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Abstract 

 

Geophysical inversion involves determining the subsurface properties of the earth by analyzing 

geophysical data. Conventionally, geophysical inversions have encountered several challenges 

including non-unique solutions, nonlinearity, low-resolution and noisy data analyses, mandatory 

constraints and simplifications, computational costs, and subjective interpretations. Addressing 

these challenges necessitates the development of advanced inversion algorithms to enable a more 

comprehensive and robust analysis of subsurface properties.  

Implementing deep neural networks, this thesis conducts nonlinear inversions of gravity and 

magnetic data for subsurface modeling by learning complex patterns and relationships in large 

training datasets. Nevertheless, a key challenge lies in the scarcity of large-scale training datasets 

required for the intelligent inversion problem. To address this issue, a novel technique has been 

developed to simulate geopotential datasets that represent the characteristics of real-world 

subsurface properties and their corresponding geopotential data. The technique's adaptability to 

diverse subsurface complexities allows for more comprehensive and accurate nonlinear inversion 

of geopotential data.  

The dataset simulation technique adopts forward modeling to visualize the subsurface into 

crustal layers and incorporates physic-based constraints into the process. To ensure 

comprehensive coverage of geological complexities in the forward models, the technique 

incorporates multiple structural parameters. This results in randomized changes in the 

topography and depth of the subsurface layers.   The forward model simulations are followed by 

calculating their synthetic gravity and magnetic anomalies. The final training dataset is created 

by putting together the calculated gravity and magnetic anomalies of the forward models as input 

features and the topography of the subsurface layers as labels.  

The application of the proposed technique is practiced on airborne gravity and aeromagnetic 

anomalies offshore Abu Dhabi, United Arab Emirates. Using simulated datasets, several deep 

neural network models are trained to implement inversion of gravity anomalies, inversion of 

magnetic anomalies, and joint inversion of gravity and magnetic anomalies. The performance of 

the models is evaluated on actual and noise-added synthetic gravity and magnetic anomalies. By 

leveraging the trained models, the salts and basement structures are investigated, providing 

valuable insights into the geological structures of hydrocarbon reservoirs in this region. 
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1. Chapter One: Introduction 
 

1.1 Research Background 

Geophysical inversions apply the principles of physics and mathematics to transform 

geophysical data into models of subsurface properties (Camacho et al., 1999; Chunduru et al., 

1997; Grana, 2020; Lines and Trei℡, 1984; Oldenburg and Li, 2005; Sambridge, 1999; 

Sambridge et al., 2022; Tarantola, 2005). Such models are useful for mapping geological 

anomalies; for example, to identify potential reservoirs in oil and gas exploration. Depending on 

the choice of geophysical data and inversion technique, geophysical inversion can estimate a 

wide range of subsurface properties (Menke, 2018), for instance:  

• Physical properties: density, magnetic susceptibility  

• Structural properties: location and geometry of geological features such as sedimentary 

strata, basement structures and hydrocarbon reservoirs. 

When applying geophysical inversions, it is important to bear in mind the associated 

challenges listed below:  

• Geophysical inversion solutions are nonunique-i.e., different models can explain the 

observed data equally well. 

• Accuracy and resolution of inversion results are affected by the physical formulation and 

quantity and quality of the geophysical data. 

To address the issues listed above, inverse problems need to be constrained or simplified, 

which by itself may lead to further uncertainties in the solutions if not attentively carried out . 

As briefed below, a variety of geophysical inversion techniques have been developed to solve 

ill-posed inverse problems: 

• Regularization techniques apply constraints and smoothness to the problems to reduce 

non-uniqueness and avoid overfitting (Constable et al., 1987; Guillemoteau et al., 2022; 

Li and Oldenburg, 1996; Zhdanov, 2002).  

• Bayesian inversion uses Bayes' theorem to compute a posterior distribution of the model 

parameters given the data. This involves specifying a prior distribution on the model 
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parameters and computing the likelihood of the data given the model (Grana, 2020; 

Izquierdo et al., 2020; Malinverno, 2002; Nawaz and Curtis, 2019; Sen and Stoffa, 1996).  

• Joint inversion techniques conduct simultaneous inversion of different types of 

geophysical data to create more accurate solutions of the subsurface properties (Carrillo 

et al.,  2022; Fregoso et al., 2020; Gallardo and Meju, 2007; ; Lin and Zhdanov, 2018; 

Gross, 2019; Haber and Oldenburg, 1997; Kabirzadeh et al., 2021) 

The conventional inversion techniques listed above are based on direct mathematical and 

physical concepts and functions/calculations, making them prone to subjectivity and 

computational complexity, especially when dealing with large-scale datasets. Categorized under 

Artificial Intelligence (AI), Machine learning (ML) has introduced new approaches to 

geophysical  processing and interpretation. ML techniques can learn the patterns and 

relationships that exist within large datasets and, often, provide more accurate results faster. As 

summarized below, ML techniques have been applied to a variety of geophysical datasets, 

including seismic, electromagnetic, and gravity data.  

Neural networks (NNs) in geophysical applications are discussed in  van der Baan and Jutten 

(2000). They described techniques to improve the performance of static and feedforward neural 

networks such as choice of neural network architecture, suitable preprocessing techniques, 

training algorithm and generalization measure, and configuration estimation. Following, they 

illustrated the performance of these techniques for the detection and extraction of reflections, 

ground roll, and other types of noise in a deep seismic reflection experiment. 

Reservoir Characterization (RC) involves estimating petrophysical parameters of a reservoir, 

such as density, porosity, permeability, and water saturation, using well logs and seismic data. 

The heterogeneity of the subsurface makes it challenging and inefficient to estimate RC solely 

from well data. Seismic attributes provide information about the lateral variation of reservoir 

properties, making them valuable for RC prediction. In the study by Alfarraj and AlRegib 

(2018), Recurrent Neural Networks (RNNs) are used to train a model that approximates the 

functional relationship between seismic and log data. This involved using known reservoir 

properties and physical parameters from well data and seismic attributes at well locations to 

estimate density and p-wave impedance using artificial neural networks (ANNs) (Mohaghegh et 

al.,1996), Support Vector Machines (SVMs) (Akande et al., 2015; Anifowose et al., 2015), 

conventional computational intelligence techniques and hybrid intelligent systems (Anifowose et 
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al., 2017). Machine learning techniques have been utilized in the detection of faults in seismic 

traces. Zhang et al. (2014) discussed an automated fault detection technique applied to pre-

migrated seismic data. They constructed velocity models with varying fault parameters to 

generate a set of seismic traces. An ML classifier is then trained using these seismic traces to 

predict the presence or location of faults in unseen traces. In a study by Xiong et al. (2018), a 

Convolutional Neural Network (CNN) was employed to train a model using annotated seismic 

image cubes derived from field data. The training data was created by interpreters who label each 

point in the seismic image as either a fault or a non-fault feature. The trained CNN model is then 

used for fault detection in unseen seismic data. Araya-Polo et al. (2017) addressed the challenge 

of labeling fault locations by a limited number of domain experts, which can be impractical. To 

overcome this limitation, they generated synthetic 3D velocity models containing fault structures 

related to hydrocarbon reservoirs. From these synthetic models, thousands of random models 

were generated, and their corresponding seismic traces were derived using wave equations. This 

approach enables the creation of a larger dataset for training ML algorithms. 

Seismic data interpolation is a technique used to reconstruct missing traces in sparsely 

distributed seismic records. Jia and Ma (2017) proposed the use of Support Vector Regression 

(SVR) for seismic data interpolation. They defined a regression hyperplane that relates the input 

data with missing traces to output completed data. The SVR technique is used to find the optimal 

regression hyperplane, which can then be utilized to interpolate the under-sampled seismic 

traces. 

Microseismic methods have applications in different geoscience areas such as hydraulic 

fracturing monitoring, reservoir characterization, geothermal studies, and underground mines 

(Eaton., 2018). Zhang and van der Baan (2019) proposed a denoising method using an 

unsupervised learning algorithm and the Indian Buffet Process. The approach was learning a 

dictionary from the noisy data, which may contain missing traces. The signal of interest is then 

obtained by multiplying the dictionary with sparse coefficients derived from the Markov Chain 

Monte Carlo technique. (Chen, 2020) addressed the challenge of noise in arrival picking for 

weak microseismic or earthquake events.  They applied ML to the recognition of seismic 

waveforms within the data. The fuzzy clustering algorithm clustered the time samples into 

waveform points and non-waveform points. 

Since the early 1990s researchers have applied ML for geophysical inversion:  
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(Raiche, 1991) explored the application of ANNs as an adaptive pattern recognition paradigm 

to the inversion of geophysical data. They presented a philosophical exploration of adaptive 

pattern recognition paradigms for geophysical data inversion. It emphasized the adaptive nature 

of adaptive pattern recognition methods and their ability to handle incomplete data, noise, and 

data distortions. The application of adaptive pattern recognition to inversion was discussed 

within the context of NN implementations, considering input and output space representation 

concepts. The paper concluded that NN paradigms have reached a sufficient level of capability to 

warrant further research into implementing adaptive pattern recognition methods for geophysical 

inversion. 

(Röth and Tarantola, 1994) used a NN to invert seismic reflection data for 1-D velocity 

models. The NN was designed to take a synthetic common shot, which is a set of seismograms 

obtained from a single seismic source, as its input pattern. The objective is to compute the 

corresponding one-dimensional large-scale velocity model as the network's output. 

The research conducted by Devilee et al. (1999) addressed the application of NNs to solve 

nonlinear inverse problems in geophysics. Specifically, the study focused on determining the 

crustal thickness from surface wave velocities and obtaining a full posterior distribution of the 

crustal thickness. The paper discussed the advantages and limitations of using NNs for solving 

nonlinear inverse problems. Spichak and Popova (2000) investigated the 3-D inversion of 

geoelectric data by incorporating three layers of ANNs. Their synthetic model is composed of a 

dipping dyke in the bottom layer of two-layer earth in contact with the overburden. The model 

parameters were related to the dimensions and conductivity contrast of the dyke. They trained six 

ANNs, each having one output neuron corresponding to each model parameter. Then, they 

assessed the performance of the ANNs models on different hyperparameters.  

ANNs are also applied to the geophysical inversion of vertical electrical sounding and seismic 

waveform data to obtain formations’ resistivities and layer thicknesses (Calderón‐Macías et al., 

2001). The authors employed a two-layer feedforward neural network that was trained to predict 

earth models based on measured data. The training of feedforward neural networks involved 

using the back-propagation algorithm and a hybrid back-propagation-simulated-annealing 

method for the vertical electrical sounding and seismic inverse problems, respectively. 

In their paper, Meier et al. (2007) presented a NN approach for inverting surface wave data to 

estimate the global model of crustal thickness along with corresponding uncertainties. The 
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authors proposed modeling the a posteriori probability distribution of Moho depth using a 

mixture of Gaussians, with the parameters of the mixture model determined by the outputs of a 

conventional NN. The NN was trained on a set of random samples to approximate the inverse 

relation in a compact and computationally efficient manner. The trained NNs were applied to 

real data, specifically fundamental mode Love and Rayleigh phase and group velocity maps. 

The research paper by Das et al. (2018) explored the application of surrogate regression 

modeling for rapid seismogram generation and detection of microseismic events in 

heterogeneous velocity models. The study focused on the application of surrogate regression 

modeling using machine learning techniques to overcome the computational expense of solving 

the elastic wave equation. Synthetic simulations of forward seismic shots are conducted using a 

pseudo-spectral solution of the elastic wave equation on Graphics Processing Units (GPUs). 

These simulations served as the training data for the surrogate models, which were trained using 

machine learning techniques. 

Following the classic research cases briefed above, recent studies explore further premises 

such as Deep Neural Networks (DNNs) and CNNs. In their paper, Puzyrev (2019) investigated 

the application of deep learning methods for electromagnetic inversion and proposed an 

approach for 2-D inversion based on fully CNNs. The training data set was generated by fully 

3D simulations of models with different 2D resistivity anomalies.  

(Yang and Ma, 2019) proposed a method for building velocity models from raw seismograms 

using a supervised deep fully CNN. They believed that the method eliminates the need for 

human interaction and quality control, and it is faster than traditional methods like tomography 

or full-waveform inversion. The deep-learning method was used to extract multilayer features 

automatically without the need for an initial velocity setup.  

(Hu et al., 2021)) used DNNs to obtain the distribution of orebodies from the inversion of 

magnetic data. The authors used DNNs to recover the distribution of physical properties of 

buried magnetic orebodies from surface and airborne magnetic anomaly data. Two DNN 

structures were tested to assess the feasibility and generalization of the proposed method using 

two-dimensional (2D) synthetic examples. They believed that the predicted distribution of 

magnetization intensity obtained exhibits higher concentration and better resolution in 

determining the boundary of the magnetic body compared to conventional methods. 
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In another notable study, (Guo et al., 2021) created 3D images of subsurface geological 

structures by using CNN and regression models for the inversion of magnetic data. Using the 

PyNoddy library, they created a dataset comprising sample images of geological structures 

including faults and folds. CNN architecture was also been implemented for the 3D inversion of 

gravity data. The dataset was used to train their CNN model which was then applied to synthetic 

and real magnetic data.  

In their study, Moghadas (2020) demonstrated an approach based on deep learning inversion 

via CNN to estimate subsurface electrical conductivity layering from electromagnetic induction 

data. The fully convolutional network was trained on a large synthetic data set generated using a 

1D electromagnetic induction forward model. The accuracy of the model was assessed through 

various synthetic scenarios and was applied to real-world electromagnetic induction data. Huang 

et al. (2021) demonstrated the 3D density distribution of subsurface anomalies by conducting a 

sparse inversion of gravity data derived from image segmentation. They used the random walk 

method to simulate different geological models required to create the training set. Zhang and 

Curtis (2021) elaborated on the advantages of invertible NNs over neural mixture density 

networks as an alternative approach for solving geophysical inverse problems. They incorporated 

data uncertainties as additional model parameters and trained the network by maximizing the 

likelihood of the training data. The method was applied to two imaging problems: one-

dimensional surface wave dispersion inversion and two-dimensional travel time tomography. 

The results were then compared to those obtained using Monte Carlo methods and mixture 

density networks.  

(Rasht-Behesht et al., 2022) proposed a new approach to solve the wave propagation and full 

waveform inversions (FWIs) using physics-informed neural networks (PINNs) and tested the 

method with both forward models and full waveform inversion case studies. They believed that 

PINNs can solve wave propagation and FWIs by relying on information from governing partial 

differential laws when there is limited data available and can perform inversions with multiple 

events with limited additional memory or computational cost.  

Inversion of large-scale geophysical data is a computationally challenging task. The 

conventional inversion techniques require gradient calculation of excessively large matrices. 

Based on the applied search algorithms, optimization methods are categorized as local or global 

techniques. Local optimization (or deterministic) algorithms start from an initial point and search 
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the misfit function downhill to find the minimum. The success of the algorithm to find the global 

minimum is dependent on the starting model. The deterministic methods are based on computing 

the gradient of misfit functions. Some of these algorithms are conjugate gradient, Newton’s 

method and quasi-Newton methods that approximate the Hessian with past gradients. Global 

optimization (or stochastic) methods, unlike local minimum search approaches, seek the whole 

model space to find the global minimum thus well suited to quantify large data sets and estimate 

uncertainties However, the computational cost of probabilistic analysis is notoriously high 

especially when searching for large model spaces (Sen and Stoffa, 2013).   

All this motivates the development and practical use of new inversion methods that have 

modest computational demands while being robust and efficient. 

1.2 Research Objectives 

Conventional inversion techniques rely on mathematical and physical models to interpret the 

data. These methods can often be computationally expensive and require expert knowledge of 

the underlying physics and the ability to interpret the implications of the inverted parameters 

within the context of the problem. Geophysical inversion using ML techniques presents a 

promising alternative with several notable advantages. ML-based approaches have the capability 

to learn intricate nonlinear patterns and relationships within extensive datasets. This allows for 

faster and more accurate results compared to conventional inversion methods. ML inversion 

differs from conventional one in that it does not explicitly rely on physics-based models to 

interpret the data. Instead, ML techniques aim to learn the underlying patterns and relationships 

directly from the data itself, without explicit knowledge of the physics governing the system. 

Therefore, the physics is indirectly captured through the training data. 

Despite the potential advantages of using ML techniques for geophysical inversion,  several 

challenges need to be addressed: 

• Data quality and quantity: One of the most significant challenges is the lack of high-

quality data to train ML models.  In geophysical inversion, ensuring data integrity, 

accuracy, and sufficiency becomes crucial for reliable ML model training. 

Data integration: Simultaneous interpretation of multiple geophysical data types can be 

challenging and computationally expensive. Joint inversion involves integrating multiple 

geophysical datasets. A significant challenge is effectively combining these diverse datasets, 
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which often have different resolutions, sensitivities, and uncertainties. The ML algorithms used 

for joint inversion need to be efficient and scalable to handle the larger dataset and the increased 

computational requirements. This thesis addresses the challenges associated with geophysical 

inversion using ML techniques. It introduces a novel data simulation technique, applies DNNs 

for joint inversion of gravity and magnetic data, and develops a comprehensive software package 

for implementation and visualization. The thesis contributions provide a valuable framework for 

enhancing the accuracy and efficiency of geophysical inversion and offer insights into the 

subsurface structures for hydrocarbon exploration purposes in offshore UAE. 

Some of the main objectives of this thesis are as follows: 

• A novel technique is developed for simulating datasets required for DNN inversion of 

gravity data, inversion of magnetic data, and joint inversion of gravity and magnetic data. 

This flexible and adaptable technique allows for the simulation of large volumes of data 

in a short period of time, mitigating the issue of limited training data. The flexibility of 

the technique lies in its ability to accommodate diverse subsurface complexities. 

Moreover, the technique allows for parameter exploration and configurations based on 

the complexity of the subsurface such as the number of geological layers, presence of 

anomalies, and choice of priori parameters. One notable aspect of this technique is its 

flexibility, which allows for the simulation of diverse datasets across different 

geophysical methods. Whether it is gravity data, magnetic data, or a combination of both 

• DNN inversions of gravity data and magnetic data are implemented to model the 

topography of basements adopting the dataset simulation technique.  

• Addressing the challenges of combining multiple geophysical data, the joint inversion of 

gravity and magnetic data using DNNs is conducted to reduce the ambiguity and 

uncertainty of the inversion solution. The performance of the DNN models is evaluated 

on noise-free and noise-added data, ensuring the robustness of the proposed technique. 

• To facilitate the implementation and usage of the developed technique, a comprehensive 

software package is developed and published (https://github.com/zara-

ashena/GrvMag_DnnInv.git). This software package handles various aspects, including 

data simulation, DNN model training, model predictions, and visualization. It offers the 

flexibility to incorporate new data and test different hypotheses, providing a versatile tool 

for researchers and practitioners in the field. 
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• The application of proposed techniques has been applied to interpret the subsurface 

structures over hydrocarbon reservoirs in offshore United Arab Emirates (UAE). The 

main objectives include mapping the sedimentary stratum, determining the depth to the 

crystalline basement, delineating the surface of salt bodies, and predicting regions with a 

higher potential for hydrocarbon reservoirs.  

By addressing the challenges and developing a robust and adaptable technique, this research 

contributes to the advancement of geophysical inversion using ML methods and provides 

valuable insights into hydrocarbon exploration and resource assessment in study regions. 

1.3 Thesis Outline 

The workflow of this thesis is summarized as follows: 

Chapter one serves as an introduction, providing a background of the research objectives and 

outlining the content covered in subsequent chapters. 

Chapter two delves into the geological setting of the study area, offshore Abu Dhabi, UAE. It 

explores the evolutionary history of the Arabian Plate and discusses the structures of its salts and 

basement. Additionally, this chapter provides an overview of the available airborne gravity and 

aeromagnetic data, including their coverage and resolution. 

Chapter three introduces an innovative technique employed in this research to identify 

potential hydrocarbon reservoirs. Datasets are created using gravity data, magnetic data, and salt 

thickness information from offshore Abu Dhabi, UAE. ML techniques, such as clustering, 

logistic regression, and neural networks, are implemented on the dataset. Initially, a clustering 

approach is applied to partition the oil field regions into two areas with low and high 

hydrocarbon potential. The resulting clustered data are then used to train logistic regression and 

neural network classifiers, which are subsequently utilized to make predictions on unseen 

regions. 

The principles of DNNs are explained in chapter four. The traditional inversion is compared 

to DNN inversion. The feedforward perceptron is used to construct the DNN architecture. For 

the DNN model to be trained, a set of hyperparameters need to be configured, including: the 

number of hidden layers and the units in each layer; an initializer to start the random weights of 

the layers; an activation function; the optimizer and its parameters including the learning rate; the 

regularization technique to avoid overfitting the model; and a loss function to measure the 
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difference between the network outputs and the actual labels. The chapter provides 

comprehensive descriptions of the DNN model architecture, training procedure, hyperparameter 

fine-tuning, and model evaluation. 

Chapter five of this thesis presents the novel technique of dataset simulation required for the 

DNN inversion of geopotential data. Forward models are designed based on the target subsurface 

modeling objectives and are partitioned into two- or three-layers representing sediments, salts, 

and the basement. These layers are created by assembling rectangular prisms that are isolated 

from their surrounding geological environment. The forward model incorporates predefined 

physical parameters as well as random structural parameters. The step-by-step procedure for 

dataset simulation is meticulously outlined in this chapter. 

In chapter six, a gravity inversion technique has been conducted to estimate basement 

topography. The training dataset is simulated by adopting the technique explained in chapter 

five. The forward model is partitioned into sediments and basement layers. Employing parallel 

computing algorithms, thousands of forward models of the subsurface with their corresponding 

gravity anomalies are simulated in a few minutes. A DNN model is trained based on the 

simulated dataset to conduct the nonlinear inverse mapping of gravity anomalies to basement 

topography in offshore Abu Dhabi, UAE. The performance of the trained model is assessed by 

making predictions on noise-free and noise-contaminated gravity data. Eventually, the DNN 

inversion model is employed to estimate the basement topography using pseudo-gravity 

anomalies.  

Chapter seven investigates the estimation of basement topography using magnetic data. The 

same simulation procedures employed in chapter six are followed, including dataset simulation, 

DNN model training, and prediction on real case study data. 

Chapter eight tackles the joint inversion of gravity and magnetic data. The training dataset 

simulation is presented considering a three-layer forward model of the subsurface, incorporating 

sediments, salts, and the basement. Utilizing multi-processing algorithms, thousands of training 

examples comprising gravity and magnetic anomalies as input features, and depth-to-salt and 

depth-to-basement as labels, are simulated. The proposed technique is applied to interpret salt-

basement structures over hydrocarbon reservoirs in offshore UAE. 
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Lastly, chapter nine offers a summary of the techniques presented throughout the thesis and 

provides a comprehensive overview of the obtained results. Additionally, it offers conclusions 

drawn from this research and provides recommendations for future studies in the field. 
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2. Chapter Two: The Study Area 
 

2.1 Geological Setting 

The study area is in the western part of offshore Abu Dhabi, UAE, on the southern shore of the 

Persian Gulf (Figure 2-1). UAE is located in the northeast of the Arabian tectonic plate 

(Alsharhan, 1989). The Arabian Plate is bounded on its western side by the Dead Sea transform 

fault and the Red Sea spreading/rifting axis. Toward the northern and northeastern boundaries, it 

is bounded by the Anatolian fault and Zagros collision zone. On the eastern side, it is demarcated 

by the Makran Basin and Owen Fracture Zone. Finally, the southern extent of the Arabian Plate 

is defined by the Gulf of Aden spreading axis and Oman Mountains (Khattab, 1995; Stern and 

Johnson, 2010).  The evolution of the Arabian plate includes several complicated geological 

events. From ca. 715 to 610 Ma, the Arabian Plate was involved in the Neoproterozoic 

compressional event that led to the formation of the Arabian margin of Gondwana. During 

Neoproterozoic to late Devonian (ca. 610 to 364 Ma) the Arabian Plate was located in 

northeastern Gondwana, which was separated from the Eurasian Plate by the Paleo-Tethys 

Ocean (Al-Husseini, 2000; Ali et al., 2017). 

In the early Permian, the evolution of the Neo-Tethys Ocean initiated between the Eurasian 

Plate to the north and the north-eastern margin of the Arabian Plate. This process involved the 

emplacement of the Iranian microcontinent over the Eurasian Plate (Berberian and King, 1981; 

Searle et al., 2004). By the late Cretaceous, the closure of the Neo-Tethys Ocean was started. 

The collision of the Arabian Plate with the Iranian Plate during the Cenozoic led to the formation 

of the Zagros fold-and-thrust belt and the ongoing subduction of Arabia beneath Eurasia (Stern 

and Johnson, 2010). The collision led to the inclination of the Proterozoic basement toward the 

northeastward along the Zagros mountains while gradually deepening towards the Persian Gulf.   

2.2 Basement and Salt Structures of the UAE 

The crystalline basement of Arabia is exposed in the Arabian Shield, Yemen, and in the Dhofar 

region of Oman. The basement exposures are predominantly mid-Neoproterozoic in age and 

made up of highly deformed metamorphic rocks intruded by granitic dykes (Bowring et al., 

2007; Mercolli et al., 2006; Nehlig et al., 2002). 
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Figure 2-1: Structural and tectonic map of the Arabian Pate, modified from Al-Husseini (2000); Martin 

(2001), and Stern and Johnson, (2010). The red polygon outlines the study area with the Jabal Dhanna 

highlighted with a blue star. 

 

The basement of the UAE is overlain by a thick sequence of volcanic and sedimentary 

Infracambrian rocks. The sedimentary strata contain successions of salt bodies that have formed 

as several diapiric salt islands offshore Abu Dhabi (Al-Husseini, 2000; Thomas et al., 2015). The 

salt diapirs originate from a thick succession of Ediacaran-Cambrian evaporates known as 

Hormuz salt. A compressional event that occurred during the Late Cretaceous period resulted in 

the mobilization of seated Infracambrian Hormuz salt bodies, folding of the overlying sediments, 
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and formation of domal oilfield structures (Ali and Farid, 2016; Kabirzadeh et al., 2021). The 

salt-related oil fields in the UAE exhibit distinctive features including dome-shaped structures, 

independent closures, radial faults within the structures, and a multi-step structural evolution. 

Prominent examples of such fields are Zakum, Umm Shaif, and Fateh.  The salt domes contain 

exotic clasts of igneous, sedimentary, and low-grade metamorphic rocks of the Arabian basement 

that have been brought to the surface from depths of over 8 km (Al-Husseini, 2000; Thomas et 

al., 2015).  

The categorization of oilfields in the UAE is based on the types of salt structures, specifically 

pillow and salt diapir structures (Alsharhan and Salah, 1997; Obaid et al., 2014). Low-relief salt 

pillows are closely associated with the most significant oilfields in the UAE including Zakum 

and Ghasha. The sedimentary trends observed above a salt pillow are typically depositional in 

nature; however, they are often complicated by closures resulting from faulting subsequent to 

burial, as is the case in the majority of offshore oil fields.  The non-piercing high-relief salt diapir 

structures are characterized by sub-vertical, deep-seated faults with radial fault patterns that 

penetrate both deep and overlying shallower sedimentary sequences. Turtle structure anticlines 

are formed during the diapirs stage as observed in Dalma, Hair Dalma, and Mandous oilfields. 

During this stage, the salt is in close proximity to the surface, causing the previously deposited 

sediments above the diapir to experience uplift and erosion, leading to the formation of these 

distinctive anticlinal structures.  

2.3 The Geopotential Data 

The available geopotential data of the study area include airborne gravity and aeromagnetic 

anomalies (Ali et al. 2009) acquired by Sander Geophysics Limited (SGL) in 2007- 2008. The 

survey area is predominantly over the Persian Gulf and consists of almost the entire offshore part 

of Abu Dhabi (Figure 2-2). There is a small on-shore region along the south of the survey block 

which stretches for approximately 10 km inland. The survey area was bounded by the 

international boundaries with Qatar and Iran in the West and North respectively, and partially by 

the boundaries of neighboring Emirates in the East. In the offshore area, there are a number of 

islands, mostly located near the shore along the southern edge of the survey area, with a few 

located further out into the Persian Gulf. 
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Figure 2-2: Study area in the western offshore Abu Dhabi, UAE. 

2.3.1 Airborne gravity data 

The high-resolution airborne gravity data was acquired by SGL using an airborne gravity system 

designated AIRGrav (Airborne Inertially Referenced Gravimeter).  To obtain the complete 

Bouguer anomaly, several corrections, including the standard Eötvös, free air, slab Bouguer, the 

curvature of the earth, terrain, and static and level corrections, were applied to the gravity 

anomalies. Terrain correction was applied using Shuttle Radar Topography Mission data with a 

density of 2600 𝑘𝑔.𝑚3for land areas and a density of 1020 𝑘𝑔.𝑚3 for sea water. The final data 

for the survey was filtered with a 3 km half-wavelength filter. The gravity anomalies illustrated 

in Figure 2-3a are gridded with a grid cell size of 1 km. 

Ali et al. (2014), applied an upward continuation on the gravity data by removing the long 

wavelength regional component of the observed gravity to obtain the regional gravity.  

The gravity anomaly map of the offshore UAE reflects the composite effects of the shallow 

and deep-seated density variations. Prominently, the map displays two significant gravity lows 

over the Zakum and Umm Shaif oilfields. Toward the west and northwest of the region, the 
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gravity anomalies exhibit higher values over Ghasha and some of the smaller oilfields including 

Bu Haseer, Satah, and Arzanah.  

2.3.2 Aeromagnetic data 

The aeromagnetic data was acquired by SGL using Caesium optically pumped magnetometers. 

Data were recorded at 10 Hz with a sensitivity of 0.001 nT and a sensor noise of 0.02 nT. The 

airborne survey was conducted at an altitude of 250 m above mean sea level with a total of 

13,804 line-kilometers of data acquired with a survey line spacing of 2 km and a control line 

spacing of 10 km. Ground magnetometer data were inspected for cultural interference and edited 

as needed. All ground station magnetometer data were then filtered using a 67-point low-pass 

filter. The aeromagnetic data were corrected for diurnal variations by subtracting the corrected 

ground station data. Ground station magnetometer data were corrected for the International 

Geomagnetic Reference Field (IGRF) using the IGRF 2005 model and the fixed ground station 

location and the recorded date for each flight. Differentially-reduced-to-the- pole (DRTP) map is 

obtained after IGRF correction of aeromagnetic data, at a declination of 1.26°and an inclination 

of 37.16°. The DRTP map of the study area is shown in Figure 2-3b with a grid cell size of 1 km.  

The high magnetic anomalies observed in the region primarily stem from the magnetic 

basement, which consists of a complex assemblage of microcontinents, magmatic arcs, 

accretionary wedges, and ophiolitic terranes. In contrast, sedimentary rocks generally have lower 

magnetic susceptibilities and therefore contribute less to the overall magnetic field.  

The magnetic anomaly map of Figure 2-3b identifies three prominent magnetic highs 

coinciding with Ghasha and Umm Shaif, Sarb, and Dalma oilfields. 
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Figure 2-3: (a) Bouguer gravity anomaly; (b) reduced-to-pole magnetic (DRTP) anomaly with 

hydrocarbon reservoir (oil-water) boundaries. The dotted white enclosures illustrate the boundaries of 

oilfields. 
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3. Chapter Three: Machine Learning Analysis of Geopotential 

Data 
 

3.1 Introduction 

An innovative technique is implemented to delineate locations of potential hydrocarbon 

reservoirs offshore Abu Dhabi, UAE (B. Ashena et al., 2019). The region comprises 

approximately 8-10 km of crystalline sedimentary strata as part of the Arabian Plate, which is 

detached from the underlying basement by the latest Neoproterozoic–Lower Cambrian Hormuz 

evaporates (Ali et al., 2017) (Figure 3-1). Hormuz evaporates exposure as several salt domes 

offshore Abu Dhabi. Salt domes are specific geological features that are created when a buried 

salt layer with low density intruded upward into overlying denser sedimentary layers and arch 

them to shape a domed form (Hudec and Jackson, 2007). Due to their low-density contrast and 

almost zero magnetic susceptibility, salt structures can be detected by geopotential data analysis.  

To identify potential hydrocarbon reservoirs, two datasets are created for the Ghasha and 

Zakum regions (Figure 3-1). The datasets include gravity, magnetic, depth to basement, and 

depth to Infracambrian salts. The basement and salt depths are obtained from 3D join inversion 

modeling of gravity and magnetic data offshore Abu Dhabi (Kabirzadeh et al., 2021). A set of 

ML techniques are implemented on the datasets including clustering, logistic regression, and 

NNs to locate the regions of potential hydrocarbon reservoirs. 

Initially, a clustering technique is applied to divide the Ghasha dataset into regions with low 

and high potential for hydrocarbons. Subsequently, the clustered Ghasha dataset is utilized to 

train two distinct machine learning models: logistic regression and NN. These trained models are 

then applied to predict the potential hydrocarbon regions over Zakum. 
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Figure 3-1: The study area offshore Abu Dhabi, U.A.E. Ghasha region (right bottom blue box). Zakum 

region (left up purple box). 

3.2 Clustering Analysis of the Ghasha Dataset 

Integrating different geophysical data and information that are sensitive to different physical and 

structural parameters in a single scheme result in more constrained and accurate geophysical 

interpretations. However, the interpretation of geophysical models is a challenging task in 

geophysics as it has been traditionally subjective, relying on the interpreter’s knowledge. ML 

techniques can potentially provide effective automated interpretation tools by merging all 

information in a unified framework.  

Clustering is an ML technique used in geophysical interpretation to identify spatial patterns 

and relationships within datasets (Florio and Lo Re, 2018; Melo and Li, 2016; Paasche et al., 

2010; Song et al., 2010; Paasche and Eberle, 2009; Coléou et al., 2003). In this research K-means 

clustering technique (Di et al., 2018; MacQueen, 1965) is applied to delineate regions with 

higher potential of hydrocarbon reservoirs offshore Abu Dhabi, UAE.  
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The K-means clustering algorithm is a widely used method for partitioning observed data into 

distinct clusters. It aims to group similar objects by assigning them to the nearest centroid, which 

represents the mean value of the objects within the cluster. The algorithm proceeds as follows: 

• Initially, k centroids are randomly placed in the data space. 

• Each object is assigned to the nearest centroid based on a chosen distance measure, 

such as Euclidean distance. This step shapes the initial clusters 𝐶1, 𝐶2, . . , 𝐶𝑘. 

• The centroids are recalculated based on the objects within each cluster. The new 

centroids represent the mean values of the objects within their respective clusters. 

• Steps 2 and 3 are repeated iteratively until a convergence criterion is met. The 

convergence criterion is typically based on the stability of the centroids and the 

assignments of objects to clusters. 

Each cluster is represented by a centroid which is the mean value of the objects within the 

cluster, 𝜇𝑖, 𝑖 = 1,2, . . , 𝑘. The distance between the objects 𝑑 ∈  𝐶𝑖 and centroids 𝜇𝑖, are calculated 

by a distance measure 𝑑𝑖𝑠𝑡(𝑑, 𝜇𝑖).  The optimization procedure is to minimize the sum of 

squared error between objects in each cluster and their centroid 𝜇𝑖. 

𝐸 =  ∑ ∑ 𝑑𝑖𝑠𝑡(𝑑, 𝜇𝑖)
2

𝑑∈𝐶𝑖

𝑘
𝑖=1                                           (3.1) 

To avoid a local optimum solution, the algorithm replicated several times by starting from 

different seed centroids and then the solution with the smallest sum-of squares-distances of the 

objects was chosen as a final solution. 

The Ghasha dataset, D, included 4 attributes: gravity, magnetics, depth-to-basement, and 

depth-to-salts. Before applying the clustering technique, each attribute 𝑫(𝑗) (𝑗 =  1,2,3,4) is 

normalized 𝑫𝑛𝑜𝑟𝑚
(𝑗) to ranges with zero mean and covariance matrix given by the identity 

matrix (Klemelä, 2009). 

   𝑫𝑛𝑜𝑟𝑚
(𝑗) = ᴧ−1/2 𝑄𝑇(𝑫(𝑗) − 𝜇(𝒋))            (3.2) 

where the columns of 𝑄 are the eigenvectors obtained from the sample covariance matrix, Λ 

that is a diagonal matrix of the corresponding eigenvalues, 𝜇(𝒋) is the mean value of each 

attribute. 

The clustering algorithm is applied to divide the Ghasha oil field area into regions with low 

and high potential for hydrocarbons. To find the approximate number of clusters, the silhouette 
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index is implemented (Rousseeuw, 1987) which measures the compactness and separation of the 

clusters. Accordingly, the K-means technique is conducted considering two and three clusters. 

The results considering two clusters are shown in Figure 3-2a.  The yellow cluster encompasses 

the majority of known oil fields in the region with smaller reservoirs mostly appearing at its 

border. Table 3-1 shows the properties of the cluster centroids. The cluster with a higher 

probability of hydrocarbon (yellow cluster) is related to shallower salts and basements and 

higher gravity and magnetic anomalies.  

 

Figure 3-2: Clustering analysis results on Ghasha oilfield region, a) with two clusters; b) with three 

clusters. 

The analysis of the Ghasha oil field and smaller oil fields within the Ghasha dataset reveals 

interesting geological characteristics. The presence of a giant oil field like Ghasha is likely 

associated with an anticline trap, which is a type of structural trap where hydrocarbons 

accumulate in an unfolded structure of rock layers. This suggests that the oil accumulation in 

Ghasha is primarily attributed to the structural deformation and folding of the subsurface rocks. 

In contrast, the smaller oil fields are located at the slope of the salt dome, indicating a probable 

fault trap mechanism. A fault trap occurs when hydrocarbons are trapped along the fault planes, 

which act as barriers to the upward migration of fluids. The presence of smaller oil fields in these 

areas suggests that the faulting and movement along the fault lines have created favorable 

conditions for hydrocarbon accumulation. The transition from positive to negative anomalies at 

the edges of the clusters provides further evidence for these geological interpretations. 
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Table 3-1: Location of cluster centroids considering 2 clusters. 

Cluster Gravity (mGal) Magnetics (nT) Depth-to-Basement(m) Depth-to-Salt (m) 

Gray 0.36 -280 -8,998 -8,100 

Yellow 2.02 -253 -8,402 -7,325 

 

The K-means clustering is applied to the Ghasha dataset considering 3 clusters. The results 

are illustrated in Figure 3-2b. Furthermore, the location of the cluster centroids is provided in 

Table 3-2.  According to the results, the orange cluster dominates the central area of the map and 

roughly overlaps with the location of the Ghasha oilfield. The estimated values of the location of 

cluster centroids are interrelated for both clustering cases.  

The high susceptibility metamorphic basement rises upward at some regions which causes 

picks on the magnetic anomaly map. However, the gravity anomaly map represents the 

composite gravity effects of various subsurface bodies, including sediments, salts, and the 

basement.  In the case of the Ghasha region, the higher gravity anomaly can be indicative of a 

shallower basement, which masks the negative gravity anomaly associated with the salts in that 

particular region. On the other hand, the lower gravity anomaly over the Zakum oil field suggests 

the presence of a deeper basement and thicker salts in that area. These observations highlight the 

significance of gravity anomalies in identifying and characterizing different subsurface features 

and their relationship to potential hydrocarbon reservoirs. 

Table 3-2: Location of cluster centroids considering 3 clusters. 

Cluster Gravity (mGal) Magnetics (nT) Depth-to-Basement (m) Depth-to-Salt (m) 

Orange 2.27 -275 -8691 -7747 

Yellow 1.51 -208 -7781 -6502 

Gray 0.03 -280 -9027 -8101 

3.3 Supervised Learning Analysis of the Geopotential Data 

To delineate regions with a higher probability of hydrocarbon using supervised learning, two 

separate databases for Ghasha and Zakum regions are created, each comprising three attributes: 

gravity, magnetic, and salt thickness. The k-means clustering is applied to the Ghasha dataset 
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considering 2 clusters (Figure 3-2a). The clustering result serves as the training dataset for the 

training ML models, comprising gravity, magnetic, and salt thickness as input features and the 

clusters’ number as labels. By leveraging the knowledge gained from the clustering analysis on 

the Ghasha dataset, the models can provide insights into potential hydrocarbon reservoirs in the 

Zakum region. 

Two ML models are trained including logistic regression and NN models. Logistic regression 

is an ML technique that aims to model the relationship between independent variables and a 

binary dependent variable. It transforms the linear combination of the independent variables into 

a probability value between 0 and 1, which represents the likelihood of belonging to a specific 

class. During training, the logistic regression model takes the training data as input through the 

input layer (Géron, 2019). The sum of weighted inputs X, is passed through the sigmoid 

activation function σ, to predict the probability of class label 𝑦,̂ 0 or 1, 

𝑝̂ = ℎ𝜃(𝑋) =  𝜎(𝑋𝑇𝜃) and 𝜎(𝑋𝑇𝜃) =  
1

1+exp (−𝑋𝑇𝜃)
 

𝑦̂ = {
0 𝑖𝑓 𝑝̂ < 0.5
1 𝑖𝑓 𝑝̂ ≥ 0.5

        (3.3) 

The NN model was trained using the Keras library, a high-level Application Programming 

Interface of TensorFlow developed by Google. The model hyperparameters are obtained through 

trial and error. Accordingly, a perceptron feedforward architecture is constructed from 2 hidden 

layers with 50 neurons in each layer and a binary output. Other hyperparameters include the 

sigmoid activation function; binary-cross-entropy loss function and “adam” optimizer with a 

learning rate of 0.001.  

To assess the performance and accuracy of the models, the dataset is split into training and 

test sets. The training set contains 80% of the data, while the remaining 20% is used as the test 

set to calculate the generalization error. Additionally, a validation set, comprising 10% of the 

training set, is used to validate the model during the training process. After training the models 

for 30 epochs, the training accuracy and validation accuracy of the NN model reached 95% and 

94% respectively. The test accuracy of the NN model, which indicates the model's performance 

on the test set, was 91%. In comparison, the logistic regression model achieved a score of 99% 

accuracy on the test set. 

When applied to the Zakum dataset, both the logistic regression and NN models successfully 

identified the areas with a higher probability of hydrocarbon reservoirs, as indicated by the 
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yellow regions on the map (Figure 3-3). The models were able to roughly outline the oil fields 

boundaries, particularly the larger ones such as Zakum, Umm Shaif, Nasr, and Sarb. However, 

the NN model allocated a larger area to potential regions of hydrocarbon compared to the logistic 

regression model. 

 

Figure 3-3: (a) Prediction results of the logistic regression model. (b) Prediction results of the neural 

network model on the Zakum, Nasr, and Umm Shaif oilfields. 

3.4 Conclusion 

In this study, multi-attribute potential field datasets comprising gravity and magnetic field 

anomalies and salt thickness were analyzed using various ML techniques, including k-means 

clustering, logistic regression, and NNs. The objective was to recognize the boundaries of the 

regions with high potential for hydrocarbon reservoirs offshore Abu Dhabi. 

The clustering analysis divided the Ghasha database into two distinct clusters which were in 

good agreement with the location of known oil fields in that region. Ghasha was connected to 

high gravity and magnetic anomalies which demonstrates the effectiveness of the basement 

undulations in the generation of trapping structures.  

Furthermore, the logistic regression and NN classifiers trained on the clustered outputs 

satisfactorily predicted the potential regions with hydrocarbon fields in acceptable agreement 

with the boundary of the known fields of the Zakum, Umm Shaif, Nasr, and, Sarb.  
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The findings indicate that by combining information derived from gravity and magnetic 

anomalies with the characterization of salt structures, valuable insights can be obtained regarding 

the probable locations of hydrocarbon fields. This information can be particularly useful in 

subsequent chapters of this thesis to guide the selection of profiles for the inversion of 

geopotential data regarding subsurface modeling.   
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4. Chapter Four: Geophysical Inversion using DNNs Techniques 
 

4. 1 Introduction 

Artificial Intelligence refers to the broad field of solving problems by computers that are 

intellectually difficult for humans (Goodfellow et al., 2016). It lets the computer learn from 

experience and establish rules based on the provided knowledge.  One of the challenging tasks of 

artificial intelligence is to devise ways to present intuitive knowledge of the word to computer 

languages. In knowledge base approaches to artificial intelligence, humans encode knowledge to 

computers to infer logical inference rules. The hard-coded knowledge base approaches have the 

drawback of being subjective which typically deteriorates the solution. ML methods overcome 

this difficulty by automatically extracting knowledge from the raw data. However, their 

performance depends on how data are represented to the system, or in other words to the 

different information (i.e., features) in the representation. Therefore, some features are extracted 

from the data and mapped to the outputs through the machine learning system.  

Choosing the right set of features is challenging for many artificial intelligence tasks. A viable 

remedy to this problem, rather than manual feature extraction, is applying a representation 

learning technique that can detect a set of features for any complicated task.  In real-world cases, 

we may have high-level abstract features which cannot be easily extracted by representation 

learning methods that input features to outputs. Deep learning technique, as a type of machine 

learning, introduces a remedy to this problem, by creating complex features from simpler ones. 

From the input layer, simple features are extracted which contain information in the observed 

data, also known as the visible layer. It is followed by a series of hidden layers to extract abstract 

and complex features of simpler representations in sequence. Following a detailed description of 

DNNs is presented.  

This research has employed the DNN technique to conduct nonlinear inversion of gravity and 

magnetic data. Geophysical inversions are the techniques for simulating the physical and 

structural characteristics of the subsurface model using the observed geophysical data.  

Conventional geophysical inversion differs from deep neural network inversion in the method 

they use to solve the inverse problem. Conventional geophysical inversion involves formulating 

an inverse problem as an optimization problem, where the objective is to minimize the misfit 

between the observed data and the predicted data using a forward model. This approach typically 



27 
 

involves selecting an appropriate regularization parameter to balance the misfit and 

regularization term such as the smoothness. 

Deep neural network inversion, on the other hand, uses a deep neural network to directly learn 

the mapping between geophysical data and subsurface properties. This involves training the 

network using a large dataset of geophysical data and corresponding subsurface models. Once 

trained, the network can be used to predict subsurface properties from new geophysical data. 

One advantage of deep neural network inversion is that it can handle complex non-linear 

relationships between geophysical data and subsurface properties, which can be difficult to 

capture using conventional inversion methods. Additionally, deep neural network inversion does 

not require explicit knowledge of the physical relationships between the geophysical data and 

subsurface properties, making it a more general approach. Instead, it uses a neural network 

model to learn the complex relationships between the input geophysical data and the output 

subsurface properties. 

4.2 Conventional Geophysical Inversions 

Geophysical inversion involves the development of mathematical techniques aimed at modeling 

subsurface physical and structural parameters based on surface geophysical data. The relation 

between the subsurface model (𝒎) and observed data (𝒅) is defined through the following 

general mathematical model (Aster et al., 2019). 

𝒅 = 𝐺(𝒎)                                                          (4.1) 

The function G which describes the physical process of mapping the model space to data 

space is known as sensitivity or Jacobian matrix. It can take different forms based on the linear 

or nonlinear relationship between data and the subsurface model. The inverse problem 

determines the subsurface model  

  𝒎 = 𝐺−1(𝒅)                                                         (4.2) 

by minimizing a loss function of the residual between observed data 𝒅, and the mathematical 

model 𝐺𝒎.  

                               𝒓 = 𝒅 − 𝐺𝒎         (4.3) 

In the context of linear inverse problems, the operator G is often represented as a linear 

kernel. When dealing with real-world scenarios, the observed data is typically affected by some 

level of noise. In this case, the general linear mathematical model can be expressed as the sum of 
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noiseless data, 𝑑𝑡𝑟𝑢𝑒 and a noise component. The noise component accounts for the random 

fluctuations or errors that are present in the measured data.  

𝒅 = 𝐺𝒎𝒕𝒓𝒖𝒆 + 𝒏 =  𝒅𝒕𝒓𝒖𝒆 + 𝒏      (4.4) 

Noise characteristics are not usually known, and hence it becomes necessary to make certain 

assumptions about its statistical distribution. Therefore, we assume data as a random variable 

whose statistical characteristics are known. 

As a solution, we seek the best model 𝒎, given observations 𝒅, that maximize a likelihood 

function. Consider the special case when 𝐺 is full rank (i.e., overdetermined problems) and data 

errors are independent and normally distributed with zero-mean and covariance matrix of 𝐶(𝑑). 

The joint probability density for a vector of independent observations 𝒅 will be 

𝑓(𝒅|𝒎) = 𝑓1(𝑑1|𝒎) 𝑓2(𝑑2|𝒎)…𝑓𝑚(𝑑𝑚|𝒎),                               (4.5) 

and the probability density of each data point 𝑑𝑖,  𝑖 = 1,2, . . 𝑚 is defined as 

𝑓𝑖(𝑑𝑖|𝒎) =  
1

(2𝜋)1/2 𝜎𝑖
𝑒−(𝑑𝑖−(𝐺𝑚)𝑖)

2/2𝜎𝑖
2
                                        (4.6) 

The likelihood function for the complete data set takes the following form. 

𝐿(𝒎|𝒅) =  
1

(2𝜋)𝑚/2 ∏ 𝜎𝑖
𝑚
𝑖=1  

∏ 𝑒−(𝑑𝑖−(𝐺𝑚)𝑖)
2/2𝜎𝑖

2𝑚
𝑖=1                              (4.7)           

 By maximizing the likelihood function, the problem becomes independent and Gaussian-

distributed, then the maximum likelihood principal solution is the weighted least squares 

solution. 

𝑚𝑀𝐿 = (𝐺𝑇 𝐶(𝑑)−1𝐺)−1𝐺𝑇 𝐶(𝑑)−1 𝑑        (4.8) 

The function 𝐺, is typically ranked deficient. This results in ill-posed geophysical inverse 

problems. Moreover, geophysical inversion solutions are nonunique which means infinite 

solutions may fit the data. To address these issues, regularisation is used to stabilize ill-posed 

inverse problems by introducing prior information about the model in the loss function, such as 

the minimum norm solution. 

𝑚𝑖𝑛 ||𝐺𝒎 − 𝒅||2
2 +  𝜆 ||𝒎||2

2                                        (4.9) 

where 𝜆 is the regularization parameter. 

The optimization process concerns minimizing the loss function to find the optimal values for 

the model parameters that best match the observed data and provide the most accurate 

representation of the subsurface (Sen and Stoffa, 2013). The loss function of nonlinear problems 

can take a complicated form including several minima and maxima.  For solving nonlinear 
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problems 𝒅 = 𝐺(𝒎), a common approach is to linearize the mathematical function using a 

Taylor series expansion around a starting model, 𝑚0 

                𝐺(𝑚0 + ∆𝑚) = 𝐺(𝑚0) + 𝐽(𝑚0) ∆𝑚     (4.10) 

 where 𝐽(𝑚0) is the Jacobian of partial derivatives evaluated at 𝑚0.  

Applying linear theory to evaluate posterior properties may be suitable for weakly nonlinear 

problems. The posterior covariance matrix for nonlinear inversion is not exact and it depends on 

the accuracy of the linearization.  

Regarding fully nonlinear inverse problems, the Bayesian inversion technique is an alternative 

to the classical approach which defines a probability distribution for the model parameters 

(Izquierdo et al., 2020; Rossi et al., 2016; Sen and Stoffa, 1996). Bayesian inversion provides a 

framework for integrating prior information about the probability distribution of the model, 

denoted as 𝑝(𝒎) which is independent of data information. By considering both the data and the 

model as random variables, we can quantify the likelihood, 𝑝(𝒅|𝒎) which represents the 

probability of observing the data, 𝒅 given a particular model, 𝒎. The posterior probability 

distribution of model parameters 𝑝(𝒎|𝒅) given the data can be obtained from Bayes’ theorem 

(Aster et al., 2018). 

𝑝(𝒎|𝒅) =
𝑝(𝒅|𝒎)𝑝(𝒎)

𝑝(𝒅)
                                             (4.11)                                          

This posterior distribution represents our updated knowledge about the model parameters 

considering the available data. The model parameters are estimated by maximizing the posterior 

as 

𝑚𝑀𝐴𝑃 = 𝐴𝑟𝑔𝑚𝑎𝑥 {𝑝(𝒎|𝒅)}     (4.12) 

or mean model 

𝑚̅ =  ∫𝒎 𝑝(𝒎|𝒅) 𝑑𝒎    (4.13) 

which requires numerical optimization and integration. The integration is conducted through a 

point-wise evaluation of the posterior over parameter space, which is known as Bayesian 

sampling. The global optimization methods, Simulated Annealing, and Genetic algorithms are 

examples of random walk sampling methods (Boschetti et al., 1996; Farrell et al., 1996; Putra et 

al., 2019; Sambridge and Mosegaard, 2002; Sen and Stoffa, 1991).  
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4.3 Deep Neural Networks Inversion 

The intelligent inversion through the DNN technique has a notable difference from the 

conventional definition.  In this case, the sensitivity function refers to the DNN model to be 

determined. In other words, given a training dataset, a DNN model is trained by approximating 

weight parameters 𝜽. Later, we use the DNN model 𝐺𝑑𝑛𝑛, to conduct nonlinear mapping from 

the geophysical data 𝒅 to subsurface model 𝒎 

𝒎 = 𝑮𝒅𝒏𝒏(𝒅; 𝜽)                                                        (4.14) 

To train a DNN model we need to design the architecture of the network, including the 

number of layers, the number of nodes of each layer, how these layers should be connected to 

each other, the activation function, optimization parameters, etc. 

Perceptron feedforward architecture has been used to construct and train our DNN model 

(Figure 4-1). In the feedforward model, information flows from input (geophysical data) to 

output (subsurface model), while there are no feedback connections from the outputs (Raiche, 

1991).  

Deep feedforward networks comprise 𝒍 hidden layers that are connected in a chain structure 

whose length defines the depth of the model. Each hidden layer has a vector of hidden units that 

are input to the proceeding layer and are computed by functions 𝒉𝟏 = 𝑮(𝟏)(𝒅, 𝜽𝟏),  𝒉𝟐 =

 𝑮(𝟐)(𝒉𝟏, 𝜽
𝟐), . .  𝒉𝒍 = 𝑮(𝒍)(𝒉𝒍−𝟏, 𝜽

𝒍). The output layer is 𝒎̂ = 𝑮𝒅𝒏𝒏(𝒅; 𝜽) = 𝑮(𝒍+𝟏)(𝒉𝒍, 𝜽
𝒍+𝟏). 

The complete model 𝑮𝒅𝒏𝒏(𝒅; 𝜽) =  𝑮(𝒍). . (𝑮(𝟐)(𝑮(𝟏)(𝒅; 𝜽(𝟏))) is obtained by learning the 

weight parameters.  
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Figure 4-1: A deep feedforward network architecture comprising 𝒍 hidden layers(𝒉𝟏, 𝒉𝟐, . . , 𝒉𝒍). with 

different numbers of units in each layer.  𝒅 is the input vector and 𝒎 is the output. 𝜽(𝜽𝟏, 𝜽𝟐, . . 𝜽𝒍+𝟏) is a 

learnable weight parameter matrix transmitting inputs through the hidden layers. 

 

The training data are constructed from a combination of the geophysical data 𝒅𝒊, i = 1,2, . , n  

and their associated labels 𝒎𝒋, 𝑗 = 1,2, . . , p. The input data are fed into the network through the 

input layer. The sum of weighted inputs is passed through an activation function to compute the 

outputs. The activation function is a nonlinear function that can take different forms for each 

hidden layer 𝑮(1), 𝑮(2) , . . , 𝑮(𝑙+1) . The rectified linear unit (ReLU) is commonly used as the 

activation function of the hidden units (Glorot et al., 2011). One drawback to rectified linear 

units,  𝑟(𝑧) = max {0, 𝑧} is that for 𝑧 < 0 they output zero. Therefore, while using gradient-

based methods, the algorithm cannot learn whenever activation is zero. Exponential rectified 

linear unit (ELU) is similar to ReLU except that it has negative values that bring the mean of 

activations closer to zero and so enable faster learning. Bringing the mean of activations closer to 

zero helps prevent the dying neuron problem, promotes smooth and continuous gradients, and 

aligns the activations with the data distribution. 

                            𝑒𝑙𝑢(𝑧) = {
𝑧   

𝛼(𝑒𝑧 − 1)   
𝑧>0
𝑧≤0

        (4.15) 

The hyperparameter 𝛼 controls the value to which an ELU saturates for negative net inputs. 
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A loss function is required to measure the difference between the neural network predictions 

and true values. Mean squared error (MSE) is chosen as the loss function considering that the 

training data are numeric. It measures the expected deviation between the model prediction, 𝒎̂ 

and the true output, 𝒎 

𝐽
1

𝑛
∑ (𝑚̂ − 𝑚)2𝑛

𝑖=1                                (4.16) 

The loss function takes the outputs of the network and the labels to compute a distance score. 

An optimizer uses this score to adjust the value of the weights in a direction that will lower the 

loss score.  

The back-propagation algorithm is applied to calculate the gradient of the loss function with 

respect to the weight parameters. Backpropagation works by starting with the final loss value and 

using the chain rule to work backward from the top layers to the bottom layers, computing the 

contribution of each parameter to the loss value. 

To train a neural network using gradient-based optimization algorithms, the primary objective 

is to minimize the loss function 𝐽(𝜃) with respect to the network parameters, θ.  

To minimize the loss function, we need to find the direction in which J reduces the fastest. 

During the training process, the network's parameters are iteratively adjusted to minimize the 

loss function. This adjustment is performed by computing the gradients of the loss function with 

respect to the network parameters, which indicate the direction of the steepest descent in the 

parameter space. Therefore, the derivative of 𝐽 is taken in the direction of a unit vector u. 

      min𝑢 𝑢𝑇∇𝜽 𝐽(𝜽)            (4.17) 

 In fact, 𝐽 decreases in the direction of a negative gradient. This is known as the steepest 

descent or gradient descent method. The new point is defined as 

𝜽̂ = 𝜽 − 𝜖 ∇𝜃 𝐽(𝜽)                                                    (4.18) 

where 𝜖 is the learning rate, a positive scalar that determines the size of the step. The learning 

rate is a hyperparameter that needs to be adjusted during the training.  

Optimization techniques that use entire training examples simultaneously to update the 

parameters are called batch or deterministic gradient methods. These algorithms are 

computationally expensive. Alternatively, instead of computing the gradient of the loss function 

for the entire dataset, stochastic optimization computes the gradient for a randomly selected 

subset of the data, called a mini-batch to update the model parameters. 
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The mini-batch size is often selected to be small enough to fit into memory while still being 

sufficiently enough to obtain a reliable approximation of the true gradient. This strategy is 

computationally efficient and results in a faster convergence than the batch optimization 

techniques. 

There are various versions of stochastic gradient descent (SGD) that vary in how they 

calculate the next weight update. Instead of only considering the current gradients, these variants 

also consider previous weight updates (Duchi et al., 2011; Kingma and Ba, 2017). 

For example, RMSProp (Root Mean Square Propagation) is an optimization algorithm 

commonly used in deep learning for training neural networks. It is an extension of the SGD 

algorithm that adapts the learning rate during training to improve convergence and stability. The 

steps of the RMSProp algorithm are as follows: 

• Initialize the model parameters randomly. 

• Initialize an exponentially decaying average of squared gradients. 

• Iterate over mini-batches of training samples. 

• Compute the gradients of the model parameters. 

• Update the moving average of squared gradients using a decay rate. 

• Update the model parameters using the computed gradients and the moving average. 

• Repeat the above steps until convergence or for a fixed number of iterations (epochs). 

RMSProp adapts the learning rate for each parameter based on the moving average of squared 

gradients, allowing for larger learning rates for parameters with small gradients and smaller 

learning rates for parameters with large gradients. This helps improve convergence speed and 

stability during the training of neural networks. 

The training process is as follows: 

• A batch of training samples and their corresponding labels are drawn from the dataset. 

• The weights of the network are initially given random values, also called random 

initialization.  

• The samples are fed into the network to make predictions. The loss of the network is 

calculated on the batch. The first output of the network is expected to be far from the 

optimum, and as a result, the loss score is rather high.  
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• The weights are updated in a way to gradually reduce the loss. Eventually, a model is 

trained with the minimum loss on training data.  

There are two more network patterns that must be considered to train high-performance 

models that generalize well to new data: data normalization and regularization.  

Data normalization is a technique aimed at improving model performance by making the scale 

of dataset features more comparable to each other. It involves transforming the data in a way that 

helps the model learn more effectively. One commonly used data normalization technique is 

batch normalization (Ioffe and Szegedy, 2015). Batch normalization is a layer in the DNN model 

that can adaptively normalize the data, even as the mean and variance change over time during 

training. It achieves this by internally maintaining an exponential moving average of the batch-

wise mean and variance of the data observed during training. This normalization technique helps 

stabilize and accelerate the training process by reducing the internal covariate shift (Chollet, 

2021). 

Another important network pattern for training high-performance models is regularization. 

Regularization techniques are used to prevent overfitting, which occurs when a model performs 

well on the training data but fails to generalize to new, unseen data. Any adjustment to a learning 

algorithm that aims to lower its generalization error but not its training error is known as 

regularisation. One popular regularization technique is dropout (Srivastava et al., 2014). Dropout 

randomly sets a fraction of input units to zero during each training step, which helps prevent the 

model from relying too heavily on any single input feature. This regularization technique 

encourages the model to learn more robust and generalized representations of the data. The 

dropout rate, typically set between 0.1 and 0.5, is the percentage of features that are dropped. 

During the testing phase of a neural network, the dropout technique does not discard any units as 

it does during training. Instead, to compensate for the fact that more units are typically active 

during testing compared to training, the output values of the layer are adjusted by scaling them 

down. This scaling factor is equal to the dropout rate that was used during training.  

4.3.1 Model Evaluation 

Overfitting is a typical issue in model training that can arise when a model is too complex or has 

too many parameters in comparison to the quantity of training data that is available. Overfitting 

can be captured when the model performs well on the training set but poorly on unseen data. 
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Techniques like regularisation, cross-validation, and early stopping can be employed to reduce 

overfitting and improve the model to generalize better on unseen data.  

To evaluate the model, the dataset is split into three sets: training, validation, and test set. The 

model is trained on the training data and is tested on the test data. Model hyperparameters 

including the number of layers, number of nodes, type of activation and optimizer, etc. are not 

configured by the learning algorithm.  The validation set is held out to evaluate the model during 

training and to configure the hyperparameters.  

A common practice to evaluate the model during training is 𝐾-fold cross-validation (Bengio 

and Grandvalet, 2003). Instantiating it involves partitioning the training data into 𝐾 folds and 

creating 𝐾 similar models. Each model is trained on the 𝐾-1 folds and is evaluated on the 

remaining partition. The validation score is the average of the 𝐾 validation scores.  

MSE is used as the scoring metric. It incorporates both bias and variance required to compare 

the model’s functionality.  Bias and variance measure two different sources of error in a model. 

Bias measures the expected deviation from the true value of the function or parameter. Variance, 

on the other hand, provides a measure of the deviation from the expected model value that any 

particular sampling of the data is likely to cause (Goodfellow et al., 2016). The model with a 

smaller MSE is our desirable model.  

A flowchart containing the main steps taken to complete this research is displayed in Figure 

4-2. 
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Figure 4-2: The step-by-step research procedure. 
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5. Chapter Five: Dataset Simulation for the DNN Inversion 
 

5.1 Introduction 

Training datasets, composed of inputs or features and corresponding outputs or labels, are 

required to optimize the parameters of the ML models. However, in geophysical inversion with 

ML, a significant challenge arises due to the limited availability of real-world training datasets. 

To overcome this challenge, the datasets need to be simulated.  The dataset simulation in 

geophysical inversion is the practice of creating synthetic data of subsurface structures that 

resemble the behavior of the geological features to be studied. 

Addressing this issue, a new technique is developed to simulate the training dataset required 

for the DNN inversion of geopotential data (Ashena et al., 2023). Initially, a forward model is 

designed that represents the target geological features i.e., crustal structures. The physical 

parameters of the forward model are assigned based on a priori information. The structure of the 

forward model is altered to create different configurations of the subsurface model having set 

some random structural parameters. Subsequently, the geopotential anomalies of the subsurface 

models are calculated proceeding. Synthetic geopotential data are coupled with subsurface 

models to create the simulated dataset. 

The primary objective of this study is to develop models of the crustal structure, 

encompassing sediments, salts, and basement. To achieve this, the subsurface is conceptualized 

as either a two-layer or three-layer structure, depending on the geopotential data used in the 

inversion. 

For the DNN inversion of gravity or magnetic data, a two-layer forward model is adopted 

(chapter six and chapter seven). This means that the subsurface is divided into two distinct 

layers: the sedimentary strata and the basement. To further enhance the complexity of the 

subsurface, the joint inversion of gravity and magnetic data is conducted in chapter eight using a 

three-layer forward model. The three-layer forward model partitions the subsurface into 

sediments, salts, and the basement.  

The remainder of this chapter concerns the proposed technique for dataset simulation 

considering the three-layer forward model example. 
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5.2 Forward Model Simulation 

Forward modeling is the process of simulating the subsurface geological structures and 

estimating their synthetic geophysical anomalies over the observation points. Since this research 

seeks to investigate hydrocarbon reservoir structures, a 2.5D forward model is created that 

partitions the upper crust into three (or two) layers, as sediments, salts, and basement (Figure 5-

1). Each layer is discretized into an assembly of 𝑚 rectangular prisms isolated from their 

surrounding geological environment. The physical parameters including density and 

susceptibility of the layers, are incorporated into the model as a priori information. The priori 

information is acquired from geophysical and geological studies, well logs, and the tectonic 

setting of the region.  

The total length of the model and each prism are specified based on the dimensions and 

resolutions of the anomalies being investigated. In the context of geophysical modeling, a 2.5D 

model refers to a simplified representation of a 3D subsurface structure. It assumes that the 

subsurface varies in two dimensions (along the X direction (or length of the model) and depth) 

but remains constant in the third dimension (Y direction (or width of the model)). This 

simplification allows for computational efficiency while still capturing important variations in 

the subsurface. 

When it is mentioned that the width of the 2.5D model is going to infinity, it implies that the 

extent of the subsurface in the Y direction is considered infinitely large. In other words, the 

model assumes that the subsurface variations are consistent in the Y direction. This assumption 

is often made to simplify calculations and avoid dealing with complexities arising from lateral 

variations or boundaries. A width of 20 times a prism's length is used to mathematically satisfy 

the infinite width of the 2.5D model. The model is then extended at both lateral sides to avoid 

potential edge effects. The edge effect arises due to the incomplete coverage of the subsurface 

model or gravity data leading to inaccuracies in observed anomalies near the edges of the model. 

To avoid the edge effect one method is to add padding around the edges of the available gravity 

data. This involves extending the study area by including additional cells surrounding the 

existing data points.  

The adopted dimensions of the forward model cannot be modified during the dataset 

simulation and remain fixed.  
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To create numerous representations of the forward model structure, the topography of the 

salts and basement layer randomly changes. To this end, several random structural parameters 

are defined that select their values from predefined ranges. 

 

Figure 5-1: Schematic view of the 2.5D forward model and observation points (red dots) on the surface. 

The following bullet points discuss examples of the random parameters briefly: 

• The average depths of the salts and basement layers 

• The number of anomalies to be loaded on top of the salts and basement layers  

• The origin coordinate of the anomalies 

• The heights of the anomalies (topography variations) 

• The lengths of the anomalies 

Given the number of training data, by assignation from the list of the parameters, a different 

forward model is generated in each iteration, and its synthetic gravity and magnetic anomalies 

are calculated correspondingly.  

First, in each iteration, two average depths are randomly selected from the corresponding 

range parameter and assigned to salts and basement layers. To prevent the salt and basement 

layers to overlap, a tolerance of 200 𝑚 is imposed as the required minimum gap between these 

two layers. To change the topography of the layers, my strategy is to create some random 

anomalies with different lengths and heights and have them loaded on top of the prisms. The 

Gaussian function is used to generate anomalies with zero mean and standard deviation equal to 

the lengths of the anomalies.  

The number of anomalies and their corresponding lengths and heights are randomly selected 

from the number of anomalies, length of anomalies, and height of anomalies ranges. Moreover, 
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the center location of each anomaly is also randomly chosen from a range equal to the number of 

prisms. Having the width, random length 𝑙𝒂, height ℎ𝑎, and center location (𝑥𝑗 , 0), the Gaussian 

function is used to create each anomaly with zero mean and standard deviation equal to half of 

the random length, 

𝑓 (𝑥, 𝑦) = ℎ𝑎 𝑒
−(

(𝑥−𝑥𝑗)
2

2(
𝑙𝑎

2⁄ )
2+

𝑦2

2(
𝑤𝑎

2⁄ )
2)

       (5.1) 

The choice of the Gaussian function for creating random anomalies depends on the specific 

characteristics and objectives of the study. The Gaussian function is a smooth and bell-shaped 

curve. This smoothness can be advantageous in certain cases where we want to generate 

anomalies with gradual variations or subtle changes in amplitude. Since we are interested in 

creating anomalies that smoothly blend with the surrounding geology or have gradual variations 

in their intensity, then the Gaussian function can be a suitable choice. Moreover, the Gaussian 

function allows us to control the length or standard deviation of the anomalies, which influences 

their shape and spatial extent. This flexibility can be beneficial if you want to simulate anomalies 

of varying sizes and shapes in your forward model. It should be noted that depending on the 

specific context and characteristics of the study,  alternative functions or distributions can be 

considered for generating anomalies. For example, sharp or abrupt changes in the anomalies are 

expected, and other non-Gaussian distributions can be explored that better represent such 

features. 

To illustrate how the topography of the layers changes, a visual representation is provided in 

Figure 5-2. This is an example of a two-layer model which can be expanded to the three-layer 

case. Here, the algorithm randomly selected six anomalies to be created, each generated from a 

Gaussian function with random heights and depths. These anomalies were then added to the 

lower layer with an initial constant average depth. Due to the random placement, anomalies may 

overlap and produce different shapes, as seen in the bottom panel of Figure 5-2. 

With the random selection of structural properties, a diverse range of synthetic datasets are 

generated that closely mimic the complexities of real-world subsurface structures. This 

demonstrates the versatility of our dataset simulation approach. 
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Figure 5-2: An example of synthetic forward model simulation. 

5.3 Geopotential Anomalies Calculation 

Once the forward models are simulated their gravity and magnetic effects are calculated over the 

observation profile, with the center of the profile set as the origin coordinate of the model. 

5.3.1 Gravity Anomaly 

Gravity field variations arise from heterogeneous mass distribution in Earth’s crust and upper 

mantle and are measured using sensitive gravimeters over the observation stations on the Earth’s 

surface. The gross variation of gravity on Earth quite closely corresponds to what is expected 

from an idealized Earth with no lateral variations of structure and density, which would occur if 

a fluid accommodated perfectly to the forces arising from self-gravitation and rotation. Such an 

Earth is referred to as the "normal Earth”. Gravity anomaly results from the deviation of the 

observed gravity from an expected normal field.  
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To calculate gravity anomalies, the forward modeling approach is employed, which involves 

simulating the gravity effects of the subsurface structures. The forward model consists of three 

layers, each representing a distinct geological unit, such as sediments, salts, or basement. Each 

layer is created from an assembly of rectangular prisms. 

To calculate the gravity anomaly of the forward model, the density contrast between the 

layers and a reference is considered. The gravitational anomaly of each prism is calculated using 

the principle of superposition, where the contributions from all prisms are summed to obtain the 

total gravity anomaly. The gravity attraction of each cell 𝑗(j = 1, . . m), at each observation point 

𝑖(𝑖 = 1,2, … 𝑛), considering a constant density 𝜌𝑗 is given by (Chakravarthi and Sundararajan 

2007). 

𝑔𝑖𝑗 = −𝛾𝜌𝑗 ∑ ∑ ∑𝜇𝑝𝑞𝑠 × [𝑎𝑝 ln(𝑏𝑞 + 𝜇𝑝𝑞𝑠) + 𝑏𝑞 ln(𝑎𝑝 + 𝜇𝑝𝑞𝑠) − 𝑐𝑠 arctan (
𝑎𝑝𝑏𝑞

𝑐𝑠𝑟𝑝𝑞𝑠
)]

2

𝑠=1

2

𝑞=1

2

𝑝=1

 

where, 

𝜇𝑝𝑞𝑠 = (−1)𝑝(−1)𝑞(−1)𝑠,   𝑝, 𝑞, 𝑠 = 1,2  

𝑎𝑝 = 𝑥𝑖 − 𝑥𝑝𝑗
′ , 𝑏𝑞 = 𝑦𝑖 − 𝑦𝑞𝑗

′ , 𝑐𝑠 = 𝑧𝑖 − 𝑧𝑠𝑗
′       (5.2) 

and (𝑥𝑝𝑗
′ , 𝑦𝑞𝑗

′ , 𝑧𝑠𝑗
′ ) are the coordinates of the eight corners of the 𝑗𝑡ℎ prism. The distance between 

a corner of the prism and the observation point is given by  𝑟𝑝𝑞𝑠 = (𝑎𝑝
2 + 𝑏𝑞

2 + 𝑐𝑠
2)1/2. 

5.3.2 Magnetic Anomaly 

Whereas the gravity field of the earth is largely time-invariant, except for relatively minor or 

long-term changes due to redistribution of mass, the geomagnetic field varies in both direction 

and intensity over time scales ranging from milliseconds to millennia (Blakely, 1995). 

The geomagnetic field is composed of both internal and external sources. External sources refer 

to the factors outside the Earth that influence the geomagnetic field. The most significant 

external source is the solar wind, which is a stream of charged particles that flows out from the 

Sun. When the solar wind encounters the Earth's magnetic field, it can cause disturbances that 

affect the field.  

Internal sources refer to the processes that occur within the Earth's core, which generate the 

main component of the geomagnetic field. The motion of molten iron in the Earth's outer core 
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generates electrical currents, which in turn create the magnetic field.  The high-order terms in the 

energy density spectrum of the geomagnetic field are related to the magnetization of crustal 

rocks. Magnetic investigations can therefore yield important data about geological structures. By 

analogy with gravity anomalies, we define a magnetic anomaly as the difference between the 

measured (and suitably corrected) magnetic field of the Earth and that which would be expected 

from the IGRF (Campbell, 2001; Lowrie and Fichtner, 2020).   

The Earth’s magnetic field intensity is expressed in units of nanotesla (nT).  The geomagnetic 

elements are taken to be components parallel to the geographic north and east directions and the 

vertically downward direction (Figure 5-3).  

 

Figure 5-3: Geomagnetic field components. 

The magnitude of the magnetic vector is given by the field strength 𝐵0; its direction is 

specified by two angles. The declination 𝐷 is the angle between the magnetic meridian and the 

geographic meridian; the inclination 𝐼 is the angle at which the magnetic vector dips below the 

horizontal. The Cartesian (𝑋, 𝑌, 𝑍) and spherical polar (𝐵0, 𝐷, 𝐼) sets of geomagnetic elements 

are related to each other as follows, 

𝐵0
2 = 𝑋2 + 𝑌2 + 𝑍2 

𝑋 = 𝐵0𝑐𝑜𝑠(𝐼) cos(𝐷), 𝑌 = 𝐵0𝑐𝑜𝑠(𝐼) sin(𝐷) , 𝑍 = 𝐵0𝑠𝑖𝑛(𝐼),  

𝐷 = arctan (
𝑌

𝑋
) , 𝐼 = arctan (

𝑍

√𝑋2+𝑌2
)                                      (5.3) 

The magnetic anomaly results from the contrast in magnetization of rocks with different 

magnetic properties adjacent to each other. 
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The combination of the anomalous magnetic field (𝑇) and the earth’s main field (𝐵0) is the 

quantity measured by the airborne magnetometers (𝐵). The main magnetic field that originates 

from the core of the earth and contains the long wavelength of the total magnetic field can be 

obtained from global models such as the IGRF. After subtraction of the main field from the 

observed data, the residual magnetic field is transformed into DRTP anomalies map. The DRTP 

corrects for regional variations in inclination and declination on the assumption that all 

magnetization is induced. In fact, the anomalous component of the observed magnetic field 

originates from crustal magnetized rocks that are composed of both remnant magnetization and 

induced magnetization. The induced magnetization is defined by 

𝑀𝐼 = 
𝐵𝜒

𝜇0(1+𝜒)
                                                            (5.4) 

where 𝜇0 = 4𝜋 × 10−7 𝐻/𝑚 is vacuum magnetic permeability, and 𝜒 is the susceptibility that 

denotes how much a material will become magnetized in an applied magnetic field. It is often 

difficult to distinguish remnant magnetization from induced magnetization, and therefore in this 

study, it is assumed that the basement only has induced magnetization.  

Considering the same prismatic model, the total magnetic field anomaly 𝑇 of a rectangular 

prism at origin represents as (Blakely, 1996) 

𝑇 = 𝐸𝐼 × 𝐶𝑚[𝑙 𝑚 𝑛] ×

[
 
 
 
 − tan−1 (

𝑦𝑧

𝑥𝑟
) ln(𝑟 + 𝑧) ln(𝑟 + 𝑦)

ln(𝑟 + 𝑧) − tan−1 (
𝑥𝑧

𝑦𝑟
) ln(𝑟 + 𝑥)

ln(𝑟 + 𝑦) ln(𝑟 + 𝑥) − tan−1 (
𝑥𝑦

𝑧𝑟
)]
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∆𝑥2

|
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∆𝑦1

∆𝑦2

|

|

∆𝑧1

∆𝑧2

× [
𝐿
𝑀
𝑁

]              

                                                                                                                                               (5.5) 

where, ∆𝑥𝑝 = 𝑥𝑖 − 𝑥𝑗
′,   ∆𝑦𝑝 = 𝑦𝑖 − 𝑦𝑗

′,   ∆𝑧𝑝 = 𝑧𝑖 − 𝑧𝑗
′ and 𝑟 is the distance between the 

measurement station at (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) and prism at (𝑥𝑗
′, 𝑦𝑗

′, 𝑧𝑗
′): 𝑙, 𝑚, 𝑛 are directive cosines of the 

geomagnetic field at the station; and 𝐿,𝑀,𝑁 are directive cosines of the geomagnetic field at 

each prism. Moreover, 𝐶𝑙 = 1 is a dimensionless magnetic constant in electromagnetic units.  
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5.4 Conclusion 

In this chapter, an original approach for the dataset simulation was provided. The developed 

technique presents a flexible and adaptable solution for simulating large volumes of data 

required for specific DNN inversion tasks. In the following chapters (chapter six to chapter 

eight), the proposed technique is exploited for the simulation of diverse datasets tailored to 

inversion of gravity data, inversion of magnetic data, and joint inversion of gravity and magnetic 

data offshore UAE.  
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6. Chapter Six: DNN Inversion of Gravity Data 
 

 

6.1 Introduction 

Interpretation of the gravity field holds a significant place in comprehending the Earth’s 

subsurface. The Earth's mass distribution and shape are governed by the central force of gravity, 

which is counteracted mainly by the molecular and atomic forces that resist compression and 

deformation. Thermal perturbations of the equilibrium, which gravity strives to achieve, 

maintain, or restore, are the main generators of ongoing geodynamic processes. These processes 

create density distributions that generate observable gravity signals, which serve as the focus of 

gravity studies. Geological structures resulting from previous geodynamic processes are 

preserved over extended periods near the Earth's surface in the crust.  

Gravity interpretation refers to the interpretation of gravity anomalies. Gravity anomalies are 

continuous variations in space while gravity values are observed over discrete points on the 

Earth. Defining an anomaly from discrete observations is part of gravity interpretation.  

Inversion of gravity anomalies is the mathematical derivation of geometrical or density 

parameter distributions of the subsurface. However, gravity inversion is a notoriously non-

unique problem, while the forward problem of determining the gravity effects of given mass 

distributions is unique. It means that there are always infinite solutions that fit the data equally 

well. The ambiguity arises from the trade-off between the depth of the anomalous mass and its 

density distribution. 

The infinity of solutions can be reduced by invoking a priori information which is mandatory 

for gravity inversion. The a priori information can be obtained from different sources such as 

geological and geophysical data. Moreover, essential knowledge of gravity data and density 

distribution is required for reducing this ambiguity. However, the additional knowledge may be 

limited. If the a priori information were complete, there would be no problem left to be solved. 

Gravity inversion is an important geophysics tool that provides insights into the subsurface 

structure and composition such as hydrocarbon reserves and the Earth's crust. Different gravity 

inversion approaches with varying complexity and accuracy are developed based on the applied 

method, the usage of prior information and constraints, and the geological feature to be 
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investigated (B. Ashena et al., 2018; Bear et al., 1995; Boulanger and Chouteau, 2001; Camacho 

et al., 2002; Cella and Fedi, 2012; Last and Kubik, 1983; Li and Oldenburg, 1998). 

Gravity inversion using DNN is a relatively new approach to the interpretation of gravity data 

(Ashena et al., 2022; Li et al., 2022; Yang et al., 2022; Huang et al., 2021; Zhang et al., 2019; 

Yang and Ma, 2019). DNN inversion is capable to map nonlinear and complex relationships 

between large amounts of gravity data and the subsurface model. DNN gravity inversion 

involves training a neural network on a set of simulated or real gravity data and corresponding 

subsurface models. The trained DNN model can then be used to invert unseen gravity data to 

obtain a subsurface model that explains the observed data.  

The remainder of this chapter discusses our intelligent inversion software developed for 

modeling basement topography. First, our technique for simulations of training datasets is 

explained, including forward model creation, parameter selection, and gravity data calculations.  

Following this, the DNN inversion model is trained using the simulated dataset for basement 

topography estimation in the offshore UAE. The DNN model architecture, training procedure, 

and hyperparameters fine-tuning are described in detail. The performance of the trained model is 

then evaluated with unseen noise-free and noise-added synthetic data. Eventually, the model is 

run to estimate the basement topography from pseudo-gravity data over the Ghasha hydrocarbon 

reservoir in the offshore UAE.  

6.2 Gravity Dataset Simulation 

A 2.5D forward model of the target area partitioned the subsurface into two layers (Figure 6-1). 

The upper layer constitutes the sedimentary strata, volcanic rocks and the Hormoz evaporates. 

The lower layer is assigned to the Proterozoic basement. The 86 km length of the profiles is set 

as the length of the forward model. The model is then extended at both lateral sides by half the 

length of the biggest random anomaly (20 km) to avoid potential edge effects. The basement of 

the UAE is overlain by a thick sequence of sedimentary strata and thus cannot be reached by 

exploration wells and seismic exploration. However, the crystalline basement of the UAE is 

exposed in the Arabian Shield and Dhofar region of Oman (Mercolli et al., 2006; Nehlig et al., 

2002). The basement exposures are composed of high-grade metamorphic and igneous rocks 

(Allen, 2007; Bowring et al., 2007). Based on this information, the density of 2800 𝑘𝑔.𝑚−3 is 

considered for the Proterozoic basement. Assuming the density of 2600 𝑘𝑔.𝑚−3  for the 
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background, the density contrast of the basement against that of the background would be 200 

𝑘𝑔.𝑚−3. We set the density contrast of the sediments to zero to disregard its mass changes from 

the simulated gravity anomaly. Consequently, the gravity anomaly solely reflects the effects of 

the basement. 

 
Figure 6-1: Schematic view of 2.5D forward model and observation points (red dots) on the surface. 

The basement is simulated from an assembly of rectangular prisms each 1 km long and 20 km 

wide.  The lower boundary of the lower layer is fixed at 12 km. The heights of the prisms are 

adjusted during the dataset creation process by adopting random parameters.  The ranges of 

random parameters are provided in Table 6-1. The average depth and topography parameters are 

set to 5 km to 9 km and 3 km to 11 km respectively. Moreover, we chose the number of the 

anomalies and length of the anomalies to be 1 to 8 anomalies and 8 km to 40 km respectively.   

Applying these parameters, a dataset has been simulated of 200,000 instances with gravity 

anomaly as inputs and basement topography as labels. Dataset creation was completed in 19 

minutes using the multiprocessing library to accelerate the process on a PC with Intel Core-

i7CPU 3GHz and 16.0 GB RAM. 

Table 6-1: Random parameter ranges of the forward models. 

The lower layer (Basement) 

Average depth (km) 5-9 

Topography range(km) 3-11 

Length of anomalies (km) 8-40 

Number of anomalies 1-8 

 

Figure 6-2 shows some samples of the simulated gravity dataset including their simulated 

forward models together with their calculated gravity anomalies. 
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Figure 6-2: Samples of a simulated dataset. The red curve represents the synthetic gravity in mGal.  The 

subsurface model is depicted with gray and dark blue colors, corresponding to sediments, and basement 

layers, respectively. 
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6.3 DNN Gravity Inversion  

Using the simulated dataset, a DNN model is trained to conduct the nonlinear inversion of 

gravity data. Finding the optimal hyperparameters is a tedious task if conducted through a trial-

and-error approach. The grid search algorithm is applied using the validation set to optimize the 

hyperparameters. The grid search algorithm is a hyperparameter optimization technique used in 

ML to find the best combination of hyperparameters for a given model. Hyperparameters are 

parameters that are not learned from the data but are set before training the model. The grid 

search algorithm works by creating a grid of all possible hyperparameter values and then 

evaluating the model's performance using cross-validation for each combination of values. 

Accordingly, the optimal DNN model consisted of three hidden layers, each with 300 neurons. 

Glorot Normal and Elu were the weight initializer and the activation function of the model. The 

RMSprop technique is chosen to optimize the model parameters. The initial learning rate 

obtained from the grid search was 0.0003. To avoid overfitting in the DNN model training, the 

dropout regularization technique is used with a dropout rate of 0.1. In other words, 10 percent of 

the neurons are randomly selected and removed during each update.  

The DNN model was trained using the TensorFlow library with a batch size of 32 and 30 

epochs and conducted on an NVIDIA GeForce GTX 1660 Ti GPU. 

The training workflow is as follows.  A DNN model is built and trained using the Keras 

library, a high-level API of TensorFlow developed by Google. A model is defined using the 

Sequential class. For the DNN model to be trained, a set of hyperparameters need to be 

configured, including: the number of hidden layers and the units in each layer; an initializer to 

start the random weights of the layers; an activation function for the hidden layers through which 

the sum of weighted inputs is passed; an optimizer and its parameters including the learning rate, 

through which the model is updated; a regularization technique to avoid overfitting the model; 

and a loss function to measure the difference between the network outputs and the actual labels. 

Random Search technique from Scikit-learn is applied (Pedregosa et al., 2011), which 

samples combinations of the parameters from a specified parameter space. The parameter space 

includes: the options for the number of hidden layers, [2,3,5]; the number of units in each layer, 

[100, 200, 300,400]; and the hidden layers activation function, [‘elu’, ‘tanh’].  

The DNN model is fed with the simulated dataset to learn a function that maps the input 

features to the output values with the lowest possible error. The simulated dataset contains 
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examples of gravity anomalies with their corresponding basement topography as labels. Since 

the basement depths are continuous numerical values, the problem turns out to be a DNN 

regression task. Correspondingly, no activation function is applied to the last layer. Furthermore, 

MSE is used as the loss function which calculates the square of the difference between the 

predictions and the targets.  

6.3.1 Error Analysis  

Regarding model evaluation, the dataset is split into training (%90) and test (%10) sets. The 

model is trained using the training set and evaluated on a hold-out validation dataset after each 

epoch. The resulting learning curve is plotted for training and validation MSE versus epochs 

(Figure 6-3). As can be noticed, both training and validation MSE decrease as the number of 

epochs increases to a point of stability with a minimal gap between them. This means that the 

model is performing well on the training data and generalizing well to new data. To evaluate the 

performance of the trained DNN model prediction, MSE is also employed on the test set. The 

evaluation scores show a test loss of 0.08 𝑘𝑚2 . 

 

Figure 6-3: Plot of Training versus and validation accuracy against epochs. 
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6.4 DNN Gravity Model Evaluation 

The model performance is tested using unseen synthetic gravity data to predict the basement 

topography. Following, the MSE value between the true and predicted basement depths is 

calculated. Figure 6-4 illustrates some examples of basement topography predictions against the 

actual synthetic data. The average MSE value comes to 0.07 𝑘𝑚2.  As illustrated, the predicted 

basement topography correlates with the true simulation (white dashed line) including the 

average depth of the basement and the shape and location of the basement anomalies.  

Additionally, the model’s performance against noise was tested on gravity data with added 

Gaussian noise values of 5% and 10%. The average MSE values were obtained to be 0.14 𝑘𝑚2 

and 0.17 𝑘𝑚2 respectively.  The results of model predictions on the noise-added gravity data are 

illustrated in Figure 6-5 and Figure 6-6 respectively. This demonstrates that our DNN inversion 

model has satisfactory robustness against noise-contaminated data and can estimate the basement 

topography with desirable accuracy.   
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Figure 6-4: Samples of DNN gravity model prediction results. The red curve represents the synthetic 

gravity fed into the DNN model. The dashed blue curve represents the estimated gravity of the predicted 

subsurface structure. The predicted subsurface structure is depicted with gray, and dark blue colors, 

corresponding to sediments, and basement layers, respectively. The white dashed curve represents the actual 

basement topography. 
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Figure 6-5: Samples of DNN model prediction results. The red curve represents the 5% Gaussian noise-

added synthetic gravity anomaly fed into the DNN model. The dashed blue curve represents the estimated 

gravity anomaly of the predicted subsurface structure. The predicted subsurface structure is depicted with 

gray, and dark blue colors, corresponding to sediments, and basement layers, respectively. The white dashed 

curves represent true basement topography. 
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Figure 6-6: Samples of DNN model prediction results. The red curve represents the 10% Gaussian noise-

added synthetic gravity anomaly fed into the DNN model. The dashed blue curve represents the estimated 

gravity anomaly of the predicted subsurface structure. The predicted subsurface structure is depicted with 

gray, and dark blue colors, corresponding to sediments, and basement layers, respectively. The white dashed 

curves represent true basement topography. 
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6.5 Results and Discussion 

Determining basement structure is essential for the exploration of hydrocarbon reservoirs 

(Hodgson, 1965). Basement structures play an important role in the trapping mechanisms of 

hydrocarbon reservoirs as they propagate into the overlying sedimentary rocks and influence the 

fluid flow and the distribution of hydrocarbon traps (Palumbo et al., 2002). Moreover, tectonic 

processes that form basement structures also influence source rock distribution, heat flow, trap 

timing, and sediment supply. Therefore, a better understanding of basement structures eventually 

provides us with prospects to locate the optimal sites for hydrocarbon exploration wells.  

The gravity anomaly of the basement is required to model the basement topography of the 

target region using our DNN model. The complete Bouguer gravity anomaly (Figure 2-2a) 

encompasses the gravity effects of the sediments, salt bodies, the basement, etc. To obtain the 

gravity anomaly of the basement, the portion of the gravity anomaly caused by mass changes 

above the basement needs to be removed from the total Bouguer gravity anomaly. Obscured by 

the negative gravity of the salt bodies, it is not feasible to distinguish the positive gravity effect 

of the basement from the anomaly of the sedimentary layers. Our alternative solution to this 

problem is to use pseudo-gravity anomalies instead of gravity anomalies. The pseudo-gravity 

anomaly is obtained from the converted magnetic anomaly. Disregarding the insignificant 

magnetic effects of sedimentary formations and igneous rock bodies, the magnetic anomaly 

originates mainly from the Proterozoic basement.  

The Poisson theorem constructs the basis of the pseudo-gravity transform by linearly 

connecting the magnetic potential to the gravity potential under a few assumptions. This theorem 

requires that causative density and magnetic sources be common and that magnetization 

direction and magnetization-to-density ratio be constant. The pseudo-gravity transform is defined 

in the Fourier domain (Blakely, 1995). 

       Ϝ[𝑔𝑝𝑠𝑔] =
𝛾

𝐶𝑚|𝑘|𝛩𝑓𝛩𝑚

𝜌

𝑀𝐼
Ϝ[𝑇] 

𝛩𝑓 = 𝑓𝑧 + 𝑖
𝑓̂𝑥 𝑘𝑥+𝑓̂𝑦 𝑘𝑦

|𝑘|
, 

                                                            𝛩𝑚 = 𝑚̂𝑧 + 𝑖
𝑚̂𝑥 𝑘𝑥+𝑚̂𝑦 𝑘𝑦

|𝑘|
    (6.1) 

In these equations, 𝑔𝑝𝑠𝑔 is the pseudo-gravity transform of magnetic anomaly field T, k is the 

wavenumber, and 𝑓 and 𝑚̂ are the unit vectors parallel to the magnetization and ambient field, 
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respectively. In addition, 𝐶𝑚 = 1 denotes the dimensionless magnetic constant in 

electromagnetic units, whereas its value is considered 𝐶𝑚 = 10−7𝐻/𝑚 in the international 

system of units (SI), 𝛾 represents the gravitational constant, 𝜌 is the density, and 𝑀𝐼 is the 

induced magnetization in the direction of the geomagnetic field. 
𝜌

𝑀𝐼
 defines the density-to-

magnetization ratio.  

 The pseudo-gravity anomaly map over the largest hydrocarbon reservoir of the region 

Ghasha has been obtained and displayed in Figure 6-7.  

 

Figure 6-7: Location of the profiles over pseudo-gravity anomalies map of the study area together with its 

hydrocarbon reservoir (oil-water) boundaries. 

We applied the trained DNN inverse model to estimate the basement topography in offshore 

UAE across three profiles extracted from the pseudo-gravity map of the region (Figure 6-7). 

Profile 1 and Profile 2 cross the largest hydrocarbon field of the region (Ghasha) along the SW- 

NE direction and Profile 3 bisects the first two profiles and crosses the Ghasha reservoir from 

NW to SE. The results of our basement topography predictions are shown in Figure 6-8 through 

Figure 6-11. They demonstrate a satisfactory fit between the observed and predicted gravity data. 

The basement topography range is obtained between 7.4 km to 9.3 km with the shallowest part 

located below the Ghasha oil field reservoir. Our results also show that the deepest part of the 

basement appears toward the east of the profile. 
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Figure 6-8: Result of the DNN inverse model prediction across profile 1. The predicted subsurface 

structure is depicted with gray, and dark blue colors, corresponding to sediments, and basement layers, 

respectively. 

The structural parameters including the average depth of the basement and the length and 

height of the anomalies that change the topography of the basement during database simulation 

are chosen from ranges of values.  The DNN model was also trained using these values and 

predicted the topography within these ranges. The geological and geophysical studies conducted 

in the region can provide us with an initial estimate of the parameter ranges. Previous studies in 

UAE suggest a thick sedimentary layer between ~ 5 to ~10 km (Geng et al., 2022; Ghalenoei et 

al., 2022; Salem and Ali, 2016).  Given this information, we set the average depth and 

topography ranges to 5 km to 9 km and 3 km to 11 km respectively.  

If the structural information is limited, we need to broaden the random parameter ranges to 

ensure that they cover the solution. In this case, more simulated data is required that comprises 

various subsurface structures whose shapes and depths are different. This causes data simulation 

and model training to be computationally more expensive while the accuracy of model 

predictions would remain the same. 
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Figure 6-9: Result of the DNN inverse model prediction across profile 2. The predicted subsurface 

structure is depicted with gray, and dark blue colors, corresponding to sediments, and basement layers, 

respectively. 

 

Figure 6-10: Result of the DNN inverse model prediction across profile 3. The predicted subsurface 

structure is depicted with gray, and dark blue colors, corresponding to sediments, and basement layers, 

respectively. 
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Figure 6-11: Representation of the 3 profiles, profile 1, profile 2, and profile 3. 

It is necessary to discuss different assumptions about the data and subsurface parameters that 

impact the accuracy and resolution of the obtained models. Inversion of gravity anomalies is the 

mathematical derivation of geometry or density distributions of the subsurface. However, gravity 

inversion is a notoriously non-unique problem. It means that there are always infinite solutions 

that fit the gravity data adequately well. The ambiguity arises from the trade-off between the 

depth of the anomalous mass and its density distribution. Therefore, one of those parameters 

must be constrained by a priori information. A priori information which is mandatory for gravity 

inversion is usually acquired from geological and geophysical studies conducted in the target 

region.  Nonetheless, if this information is missing or incorrect, uncertainties may be introduced 

to the predicted models. In the context of geophysical modeling, accurate density estimates are 

crucial for interpreting gravity data and inferring the distribution of subsurface anomalies. 

Estimating density can be challenging, as it often requires making assumptions about the 

composition and properties of the subsurface.  

As explained previously, in DNN gravity inversion the density contrast is invoked as a priori 

information. To illustrate how uncertainties in density contrasts can affect the accuracy of 

solutions, we trained four DNN models with density contrasts that are ±15% and ±30% of the 

assumed density contrast of 200 𝑘𝑔.𝑚3. Each model was then used to make estimations on 1000 

samples of synthetic data followed by calculating the root mean square error (RMSE) between 
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the corresponding synthetic basement and the estimated basement.  The average RMSE values of 

the DNN models are summarized in Table 6-2.  Figure 6-12 demonstrates the model estimations 

on an example of synthetic data with an average depth of 8.5 𝑘𝑚. Our findings indicate that a 

15% error in density contrast can result in roughly a 3% error in topography estimation. In 

addition, the estimated basement approximately offsets the assumed basement by ~0.5 km if a 

30% error is applied in the density contrast. 

 

Figure 6-12: Basement topography estimation results using different density contrasts. 

As illustrated in Figure 6-12, the estimated topography by different models roughly follows 

the same trend as density contrast decreases or increases, however, the average depths are 

shifted. This can be attributed to the relationship between gravity and density. Since gravity is 

directly proportional to mass, changes in the density of subsurface materials can cause 

corresponding changes in the measured gravity. Consequently, we expect to predict a deeper 

basement for larger density contrast.  

Table 6-2: Density uncertainty analysis results on basement topography estimations. 

Density contrast error (%) RMSE (km) 

-30 0.53 

-15 0.27 

15 0.26 

30 0.56 
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It is important to note that the topography estimated by different models may differ in shape 

due to variations in the weights and parameters of the DNN model. These variations arise from 

differences in the weights and parameters of the respective DNN models employed in the 

inversion processes. The DNN models used for inversion are trained to learn the complex 

relationships between the input features and the output variables. During the training phase, the 

models adjust their internal weights and parameters to minimize the discrepancy between the 

predicted values and the true values of the subsurface properties. 

The other factor that affects the resolution and accuracy of the dataset simulation and DNN 

model predictions is the quality and quantity of the gravity data.  The data is usually 

contaminated with measurement and correction errors. If data is collected over scattered 

locations, the chance of capturing the short wavelength variations of the topography is reduced. 

As a result, a smaller number of anomalies with longer lengths can be selected for the forward 

model simulation. Moreover, based on Newton’s gravitation law, gravity attenuates with 

increasing distance. This implies that the chance of capturing the gravity effects of short 

wavelength anomalies decreases as their depths increase. The number and length of the 

anomalies are dependent on the sparsity of the observed gravity data.  This can also affect the 

resolution of the predicted results of the model. 

We used pseudo-gravity data to model the basement of UAE. To do so we converted the 

magnetic anomaly (Figure 2-3a) to the pseudo-gravity anomaly.  The magnetic data is acquired 

on a grid with a grid cell size of 400 m (Ali and Watts, 2009). We sampled the pseudo-gravity 

anomaly over the three profiles with a spacing of ~1 km. This spacing is adequate for capturing 

the short and long wavelengths of the topography. However, the pseudo-gravity anomaly over 

the target region implies a smooth variation of the basement topography, as predicted by our 

DNN model.  

DNN has significantly contributed to solving the non-uniqueness and non-linearity aspects of 

our inverse problems. Nevertheless, DNN models trained for a specific region are impractical for 

interpreting regions with different dimensionality and geological properties. In fact, such models 

need to be re-trained if the major physical and structural parameters are modified. In addition, 

database simulation and model training is time-consuming. When encountering such issues, 

incorporating high-level programming languages on modern computers has been promising for 

optimizing the training processes. 
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6.6 Conclusion  

A new technique for DNN inversion of gravity anomalies to estimate basement topography was 

developed. A gravity dataset was simulated by random assignment of several parameters to a 

two-layer forward model. Subsequently, a DNN model was trained using the simulated dataset to 

conduct nonlinear mapping of gravity anomaly to basement topography. The model performance 

was tested on the unseen actual and noise-added synthetic gravity anomalies. The outputs show a 

significant fit between the predicted and simulated basement topography even after adding 10% 

noise to the gravity data.  

The DNN model was employed to estimate the basement topography over the Ghasha 

hydrocarbon reservoir in offshore Abu Dhabi, UAE. The predictions were conducted using 

pseudo-gravity anomalies over three profiles. The basement topography obtained between 7.3km 

to 9.4 km supports the results of other research conducted in the same region.  

Furthermore, chapter seven delves into the estimation of basement topography using magnetic 

data. The procedures for dataset simulation, DNN model training, and prediction follow similar 

approaches to those employed in this chapter. 
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7. Chapter Seven: DNN Inversion of Magnetic Data 
 

7.1 Introduction 

The objective of magnetic inversion is to determine the distribution of subsurface magnetic 

anomalies. By analyzing the magnetic anomalies, we can infer valuable information about the 

geological formations and structural characteristics of the anomalous bodies. 

In this chapter, the focus is on applying the DNN inversion technique to model the basement 

topography using magnetic anomalies. The methodology for dataset simulation, as described in 

chapter five, is followed to generate the required training dataset. The simulated dataset includes 

magnetic anomalies as input features and the corresponding depth-to-basement values as labels. 

The DNN inversion model is trained using the simulated dataset, where the network learns the 

complex mapping between the magnetic anomalies and the underlying basement topography.  

To assess the performance of the trained model, evaluations are conducted using both noise-

free and noise-added synthetic data. The noise-free data allows for a baseline assessment of the 

model's accuracy and robustness. The noise-added data provides a more realistic representation 

of the actual measurement conditions, accounting for potential noise and uncertainties in the 

observed magnetic anomalies. 

Finally, the trained DNN inversion model is applied to estimate the basement topography 

from actual aeromagnetic anomalies offshore UAE.  

By leveraging the power of DNN inversion and utilizing the magnetic anomalies, this chapter 

contributes to the understanding and characterization of the basement topography in the study 

area. The results obtained from the DNN inversion provide valuable information for geological 

and geophysical interpretations, aiding in the exploration and assessment of potential 

hydrocarbon reservoirs offshore UAE. 

7.2 Magnetic Dataset Simulation  

The forward model is created by dividing the subsurface into two layers: sediments and 

basement. Two separate datasets are simulated, each targeting different lengths of observation 

profiles of 140 𝑘𝑚 and 200 𝑘𝑚. Since the sediment layer is transparent to magnetic effects, its 

susceptibility is set to zero. The basement of the UAE is composed of high-grade metamorphic 

and igneous rocks (Allen, 2007; Bowring et al., 2007). The basement susceptibility ranges from 
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~ 0.001 SI to ~ 0.016 (Ghalenoei et al., 2022; Salem and Ali, 2016). Therefore, the average 

susceptibility of ¬0.008 SI is chosen for the basement. 

The lower boundary of the lower layer is fixed at 12 km. The heights of the prisms are 

adjusted during the dataset creation process. The random forward model parameter ranges are 

provided in Table 6-1. The average depth and topography parameters are set to 5 𝑘𝑚 to 9 𝑘𝑚 

and 3 𝑘𝑚 to 11 𝑘𝑚. Moreover, the number of anomalies and length of the anomalies are again 

set to be 1 to 8 anomalies and 8 km to 40 km respectively.  The model is then extended at both 

lateral sides to avoid potential edge effects. 

Dataset creation was completed in 14 minutes using the multiprocessing library on a PC with 

Intel Core-i7CPU 3GHz and 16.0 GB RAM. The final simulated datasets comprise 200,000 

instances with the magnetic anomaly of each forward model as the input features and 

corresponding basement topography as labels. Figure 7-1 shows three random simulated forward 

models together with their magnetic anomalies.  

7.3 DNN Magnetic Inversion  

The DNN model is configured adopting the same procedure and hyperparameters as for the 

inversion of gravity data (chapter six).  

The Sequential class of the Keras library is used to train the DNN inverse model. The grid 

search algorithm (Pedregosa et al., 2011) is applied to optimize the hyperparameters. 

Accordingly, the optimal DNN model consisted of 3 hidden layers, each with 300 neurons. The 

weight initializer and the activation function are chosen to be Glorot Normal and Elu. The 

RMSprop technique optimizes the model parameters with an initial learning rate of 0.0001. The 

dropout regularization technique with a dropout rate of 0.1 is used to avoid overfitting in the 

DNN model training.  

The DNN model was trained using the TensorFlow library with a batch size of 32 and in 30 

epochs and conducted on an NVIDIA GeForce GTX 1660 Ti GPU. 
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Figure 7-1: Samples of a simulated dataset. The red curve represents the synthetic magnetic in nT.  The 

subsurface model is depicted with magnetic and dark blue colors, corresponding to sediments, and basement 

layers, respectively. 
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7.3.1 Error Analysis 

To evaluate the performance of the Deep Neural Network (DNN) model, the dataset is divided 

into three subsets: the training set, the validation set, and the test set. The training set is used to 

train the DNN model by adjusting its parameters. The validation set is utilized to fine-tune the 

hyperparameters of the model, ensuring optimal performance. The test set is employed to assess 

the final performance of the trained model. 

The evaluation of the model involves the use of the cross-validation technique, which 

involves splitting the data into three folds. This technique helps to adjust the hyperparameters of 

the model during training, ensuring optimal performance. 

The MSE metric is employed to score the model's performance. This metric quantifies the 

average squared difference between the predicted and actual values. A lower MSE score 

indicates better model performance. 

During the training process, the accuracy of the model on both the training and validation sets 

is monitored after each epoch. This monitoring allows for the assessment of the model's progress 

and helps identify any overfitting or underfitting issues. The learning curve, depicting the 

model's performance over the number of epochs, is plotted to visualize the training progress 

(Figure 7-2).  The evaluation score on the test set is 0.05 𝑘𝑚2. Both training and validation MSE 

decrease as the number of epochs increases to a point of stability with a minimal gap between 

them. This means that the model is performing well on the training data and generalizing well to 

new data. 

7.4 DNN Magnetic Model Evaluation  

The performance of the trained model is assessed on unseen synthetic magnetic anomalies to 

ensure it can generalize well to new data and is not overfitting to the training data. 

Correspondingly, the DNN model is made to predict the basement topography on several unseen 

magnetic data with some examples illustrated in Figure 7-3.  

Accordingly, the predicted basement topography correlates with the true simulation 

including the average depth of the basement and the shape and location of the basement 

anomalies. Following, the average MSE value between the true and predicted basement 

topography is calculated to be 0.02 𝑘𝑚2.   
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Figure 7-2: Plot of Training and validation accuracy against epochs. 

It is also important to test the DNN inversion model’s performance against noise to assess its 

robustness and generalization capabilities. Furthermore, adding noise to the input simulated 

magnetic data allows us to simulate real-world scenarios where the data may contain noise. 

Gaussian noise is used to simulate the effects of noise in real-world data. It is characterized by a 

normal distribution with zero mean and standard deviation equal to that of simulated magnetic 

data. The DNN model’s performance against noise was tested on magnetic data with added 

Gaussian noise values of 5% and 10% which means the noise amplitude is 5% and 10% of the 

signal's amplitude The results are shown in Figure 7-4 and Figure 7-5 with average MSE values 

of 0.027 𝑘𝑚2  and  0.03 𝑘𝑚2, respectively. 

Since the model fits the simulated data well and also performs well on noise-added data, it 

suggests that the model has good generalization capabilities and is not overfitting the training 

data.  In other words, it demonstrates that the DNN magnetic inversion model has satisfactory 

robustness against noise-contaminated data and can perform well on real magnetic data. 
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Figure 7-3: Samples of DNN magnetic model prediction results. The red curve represents the synthetic 

magnetic fed into the DNN model. The dashed blue curve represents the estimated magnetic of the predicted 

subsurface structure. The predicted subsurface structure is depicted with gray and dark blue colors, 

corresponding to sediments and basement layers, respectively. The white dashed curve represents the actual 

basement topography. 
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Figure 7-4: Samples of DNN model prediction results. The red curve represents the 5% Gaussian noise-

added synthetic magnetic anomaly fed into the DNN model. The dashed blue curve represents the estimated 

magnetic anomaly of the predicted subsurface structure. The predicted subsurface structure is depicted with 

gray and dark blue colors, corresponding to sediments and basement layers, respectively. The white dashed 

curves represent true basement topography. 
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Figure 7-5: Samples of DNN model prediction results. The red curve represents the 10% Gaussian noise-

added synthetic magnetic anomaly fed into the DNN model. The dashed blue curve represents the estimated 

magnetic anomaly of the predicted subsurface structure. The predicted subsurface structure is depicted with 

gray and dark blue colors, corresponding to sediments and basement layers, respectively. The white dashed 

curves represent true basement topography. 



72 
 

7.5 Results and Discussion 

Basement modeling is important for understanding the geology and hydrocarbon potential of a 

region and can aid in the identification and exploration of hydrocarbon resources (Palumbo et al., 

2002). Furthermore, the structure and properties of the basement can influence the formation and 

distribution of sedimentary basins, which in turn can impact the occurrence and distribution of 

hydrocarbons. For example, the presence of faults or folds within the basement can influence the 

location and shape of sedimentary basins, which can impact the trapping and accumulation of 

hydrocarbons. 

Magnetic data are inverted to obtain the structural model of the high susceptibility anomalous 

sources in the subsurface. The accuracy and resolution of the subsurface models are affected by 

the choice of the synthetic model parameters and the quality of the observations. A priori 

information is required to constrain the susceptibility distribution of the subsurface. The 

structural parameters are chosen from ranges of values that best serve the characteristics of the 

subsurface. 

The trained DNN inverse model is applied to estimate the basement topography in offshore 

UAE across three profiles extracted from the magnetic map of the region (Figure 7-6). Profile 1 

crosses the giant hydrocarbon fields of the region, Ghasha and Zakum along the SW-E direction 

Profile 2 passes through Arzanah, Bu Haseer, and Umm Shaif reservoirs from SW to NE. Profile 

3 bisects the first two profiles and crosses the Umm Shaif and Zakum reservoirs along NW to 

SE. 

The results of the basement topography estimations are shown in Figure 7-6 through Figure 7-

8. The top of the basement ranges from ~ 6.4 km to ~ 9.75 km over Profile 1 with the shallowest 

part located below the Ghasha oil field reservoir.  The deepest basement below the Zakum oil 

field is between ~ 9.45 𝑘𝑚 to ~ 9.75 𝑘𝑚 as derived from Profile 1 and Profile 3.  The results 

also show that the basement reaches another high approaching the Nasr and the Umm Shaif 

fields around  6.9 𝑘𝑚.  
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Figure 7-6: Location of the profiles over pseudo-gravity anomalies map of the study area together. The 

dotted white enclosures illustrate the boundaries of oilfields. 

 

Figure 7-7: Result of the DNN inverse model prediction across Profile 1. The predicted subsurface 

structure is depicted with gray and dark blue colors, corresponding to sediments and basement layers, 

respectively. 
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Figure 7-8: Result of the DNN inverse model prediction across Profile 2. The predicted subsurface 

structure is depicted with gray and dark blue colors, corresponding to sediments and basement layers, 

respectively. 

 

 

Figure 7-9: Result of the DNN inverse model prediction across Profile 3. The predicted subsurface 

structure is depicted with gray and dark blue colors, corresponding to sediments and basement layers, 

respectively. 
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7.6 Conclusion 

This chapter focused on the application of the DNN inversion technique for modeling the 

basement topography using magnetic anomalies. To generate the necessary training dataset, the 

dataset simulation methodology described in chapter five was followed. 

By implementing the DNN inversion technique on the real magnetic anomaly, this chapter 

contributed to advancing our understanding of the subsurface geology offshore UAE. 

Chapter eight focuses on the joint inversion of gravity and magnetic data and its application in 

interpreting salt-basement structures over hydrocarbon reservoirs offshore UAE. The joint 

inversion approach offers enhanced insights into the complex geological structures, contributing 

to more effective hydrocarbon exploration and resource evaluation in the region.  
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8. Chapter Eight: Joint DNN Inversion of Gravity and Magnetic 

Data 
 

 

8.1 Introduction 

As previously stated, one of the fundamental problems of geophysical inversions is the inherent 

non-uniqueness of their solutions. This means that multiple models can fit the observed data 

equally well, making it difficult to determine the true subsurface structures. Regularization 

techniques have traditionally addressed this issue, by introducing various constraints and 

simplifications to inversion parameters and subsurface solutions (Fernández-Martínez et al., 

2014; Lin and Zhdanov, 2018; Zhdanov, 2002).  

As suggested by multiple researchers introduced below and further developed by this 

research, another effective solution toward solving the non-uniqueness, is the joint inversion of 

geophysical data that pertains to different subsurface physical properties. Integrated 

interpretation of geophysical data applies complementary information that enhances the quality 

and accuracy of the subsurface models. Several techniques have been conducted on joint 

inversion of geophysical data including sequential inversion, cross-gradient, and Bayesian 

approaches (Carrillo et al., 2022; Ghalenoei et al., 2022; Kabirzadeh et al., 2021; Fregoso et al., 

2020; Gross, 2019; Lin and Zhdanov, 2018; Gallardo and Meju, 2007; Haber and Oldenburg, 

1997 ).  

Nonetheless, joint inversion of geophysical data can be a challenging task as different datasets 

are sensitive to various subsurface properties. Combining datasets that are not compatible in 

resolution and accuracy can lead to inconsistencies in the final interpretation. Moreover, the 

computational complexity of combining multiple geophysical datasets can be significant, 

especially when dealing with large datasets or computationally intensive inversion methods. This 

can result in long computation times and can make the joint inversion process impractical for 

certain applications. 

Joint geophysical inversion using DNNs is a state-of-the-art technique that involves learning 

the complex relationship between the geophysical datasets and the subsurface properties. DNN 

joint inversion has several advantages over traditional techniques. It can drive complex nonlinear 
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relationships between the features in high-dimensional datasets while being computationally 

efficient. Furthermore, DNNs can be trained to incorporate prior knowledge about the subsurface 

structure, thereby improving inversion accuracy.   

However, there are some limitations to using DNNs for geophysical inversion. For example, 

the results are dependent on the quality and quantity of the input data. Furthermore, DNNs are 

susceptible to overfitting, which occurs when the network becomes too complex and begins to fit 

the noise in the data rather than the underlying signal. Therefore, it is important to carefully 

design the network architecture and regularization techniques to avoid overfitting. 

Targeting complex subsurface structures, a joint inversion technique of gravity and magnetic 

anomalies is developed using DNN to prevail over the non-uniqueness and nonlinearity of the 

inverse problems. This thesis aims to apply the proposed method to image the salt-basement 

structures of hydrocarbon reservoirs in offshore UAE.  

The step-by-step procedure for DNN joint inversion of gravity and magnetic data to construct 

a 2.5D model of the subsurface structure is as follows: First, a training dataset is simulated using 

the technique proposed in chapter five. Accordingly, the subsurface is partitioned into sediments, 

salts, and basement layers representing our base forward model. By changing a few random 

parameters, tens of thousands of different versions of the model are generated and their gravity 

and magnetic anomalies are calculated. The dataset is created by putting together the gravity and 

magnetic anomalies as input and depth-to-salts and depth-to-basement as labels. A DNN model 

is trained using the simulated dataset to conduct nonlinear inverse projection of the gravity-

magnetic anomalies to the salts-basement topography. The DNN model performance is evaluated 

by making predictions on actual and noise-added synthetic gravity and magnetic anomalies. 

Finally, the verified DNN model has been applied to predict the salts and the basement over the 

profiles extracted on the gravity and magnetic anomalies of the hydrocarbon reservoirs in UAE.  

 

8.2 Joint Gravity and Magnetic Dataset Simulation 

The dataset simulation technique proposed in chapter five is implemented to simulate the 

required dataset for the DNN joint inversion of UAE gravity and magnetic data. For this purpose, 

a 2.5D forward model is designed to divide the subsurface into three layers: sediments, salts, and 

the basement. The physical parameters of the forward model including density and susceptibility 

of the layers are assigned based on the a priori information on the region. The average density of 
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the salt layer obtained from the Infracambrian Hormuz salts outcropping in the Jabal Dhanna 

(Figure 2-1) is 2200 𝑘𝑔𝑚−3. The average density of 2550 𝑘𝑔.𝑚−3 is assumed for the sediments 

as derived by well logs (Geng et al., 2020). The susceptibilities of the sediments and salt layers 

are negligible and thus are set to zero. The basement of the UAE is composed of high-grade 

metamorphic and igneous rocks (Allen, 2007; Bowring et al., 2007) with an assigned density of 

2800 𝑘𝑔.𝑚−3. The basement susceptibility ranges from ~ 0.001 SI to ~ 0.016 (Ghalenoei et al., 

2022; Salem and Ali, 2016). Therefore, the average susceptibility of 0.008 𝑆𝐼 is chosen for the 

basement.  

The layers are composed of rectangular prisms (Figure 5-1). The length of the layers and each 

of the prisms is specified based on the dimensions and resolutions of the anomalies being 

investigated and the length of the observation profiles. A width of 20 times the prism's length is 

used for the layers to mathematically satisfy the infinite width of the 2.5-D model. The model is 

then extended at both lateral sides to avoid potential edge effects. It should be noted that the 

adopted dimensions of the forward model cannot be modified during the dataset simulation and 

remain fixed.  

The lower boundary of the model is set to 12 𝑘𝑚 depth while the topography of the salt and 

basement layers are iteratively changing throughout dataset simulation to create different 

representations of the forward model. To accomplish this, several random parameters are defined 

that modify the depths and configurations of the salt and basement layers (Table 8-1). 

Studies conducted on the UAE hydrocarbon reservoirs suggest a deep basement overlain by 

thick sedimentary and salt strata (Ali et al., 2017; Obaid et al., 2014). As a result, the average 

depth of the basement is chosen to fall between 5 𝑘𝑚 to 9 𝑘𝑚 with its topography ranges from 

3 𝑘𝑚 to 11 𝑘𝑚. The average depth of the salt layer is set to fall between 3 km and the selected 

average depth of the basement. The salt topography fluctuates between 2 km and 8 km, 

respectively. To prevent the salt and basement layers to overlap, a tolerance of 200 m is imposed 

as the required minimum gap between these two layers. To create both short-wavelength and 

long-wavelength anomalies, the algorithm randomly selects 1 to 8 the number of anomalies with 

lengths between 2 km to half the length of the observation profile. For example, if the length of 

the model is 80 𝑘𝑚, the maximum length of the model would be 40 𝑘𝑚.  

Given the number of data to be simulated, in each iteration, a forward model randomly selects 

parameters from the predefined ranges of values. The salt and basement layers are initially given 
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two average depths that are chosen at random from the respective ranges. Then, a random 

number of anomalies of various lengths and heights are generated and distributed at random 

positions loaded on top of each layer's average depth. The Gaussian function is used to generate 

anomalies with zero mean and standard deviation equal to the lengths of the anomalies.  

Following the simulation of each forward model, their gravity and magnetic effects are 

calculated over the observation points. 

Table 8-1: Random parameter ranges of the salt and basement layers considering a forward model with 

80 km length. 

Parameter Salts Basement 

Average depth (km) 3-Average basement depth 5-9 

Topography range(km) 2-8 3-11 

Length of anomalies (km) 2-40 4-40 

Number of anomalies 1-10 1-8 

 

Targeting two different lengths of observation profiles, two forward models are simulated 

with 140 km and 200 km and 2 km spacing respectively. The resulting simulated dataset 

comprises gravity and magnetic anomalies as input features and depth-to-salts and depth-to-

basement values as their associate labels. Dataset creation was completed in 47 minutes for 

200000 samples using the multiprocessing library on a PC with Intel Core-i7CPU 3GHz and 

16.0 GB RAM. 

Figure 8-1 illustrates three examples of the simulated dataset as pairs of synthetic gravity and 

magnetic anomalies and corresponding subsurface structure including sediments, salts, and 

basement as illustrated with gray, light blue, and dark blue colors, respectively. 
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Figure 8-1: Samples of a simulated dataset. The red curve represents the synthetic gravity in mGal, and 

the blue curve represents the DRTP anomaly in nT. The subsurface model is depicted with gray, light blue, 

and dark blue colors, corresponding to sediments, salts, and basement layers, respectively. 
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8.3 DNN Joint Inversion of the Gravity and Magnetic Data 

This section describes the procedures of training and configuring the DNN model to conduct 

nonlinear joint inversion of gravity and magnetic data.  

A DNN model has been trained to learn the mapping between the input observed gravity and 

magnetic anomalies and the output subsurface structure. The Sequential class of the Keras library 

is used in Python to construct the perceptron feedforward model.  Some of the hyperparameters 

are configured the same as those used in chapter six.  

The number of hidden layers and the units in each layer are chosen to be 3 and 300 

respectively. The Glorot initializer is used to assign initial random weights to the layers.  The 

sum of weighted inputs of the hidden layers is passed through the Elu activation function. The 

DNN model is trained using the RMSprop optimizer to minimize the difference between the 

predicted model parameters and the true model parameters. The initial learning rate is set to 

0.0001. To avoid overfitting in the DNN model training, the dropout regularization technique is 

used with a dropout rate of 0.1. Moreover, Mean Square Error (MSE) is used as the loss function 

to measure the difference between the network outputs and the actual labels. 

The DNN model was trained using the TensorFlow library with 32 batch sizes in 30 epochs. 

The model training is conducted on an NVIDIA GeForce GTX 1660 Ti GPU. 

8.3.1 Error Analysis 

Regarding model evaluation during and after the training, the dataset is split into training (90%) 

and test (10%) sets. The training set is used to learn the parameters of the DNN model. During 

model training, 10% is held out to validate the model. To monitor the accuracy of the model, the 

MSE metric is calculated for both training and validation sets after each epoch. The learning 

curve, depicted in Figure 8-2, illustrates the trend of the MSE values throughout the training. It 

demonstrates that the MSE gradually decreases as the number of training epochs increases, 

eventually reaching a point of plateauing. Notably, the gap between the MSE values of the 

training and validation sets remains minimal, indicating that the model performs well on the 

training data while still generalizing effectively to new data. Furthermore, the model's 

performance is evaluated on the test set, providing an evaluation score in the form of a test loss 

of 0.04 𝑘𝑚2 
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Figure 8-2: Plot of Training versus and validation accuracy against epochs. 

This metric indicates the accuracy of the model's predictions on unseen data, highlighting its 

capability to effectively generalize beyond the training and validation sets. Overall, these 

evaluations demonstrate the reliable performance and generalization ability of the trained DNN 

model. 

 

8.4 DNN Joint Inversion Model Evaluation 

To assess the reliability and effectiveness of the trained DNN model in real-world scenarios, it 

needs to generalize well on unseen data. To evaluate how the DNN model can handle unseen 

examples, we have fed it with several synthetic joint gravity and magnetic anomalies to estimate 

the salts and basement structures. The corresponding average MSE value is obtained as 0.035 

𝑘𝑚2. Three examples are randomly selected and illustrated in Figure 8-3. The true synthetic salt 

and basement topography are plotted on top of the estimated subsurface with white dashed lines. 

A significant fit between true and estimated subsurface and their corresponding gravity and 

magnetic anomalies are observed.  

Incorporating noise-added synthetic data into the model evaluation process can provide a 

more comprehensive assessment of the model's performance and robustness. Therefore, we 

evaluated the model against noise by adding % 5 and %10 Gaussian noise to unseen synthetic 
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gravity-magnetic anomalies with obtained average MSE values of 0.05 𝑘𝑚2 and 0.055 𝑘𝑚2, 

respectively.   

The results of model estimations on the noise-added data are illustrated in Figure 8-4 and 

Figure 8-5. As demonstrated the estimated subsurface fits the true one with reliable accuracy 

which proves the robustness of our DNN model against noise-contaminated data. 

In the next section, the approved model is used to determine the salt and basement structures 

on real case data. 

8.5 Results and Discussion 

Gravity and magnetic anomalies are essential in hydrocarbon reservoir exploration to investigate 

the distribution of salts and basement structures. Salts formations, which exhibit lower densities 

compared to surrounding rocks, give rise to distinct negative gravity anomalies. Analyzing these 

anomalies allows for estimating the geometry of salt formations as major trapping mechanisms 

for hydrocarbons.  

In hydrocarbon exploration, identifying basement structures is important due to their impact 

on hydrocarbon migration and accumulation. Basement rocks typically have higher densities and 

susceptibilities than overlying sedimentary rocks, resulting in observable anomalies in gravity 

and magnetic maps. Detecting the structure of the basement can be achieved through inversion of 

gravity or magnetic anomalies.  

The composite variations in subsurface rock densities create challenges in delineating the 

positive gravity anomalies of the basement from the negative effect of salts. A promising 

practice is to combine gravity and magnetic anomalies to provide a more comprehensive 

understanding of subsurface geology. Gravity anomalies reflect density variations in both salts 

and the basement, while magnetic anomalies are influenced by susceptibility variations of the 

basement. Consequently, simultaneous interpretation of gravity and magnetic anomalies 

enhances slats and basement delineation required to map the distribution of hydrocarbon traps. 
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Figure 8-3: Samples of DNN model prediction results. The red curve represents the synthetic gravity and 

DRTP anomalies fed into the DNN model. The dashed blue curve represents the estimated gravity and 

magnetic anomalies of the predicted subsurface structure. The predicted subsurface structure is depicted 

with gray, light blue, and dark blue colors, corresponding to sediments, salts, and basement layers, 

respectively. The white dashed curves represent actual salt and basement topography. 
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Figure 8-4: Samples of DNN model prediction results. The red curve represents the 5% Gaussian noise-

added synthetic gravity and DRTP anomalies fed into the DNN model. The dashed blue curve represents the 

estimated gravity and magnetic anomalies of the predicted subsurface structure. The predicted subsurface 

structure is depicted with gray, light blue, and dark blue colors, corresponding to sediments, salts, and 

basement layers, respectively. The white dashed curves represent true actual salt and basement topography. 
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Figure 8-5: Samples of DNN model prediction results. The red curve represents the 10% Gaussian noise-

added synthetic gravity and DRTP anomalies fed into the DNN model. The dashed blue curve represents the 

estimated gravity and magnetic anomalies of the predicted subsurface structure. The predicted subsurface 

structure is depicted with gray, light blue, and dark blue colors, corresponding to sediments, salts, and 

basement layers, respectively. The white dashed curves represent true actual salt and basement topography. 
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The DNN joint inversion model is applied to three profiles of airborne gravity and 

aeromagnetic anomalies to estimate salts and basement structures offshore UAE (Figure 8-6). 

Profiles are chosen to intersect the giant hydrocarbon fields of the region with significant gravity 

and magnetic anomalies.   

 
Figure 8-6:. (a) Bouguer gravity anomaly; (b) reduced-to-pole magnetic (DRTP) anomaly.  The dotted 

white enclosures illustrate the boundaries of oilfields. Profiles P1, P2, and P3 are used for the DNN joint 

inversion modeling. 
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Profile 1 extends from southwest to east and passes through the largest hydrocarbon fields of 

the region, Ghasha, and Zakum. Starting from the southwest and progressing towards the 

northeast, Profile 2 encompasses several significant locations in the studied region. It passes in 

proximity to Dalma and Hair Dalma, then proceeds to traverse Arzanah and Bu Haseer fields, 

ultimately reaching the Umm Shaif fields and Naser at the northeastern end of the profile. Profile 

3 serves as a control profile that bisects Umm Shaif at the northwest and Zakum at the southeast. 

The results of the joint interpretation of the gravity and magnetic anomalies over the profiles 

are presented in Figures 8-7 to Figure 8-10. The lowest gravity anomalies exhibit along Zakum 

and Umm Shaif. On the other hand, the magnetic anomaly map illustrates a high over the Umm 

Shaif field and a low at Zakum. Around Ghasha, both gravity and magnetic indicate high 

anomalies.  

The results indicate variations in the depth of the basement across different areas. Over 

Ghasha, the shallowest basement is estimated at around 6.7 𝑘𝑚. In contrast, the deepest 

basement is observed below the Zakum region ranging from ~9.3 𝑘𝑚 to ~9.7 𝑘𝑚. Moreover, 

another basement low is identified at ~9.3 km in the southwest of the region. Across Profile 2, 

from Bu Haseer to Umm Shaif, the basement gradually rises to reach a maximum of 7.4 𝑘𝑚. 

Moving to the north, around the Umm Shaif field, the average basement is estimated at ~ 8 𝑘𝑚.  

The analysis of the gravity and magnetic profiles provides insights into the thickness of the 

salt layers in the study region. The results reveal variations in the depth to the top of the salt layer 

across different areas. The shallowest depth to the salts occurs around the Umm Shaif field at 

~5.6 km. In the Ghasha region, the depth to the salts is estimated to be approximately 6 𝑘𝑚. 

Toward the northeast, the salts get deeper with the top of the salts ranging ~7 𝑘𝑚 to ~8 𝑘𝑚 over 

Zakum.  

The salt thickness also shows variations across the study region. At the southwestern part 

where Profile 1 and Profile 2 intersect, the salt thickness ranges from 0.7 𝑘𝑚 to 1.7 𝑘𝑚. The salt 

thickness gradually decreases between Arzanah and Bu Haseer fields, reaching a minimum value 

of 0.6 km. Continuing toward the north, the maximum salt thickness of 2.3 𝑘𝑚 is observed over 

the Umm Shaif field. As we progress toward the northeast and east, salt thickness reaches 

another high around Zakum ranging from ~ 1.5 km to ~1.9 km. 

The results of the DNN inversion of gravity and magnetic anomalies are in good agreement 

with other studies conducted in the region.  
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Figure 8-7: Results of the DNN joint inversion model prediction across Profile 1. Sediments, salts, and 

basement are illustrated with gray, light blue, and dark blue colors, respectively. 

 

Figure 8-8: Results of the DNN joint inversion model prediction across Profile 2. Sediments, salts, and 

basement are illustrated with gray, light blue, and dark blue colors, respectively. 



90 
 

 

Figure 8-9: Results of the DNN joint inversion model prediction across Profile 3. Sediments, salts, and 

basement are illustrated with gray, light blue, and dark blue colors, respectively. 

 

 

Figure 8-10: Representation of the 3 profiles, profile 1, profile 2, and profile 3. 

 

To facilitate a better comparison between the results obtained from magnetic inversion and 

joint inversion of gravity and magnetic anomalies, the basement topography variations along the 
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three profiles are illustrated in Figure 8-11, Figure 8-12, and Figure 8-13. It can be observed that 

the topography estimated by both magnetic inversion and joint inversion exhibits a general 

agreement across all the profiles. The overall trends and patterns in the basement topography are 

consistent between the two techniques, indicating a reasonable correlation. 

 

Figure 8-11: Basement topography estimation from magnetic inversion and joint gravity and magnetic 

inversion over Profile 1. 

However, in the case of Profile 1, a slight discrepancy of approximately 300 meters is evident 

in the topography variation over the Ghasha region. Additionally, toward the end of the profile 

and below Zakum, there is a noticeable deviation between the joint inversion estimation and the 

magnetic inversion results. This discrepancy could be attributed to the presence of edge effects 

or the inherent complexity arising from the joint inversion method.  
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Figure 8-12: Basement topography estimation from magnetic inversion and joint gravity and magnetic 

inversion over Profile 2. 

 

Figure 8-13: Basement topography estimation from magnetic inversion and joint gravity and magnetic 

inversion over Profile 3. 
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8.6 Conclusion 

Joint inversion of gravity and magnetic anomalies using DNN was conducted to estimate the salt 

and basement structures in offshore UAE. The training dataset is a combination of gravity and 

magnetic datasets used to train a DNN model conducting nonlinear mapping of gravity and 

magnetic anomaly to salts and basement structures. The model performance on the unseen actual 

and noise-added synthetic anomalies demonstrated a significant fit between the predicted and 

simulated data even after adding 10% noise to the gravity and magnetic anomalies.  

The analysis of the gravity and magnetic data provides valuable insights into the basement 

topography and salt thickness in offshore UAE. The basement topography ranges between 6.7 

km to 9.7 km with the shallowest part located below the Ghasha hydrocarbon reservoir.  The 

results also demonstrate that the deepest part of the basement appears toward the northeast and 

east of the region below Zakum.  

The salt thickness also shows variations across the study region. In the southwestern part, the 

salt thickness ranges from 0.7 km to 1.7 km. It decreases between Arzanah and Bu Haseer fields, 

reaching a minimum value of 0.6 km. Continuing toward the north, the maximum salt thickness 

of 2.3 km is observed over the Umm Shaif field. As we progress toward the northeast and east of 

the study region, salt thickness reaches another high around Zakum ranging from ~ 1.5 km to 

~1.9 km. 
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Chapter Nine: Conclusion and Recommendations for Future 

Studies 
 

9.1 Conclusion 

This thesis introduced a novel technique for inversion of gravity and magnetic anomalies to 

model subsurface structures. By integration of gravity and magnetic anomalies, the inherent non-

uniqueness problem of geophysical inversions has been effectively addressed. Targeting the 

nonlinear inverse problem, DNN has efficiently mapped gravity and magnetic anomalies to 

subsurface models. The large training dataset required to train the DNN model is simulated 

through a novel technique. Correspondingly, using multi-processing algorithms, thousands of 

training examples are simulated comprising gravity and magnetic anomalies as input features and 

depth-to-salt and depth-to-basement as labels.  

The application of the proposed techniques has been demonstrated to investigate salts and 

basement structures offshore UAE. In chapter six, the DNN gravity inversion is conducted to 

estimate the basement topography over the Ghasha region. The results obtained from analyzing 

three pseudo-gravity profiles demonstrated the range of basement topography to be between 7.4 

km to 9.3 km.  

The DNN inversion of magnetic anomalies is implemented in chapter seven. The results of 

the basement topography estimations over three profiles revealed the deepest basement below 

Zakum between ~ 9.45 km to ~ 9.75 km. Additionally, the basement topography shows a 

maximum over Ghasha at ~ 6.4 km. 

In chapter eight, the focus shifted to the joint inversion of gravity and magnetic anomalies to 

estimate the salts and basement structures over the same profiles examined in the magnetic 

inversion. The results obtained from the joint inversion provide further insights into the salts and 

basement geology of the study area. It was determined that the shallowest basement depth 

observes over the Ghasha region, measuring approximately ~6.7 km. On the other hand, the 

deepest basement depth was found beneath Zakum, with a range between ~9.35 km to ~9.65 km. 

Depth to the top of the salts and basement over Umm Shaif was estimated to be ~5.6 km and ~8 

km, respectively. Moreover, the top of the salts over the giant hydrocarbon reservoirs of Ghasha 

and Zakum was identified to reach ~6 km and ~8.45 km.  
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The results of the DNN inversion of gravity and magnetic anomalies are in good agreement 

with other studies conducted in the region.  Kabirzadeh et al. (2021) investigated the basement 

and Hormuz salt structures in the offshore UAE by joint analysis of gravity and magnetic 

anomalies. Their results showed the ranges of the basement depth of 6.9 km to 9.7 km and a 

significant variation of 200 m to 3 km in salt thickness. Ghalenoei et al. (2021) researched a joint 

inversion of gravity and magnetic data using a trans-dimensional model to study salt and 

basement structures of UAE. They estimated the depth to the top of the salt over the Ghasha field 

of ~ 5 km to ~7 km. The depth to the basement was estimated at 8.75 km to 9.35 km. Geng et al., 

2020 implemented a 3-D constrained inversion of aerogravity and aeromagnetic anomalies in 

offshore Abu Dhabi. Their magnetic inversion over the entire region estimated a basement model 

with a depth range of 8 km to 10 km with two highs at 8 and 8.5 km highlighting possible 

magmatic bodies. Moreover, the depth to the top of Hormuz salt obtained from the 3-D inversion 

of residual gravity varied from 4.5 km to 8.5 km. 

The discrepancy between our results and the other studies conducted in the region could arise 

from several factors: 

• Methodology: Each study may employ different methodologies, techniques, and 

algorithms for the inversion of geopotential anomalies. Variations in the inversion 

methods, model assumptions, and parameter choices can lead to differences in the 

resulting subsurface models. 

• Model Complexity: The complexity of the subsurface models considered in the inversion 

can also affect the results. Different studies may have different assumptions and 

constraints regarding the subsurface structures, including the number of layers, geometry, 

and physical properties considered. These differences can lead to variations in the 

estimated depths and thicknesses of the salt and basement structures. 

• Noise and Uncertainties: The presence of noise in the data and uncertainties in the 

inversion process can also contribute to differences in the results. The accuracy of the 

data preprocessing, noise filtering techniques, and inversion regularization methods can 

influence the final estimates. 
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• Interpretation and Validation: Differences in the interpretation and validation of the 

results can also play a role. Studies may have different criteria for evaluating the 

goodness of fit or may focus on specific regions or features of interest, leading to 

variations in the reported results. 

It is essential to carefully compare the methodologies, datasets, and assumptions used in your 

study with those of the other studies to identify the sources of the differences. Additionally, 

considering the uncertainties and limitations associated with geophysical inversions, it is crucial 

to assess the robustness and reliability of the results through further validation and comparison 

with other independent data or well data, if available. 

ML techniques are a subset of artificial intelligence that involves training models on large 

datasets to make predictions or decisions without being explicitly programmed. These models 

can then be used to automate tasks, make predictions, classify data, etc. ML techniques are 

incredibly versatile and can be applied to a wide range of problems. As more data becomes 

available and computing power increases, we can expect to see even more innovative and 

impactful applications of ML. 

The application of DNNs for geophysical inversion offers several advantages compared to 

conventional techniques. DNN has significantly contributed to solving the non-uniqueness and 

non-linearity aspects of our inverse problems. For instance, DNNs can capture the complex 

nonlinear relationship between geophysical data and subsurface models. Additionally, they can 

incorporate prior knowledge about subsurface structures, so to enhance the accuracy of the 

inversion results.  

However, the quality and quantity of the training dataset have a significant impact on the 

accuracy and reliability of the inversion results. To obtain meaningful and accurate subsurface 

models, the simulated dataset must accurately represent the desired subsurface structure. When 

designing the forward models for data simulation, it is essential to consider the target 

characteristics of the subsurface. For instance, if the goal is to capture both short and long-

wavelength variations in topography, the dimensions of the forward models should be 

appropriately configured to accommodate this requirement. This criterion is also affected by the 

distribution and resolution of the observed data. If data is collected over scattered locations, the 

chance of capturing short-wavelength anomalies is reduced. Therefore, the numbers and length 
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of anomalies of the forward model must be specified accordingly to account for the data 

coverage.  

Implementing DNN inversion does have limitations when it comes to generalizing the trained 

models to different regions with varying dimensionality and geological properties. Models 

trained for a specific region may not be directly applicable to provide accurate interpretations for 

regions with different characteristics. Major modifications to the physical and structural 

parameters of a region may require re-training of the models to ensure reliable results. 

Additionally, the process of dataset simulation and model training can be time-consuming. 

Nevertheless, leveraging high-level programming languages and utilizing modern computing 

resources can help optimize these processes and reduce the computational time required. 

 

9.2 Recommendations for Future Studies 

Geophysical inversion involves determining the subsurface properties of the earth by analyzing 

geophysical data. To do so, conventional inversion methodologies have relied on mathematical 

and physical concepts/formulations to interpret geophysical data. Such methods, however, can be 

time-consuming and computationally expensive, and require expert knowledge to implement. 

In search of a solution to address the issues listed above, we came to notice and then affirmed 

throughout our research, the benefits of DNNs techniques for a new approach toward 

geophysical inversion. Briefly put, by learning patterns and relationships in large datasets, DNNs 

can often provide faster and more accurate results The following points list some of the benefits 

of using DNNs for geophysical inversion: 

• Enhanced speed and efficiency as capable of analyzing large volumes of geophysical 

data. 

• Improved accuracy of inversion results as they can learn complex patterns and 

relationships in geophysical data. 

• Higher flexibility and adaptability than conventional methods as better fitted for 

incorporating a variety of data layers and hypotheses. 

• Less subjectivity to human biases and interpretations. 

• Suitable for handling noisy geophysical data.  

• Computationally cheaper than conventional methods; particularly for large-scale data. 
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Despite the promising advantages of using DNNs for geophysical inversion, certain 

challenges need to be further addressed: 

• Inevitable need for more high-quality training data: This could involve either 

developing new simulation tools to generate synthetic data or collecting more high-

quality field data. As promisingly tried by us, the development of simulation tools to 

generate synthetic data is worth further research regarding the variety of factors 

involved. Synthetic data is created by simulating geophysical measurements based on 

known geological models or properties. By accurately modeling the physics of the 

measurement process and incorporating as much realistic noise and uncertainty as 

possible, synthetic data becomes an encouraging source for controlled and repeatable 

training datasets. Synthetic datasets can be particularly useful where limited field data 

is available or when exploring different subsurface scenarios. 

• 3D high-resolution models: Such models have the potential to provide detailed and 

realistic images of the subsurface; enabling a better understanding of geological 

structures. However, reconstructing such models sounds expensive in terms of 

computational resources and time. To address this challenge, futuristic techniques 

should focus on reducing the complexity of subsurface models while ensuring the 

essential characteristics of the subsurface are enclosed. One way to do so is to instead 

of representing every small-scale geological feature, have the models focused on 

capturing the dominant structural properties that significantly impact the subsurface 

behavior; thus, constructing a simplified representation that retains their essential 

characteristics. 

• The need for interpretable models: In many cases, the end-users of geophysical 

inversion results require an understanding of the underlying physics and geology. By 

incorporating physical principles and geological information into the training process 

of machine learning algorithms, the resulting models can provide interpretable 

insights. Consequently, the models can leverage the interpretability of conventional 

geophysical inversion methods while benefiting from the predictive power of DNNS 

techniques. 

• Integration of geophysical data: Geophysical data often come from a variety of 

sources differing in spatial, semantic, and temporal representation, absolute and 
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relative accuracy, horizontal and spatial references, format, metadata, and several 

other properties. Therefore, it can be challenging to efficiently combine data from 

different sensors, surveys, and practices. We suggest further research on mechanisms 

for integrating geophysical data with other sources of information such as geological 

maps and well data. Such research may focus on enhancing various aspects of data 

interoperability like the use of standardized data and metadata schemas, etc. By doing 

so, it would be possible to provide a more reliable understanding of the subsurface and 

improve the accuracy of interpretations. 

In conclusion, geophysical inversion using DNNs techniques has shown the potential to 

revolutionize the field of geophysics. However, there are several challenges that need to be 

further addressed before this potential can be fully realized. The development of more 

interpretable models, more sophisticated yet standardized data integration methods, and more 

high-quality training data are among the areas of active research recommended by us.  
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