus time, including
both the nominal conditionwithout noise (dashed lines), and the perturbed
condition with noise (solid lines). With an impulsive, process noise distur-
bance, pure feedforward control tended to fall, whereas pure feedback was
quite stable. With sensor noise alone, pure feedforward was unaffected, but
pure feedback tended to fall.
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ward control (Fig. 2.3B left), which ignores sensory signals entirely. But pure

feedback was found to be sensitive to noise-corrupted measurements, and

would fall within a few steps (Fig. 2.3B right). This is because erroneous

feedback would trigger erroneousmotor commands not in accordance with

actual limb state. The combined result was that both pure feedforward and

pure feedback control had complementary weaknesses. They performed

identically without noise, but each was unable to compensate for its partic-

ular weakness, either process noise or sensor noise. Feedback control can

be robust, but it needs accurate state information.

Neural half-center oscillators are re-interpreted as state

estimator

We determined two apparently different representations for the same CPG

model. This first was a biologically inspired, neural oscillator (Fig. 2.4A)

representation, intended to resemble previous CPGmodels (Liu et al., 2012;

Habib et al., 2009; Auddy et al., 2019; Cristiano et al., 2015) demonstrating in-

corporation of sensory feedback. As with such models, the intrinsic rhythm

was produced with two mutually inhibiting half-center oscillators, one driv-

ing each leg (𝑖 = 1 for left leg, 𝑖 = 2 for right leg). Each half-center had a total

of three neurons, one a primary neuron with standard second-order dynam-

ics (states𝒖 and 𝒗 ). Its output drove the second neuron (𝜶) producing the

motor command to the ipsilateral leg. The third neuron was responsible

for relaying ground contact ("𝒄") sensory information, to both excite the

ipsilateral primary neuron and inhibit the contralateral one. Although this

architecture is superficially similar to previous ad hoc models, the present
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Figure 2.4: Locomotion control circuit interpreted in two representa-
tions. Representation in (A) Neural central pattern generator with mutually
inhibiting half-center oscillators, and as (B) state estimator with feedback
control. Each half-center has a primary neuron with two states (𝑢 and 𝑣 ,
respectively), an auxiliary neuron 𝑐 for registering ground contact, and an
alpha motoneuron 𝛼 driving leg torque commands. Inputs include a tonic
descending drive, and afferent sensory data with gain 𝐿 . State estimator acts
as second-order internal model of leg dynamics to estimate leg states \̂ (hat
symbol denotes estimate) and ground contact ĜC, which drive state-based
command𝑇 . The estimator dynamics and estimator parameters including
sensory feedback 𝐿 , and thus the corresponding neural connections and
weights, are designed for minimummean-square estimation error. Leg dy-
namics have nonlinear terms (see “Methods” section) of small magnitude
(thin grayed lines).

CPG rhythmic dynamics were determined objectively by optimal estimation

principles.

The same CPG architecture was then re-interpreted in a second, control

systems and estimation framework (Fig. 2.4B), while changing none of the
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neural circuitry. Here, the structurewas not treated as half-center oscillators,

but rather as three neural stages from afferent to efferent. The first stage

receiving sensory feedback signal was interpreted as a feedback gain 𝑳

(upper rectangular block, Fig. 2.4B), modulating the behavior of the second

stage, interpreted as a state estimator (middle rectangular block, Fig. 2.4B)

acting as an internalmodel of leg dynamics. Its outputwas interpreted as the

state estimate, which was fed into the third, state-based motor command

stage (lower rectangular block, Fig. 2.4B). In this interpretation, the three

stages correspond with a standard control systems architecture for a state

estimator driving state feedback control. In fact, the neural connections and

weights of the half-center oscillators were determined by, and are therefore

specifically equivalent to, a state estimator driving motor commands to the

legs.

The two representations provide complementary insights. The half-

center model shows how sensory information can be incorporated into

and modulate a CPG rhythm. Half-center models have previously been

designed ad hoc and tuned for a desired behavior, and have generally lacked

an objective and unique means to determine the architecture (e.g., number

of neurons and interconnections) and neural weights. The state estimator-

based model offers a means to determine the architecture, neural weights,

and parameters for the best performance. This half-center model with

feedback could thus be regarded as optimal, for producing accurate state

estimates despite the presence of noise.
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Optimized sensory feedback gain L yields accurate state

estimates

We next examined walking performance in the presence of both process

and sensor noise, while varying sensory feedback gain 𝑳 above and below

optimal (Fig. 2.5; result from 20 simulation trials per condition, 100 steps

per trial). We intentionally applied a substantial amount of noise (with fixed

covariances), sufficient to topple the model. This was to demonstrate how

walking performance can be improved with appropriate sensory feedback

gain 𝑳 , unlike the noiseless case where the model always walks perfectly.

As expected of optimal estimation, best estimation performance was

achieved for the gain 𝑳 equal to theoretically predicted optimum 𝑳∗
lqe (Fig.

2.5, normalized sensory feedback gain of 1). We had designed 𝑳∗
lqe with

linear quadratic estimation (LQE) based on the covariances of process and

sensor noise. Applying that gain in nonlinear simulation with added noise

resulted in minimum estimation error (Fig. 2.5, bottom). This suggests that

a linear gain was sufficient to yield a good state estimate despite system

nonlinearities.

The optimal sensory feedback gain also yielded best walking perfor-

mance. Even though the same state-based motor command function (𝜶

in Fig. 2.4) was applied in all conditions, that function was dependent on

accurate state information. As a result, the optimal gain 𝑳∗
lqe yielded greater

economy, less step length variability, and fewer falls (Fig. 2.5). This was actu-

ally a side-effect of optimal state estimation, because our state-basedmotor

commandwas not explicitly designed to optimize any of these performance

measures. The minimal mechanical cost of transport was 0.077 under noisy
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Figure 2.5: State estimation accuracy and walking performance under
noisy conditions, as a function of sensory feedback gain. The theoret-
ically optimal sensory feedback gain (normalized gain of 1) yielded best
performance, in terms of mechanical cost of transport (mCOT), step length
variability, mean time between falls (MBTF), and state estimator error. Nor-
malized sensory feedback gain varies between extremes of pure feedforward
(to the left) and pure feedback (to the right), with 1 corresponding to theo-
retically predicted optimum 𝐿∗

lqe. Formally, normalized gain is defined as
|𝐿 |/|𝐿∗

lqe | where | · | denotes matrix norm. Vertical arrow indicates best per-
formance (minimum for all measures except maximum for MTBF). For all
gains, model was simulated with a fixed combination of process and sensor
noise as input to multiple trials, yielding ensemble average measures. Each
data point is an average of 20 trials of 100 steps each, and errorbar indicates
standard deviation of the trials. Mechanical cost of transport (mCOT) was
defined as positive work divided by body weight and distance travelled, and
step variability as root-mean-square (RMS) variability of step length. Falling
takes time and dissipates mechanical energy, and so mCOT was computed
both including and excluding losses from falls (work, time, distance).
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conditions, somewhat higher than the nominal 0.053 without noise. Step

length variability was 0.046 𝑙 , and the model experienced occasional falls,

with MTBF (mean time between falls) of about 9.61 𝑔 −0.5𝑙0.5) (or about 7.1

steps). This optimal case served as a basis for comparisonswith other values

for gain 𝑳 .

Accurate state estimates yield good walking performance

Applying sensory feedback gains either lower or higher than theoretically

predicted optimum generally resulted in poorer walking performance (Fig.

2.5). We expected that any state-basedmotor command would be adversely

affected by poorer state estimates. The effect of reducing sensory feedback

gain (normalized gain less than 1) was to make the system (and particularly

its state estimate) more reliant on its feedforward rhythm, and less respon-

sive to external perturbations. The effect of increasing sensory feedback

gain was to make the systemmore reliant and responsive to noisy feedback.

Indeed, the direct effect of selecting either too low or too high a sensory

feedback gain was an increased error in state estimate. The consequences

of control based on less accurate state information were more falls, more

step length variability, and greater cost of transport. Over the range of gains

examined (normalized sensory feedback gain |𝑳 |/|𝑳∗
lqe | ranging 0.82–1.44),

the performance measures worsened on the order of about 10% (Fig. 2.5).

This suggests that, in a noisy environment, a combination of feedforward

and feedback is important for achieving precise and economical walking,

and for avoiding falls. Moreover, the optimal combination can be designed

using control and estimation principles. This testing condition was referred
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as “reference condition” for the following demonstration.

Amount of noise determines optimal sensory feedback gain

L

We next evaluated how walking performance and feedback gain would

change with different amounts of noise. The theoretically calculated op-

timum sensory feedback gain 𝑳 depends on the ratio of process noise to

sensor noise covariances(Kailath, 1980). Relatively more process noise fa-

vors higher sensory feedback gain, and relatively more sensor noise favors a

lower sensory feedback gain and thus greater reliance on the feedforward

internal model. We demonstrated this by applying different amounts of

process noise (low, medium, and high) with a fixed amount of sensor noise,

evaluating the optimal sensory feedback gain, and performing walking sim-

ulations with gains varied about the optimum. Noise covariances were set

to multiples of the reference conditions (Fig. 2.5), of 0.36, 1.15, and 2.06

respectively for low, medium, high process noise; sensor noise was 1.15 of

reference condition. The ratio of process to sensor noise covariance was

thus smaller (low), the same (medium), and larger (high) compared to the

reference condition, as was the theoretically optimal gain obtained using

linear quadratic estimation (LQE) equation (Fig. 2.6).

With varying noise, good performance was still achieved with the corre-

sponding, theoretically optimal gain (Fig. 2.6). The theoretically predicted

optimal gain increased with greater process noise, and simulation trials

yielded minimum state estimation error at that gain (Fig. 2.6, Estimation

RMS error). Accurate state estimation also contributed to walking perfor-
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Figure 2.6: Theoretically optimal sensory feedback gains increase with
greater process noise. Effect of three conditions of increasing process noise
(L low, Mmedium, H high) on walking performance as a function of sensory
feedback gain. The theoretically optimal gains (vertical lines) led to best
performance, as quantified by mechanical cost of transport (mCOT, includ-
ing falls), step length variability, mean time between falls (MBTF), and state
estimator error. (An exceptionwas step length variability, which had a broad
and indistinct minimum.) The predicted optimal sensory feedback gains
for each noise condition are indicated with vertical lines. Arrows indicate
best performance for each measure for each noise condition. Performance
is plotted with normalized sensory feedback gain ranging between extremes
of pure feedforward (to the left) and pure feedback (to the right), with 1
corresponding to theoretical optimum 𝐿∗

lqe of the previous testing condition
(Fig. 2.5). The process noise covariance was set to multiples of the previous
reference values: 0.36 for L, 1.15 for M, and 2.06 for H. Sensor noise covari-
ance was set to 1.15 of previous value.
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mance, with a trend of minimum cost of transport and step variability, and

maximum time between falls at the corresponding theoretical optimum.

An exception was step length variability in the high process noise condi-

tion, which had a broadminimum, with simulation optimum at a slightly

lower gain than theoretically predicted. Overall, the linear state estimator

predicted the best performing gain well, in terms of state estimation er-

ror, energy economy, and robustness to falls. These results are consistent

with the expectation that accurate state estimation contributes to improved

control.

Removal of sensory feedback causes emergence of fictive

locomotion

Although the CPGmodel normally interacts with the body, it was also found

to produce fictive locomotion with peripheral feedback removed (Fig. 2.7).

Here we considered two types of biological sensors, referred to as “error

feedback” and “measurement feedback” sensors. Error feedback refers

to sensors that can distinguish unexpected perturbations from intended

movements(Dimitriou and Edin, 2010). For example, somemuscle spindles

and fish lateral lines(Straka et al., 2018) receive corollary efferent signals

(e.g. gammamotor neurons in mammals, alpha in invertebrates(Delcomyn,

1998)) that signify intended movements, and could be interpreted as effec-

tively computing an error signal within the sensor itself(Straka et al., 2018).

Measurement feedback sensors refers to those without efferent inputs (e.g.,

nociceptors, golgi tendon organs, cutaneous skin receptors, and other mus-

cle spindles(Iggo, 1973)), that provide information more directly related
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Figure 2.7: Emergence of fictive locomotion from CPGmodel. (A) Block
diagram of intact control loop, where sensory measurements 𝑦 and estima-
tion error 𝑒 are fed into internal model. Motor command𝑇 drives the legs
and (through efference copy) the internal model of legs. (B) Twomodels of
fictive locomotion, startingwith the intact systembutwith sensory feedback
removed in two ways. Error feedback refers to sensors that receive effer-
ent copy as inhibitory drive (e.g., somemuscle spindles). Removal of error
(dashed line) results in sustained fictive rhythm, due to feedback between
internal model and state-based command. Measurement feedback refers
to other, more direct sensors of limb state 𝒙 . Removal of such feedback can
also produce sustained rhythm from internal model of legs and sensors,
interacting with state-based command. (C) Simulated motor spike trains
show how fictive locomotion can resemble intact. Measurement feedback
case produces slower and weaker rhythm than error feedback.
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to body movement. Both types of sensors are considered important for

locomotion, and so we examined the consequences of removing either type.

These cases were modeled by disconnecting the periphery in two dif-

ferent ways. This is best illustrated by redrawing the CPG (Fig. 2.4) more

explicitly as a traditional state estimator block diagram (Fig. 2.7A). The state

estimator block diagram could be rearranged into two equivalent forms

(Fig. 2.7B) by relocating the point where the error signal is calculated. In the

Error feedback model (Fig. 2.7B, top), the error is treated as a peripheral

comparison associated with the sensor, and in the Measurement feedback

model (Fig. 2.7B, bottom), as a more central comparison. The two block

diagrams are logically equivalent when intact, but they differ in behavior

with the periphery disconnected.

The case of fictive locomotion with Error feedback sensors (Fig. 2.7B,

top) was modeled by disconnecting error signal 𝒆 , so that the estimator

would run in an open-loop fashion, as if the state estimate were always cor-

rect. Despite this disconnection, there remained an internal loop between

the estimator internal model and the state-based command generator, that

could potentially sustain rhythmic oscillations. The case of fictive locomo-

tion withmeasurement feedback sensors (Fig. 2.7CMeasurement feedback)

was modeled by disconnecting afferent signal 𝒚 , and reducing estimator

gain by about half, as a crude representation of highly disturbed conditions.

There remained an internal loop, also potentially capable of sustained oscil-

lations. We testedwhether either casewould yield a sustainedfictive rhythm,

illustrated by transforming the motor command𝑻 into neural firing rates

using a Poisson process.

We found that removal of both types of sensors still yielded sustained
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neural oscillations (Fig. 2.7C), equivalent to fictive locomotion. In the case

of Error feedback (Fig. 2.7B), the motor commands from the isolated CPG

were equivalent to the intact case without noise in terms of frequency and

amplitude. In the case of Measurement feedback (Fig. 2.7B), the state

estimator tended to drive estimate 𝜽 toward zero, and simulations still

produced periodic oscillations, albeit with slower frequency and reduced

amplitude compared to intact. This is not unlike observations of fictive

locomotion in animals(Wallén andWilliams, 1984), although our model’s

response depends on manner of disconnection. Here, with both types of

disconnection, the resulting fictive locomotion should not be interpreted

as evidence of an intrinsic rhythm, but rather a side effect of incorrect state

estimation.

2.4 Discussion

We have examined how central pattern generators could optimally inte-

grate sensory information to control locomotion. Our CPGmodel offers an

adjustable gain on sensory feedback, to allow for continuous adjustment

between pure feedback control to pure feedforward control, all with the

same nominal gait under perfect conditions. The model is compatible with

previous neural oscillator models, while also being designed through opti-

mal state estimation principles. Simulations reveal how sensory feedback

becomes critical under noisy conditions, although not to the exclusion of

intrinsic, neural dynamics. In fact, a combination of feedforward and feed-

back is generally favorable, and the optimal combination can be designed

through standard estimation principles. Estimation principles apply quite
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broadly, and could be readily applied to other models, including ones far

more complex than examined here. The state estimation approach also

suggests new interpretations for the role of CPGs in animal or robot loco-

motion.

Feedforward and feedbackmay be combined optimally for

state estimation

One of our most basic findings was that the extremes of pure feedforward

or pure feedback control each performed relatively poorly in the presence

of noise (Fig. 2.3). Pure feedforward control, driven solely by an open-loop

rhythm, was highly susceptible to falling as a result of process noise. The

general problem with a feedforward or time-based rhythm is that a noisy

environment can disturb the legs from their nominal motion, so that the

nominal command pattern is mismatched for the perturbed state. Under

noisy conditions, it is better to trigger motor commands based on feedback

of actual limb state, rather than time. But feedback also has its weaknesses,

in that noisy sensory information can lead to noisy commands.

Better than these extremes is to combine both feedforward and feed-

back together, modulated by sensory feedback gain 𝑳 . The relative trade-off

between process and measurement noise, described by the ratio of their co-

variances, determines the theoretically optimal gain. That gain was found to

yield the least estimation error in simulation (normalized sensory feedback

gain= 1 inFig. 2.5). Moreover, variations in covarianceproducedpredictable

shifts in the theoretical optimum, which again yielded least estimation error

in simulation (Fig. 2.6). We demonstrated this using relatively simple, but
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rigorously defined(Bryson, 1975) linear estimator dynamics, which worked

well despite nonlinearities in the motor command and walking dynamics.

Still better performance would be expected with nonlinear estimation tech-

niques such as extended Kalman filters and particle filters(Barfoot, 2017).

State estimationmay be separated from state-based control

A unique aspect of our approach is the separation of sensory processing

from control. We treat sensory information as inherently noisy, and treat

the CPG as the optimal filter of noisy sensory information yielding the best

state estimate. The control is then driven by that estimate, and may be

designed independently of sensors and for arbitrary objectives. In fact, the

present state-based motor command (Eq. 2.6) was designed ad hoc for

reasonable performance, without explicitly optimizing any performance

measures. Nevertheless, measures such as cost of transport and robustness

against falls showedbest performancewith the theoretically optimal sensory

feedback gain 𝑳 (Figs. 2.5, 2.6).

There are several advantages to this combination of control and esti-

mation. First, accurate state estimation contributes to good state-based

control, and poor estimation to poor control. For example, imprecise vi-

sual information can induce variability in foot placement(O’Connor and

Kuo, 2009). Increased variability in walking has been associated with poorer

walking economy(O’Connor et al., 2012) and increased fall risk(Hausdorff

et al., 2001). Second, this is manifested more rigorously as “the separation

principle” of control systems design, where state-based control and state

estimation may be optimized separately and then combined for good per-

31



2. An optimality principle for locomotor central pattern generators

formance(Bryson, 1975; Kailath, 1980). Third, the same state estimator (and

therefore most of the CPG) can be paired with a variety of different state-

based motor control schemes, such as commands for different gaits, for

non-rhythmic movements including gait transitions, or to achieve different

objectives such as balance and agility. This differs from ad hoc approaches,

where different tasks are generally expected to require re-design of the entire

CPG.

Central pattern generators may be re-interpreted as state

estimators

Our model also explains how neural oscillators can be interpreted as state

estimators (Fig. 2.4). Previous CPG oscillator models have incorporated

sensory feedback for locomotion(Iwasaki and Zheng, 2006; Nassour et al.,

2014; Tsuchiya et al., 2003; Morimoto et al., 2006; Righetti and Ijspeert, 2008;

Bliss et al., 2012; Endo et al., 2004; Kimura et al., 2007), but have not generally

defined an optimal feedback gain based onmechanistic control principles.

We have re-interpreted neural oscillator circuits in terms of state estima-

tion (Fig. 2.4), and shown how the gain can be determined in a principled

manner, to minimize estimation error (Fig. 2.5) in the presence of noise.

Here, the entire optimal state estimator architecture is defined objectively

by the dynamics of the body and environment (including noise parame-

ters), with no ad hoc parameters or architecture. This makes it possible

to predict how feedback gains should be altered for different disturbance

characteristics (Fig. 2.6). The nervous system has long been interpreted

in terms of internal models, for example in central motor planning and
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control(Hwang and Shadmehr, 2005; Kawato, 1999; Uno et al., 1989) and

in peripheral sensors(Dimitriou and Edin, 2010). Here we apply internal

model concepts to CPGs, for better locomotion performance.

This interpretation also explains fictive locomotion as an emergent be-

havior. We observed persistent CPG activity despite removal of sensors (and

either error or measurement feedback; Fig. 2.7), but this was not because

the CPG was in any way intended to produce rhythmic timing. Rather, fic-

tive locomotion was a side effect of a state-based motor command, in an

internal feedback loop with a state estimator, resulting in an apparently

time-based rhythm (Fig. 2.7B). Others have cautioned that CPGs should

not be interpreted as generating decisive timing cues(Bässler, 1986; Cruse,

2002; Pearson, 1987), especially given the critical role of peripheral feed-

back in timing(Bässler and Büschges, 1998; Donelan and Pearson, 2004;

Pearson, 1995). In normal locomotion, central circuits and periphery act

together in a feedback loop, and so neither can be assigned primacy. The

present model operationalizes this interaction, demonstrates its optimal-

ity for performance, and shows how it can yield both normal and fictive

locomotion.

Optimal control principles may be compatible with neural

control

This study argues that it is better to control with state rather than time. The

kinematics andmuscle forces of locomotionmight appear to be time-based

trajectories driven by an internal clock. But another view is that the body

and legs comprise a dynamical system dependent on state (described e.g.
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by phase-plane diagrams, Fig. 2.2), such that the motor command should

also be a function of state. That control could be continuous as examined

here, or include discrete transitions between circuits (e.g., Büschges (2005)),

and could be optimized or adapted through a variety of approaches, such

as optimal control(Bryson, 1975), dynamic programming(Bellman, 1954),

iterative linear quadratic regulators(Li and Todorov, 2004), and deep rein-

forcement learning(Peng et al., 2017)). Such state-based control is capable

of quite complex tasks, including learning different gaits and their tran-

sitions, avoiding or climbing over obstacles, and kicking balls(Peng et al.,

2017; Heess et al., 2017). But with noisy sensors(Kuindersma et al., 2016;

Wooden et al., 2010), state-based control typically also requires state esti-

mation(Kuindersma et al., 2016; Barfoot, 2017), which introduces intrinsic

dynamics and the possibility of sustained internal oscillations. We there-

fore suggest that models should be controlled by state-based control (e.g.

deep reinforcement learning) coupled with state estimation for noisy envi-

ronments to achieve advanced capability and performance. The resulting

combination of state-driven control and estimation might also exhibit CPG-

like fictive behavior, despite having no explicit time-dependent controls.

State estimation may also be applicable to movements other than loco-

motion. The same circuitry employed here (Fig. 2.4) could easily contribute

a state estimate 𝒙 for any state-dependent movements. For example, a dif-

ferent rhythmic(Kuo, 2002b) movement might be produced with a different

state-based motor command; a non-rhythmic postural stabilization might

employ a reflex-like (proportional-derivative) control; and a point-to-point

movement might be produced by a descending command, supplemented

by local stabilization. All of these would be equivalent to substituting differ-
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ent gains and interconnections to the state-based motor command (𝜶 or𝑻

in Fig. 2.4), while still relying on all of the remaining circuitry (of Fig. 2.4).

In our view, persistent oscillations could be the outcome of state estima-

tion with an appropriate state-based command for the𝜶 motoneuron (see

“Methods” section). But the same half-center circuitry could be active and

contribute to other movements that use non-locomotory, state-based com-

mands. It is certainly possible that biological CPGs are indeed specialized

purely for locomotion alone, but the state estimation interpretation suggests

the possibility of amore general, and perhaps previously unrecognized, role

in other movements.

The present optimization approach may offer insight on neural adapta-

tion. Although we have explicitly designed a state estimator here, we would

also expect a generic neural network, given an appropriate objective func-

tion, to be able to learn the equivalent of state estimation. The learning

objective could be to minimize error of predicted sensory information, or

simply locomotion performance such as cost of transport. Moreover, our

results suggest that the eventual performance and control behavior should

ultimately depend on body dynamics and noise. A neural system adapting

to relatively low process noise (and high sensor noise) would be expected

to learn and rely heavily on an internal model. Conversely, relatively high

process noise (and low sensor noise) would rely more heavily on sensory

feedback. A limitation of ourmodel is that it places few constraints onneural

representation, because there aremanyways (or “state realizations”(Kailath,

1980)) to achieve the same input–output function for estimation. But the

importance and effects of noise on adaptation are hypotheses that might

be testable with artificial neural networks or animal preparations.
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Limitations of the study

There are, however, cases where state estimation is less applicable. State

estimation applies best to systems with inertial dynamics or momentum.

Examples include inverted pendulum gaits with limited inherent (or pas-

sive dynamic(McGeer, 1990)) stability and pendulum-like leg motions(Kuo,

2002b). The perturbation sensitivity of such dynamics makes state estima-

tion more critical. But other organisms and models may have well-damped

limb dynamics and inherently stable body postures, and thus benefit less

from state estimation. Others have proposed that intrinsic CPG rhythms

may have greater importance in lower than higher vertebrates, potentially

because of differences in inherent stability(Ryczko et al., 2020). There may

also be task requirements that call for fast reactions with short synaptic

delays, or organismal, energetic, or developmental considerations that limit

the complexity of neural circuitry. Such concerns might call for reduced-

order internal models(Kailath, 1980), or even their elimination altogether,

in favor of faster and simpler pure feedforward or feedback. At the same

time, actual neural circuitry is considerably more complex than the half-

center model depicted here, and animals have far more degrees of freedom

than considered here. There are some aspects of animal CPGs that could be

simpler than full state estimation, and others that encompass very complex

dynamics. A more holistic view would balance the principled benefits of

internal models and state estimation against the practicality, complexity,

and organismal costs.

There are a number of other limitations to this study. The “Anthropo-

morphic” walking model does not capture three-dimensional motion and

36



2. An optimality principle for locomotor central pattern generators

multiple degrees of freedom in real animals. We used such a simple model

because it is unlikely to have hidden features that could produce the same

results for unexpected reasons. We also modeled extremely simple sensors,

without representing the complexities of actual biological sensors. The

estimator also used a constant, linear gain, and could be improved with

nonlinear estimator variants. However, more complex body dynamics could

be incorporated quite readily, because the state estimator (Fig. 2.4) con-

sists of an internal model of body dynamics (Eq. 2.7) and a feedback loop

with appropriate gain (𝑳 designed by estimation principles), and no ad hoc

parameters. Nonlinearities might also be accommodated by methods of

Bayesian estimation(Rieke et al., 1999), of which optimal state estimation

or Kalman filtering is a special case.

Another limitation is that we used a particularly simple, state-based

command law, which was designed more for robustness than for economy.

Better economy could be achieved by powering gait with precisely-triggered,

trailing-leg push-off(Kuo, 2002b), rather than the simple hip torque applied

here. However, the timing is so critical that feedforward conditions (low sen-

sory feedback gains, Fig. 2.5) would fall too frequently to yield meaningful

economy or step variability measures. We therefore elected for more robust

control to allow a range of feedforward through feedback to be compared

(Fig. 2.5). But evenwithmore economical control or other control objectives,

we would still expect best performance to correspond with optimal sensory

gain, due to the advantages of accurate state information. We also used a rel-

atively simple model of walking dynamics, for which more complex models

could readily be substituted (Eq. 2.7) to yield an appropriate estimator. But

more complex dynamics also imply more complex state-based locomotion
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control, for which there are few principled approaches. The present study

interprets the CPG as a means to produce an accurate state estimate, which

could be considered helpful for state-based control of any complexity.

2.5 Conclusion

Our principal contribution has been to reconcile optimal control and es-

timation with biological CPGs. Evidence of fictive locomotion has long

shown that neural oscillators produce timing and amplitude cues. But

pre-determined timing is also problematic for optimal control in unpre-

dictable situations(Cruse, 2002), leading some to question why CPG oscilla-

tors should dictate timing(Bässler, 1986; Pearson, 1987). To our knowledge,

previous CPG models have not included process or sensor noise in con-

trol design. Such noise is simply a reality of non-uniform environments

and imperfect sensors. But it also yields an objective criterion for uniquely

defining control and estimation parameters. The resulting neural circuits

resemble previous oscillator models and can produce and explain nominal,

noisy, or fictive locomotion. In our interpretation, there is no issue of pri-

macy between CPG oscillators and sensory feedback, because they interact

optimally to deal with a noisy world.

2.6 Method

Details of the model and testing are as follows. The CPGmodel is first de-

scribed in terms of neural, half-center circuitry, which is then paired with

a walking model with pendulum-like leg dynamics. The walking gait is
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produced by a state-based command generator, which governs how state in-

formation is used to drivemotor neurons. Themodel is subjected to process

and sensor noise, which tend to cause the gait to be imprecise and subject

to falling. The CPG is then re-interpreted as an optimal state estimator,

for which sensory feedback gain and internal model parameters may be

designed, as a function of noise characteristics. Themodel is then simulated

over multiple trials to computationally evaluate its walking performance

as a function of sensory feedback gain. It is also simulated without sensory

feedback, to test whether it produces fictive locomotion.

CPG architecture based onMatsuoka oscillator

The CPG consists of two, mutually-inhibiting half-center oscillators, receiv-

ing a tonic descending input (Fig. 2.4A). Each half-center has second-order

dynamics, described by states 𝑢𝑖 and 𝑣𝑖 . This is equivalent to a primary

Matsuoka neuron with states for a membrane potential and adaptation

or fatigue (Matsuoka, 1987). Locomotion requires relatively longer time

constants than is realistic for a single biological neuron, and so each model

neuron here should be regarded as shorthand for a network of biological

neurons with adaptable time constants and synaptic weights, that in aggre-

gate produce first- or second-order dynamics of appropriate time scale. The

state𝑢𝑖 produces an output 𝑞𝑖 that can be fed to other neurons. In addition,

we included two types of auxiliary neurons (for a total of three neurons per

half-center): one for accepting the ground contact input (𝑐𝑖 , with value 1

when in ground contact and 0 otherwise for leg 𝑖 ), and the other to act as

an alpha (𝛼𝑖 ) motoneuron to drive the leg. We used a single motoneuron to
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generate both positive and negative (extensor and flexor) hip torques, as a

simplifying alternative to including separate rectifying motoneurons.

Each half-center receives a descending command and two types of sen-

sory feedback. The descending command is a tonic input 𝑠 , which deter-

mines thewalking speed. Sensory input from the corresponding leg includes

continuous and discrete information. The continuous feedback contains

information about leg angle frommuscle spindles and other propriocep-

tors (Proske and Gandevia, 2012), which could be modeled as leg angle 𝑦𝑖

for measurement feedback, or error 𝑒𝑖 for error feedback sensors. The dis-

crete information is about ground contact 𝑐𝑖 sent from cutaneous afferents

(Trulsson, 2001).

Theprimaryneuron’s second-orderdynamics aredescribedby two states.

The state 𝑢𝑖 is mainly affected by its own adaptation, a mutually inhibit-

ing connection from other neurons, sensory input, and efference copy of

the motor commands. The second state 𝑣𝑖 has a decay term, and is driven

by the same neuron’s 𝑢𝑖 as well as sensory input. This is described by the

following equations, inspired by Matsuoka (1987) and previous robot con-

trollers designed for rhythmic armmovements (e.g.,(Williamson, 1998) and

walking(Endo et al., 2004)):

¤𝑢𝑖 + 𝑎𝑖𝑢𝑖 = −𝑏𝑖𝑣𝑖 +
2∑︁
𝑗=1

−𝑤𝑖 𝑗𝑞𝑗 +
2∑︁
𝑗=1

ℎ𝑖 𝑗𝑒 𝑗 +
2∑︁
𝑗=1

𝑟𝑖 𝑗𝛼𝑗 (𝑠 , 𝑣𝑗 , 𝑐 𝑗 ) + 𝑓𝑖 (𝒖 ,𝒗 , 𝒄 )

(2.1)

𝑞𝑖 = 𝑔 (𝑢𝑖 ) (2.2)

¤𝑣𝑖 + 𝑎′
𝑖𝑣𝑖 = 𝑞𝑖 +

2∑︁
𝑗=1

ℎ′
𝑖 𝑗𝑒 𝑗 (2.3)
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where there are several synaptic weightings: decays 𝑎𝑖 and 𝑎′
𝑖
, adaptation

gain 𝑏𝑖 , mutual inhibition strength𝑤𝑖 𝑗 (weighting of neuron 𝑖 ’s input from

neuron 𝑗 ’s output, where𝑤𝑖 𝑖 = 0), an output function 𝑔 (𝑢𝑖 ) (set to iden-

tity here), sensory input gains ℎ𝑖 𝑗 and ℎ′
𝑖 𝑗
, and efference copy strength 𝑟𝑖 𝑗 .

The neuron also receives efference copy of its associated motor command

𝛼𝑗 (𝑠 , 𝑣𝑗 , 𝑐 𝑗 ), which depends on neuron state, descending drive and ground

contact. There are also secondary, higher-order influences summarized by

the function 𝑓𝑖 (𝒖 ,𝒗 , 𝒄 ), which have a relatively small effect onneural dynam-

ics but are part of the state estimator as described below (see “Theoretical

equivalence” section). The network parameters for such CPG oscillators

are traditionally set through a combination of design rules of thumb and

hand-tuning, but here nearly all of the parameters will be determined from

an optimal state estimator, as described below.

Walkingmodel with pendulum dynamics

The systembeing controlled is a simple bipedalmodelwalking in the sagittal

plane (Fig. 2.2A). The model features pendulum-like leg dynamics(McGeer,

1990) with 16%of bodymass at each leg (of length 𝑙 ) and 68% to pelvis/torso,

which is modeled as a point mass. The leg’s center of mass was located

at 0.645𝑙 from the feet, radius of gyration of 0.326𝑙 , and curved foot with

radius 0.3𝑙 . The legs are also actively actuated by added torque inputs (the

"Anthropomorphic Model"(Kuo, 2001)), and energy is dissipated mainly

with the collision of leg with ground in the step-to-step transition. The

dissipation determines the amount of positive work required each step. In

humans, muscles performmuch of that work, which in turn accounts for
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much of the energetic cost of walking(Donelan et al., 2002).

The walking model is described mathematically as follows. The equa-

tions of motion may be written in terms of vector 𝜽 Δ
= [\1, \2]𝑇 as

M(𝜽 ,GC) ¥𝜽 + C(𝜽 , ¤𝜽 ,GC) ¤𝜽 + G(𝜽 ,GC) = T(𝑠 , 𝜽 ,GC) (2.4)

where M is the mass matrix, C describes centripetal and Coriolis ef-

fects, G contains position-dependent moments such as from gravity, GC Δ
=

[GC1,GC2]𝑇 contains groundcontact, andT
Δ
= [𝑇1,𝑇2]𝑇 containship torques

exerted on the legs (State-based control, below). The equations of motion

depend on ground contact because each leg alternates between stance and

swing leg behaviors, inverted pendulum and hanging pendulum, respec-

tively. We define each matrix to switch the order of elements at heel-strikes,

so that equation of motion can be expressed in the same form.

At heelstrike, the model experiences a collision with ground affecting

the angular velocities. This is modeled as a perfectly inelastic collision.

Using impulse-momentum, the effect may be summarized as the linear

transformation



¤\1
+

¤\2
+

GC+
1

GC+
2


= S(𝜽 ,GC) ·



¤\1
−

¤\2
−

GC−
1

GC−
2


(2.5)

where the plus and minus signs (’+’ and ’-’) denote just after and before

impact, respectively. The ground contact states are switched such that the

previous stance leg becomes the swing leg, and vice versa. The simulation
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avoided inadvertent ground contact of the swing legs by ignoring collisions

until the stance leg reached a threshold (set as 10% of nominal stance leg

angle at heel strike), as is common in simple 2D walking models with rigid

legs(McGeer, 1990).

The resulting gait has several characteristics relevant to the CPG. First,

the legs have pendulum-like inertial dynamics, which allowmuch of the gait

to occur passively. For example, each leg swings passively, and its collision

with ground automatically induces the next step of a periodic cycle(McGeer,

1990). Second, inertial dynamics integrate forces over time, such that distur-

bances can disrupt timing and cause falls. This sensitivity could be reduced

with overdamped joints and low-level control, but humans are thought

to have significant inertial dynamics(Alexander, 1995). And third, inertial

dynamics are retained inmost alternative models with more degrees of free-

dom andmore complexity (e.g.,Geyer and Herr (2010); Peng et al. (2017)).

We believe most other dynamical models would also benefit from feedback

control similar in concept to presented here.

State-basedmotor command generator

The model produces state-dependent hip torque commands to the legs. Of

the many ways to power a dynamic walking model (e.g., Kuo (2001); Srini-

vasan and Ruina (2006); Westervelt et al. (2003); Spong (1999)), we apply a

constant extensor hip torque against the stance leg, for its parametric sim-

plicity and robustness to perturbations. The torque normally performs pos-

itive work (Fig. 2.2B) to make up for collision losses, and could be produced

in reaction to a torso leaned forward (not modeled explicitly here; McGeer
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(1990)). The swing leg experiences a hip torque proportional to swing leg an-

gle (Fig. 2.2B,C), with the effect of tuning the swing frequency(Kuo, 2002b).

This control scheme is actually suboptimal for economy, and is selected for

its robustness. Optimal economy actually requires perfectly-timed, impul-

sive forces from the legs(Kuo, 2002a), and has poor robustness to the noisy

conditions examined here. The present non-impulsive control is much

more robust, and can still have its performance optimized by appropriate

state estimation.

The overall torque command𝑇𝑖 for leg 𝑖 is used as the motor command

𝛼𝑖 , and may be summarized as

𝑇𝑖 (𝑠 , \𝑖 ,GC𝑖 ) = −(𝑘𝑠𝑡 + `𝑠𝑡 𝑠 ) · GC𝑖 − (𝑘𝑠𝑤\𝑖 ) · (1 − GC𝑖 ) (2.6)

where the stance phase torque is increased from the initial value 𝑘𝑠𝑡 by

the amount proportional to the descending command 𝑠 with gain `𝑠𝑡 . The

swing phase torque has gain 𝑘𝑠𝑤 for the proportionality to leg angle \𝑖 .

There are also two higher level types of control acting on the system. One

is to regulate walking speed, by slowly modulating the tonic, descending

command 𝑠 (Eq. 2.6). An integral control is applied on 𝑠 , so keep attain the

same average walking speed despite noise, which would otherwise reduce

average speed. The second type of high-level control is to restart the simula-

tion after falling. When falling is detected (as a horizontal stance leg angle),

the walking model is reset to its nominal initial condition, except advanced

one nominal step length forward from the previous footfall location. No

penalty is assessed for this re-set process, other than additional energy and

time wasted in the fall itself. We quantify the susceptibility to falling with a

mean time between falls (MTBF), and report overall energetic cost in two
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ways, including and excluding failed steps. Thewasted energy of failed steps

is ignored in the latter case, resulting in lower reported energy cost.

Noise model with process and sensor noise

The walking dynamics are subject to two types of disturbances, process

and sensor noise (Fig. 2.3). Both are modeled as zero-mean, Gaussian

white noise. Process noise 𝑛𝑥 (with covariance𝑁𝑥 ) acts as an unpredictable

disturbance to the states, due to external perturbations or noisy motor

commands. Sensor or measurement noise 𝑛𝑦 (with covariance𝑁𝑦 ) models

imperfect sensors, and acts additively to the sensory measurements 𝑦 . The

errors induced by both types of noise are unknown to the central nervous

system controller, and so both tend to reduce performance.

The noise covariances were set so that the model would be significantly

affected by both types of noise. We sought levels sufficient to cause sig-

nificant risk of falling, so that good control would be necessary to avoid

falling while also achieving good economy. Process noise was described by

covariance matrix𝑁𝑥 , with diagonals filled with variances of noisy angular

accelerations, which had standard deviations of 0.015(𝑔 /𝑙 ) for stance leg,

0.16(𝑔 /𝑙 ) for swing leg for the reference testing condition. Sensor noise co-

variance𝑁𝑦 was also set as a diagonal matrix with both entries of standard

deviation 0.1 for the reference testing condition. For the later demonstra-

tions to test the effect of the different amount of noise, we multiplied 1.15

to the sensor noise covariance, and 0.36, 1.15, 2.06 to the process noise co-

variance. Noise was implemented as a spline interpolation of discrete white

noise sampled at frequency of 16(𝑔 /𝑙 )0.5 (well above pendulum bandwidth)
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and truncated to no more than ±3 standard deviations.

State estimator with internal model of dynamics

A state estimator is formed from an internal model of the leg dynamics

being controlled (see block diagram in Fig. 2.4), to produce a prediction of

the expected state 𝑥 and sensory measurements 𝑦 (with the hat symbol ’ ˆ ’

denoting an internalmodel estimate). Although the actual state is unknown,

the actual sensory feedback 𝑦 is known, and the expectation error 𝑒 = 𝑦 − 𝑦

may be fed back to the internal model with negative feedback (gain 𝐿) to

correct the state estimate. Estimation theory shows that regulating error

𝑒 toward zero also tends to drive the state estimate towards actual state

(assuming systemobservability, as is the case here; e.g.,(Kailath, 1980)). This

may be formulated as an optimization problem, where gain 𝐿 is selected

to minimize the mean-square estimation error. Here we interpret the half-

center oscillator network as such an optimal state estimator, the design of

which will determine the network parameters.

The estimator equations may be described in state space. The estimator

states are governed by the same equations of motion as the walking model

(Eqs. 2.4, 2.5), with the addition of the feedback correction. Again using hat

notation for state estimates, the nonlinear state estimate equations are


¤̂𝜽

¥̂𝜽

 =


¤̂𝜽

M−1(−C ¤̂𝜽 − G + T)

 + L(𝜽 − 𝜽 ) (2.7)

We used standard state estimator equations to determine a constant

sensory feedback gain 𝐿 . This was done by linearizing the dynamics about
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a nominal state, and then designing an optimal estimator based on pro-

cess and sensor noise covariances (𝑁𝑥 and𝑁𝑦 ) using standard procedures

(“lqe” command in Matlab, The MathWorks, Natick, MA). This yields a set

of gains that minimize mean-square estimation error (𝒙 − 𝒙 ), for an infinite

horizon and linear dynamics. The constant gain was then applied to the

nonlinear system in simulation, with the assumption that the resulting esti-

mator would still be nearly optimal in behavior. Another sensory input to

the system is ground contact GC𝑖 , a boolean variable. The state estimator

ignores measured GC𝑖 for pure feedforward control (zero feedback gain

𝐿), but for all other conditions (non-zero 𝐿), any sensed change in ground

contact overrides the estimated ground contact ˆGC𝑖 . When the estimated

ground contact state changes, the estimated angular velocities are updated

according to the same collision dynamics as the walking model (Eq. 2.5

except with estimated variables).

The state estimate is applied to the state-based motor command (Eq.

2.6). Although the walking control was designed for actual state information

(\𝑖 ,GC𝑖 ), for walking simulations it uses the state estimate instead:

𝑇𝑖 (𝑠 , \̂𝑖 , ˆGC𝑖 ) = −(𝑘𝑠𝑡 + `𝑠𝑡 𝑠 ) · ˆGC𝑖 − (𝑘𝑠𝑤 \̂𝑖 ) · (1 − ˆGC𝑖 ) (2.8)

As with the estimator gain, this also requires an assumption. In the

present nonlinear system, we assume that the state estimate may replace

the state without ill effect, a proven fact only for linear systems (certainty-

equivalence principle,(Bryson, 1975; Simon, 1956)). Both assumptions,

regarding gain 𝐿 and use of state estimate, are tested in simulation below.
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Theoretical equivalence between neural oscillator and state

estimator

Having fully described the walking model in terms of control systems prin-

ciples, the equivalent half-center oscillator model may be determined (Fig.

2.4B). The identical behavior is obtained by re-interpreting the neural states

in terms of the dynamic walking model states,

𝑢1
Δ
=

¤̂\1, 𝑣1
Δ
= \̂1, 𝑢2

Δ
=

¤̂\2, 𝑣2
Δ
= \̂2 (2.9)

along with the neural output function defined as identity,

𝑞1 = 𝑔 (𝑢𝑖 )
Δ
= 𝑢𝑖 . (2.10)

In addition, motor command and ground contact state are defined to

match state-based variables (Eq. 2.6):

𝛼1
Δ
= 𝑇1, 𝛼2

Δ
= 𝑇2, 𝑐1

Δ
= ˆGC1, 𝑐2

Δ
= ˆGC2. (2.11)

The synaptic weights and higher-order functions (Eqs. 2.1–3) are defined

according to the internal model equations of motion (Eq. 2.7),


𝑎1 𝑤12

𝑤21 𝑎2

 = M−1C (2.12)


𝑏1\̂1 − 𝑓1(𝜽 , ¤𝜽 , ĜC)

𝑏2\̂2 − 𝑓2(𝜽 , ¤𝜽 , ĜC)

 = M−1G (2.13)
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ℎ′
11 ℎ′

12

ℎ′
21 ℎ′

22

ℎ11 ℎ12

ℎ21 ℎ22


= L (2.14)


𝑟11 𝑟12

𝑟21 𝑟22

 = M−1 (2.15)

𝑎′
1 = 𝑎′

2 = 0 (2.16)

Because the mass matrix and other variables are state dependent, the

weightings above are state dependent as well. The functions 𝑓1 and 𝑓2 are

higher-order terms, which could be considered optional; omitting them

would effectively yield a reduced-order estimator.

The result of these definitions is that the half-center neuron equations

(Eqs. 2.1–3) may be rewritten in terms of \𝑖 and ¤\𝑖 , to illustrate how the

networkmodels the leg dynamics and receives inputs fromsensory feedback

and efference copy:

¥̂\𝑖 + 𝑎𝑖
¤̂\𝑖 = −𝑏𝑖 ¤̂\𝑖 +

2∑︁
𝑗=1

−𝑤𝑖 𝑗 \̂ 𝑗 +
2∑︁
𝑗=1

ℎ𝑖 𝑗𝑒 𝑗 +
2∑︁
𝑗=1

𝑟𝑖 𝑗𝛼𝑗 (𝑠 , \̂ 𝑗 , ĜC) + 𝑓𝑖 (𝜽 , ¤̂𝜽 , ĜC)

(2.17)

¤̂\𝑖 + 𝑎′
𝑖 \̂𝑖 =

¤̂\𝑖 +
2∑︁
𝑗=1

ℎ𝑖 𝑗𝑒 𝑗 (2.18)
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The above may be interpreted as an internal model of the stance and

swing leg as pendulums, with pendulum phasing modulated by error feed-

back 𝑒 𝑗 and efference copy of themotor command (plus small nonlinearities

due to inertial coupling of the two pendulums).

The result is that the entire neural circuitry and parameters are fully

specified by the control systemsmodel. In Eqs. 2.17–18), all of the quantities

exceptmotor command 𝛼 are determined by a state estimator (Eq. 2.7) with

optimal gains (determined by single Matlab command ‘lqe’.) For example,

higher-order terms 𝑓𝑖 (𝜽 , ¤̂𝜽 , ĜC) are defined by Eq. 2.13). The only aspect of

the system not determined by optimal estimation was the motor command

𝛼, equal to the state-based motor command (Eq. 2.8). This was designed ad

hoc to produce alternating stance and swing phases with high robustness

to perturbations.

Parametric effect of varying sensory feedback gain L

The sensory feedback gain is selected using state estimation theory, accord-

ing to the amount of process noise and sensor noise. High process noise, or

uncertainty about the dynamics and environment, favors a higher feedback

gain, whereas high sensor noise favors a lower feedback gain. The ratio

between the noise levels determines the optimal linear quadratic estimator

gain 𝐿∗
lqe (Matlab function “lqe”). A constant gain was determined based

on a linear approximation for the leg dynamics, an infinite horizon for es-

timation, and a stationarity assumption for noise. In simulation, the state

estimator was implemented with nonlinear dynamics, assuming this would

yield near-optimal performance.
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It is thus instructive to evaluate walking performance for a range of

feedback gains. Setting 𝐿 too low or too high would be expected to yield

poor performance. Setting 𝐿 equal to the optimal LQE gain 𝐿∗
lqe would be

expected to yield approximately the least estimation error, and therefore

the most precise control (e.g. Rebula et al. (2017)). In terms of gait, more

precise control would be expected to reduce step variability andmechanical

work, both of which are related to metabolic energy expenditure in humans

(e.g.,O’Connor et al. (2012)). The walking model is also prone to falling

when disturbed by noise, and optimal state estimation would be expected

to reduce the frequency of falling.

We performed a series of walking simulations to test the effect of varying

the feedback gain. The model was tested with 20 trials of 100 steps each,

subjected to pseudorandom process and sensor noise of fixed covariance

(𝑊 and𝑉 , respectively). In each trial, walking performance was assessed

with mechanical cost of transport (mCOT, defined as positive mechanical

work per body weight and distance travelled; e.g.,(Collins et al., 2005)), step

length variability, and mean time between falls (MTBF) as a measure of

walking robustness (also referred to as Mean First Passage Time(Byl and

Tedrake, 2009)). The sensory feedback gain 𝐿∗
lqe was first designed in accor-

dance with the experimental noise parameters, and then the corresponding

walking performance was evaluated. Additional trials were performed, vary-

ing sensory feedback gain 𝐿 with lower and higher than optimal values to

test for a possible performance penalty. These sub-optimal gains were de-

termined by re-designing the estimator with process noise 𝜌𝑊 (𝜌 between

10−4 and 100.8, with smaller values tending toward pure feedforward and

larger toward pure feedback). This procedure guarantees stable closed-loop
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estimator dynamics, which would not be the case if the matrix 𝐿∗
lqe were

simply scaled higher or lower. For all trials, the redesigned 𝐿 was tested

in simulations using the fixed process and sensor noise levels. The overall

sensory feedback gain was quantified with a scalar, defined as the L2 norm

(largest singular value) of matrix 𝐿 , normalized by the L2 norm of 𝐿∗
lqe.

We expected that optimal performance in simulation would be achieved

with gain 𝐿 close to the theoretically optimal LQE gain, 𝐿∗
lqe. With too low a

gain (𝐿 = 0, feedforward Fig. 2.1A), the model would perform poorly due to

sensitivity to process noise, and with too high a gain (𝐿 → ∞, feedback Fig.

2.1C), it would perform poorly due to sensor noise. And for intermediate

gains, we expected performance to have an approximately convex bowl

shape, centered about a minimum at or near 𝐿∗
lqe. These differences were

expected from noise alone, as the model was designed to yield the same

nominal gait regardless of gain 𝐿 . Simulations were necessary to test the

model, because its nonlinearities do not admit analytical calculation of

performance statistics.

Evaluation of fictive locomotion

We tested whether the model would produce fictive locomotion with re-

moval of sensory feedback. Disconnection of feedback in a closed-loop

control system would normally be expected to eliminate any persistent os-

cillations. But estimator-based control actually contains two types of inner

loops (Fig. 2.7A), both of which could potentially allow for sustained oscilla-

tions in the absence of sensory feedback. However, the emergence of fictive

locomotion and its characteristics depend on what kind of sensory signal is
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removed. We considered two broad classes of sensors, referred to producing

error feedback and measurement feedback, with different expectations for

the effects of their removal.

Some proprioceptors relevant to locomotion, including somemuscle

spindles and fish lateral lines(Straka et al., 2018), could be regarded as pro-

ducing error feedback. They receive corollary discharge of motor com-

mands, and appear to predict intended movements, so that the afferents

are most sensitive to unexpected perturbations. The comparison between

expected and actual sensory output largely occurs within the sensor itself,

yielding error signal 𝑒 (Fig. 2.7B). Disconnecting the sensor would there-

fore disconnect error signal 𝑒 , and would isolate an inner loop between

state-based command and internal model. The motor command normally

sustains rhythmic movement of the legs for locomotion, and would also be

expected to sustain rhythmic oscillations within the internal model. Fictive

locomotion in this case would be expected to resemble the nominal motor

pattern.

Sensors that do not receive corollary discharge could be regarded as

direct sensors, in that they relay measurement feedback related to state.

In this case, disconnecting the sensor would be equivalent to removing

measurement 𝑦 . This isolates two inner loops, both the command-and-

internal-model loop above, as well as a sensory prediction loop between

sensor model and internal model. The interaction of these loops would be

expected to yield amore complex response, highly dependent on parameter

values. Nonetheless, we would expect that removal of 𝑦 would substantially

weaken the sensory input to the internal model, and generally result in a

weaker or slower fictive rhythm.

53



2. An optimality principle for locomotor central pattern generators

We tested for the existence of sustained rhythms for both extremes of

error feedback and measurement feedback. Of course, actual biological

sensors within animals are vastlymore diverse and complex than thismodel.

But the existence of sustained oscillations in extreme cases would also indi-

cate whether fictive locomotion would be possible with some combination

of different sensors within these extremes.

Code availability

The source code for the simulation, supplementary table and video are

available in a public repository at:

https://github.com/hansolxryu/CPG_biped_walker_Ryu_Kuo

(https://doi.org/10.5281/zenodo.4739744).
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Chapter 3

What loss functions do humans

optimize when they perform

regression and classification

3.1 Abstract

Understanding how humans perceive patterns in visually presented data is

useful for understanding data-based decision-making and, possibly, visually

mediated sensorimotor control under disturbances and noise. Here, we

conducted human subject experiments to examine how humans perform

the simplest machine learning or statistical estimation tasks: linear regres-

sion and binary classification in data presented visually as 2D scatter plots.

We used simple inverse optimization to infer the loss function humans opti-

mizewhen they perform these tasks. In classicalmachine learning, common

loss functions for regression are mean squared error or summed absolute

error, and logistic loss or hinge loss for classification. For the regression
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task, minimizing the sum of error raised to the power of 1.7 on average best

described human subjects performing regression on sparse data consisting

of relatively fewer data points. Loss functions with lower exponents, which

would reject outliers more effectively, were better descriptors for regression

tasks performed on less sparse data. For the classification task, minimizing

a logistic loss function was on average a better descriptor of human choices

than an exponential loss function applied to only misclassified data. People

changed their strategies as data density increased, such that loss functions

with lower exponents described empirical data better. These results repre-

sent overall trends across subjects and trials but there was large inter- and

intra-subject variability in human choices. Future work may examine other

loss function families and other tasks. Such understanding of human loss

functions may inform designing computer algorithms that interact with

humans better and imitate humans more effectively.

3.2 Introduction

Understanding how humans perceive patterns in visually presented noisy

data is useful for understanding data-based decision-making (Keim et al.,

2006; Moore, 2017; Kahneman et al., 2021), sensorimotor control under

uncertainty caused by disturbance and noise (Körding andWolpert, 2004a;

Srinivasan, 2009; Körding andWolpert, 2004b; Todorov and Jordan, 2002),

and indeed, more directly, just visual perception (Glass and Pérez, 1973;

Glass and Switkes, 1976; Dittrich, 1993). Examples of humans interpreting

visually presented data include examining medical images (Lewandowsky

and Spence, 1989), driving a car (Hills, 1980), playing a sport (Davids et al.,
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2005), or living life in general (Palmer, 1975). On the simpler end of this

spectrum of task and data complexity is interpreting 2D scatter plots of sci-

entific data. Here, we study humans performing two simple types of visual

pattern recognition tasks involving scatter plots, coinciding with fundamen-

tal machine learning and statistical inference problems: 1) linear regression

(or "fitting"), that is, finding a curve that best represents continuous-valued

input-output data (figure 3.1A); and 2) binary classification, that is, finding

a decision boundary that separates data already labeled as belonging to two

categories (figure 3.1B).

Classical machine learning algorithms for regression and classification

usually find a solution thatminimizes a loss function (Bishop andNasrabadi,

2006). For regression problems, a commonly used loss function is the mean

squared error (Luenberger, 1997; Bishop and Nasrabadi, 2006), equivalently,

the 𝐿2 norm of the error, resulting in the ordinary least squares (OLS) re-

gression. Other commonly used loss functions are mean absolute errors

(equivalently, 𝐿1 norm) and the mean perpendicular distance between the

regression surface and data (orthogonal regression). For binary classifica-

tion problems, common loss functions used include cross-entropy, also

called logistic loss function or log loss (Shore and Gray, 1982), and hinge

loss function, used for support vector machines (Drucker et al., 1996). Loss

functions are chosen for their favorable properties including robustness

to outliers, avoiding over-fitting, convexity, and uniqueness of the solution

(Wang et al., 2022). Here, we examine whether human behavior in manual

regression and binary classification tasks can be described as a solution of

an optimization problem minimizing a loss function, and aim to charac-

terize the loss function through human experiments (figure 3.3). Different
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loss functions make different predictions depending on the data distribu-

tion (figure 3.2), and we use this fact to determine the loss function that

best predicts observed human behavior, a process sometimes called inverse

optimization (Tarantola, 2005; Liu et al., 2005).

Some studies have attempted to characterize the strategies human sub-

jects use in such simple tasks (Lewandowsky and Spence, 1989), but most

studies did not seek to provide quantitative descriptions of the loss func-

tion. For instance, it has been reported that human subjects were able to

reject outliers when performing regression (Correll and Heer, 2017), some-

times better than somemathematical methods (Wainer and Thissen, 1979).

For fitting a straight line to data, subjects selected the slope closer to that

of the first principal component, instead of the one with the least mean

squares (Mosteller et al., 1981). Subjects with formal regression training

selected lines closer to the least square fit, whereas subjects without regres-

sion training seemed to use other heuristics (Gillan, 2020). These studies

compared human choices to the solutions of a few discrete strategies, rather

than considering strategies on a continuum using inverse optimization ap-

proaches. These studies are also limited to the particular datasets used: for

instance, the scale of the data axis was observed to affect human perception

(Cleveland et al., 1982). Another study performed inverse optimization in

a sensorimotor task for a narrow set of conditions (Körding and Wolpert,

2004a).

Relatively little has been done on inferring loss functions from human

classification, as human labels are usually regarded as ground truth for

machine learning andnot analyzed independently. In one study, the support

vector machine best predicted human behaviors among four algorithms
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considered for gender classification tasks from human facial images (Graf

et al., 2006). Another study observed how subjects perceive transforming

geometric shapes, describing when humans start to classify a transforming

shape into a different shape (Gopsill et al., 2021). A study investigating

the classification of scatter plot data reported high failure rates of about

50%, when evaluating an algorithm’s performance via manual inspections

(Sedlmair et al., 2012). Thus, this study showed discrepancies between

algorithmic output and human choices, but did not aim to characterize

human behavior during classification tasks.

In real-world applications, regression and classification problems can

be high-dimensional both in terms of data dimensionality and in terms of

requiring high model complexity (such as via neural networks). Solving

them not only requires minimizing errors in describing the data presented

(training error) but often also requires considering related issues of model

complexity, generalization, and avoiding over-fitting. Here, we intentionally

ignore these latter issues by considering the simplest one degree of freedom

regression and binary classification problems (figure 3.1), which are mini-

mally sufficient to infer howhumans penalize errors of differentmagnitudes

via a loss function. Secondly, we examine whether human perception of the

pattern depends on data sparsity. Computer algorithms are less likely to

change the loss function based on the amount of data, but humansmay per-

ceive different data amounts as qualitatively different. Classifying a sparse,

handful of dots into two groups could appear to be different from classi-

fying thousands of dots into two groups, which resembles identifying and

separating two visually distinct areas in a digital image. So, here, we in-

ferred regression and classification loss functions from human experiments
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with different visual data sparsity, showing how visual sparsity can affect

behavior.

(A) Simplifying regression

Simplifying regression and binary classification into one degree of freedom (DOF) problems
(B) Simplifying binary classification

Many DOF Two DOF One DOF Many DOF Two DOF One DOF

What we study What we study

Figure 3.1: Simplifying regression and classification. A) Regression prob-
lems of decreasing complexity many degrees of freedom, two degrees of
freedom, and one degree of freedom. We consider the simplest regression
problem where the output function is a constant, so that there is only one
degree of freedom as shown in the third panel. B) Classification problems
of decreasing complexity: many degrees of freedom, two degrees of free-
dom, and one degree of freedom. Similarly, we consider the simplest binary
classification problem where the classifier is a constant function, so there
is only one degree of freedom. The one degree of freedom problem is suffi-
cient to infer how prediction errors are penalized by the loss function, while
deliberately ignoring issues such as model complexity, generalization, and
over-fitting.

3.3 Methods

Experiments

Subjects participated with informed consent and the experimental proto-

col was approved by the Ohio State University Institutional Review Board.

Subjects performed two types of tasks: 1) a regression task (𝑁subjects = 23 sub-

jects) and 2) a binary classification task (𝑁subjects = 23 subjects; one subject’s

medium sparsity data and one subject’s low sparsity data was corrupted,

thus excluded). For regression, we showed dots of a single color on a com-

puter screen, and asked "What is the horizontal line that best describes
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(A) Regression task (B) Classification task

Dots drawn from PDF
Probability Density
Functions 
(skew-normal)

Dots drawn from PDF

Regression lines and decision boundaries for dots drawn from skewed distributions

mean
median

mode

mean
median

p=1
p=2
p=3

Regression lines
predicted 
from PDF

p=1
p=2
p=3

Decision boundaries
predicted
from PDF

σ0

-σ0

Regression lines
predicted
from dots

Decision boundaries
predicted 
from dots

Probability
Density Function 
(skew-normal)

Class-1

Class-2

Figure 3.2: Regression lines and decision boundaries that minimized
various objective functions on skewed probability distributions. (A)
A skew-normal distribution (green shaded) was used to generate regres-
sion test dataset. (B) One skew-normal (orange shaded) and one normal
distribution (blue shaded) were used to generate classification task test
data. Probability distribution functions (PDFs, shown as shaded graphs) of
skew-normal distributions have distinct mode, median, andmean. Error
bars represent mean ± variance of each PDF. Vertical locations of the dots
were drawn from the PDFs. The location of the regression lines or decision
boundaries depends on the exponent parameter 𝑝 of the loss function they
minimize. These locations calculated from the PDFs and from the actual
dot locations are close to each other, but do not perfectly match when there
are only a finite number of dots.

the dots?" (figure 3.3A). For classification, we showed dots of two colors,

with various amounts of overlapping, and asked "What is the horizontal

line that best separates the dots into two groups based on their colors?"

(figure 3.3B). Subjects used either a keyboard or mouse to select the vertical

location of the horizontal line that best fit or classified the dots. Subjects

could re-select the lines as many times as they wanted without a time limit.

Subjects performed the test either on the experimenter’s computer or on

their own. After the test, subjects optionally filled out a questionnaire about
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what their strategies were for each sparsity level and whether they were

familiar with regression or classification algorithms.

Subjects performed tests with data of different sparsity and skewness,

drawn from specific probability distributions (figure 3.3C). There were 40

trials per sparsity condition and 120 trials total per subject. About two-thirds

of the subjects (𝑁subjects = 16 for both tasks) were tested with a partially

randomized order: they performed the task on high sparsity data first, then

medium, and then the low sparsity, while skewness and other conditions

within each sparsity condition were randomized. Other subjects were tested

in a fully randomized order including the sparsity. Wemade this decision

to keep most of the subjects unaware of the underlying probability density

distribution when they perform a task on high sparsity data, because the

underlying distribution could becomemore obvious when they have seen

the dots of lower sparsity and this could be used as a priori knowledge. We

found no evidence that the different randomization had a significant effect,

but given the high variability of the results, order effects could be studied

with a bigger sample size.

Probability distributions for the testing data

Datasets for regression task

Wedrew testing data fromskewprobability distributions, so thatminimizing

different loss functions predicts different regression lines (figure 3.2). We

used skew-normal distributions SN(_) given by:

𝑦 =
b

√
1 + _2

(_|𝑢1 | + 𝑢2) ∼ SN(_), where 𝑢1, 𝑢2 ∼ N(0, 𝜎2
0 ), (3.1)

62



3. What loss functions do humans optimize when they perform regression
and classification

(A) Regression task interface (B) Classification task interface

(2: line appears with click)

(1: subject moves mouse pointer
to desired location)

(2: line appears with click)

(1: subject moves mouse pointer
to desired location)

random overall
vertical potision 

random overall
vertical potision dots with various

sparsity, skewness

(1) Sparsity

(3) Skewness

(2) Overlap

(4) Color

mediumhigh low

 λ = 0   λ = 5   λ = 10

separation =  1σ0 separation =  3σ0 separation =  5σ0

red for skew-normal blue for skew-normal

(C) Varied conditions for dots that were presented to subjects

dots of two colors with
various sparsity, skewness

Experimental interface and conditions

What is the horizontal line that 
best describes the dots?

Left click to select line location
(Left click again to re-select)

Right click when
satisfied with your line

(quit: ctrl+c)3/120 What is the horizontal line that 
best separates the dots into two groups based on their colors?

Left click to select line location
(Left click again to re-select)

Right click when
satisfied with your line

(quit: ctrl+c)9/108

6

various
overlap

Figure 3.3: Testing interface for (A) regression and (B) classification tasks,
and (C) conditions that were varied when dots were generated, to be used as
testing datasets. On the testing interface (A and B), the task goal was shown
on the top of the testing interface with the trial number and termination
instruction on the side. Instructions on how to select a line and move to
the next trial were shown on the bottom as text. Dots are shown in the
white window of the test interface, and when a subject selects a line location
by clicking the left button of the mouse, a horizontal line appears at that
location. Subjects were free to select the line again as many times as they
wanted. Pink labels are added only for the paper and are not shown to
subjects, and some components have been re-sized here for illustrative
purposes. The vertical locations of the dots were generated from probability
distributions of varied conditions as shown in panel (C). Four conditions,
(1) sparsity (2) overlap (3) skewness, and (4) color, were changed to generate
testing data for classification tasks. The conditions used for the regression
were subsets of those shown.
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when_ is a shape parameter (Azzalini, 1985; Henze, 1986). Shape parameter

_ = 0 gives normal distribution N(0, 𝜎2
0 ) with a mean 0 and variance 𝜎2

0

and increasing |_| increases skewness. The normalization constant b =√︃
1 − 2_2

𝜋 (_2+1) ensures that the variance remains 𝜎2
0 regardless of _. We used

shape parameter values _ = 0, ±5, ±10, ±40 (figure 3.3C-3). For the skew-

symmetric distributions (_ ≠ 0), the mode is at the head of the distribution

where probability density is the highest, and themedian and themean were

located on the longer tail (figure 3.2). When the distribution is symmetric

and unimodal (_ = 0), regression using typical loss functions mostly yields

the same solution: the mean, median and mode are all identical. We still

included _ = 0 trials, but trials with _ ≠ 0 provide more information on

human loss functions.

Datasets for classification task

We generated dots of two colors for the binary classification task, one from

a normal distribution and the other from a skew-normal distribution, so

different loss functions yield different classification boundaries (figure 3.2).

We use the same skew-normal distributions as for the regression task with

_ = 0, ±5, ±10 (figure 3.3C-3). We changed the overlap between two distri-

butions, separating the theoretical means of the two distributions by 𝜎0,

3𝜎0, 5𝜎0 (figure 3.3C-2). The normal distribution (_ = 0) was always on the

skew-normal distribution’s longer-tail side and ensured overlap of the two

sets: we re-generated the data until the lowest dot of the upper distribution

was lower than the highest of the lower distribution by 0.05𝜎0. We included

_ = 0 trials, but _ ≠ 0 trials, when different loss functions have different

predictions, are more informative.
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Sparsity

For both regression and classification task, we tested high-, medium-, low-

sparsity datasets, respectively, using𝑁data = 20, 400, 8000 dots of each color

(figure 3.3C-1). Only the vertical positions of the dots were randomly drawn

from the specifieddistributions; thehorizontal positionswere evenly spaced.

The size of the dots was scaled across the different sparsity conditions such

that the area of each dot multiplied by the number of dots stays the same.

We changed overall vertical position of the dots on the display each trial to

minimize the effect of the previous trial. We used orange and blue colors for

the classification task, which are usually distinguishable with some color

vision deficiency (Wong, 2011). We randomized the vertical order of the nor-

mal and skew-normal distribution, and the color of the top versus bottom

distribution (figure 3.3C-4).

Loss functionmodels to predict regression lines and

classification decision boundaries

Loss functions for regression

The loss function 𝐽` (𝑦 , 𝒚 ) is a function of the data points 𝒚 , a candidate ver-

tical location of the regression line 𝑦 , and possibly other hyperparameters`,

such that the optimal regression line location 𝑦 ∗ is obtained by minimizing

this loss function as follows:

Regression line 𝑦 ∗ = argmin
𝑦

𝐽` (𝑦 , 𝒚 ). (3.2)

65



3. What loss functions do humans optimize when they perform regression
and classification

Wemaydenote 𝑦 ∗ as 𝑦 ∗( 𝐽`, 𝒚 ) to showdependence onboth the loss function

𝐽` and the data 𝒚 . In this study, we considered loss functions that are sums

of the absolute regression error raised to various exponents𝑝 (figure 3.4A-1).

Regression error here refers to the difference between the regression line

and each data point. When the vertical location of the 𝑖 -th dot is 𝒚 (𝑖 ), and

the regression error of the dot is 𝒙 (𝑖 ) = 𝒚 (𝑖 ) − 𝑦 , the regression loss function

with exponent parameter 𝑝 is given by:

𝐽reg,𝑝 (𝑦 , 𝒚 ) =
𝑁∑︁
𝑖=1

|𝒚 (𝑖 ) − 𝑦 |𝑝 =

𝑁∑︁
𝑖=1

|𝒙 (𝑖 ) |𝑝 , (3.3)

equivalent to using the error vector’s 𝐿𝑝 norm. The individual summand

in the loss function (figure 3.4A-1), |𝑥 |𝑝 , defines how error from each point

contributes to the total loss (figure 3.4B). It is symmetric with respect to zero

error, so that error on either side of the regression line has the same loss.

The effect of the exponent 𝑝 on the overall loss could be understood

in terms of how larger regression errors are penalized relative to the small

errors. For example, regression loss function summand |𝑥 |2 grows faster

than |𝑥 |1, thus penalizing larger error relatively more (figure 3.4A-1). So,

minimizing 𝐽reg,2 results in a regression line more towards the tail of the

distribution compared to minimizing 𝐽reg,1 on a skew-normal distribution

(figure 3.2A), because moving the regression line towards the tail of the

distribution reduces larger errors that come from the further points.

Loss functions for binary classification

The loss function for binary classification 𝐽` (𝑦 , 𝒚 1, 𝒚 2) is a function of the

candidate decision boundary 𝑦 location and the data points 𝒚 1 and 𝒚 2,

belonging to the two classes (two colors), class-1 and class-2 respectively.
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Figure 3.4: Demonstration of various loss functions for regression and
classification tasks. (A) Loss function summands of various parameters, as
functions of (1) regression error 𝑥 for regression task, or functions of (2-4)
classification error 𝑥 for classification task. (1) Regression loss function
with exponent parameter 𝑝 . (2) Rectified error loss function, with exponent
parameter 𝑝 . (3) Log power loss function with power parameter 𝛼. (4) Log
margin loss function with margin parameter 𝛽 . (B) Evaluation of overall
regression loss for a sample regression task dataset 𝒚 , as a function of the
regression line location 𝑦 , with various exponent parameters. The overall
loss (purple thick line) is a sum of contributions from each data point (green
thin lines). (C) Evaluation of overall rectified error loss for a sample clas-
sification task dataset 𝒚 1, 𝒚 2, as a function of the regression line location
𝑦 , with various exponent parameters. The overall loss (purple thick line)
is a sum of contributions from orange class (orange thin lines) and blue
class (blue thin lines) data points. Orange dots have positive classification
errors when the decision boundary is above them (two orange dots marked
as "misclassified" have positive losses for the decision boundary shown in
the illustration), and blue dots have positive classification errors when the
decision boundary is below them. 𝑦 ∗ indicates global minima.
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The decision boundary divides the data points into two groups, so that data

above the boundary is classified as class-1 and data below the boundary

is classified as class-2. The optimal decision boundary 𝑦 ∗ is defined as

minimizing the loss function 𝐽` (figure 3.4C) as follows:

Decision boundary 𝑦 ∗ = argmin
𝑦

𝐽` (𝑦 , 𝒚 1, 𝒚 2). (3.4)

We may denote 𝑦 ∗ as 𝑦 ∗( 𝐽`, 𝒚 1, 𝒚 2) to show dependence on both the loss

function and the two datasets.

Loss functions for classificationaredefined such thatmisclassifiedpoints

increase the lossmore thancorrectly classifiedpointsdo (BishopandNasrabadi,

2006). We consider two types of loss functions: those that only penalize

misclassified points and are not affected by correctly classified points, and

those that also account for correctly classified points. Our datasets were

not linearly separable and always had misclassified points. Let the location

of the 𝑖 -th member of the two classes be 𝒚 1(𝑖 ) and 𝒚 2(𝑖 ). Members of 𝒚 1
but located above a candidate decision boundary 𝑦 (i.e., 𝒚 1(𝑖 ) − 𝑦 > 0), and

members of 𝒚 2 but located below the boundary (i.e., 𝑦 − 𝒚 2(𝑖 ) > 0), are

misclassified by the decision boundary 𝑦 . We define classification error 𝒙 𝑐

for for 𝑐 = 1, 2 as follows: for data points in class-1, 𝒙 1(𝑖 ) = 𝒚 1(𝑖 ) − 𝑦 and

for data points in class-2, 𝒙 2(𝑖 ) = 𝑦 − 𝒚 2(𝑖 ), ensuring that the classification

error 𝒙 𝑐 (𝑖 ) is positive when misclassified. We now describe specific loss

functions considered.

Rectified error classification loss function. As an example of a loss func-

tion that only penalizesmisclassified points, we investigated the effect of the

exponents on the positive part of the classification error ("rectified error",
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figure 3.4A-2). We define the rectified error classification loss function with

exponent parameter 𝑝 as:

𝐽RectErr,𝑝 (𝑦 , 𝒚 1, 𝒚 2) =
𝑁∑︁
𝑖=1

max (𝒚 1(𝑖 ) − 𝑦 , 0)𝑝 +
𝑁∑︁
𝑖=1

max (𝑦 − 𝒚 2(𝑖 ), 0)𝑝

=

2∑︁
𝑐=1

𝑁∑︁
𝑖=1

max (𝒙 𝑐 (𝑗 ), 0)𝑝 , (3.5)

where the positive part or rectification function max(𝑥, 0) is the ReLU func-

tion. The exponent parameter 𝑝 has a similar effect to that in the regression

loss function. A loss function with bigger 𝑝 penalizes bigger errors relatively

more than a loss function with smaller 𝑝 does. For distributions used here,

since the skew-normal distribution has a heavier tail than a normal distri-

bution on the overlapping side, decision boundaries tend to move towards

the tail of the skew-normal distribution when the exponent 𝑝 of the loss

function increases (figure 3.2B). When 𝑝 = 1, the decision boundary divides

data points such that there are equal numbers of misclassified points on

both sides, analogous to a median.

Log power classification loss function and log margin classification loss

function. For loss functions that also take into account correctly clas-

sified points, as the distance between the correctly classified points and

the decision boundary increases, the classification becomes "more correct,

and thus gives a better margin for the decision boundary. However, the

loss still needs to increase more with misclassified points, in order to have

sensible classification. In this study, we used two one-parameter family of

functions derived from the logistic loss function, in which loss smoothly

increases with positive classification error (frommisclassified data) and de-

creases with negative error (from correctly classified data). The "Log power"
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classification loss function with power parameter 𝛼 is given by:

𝐽logPower,𝑝 (𝑦 , 𝒚 1, 𝒚 2) =
𝑁∑︁
𝑖=1

log𝛼 ( 1 + 𝑒 (𝒚 1 (𝑖 )−𝑦 ) ) +
𝑁∑︁
𝑖=1

log𝛼 ( 1 + 𝑒 (𝑦−𝒚 2 (𝑖 )) )

=

2∑︁
𝑐=1

𝑁∑︁
𝑗=1

log𝛼 (1 + 𝑒𝒙 𝑐 (𝑗 )), (3.6)

and the "log margin" classification loss function with margin parameter

𝛽 is given by:

𝐽logMargin,𝛽 (𝑦 , 𝒚 1, 𝒚 2) =
𝑁∑︁
𝑖=1

log ( 1 + 𝑒 𝛽 (𝒚 1 (𝑖 )−𝑦 ) ) +
𝑁∑︁
𝑖=1

log ( 1 + 𝑒 𝛽 (𝑦−𝒚 2 (𝑖 )) )

=

2∑︁
𝑐=1

𝑁∑︁
𝑗=1

log (1 + 𝑒 𝛽𝒙 𝑐 (𝑗 )). (3.7)

We analyzed the effect of the exponent in the"log power" loss (figure 3.4A-3)

and the margin parameter in the "log margin" loss (figure 3.4A-4, Masnadi-

Shirazi and Vasconcelos (2015)). In addition to these three one-parameter

families of cost functions, we considered two standard cost functions: the

hinge loss for support vector machines and the logistic or cross entropy loss

function of logistic regression (Wang et al., 2022).

Inverse optimization to infer loss functions from subjects’ responses

To evaluate which loss function best describes each subject’s responses,

we minimized the mean squared distance between the subject’s responses

and model-predicted regression lines or decision boundaries for each trial,

averaged across all trials. Let the model predicted regression line (eq. (3.2))

or decision boundary (eq. (3.2)) on the 𝑘 -th trial be 𝑘𝑦 ∗. Let the subject’s

response on the𝑘 -th trial be 𝑘𝛾 . Then, the rootmean squared error between
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human response andmodel prediction is:

RMSE =

(
1

#trials

#trials∑︁
𝑘=1

|𝑘𝑦 ∗ − 𝑘𝛾 |2
) 1
2

(3.8)

For each trial, the model prediction 𝑘𝑦 ∗ depends on the loss function

𝐽` used, the hyperparameters ` of the loss function, and the particular

dataset from the 𝑘 -th trial. So, we may denote the mean squared error in

eq. (3.8) as RMSE(`), focusing on the dependence on the loss function

hyperparameters `, suppressing the dependence on the datasets used and

the particular loss function 𝐽` for simplicity. For the four parameterized

loss functions considered, the hyperparameters ` are 𝑝 for the regression

loss function, and 𝑝 , 𝛼, and 𝛽 , respectively, for the three classification loss

functions. Within a given one-parameter family of loss functions 𝐽`, the best

describing loss function is determined by computing the best-describing

loss function parameter `∗ as minimizing RMSE(`):

best-describing loss function parameter `∗ = argmin
`

RMSE(`). (3.9)

We used a quasi-newton algorithm (MATLAB fmincon) to find the loca-

tion 𝑦 ∗ for most of the cases, as the loss function usually has a unique global

minimumwithout other local minima. The exceptions were for exponents

𝑝 equal to or smaller than 1 (𝑝 <= 1 in eq. (3.3) and eq. (3.5)), as there

could be multiple local minima. We used 𝑝 = 1.001 as a proxy for 𝑝 = 1,

as 𝑝 = 1 could produce infinitely many minima. For 𝑝 < 1, we evaluated

the loss function at the testing data point locations, as the minima will ap-

pear at those places (figure 3.4B and C, 𝑝 < 1). When we found two global

minima with identical values (𝑝 < 1 in classification), we picked the model

prediction 𝑦 ∗ to be the minimum closer to the subject selection.
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(A) Distribution median predicts where subjects clicked

Subject responses successfully track various measures 
of central tendency over a large range

Figure 3.5: Subject responses compared to various centers of the distri-
butions. Subjects effectively tracked standardmeasures of central tendency.
The location of the median and themean varied substantially on the screen,
and subjects systematically tracked these.

3.4 Results

Regression: subjects effectively trackmeasures of central

tendency

Subjects effectively tracked standard measures of central tendency of the

data shown in each trial (figure 3.5). Specifically, the location of the mean,

the median, and other measures of central tendency changed substantially

between trials, and the locations of the mean and the median were highly

predictive of where the subjects clicked. The linear model from the mean

of the distribution to where the subjects clicked had 97.1% R2 value and

the median of the distribution to where the subjects clicked had 97.3% R2

72



3. What loss functions do humans optimize when they perform regression
and classification

0.5 1 1.5 2 2.5
0

2

4

6

8

0.5 1 1.5 2 2.5
0

2

4

6

8

0.5 1 1.5 2 2.5
0

2

4

6

8

(A) High
sparsity

(B) Medium
sparsity

(C) Low
sparsity

Loss function model parameter p Loss function model parameter p 

average
best-describing p = 0.74

average
best-describing p = 1.69

average
best-describing p = 1.17

individual
subjects

Av
er

ag
e 

R
M

S
 d

is
ta

nc
e 

be
tw

ee
n

m
od

el
 a

nd
 o

bs
er

va
tio

n 
(σ
0)

Av
er

ag
e 

R
M

S
 d

is
ta

nc
e 

be
tw

ee
n

m
od

el
 a

nd
 o

bs
er

va
tio

n 
(σ
0)

Av
er

ag
e 

R
M

S
 d

is
ta

nc
e 

be
tw

ee
n

m
od

el
 a

nd
 o

bs
er

va
tio

n 
(σ
0)

B
oo

ts
tra

tp
 e

rr
or

 d
is

tri
bu

tio
n 

of
 

be
st

-d
es

cr
ib

in
g 

pa
ra

m
et

er
B

oo
ts

tra
tp

 e
rr

or
 d

is
tri

bu
tio

n 
of

 
be

st
-d

es
cr

ib
in

g 
pa

ra
m

et
er

B
oo

ts
tra

tp
 e

rr
or

 d
is

tri
bu

tio
n 

of
 

be
st

-d
es

cr
ib

in
g 

pa
ra

m
et

er

(2) Distribution of best-describing parameter
using bootstrap analysis

Inverse optimization analysis on regression task
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Figure 3.6: Comparison of subjects’ responses to the predicted regression
lines. Regression lines were predicted using loss functionmodels of various
exponent parameter 𝑝 , for different sparsity levels (top to bottom). On the
left are the RMS distances between the predicted regression lines and the
subject’s response, normalized by PDF variance𝜎0, and the downward trian-
gle indicated the loss functionparameters that hadminimumRMSdistances
for the given sparsity. On the right are the distributions of best-describing
loss function parameters inferred from the RMS distance, using bootstrap
method. Thin lines indicate best-describing loss function parameter for
each subject, and the thick black line shows that of the entire subjects. The
asterisk on the tick line indicates the average of the best-describing loss
function parameter from each bootstrap sample.
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value, when averaged across all subjects and all trials. Thus, subjects are

able to track the overall location of the distribution well. The rest of the

results section is about the small but significant differences between how

well different measures of central tendency, or equivalently, minimizing

different loss functions, predict the subject responses.

Regression: loss function exponent reduces with reducing

sparsity

The mean RMS error (eq. (3.8)) between the subjects’ responses and the

model-predicted regression lines, averaged across all subjects and all trials

for a given sparsity, has a U-shaped curve with respect to the 𝐿𝑝 exponent 𝑝

(figure 3.6 left). We obtained the best describing exponent𝑝∗ byminimizing

the overall RMSE for each sparsity. The best-describing parameters were

different for different sparsity levels. We found that 𝑥1.7 for high sparsity (20

dots), 𝑥1.2 for medium sparsity (400 dots), 𝑥0.7 for low sparsity (8000 dots)

best predicted human regression lines on average. Thus, as sparsity de-

creased, or in other words, as the data density increased, subjects tended to

choose regression lines described by a loss functionwith a smaller exponent.

To compute the uncertainty in these estimates, we performed bootstrap

resampling of trials from all subjects and all trials of a given sparsity and

recomputed the best-describing exponent 𝑝∗ for each sample to obtain

bootstrap-basederror distributions for𝑝∗ (figure 3.6 right). The averagebest-

describing loss function parameters obtained from this bootstrap analysis

were 1.69, 1.17, 0.74 for high, medium, low sparsity, with relatively clear

peaks at those parameter values, and error standard deviations of about
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0.15 for each sparsity. We note, however, that the RMS error landscape near

𝑝∗ is quite flat, that is, has low curvature (figure 3.6 left), indicating that

substantially different exponents predict a small increase in error, partly an

indication of inter- and intra-subject variability in responses, as described

later.

Classification: rectified error loss had worst performance

and exponent changed with sparsity

RMSE using rectified error loss function had the worst performance among

the loss functions we considered (figure 3.7 left). Commonly used loss

functions, logistic regression and support vector machines (SVM) were

closer to subjects’ responses than rectified error, with SVMbeing closer than

logistic regression. The other two parameterized loss functions were also

systematically better. This provides limited evidence that subjects do not

just consider error inmisclassifiedpointswhile performing the classification

task, as rectified error loss function is the only one of our loss functions that

only used misclassified points for computing loss.

RMSE using rectified error loss function averaged across all subjects

and all trials had minima within the parameter range we searched, and the

best-describing parameter changed systematically with the sparsity of the

dots (figure 3.7 left). Rectified error to the power of 𝑝∗ = 0.9, 0.5, 0.2 were

the best descriptors of subjects’ responses for each sparsity using rectified

error loss functions. Rectified error loss function to the power of 𝑝∗ =1

yields a decision boundary that splits dots into two groups in a way that the

numbers of misclassified dots are identical from both groups, analogous

75



3. What loss functions do humans optimize when they perform regression
and classification

0.5 1 1.5 2 2.5
0.50

0.55

0.60

0.65

0.70

Av
er

ag
e 

R
M

S
 d

is
ta

nc
e 

(σ
0)

0.5 1 1.5 2 2.5
0.44

0.46

0.48

0.5

0.52

0.54

0.5 1 1.5 2 2.5

Loss function model parameters p, α, β

0.46

0.48

0.50

0.52

logistic
SVM

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n
P

ro
ba

bi
lit

y 
de

ns
ity

 fu
nc

tio
n

β

p

α

Loss function model parameter p

(re
ctif

ied erro
r)

(log power)

(log margin)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

min.
min. min.

average
best-describing p

al
l s

ub
je

ct
s

individual
subjects

Av
er

ag
e 

R
M

S
 d

is
ta

nc
e 

(σ
0)

Av
er

ag
e 

R
M

S
 d

is
ta

nc
e 

(σ
0)

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

(A) High
sparsity

(B) Medium
sparsity

(C) Low
sparsity

(2) Distribution of best-describing parameter
using bootstrap analysis

(1) Distance between model predictions
and subjects’ responses

Inverse optimization analysis on classification task

Figure 3.7: Comparison of subjects’ responses to the predicted deci-
sion boundaries. Decision boundaries were predicted using rectified error
(blue), log power (red), and logmargin loss functions (red), with theirmodel
parameter 𝑝 , 𝛼, 𝛽 , for different sparsity levels (top to bottom). Distances
from the decision boundaries obtained from logistic regression classifier
(plus mark) and SVM (x mark) are also shown as a reference. On the left are
the RMS distances between the subject’s response and the decision bound-
aries obtained by minimizing loss functions, normalized by PDF variance
𝜎0, and the downward triangle indicated the loss function parameters that
had minimum RMS distances for the given sparsity. On the right are the dis-
tributions of best-describing exponent parameter 𝑝 for rectified error loss
function, inferred from the RMS distance, using bootstrap method. Thin
lines indicate best-describing loss function parameter for each subject, and
the thick black line shows that of the entire subjects. The asterisk on the tick
line indicated the average of the best-describing loss function parameters
from each bootstrap samples.
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to a median. Smaller 𝑝 is in general associated with the decision boundary

being closer to the skew-symmetric distribution; in other words, more dots

from skew-symmetric distribution tend to be misclassified than dots from

the symmetric distribution. Our observation of smaller best-describing 𝑝∗

for lower sparsity roughly means that subjects chose decision boundaries

closer to the skew-symmetric distribution when sparsity decreased.

Best-describing parameters obtained from bootstrap analysis had sim-

ilar results. Parameter for rectified error loss function 𝑝 = 0.85, 0.75, 0.23

(figure 3.7 right) with standard deviations about 0.15, 0.33 and 0.15 respec-

tively. Performing subject-specific analysis, we find thatmost of the subjects

had best-describing exponent 𝑝∗ lower than 1, which in general means that

they drew the decision boundary closer to the skew-symmetric distribution,

and more so as the sparsity decreased.

The RMSE curve for rectified error loss function at high sparsity had a

distinct jump between 𝑝 = 0.9 and 1.001 (figure 3.7 left), because 𝑝 <= 1

could have multiple global minima (as seen in figure 3.4C 𝑝 = 0.5 and 1)

and we used the one that is closer to the subjects’ response for the analysis.

Such discrepancy also exists in medium and low sparsity, but the effect is

less noticeable because multiple minima, which can only exist between

adjacent dots, are closer to each other as sparsity decreases.

Classification: log margin loss function best describes

human responses

We considered two one-parameter families of loss functions— sum of log

power (eq. (3.6)), sum of log margin (eq. (3.7)) — that considered error
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in both correctly classified and misclassified points. Their hyperparame-

ters were an exponent parameter 𝛼 and margin parameter 𝛽 respectively.

Log margin and log power in general had smaller RMS distances and, thus

were better descriptors of subjects’ behavior than rectified error loss func-

tion, while log margin was the best descriptor among the three functions in

the range we considered. Log margin at its minima also yielded decision

boundaries closer to subjects’ behaviors than SVM and logistic regression

did.

Logmargin loss functionmodel hadminimawithin the parameter range

we searched, and the best-describing parameter changed systematically

with the sparsity of the dots (figure 3.7 left). Specifically, increased margin

logistic function with margin parameter 𝛽∗ = 0.8, 0.9, 1.4 were the best

descriptors for each sparsity (figure 3.7 left), although RMSE curve is shallow

for the wide range of the parameter for this loss function. The RMSE using

log power hadminima at 𝛼∗ = 1.001 for all three sparsity conditions. This

𝛼∗ = 1.001was at one extremeof our evaluation range, aswedidnot evaluate

values below 𝛼 = 1.001 (a proxy for 𝛼 = 1.0).

Best-describing parameters obtained from bootstrap analysis had simi-

lar results. Parameter for log power loss function 𝛼∗ = 1.00, 1.04, 1.05 (Figure

3.8 left) and parameter for log margin loss function 𝛽∗ =0.74, 0.94, 1.46 (Fig-

ure 3.8 right) were best-describing parameters obtained from the bootstrap

analysis, with standard deviations of about 0.35, 0.6, and 0.7 respectively.
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Figure 3.8: Best-describing parameters for log power and log margin loss
function. Distributions of best-describing exponent parameter 𝛼 and 𝛽

were inferred from the RMS distance by applying bootstrap method. Thin
lines indicate best-describing loss function parameter for each subject, and
the thick black line shows that of the entire subjects. The asterisk on the tick
line indicates the average of the best-describing loss function parameters
from each bootstrap sample.

79



3. What loss functions do humans optimize when they perform regression
and classification

p=0.5

1.001

2.5

1.5
2.0 p=0.5

2.5

p=0.5
2.5

p=0.5
2.5

p=0.5, 
   ..., 2.5

p=0.5, 
   ..., 2.5

(A) Regression task (B) Classification task

Probably distribution
where dots were drawn from

Predicted
regression lines

Predicted decision
boundaries

(1) High sparsity, λ = 40 (N=9) (1) High sparsity, blue λ = 40, separation = 5σ0 (N=13)

(2) Medium sparsity, λ = 0 (N=9) (2) Medium sparsity, blue λ = 0, separation = 3σ0  (N=12)

(3) Low sparsity, λ = 5 (N=9) (3) Low sparsity, blue λ = 10, separation = 1σ0  (N=12)

Dots that were
presented to subjects

Individual subjects’ responses on identical testing data set

Individual subjects’
responses

Figure 3.9: Various responses frommultiple subjects on identical testing
datasets. Responses from (A) regression task and (B) classification task,
from representative trials of various conditions. The dots on each panel
were drawn from the PDFs(s) shown on the left side of the panel. Regression
lines thatminimize regression loss functions of various exponent parameter
𝑝 , and decision boundaries that minimize rectified loss functions of various
exponent parameter 𝑝 are indicated with the thick, short horizontal lines as
references. The longer, thin lines on top of the dots are the responses from
each subject.
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Regression and classification: large inter-subject

variabilities in responses and in loss functions

We obtained the best-describing regression and classification loss func-

tion hyperparameters for each subject and constructed a subject-specific

bootstrap distribution of the best-describing hyperparameters. We found

substantial inter-subject variability — seen in the wide ranges of peak lo-

cations among different thin lines in figures 3.6-3.7 (right), indicating best-

describing parameters for individual subjects were not consistent across

them. Furthermore, when we analyze their behavioral variability, the re-

sults also indicate substantial intra-subject variability— evident in the wide

ranges covered by each of the thin lines in figures 3.6-3.7 (right), indicating

best-describing parameters were not highly consistent across trials within

the same subject. Parameters for rectified error in the classification task had

fairly large inter- and intra-subject variability, although it was smaller than

the variability observed in the regression task.

To more directly observe the inter-subject variability, a subset of our

subjects (9 for the regression task, 13 for the classification task) were tested

with the exact same arrangements of dots. Subjects’ responses (figure 3.9

thin lines) varied to a large degree, often more than the range of regression

lines that are calculated by minimizing loss functions of various parameters

(figure 3.9 thick lines). Even for the dots thatwere generated from symmetric

probability density function(s) (figure 3.9 middle rows), where regression

lines calculated using various loss functions lie close to each other at the

middle of the distribution(s), (thicker lines on top of each other), subjects’

responses varied to a large degree.
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Regression and classification: a weak trend of longer time

for sparser trials

Subjects (𝑁subjects = 7) who were tested with fully randomized orders for

regression task took 6.4 ± 20.3, 4.9 ± 10.9, 3.8 ± 4.2 (average ± standard

deviation) seconds to complete a regression task trial for high, medium,

low sparsity. Both the mean and standard deviation of the completion time

decreased on average with decreasing sparsity. Subjects (𝑁subjects = 7) who

were tested with fully randomized orders for the classification task took

4.0 ± 6.0, 3.7 ± 8.8, 3.6± 9.1 seconds for high, medium, low sparsity. The

average completion time slightly decreased with decreasing sparsity, but

the standard deviation increased. We did not perform explicit statistical

significance tests.

3.5 Discussion

We applied inverse optimization analysis on humans performing regression

and classification tasks in visually presented data. For the regression task,

minimizing the sum of error raised to the power of 1.69, 1.17, 0.74 were the

best descriptions of the average subjects’ decisions for high, medium, and

low sparsity data. For classification task, minimizing the sum of increased

margin logistic classification error was a better descriptor among various

types of loss functions we considered, with its best-describing margin pa-

rameters 𝛽 being 0.74, 0.94, 1.46 for high,medium, low sparsity data. Among

the loss function models that sum error powers of only misclassified data,

exponents of 𝑝 = 0.85, 0.75, 0.23 were the best descriptors, while logistic
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error functions that also take into account correctly classified data were in

general better. These changes to the best-describing loss functions with

decreasing sparsity had a common tendency: the regression line or decision

boundary subject chose moved towards the mode of the skew-symmetric

distribution, or in other words, towards the densest part of the dataset, as

the data became denser.

These results qualitatively agree with some previous findings. A study

that tried to infer a human loss function from a pointing task (Körding and

Wolpert, 2004a) reported that minimizing the sum of distances raised to the

power of 1.69was the best descriptor of the average subjects’ behavior, when

subjects observed about 60 data points during each trial. Our trials with

the sparsest data consisted of 20 data points, and the best-describing loss

function for the regression task was distance raised to 1.69, which is a close

match with the previous finding. This exponent of 1.69 is also reasonably

close to 2, which is used for least mean squared method, so is in alignment

with the study (Gillan, 2020) reporting that students with statistics training

were more likely to choose a regression line based on least square method

among other specific alternative heuristics, when tested with scatter plots

of 5 to 20 data points. This previous study however does not provide a best

exponent as an outcome of an inverse optimization analysis, and instead,

compared a few different methods which are not on a continuum.

There are studies reporting that there is a central tendency (Holling-

worth, 1910) when humans perceive a dataset. Many of our subjects indeed

responded to our optional questionnaire that their strategy was to "put the

line at the center of the distribution" when they performed the regression

or classification task, but the best-describing loss functions varied to a large
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degree even between these subjects. The definition of “central” differs from

study to study when referring to central tendency. For example, the mean,

median, and mode of the data could all be reasonably defined to be the

center of a distribution. The best-describing parameters we found from the

experiment could be interpreted in terms of these statistical quantities of

the distribution, because finding the median and mean are mathematically

equivalent to finding a regression line that minimizes the sum of absolute

regression error and error squared. Using this equivalent description, our

inverse optimization result on the regression task is that, people on aver-

age chose a regression line near mean for high sparsity data, near median

for medium sparsity data, and betweenmedian andmode for low sparsity

datasets. While "central" is even less well-defined for two distributions for

binary classification tasks, our result from classification shows that there

was a similar shift with the sparsity of the data. The average decision bound-

ary moved towards the skew-symmetric distribution as sparsity decreased.

Our results provide some insights into central tendency theory, suggesting

that "central" could be highly context-dependent and highly variable across

people.

Traditional computational algorithms normally do not change their

strategies based on the size of the data, but we observed noticeable shifts

in average strategy when humans perform regression and classification.

Potential explanations for the shift we observed include: whenmore data

points were presented, (1) people could infer the underlying structure of

data better, and thus made different judgments on the importance of each

data point; (2) people may perceive the nature of the dataset differently, e.g.,

less sparse data (dense data points)might be perceived as a contiguous area,
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whereas sparse data would be perceived as a set of individual dots; (3) it

becomesmore challenging to consider individual data simply because there

are a lot of them, thus people switched to different heuristics. The third

point seemed to be more apparent for the regression task, where subjects

took longer times to complete a high sparsity task that had fewer dots than

a lower sparsity task that had more dots. These shifts in behaviors, both in

terms of the decision itself and the time taken tomake the decision, provide

insights into how humans perceive patterns differently in data of different

sizes.

Commonly used loss functions for regression or classification algorithms

are mostly convex, so that the loss function is smooth and there is a single

global minimum. For example, the sum of distances raised to the exponent

smaller or equal to 1 could have a non-smooth loss function, and could

result in multiple local and global minima (figure 3.4), and thus are not

desirable for machine learning algorithms. However, many subjects chose

regression lines and decision boundaries in the range that was only reached

by loss function models that were non-convex, at least among the loss func-

tion models we considered in this study. Another limitation that comes

from using only convex loss functions is that the contributions from the

outliers are bound to be bigger than a certain value. Loss functions that

are relatively robust to outliers, such as Huber loss and log-cosh loss, have

smaller increases in slope at the extremes, but only to the degree that the

overall loss function is still convex. Although convexity and other traits are

desirable for machine learning algorithms, it is conceivable that computa-

tional andmathematical simplicities are not as strictly required for humans.

Therefore, developing a machine learning algorithm that closely mimics
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human perception of patternsmay necessitate the use of loss functions that

are not conventionally used.

Unlike computational optimization, "noise" can be a factor in how hu-

mans actually perform pattern recognition, even when they have a con-

sistent criterion (which is not necessarily guaranteed). Our experimental

results exhibited high intra-subject variability, and noise could be one pos-

sible explanation. Noise in the human selection (Kahneman et al., 2021),

arising from sources such as limitations on calculation precision, inaccurate

motor execution of selecting a line, and even effects of optical illusion, are

hoped to be canceled out if we increase the experimental sample size and

look for an average behavior across samples. However, loss functions of

some types could result in the ill-posedness of the inverse optimization

problem, which may not be rectified by simply adding more samples to

the analysis. Consider the case when a loss function is very flat near the

minima, or when it has multiple local minima that have loss values close

enough (or even exactly the same) to the global minimum (e.g., figure 3.4).

Even if a subject is consistently using the specific loss function, they may

still make a final decision that is not exactly at the global minimum, but at

other reasonable alternatives like at one of the local minima. In this case,

the loss function could falsely appear to be an inadequate descriptor of sub-

jects’ decisions. We partially addressed this issue by considering multiple

global minima locations for p<=1 and by assuming that the location that

was closer to what subjects selected was the location they were aiming for.

However, this assumptionmay have given p<=1 an unfair advantage against

p>1. In addition, this still does not address the case of humans selecting a

location that is close enough to the global minimum but numerically not
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identical. Further studies would be needed to improve inverse optimization

analysis when the proximity between the observed decision and the specific

optimization criterion is an ill-behaved function like this.

There was high inter-subject variability in our experimental results.

Sometimespatterns in thevisuallypresenteddata seemobvious (Wertheimer,

1938) and can be easily agreed between different people. However, the high

inter- and intra-subject variability that we observed on relatively simple

tasks leads to a suspicion that there might be no single commonsensical

"ground truth" to many of the regression and classification problems. As

some authors point out, (Von Luxburg et al., 2012), somepattern recognition

may need to be viewedmore like art than science.

There were some limitations to our current study. We imposed the pat-

terns to be one-dimensional, but higher dimensional problems may result

in different results. We also cannot test overfitting with one-dimensional

problems, but in future studies, we could consider introducing a higher

degree of freedom to see what people do. Most of our subjects had a sci-

ence and engineering background, and had some previous experience with

regression techniques, while fewer had an experience with classification

techniques. Our optional questionnaire shows that about half of the subjects

could perform a regression method they learned, and half of the subjects at

least learned about it in the past, whereas about half of the subjects never

heard about classification algorithm and very few subjects responded that

they could perform a classification method. As shown in a previous study

(Gillan, 2020), people with statistics training seem to use a different method

to perform regression than people with training, and we also expect that our

result is dependent on the subject group. Results might also be dependent
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on the instruction, and specific details of the test such as the scaling of the

task interface on the computer screen (as it was reported in a previous study

that the scaling of the graph affected subjects’ decisions (Cleveland et al.,

1982)), color and size of the dots, and the order of the trials. We applied the

inverse optimization approach to loss functions that sum up contributions

from each data point, but it would be also interesting to test other forms of

loss functions.

We calculatedmodel-predicted regression lines anddecisionboundaries

for each trial using actual testing datasets of each trial, rather than using

the probability distribution from which the dataset was drawn. Statistics

of the sample data are different from the statistics of the PDF fromwhich

the dots were drawn from, thus regression lines or decision boundaries that

are calculated based on sample data are also different from the calculations

based on the PDF (figure 3.2). These discrepancies are bigger when we draw

a smaller number of dots. If humans are updating a Bayesian prior during

the experiment to make decisions based on a mixture of their estimated

prior and the current dataset, wemight expect systematic deviations toward

the center of the visual area, which we do not see in the data (figure 3.10).

We designed datasets to study what loss functions humans optimize for

when they perform regression and classification, and obtained loss func-

tions that were on average best descriptors of subjects’ responses. However,

the result was not as simple as simply reporting what was "the" loss func-

tion humans optimize. Instead, we learned that the loss function could

be context-dependent, and that there are high subject variabilities when

humans perform visual pattern recognition tasks. It would be interesting to

see what are the other factors that contribute to the human inconsistency,
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as well as measuring the inconsistency itself more closely, for example by

repeating the same test again. More in-depth investigation of how humans

perform an individual trial could also provide useful insights. Eye tracking

could show what points each subject considered while performing the task

andmay especially provide insights into outlier processing. We could also

ask people to speak out what their thoughts are while perceiving the dots.

Another direction for a future study could be to use specially designed prob-

ability distributions where dots are drawn from, so that specific hypotheses

could be tested. The way data is presented could be also altered. For ex-

ample, one could present a target line and ask people to move the set of

dots to best hit the target line. One could present some dots each moment

and refresh the dot locations with some time interval, investigating the his-

tory effect on pattern perception. These tests could be also integrated with

motor control tasks, for example, humans performing aiming, reaching, or

catching tasks, while target objects to interact with have some probability

distribution in terms of their position or velocity.

We obtained average loss functions that human subjects use when they
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perform regression and classification tasks, while observing a large variabil-

ity. This observationwould contribute to the understanding of human visual

perception andmotor control using visual perception, and would provide

insights into developing machine learning techniques. Understanding how

humans perform such pattern recognition tasks can be useful as ground

truth to train machine learning algorithms aimed at reproducing human

intelligence (Foncubierta Rodríguez andMüller, 2012), as an inspiration to

develop new algorithms, since humans seem capable of performing com-

plicated pattern recognition tasks, to identify commonmistakes humans

make and systematic biases that humans have, so as to educate people

(Tschandl et al., 2019; Kahneman, 2011), and more broadly, to study how

human nervous system functions (Körding andWolpert, 2004a; Schwab and

Nusbaum, 2013; Caelli et al., 1987).
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Chapter 4

Human force control may

trade-off force error with central

tendency and recency biases.

4.1 Abstract

Understanding how humans control force is useful for understanding hu-

man movement behaviors and sensorimotor control. However, it is not

well understood how the human nervous system handles different control

criteria such as accuracy and energetic cost. We conducted force tracking

experiments where participants applied force isometrically while receiving

visual force feedback, tracking step changes in target forces. The experi-

ments were designed to disambiguate different plausible objective function

components. We found that force tracking error was largely explained by a

trade-off between error-reducing tendency and force biases, but we did not

need to include an effort-saving tendency. Central tendency bias, which is a
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shift towards the center of the task distribution, and recency bias, which is a

shift towards recent action, were necessary to explain many of our observa-

tions. Surprisingly, we did not observe such biases when we removed force

requirements for pointing to the target, suggesting that such biases may be

task-specific. This study provides insights into the broader field of motor

control and human perceptions where behavioral or perceptual biases are

involved.

4.2 Introduction

We interact with the world by applying forces. For example, we push the

ground to walk, press pedals to ride a bicycle, and even apply muscle forces

onto our own body parts to breathe, sing, and reach out a hand. Understand-

ing how people control forces would be beneficial in understanding how the

nervous system performs sensorimotor control, and insightful in designing

robots and biomechanical simulations. One way to model sensorimotor

control is to view it as an optimization problem, that there are objective func-

tions that are optimized for and constraints that are needed to be satisfied

while executing the task (Baron and Kleinman, 1969; Kleinman et al., 1970).

There often are multiple objectives and constraints in many sensorimotor

tasks and robotics applications (Dao et al., 2016; Jin et al., 2021). Our goal

was to observe human subjects’ behaviors when they perform simple force

tracking tasks, and to investigate objective functions that could explain the

observed behaviors.

In biomechanics simulations and robotics, researchers often formulate

an objective function as a sum of error (or performance) term and effort
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(or energy cost, control energy) term. Such formulations are used to model

humanmotor control (Emken et al., 2007; Izawa et al., 2008; Mi et al., 2009),

in biomechanics simulations (De Groote et al., 2016; Lee and Umberger,

2016), and in robotics (Kalakrishnanet al., 2013;Miaoet al., 2021). Inoptimal

control theory, cost function of a linear quadratic regulator ("LQR", Kalman

et al. (1960)) is often formulated as a sum of quadratic functions of state

and control input.

Having an error term in the objective function ensures that the goal is

achieved to a certain degree. In addition to the error term, there are several

reasons to include an effort term, including: 1) To handle the redundancy

problem: there are usually redundancies in the system, meaning there are

multiple ways to achieve the goal, so additional criteria are needed (as

discussed in De Groote and Falisse (2021)). 2) To better mimic biological

systems: there are pieces of evidence suggesting that biological systems

minimize energetic cost, so having the term allows simulation and robot

to behave more like biological systems and thus provides more insights

into understanding them (e.g., Srinivasan (2011)). 3) For practical reasons:

Robots often need to be efficient because power or energy consumption

are some of the major concerns (e.g., Liu and Sun (2013); Pellegrinelli et al.

(2015)).

However, those functions and their relative weightings are usually arbi-

trarily designed and tuned until they produce acceptable outcomes. Some

researchers refer to biological measurements to formulate some compo-

nents of the objective function (e.g., Körding andWolpert (2004b) studied

error, Berret et al. (2011) studied cost), but such investigations have not

been considered in the context of human force tracking.
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Figure 4.1: Experimental design. (A) Subjects applied force on the platform
in front of them while looking at a screen. The vertical force they applied
was measured through a ground-mounted force plate, and the force was
relayed to a (B) screen that displayed the applied force as a horizontal bar
of a changing vertical location, as well as a target. (C) There were three
types of targets. Illustrated are conceptual representations of each sub-
trials. (D) An example of a trial, which was a series of sub-trials that changed
target force in a random order. Applied force and target force at the time are
shown together. Force tracking error was defined as a difference between
the average applied force during the last 0.5 seconds of the sub-trial and the
mode of the target.
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We designed a force tracking experiment that allows us to compare vari-

ous objective function models to experimental observations. Participants

were asked to apply forces isometrically onto the platform in front of them

through their hands, while receiving the force feedback as the height of the

bar on the screen (figure 4.1A, B). The force targets (figure 4.1C) they tracked

were either clearly defined as a fixed single dot, or vaguely defined in two

ways, as a single dot that had noise in its location or as a cloud of multiple

dots. The targets were shown for 4 seconds (referred to as "sub-trial"), and

the next target of the same kind appeared at a random location. We analyzed

force error near the end of each sub-trials (figure 4.1D) to quantify the force

tracking error.

We hypothesized that the vagueness of the target would result in more

shifts in subjects’ behaviors towards the effort-saving direction when the

force requirement increases. If effort is not a criterion, when subjects see

the same distribution of dots simply shifted up to require more force (figure

4.2A), they would increase their force by the same amount. In that case,

their behaviors would be largely explained by an error-based objective func-

tion alone (figure 4.2B-1). However, as there is some allowance due to the

vagueness of the target, they may save effort by increasing the force by a

slightly smaller amount than the target shift. In that case, we could model

the behavior as a trade-off between error-reducing and effort-saving criteria

in the objective function (figure 4.2B-2).

In addition, weused skeweddistributionswhenwedefined vague targets

to study the error term of the objective function (figure 4.2C). Skewed dis-

tributions have distinct mode, median, mean, and half of the range, which

are the locations where error raised to power of 0, 1, 2, and infinity are min-
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provide us with extra information about how people perceived the task. As
there aremany definitions of centers in a skewed distribution, including the
mode, median, mean, and half-range, we could study where people were
aiming for, and whether this changes with increasing force demands. (D)
Combined with effort considerations, if effort does not affect the behavior
and people are consistent with what “center” they aim for, (1) we expect
to see an error trend across various distribution parameters that is best de-
scribed by which center they aimed for, and does not change with increased
force requirements. If effort is combined with this perception, (2) we expect
that people’s response will be similar to that of (1) when force requirement is
low, but will shift towards effort-saving way as force requirement increases.
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imized. For example, if a subject minimized the error raised to about 1.5,

on average they would place the force feedback bar between the median

andmean of the distributions (figure 4.2D-1). If an effort-saving tendency

is added to the same error-reducing criterion in the objective function, we

expect that people’s behaviors would not change much in a low force range,

but it will shift towards a direction that saves effort when the force require-

ment increases (figure 4.2D-2). We measured how participants changed

their force according to the force requirement and given distributions, and

applied inverse-optimization analysis to look for an objective function that

best describes observed human behaviors.

We observed shifts towards less force in the medium to high force range.

However, there also were unexpected findings that looked like people sys-

tematically "wasted" effort in the low to medium force range, meaning,

they exerted more force than needed for no obvious benefits in reducing

errors. We used "central tendency bias" and "recency bias" to explain the

results, and conducted additional follow-up experiments on a subset of

the participants to test these biases. We use the term “central tendency

bias” to describe the shift towards the center of the tasks. That is, if their

current force is on a lower side, people tend to make errors towards the

center, and end up producing more force than needed. In a similar manner,

we use the term "recency bias" to refer to the bias towards the recent past

action, meaning people tend to make an incomplete shift to the next target.

Surprisingly, an effort term that increases with force, does not seem to have

a significant effect on the model prediction. Further, we found that elim-

inating the force requirement as much as possible eliminated the biases,

showing no significant bias in visual perception of the tasks.
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4.3 Results

How humans track step changes in forces

Force tracking errors have task-dependent positive and negative biases

Subjects typically took about 0.4 s seconds to initiate the force change after

the target location changed, and held the force until the next target was

shown (figure 4.1D; average responses can be found in figure 4.8 and figure

4.9). We report distance from the mode of the distribution as the error in

this paper unless otherwise noted.

We measured the force tracking error for different target types and force

requirements. As we expected, people exerted less force relative to the

target when the target force increased, and there was a bigger change when

the target was vaguer (figure 4.3A). However, what was unexpected for us

was that people tended to exert more force than needed for low-medium

range targets. These two observations, 1) negative correlation between

error and target force and 2) positive error on the lower target force, were

consistent across subjects (figure 4.3B). When targets were grouped based

on the distribution parameters, force errors were in general in between the

median and half-range of the distributions. Each of the sub-grouped forces

errors showed a negative correlation with a target force (figure 4.3C).

Force tracking error results are not explained by error and effort

minimization

We used two types of objective function models to describe the observa-

tions. The objective function we originally formulated was in the form of
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Figure 4.3:Median values of tracking error for different target force, tar-
get types, and distribution parameters. (A) Error, defined as a distance
between the average force people applied during the last 0.5 seconds of
sub-trials and a mode of the target, for each target type. Asterisks indicate
statistically significant differences (p<0.05) for pairs of the force conditions,
for every target type compared separately. (B) Error-force pattern of indi-
vidual subjects. (C) Median response for each target force and distribution
parameter. Pink shaded regions represent the range between the theoretical
mean andmedian of each distribution, and pink horizontal lines represent
half of the distribution range.

∑ error𝑝/𝑁 + 𝑐𝐹𝛾 , where error is the absolute distance between the target

and applied force, 𝐹 is applied force, 𝑁 is the number of target dots. Hy-

perparameters 𝑝 and𝛾 are shape parameters for each functions, and 𝑐 is a

constant that determines the relative weighting between two terms. Since

human data is noisy, we aimed to keep the formulation as simple as possible.

For simplicity, we used∑(error𝑝 )/𝑁 to represent performance criteria for

targets of different vagueness. The formulation has shallower minima for

bigger 𝑁 if 𝑝 < 2, thus competing terms in the objective function would
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Figure 4.4: Modeling force tracking errors using (A) error-and-effort
model and (B) error-and-bias model. In error-force plots (top row), dif-
ferent target types are indicated with different line types. In distribution
parameter-error plots (bottom row), lighter and more orange colors indi-
cate lower target forces, darker and more blue colors indicate higher target
forces. Errors shown on the y-axis in both types of plots are both errors with
respect to the mode of the target distribution. Objective functionmodels
to generate the model prediction here are∑ error1.6/𝑁 + 0.06𝐹 5 for (A) and∑ error1.6/𝑁 + 0.15𝑑1.8ctr−bias for (B).

make the minima shift more for bigger𝑁 . The effort term in this form has

inherent limitations, that it cannot explain positive force errors (figure 4.4A),

and thus inverse optimization did not have local minima within our search

range. We illustrated a solution that was found on one end of the search

range, but even bigger exponents on effort term would further minimize

the objective function. Bigger exponents would make low to middle-range

errors closer to zero, thus reducing model error. However, this formulation

does not predict positive error in any case.
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We investigated which variable predicts force tracking error.

Force tracking error might be fully determined by the target force or visual

representation of the target force. However, there might be a bias that is

determined by the temporal relationships between targets. We formulated

variants of the objective function models to represent these cases. One

of our objective function models was error-and-bias model (figure 4.4B),

which had a form of∑ error𝑝/𝑁 +𝑏𝑑𝛽

bias, where𝑑bias represents the distance

to some point when there is a tendency to shift towards that point, which

will be further explained later. error is absolute distance between the target

and applied force. Hyperparameters 𝑝 and 𝛽 are shape parameters for

each functions, and 𝑏 is a constant that determines the relative weighting

between two terms. figure 4.4B shows the error-and-bias model that has a

shift towards the average target force.

Additional experiments to disambiguate different terms

Some of the variables inherently co-varied in the original protocol (referred

to as “Protocol 1”), so we designed additional experiments to distinguish

some of them and test models accordingly.

The design of the additional protocol and what we found from each of

them are listed below. A subset of subjects who participated in the original

experiment using Protocol 1 participated in these additional tests, so we

compared their responses to those of Protocol 1. We used a single fixed dot

as a target in all additional tests to reduce the variability due to the target

vagueness.
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Figure 4.5: Additional protocols to test different model predictions. (A)
Test protocols in terms of force requirement and its visual representation
on the screen. Purple arrows emphasize the main differences between
protocols. Protocol 1-reduced 𝐹 tested for a lower half range of the force,
while spanning to a full visual target range. Protocols 2 and 3 had zero re-set
period between each non-zero target force. Protocol 3 had binary targets,
where the target was alternating between only two locations each indicating
zero and non-zero target. This was done by changing the conversion ratio
between force and visual target location each time. Protocol 4 was done
using a computer mouse, and did not require force tomaintain the pointing
location. (B) Example of model predictions for these additional protocols.
(1) Error-and-effort model, as an example of a model where target forces
determine the errors: results from all protocols will match with each other
when the target force is the same. (2) Error-and-bias model, as an example
of a model that depends on a target force and the experimental contexts.
Error-force trend changes for each protocol, and we had specific qualitative
expectations for each protocol.
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Figure 4.6: Experimental results of additional protocols and its com-
parison tomodel predictions. Different lines indicate the results of each
protocol. As subsets of Protocol 1 subjects participated in additional tests,
we represented the results ofmatching subjects in Protocol 1 as a thick green
line here, while showing the results of all subjects as a dimmer line. Match-
ing subjects result of Protocol 4 was omitted for simplicity, because the error
was consistently very close to zero for everyone. (A) Protocol 1-reduced
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1 for matching conditions. (B) Protocols 2, 3, and 4 results, in force and vi-
sual domain. Asterisks indicate statistically significant differences between
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(2, 3) models. Error-and-effort model and error-and-bias model were poor
and good predictors of data.
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Protocol 1 – reduced 𝑭 shows that target force alone does not determine

error.

In Protocol 1 – reduced 𝐹 , we tested the lower half range of the force while

keeping the range of the visual target fixed (figure 4.5A). Among our 12 sub-

jects who participated in the Protocol 1 experiment, 6 of them participated

in this additional protocol experiment on the same day.

Results: Testing result shows that force-error relationship was significantly

different between Protocol 1 and Protocol 1 – reduced 𝐹 , but visual target

location – error relationship in general matched quite well between the two

protocols (figure 4.6A).

Protocol 2 and 3 shows that testing order affects the error, and that

visual representation of the target force is not a good descriptor of error.

We tested the same target force range as Protocol 1, but added zero force

reset periods between non-zero force targets (figure 4.5A) to test the order

effect. The difference between Protocol 2 and Protocol 3 was the visual

representation of the target. In Protocol 2, visual representation was the

same as the Protocol 1, i.e., the target location was moved proportional

to the required force. In Protocol 3, targets appeared between only two

locations, the lower one indicating 0 force and the higher one indicating

various non-zero target forces. In this case, the ratio between force and

target representation changed each time a new target was presented. On a

different day fromProtocol 1 testing, 4 participants came back to participate

in Protocol 2 and Protocol 3.

Results: Testing results suggest that visual representation of the target is also
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not a goodpredictor of the force tracking error. Despite different visual target

representations, there were not significant differences between Protocol

2 and Protocol 3 in force-error relationship on all target force conditions

(figure 4.6B). Those force-error relationships were significantly different

from that of Protocol 1 in most of the target force range. The observations

were similar in visual target location–error relationships. Error trends of

Protocol 2 and Protocol 3 were similar to each other, but were different from

that of Protocol 1. We also tested Protocol 2 - reduced 𝐹 and Protocol 3-

reduced 𝐹 conditions, where we tested a smaller range of the forces, while

not changing the mapping between force and its visual representations.

There were no notable differences between Protocols 2 and 3 and their

reduced 𝐹 versions.

Protocol 4 shows that visual bias does not explain the force bias.

We asked subjects to track the target using a computer mouse, so that we

could investigate the errors coming from visual aspects of the task. They

did not need to keep exerting force to keep the mouse position, which is

different from all other protocols where they needed to keep applying the

force until a new target was shown. Eight out of twelve subjects performed

this Protocol 4 experiment on their personal computers.

Results: Participants performed the tracking task almost perfectly. Visual

tracking errors were overall quite small, and the error relationship was again

significantly different from that of Protocol 1 for most of the ranges (figure

4.6B).
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Model with force error and biases captured the experimental results

qualitatively

We reject hypotheses that force or visual representation of the force pre-

dicts force tracking error, as force tracking errors were different for some

protocols even for the same force or same visual target location. Any ob-

jective function model that mainly relies onmere force (e.g., figure 4.6C2)

or visual representation to describe error trend would not be suitable to

describe the observation. Error-and-bias model was better supported by

the data. Error-and-central tendency biasmodel that fits Protocol 1 predicts

the results of additional protocols fairly well (figure 4.6C3). The objective

functions that minimized mean RMS error betweenmean data andmean

model prediction on each force condition of different protocols were as

follows (figure 4.13):

• Error-and-central tendency bias model:

𝐹 ∗ = argmin
𝐹

𝑁∑︁
𝑗=1

error1.7
𝑗

𝑁
+ 0.09𝑑1.55ctr−bias

= argmin
𝐹

𝑁∑︁
𝑗=1

|𝐹target,𝑗 − 𝐹 |1.7

𝑁
+ 0.09(𝐹target − 𝐹 )1.55,

• Error-and-recency bias model:

𝐹 ∗ = argmin
𝐹

𝑁∑︁
𝑗=1

error1.5
𝑗

𝑁
+ 0.15𝑑1.3rec−bias

= argmin
𝐹

𝑁∑︁
𝑗=1

|𝐹target,𝑗 − 𝐹 |1.5

𝑁
+ 0.15(𝐹 − 𝐹0)1.3,

• Error-and-combined bias model:

𝐹 ∗ = argmin
𝐹

𝑁∑︁
𝑗=1

error1.6
𝑁

+ 0.05𝑑1.55ctr−bias + 0.07𝑑1.3rec−bias,
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where 𝐹 ∗ is the prediction of the applied force based on the given objec-

tive function and 𝐹 is the applied force that is to be optimized. 𝐹target,𝑗 is the

force indicated by 𝑗 -th dot in the sub-trial, when𝑁 is the number of dots

presented. Bias-related terms 𝑑ctr−bias is a distance to the "center" of the

targets associated with central tendency bias, 𝑑rec−bias is a distance to the

recent action associated with recency bias. They are determined by 𝐹target,

which is the average (or expected) target force of thewhole trial consisting of

many sub-trials, and 𝐹0, which is the force at the beginning of the sub-trial.

Details of the inverse optimization analysis are described in theMethods

section.
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Changes in target forces describe error trends from all

protocols.

We further investigated how force tracking error is explained by a tendency

to shift towards some point. As we pointed out earlier, the error-target

force relationship (figure 4.7A) and the visual error-visual target location

relationship had distinct patterns for each of the protocols. However, the

expected change in target force (figure 4.7B) and change in target force from

the recent past target (figure 4.7C) better describe errors across different

protocols. These support the idea of people’s tendency to shift towards either

the recent past action or the center of the task. Error-and-effortmodel could

not explain the positive error, but error-and-bias models could explain it:

central tendency bias predicts positive errors on lower-range target forces

as the center of the task is higher than the current force, and recency bias

predicts positive error on lower range target forces as their recent past targets

were on average higher than the current target.

We defined recency bias as a function of 𝑑rec−bias, which is the distance

to the recent past action, and central tendency bias as a function of 𝑑ctr−bias,

which is the distance to the "center" of the targets or the average of the

targets. From their definitions, the average of the 𝑑rec−bias is close to 𝑑ctr−bias

except for the small discrepancies due to the order effect in Protocols 2

and 3. Therefore, models using recency bias, central tendency bias, or a

combination of recency bias and central tendency bias, all yield similar

overall error trends (figure 4.13C). We analyzed sub-grouped data to see

their separate effects, and found that they both seem to exist, which is

presented in the following section.
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Figure 4.7: Error trendswith force, force transition from the recent target,
and expected future force transition. Force tracking error is plotted against
(A) the current target force, (B) distance to the target center from the current
target force, which is the expected transition, (C) distance to the recent
past target force from the current target force, which is the transition from
the past. Shaded areas represent 40 to 60 percentiles of the data at each
condition, and the thick lines represent the median of the data. We showed
visual error of Protocol 4 on the y-axis as a reference, because force error is
undefined. The y-axis is for force error for all other conditions.
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Comparing central tendency bias and recency bias

Changes in target force affect error when the current target force is

fixed.

We grouped data of Protocol 1 – fixed dot target condition to investigate

the recency bias effect. If recency bias does not have a notable effect, sub-

trials that have the same target force will generally have the same errors,

regardless of their recent past target. However, we do see a dependency on

where the force started from, even if the target force is the same (figure 4.8A).

Errors had negative correlations with force change, even when they were

compared against sub-trials that had the same target force.

We considered three types of bias models in the objective function: cen-

tral tendency bias, recency bias, and a combinedmodel that has both biases.

While all three of them do similarly well at capturing the overall error trend

with force, the central tendency bias model does not capture the negative

correlation between force change and errorwhen the target force is fixed (fig-

ure 4.8B). Recency bias and combined model are more suitable to describe

this observation.

Current target force affects the error among sub-trials that underwent

the same change in target force.

Wenow grouped data of Protocol 1 – fixed dot target condition to investigate

the central tendency bias effect. Here, we grouped sub-trials into the same

target force changes, because analysis on the sub-trials that had the same

target forces showed that change in target force affects the force error. If

recency bias alone could explain the observations and central tendency
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Figure 4.8: Protocol 1 sub-trials grouped into same target forces. (A) Av-
eraged force time series grouped based on its recent past target and current
target forces. Brighter and more red colors are for higher previous target
forces, and darker and more blue colors are for lower previous target forces.
(B) Force error as a function of target force change, among sub-trials that
had the same current target force. Each sub-panel is for different current tar-
get forces. The shaded area represents 30, 40, 50 (=median), 60, 70 percentile
data range. Blue, red, and purple lines are predictions using error-and-bias
models with only central tendency bias, only recency bias, or central bias
and recency bias combined.
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forces. (A) Averaged force change time series, where the y-axis is a force
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that had 10%𝐹0 increment, same, or 10%𝐹0 decrement from the recent past
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Blue, red, and purple lines are predictions using error-and-bias models with
only central tendency bias, only recency bias, or central bias and recency
bias combined.
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bias has a negligible effect, groups of data that underwent the same target

force change would have a similar error regardless of the current force re-

quirement. However, we do see a dependency on the current target force

level, whenwe compare sub-trials against other sub-trials that had the same

target force change (figure 4.9A). Errors had negative correlationswith target

force in each of the groups that had the same change in target forces. We

explained this observation in terms of central tendency bias, that people

make positive errors when the center of the task is higher than the current

target force, and make negative errors when the center is lower than the

current target force.

We again considered three types of biasmodels in the objective function:

central tendency bias, recency bias, and a combinedmodel that has both

biases. Since the change of target force is a variable that inherently co-varies

with target force on average, all three models capture the overall error trend.

However, the recency bias model does not capture the negative correlation

between target force and error when the target force change is the same

(figure 4.9B). Central tendency bias and combined model are more suitable

to describe this observation.

Purely visual tasks did not have the biases

We have shown that force or visual target locations alone were not good

descriptors of error, but force bias could be a good descriptor. Then, if an

error could be explained by force bias, there is a chance that it could also

be explained by a visual bias. We therefore investigated whether visual bias

could be an alternative explanation of the error trendwe observed. Since the
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Figure 4.10: Tracking errors in visual domain, comparing Protocol 1 and
Protocol 4. Results from target type of single dot and multiple dots are
shown here. Shaded areas represent 40 and 60 percentile data, and thicker
lines in the middle of the area are the median of the data. We represent
visual error with respect to (A) the current visual target location, (B) the
distance to the center of the visual target, (C) the distance to the recent
past target location. Asterisks in the top row sub-panel indicate statistically
significant differences from zero for both target types separately. There were
no significant differences from zero from Protocol 4.
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visual location of the targetwas proportional to the force in Protocol 1, visual

bias could explain the error trend (figure 4.10 left) as much as the force bias

does. The most striking counterexample is from Protocol 4, where subjects

used a computermouse to track the targets and did not need to exert force to

maintain the pointing location. Although recency bias is commonly studied

in visual tasks, we do not observe clear visual biases from Protocol 4 (figure

4.10 right). Subjects made almost no error for single fixed targets when they

used a computermouse to track the target. When they tracked a vague target

which is a set of multiple dots, overall variability increased, but there was no

significant trend in visual error, and its mean is not significantly different

from 0 regardless of the visual target location.

4.4 Discussion

Wemeasured force tracking errorswhile subjects performed tracking tasks of

various protocols and modeled their behaviors using an objective function

with an error term and force bias term. Our original aim was to measure the

trade-off between task performance and effort, but we needed to include

bias term(s) rather than an effort term in the objective function to explain

the result. The main discrepancy between the observation and our original

expectation was that people made consistent positive force errors in some

ranges, which is not explainable by either effort-saving tendency or error-

reducing tendency. Central tendency bias and recency bias, which means

the tendency to shift towards the center of the tasks and towards the recent

action, seem to explain the data well when combined with an error model.

To our knowledge, these biases in force tracking tasks have not previously
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been observed andmodeled.

In certain modeling scenarios, refining the control objective function,

as demonstrated in this study, can yield significant benefits, while in others,

the advantages may be less evident. The usefulness of such refinement may

depend on the level of detail at which one examines the phenomenon, and

on practical considerations such as computational requirements and ana-

lytical solvability. On the other hand, understanding the human tendency to

make biases while performing motor tasks could have broader applications

in various fields, including human-machine interaction and human factors

engineering. Additionally, exploring the connection between these biases

and neuromuscular disorders could also provide deeper insights into motor

control and hold the potential for various clinical applications, including

diagnosis and rehabilitation.

We initially attempted to model the force tracking error using an effort

model because it is a common expectation that motor control is usually

done in an energetically optimal way. The observation that people apply

more force than needed in the low-medium force range seems to be an

example that people did not optimize for energy, at least during the experi-

ment. However, could it turn out to be energetically cheaper to make such

positive biases? For example, if there is a huge cost associated with force

changes, it could be more efficient to spend slightly more energy onmain-

taining force and save a bigger energy by reducing a force change. Since we

did not directly measure the energetic cost during the experiment, we can-

not conclusively claim that people’s behavior was energetically suboptimal.

However, our speculation is that energy saving is not a primary explanation

of the biases, because 1) the transient cost people save seems to be small
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compared to what they spend throughout the sub-trials while maintaining

the force, 2) usually “fast change” is regarded energetically costly, but people

did not seem to slow down the transient even when there was no explicit

speed requirement, suggesting that transient cost is not of significant con-

sideration, and 3) people often did reach a lower force than the target, and

increased the force to again to make positive force error at the end (figure

4.11).

Undershoots in descending sub-trials (where the current target force

was lower than the recent past target) are particularly interesting because

they provide insights into the underlying reason for the positive force errors.

Overshoots and undershoots that go past the target were quite common

when we looked at individual sub-trials, although they were less obvious

in averaged force transient responses (figure 4.8 and figure 4.9) due to the

large variabilities in both amplitude and timing of the responses between
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sub-trials. In Protocols 1, 2, and 3 full range and reduced range trials, 72-90%

of descending force transients had undershoot of more than 0.2 seconds.

Among all descending transients, 67-85% of sub-trials had positive track-

ing errors at the end. Among descending transients that ended up having

positive errors, 68-86% had undershoot of more than 0.2 seconds. There

were many sub-trials where the force recovered back to a higher force after

an undershoot during descending force transients like the sub-trials shown

here, where it did not seem like an unavoidable by-product of a fast response

due to physiological constraints, nor a strategy to save transient energy. This

suggests that positive biases on low-medium range target forces are not for

energetic advantages but for some other benefits.

Wemodeled force tracking error as an outcome of competing goals of

reducing error and biasing towards a center, but there could be alternative

models to capture the same phenomenon. We used our bias models to

predict errors from additional protocols, but the model is still descriptive

in the sense that we did not test for the underlying mechanism or causality

of such bias. Our description of biases suggests that people tend to reduce

force change, either from the past by making an incomplete shift, or toward

the future by making an anticipatory error towards the expected target.

However, since we have not proven whether the reduction in force change

is the primary cause of the errors, it may turn out to be a secondary change

following another one. It would be interesting for future work to investigate

the causality of the biases.

Including more terms in the objective function model could capture a

broader range of phenomena, but it could also make the inverse optimiza-

tion problemmore underdetermined, potentially leading to an unreliable
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solution. Central tendency bias and recency bias exhibit similar effects on

the overall trend predictions in our experimental designs; thus, one may

not need to model both biases to explain some behaviors, depending on

their goals. We did not particularly design experiments to distinguish these

two biases, and there were multiple sets of solutions yielding similarly good

inverse optimization results (figure 4.13). Our subgroup analysis suggests

that both seem to have an effect, but we do not claim that we quantitatively

verified recency bias and central tendency bias. It would be interesting to de-

sign experiments to further disambiguate the biases that originate frompast

actions and originate from anticipatory actions for the future. For example,

one could design a trial order that cycles through three stages, two random

non-zero target forces followed by one zero target, so that the average past

action is distinct from the average future actions. Even the formulation of

the error-reducing tendencymust have been an oversimplification if the aim

was to closely understand what people perceive as a target. Error function

could have a different form depending on the number of dots presented

as a target, or could take into account how individual subjects subjectively

defined the tasks.

There could be various biases in human motor control, and some of

them could happen immediately without task-specific experiences while

some of themmay need learning of a task. Some of the biases could take

a long time to change their properties, while others may rapidly adapt to

each of the tasks. We assumed that subjects readily had an expectation

of the center of the target when we modeled central tendency bias, but

further research is needed to justify this in depth. We chose to model the

central tendency bias this way because we had speculated that the bias
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does not seem to rely on learning from each trial, because force tracking

errors seemed to happen instantly when testing began, and because we do

not observe clear changes over the course of the trial. However, we do not

have strong evidence to show whether subjects make biases based on their

experience of the trial or expectation of it, or based on the combination

of them or even neither of them. It is conceivable that people may start

making biases based on their prior expectations and refine the expectations

as they havemore experience with the task. It would be interesting to design

experiments that give subjects a more different impression of the task from

its actual composition, and to see which one is a better predictor of the

behaviors.

One of the reasons that biases in force tracking tasks were not commonly

recognized in biomechanics studiesmight be due to the specifics of the com-

mon experimental designs. In biomechanics literature, it is common to 1)

measure force transients that start from rest, and 2) report the absolute value

of the error, which omits the directionality of the error. Researchers some-

times describe that people are less accurate at producing bigger forces. Our

findings suggest that this description might be highly context-dependent,

and there could be a more general description of the phenomenon. Our

error-and-bias model predicts that absolute error is minimized near the

center of the tasks (figure 4.12A), rather thanmonotonically increasing with

the force magnitude. Despite that overall root-mean-squared (RMS) errors

in experimental results were shifted up compared to the model predictions

(potentially due to human variabilities), our model captures the overall

trend of error (figure 4.12B) that had minima near the center of the task.

Our results are still consistent with the previous studies, when we look at
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Figure 4.12: Root-mean-squared error and signal-dependent noise dur-
ing force tracking tasks. For root-mean-squared (RMS) error, we use error
defined as a distance between the mean of the target distributions and the
average force applied during the last 0.5 seconds of the sub-trials. We show
RMS error that (A) model predicted and (B) measured from experiments.
Lines of different colors indicate different protocols and target types. The
target force on the x-axis indicates the mode of the target distributions. (C)
The standard deviation of the higher frequency component of the force,
with respect to the target force. This higher frequency component of force
is referred to as motor noise in some literature, and its dependency on the
target force is an example of signal-dependent noise. Lines of different col-
ors indicate different protocols and target types.
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the non-zero sub-trials of our Protocols 2 and 3, which were always followed

by zero force sub-trials. RMS errors indeed roughly increased with the force

magnitude in these cases. Directionality of the error during these sub-trials

was also consistent with previous studies: we predict and measure negative

errors, and previous studies also usually measured negative force tracking

errors (e.g., directly reported in Todorov (2002), could be inferred from fig-

ures in (Kudzia et al., 2022)). However, what had been usually not measured

and reported in previous studies is that RMS force error during zero force

sub-trials increases again (figure 4.12A), and that people tend to make a

positive error for this range. The RMS error trend was evenmore dramati-

cally different from the monotonic increase when we consider Protocol 1

results, where target forces were not reset to zero force.

This leaves us a question of whether we could truly eliminate order

effects in scientific measurements. As we pointed out, even separating trials

by restingperiods andhaving a “fresh start” could giveus awrong impression

of the phenomenon, because starting from zero is one of the special cases

as well. It would be important to be 1) consistent and clear with what we

measure, 2) recognize that what we observe might be a special case of a

more general phenomenon, and 3) try to distinguish co-varying variables

if possible. For example, force magnitude and force increment co-varies

if tests always begin from zero, but they did not co-vary in our Protocol 1,

and provided us with a more general view of the nature of force tracking

errors. On the other hand, signal-dependent noise, which is defined as the

standard deviation of force after removing a low-frequency component, had

a closer match between trials and seemed to increase with force (figure

4.12C; consistent with Jones et al. (2002)). This quantity seems to be less
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context-dependent than force error, and thus, has a higher chance of being

explained by simpler physiological properties such asmuscle characteristics

or nervous system dynamics. However, what wemeasured could still be a

partial description of a more general phenomenon, as it always is in science.

It was interesting to us that we did not observe a significant bias when

people performed an almost fully visual task (figure 4.10), considering that

many studies on recency bias and central tendency bias are measured from

visual pattern recognition tasks. It is conceivable that humanminds would

have various biases without involving the muscular system. On the other

hand, some biases may be caused by more passive and physical properties

of the body without involving perceptions and judgments, and some biases

might be caused by combinations of them. From studying the biases of

force tracking tasks, we became curious if there is a chance that some of the

perceptual biases could be attributed to motor control biases more than

researchers commonly thought. For example, ocular motor control may

have a similar bias as what we observed in this study that involved arm

muscles, and that could result in a bias in visual sensation. There could be

biases caused during measurement procedures as well, because subjects

were often asked to indicate their perceptionof patterns using somephysical

device by manipulating it, which involves some degree of motor control.

Force bias does not seem to be a commonly recognized phenomenon

in an isolated motor control setting, but we could relate it to a broader

field of motor control. In a singing study, it was reported that people tend

to compress the pitch shifts, and “bad singers” tend to make more such

compression (Pfordresher and Brown, 2007). In speech studies, there is

a windowmodel suggesting that people make minimal shifts between ac-
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ceptable windows of some variables (Keating et al., 1990). Moreover, when

we consider the recency bias in broader terms that people tend to keep

acting similarly, there are more such examples in biomechanics studies. For

example, walk-to-run and run-to-walk speeds are reported to be different

("hysteresis effect in speed for the walk-run transition", Diedrich andWar-

ren Jr (1995)), which is not simply explained by the idea that animals choose

the most economic gait at a given speed. People change their behavioral

mode between one-handed grasping and two-handed grasping depending

on the size of the object, and it is reported that there is an order effect in such

shifts (Frank et al., 2009). Some researchers attribute these biases to the

“economy”, that people save energy by reducing transitions, although this

claim is usually difficult to be directly tested. We hope that an extension of

our current study could give insights into these broader fields of behavioral

studies.

To conclude, we examined which objective function best describes hu-

man force tracking errors. In manymotor control studies, objective func-

tions are modeled to include error and effort terms, typically in quadratic

forms. However, wedesigned an experiment to test themand indeed founda

different formulation. The exponent on the error we foundwas smaller than

2, and bias term(s) were needed instead of an effort term in order to capture

the behavior that was consistent across participants. Our findings on bi-

ases suggest that biological motor control, even in a simple isometric force

production task, can be highly context-dependent, and commonly hypoth-

esized formulation might not be adequate to represent the phenomenon.

As we continue to explore the intricacies of human force control, further

researchmay offer valuable insights into our understanding of humanmove-
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ment behaviors and underlying principles of the nervous system.

4.5 Methods

Experimental procedure

Subjects (𝑁subjects = 12; 4 Female, 8 Male) participated in Protocol 1, and a

subset of them participated in additional studies later. This human subject

research was reviewed and approved by The Ohio State University’s Insti-

tutional Review Board, and all subjects participated with written informed

consent.

Wemeasured elbow height from the ground and subtracted half of the

subject’s forearm length to set a platform height they pressed onto, which

made the forearm angle about 30 degrees below the horizontal line. After

setting the force platform, wemeasured the individualized force target range

𝐹0 by asking the participants to apply a force that they could comfortably

hold for 30 seconds. We encouraged participants to apply reasonably high

force, and reduce it until it felt comfortable to hold. Real-time force feedback

was given on the monitor, and we encouraged them to control the feedback

bar location. Aftermeasuring the force range, we verified again that subjects

could comfortably exert the force for 30 seconds. The process was repeated

until we found the force that the subject was comfortable with producing

for an extended amount of time.

After giving participants a verbal description of the tasks, we provided

themwithpractice trials, whichwere shorter versionsof the trials so that they

could see the test procedure and try the tasks. We introduced different target
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types in turn – fixed single dot, then single dancing dot, and then multiple

dots. The target changed color between blue and red in each sub-trial, and

all participants confirmed that the colors were significantly different for

them. We instructed the participants that the target location changed every

4 seconds with the change of the target color, and asked them to apply force

so that the force feedback bar points to the target. For vague targets, we

told them that the dots are dancing around some fixed point and are not

moving away as long as the color stays the same, and asked them to point

where they perceive as a target from the overall impression of the dots. We

explicitly asked them not to chase individual occurrences of the dots, but

to perceive its center and place the bar there. Participants practiced each

of the target types for at least 5 sub-trials, and we repeated the practice if

subjects desired to do so or were unclear about the task.

Each trial was composed of 74 sub-trials. The first three trials were ex-

cluded from the analysis to make sure that subjects adapted to a different

target type. The following 70 conditions covered all possible combinations

of force level and distribution parameters in a random order, which is de-

scribed in the following paragraph. After these 70 sub-trials that are used

for analysis, the last sub-trial of each trial was 100%𝐹0 one, from which we

checked that subjects were still capable of producing more than 80% of 𝐹0.

4 seconds of 74 sub-trials took about 5 minutes.

We tested 20, 30, ..., 80% of 𝐹0 in Protocol 1, and used distribution pa-

rameter 𝛼 = −2,−1,−0.5,−0.1,−0,+0,+0.1,+0.5,+1,+2 to generate vague

targets, resulting in 7 force levels × 10 distribution parameters = 70 combi-

nations. For the fixed single dot condition, we measured each force level 10

times to ensure the same number of sub-trials. In Protocol 1 - reduced 𝐹 ,
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force levels we tested were 10, 15, ..., 40 %𝐹0. In Protocols 2 and 3, non-zero

forces were 20, 30, ..., 80%𝐹0, and each force level was measured 5 times,

again resulting in a total of 70 sub-trails including zero force periods. In

Protocol 2 and 3 - reduced 𝐹 conditions, non-zero force levels were 20, 25,

30, ..., 50 %𝐹0. Protocol 3 had binary visual target locations, which were the

same as the target for 0 force and 80%𝐹0 in Protocol 2.

We defined the distribution parameter 𝛼 as follows. Positive non-zero

distribution parameters correspond to a shape parameter of Pareto Dis-

tribution truncated between 0 and 5 (Zaninetti and Ferraro, 2008). The

range was scaled to match 10% and 20%𝐹0. We generated distributions of

negative non-zero 𝛼 same as a positive 𝛼, except that the whole distribution

was flipped so that the tail of the distribution goes the opposite way. Two

symmetric distributions were also used: truncated uniform distributionwas

referred to as 𝛼 = −0, and truncated normal distribution that had similar

standard deviation as other Pareto distributions were referred to as 𝛼 = +0

in this study as special cases of skewed distributions.

Six of the subjects had force feedback that went down as they applied

force, and six of the subjects had force feedback that went up as they applied

force. We did so to see if there was a visual bias linked to a vertical direction-

ality. We did not observe a notable difference between the subjects of each

feedback directionality. Each time before the test started, we asked subjects

to place their hands on the platform and relax their armmuscles, try not to

exert active force onto the platform, and let the platform take the weight of

the hands. This hand weight was set to zero force so that participants did

not need to actively spend energy lifting up their hands to match low force

requirements.
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Protocols 1 and 4 involved testing vague targets. In Protocol 1 – dancing

dot target condition, a dot appeared within 10% and 20%𝐹0 range, and in

Protocol 1 and 4 –multiple dots conditions, 240 dots appearedwithin 20%𝐹0.

We tested all target types in a random order two times. Other protocols were

measured once per protocol. Subjects took about 2 minutes of rest between

trials and occasionally took longer breaks as desired.

Data collection and processing

Custom MATLAB software was used to show targets and force feedback

on the screen. A force plate (Bertec Corporation, Ohio, USA) mounted on

the ground was used to collect force data. Force plate data was collected

through a motion capture interface (Nexus, Vicon, Oxford, UK) that was

relayed to MATLAB software. Target and force feedback were updated at

60Hz, which matched the monitor refresh rate. Force was collected at 8

times faster speed, which is 960Hz. Multiple dots changed their horizontal

positions in every frame. The target radius was about 0.7%𝐹0.

The mean value of force during the last 0.5 seconds of each sub-trial

was defined as the steady-state force value, and this value minus the target

force was defined as force error. We normalized force error by 𝐹0. The mean

value of force during the first 0.1 seconds of each sub-trials was defined

as an initial force, and was used to calculate recency bias. To study signal-

dependent noise, we obtained a fast component of the force change by

subtracting a slow frequency response from a faster frequency response.

Fifth-order Butterworth low pass filters with a cut-off frequency of 25Hz and

5Hzwere applied to force data using zero-phasefiltering in order to calculate
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these slow and faster responses. Standard deviation of this fast component

during the last 0.5 seconds was reported as a "noise" to investigate signal-

dependent noise (figure 4.12).

Protocol 4 - test using a computer mouse with negligible

forces

CustomMATLAB software was used to conduct tests of Protocol 4. We kept

the testing interface as similar as possible to other protocols, except that

the vertical position of the horizontal bar that used to indicate the applied

force was changed to indicate the vertical position of the mouse pointer on

the screen. The cursor was hidden and subjects could only see the height of

the horizontal bar as they moved the computer mouse.

We used a MATLAB callback function that responded to mouse position

changes. Trials were similar to those of Protocol 1, in terms of test duration

and conditions. We tested a fixed single dot and multiple dots using this

interface. Unlike Protocol 1, multiple dots did not change their horizontal

locations in Protocol 4, because we could not guarantee a constant refresh

rate through the interface we employed. We recorded the time and posi-

tion of the mouse pointer each time there was a change. Clicking was not

required to perform the task.

Predictions for additional protocols based on the bias

terms.

We considered two types of biases in this paper. Predictions of the force

tracking error based on central tendency bias and recency bias are as follows.
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Predictions based on central tendency bias. Wemodeled a tendency to

shift towards the "center" of the tasks, where “center” was defined as

the mean of the target forces throughout the trial. The mean of the

tasks in Protocol 1 was 50%𝐹0, and themean of the tasks in Protocol 1-

reduced𝐹 was25%𝐹0. Using thismodel, weexpected that errorswould

in general cross 0 around these force levels in each of the protocols. In

Protocol 2 and 3, since half of the sub-trials were at 0%, the mean of

the targets was 25%𝐹0. We expected that zero force sub-trials would

have positive errors, and non-zero force sub-trials would have more

negative errors as the target force increased. We used the same center

for Protocols 2 and 3 – reduced 𝐹 , because subjects were unaware of

the reduced force range.

Predictions based on recency bias. We modeled a tendency to shift to-

wards the recent past action. In Protocol 1 and Protocol 1-reduced

𝐹 , the prediction based on the recency bias model was that lower tar-

get forces would have positive errors, because their recent past force

is higher than their current forces on average. Similarly, the predic-

tion on higher forces was that they would have negative errors, and

medium-range forces would have errors near zero. This distinction

of low, medium, and high forces was all relative to the force range

of each trial in this bias model. Similar to the central tendency bias

model, we expect that errors would cross zero near 50% 𝐹0 and 25%

𝐹0 respectively for Protocol 1 - full range and reduced 𝐹 conditions.

In Protocols 2 and 3 where there were zero reset periods, we expected

that zero force sub-trials would have positive errors because their
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recent past forces were always higher than the current force. Similarly,

we expected that non-zero sub-trials would have more negative error

as the target force increased, because their recent past forces were

always zero. Protocols 2 and 3 – reduced 𝐹 were expected to have

similar error trends as their full 𝐹 range versions. The only difference

could be on zero force sub-trials, because their average distance to

the recent past target was smaller in reduced range protocols than in

full-range protocols, thus resulting in a slightly smaller positive error

on zero force sub-trials.

Both central tendency bias and recency bias models predict similar overall

error trends because their expected values are similar to each other. Both

models predict that neither error-target force relationship, nor visual error-

visual location relationship will be consistent across different protocols,

because bias is dependent on force and the context of the experiments. In

addition, both bias models predict that there is a bias in the force domain,

not in the visual domain; thus, we predicted that Protocol 4 will not have

such bias because the task does not require maintenance force.

Inverse optimization

We did grid search to perform inverse optimization to select hyperparam-

eters of objective function models. We used a similar mathematical for-

mulation to represent both central tendency bias and recency bias, which

was:

𝐹 ∗ = argmin
𝐹

𝑁∑︁
𝑗=1

error𝑝
𝑗

𝑁
+ 𝑏𝑑

𝛽

bias,
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where 𝐹 ∗ is the prediction of the force which minimizes the given ob-

jective function, errorj is absolute distance between 𝑗 -th dot and the force

applied, summed over number of target dots𝑁 . 𝑑bias is absolute distance

from the applied force to the bias center. It is the distance to the perceived

average of the target forces for central tendency bias, and distance to the

initial force at the beginning of the sub-trial for recency bias.

We searched for error exponents 𝑝 between 1.4 and 1.9 range by the

increments of 0.1, biasweightings𝑏 between0.01 and0.25by the increments

of 0.01, and bias exponent 𝛽 between 1 and 2 by the increments of 0.05.

For each combination of these hyperparameters, we calculated the model

prediction of each sub-trials. The model predicts the forces that minimize

the given objective function. To avoid local minima issue and to improve

the computational efficiency, we evaluated the objective function within

±30%𝐹0 around the target by the increments of 0.05%𝐹0, and found the

minimum value among them.

After calculating predictions for each sub-trial and each combination

of hyperparameters, we selected the set of hyperparameters that produced

a similar error-force relationship as the experimental results. Since error

trend we aimed to model was in a relatively small magnitude compared to

large inter-subject and intra-subject variabilities, we selected an objective

function that captures the overall behavior. The objective functions that

minimizedmeanRMSerror betweenmeandata andmeanmodel prediction

on each force condition for the entire protocols were:
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• Error-and-central tendency bias model:

𝐹 ∗ = argmin
𝐹

𝑁∑︁
𝑗=1

error1.7
𝑗

𝑁
+ 0.09𝑑1.55ctr−bias,

• Error-and-recency bias model:

𝐹 ∗ = argmin
𝐹

𝑁∑︁
𝑗=1

error1.5
𝑗

𝑁
+ 0.15𝑑1.3rec−bias.

After performing inverse optimization on the central tendency bias

model and recency bias model separately, we confirmed that they indeed

have a similar formulation and have a similar effect of the force error pre-

dictions. We performed an inverse optimization on a combined bias model

while keeping some of the hyperparameters fixed based on these results.

We chose to fix some parameters to avoid overfitting, because we have con-

firmed that two biases have similar effects on the overall results, and human

data is already very noisy.

We scanned the error exponent𝑝 between 1.4 and 1.9 by the increments

of 0.1, while changing two bias weightings between 0.01 and 0.25 by the

increments of 0.01. The bias exponent 𝛽 was fixed to the optimal value that

was found earlier. The objective function that minimized RMS distance be-

tween mean data and mean model predictions on error-force relationships

was:

• Error-and-combined bias model:

𝐹 ∗ = argmin
𝐹

𝑁∑︁
𝑗=1

error1.6
𝑁

+ 0.05𝑑1.55ctr−bias + 0.07𝑑1.3rec−bias.
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4.6 Appendix
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Chapter 5

Conclusion

흔들리지않고피는꽃이어디있으랴.

No flower blooms without wavering.

도종환,흔들리며피는꽃

Poem by Jong-Hwan, Do.

5.1 Findings from the three studies

In the previous three chapters, each describing a distinct study, I inves-

tigated optimality with respect to the multiple objectives and trade-offs

between them during motor control and pattern recognition under uncer-

tainty. Optimization and inverse optimization analysis were used to study

what principles may explain biological movement control.

The study presented in Chapter 2 was based on a complex model that

represents a whole goal-directed movement. The control objectives that

were considered in this study – root mean squared estimation error, mean

time between falls, step length variability, and mechanical cost of transport
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– were all represented in commonly used formulations. In contrast, the

studies presented in Chapters 3 and 4 delved more deeply into the formula-

tions of objective functions using simpler settings. Chapter 3 focused on the

perception of visual targets, while Chapter 4 examined the isometric force

production, which also involved the perception of visual targets. In Chapter

3, we found huge variability and systematic behavioral shifts associated

with data sparsity, unlike widely adopted error models. In Chapter 4, we

found that even a simple motor control task like isometric force production

could not be fully explained by a commonly used objective function model

that incorporates energy minimization. Our alternative model, incorporat-

ing recency bias and central tendency bias, suggests that biological motor

control is highly context-dependent andmay have more nuanced aspects

than previously assumed.

In Chapter 2, I used a biped walking model simulation to demonstrate

the effect of motor noise and sensor noise on the optimal locomotor control

circuit. Integration of neural pattern generator and sensory measurements

was optimized to have minimum state estimation error. Such optimization

also resulted inoptimal performance in termsof energy efficiency, variability

reductionand fall prevention. Changes in the relative amount ofmotornoise

and sensor noise shifted the optima systematically.

In Chapter 3, I designed a visual pattern recognition task to study how

humans perceive noisy visual targets and performed inverse optimization

on themeasurement. Objective functions similar to what is commonly used

in statistics andmachine learningfields could capture general behaviors and

systematic shifts in the behaviors. As the sparsity of the noisy information

decreased, or as the amount of information increased, participants tended
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to reduce small and prevalent errors at the cost of increased large and scarce

errors. The inferred loss function describing human behavior also changed

systematically with the data sparsity.

In Chapter 4, I extended the task in Chapter 3 and tested how human

subjects performed force tracking tasks when the force target was presented

with visual noise of varying degrees. Increased noise in the target induced

higher force tracking errors in both over-exerting and under-exerting ways,

depending on the force requirement. This force tracking error was not

explained by optimization models that minimize error, efforts, or a combi-

nation of them. Rather, an objective function that balances error-reducing

tendency and force bias tendency could explain the observation fairly well.

This force bias tendency was modeled as a tendency to move towards the

recent past action or towards the expected future action. This bias was not

readily explained by a tendency to save energetic costs, nor by a perception

bias.

5.2 Discussion

I showed that optimization and inverse optimization could be used to de-

scribe motor control under uncertainty. However, being able to express

behaviors as an optimization problem does not mean that there is neces-

sarily a neural circuit that evaluates andminimizes the objective function.

Nonetheless, it still provides us useful insights into understanding biologi-

cal motor control and ideas for future studies. Whether such optimization

frameworks areuseful for designing simulationmodels and robot algorithms

depends on the context. For instance, robotsmay not need tomake a similar
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force tracking bias as humans do, especially when its benefit is unclear, but

some robots may benefit from having a model of human biases when they

are designed to collaborate with humans.

Optimality and suboptimality could sometimes be dependent on how

closely we look at a phenomenon. Shifts in behaviors that I described in

Chapters 3 and 4 could be negligible in some contexts, while they could

result in a significant difference in other contexts. Walk-to-run and run-

to-walk transition happens roughly at the speeds predicted by metabolic

energy minimization, but the average transition speed is systematically

slightly lower than what energy minimization would predict (Abe et al.,

2019; Kung et al., 2018). There seems to be an order effect too – reducing

speed from running and increasing speed fromwalking has close, but dif-

ferent transition speed (Diedrich andWarren Jr, 1995). If someone needs

to accurately predict the transition speed, metabolic cost minimization is

an incomplete descriptor of the phenomenon; however, it could be ade-

quate for qualitatively capturing the general principle of locomotion across

species. In a previous study where optimal step frequency for a given walk-

ing speed was altered through an exoskeleton that was responsive to step

frequency, researchers found that their human participants chose to alter

their walking accordingly only after being instructed to experience the con-

dition (Selinger et al., 2015). Some people may regard it as an example that

humans do prefer energetically optimal gait, but others may regard it as a

counterexample of the energy minimization hypothesis.

Sometimes multiple objectives co-vary, so optimizing for one could

nearly optimize for other measures too. Symmetric gait could be also en-

ergetically cheaper in healthy subjects (Ellis et al., 2013). Peak force could
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be reduced while average force is reduced in a reasonable mode of gait.

In Chapter 2, optimizing for minimum state estimation error also yielded

optimal gait in terms of other performance measures. Gait adaptation on

a split-belt treadmill, which operates at different belt speeds for each leg,

was commonly explained by improving the symmetry (Reisman et al., 2007),

but some researchers claim that this coincided with a path of minimizing

metabolic cost up to some degree, and people further change their gaits to

become less symmetrical but more energetically efficient (Sánchez et al.,

2019) after they became symmetric. Sometimes it is not useful to distin-

guish what was the true cause of some phenomenon between co-varying

objectives, but if needed, experiments should be designed so that normally

co-varying quantities can be separated. In either case, to understand bio-

logical control objectives and behaviors, it would be important to be aware

of a potential confusion between causality and correlation.

There also could bemore general versions of somemotor controlmodels.

For example, minimizing metabolic energy expenditure is a useful explana-

tion of many biological movement behaviors, but stated without additional

context and caveats, it contains an inherent dilemma because it is actually

most energy-saving not to live at all. However, it could be a special case of

a more general survival strategy: animals collect food while saving energy

so that they can eat before they starve to die (Schoener, 1971; Krebs et al.,

1974), and they can carry on with life. Some of seemingly unexplainable

behavioral traits could even be byproducts of pursuing other more sensible

objectives, or they may rise because an objective function has the problem

of extrapolation outside of its normal working range. Force bias towards the

recent past target or towards the expected target which I studied in Chapter
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4 is plausible in some sense, when we consider that our mind often stays in

the past or in the future. Reflection and anticipation might be useful tools

for survival in a broad sense, but they often interfere with the execution

of the current task and seem to be suboptimal at least in the short term.

Similarly, somewhat analogously, addiction issues are believed to arisewhen

addictive drugs “hijack” reward circuits in the brain, which is essential for

the normal operation of humans and animals when it functions with life’s

normal rewards (Volkow andWise, 2005; Kauer andMalenka, 2007; Elman

et al., 2013).

The considerations mentioned above might be addressed in future stud-

ies. Investigating the direct causality between the behavioral changes and

objective functions that describe the behavior would be an interesting fu-

ture work. Amore generalmodel ofmotor control which could be applied to

a broader field would be useful. However, since overly general models could

be hard to falsify while also not useful at predicting or explaining things, it

may be important to have a structured view of the scopes and limitations of

each model.
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