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Abstract

The quality of parent-child interactions is foundational to children’s social-emotional and

cognitive development, as well as their lifelong mental health. The Parent-Child Interaction

Teaching Scale (PCITS) is a well-established and effective tool used to measure parent-

child interaction quality. It is utilized in both public health settings and basic and applied

research studies to identify problem areas within parent-child interactions. However, like

other observational measures of parent-child interaction quality, the PCITS can be time-

consuming to administer and score, which limits its wider implementation. Therefore, the

main objective of this research is to organize a framework for the recognition of behavioural

symptoms of the child and parent during interventions.

Based on the literature on interactive parent-child behaviour analysis, we categorized

PCITS labels into three modalities: language, audio, and video. Some labels have dyadic

actors, while others have a single actor (either the parent or child). In addition, within

each modality, there are technical issues, considerations, and limitations in terms of artificial

intelligence. Hence, we divided the problem into three modalities, proposed models for each

modality, and a solution to combine them.

Firstly, we proposed a model for recognizing action-related labels (video). These labels

are interactive and involve two actors: the parent and the child. We conducted a feature ex-

traction algorithm to produce semantic features passed through a feature selection algorithm

to extract the most meaningful semantic features from the video. We chose this method due

to its lower data requirement compared to other modalities. Also, because of using 2D video

files, the proposed feature extraction and selection algorithms are to handle the occlusion
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and natural conditions like camera movement,

Secondly, we proposed a model for recognizing language- and audio-related labels. These

labels represent a single-actor role for the parent, as children are not yet capable of producing

meaningful text in the intervention videos. To develop this model, we conducted research on

a similar dataset to utilize transfer learning between two problems. Therefore, the second

part of this research is associated with working on this text dataset.

Third, we focused on multi-modal aspects of the work. We conducted experiments to

determine how to integrate the prior work into our model. We also provided an ensemble

model, which combined the modalities of language and audio based on the semantic and

syntactic characteristics of the text. This ensemble model provides a baseline for developing

further models with different aspects and modalities.

Finally, we provided a roadmap to support more labels that were not covered in this

research due to not reaching enough samples. Our proposed framework includes a labelling

system that we developed in the primary stages of the research to gather labelled data. This

system also plays a role to be integrated with AI modules to provide auto-recognition of the

behavioural labels in parent-child interaction videos to the nurses.
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Chapter 1

Introduction

1.1 Motivation

A principal part of the parent-child interaction teaching scale (PCITS) is detecting

behavioural potent disengagement cues (PDCs) and response to child distress (RTCD)

in parent-child interactions (PCI) [2]. However, labelling of PDCs and RTCDs is time-

consuming and error-prone because it needs to meet multiple conditions before assigning a

label to the interaction. These symptoms were collected from videos captured by another

system named VID-KIDS. Nurses (or coders) attend a three-day training and then pass a

reliability assessment. Providers are required to reach 85% reliability and researchers are

required to reach 90% reliability. Then they detect the symptoms and provide the required

feedback to the users (parents) based on the PCITS.

The main motivation came from a question from Dr. Mohammad Moshirpour (research

supervisor) sparked the idea for the study: Is it possible to have a system that stores the ac-

tual detected symptoms from the coders, and use machine learning to automate this process?

During studies and meetings, we investigated multiple aspects of the problem and performed

a feasibility study to draw a roadmap for the project. We first developed a labelling system

that helps nurses and coders to enter the detected symptoms into the system. While the

labelling system manages the nursing team with multiple coders to maintain the data, after

a while, it enabled us with enough samples to evaluate the outcomes of the research with
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actual data.

We analyzed the symptoms (now called “labels”) based on their definition and samples.

In terms of machine-learning or deep-learning algorithms, the labels are defined in three

different modalities of language, audio, and video. For a number of labels, more than one

modality is important, and for each modality, a number of limitations and considerations

exist.

For video modality, the nearest research topic is human behaviour analysis (HBA) which

is a branch of human action recognition (HAR) as a popular video classification task. HBA

has a variety of applications, including monitoring the health of elderly people [3], depression

detection [4] and measuring engagement [5]. According to the literature in HBA, we found

a number of difficulties specific to the domain that we mentioned in chapter 2. We provided

some solutions for these challenges.

For language modality, we found similar work in [6] that prepared a dataset in parent-

child interaction. We performed analysis on this dataset and proposed a deep learning

model to improve the classification performance compared with the original paper. The

main motivation for this part was to use the created model in our domain, in a transfer-

learning approach, as described in chapters 3 and 4.

For audio modality, we considered labels that are related to the “parent” actor. This as-

sumption helped us to propose an ensemble model to combine the language and audio modal-

ities because the “child” actor cannot produce meaningful text and the language modality

is specific to the “actor” parent. The multi-modal ensemble model also combined multiple

aspects related to language and audio processing that we described in chapter 4. The multi-

modal model could be extended in future works to create an integrated framework for all
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the labels from different modalities, aspects, and considerations.

Appendix A shows a number of these labels that we used in this research. Although

these labels are not thorough, we selected those based on having enough samples required

for implementing machine learning algorithms. Hence, in terms of modalities, actors, and

domain complexities, the proposed model can be extended to support the recognition of all

other labels (nearly 50).

1.2 Research Objectives

The primary goal of this research is the recognition of the PCITS symptoms by using

machine-learning or deep-learning techniques. The dilemma here is if there exists a unique

solution to cover all the labels, or if the problem needs to be broken by simpler ones. The

straightforward way to break this classification task is based on modalities. Therefore, I will

answer the following research question:

RQ1: How to develop data preparation, classification algorithms, and evaluation for each

modality of language, audio and video? This research question itself could be broken into

three research questions:

RQ2: How to classify samples based on the video modality?

For this research question, we focused on PDCs, where the “child” is the main actor in

interaction with the “parent”, and meaning is conveyed through body movements, objects,

and facial expressions. However, video-based analysis in parent-child interactions poses sev-

eral challenges, including the complexity and size of video data, the absence of required

datasets for indoor activities [7], the lack of depth data in 2D RGB-based videos, and oc-
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clusions and inter- and intra-class variability of actions inherited from HAR. Therefore, a

knowledge-based approach is necessary for behaviour analysis in PDCs because of the lack

of enough samples to cover complexities.

The main objective of this research question was to provide a solution to address the

challenges related to 2D inputs and occlusion in body pose features. Our solution involved

developing a feature extraction algorithm and a deep-learning-based model with a knowledge-

based approach. The feature extraction algorithm aimed to reduce the impact of camera

movement that results in changing body position or changing viewpoint in consequent frames.

We achieved this by including stabilization to smooth viewpoint changes and normalization

to reduce position variance. This problem especially gets worse in scenarios with 2D video

files that unlike most of the literature in this domain, do not provide depth information

(RGBD) that is robust against viewpoint changes.

We also used a semantic-based model to add extra knowledge to the model, which helps

to overcome the problems caused by occlusions and data scarcity [8, 9]. In the video, the

problem of data scarcity is more challenging because of the higher number of dimensions

compared with language and audio. By producing part-based features, the semantic features

allow the model to rely on the remaining parts and reduce the risk of occlusion [10]. We

developed motion-based semantic features and a feature selection process to identify simple or

atomic activities that are more correlated with the target behaviour. Finally, a classification

algorithm maps the atomic activities to the target label.

In summary, the goal of this research question was to develop a methodology that relies

on knowledge-based models to create a semantic-based model for body parts, which is crucial

in overcoming the challenge of occlusion and simplifying the analysis process when data is
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limited.

RQ3: How to classify samples based on the language modality?

Language analysis is a useful tool for evaluating children’s mental health and behavioural

development in parent-child interaction therapy. This evaluation can be done by observing

free-play or structured tasks between parents and young children [11,12]. In PCITS, certain

labels are specifically related to the structured tasks involved in parent-child interactions.

We came across a similar system called “SpecialTime” [6] that contains about 6000 text

samples of dyadic interactions between parents and children. The labels in this dataset reflect

emotional, semantic, grammatical, and structural characteristics of parent-child interactions

during task performance. Since we could not find many studies that use language modal-

ity for evaluating parent-child interactions, we chose to use this dataset. The SpecialTime

system can help us evaluate our research in comparison with its claimed performance. Fur-

thermore, the dataset was prepared and cleaned directly by trained nurses, making it suitable

for our analysis without additional data preparation and cleaning efforts. Additionally, the

labels in this dataset are directly related to our defined labels in language modality. So one

objective is to use transfer-learning techniques to apply the trained model on this dataset

to our case. We fine-tuned a transformer-based model on the dataset and achieved better

performance than what was claimed. Moreover, we evaluated the model to demonstrate its

ability to recognize the grammatical, emotional, semantic, and structural aspects of the text.

Our results indicate that this model can be effectively utilized in our case.

RQ4: How to classify samples based on the language and audio modalities?

In this research question, we aimed to analyze various aspects of language and audio

modalities in our complex domain. The challenge with language modality is that labels are
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dependent on both semantic and syntactic features. On the other hand, in audio, labels

are mostly based on emotional states, which can be modelled as a type of semantic. Also,

most labels in language modality are somewhat dependent on audio. To address this, we

proposed four classification modules based on accepted assumptions in audio and language

processing. One module is responsible for audio recognition of emotional aspects in audio,

while the others focus on recognizing semantic and structural aspects of the text.

We proposed the modules by using some accepted assumptions in audio and language

processing. We employed CNNs to recognize emotional states in both text and audio [13,14],

RNNs to recognize syntactic or structural characteristics of the text [15], and transformer

models to recognize both semantic and structural aspects [16]. We also incorporated the

trained model from our previous work as one of the modules.

The other objective is to provide an initial solution to combine multiple modalities. We

addressed this objective through the implementation of an ensemble model. However, due

to limitations in sample size and classification performance for all labels, we were unable

to incorporate all modalities at this stage. The proposed ensemble model outperformed

the performance of each individual four modules and can accurately recognize grammatical,

emotional, semantic, and structural meanings in our domain.

1.3 Research Contributions

Following is a list of my contributions:

1. Designing, development and deployment of the labelling system. The system

currently has 8 users, written in React.js + Node.js, and deployed on AWS.
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2. Development of AI modules for each chapter in Python based on Pytorch and

Sklearn frameworks.

3. Submitted each chapter of my thesis to an accredited conference or journal.

1.4 Significance of the research and thesis organization

The result of this study can be used to cover all 50 labels in PCITS by the time that

gradually more labelled data is available. In fact, all of the labels have the same character-

istics in terms of the modalities, actors, and other aspects related to each modality. All of

the variations between these labels could be handled in the same way that is presented in

this research. Finally, an ensemble model will be able to provide an integrated solution for

all the labels.

The rest of the thesis is organized as follows: Chapter 2 explained the proposed model

for the “video” modality, Chapter 3 discussed the solution to be used in parent-child inter-

action based on the “language” modality from the “parent” actor, Chapter 4 demonstrates

the proposed model for the “audio” and “language” modalities on the “parent” actor, and

Chapter 5 provides a conclusion and possible future works.

7



Chapter 2

A Semantic-based Model for Human Behavior Analysis

in Parent-Child Interactions

2.1 Abstract

The parent–child interaction teaching scale (PCITS) is utilized in basic and applied

research studies as well as public health settings to pinpoint problematic areas in parent-child

relations. In this research, we focused on dyadic parent-child interactions as a part of human

behaviour analysis (HBA). We divided related works in interactive video human behaviour

analysis into two broad categories: data-driven and knowledge-based methodologies. Among

knowledge-based approaches, employing semantics is an essential method to gain control over

interactions’ constraints. These constraints are imposed by the complexity and absence of

data with precise labelling. The goal of this research is to create a PCIT classification task

solution that can also be used to measure engagement and disengagement in interactive

scenarios and other similar situations.

The key drawbacks in interactive video-based HBA are a lack of data, the complex nature

of dyadic behaviour, and a high percentage of missing values in the joint features of the

skeleton resulting from viewpoints. In this research, a method for gathering 2D trajectory

features for behaviour analysis was put forth. In addition, we created a brand-new joint

tracking algorithm that works in the recognition of human action in special situations like

excessive camera motions and improper viewpoints. We utilized a feature selection procedure
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for semantic characteristics in the model evaluation. In comparison to the literature, the

results demonstrate a significant improvement.

2.2 Introduction

HBA is a subfield of human action recognition (HAR) in AI that have a number of uses,

such as monitoring elderly patients’ health [3], identifying depression [4], and evaluating en-

gagement [5]. One potential use in this subject is finding behavioural potent disengagement

cues (PDCs) [17] in parent-child interactions (PCIs) in accordance with the PCITS [2]. Tra-

ditionally, researchers or healthcare practitioners have manually coded this measurement.

Coders must first complete a three-day training course and then successfully pass a relia-

bility test in order to become dependable. Researchers must achieve 90% reliability, while

providers must meet 85%. In this assessment, PDCs are derived from the child and parent’s

interacting behaviours with reference to body movements, objects, facial expressions, and

audio aspects. As a result, in terms of HAR, the parent and the child are regarded two

actors in an interactive human activity recognition system.

The literature review identified the following difficulties with video-based analysis of

parent-child interactions:

Data The primary type of data used in behaviour analysis is video. The analysis in HBA

is a difficult task due to the videos’ complexity, size, and spatial-temporal structure when

compared to images and texts. Additionally, compared to outdoor activities, fewer works

have been done that focus on indoor behaviours where behaviour analysis is focused on [7].

Sports and other outside activities typically entail more clearly defined qualities than inside
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activities. Thus, there is a dearth of the necessary datasets and research in this area. Many

studies are compelled to use a knowledge-based methodology due to a lack of data (e.g., [8,9]).

Due to a lack of relevant data, we used additional context semantics in our study.

The other issue is with conventional 2D RGB-based videos that lack depth information.

The majority of the literature concentrates on RGBD data that is resistant to viewpoint

shifts because it has three-dimensional dimensions. This issue can be solved by estimating a

3D pose from 2D points, but this transformation propagates errors. We discovered that this

change does not work in high-occlusion situations, where some body parts, such as the legs,

are completely undetectable. In the classification task, a number of characteristics, particu-

larly in engagement behaviour analysis, such as pitch, roll, and yaw, are determinants [18];

however, these features demand possessing 3D body joint points. To lower the probability

of viewpoint variant points, we concentrated on 2D coordination in this study by using a

few normalization and stabilizing stages. Both normalization and stabilization were used to

lessen the impact of positional variation and to smooth shifts in viewpoint.

HAR The difficulties faced by HBA are similar to those of HAR. HAR involves various

obstacles such as occlusions, changes in light and camera movement, and differences in the

actions performed by individuals within and across classes. However, some of these challenges

are less significant in indoor HBA. For instance, light changes are not a major issue, and

the camera typically moves within a limited range, causing minor shaking. To overcome

occlusion-related problems, we used semantic features to recognize body parts based on

their absence or presence. This approach allowed for the extraction of motion-based features

for each body part, resulting in a model that is less dependent on the entire body and is
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therefore less prone to occlusion. Furthermore, this technique helps to overcome problems

caused by insufficient data in deep learning models. According to a study by [10], the use of

semantics is effective in managing intra-class variability and occlusion-related challenges.

Domain The majority of HAR research focuses on simple activities with low similarities

between different classes (e.g., sports). In contrast, behaviour analysis is more complicated

because it involves interactions between multiple actors. This complexity has led to the

adoption of knowledge-based models in HAR research, as they can break down the problem

into simpler components [19]. This study presented a feature selection process that identifies

simple body part activities that are highly correlated with the target behaviour, such as

a pendulum-like movement in the left arm. By using these simple atomic activities, the

complex and multi-actor behaviour of the target can be recognized.

In summary, this research aims to develop a knowledge-based approach for creating a

semantic-based model of body parts. This approach can overcome the challenge of occlusion

and reduce complexity in situations where there is limited data.

2.3 Literature Review

Video-based human action recognition (HAR) as a part of human behaviour analysis

(HBA) has recently attracted much attention. Although there have been numerous advance-

ments made in this area, it is still a very difficult undertaking. Due to the intricacy, scale, and

spatiotemporal nature of videos compared to images, audio, and text, some of these difficul-

ties are intrinsic to this field. Researchers discuss occlusions (such as self-occlusion, occlusion

of another object, and partial occlusion; [20]), clutter backgrounds, viewpoint or angle of the
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camera, varying light, noise, changes in scale and blur in the video, and inter- and intra-class

variability of actions as some of the inherent challenges of HAR in videos [10, 21–23].

In addition, there are several additional difficulties with HAR that are unique to be-

haviour analysis and are restricted by the scarcity of datasets. However, there are still a

few associated works and datasets for indoor activities that are helpful for applications in

healthcare [7]. The majority of works in the literature are organized and evaluated based on

outdoor activities like sports. The makeup of classes has an impact on HAR’s complexity as

well. The majority of the most recent research in this area focuses on straightforward, unre-

lated activities like sporting activities, however, these categories do not apply in real-world

healthcare applications.

According to [10], the action in HAR can be categorized into four categories: atomic

actions; people interactions; human-object interactions; and group activities. Meanwhile,

according to [19], HAR techniques can be divided into two broad groups: single layered; and

hierarchical approaches. While hierarchical approaches first identify simpler actions (also

known as sub-events or atomic actions) and then attempt to identify more complex actions

(actions that involve objects, contain a sequence of sub-events, or are interactive) based on

the simple events, single-layered methods operate on sequences of images. Hence in HBA,

due to their ability to deconstruct large classification problems with little to no labelled data

into smaller ones and answer them using additional knowledge, hierarchical models are more

trustworthy.

According to the categorization presented in [24], HAR methods can be classified into two

main categories: knowledge-based; and data-driven-based. Data-driven approaches involve

end-to-end deep learning models that rely on large datasets, which are now feasible due to
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the abundance of online video content and powerful processing capabilities. However, the

main drawback of this approach in HBA is that these datasets are typically very general and

lack specificity. In contrast, knowledge-based solutions rely on domain knowledge in feature

engineering, rules, and behaviour reasoning [25]. The primary challenge for knowledge-

based techniques is the variability in user behaviour. On the other hand, data-driven models

perform better for complex behaviours but are limited in their ability to learn only observable

behaviours [25].

2.3.1 Knowledge-based works

Knowledge-based solutions involve using prior knowledge to address the problem at hand.

This approach has several advantages, including the fact that it is not reliant on large

datasets. Furthermore, this technique can facilitate the learning of more complex categories

based on the prior knowledge gained from simpler ones. For instance, [10] suggests that

having knowledge of previous activities such as “separate egg” and “prepare onion” would

make it easier to recognize the new action of “prepare scrambled eggs.” The literature

suggests that knowledge-based techniques can be split into the following categories:

handcrafted features Handcrafted features involve using prior knowledge to represent,

select, and reduce the spatial and temporal features of actions into a classification model

such as the Support Vector Machine (SVM). In handcrafted solutions, the classification task

is typically straightforward, with most of the effort being devoted to feature engineering [26].

However, the main drawback of this approach is its limited generalizability. For example,

the Histogram of Oriented Gradients (HOG) does not perform well when the actors are

not positioned in a straight line relative to the camera. As a result, most of the literature
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assumes certain conditions must be met before utilizing these features.

hierarchical models The purpose of hierarchical models is to break down complex actions

into smaller sub-events or atomic actions. For example, [8, 9] aim to recognize higher-level

activities by reasoning about sub-events. In [27], the authors discuss a multilevel approach to

behaviour analysis, where objects (including human body parts) and gestures (e.g., stretching

an arm) are detected at lower levels, and simple actions and complex activities are recognized

at higher levels. Hierarchical models are especially useful for complex activities, where there

is limited labelled data and high variability in both inter- and intra-class. However, these

models may not perform well in certain situations, such as occlusions where specific body

parts (e.g., legs, hands) may be obscured and sub-events may not be recognized.

rule-based models Hierarchical models that use rules as a way to incorporate prior human

knowledge into the problem are another approach. These rules can either be explicitly de-

fined by domain experts (e.g., [25,28]) or learned through labelled data (e.g., [9]). However,

there is usually a degree of uncertainty associated with these rules. To address this issue, [29]

developed a hierarchical framework that first recognizes simple motions using an unsuper-

vised learning technique and then obtains the rules as a decision tree. In [30], fuzzy logic was

used for reasoning and a rule base obtained by FCM clustering performed the recognition.

Obtaining the required knowledge from unlabeled data is another solution to prepare the

rule base. For example, in [24], an ontology was learned from text-based resources negating

the need for labelling. Meanwhile, in [18], sub-events are recognized using a feature selection

framework from a large pool of statistics-based features obtained from time-series skeleton

data.
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semantic-based approaches Semantic is something with context-specific meaning. Semantic-

based approaches in HAR focus on the meaningful relationships (through scenes, objects,

and attributes) between actions and body parts in a given context [10]. According to [10],

semantics can be useful for intra-class variability by incorporating additional hidden aspects

to the model that might not be detected as spatiotemporal features. Semantics are also ro-

bust to changes in the shape of the body, clothes, and viewpoint, and can reduce the impact

of occlusion in HAR. Furthermore, the semantics of objects, backgrounds, and scenes can

be helpful in applying the human understanding of the activity because some behaviours

are tied to particular objects (i.e., [31]). Semantic-based attributes can describe a particular

characteristic of an activity and be useful for complex activities in HBA. These attributes

are characteristics that describe a specific activity, such as “putting one foot in front of the

other” in “walking” or how certain activities depend on the gender, type (e.g. “pendulum-

like”, “up-down”) of motion in a body part, and the “speed” of motion. Another advantage

of semantic-based attributes is that they can be used when there is not enough labelled data

for certain classes. This approach allows the system to recognize new events with little or

no training examples and transfer knowledge between classes, as described in [32,33].

As a result, the knowledge can be based on previous human knowledge or gained by ma-

chines, and a variety of techniques are used to extract this knowledge. Overall, knowledge-

based approaches can overcome some limitations of HAR, and in this research, several

semantic-based features are defined.
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2.3.2 Data-driven works

The advancements in deep learning have recently gained more attention in HAR [34–36],

as shown in various image processing tasks where end-to-end deep learning methods out-

perform conventional machine learning methods that require a lot of effort in feature ma-

nipulation and prior knowledge modelling. For example, the 2012 ImageNet Challenge, [37]

demonstrated that deep models like AlexNet, consisting of 12 layers such as convolutional

layers, nonlinear activation layers, normalization, pooling, fully connected, and classification

layers, reduced error rates by nearly half compared to the previous winner. Deep learning

models extract different data representations as input is passed through layers, whereas tra-

ditional models require hand-engineered task characteristics, which can be time-consuming

and require expertise. However, deep learning methods require a large amount of training

data and computing resources, making it difficult to apply to interactive behaviour analysis

when data is insufficient.

The use of deep learning models has been gaining attention in the field of interactive

behaviour analysis. Recurrent neural networks (RNNs), including LSTM [38] and BRNN

[39], have been employed to capture the temporal sequence of moving objects in frames

[40–43]. Meanwhile, convolutional neural networks (CNNs) have been utilized to capture

spatial representation or behavioural patterns and can reduce dimensionality while retaining

key characteristics [26,44–46]. Graph neural networks (GNN) have also been used to capture

the interdependence and correlation between body parts’ movements in human actions, as

seen in some recent research [47,48].

While deep learning has achieved good results in recognizing simple actions in HAR,
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Figure 2.1: Video Preprocessing Flow

applying it to complex human interactions in healthcare is still challenging. [22] discusses

the difficulty of using multiple modalities such as RGB, motion, depth, audio, language, and

trajectory as features in HAR. The use of depth as a feature requires specialized cameras,

as demonstrated in [23], and is not always feasible.

2.4 Methodology

2.4.1 Preparation

To begin, a data processing pipeline was established, which is depicted in figure 2.1. To

prepare the data, videos were sampled at a rate of 20 frames per second utilizing FFmpeg 1.

Next, video stabilization was implemented to eliminate undesired camera movements. A va-

riety of video stabilization techniques are discussed in detail in [49]. We employed a straight-

forward method that tracks the optical flow between consecutive frames using OpenCV 2

to estimate the motion transformation matrix. The stabilized frames were subsequently fed

into two procedures to generate spatiotemporal and trajectory features.
1https://ffmpeg.org/
2https://opencv.org/
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2.4.2 Feature extraction

Three groups comprise the required features for this study:

Spatiotemporal features The video segments contain both spatial and temporal features

and vary in length, so to standardize the length, 32 frames from the center of each segment

were chosen. Zero padding was applied for shorter segments. The frames were then resized

to 112 × 112 pixels and mean normalization was performed by subtracting the mean of R,

G, and B from each channel, following the method recommended in [50].

Emotion features DeepFace [51] was utilized to detect emotions from the facial expressions

of both the child and parent. The emotions are classified into seven categories including

angry, disgust, fear, happy, neutral, sad, and surprise, and are represented by values between

[0,1] that indicate the level of confidence. To address the low accuracy of confidences near

zero, a filter was implemented to assign a zero value to features below a certain threshold.

Based on initial experiments, the threshold value was set to 0.7.

Tracking features During this stage, we extracted the 2D body joint locations and objects

from every frame. To extract 2D body joint locations, we utilized OpenPose [52], which

produced skeleton 2D points. These points are also known as key points, and they consist

of 25 joint locations for each human pose, covering the “head”, “torso”, “hands”, and “legs”.

In addition, we used YOLOv4 [53] to detect bounding boxes covering people. Both Open-

Pose and YOLOv4 were employed on each frame. To detect people, we filtered the objects

recognized by the pre-trained YOLOv4 model on the COCO dataset.

Because of the significant presence and effect of partial occlusion in our study, where

at least one-third of the joints were not identified, the tracking algorithm used was more
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intricate than in comparable cases. Simple algorithms have been proposed in various studies

such as [18,54] to merge and standardize pose and person information and discard irrelevant

data. However, because of the high rate of missing values and false detection, as well as

complex factors such as multiple actors in the scene and camera movement, we devised a

new tracking algorithm outlined in Appendix B. Empirical experiments showed that this

algorithm yielded superior results in comparison to other similar methods.

The algorithm aims to associate skeleton joints or key points with the boundaries of indi-

viduals while eliminating partial occlusions. The primary tracking operation was conducted

based on clustering the points. A smaller average area cluster of persons was assigned as the

child actor, and the more overlapping cluster of key points was assigned as the keypoint clus-

ter of the child. To cluster, the algorithm used k-means with k = 2 and Euclidean distance

as the similarity metric. The distance was calculated between the vectors of two frames,

with the target x,y points of joints as vectors for key points and the target left, top, right,

and bottom points of rectangles as vectors for persons. The similarity distance was aver-

aged between dimensions without considering zero values to disregard the partial occlusion’s

zero results. Before clustering, the positions of child/parent actors were transformed to the

parent’s head’s origin to remove the camera movement’s impact. This was due to the fact

that by moving the camera, actors’ relative positions remained accurate in succeeding frames

when those frames were distinguished by the movement of an actor. Because the parent’s

head is crucial for extracting semantic features, and the parent’s head position had relatively

few zero-values in key points, we chose it for the coordinate origin. With a few variations,

the final normalization was identical to [55]. The result of the tracking was transformed

from the child’s key points to the parent’s head, then rescaled by the image dimensions,
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and quantized to discrete integers in the range [0,100]. This was followed by rescaling to

the range [0,1] for better machine learning analysis that the effect of incorrectly estimated

joint coordinates will be lessened by normalization and quantization. The final result was

six poselets as defined in [10], representing different portions of the body, which enabled

the development of semantic features for each poselet separately. The main advantage of

poselets is that they record the essential body parts performing activities independently. In

fact, even when other body parts are obscured or improperly detected, activities can still be

detected, according to [10]. We were able to separately create the semantic feature for each

poselet thanks to this representation.

2.4.3 Semantic features

The tracking produces a sequence of 2D points for every actor in the analyzed data,

which is normalized over time. This type of output is useful for data-driven methods when

sufficient labelled data is accessible. However, due to a lack of adequate data, we created a

technique that incorporates domain knowledge into semantic features, which is not reliant

on vast datasets. These features can be used for any behaviour recognition problem that

involves interaction or multiple actors and has limited labelled data.

To start, we made the assumption that each sample can be represented as a sequence of

track key points, denoted by Ti for 0 ≤ i < N , where N is the segment length (32 frames

in our case). Each Ti is a sequence of x and y key points, denoted by (KPCj ,KPPj) for

0 ≤ j < 15, representing the child and parent actors. We set the number of joints to 15.

Previous research, such as [18], has introduced features based on 3D key points, attempt-

ing to estimate 3D positions in 2D coordinates. However, our investigation found that this
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technique did not perform well in cases where many joints were occluded, as it requires

knowledge of the positions of all body parts. Thus, these techniques were only effective in

limited situations that did not reflect real-world conditions.

Our approach to defining semantic features aimed to capture inherent knowledge. Instead

of relying solely on statistical measurements, as in [18], we utilized domain knowledge to

establish an initial set of features. We then conducted a feature selection process to identify

the most relevant features based on feature categories and poselets, filtering out irrelevant

and redundant features. The resulting semantic features are categorized as follows:

Direction The movement type can be measured through the direction. Different types of

movement, such as “pendulum-like motion” and “up-down motion”, have been described

in [10]. The initial direction value for KPCj in frame Fi, denoted as IDRij , can have nine

possible values of -1, 0, or 1, which represent decreases, no change, or increases in either

the x or y direction. To normalize this feature, a new feature called MDRj was introduced,

which is directly related to the “pendulum-like motion” for each joint. This is calculated

using the formula: MDRj = Zj × (1 −
∑N

i=1 IDRij
N ), where Zj is the number of non-zero

values in IDRij , and N is the number of frames or segment length. The resulting feature

value for the poselet is the average of the corresponding non-zero features. Additionally,

detecting up-down and left-right motions is accomplished by defining parameters dirXj and

dirYj . These are normalized by the function norm(x) = 1−e−αx, where α is set to 3
Zj

. The

resulting DIRj values indicate the probability of “left-right” and “up-down” movement,

and the total number of semantic direction features is 36. To represent time-series values,

statistical functions such as minimum, maximum, average, standard deviations, skewness,
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and kurtosis are applied to poselet values and their velocity and acceleration. The total

number of statistical features indicating direction is 72.

Distance The article [5] discusses various attributes of interactive scenarios such as “turning

away” and “approaching”, which can help recognize certain types of behaviour. Relative

distance is also an important feature in engagement interactions, as it measures touch and

attention. To represent the time-series values in a meaningful way, similar to work in [18],

statistical values such as min, max, and variance were computed, and a more meaningful

representation of the semantic inside time-series values distribution was performed. The

distance was modelled in two dimensions: gradual changes and intensity. Gradual changes

are modelled as three categorical values - “Approaching”, “Moving away”, and “Fixed” -

for both actors in each target poselet. The intensity of distance is measured using a value

transformed by the function ID(d) = e−αd, where α is a constant decaying factor equal to

10, and d is the distance value. The same measurement is applied for internal distances

between poselets of the child, including the distance between left-body poselets and right-

body poselets, and the distance between body poselets and the head. A total of 104 distance

features were calculated. Statistical functions such as min, average, standard deviations,

skewness, and kurtosis were applied to the time-series distances of each poselet, resulting in

a total of 180 statistical distance features.

Velocity The formula to calculate the initial velocity IVij of a keypoint KPCij in frame i is

given as the distance between the keypoint’s previous and current positions, divided by the

time elapsed between the two positions. The resulting values for each joint represent a time

series that can be simplified by considering the importance of velocity, both in measuring
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engagement and in understanding the order of joint movements between child and parent.

To simplify the time series, the velocity values are represented in two dimensions: joints and

times. Then, min-max-scale normalization is applied to create two matrices (V J and V T )

that show the normalized values in terms of joints and time. These matrices can be used

to understand the activity levels of specific joints relative to others or to compare overall

activity levels at different times. Skewness is used to measure the order and intensity of the

activity, with the formula

Vx = mean(x)−median(x)
standard deviation(x)

. The resulting skewness values provide insight into the irregularity and frequency of activity

in each poselet at different time intervals. The total number of velocity features is 18. For

statistical features, three functions (standard deviation, skewness, and kurtosis) are applied

to the time-series velocity of each poselet. This results in 36 statistical velocity features.

Emotion To model the initial emotion vector for each actor, IEij is used, where i represents

the time and 0 ≤ j < 7 denotes the type of the emotion. The order, intensity, and change

of emotions in interactive behaviour analysis are essential. The initial emotion vector is

summarized by partitioning the time series for each emotion into three parts, and the average

of each partition is calculated as the measure of intensity. The resulting features for each

actor are Ejk, where 0 ≤ j < 7 and 0 ≤ k < 3. The total number of emotional features is 42.

For statistical features, the time-series emotion vector is subjected to four functions, including

maximum, average, skewness, and kurtosis. The resulting statistical emotion features have

a total number of 56.
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2.4.4 Feature selection

To avoid bias, categorical features were converted to numerical values and then grouped

into 32 categories, including feature type (distance, velocity, direction, and emotion); actor

type (child, and parent); poselet type (head, torso, legs, and hands). Since feature selection

methods can be sensitive to training data, similar to the work in [4], two ensembling tech-

niques were used. The first approach involved combining three different feature selection

methods, including the Fisher score, Chi-square, and MRMR. The second approach involved

applying the same feature selection method to different partitions of the training data. 20

iterations were run to randomly select 80% of the training data for each experiment, and

each method was applied to each feature in each iteration. Features that scored higher than

the threshold on at least 80% of the iterations were selected and those that appeared in at

least 2/3 of the methods were chosen as final features. The policy applied selected 20% of

the features. The total number of semantic features was 200, with 40 output features, while

the total number of statistical features was 344, with 70 output features.

2.5 Results and Evaluation

2.5.1 Dataset

Table 2.1 shows a summary of a subset of the labels used. The description of these

labels is included in Appendix A. To address the class imbalance, we employed cropping,

shifting, and horizontal flip augmentation to increase the number of samples for each label

to 500. Spatial dimension cropping and temporal dimension trimming were applied during

segmentation. Stratified k-fold cross-validation with k=5 was used to maintain the class
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distribution during training. One effect of shifting (trimming) during segmentation was

reducing the likelihood of over-fitting.

Table 2.1: Description of the video dataset labels

Behavior Number of samples

Back arching 85

Crawling away 70

Maximal lateral gaze aversion 207

Overhand beating movements 313

Pulling away 118

Pushing away 107

Tray pounding 328

Nonverbal Soothing 170

Head Nod 62

2.5.2 Evaluation

To assess the effectiveness of our method, we compared it to two other models: a data-

driven model that utilizes transfer learning and a machine learning model that uses selected

statistical features. The data-driven model uses the state-of-the-art model used in HAR,

while the machine learning model focuses on a feature selection process to identify the most

suitable statistical features.
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Data-driven approach To analyze spatiotemporal information in videos, we applied trans-

fer learning using the 3D ResNet-34 model [56], which was pre-trained on the Kinetics

dataset [57] consisting of over 300,000 trimmed videos from 400 categories. Similar to how

2D CNNs are applied to image classification, 3D CNNs can recognize spatiotemporal in

videos. Since video datasets have smaller scales than image datasets, ResNet architecture

was investigated to create a deep learning model for easier training. In our implementation,

the 3D CNN extracted features from normalized spatiotemporal features, generating a fea-

ture vector of size 512 for each sample. Then, we removed the last layer of the pre-trained 3D

ResNet-34 model to add a fully connected network (FCN) classifier with one hidden layer,

using cross-entropy as the loss function. We set the learning rate to 0.001, the number of

epochs to 100, and ReLU as the activation function. The dropout rate was set to 0.5.

Statistics-based approach Based on previous studies in [5,18], we used a similar approach

by utilizing statistical features and feature selection to compare results. Initially, we used

feature selection to choose 70 out of 344 available features based on the best validation

outcome achieved through 5-fold cross-validation. We then constructed a fully connected

neural network with two hidden layers and a total of 384,966 neurons. The number of layers

and neurons was chosen using a random search. Cross-entropy was employed as the loss

function, and the initial learning rate was set to 0.001, which was reduced by a factor of

10 every 20 epochs. The initial values of the learning rate and the number of layers were

approximated using a random brute force search and further fine-tuned using Stochastic

Gradient Descent (SGD). ReLU was selected as the activation function, and the number of

epochs was set to 200. To prevent over-fitting, we used a dropout rate of either 0.5 or 0.2.
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Proposed approach To start, we utilized feature selection to choose 110 features from a

total of 544 semantic and statistics-based features, based on the optimal validation result

from 5-fold cross-validation. We wanted to compare the effectiveness of our approach against

existing solutions, so we selected a fully connected network over other models such as random

forest regression and support vector regression. Each sample was represented as a vector

of size 40, and the network was comprised of 2 hidden layers with 512 and 96 neurons,

respectively. The number of layers and neurons was determined using a random search.

The loss function used is cross-entropy, and the initial learning rate is set at 0.001, which

decreases by a factor of 10 every 20 epochs. The learning rate and the number of layers were

estimated using a brute-force search and then refined with SGD. The model was trained for

200 epochs using ReLU as the activation function. To prevent over-fitting, the dropout rate

was set at either 0.5 or 0.2.

2.5.3 Results

To evaluate the proposed model’s effectiveness, a table displaying the selected features is

presented in Table 2.2. The table highlights how feature selection uncovers domain knowl-

edge, as each element represents a combination of multiple features that are summarized. For

instance, the distance between child’s head and parent’s head is a description of GDhead for

the child’s actor and is useful in learning certain actions like Back arching, making domain

knowledge coverage essential.

To evaluate the model’s performance, the dataset was split into train, test, and vali-

dation sets with a ratio of 60%, 20%, and 20%, respectively. The training/validation was

then performed, with the average train/validation performance shown in Figure 2.2. The
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Table 2.2: Selected features for the proposed model in video classification

Feature Description

child.GDhead, child.IDhead distance between child’s head and parent’s head

child.DISThead−legs distance between child’s head and child’s leg

child.GDhands, child.IDhands distance between child’s hand and parent’s hand

child.Vhands child’s hand velocity

child.Vlegs child’s legs velocity

child.Eangry child is angry

child.Ehappy child is happy

child.MDRhands frequent child’s hand movement

parent.DIRheads parent’s head moving up or down

data-driven model displayed over-fitting as a result of complexities within the domain not

represented in spatiotemporal features, with a validation accuracy of about 47%. The vali-

dation accuracy of the statistics-based model was 55%, while the proposed model achieved a

validation accuracy of approximately 68%, indicating better performance. The test accuracy

of the data-driven approach was 37%, and the test accuracy of the statistics-based model

was around 52%, while the proposed model demonstrated superior performance, with a test

accuracy of around 63%.
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2.6 Conclusions and Future Work

The task of analyzing parent-child interactions using the PCITS assessment tool falls

under HBA and can be approached through two methods: data-driven and knowledge-based.

However, analyzing such interactions in 2D video files with multiple actors, occlusion, and

camera shakes poses various challenges. To overcome these issues, we developed a tracking

algorithm to detect skeleton joints of parent and child actors, and semantic-based features

were proposed to handle occlusion and limited labelled data. These features were refined

through feature selection to break down complex behaviour into simple activities occurring

in body parts. This decomposition allowed the model to be trained in reverse by recognizing

actions from semantics in body parts. We evaluated the performance of the proposed model

through transfer learning using a data-driven approach and a statistics-based model as per

prior research. In the future, the framework could include other modalities like language

and voice to enhance performance.
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Figure 2.2: Video Classification Performance evaluation
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Chapter 3

Behaviour Analysis of Parent-Child Interactions from

Text

3.1 Abstract

Parent-child interaction therapy (PCIT) plays a significant role in determining the tra-

jectory of children’s mental and behavioural health. The quality of interaction between a

parent and child can be evaluated by observing unstructured play or guided tasks. Based on

these evaluations, healthcare practitioners can implement therapy and offer feedback aimed

at improving the quality of these interactions.

However, manual evaluation is a labour-intensive and time-consuming process that often

limits its accessibility. This research seeks to harness the power of Artificial Intelligence (AI)

to automate some aspects of these therapeutic evaluations, enhancing the scalability and

reach of this approach. The goal is to design methods that automatically analyze the quality

of interaction based on linguistic elements found in dialogues between parents and children.

A key challenge in PCIT is the classification of parent-child behaviour to assist parents

in managing early behavioural issues. In this study, we discuss these facets and challenges

with respect to AI. Subsequently, we propose a solution for classifying major behavioural

classes in the Dyadic Parent-Child Interaction Coding System (DPICS). To the best of our

knowledge, our work is the first to use a Transformer-based architecture to analyze emotions

and psychology embedded in parent-child interactions. The model we propose is capable of
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understanding and identifying grammatical, syntactic, and emotional features of the language

used in these interactions.

We grouped Natural Language Processing (NLP) techniques for grading parent-child

interaction quality into three categories: those based on deep learning, machine learning, and

transfer learning. Our model follows a transfer learning approach, fine-tuned on a RoBERTa

model. The evaluation of this approach showed promising performance enhancements. Our

model relies on textual data and has been proven to deliver comparable results without using

audio. In terms of performance, the evaluation revealed that our solution outperformed

other methods on the same scale. The evaluation also highlighted the model’s capability to

identify behavioural aspects of parent-child interaction without requiring additional feature

engineering or the incorporation of additional data modalities.

3.2 Introduction

Parent-child interaction therapy (PCIT) is a powerful determinant of a child’s mental

and behavioural health [11]. The quality of parent-child interaction can be evaluated by

observing either free-play or organized tasks between parents and young children. Healthcare

professionals, including nurses, social workers, and physicians, can initiate therapy based on

these assessments and offer feedback aimed at enhancing parent-child interactions [12]. The

therapy teaches parents to adopt effective communication strategies when interacting with

their children. Within PCIT, a key skill entails mastering suitable ways of engaging in

dialogue with a child. Parents are trained on various communication behaviours to adopt

frequently during their interactions with their children (such as labelled praise, for instance,
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“I appreciate your help”), as well as those to avoid (like negative talk, such as “Don’t do

that”).

However, therapeutic evaluations are often resource-heavy and time-intensive, which can

restrict their scalability and widespread use. Therefore, this study primarily aims to employ

AI to automate part of these evaluations by identifying the quality of interaction based on

the linguistic elements in a parent-child dialogue. This objective leads to several research

questions:

1. How can we educate AI models to effectively gauge the quality of parent-child

interactions using the linguistic characteristics present in their conversation,

while aligning specifically with the PCIT framework?

2. Can we boost the AI model’s performance beyond the 80% agreement rates

amongst therapists as noted in [58], particularly aiming to lower false positives

and enhance total accuracy?

3. What is the approach to infusing semantic and syntactic traits from PCIT into

the AI model?

4. What is the impact of a child’s dialogues on the final classification outcome?

Would a model focusing predominantly on parents achieve similar outcomes?

A significant challenge in applying AI to this area is the insufficiency of data, which can

be attributed to various factors including ethical constraints. For this study, we selected

the dataset from the “SpecialTime” system [6]. This system encompasses 6,022 instances of

parent-dialogue acts that have been annotated by therapists. The data were labelled using
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the DPICS, a dialogue act classification method used in PCIT [59]. Table 3.1 provides details

and a few class examples from this dataset. The label descriptions portray the emotional,

semantic, grammatical, and structural characteristics of the context. For instance, negative

talk could suggest a negative sentiment in the text or highlight a sarcastic or impolite remark.

Moreover, labelled praise demonstrates positive behaviour towards the child concerning a

particular subject or task. Other labels like question and reflection are largely dependent

on structural and grammatical features. Therefore, multiple aspects of a typical NLP text

classification task contribute to this classification problem.

Table 3.1: PCIT text dataset examples

Class Description Example

Neutral

Talk

(NTA)

Statements that do not explicitly

describe or evaluate the child’s present

or immediately past behaviour.

(1) Parent: zebras do have stripes.

(2) Parent: I have no idea what to

do next.

Negative

Talk (NT)

Verbal comments expressing

disapproval about a child’s

characteristics, activities, decisions,

or outputs. It also encapsulates

sarcastic, rude, or disrespectful speech.

(1) Parent: Don’t put that piece there,

please.

(1) Child: May I eat ice cream later?

(1) Parent: You can count on that

happening.

Continued on next page
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Table 3.1 – continued from previous page

Class Description Example

Reflection

(RF)

A statement or phrase that mirrors the

child’s verbal expression, maintaining

the same meaning.

(1) Child: I did it.

(1) Parent: You did it.

(2) Child: I want to go home.

(2) Parent: You want to go home.

Command

(CMD)

Statements where the parent guides the

child’s actions. These directives can be

either overt or subtle.

(1) Parent: Move closer.

(2) Parent: Give your jacket to me.

Behaviour

Descrip-

tion(BD)

Impartial, declarative phrases or

sentences where the subject is the

other person and the verb describes

that person’s current or immediately

previous observable verbal or non-

verbal behaviour.

(1) Parent: You are seated in the chair.

(2) Parent: You are driving the car.

Question

(QU)

Requests for an answer, but they do

not imply that the other person should

undertake a specific behaviour.

(1) Parent: What happens to that?

(2) Parent: What are you doing?

(3) Parent: Would you like some

raspberries?

Continued on next page
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Table 3.1 – continued from previous page

Class Description Example

Unlabelled

Praise

(UP)

Offers a positive appraisal of the child,

a feature of the child, or a non-specific

activity, conduct, or output of the child.

(1) Parent: I love you.

(2) Parent: Many thanks.

(3) Child: I built a tower.

(3) Parent: Well done

Labelled

Praise

(LP)

Gives a positive assessment of a

particular trait, output, or behaviour

exhibited by the child.

(1) Parent: I appreciate you joining

me in my Lego.

(2) Parent: I appreciate your cleaning.

(3) Parent: You created a lovely

drawing.

To categorize this data, we delved into the most recent advancements in NLP. Our

exploration resulted in a validation accuracy of 90%, substantially higher than the 79%

efficacy noted in [6], and the 80% therapist agreement rates specified in [58]. In implementing

our approach, we found that excluding vocal features can actually enhance performance. Our

results also indicated that child dialogues had minimal impact on the classification outcome,

barring one label. This suggests that in this domain, the classification task heavily relies

on the parent dialogues without the need to factor in dyadic complexities. Even though the

dialogues inherently have a dyadic nature, there is a scant correlation between classes and

child dialogues due to a significant number of missing child statements. Approximately 80%

of the samples for classes, excluding reflection, lack the child’s statements.
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Given the intricate and vague nature of the class definitions, employing conventional

machine learning (ML) techniques with an emphasis on feature engineering proves to be

challenging. Furthermore, there was not sufficient data to carry out deep learning train-

ing from the ground up. Consequently, our research findings illustrated that using either

deep learning or ML approaches, the use of transfer learning, stemming from a fine-tuned

Transformer-based model, surpassed the results achieved by training on the complete dataset.

In our study, we segregated the applicable techniques into three categories: deep learning-

oriented, ML-oriented, and transfer learning-oriented. In the research cited as [6], investiga-

tors developed a model that appeared to be more accurate than those based on deep learning.

However, employing one-hot vectorization in such models does not ensure their generalizabil-

ity. There is a susceptibility to both over-fitting and under-fitting when one-hot encoding

methods are utilized, such as TFIDF, bag-of-words (BoW), or advanced embedding models

like word2vec and Glove, along with lexicon-based solutions using part-of-speech (POS) tag-

ging or linguistic inquiry and word count (LIWC). Moreover, these encoding methods fail

to account for the word’s position in the text and do not acknowledge any semantic interre-

lations between categories, making it arduous to generalize the model [60]. The only merit

these models hold over transfer learning is their interpretability, which we accomplished in

our research through certain visualization models.

However, in this study, aiming for both performance and generalizability, we adopted a

transfer learning-based model that superseded rival solutions in terms of results. As far as

we are aware, this is the first attempt to tackle this issue using a transfer learning approach,

especially in situations where adequate data samples are sparse. Moreover, it is the first

time that the powerful capabilities of a cutting-edge Transformer-based algorithm have been
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employed to address this intricate problem. The evaluation results of our proposed model

demonstrated its ability to discern the emotional and structural aspects of the text essential

for classification within the DPICS framework.

The remainder of this paper is structured as follows: Section 3.3 provides a review of

the relevant literature that was examined during this research. In Section 3.4, we outline

the configuration of our model and describe some additional details and improvements. We

then present the results of our experiments in Section 3.5, where we compare our model’s

performance against a baseline and discuss the findings. Finally, we draw conclusions in

Section 3.6.

3.3 Related Work

There is a limited amount of research focusing on the NLP analysis of parent-child in-

teraction. Despite the profound impact of the quality of parent-child interaction on child

development, observational studies are costly and time-intensive compared to other non-

observational approaches [61].

The studies that do exist either focus on audio or text analysis, or a combination of both,

with some leveraging vocal features. For instance, [62] used the volume and tone of the

parent and child’s voices to create a model for PCIT. In a similar study targeting depression

detection, vocal features such as jitter, energy, and loudness were used [63]. These features

were trained and merged with the textual feature analysis.

Most of the existing literature in this area is text-based. For instance, [61] put forth a

classifier algorithm to differentiate between mothers who had previously received treatment
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for depression and those who had not.

Regarding dyadic interactions, several studies focus solely on the parent’s language, omit-

ting the child’s utterances. In these instances, dyadic features that denote parent-child in-

teraction are disregarded (e.g., [61,64,65]). Only a few studies, such as [6], pay attention to

the interactive aspects of parent-child dialogues. For instance, determining the class reflec-

tion as a desirable parental response to a child necessitates an understanding of the whole

conversation, not just individual sentences.

From a methodological perspective, several studies propose solutions grounded in empir-

ical methodologies. For instance, systems like TalkBetter [66] and TalkLIME [67] monitor

conversational flow and issue warnings upon detecting detrimental linguistic patterns from a

parent. When it comes to employing AI methodologies, much of the existing literature falls

into two broad categories: models based on ML and those using deep learning. ML-based

models utilize traditional ML algorithms with either domain-specific or knowledge-based

features, which include lexicon-based and handcrafted features. LIWC [68] is one such fea-

ture that offers semantically and syntactically categorized words like “first-person pronouns,”

“positive” or “negative emotion” words, “cognitive process” words, and “temporal” words

for further analysis and training. LIWC is a program designed to analyze natural lan-

guage. It employs a dictionary-based approach, grouping words into pre-defined syntax and

semantics-related categories and then quantifying their usage. Features of LIWC are noted

to be beneficial in identifying behavioural conditions, such as depression detection [61]. The

model is built on a Support Vector Machine (SVM) with interpretable LIWC features chosen

based on empirical research. As another example, LIWC is used in [69] to support the claim

that “positive-feeling speakers” would use more “positive affect phrases”, more “vocabulary”,
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and fewer “first-person pronouns”. [70] employed logistic regression for classifying cognitive

distortions and showed superior results using ML as compared to deep learning.

Among the works that rely on handcrafted or knowledge-based features, [71,72] used the

variety of a parent’s vocabulary related to children’s language abilities to identify different

aspects of grammatical and emotional relationships between words. [64] introduced a system

named “Captivate” to coach parents on providing their children with appropriate linguistic

input to reduce the risk of delayed language development. To promote children’s language

development, these systems alert parents about factors such as the amount of speech, suitable

responses, and lexical diversity. These features are grounded in empirical studies suggesting,

for instance, that the diversity in a parent’s word usage is linked to their children’s language

skills.

To support healthcare providers in evaluating the quality of parent-child interactions,

[6] developed a system named “SpecialTime” that offers feedback to parents about their

child’s behaviour. Parents are taught a series of conversation acts in PCIT that they should

frequently use when talking to their children (e.g., “That’s nice work” as labelled praise)

and a separate set that they should avoid (e.g., “You’re bugging me” as negative talk).

Labelled praise, behaviour description, and reflection are the three ideal dialogue acts that

are extremely pertinent when assessing parents’ therapy progress. Question, command, and

negative talk are considered unfavorable types of speech. Unlabelled praise and neutral talk

are regarded as inconsequential.

In “SpecialTime”, a threshold check on voice tone is employed to identify questions by

calculating the first derivative of the pitch contour of the final 0.5 seconds of the spoken

segment. However, we found that solely text-based analysis is sufficient for this task. To
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optimize the model, one-hot vectorization with TFIDF text representation, coupled with

uni- and bigrams along with POS tags, is utilized. Finally, a linear SVM classifier executes

the recognition.

Deep learning-based models leverage the semantic and syntactic attributes of the text

within the model. It is commonplace in deep learning-based models to use convolutional neu-

ral networks (CNNs) to capture emotion and recurrent neural networks (RNNs) to preserve

the structural and temporal aspects of the text [73].

In NLP, deep learning-based models typically employ embeddings that are sturdier than

lexicon-based and handcrafted features. In these embeddings, words with similar semantic

meanings, like “good” and “better,” are mapped to closely located vectors in the embedding

space. However, some researchers argue that these embeddings neglect sentiment. For

instance, “good” and “bad” are mapped to nearby vectors [60]. Another challenge with deep

learning-based models is their need for vast amounts of data. Consequently, prevalent deep

learning-based models in the literature focus on straightforward and standard labels like

basic sentiment or emotions on publicly available data (i.e., [13]).

Pre-trained models like BERT [74] are trained on large volumes of unlabelled data, en-

abling them to learn universal representations of language. As such, using this representa-

tion may yield better results in scenarios with limited available data. By fine-tuning the

pre-trained BERT model with one additional output layer, modern models for various appli-

cations can be created. For instance, [65] describes a system providing guidance to parents

of children with unique hearing conditions. These suggestions are generated by a seman-

tic similarity measure that uses BERT for text vector representation. While they did not

conduct any training in their work, they utilized the contextual meaning of the text from a
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general, pre-trained BERT model.

Moreover, fine-tuning facilitates transfer learning, where knowledge gained from one task

can be transferred to a related task. This allows a general-purpose pre-trained model to

adapt to a new task-specific model, reducing the data points required to train a model from

scratch. In a similar work that concentrated on the structural context of the text, [75] used

a combination of contextual representation by BERT, syntactic and semantic categorization

by POS tags, and LIWC features. They proposed their model as word classification by fine-

tuning BERT, followed by feeding part-of-speech features and LIWC into a logistic regression

model for the final classification. Nevertheless, in some instances, fine-tuning BERT can

capture the meaning, and the semantic and syntactic structure of the text, negating the

need to use it as a feature extractor and combine it with LIWC and POS tags. Fine-tuning

pre-trained models can also help mitigate over-fitting, a common issue when training deep-

learning models on small datasets.

3.4 Methodology

3.4.1 Dataset

Fig. 3.1 displays the number of samples in our dataset. To mitigate the effects of class

imbalance, we adopted two strategies. For traditional ML-based models, we implemented

back-translation [76] as an augmentation technique, which translates sentences into multiple

languages before retranslating them back to English. Given the TFIDF vectorization, this

augmentation method did not lead to over-fitting. For deep learning-based models, we used

a weighting approach, akin to the method used in [77], which assigns higher probabilities
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Figure 3.1: PCIT text dataset class distribution

to less common classes in the loss function. However, this weighting can also have negative

impacts, such as reducing precision. Therefore, in our final submission, we balanced this

during curriculum learning [78], by only employing the weighting strategy in the first half of

the training process.

In terms of data preprocessing for ML-based models, we followed common steps used

in similar research (e.g., [79]), which include: 1. Removing punctuation: While punctua-

tion aids in structuring text into sentences, its usage in classification can affect the results.

2. Eliminating stop-words: Stop words, like articles and prepositions, do not add any extra

meaning. By removing these frequently used words, we can focus on the key terms. 3. Im-

plementing stemming and lemmatization: Stemming reduces words to their root form, for

instance, transforming the word “troubles” to its root word “trouble”. In this process, we

44



used the Porter-Stemmer algorithm. Lemmatization is similar to stemming, but it takes into

account the word’s meaning. For deep learning and transfer learning-based models, we only

performed the normalization of special characters and punctuation.

Regarding the division of train/test/validation sets, for the ML-based and deep learning-

based models, we divided the dataset using a 60% split for the training set, 20% for the test

set, and 20% for the validation set. For the proposed model, we split the dataset using an

80% allocation for the training set, and 20% for the validation set.

3.4.2 Model

Multiple models were created to find the optimal solution for this problem.

ML-based model In accordance with similar research, such as [6, 80], we constructed a

traditional ML-based model using an SVM trained on the TFIDF representation of the input

text. We also carried out additional experiments to examine the influence of factors such as

multi-actor versus single-actor input, k-fold cross-validation, and the use of 1- or 2 grams for

tokenization. Ultimately, we found that using 10-fold cross-validation on parent-only texts

with 1-gram tokenization yielded the best results. For the tuning of hyperparameters, we

performed a 10-fold grid search cross-validation. The optimal parameters were found to be

an RBF kernel, with a C value of 1, and a gamma setting of 0.8. The selection of these

hyperparameters was based on the accuracy achieved on the validation set.

Deep-learning-based model We constructed two deep learning-based models in line with

the latest trends for text classification tasks. The decision to use these models was based on

the incorporation of CNNs and RNNs, a combination often found in similar research such
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as sentiment analysis and depression detection (e.g., [79, 81]). 1. Recurrent Convolutional

Neural Networks (RCNNs) [1]: RCNNs, through their recurrent structure, are adept at cap-

turing contextual information and employ a CNN for text representation. This configuration

leverages the strengths of both RNN and CNN, creating an efficient and potent model. RC-

NNs are frequently used in similar research fields, such as sentiment analysis (e.g., [82]).

2. A CNN model following the structure presented in [83]. This model takes word vectors as

input and processes them through multiple convolutional layers. These layers employ various

filters to identify local dependencies in the data, subsequently generating feature maps. A

max-pooling layer is then applied to reduce dimensionality and extract the most significant

features. Lastly, these features go through a fully connected layer for classification. We

utilized Glove-300 [84], pre-trained on Wikipedia, as the embedding layer with a dimension

of 300.

For all deep-learning-based models, we adhered to the architecture outlined in the original

references. We set the number of epochs to 15 and the batch size to 32. Cross-entropy was

selected as the loss function and AdamW [85], a variant of Adam featuring weight decay,

was chosen as the optimizer with a learning rate of 0.0003. To mitigate the potential for

over-fitting, we implemented dropout at a rate of 0.2.

Proposed model The suggested model we developed employs BERT as a basis for transfer

learning. BERT, first introduced by [74], is a bidirectional transformer pre-trained on a vast

text corpus, including Wikipedia, using a combined objective of masked language modelling

and next-sentence prediction. RoBERTa [86], short for Robustly Optimized BERT Pretrain-

ing Approach, is an enhanced language model that improves BERT by adjusting hyperpa-
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Figure 3.2: Proposed text modality model

rameters and training on a larger dataset. It outperforms BERT in numerous benchmark

tasks and serves as the basis for our proposed solution. The successful handling of unstruc-

tured data by RoBERTa, combined with its contextual understanding, led us to utilize it for

classification.

The architecture of our proposed model is displayed in Fig. 3.2. Our model is an

enhancement of “BERTForSequenceClassification”, an implementation of BERT provided

by the Hugging Face Transformers library [87], which simplifies the fine-tuning process for

sequence classification tasks. We expanded this model to accommodate dyadic interactions

by incorporating two inputs: one for parent acts and another for child acts.

Our model utilizes a two-step classification process, consisting of two modules. The

first module identifies dyadic acts, specifically the reflection class, while the second module

recognizes parent acts. In the first module, the model independently processes two input

sequences via the RoBERTa model, yielding two embedding vectors, “output parent” and

“output child”. The pooled output from this module is a concatenation of the RoBERTa

model’s outputs for the parent and child acts. This concatenated output is then normalized

using layer normalization, passed through a dropout layer, and forwarded to a classification
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layer to generate class logits. Cross-entropy loss is then calculated between the predicted

class probabilities (logits) and the true labels. The second module follows a similar process,

but without concatenation of the child acts. Finally, the model concatenates the outputs as

logit vectors.

The RoBERTa-based model was fine-tuned over 5 epochs with a learning rate of 1e-5

using the AdamW optimizer. A batch size of 3 was utilized for the fine-tuning process, and

cross-entropy was consistently chosen as the loss function.

3.5 Evaluation, Results, and Discussion

To evaluate the performance of the models, we used accuracy and weighted F1-measure

on the test set. These metrics are defined as follows:

The accuracy is the proportion of correctly classified samples out of the total number of

samples in the test set. It is calculated as:

Accuracy = TP +TN

TP +TN +FP +FN

Precision is the proportion of true positives (TP) to the total number of positive predic-

tions (TP + FP). It represents the accuracy of positive predictions. It is calculated as:

Precision = TP

TP +FP

The recall is the proportion of true positives (TP) to the total number of actual positive

cases (TP + FN). It represents the ability of the model to detect positive cases. It is

calculated as:
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Figure 3.3: Performance results for the ML-based model text

Recall = TP

TP +FN

The F1 measure is the harmonic mean of precision and recall, which gives an overall

measure of the model’s performance. It is calculated as:

F1 = 2∗Precision∗Recall

Precision+Recall
= 2∗TP

2∗TP +FP +FN

Fig. 3.3 illustrates the accuracy results for the classical ML-based model, while Fig.

3.4 displays the performance accuracy for one of the better-performing deep learning-based
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Figure 3.4: Performance results for the deep learning-based model RCNN text [1]

models, the RCNN [1]. As indicated in these matrices, both the deep learning and ML-based

models struggled to distinguish between certain classes with intricate similarities that could

not be captured solely through the semantics of individual words. This includes classes

such as unlabelled praise (UP) and labelled praise (LP), or reflection (RF) and neutral talk

(NTA). Apart from performance, this issue could potentially compromise the overall system

quality. For instance, [6] noted that false positive reflections could provide parents with an

inaccurately positive impression.

The performance of the proposed model is represented in Fig. 3.5. As anticipated, this
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Figure 3.5: Performance results for the proposed model-text

model outperformed others in classifying validation data. The results show that interde-

pendent labels were correctly differentiated. Additionally, the model achieved competitive

results for the question class without necessitating audio features or additional audio pro-

cessing. Furthermore, we observed that the model could identify intricate emotional and

structural patterns within the text, even without incorporating additional syntactic features

or custom features such as LIWC and POS tagging. This suggests that regular feature rep-

resentations like LIWC, POS tagging, and others may not contribute significant additional

knowledge to the model. Various explainability and interoperability solutions could address
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this issue.

In a manner similar to [16], we utilized [88] to visualize how the model comprehends the

semantic and structural meaning of the text. For instance, [77] discussed in their work on a

different text classification task how several heads in their fine-tuned BERT model seemed

to focus on the structural context of adjectives and adverbs. Consequently, adding extra

grammatical, syntactic, and emotional features based on tokens might not introduce new

facets of text meaning to the context.

Table 3.2: Comparison of evaluation performance for the text model

Model
Validation

Accuracy
Precision Recall F1-measure

Performance reported in [6] 0.78 0.79 0.77 0.79

ML-based 0.62 0.64 0.61 0.62

RCNN [1] 0.69 0.71 0.68 0.69

CNN [83] 0.68 0.71 0.68 0.69

Proposed Model 0.90 0.92 0.91 0.92

The performance of these models, as demonstrated in table 3.2, is inferior compared to

our proposed model. Classical ML models like those presented in [6] suffer from a lack of

sufficient labelled data, particularly in the case of rare n-grams. Therefore, they require

more advanced features to handle the intricacies of a complex domain.

Meanwhile, deep learning-based models in this field generally rely on a combination of

concepts from CNNs and RNNs. The CNN identifies the most significant n-grams, while the
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RNN calculates a weighted combination of all the words in the text. Thus, a blend of the

two can capture both semantic and structural aspects within the text. However, in certain

instances, this approach still falls short of delivering superior results compared to ML-based

models. This is partly because word embedding models employed in deep learning-based

solutions demand a larger amount of labelled data to adapt to the domain. Additionally,

unlike BERT-based models, these models are context-independent and do not consider the

word’s position in a sentence.

Regarding interpretability, Fig. 3.6 presents a local attribution sample from the proposed

model. The examples shown are true positives (correctly identified as a PCIT category);

terms highlighted in green contribute to a positive prediction, while red ones detract from

it. These attributions demonstrate that the proposed model’s domain adaptation and fine-

tuning were able to discern specific structural, semantic, and grammatical factors related to

each class, obviating the need for additional POS tagging and LIWC features. Hence, there

is no need to add customized features to an ML-based approach or to rely on CNNs and

RNNs to capture emotional and structural meaning.

For instance, in the negative talk category, phrases containing negative structures (e.g.,

“not correct”) and absolute expressions (e.g., “always”) are accentuated. This example

underscores the importance of grammar and structure to the target class. In the command

category, words denoting a specific object (e.g., “toys”) or time (e.g., “now”) in a given

context are crucial to the target class. In the question category, the model could discern

the significance of starting a sentence with a verb, though it is not a definitive condition.

And in the labelled praise category, the model could understand when positive emotional

states (e.g., “perfectly”) are tied to a specific topic (e.g., “that”), which differentiates it from
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Figure 3.6: Explanations for the proposed text model on a true positive sample set

unlabelled praise.

3.6 Conclusions

PCIT, or Parent-Child Interaction Therapy, is a therapeutic approach that aims to en-

hance parent-child relationships by instructing parents on how to engage more effectively

with their children for the betterment of their psychological and behavioural development.

Our research underscores the potential of AI in streamlining PCIT evaluations, addressing
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the time and resource limitations often encountered in these assessments.

We used the “SpecialTime” system dataset, which includes over 6,000 parent-dialogue

acts, annotated according to the DPICS. With the assistance of the latest developments

in Natural Language Processing, we achieved a validation accuracy of 90%, significantly

surpassing previous outcomes.

Due to the intricate and ambiguous characteristics of the classes, conventional ML tech-

niques proved to be labour-intensive. As such, we shifted towards transfer learning, lever-

aging a fine-tuned Transformer-based model that surpassed other methods. Furthermore,

our findings revealed that our approach can deliver high performance even in the absence of

vocal features.

Interestingly, we found that child acts had minimal influence on the classification out-

come, with the exception of a single label. This effectively reduces the added complexity

that dyadic interactions typically introduce. We managed to accomplish this by proposing

a two-step classification model that utilizes child acts only for the identification of dyadic

labels, while parent acts are employed to discern other labels.
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Chapter 4

A Model for Parent-Child Interactions Analysis from

Text and Audio

4.1 Abstract

The quality of parent-child interactions is a critical foundation for future social and emo-

tional development and well-being. Among tools that assess the quality of these interactions,

the Parent-Child Interaction Teaching Scale (PCITS) is a well-established and effective tool.

Identifying parent-child behaviors early is a significant challenge in utilizing PCITS, to help

parents address initial behavioral issues. However, the necessity for resource-intensive and

time-consuming manual evaluations limits the accessibility of these assessments.

In our research, we delved into the complexities and challenges of automating this process

using AI for audio and text modalities. We proposed a solution to categorize the primary

behavior types in PCITS. We believe that our study is the first to introduce a model that

uses a novel framework to incorporate multiple behavioral factors, allowing us to analyze

emotions and psychological elements in parent-child interactions through both audio and

text modalities.

Our proposed model can discern and detect the audio’s semantic features and the linguis-

tic characteristics, including both semantic and syntactic aspects, in parent-child interactions

according to the PCITS scale. The model uses an ensemble learning approach that integrates

various aspects of recognition within this scale. Compared to similar efforts, our evaluation
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results showed an improvement in performance when utilizing this approach.

4.2 Introduction

The Parent-Child Interaction Teaching Scale (PCITS) is a well-established and trusted

tool for evaluating the quality of interactions between parents and their children. It primar-

ily assesses how caregivers communicate with their children, allowing therapists to identify

anomalies and guide parents in improving their interactive behaviors. However, the signif-

icant time and effort required for these interventions is a major limitation. Consequently,

the central research question we pose is how AI could be leveraged to automate some of

these evaluations, by assessing interaction quality based on linguistic and audio features in

dynamic dialogues.

Current research on human behavior analysis through text and audio mostly focuses

on primary categories such as basic sentiment and emotions, using publicly available data.

Despite the crucial societal benefits of PCITS, there is a noticeable lack of studies and data

in this area. This gap is partly due to ethical considerations around privacy and partly due

to the intricacies of data collection that require expert qualification and training to gain the

needed knowledge.

In the context of the verbal labels in the PCITS scale, we have compiled a dataset as-

sembled by skilled coders. The labels, which include imperative instruction, explanatory

instruction, broad praise, task-related praise, cheerleading, and negative comment, rely heav-

ily on both semantic and syntactic features in language and audio analysis. For instance,

imperative instruction generally starts with a command or verb, while explanatory instruc-
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tion provides more task-specific descriptions but has a similar structure. Task-related praise

is a positive verbal action targeting a specific activity, making the positive sentiment context-

dependent, while broad praise is a more general positive statement. Cheerleading encourages

the child in a unique way but shares a similar sentiment with broad praise. The negative

comment label may involve the use of a negative word or vocal tone. The specifics of these

labels are detailed in Table 4.1.

Given these definitions and examples, we have examined these labels from two semantic

and syntactic perspectives, focusing on the dual modalities of language and audio. We then

proposed a multi-modal approach to combine different modalities and viewpoints.

Table 4.1: PCITS text dataset examples

Class Description Example

Imperative

Instruction

(II)

A given instruction or command

(1) Catch it.

(2) Put it here.

(3) Do this.

Explanatory

Instruction

(EI)

A given instruction to explain why

something needs to be done a certain

way

(1) I want to see if you can turn the

page.

(2) Do you want to try it now?

(3) I want to you move the car by

pulling the string.

Continued on next page
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Table 4.1 – continued from previous page

Class Description Example

Broad

Praise

(BP)

Indicates general praise given

(1) Good job.

(2) You’re such a good worker.

(3) I’m proud of how hard you worked

today.

Task-

Related

Praise

(TP)

Indicates praise given by the adult to

the child specifically related to the task

(1) You figured that out fast.

(2) Good job. Did it.

(3) There you go.

Cheerleading

(CH)

Indicates a statement of encourage-

ment or motivation

(1) You can do it too.

(2) Keep trying.

(3) Just one more.

Negative

Comment

(NC)

Indicates a negative comment or feed-

back

(1) No, you can’t eat the frog.

(2) Open your hand and Oh nope.

(3) Don’t eat it.

4.2.1 Semantic characteristics

Semantics pertains to the meaningful context of something, with the semantics of dialogue

often depending on emotion or sentiment in relation to that context. Sentiment analysis,
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as discussed by [89], involves the examination of feelings, attitudes, evaluations, emotions,

and thoughts regarding various entities such as products, services, companies, individuals,

issues, events, and their characteristics. [90] classified emotions into six basic categories:

anger, disgust, fear, joy, sadness, and surprise.

There are multiple evolutionary, neurological, and psychological approaches to analyzing

human emotions, aimed at deriving complex labels from these basic ones. For instance, [91]

proposed a theory that subdivides emotions into 24 categories, some comprising two emotions

and others composed of three primary emotions. However, this approach involves a complex

task in feature engineering and necessitates a solution for recognizing and mitigating the

correlation between labels. Furthermore, in our case, it is impossible to apply traditional

machine learning algorithms to identify a relationship between domain-specific labels and

basic or universal classes due to the complexity of the label definitions.

A viable alternative is to leverage deep learning and transfer learning, which can reduce

the efforts needed for feature engineering and domain-specific rules. CNN models have

recently shown remarkable success in identifying emotional states in both text and audio, as

cited in [13]. The key to this success lies in the nature of CNNs that slide through n-gram

features, selecting the most discriminative language fragments in max-pooling that convey

the most emotion in the text.

Regarding audio semantic characteristics, vocal features like log-scale Mel spectrograms

are frequently utilized in emotion and semantic recognition tasks. These spectrograms mirror

how humans perceive sound and are widely employed in speech and audio processing appli-

cations. The use of a visual representation of vocal features makes CNNs a suitable choice

for analyzing audio, as mentioned in [92]. For example, [14] utilized pre-trained models like
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ResNet for audio semantic classification.

4.2.2 Syntactic characteristics

Syntactic attributes refer to the style, syntax, and grammar of speech, forming a key

part of the NLP task in this study. Within this domain, the sentence type and structure

are crucial for classifying certain categories. For instance, the sentence “Who do you think

you are talking to?” is identified as a type of negative comment behavior within parent-child

interaction, partially because it begins with the word “who”. As mentioned in [15], sentential

or syntactic features such as part-of-speech (POS) tagging are particularly important for

these classes. Recognizing patterns like broad praise often being found in shorter sentences,

and imperative instruction commonly appearing in sentences that begin with a verb, can

enhance classification effectiveness.

In terms of deep-learning-based approaches, RNNs and their extensions are growing in-

creasingly relevant, given their capacity to capture recurring and temporal linguistic features

that represent text structure and grammar [73]. Moreover, Transformer models like BERT

have shown their proficiency in detecting syntactic structures [16]. We utilized both options

in our research.

In our proposed solution, we combined the two key facets of the problem, i.e., the semantic

and syntactic characteristics, in both audio and text modalities. The challenge thus lies in

developing a comprehensive model that encapsulates all these aspects and modalities within

a single architectural framework. We designed a meta-model that trains over the outputs of

independent modules, each responsible for a specific aspect within a modality, and developed

a method to map these to the final result.
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The remainder of this chapter is organized as follows: Section 4.3 presents the works

surveyed for this study. Section 4.4 explains our model’s architecture and settings, along

with some additional features and enhancements. Subsequently, in Section 4.5, we evaluate

the individual models in contrast with the ensemble model and discuss our observations. We

finally conclude our study in Section 4.6.

4.3 Related Work

Among empirical studies in PCITS, systems such as TalkBetter [66] and TalkLIME [67]

monitor dialogues and alert when they detect harmful language patterns employed by a

parent. In the realm of AI, there exist two primary perspectives: semantic and syntactic

characteristics. For each perspective, two broad categories of models are present: machine-

learning-based and deep-learning-based.

Numerous machine-learning-based solutions in text modality, such as [6], rely on pure

lexicons, and they hold the advantage of being easier to handle, particularly when compared

with intricate text representations. The unit of analysis is words, the representation of text is

TFIDF, and the most commonly employed features include bag-of-words (BOW), linguistic

inquiry and word count (LIWC), and POS tagging. LIWC may be beneficial for semantic or

emotional features, while POS-tagging can be advantageous for syntactic features. LIWC is

a tool that operates using a dictionary-based methodology, classifying words into predefined

groups relevant to syntax and semantics, and subsequently quantifying their frequency. The

features offered by LIWC are recognized as useful in detecting behavioral states, such as in

depression diagnosis [61]. The model employs a support vector machine (SVM) with LIWC
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features, selected based on empirical studies. In another example, [69] utilized LIWC to sub-

stantiate their assertion that speakers feeling positive emotions tend to use a higher quantity

of positive affect phrases, a more diverse vocabulary, and fewer first-person pronouns.

In parent-child interaction studies focusing on handcrafted features, [71,72] have applied

the breadth of a parent’s vocabulary, linked with a child’s language skills, to identify unique

forms of grammatical and emotional word associations. [64] proposed a system designed to

educate parents on providing appropriate linguistic stimuli to their children, thus reducing

the possibility of language development delays. These systems assist in improving children’s

linguistic development by providing parents with insights regarding aspects such as speech

volume, proper responses, and lexical diversity. These features are developed based on

empirical research.

The effectiveness of machine-learning-based solutions often hinges heavily on extensive

efforts in feature engineering. These encoding strategies, however, do not consider the po-

sitioning of words within the text or recognize significant links between categories, which

can hinder the model’s capacity to generalize [60]. Also, these models can suffer from an

insufficient amount of labeled data. While lexicon-based models and one-hot vectors pro-

vide clearer and more interpretable results compared to end-to-end deep learning techniques,

they can struggle with complex sentences [60] and evaluating the likelihood of uncommon

n-grams [13]. Ultimately, traditional models might not fully incorporate the context of the

text, including the sequence of words, the emotion expressed, and the meaning and context

of parental interactions.

In response to these limitations, advancements in deep learning have prompted the use of

variants of CNNs [93] and RNNs [73] to tackle these challenges. Issues are further addressed
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by word embedding representation models like BERT [94]. These models, which are trained

on vast unlabeled datasets available online, demonstrate the property of semantically similar

words having close proximity in the corresponding vector space.

New representation models encounter difficulties when identifying certain types of gram-

matical and emotional relationships between words [60]. In the context of PCITS, recogniz-

ing the syntactic characteristics of the dialogue is crucial. However, for Transformer-based

embedding models like BERT, researchers have proposed solutions that include fine-tuning

these models to better recognize structural context within text [16]. Another challenge with

embedding models lies in sentiment and emotion analysis as they typically only model the

context of words, overlooking the sentiment information.

This problem can be mitigated by capturing the word’s position in a sentence to better

resolve context, a strategy employed by BERT [60]. Another method is to merge features

from different perspectives. For instance, [95] has combined a lexicon-based model with

document embedding features in an effort to detect symptoms of mental illnesses from in-

terview text. Similarly, the RCNN model proposed by [1] combines RNN with CNN, where

the convolutional layer operates recurrently to capture the most significant local features in

terms of temporal characteristics.

The approach of blending part-of-speech features with text embedding within an attention-

based CNN model is utilized in [96, 97] to detect behavioral status within text. In such

models, the convolutional layer is built upon the word vector representation obtained from

an unsupervised neural language model. RNNs and their variations maintain relationships

between words in a sentence by leveraging historical data. For instance, RNNs tend to

perform better when text contains negating phrases such as “won’t” and “miss” [73]. As
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pointed out in [98], while CNNs extract the most meaningful n-grams, RNNs compute a

weighted combination of all words in the text. By integrating these models, a more accurate

representation is possible, as exemplified by BERT and its variants [74].

When considering acoustic semantic features in parent-child interaction studies, numer-

ous works utilize vocal features like loudness, jitter, and energy in the parent’s voice [62].

Similarly, in studies on depression detection, features are learned and incorporated into tex-

tual features [63]. In [6], the parent’s voice tone is used to detect questions by calculating

the initial derivative of the pitch curve from the final half second of the speech segment.

Apart from empirical approaches, the use of CNNs for analysis is suggested in various other

fields [14,99,100]. Although CNNs were originally developed for image processing, the visual

spectrogram of vocal features allows for effective classification tasks through CNN advance-

ments. Some researchers even utilize transfer learning to leverage pre-trained models such

as ResNet variants for audio analysis [14].

4.4 Methodology

4.4.1 Dataset

The video content was curated and annotated by trained research assistants utilizing a

web-based labeling interface that was developed and launched during the early stages of

this study. Appendix C provides information about the labelling system. This tool proves

beneficial for both dataset preparation and its automation. Subsequently, the videos were

converted to audio and transcribed using the Amazon Transcribe service1.
1https://aws.amazon.com/transcribe/
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Unlike the approach used in [6], our transcriptions include punctuation marks like “ques-

tion marks,” which aid in the development of more refined structural features within the

text. The presence of punctuation marks also simplifies the sentence segmentation process,

maintaining the models’ granularity based on sentences without needing additional audio or

text processing.

We discovered that only a single caregiver was involved during the recorded interaction,

and any vocal sounds made by the child were disregarded as noise by the transcription

service. Consequently, the caregiver’s speech became the sole significant component, making

it feasible to transcribe text from a single participant (the parent). This presumption assisted

in eliminating dyadic complexities from the text analysis in PCITS.

Figure 4.1: Dataset class distribution - audio/text

Fig. 4.1 illustrates the quantity of samples within our dataset. Two labels, broad praise
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and negative comment, were found to have less representation. To augment these two cate-

gories, we utilized back-translation [101], generating approximately 600 additional samples.

We also employed ChatGPT 2 for augmentation, providing it with precise definitions of

the labels, their distinctions from other labels, and a series of samples. This allowed the

generation of 600 similar instances, following the concept of few-shot prompt engineering

[102].

Afterward, we filtered out irrelevant and similar augmented samples, reducing the final

count for these two labels to approximately 500. To eliminate semi-duplicate samples, we

utilized Sentence-BERT [103] to create embedding vectors of samples. Using cosine similarity

as a metric on these vectors facilitated the removal of the most similar samples.

4.4.2 Audio classification

According to our experiments, the audio classification technique we used was unable to

differentiate between the labels “broad praise”, “task-related praise”, and “cheerleading”.

This could be due to the fact that these labels are distinguished by the syntactic structure

within the text. Therefore, we decided to group these three labels into a single general label,

which we named “positiveness”.

To extract features from audio samples, we utilized a log-scale Mel spectrogram with 64

Mel frequency bins. We applied a hop length of 0.01 seconds and a window length of 0.02

seconds between two consecutive Hanning windows. These features were then inputted to

a pre-trained ResNet18 [104] model on the ImageNet dataset. The model was adapted by

modifying the first layer to accept grayscale images and replacing the last fully connected
2https://chat.openai.com/chat
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layer with a dropout regularization of 0.25 probability and a linear layer with output features

equal to the number of classes. The original model contained 11,689,512 parameters, while

the updated model contained 11,172,356 parameters. We trained the model for 50 epochs

using a batch size of 8 and the Adam optimizer with a learning rate of 0.0001 and momentum

of 0.9.

We used the cross-entropy loss as the loss function for all classifier modules. To account

for class imbalance, we adjusted the loss function with a balanced weight factor, which was

calculated based on the distribution of samples. The calculation was done using the method

proposed in [105] in PyTorch.

For each model, we employed a grid-search cross-validation strategy across 5 folds to fine-

tune the hyperparameters. The chosen hyperparameters were those that performed best in

terms of accuracy on the validation set.

4.4.3 Text classification

The proposed model employs three distinct methods for text classification:

Deep-learning-based model We followed the methodology proposed in [13] to perform

text classification using a CNN+RNN architecture. Firstly, we used a recurrent neural net-

work to analyze the POS tagging features of the text. This approach was chosen due to the

sequential and structural nature of the POS tags, which can help in capturing the sequential

characteristics of the text. The tags we focused on included “DT (Determiner)”, “JJ (Ad-

jective)”, and “MD (Modal)”. Secondly, we utilized problem-specific features, including 9

syntactic features derived from the POS tags. These features captured some special states in

the domain that can affect the final classification step, such as detecting “imperative instruc-
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tion” and “explanatory instruction” categories. Thirdly, we employed a convolutional neural

network to process word embedding features that capture the most significant semantic fea-

tures of the text. The objective of this step was to capture the most semantically relevant

parts of the text. Finally, we concatenated the output of the convolutional network with

that of the recurrent network and the classifier network and then used a fully connected layer

to classify the final output. To create sentences, we selected certain tags from POS tagging

by NLTK 3, including “PRP”, “NN”, and “MD”. As these tags are sequential, we employed

an LSTM network with a dropout layer to avoid bias and hidden unit co-adaptation [93].

We then used a fully connected layer with RELU activation to choose the most significant

sentence composition features. To create word embeddings, we used the word2vec algorithm

trained on GoogleNews [106]. This algorithm captures the contextual meaning of words

by considering their co-occurrence with other words in a given corpus. We utilized a CNN

model with two convolutional layers and max-pooling followed by a dropout layer and a fully

connected layer activated by the RELU function to extract the most important contextual

features. These features were then classified by another fully connected layer. The CNN was

trained for 20 epochs using the Adam optimizer with a learning rate of 0.001.

Fine-tuning We utilized a BERT model as the second approach for text classification,

aiming to fine-tune it for our specific task. The rationale behind using pre-trained models

like BERT is that they can perform better in situations where data is limited, compared to

training from scratch. We employed the “BERTForSequenceClassification” implementation

from the Transformers library [87] provided by Hugging Face. The optimizer used was

AdamW [85], which is a variation of Adam that uses decaying weight. The model was fine-
3https://www.nltk.org/
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tuned for 30 epochs with a batch size of 8. The number of parameters in the fine-tuned

model was 109,486,854.

Transfer-learning A dataset was introduced in [6] containing approximately 4000 records

with labels such as “negative talk”, “question”, “command”, “behaviour description”, “un-

labeled praise”, and “labelled praise”. We conducted research on this dataset to create a

model that would achieve higher accuracy than the one reported in the original work [107].

We then used this model as a feature generator module. To find a non-linear relationship

between the output features of the tuned model and the final target, we developed a neural

network. We decided to exclude “cheerleading” from the dataset for the second classifier,

as it was not significant for this label, possibly because there was no similar label in the

first dataset. The neural network consisted of two fully connected layers with a ReLU and

dropout layer between them. The first layer had dimensions of 8 × 64 and the second layer

had dimensions of 64 × 6. The number of epochs for this classifier was 20, and we used the

Adam optimizer with a learning rate of 0.001.

4.4.4 Combined model

Fig. 4.2 shows the overall architecture of the model. The results of the four audio

and text classification modules provided different perspectives and types of information for

the classification task. To combine these outputs, we used an ensemble learning model.

Ensemble methods aim to create a model that reduces the biases of a single machine-learning

algorithm [108]. Among different ensemble techniques, we opted for a stacking approach,

which involves using a regression model to learn the weights for a weighted averaging model.

Thus, we denoted pi,j as the likelihood of model Mi for assigning class j to a given
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Figure 4.2: Model architecture for text/audio modalities
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input, where i ∈ {1,2,3,4} and j ∈ {1,2, ...,K}, where K is the total number of classes (six).

The value of pi,j was zero if the class j was not among the target labels of model Mi.

For example, the target “cheerleading” was ignored for the transfer-learning-based model.

Also, for the audio classification model, all outputs corresponding to the three labels “broad

praise”, “task-related praise”, and “cheerleading” were assigned the same output value for

the label “positiveness”.

To combine the output of the four modules, we utilized an ensemble learning model. The

ensemble model was designed to learn the relationship between Mi and the final output y

using the following equation:

ŷ = softmax
 4∑

i=1
wi · softmax(Mi(x))

 (4.1)

Here, ŷ represents the predicted probabilities of the ensemble model for a given input

x, and softmax(Mi(x)) denotes the vector of probabilities obtained by passing the logits

through a softmax function, resulting in class probabilities. The weights wi were learned by

training a LogisticRegression model on the concatenated outputs of the four models for each

input, as explained above.

The softmax function is defined as:

softmax(zi) = ezi∑K
j=1 ezj

(4.2)

where zi is the i-th element of the model’s output vector, and K is the number of classes.

The softmax function transforms the model’s outputs into positive values that sum to one,

representing class probabilities. We applied softmax to the output probabilities of each
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classification module to obtain a normalized vector.

4.5 Evaluation and Results

To build the classification models and the ensemble model, we split the dataset into two

parts. The first part, which comprised 80% of the data, was further divided into training,

testing, and validation subsets in a 60%, 20%, and 20% ratio, respectively. This part was

used to build the four classification modules. The second part, which contained 20% of

the data, was used to build the ensemble model. This part was divided into training and

validating subsets in an 80% to 20% ratio. We used k-fold cross-validation with 5 folds to

train the ensemble model. However, we did not include augmented audio samples in the

portion of the dataset assigned to the ensemble model because there were no corresponding

audio samples for the augmented text samples.

Table 4.2: Text-audio performance results

Label
4.4.21 4.4.32 4.4.33 4.4.34 4.4.45

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
Imperative Instruction 0.43 0.59 0.60 0.65 0.29 0.45 0.53 0.69 0.80 0.82

Explanatory Instruction 0.61 0.76 0.65 0.71 0.69 0.82 0.68 0.81 0.80 0.82

Broad Praise 0.72 0.84 0.30 0.43 0.07 0.13 0.58 0.73 0.65 0.77

Task-Related Praise - - 0.45 0.57 0.59 0.74 0.63 0.77 0.78 0.81

Cheerleading - - 0.38 0.50 - - 0.46 0.63 0.55 0.62

Negative Comment 0.15 0.20 0.50 0.54 0.68 0.81 0.67 0.80 0.80 0.82

1 Audio classification model, 2 Deep-learning-based model, 3 Transfer-learning-based model, 4 Fine-

tuning model, 5 Ensemble model

Table 4.2 displays the results of five models in terms of their accuracy and F1 scores for various labels.
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The models include four different classification modules: deep-learning-based, transfer-learning-based, fine-

tuning, and audio classification, as well as the ensemble model. The accuracy and F1 scores for each label

are presented, with the best results for each label highlighted in bold.

Table 4.3 presents the overall performance metrics, which include validation accuracy, precision, recall,

and F1 score, calculated in a weighted manner for all models.

Table 4.3: Overall evaluation performance between models in text-audio modalities

Model Validation Ac-

curacy

Precision

(weighted

avg)

Recall

(weighted

avg)

F1-measure

(weighted

avg)

Audio classifica-

tion

0.62 0.60 0.61 0.60

Deep-learning-

based text

classification

0.54 0.64 0.62 0.62

Transfer-

learning-based

text classifica-

tion

0.54 0.60 0.48 0.49

Fine-tuning text

classification

0.60 0.70 0.61 0.63

Ensemble model 0.77 0.83 0.78 0.79
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According to the results, the ensemble model showed better performance in both accuracy and F1

score compared to the other models. The audio classification module demonstrated better performance on

the three labels related to “positivity”, including “broad praise”, “task-related praise”, and “cheerleading”.

Although the model could not differentiate between these three labels, we considered the same output for

all three in this module. The deep-learning-based model showed better performance on the “imperative

instruction”, and “explanatory instruction” labels, which may be attributed to capturing the structural

context that is more important for these labels. The transfer-learning-based model demonstrated better

performance on the “explanatory instruction”, “task-related praise”, and “negative comment” labels, which

may be attributed to having labels with similar definitions in the dataset used for this module. The fine-

tuning model demonstrated more consistent performance across all labels, although it did not achieve the

highest accuracy.

In summary, the ensemble model demonstrated superior performance compared to other models, achiev-

ing the highest accuracy and F1 scores on all six labels. The advantage of using an ensemble model was the

ability to incorporate multiple aspects and modalities of the classification task, including audio and text,

semantic and structural context. Additionally, the correlation between labels posed a challenge for a single

classification model to predict a single target. By using a normalized vector of output probabilities for each

label, the ensemble model could leverage the complex relationships between labels to improve performance.

4.6 Conclusions

The aim of this study was to examine the verbal behavior of parents during interactions with their

children, using the PCITS measure as a reference [17,109]. In the early stages of the research, we developed

a labeling system. Given the complexities of the domain, categories are dependent on both syntactic and se-

mantic characteristics from text and audio modalities. Therefore, we implemented four different classification

modules to be merged in a meta-model.

We utilized a combined CNN+RNN model with additional structural features to focus on domain-specific

feature analysis based on semantic and syntactic context. Another model was used to conduct classification

on a similar dataset and transfer the learned knowledge. Furthermore, we fine-tuned another model on the
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text dataset, leveraging recent advancements in the Transformers architecture.

For the audio modality, we employed a model pre-trained on image classification tasks and trained it

on the vocal spectrogram of the audio samples. Finally, we integrated the four classification modules into a

logistic regression classification model to amalgamate the outputs of all models.

By adopting an ensemble classification approach for training, the model demonstrated satisfactory per-

formance. To summarize, our research focused on evaluating parent-child interaction using the PCITS scale,

with a focus on two primary modalities - audio and text, and two types of features - semantic and syntactic.

We proposed a model that is capable of incorporating all these modalities and aspects, and the model has

demonstrated comparable performance to similar studies in this field.
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Chapter 5

Conclusion and future works

5.1 Summary and Conclusion

The research provided different AI methods for analyzing parent-child interaction quality. The analysis

included three modalities: video, audio, and language. It also investigated various aspects of each modality.

Chapter 2 relates to the analyses of parent-child interactions in view of the video modality. This could

be considered a part of human behaviour analysis (HBA) problems in AI. We tackled this HBA problem

using two methods: data-driven and knowledge-based. Regarding the literature on HBA problems, there

are several challenges associated with analyzing such interactions in 2D video files, such as occlusion and

camera shake. To address these challenges, a tracking algorithm was developed to detect the skeleton joints

of both parent and child actors. Additionally, semantic-based features were introduced to handle limited

labelled data and occlusion. The features were refined through feature selection, which decomposed complex

behaviour into simple activities occurring in body parts. This decomposition enabled the model to be trained

in reverse by recognizing actions from semantics in body parts. The performance of the proposed model was

evaluated using transfer learning through a data-driven approach and a statistics-based model, consistent

with previous research.

Chapter 3 relates to the analyses of parent-child interactions in view of text modality in a similar

dataset. The purpose of the chapter was to improve parent-child interactions by implementing a treatment

called PCIT that teaches parents how to communicate more effectively with their children for improved

mental and behavioural development. In order to accomplish this, a method was developed to classify

conversational texts between parents and children into categories that encourage high-quality interactions

using the ”SpecialTime” system dataset. Although the claimed accuracy of the PCIT classification task

on this dataset was 79%, this research resulted in an overall accuracy increase of 11%. Surprisingly, good

performance was achieved without the incorporation of any vocal features, and it was discovered that the
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child’s actions had minimal effect on the classification outcome, with one category being an exception. This

means that similar to the case in this research, dyadic features are not required in language modality. This

study suggests that transfer learning from a BERT model that has been fine-tuned produces superior results

compared to using either deep learning or ML techniques on this dataset. The trained model was transferred

to the work in research in chapter 4.

Chapter 4 relates to the analyses of parent-child interactions in view of text and audio modalities. The

aim of this chapter was to investigate the language used by parents when interacting with their children

using the PCITS measure. To achieve this, both audio and text data in view of semantic and syntactic

features were used. Four different classification models were utilized in this chapter: a CNN+RNN model

that focused on the semantic and syntactic context of the text, a transfer-learning model that incorporated

knowledge from the trained model into the text in chapter 3, a fine-tuning model that used the latest advances

in transformer architecture in text classification, and a pre-trained model that was originally intended for

classifying images but was retrained to classify vocal spectrograms from audio samples. The outputs of these

models were combined using logistic regression to create an ensemble approach, which showed satisfactory

performance and will be integrated into a larger framework for analyzing parent-child interactions.

5.2 Limitations

The main limitation of this study is the lack of labelled data. Most of the experiments in this research

were done in the last eight months when a team of six coders started to provide these data. As discussed

for the video modality in chapter 2, the complexities and higher dimensions of this modality require probing

into knowledge-based solutions such as hand-made features and feature selection. While for the other two

modalities in chapters 3 and 4, there are relatively enough samples to use transform-learning-based models,

Although developing deep-learning-based models in these modalities still requires more data, In addition, a

number of labels are not covered in this research due to a lack of data.
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5.3 Future Work

While each chapter focused on a specific aspect or modality, they all contributed to the development

of a larger framework for analyzing parent-child interactions. In chapter 4, an ensemble model is proposed

to combine audio and text modalities. Future work could explore the integration of these methods with

other modalities such as video and face to further enhance performance. This work also could be extended

to cover more labels in PCITS scale [17, 109] when enough number of samples are available. By providing

more samples for the labels in the future, this system will be able to cover a larger number of labels for

analysis. Using few-shot learning techniques could be another technique to incorporate more labels into

the framework. An additional recommendation for future research involves concentrating on ethical matters

related to the privacy of parents and their children. Implementing a federated learning strategy, which shifts

computations to mobile devices, could be one possible solution to navigate these ethical concerns.
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Appendix A

PCITS Labels

Label Description Actors Modalities

Back arching Hyperextension of the back. Child/Parent Image

Crawling away Moving away from the caregiver on hands and knees. Child/Parent Image

Maximal lateral

gaze aversion

Maximum turning of head laterally accompanied

with gaze aversion; may have slight back arching.

Child/Parent Image

Overhand beating

movements

Of arms, elbows flexed tightly, upper arms raised,

hands fisted at shoulder level, then the arm is

brought straight down. Throwing objects would be

overhand beating movements.

Child/Parent Image

Pale/red skin Skin changes colour to either pale or red. Child Image

Pulling away Removing the torso and/or head away from the care-

giver or object; withdrawing and increasing distance

from the caregiver or object.

Child/Parent Image

Pushing away Making manual contact with the caregiver or object

and extending the arm.

Child/Parent Image

Tray pounding Hitting a surface such as a high chair tray or tabletop

with the palm of the hand.

Child/Parent Image

Nonverbal Soothing pat, rock, kiss, touch Child/Parent Image

Head Nod Head up and down Parent Image

Imperative Instruc-

tion

A given instruction or command (e.g., “Catch it.”) Parent Text/Audio

Continued on next page
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Table A.1 – continued from previous page

Label Description Actors Modalities

Explanatory In-

struction

A given instruction to explain why something needs

to be done a certain way (e.g., “I want to see if you

can turn the page.”).

Parent Text/Audio

Broad Praise Indicates general praise given (e.g., “I’m proud of

you”).

Parent Text/Audio

Task-Related

Praise

Indicates praise given by the adult to the child specif-

ically related to the task (e.g., “Good job. Did it”).

Parent Text/Audio

Cheerleading Indicates a statement of encouragement or motiva-

tion (e.g., “You can do it too.”).

Parent Text/Audio

Negative Comment Indicates a negative comment or feedback (e.g.,

“Open your hand and Oh nope.”).

Parent Text/Audio
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Appendix B

Video Tracking Feature Extraction Algorithm
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Appendix C

Labelling System

Trained research assistants are responsible for preparing and labelling the videos using a user interface

developed in React.js and Node.js and deployed on Amazon Web Services (AWS) using Amplify 1, Dy-

namoDB 2, and S3 3. Figure C.1 shows this interface. The requirement gathering of the labelling system

was done through several meetings with the domain experts in nursing department of University of Calgary

according to the PCITS scale [17, 109]. The labelling tool was initially created in this research for nurse

researchers and their team members to label mother-infant interaction videos. This system helped gather

the required samples for AI analysis. Each sample contains the name of the video file, the label, and the start

and finish times of the event. Another coder reviews these samples and confirms the video as “labelled”. The

videos are stored in AWS S3 and the labels are preserved in DynamoDB. The development and deployment

environments were handled by AWS Amplify. In this research, the required samples were fetched from AWS

S3 and DynamoDB. A number of lambda functions were developed for data pipelining and preparation,

including a service that converts video files to audio and frames images by utilizing the FFmpeg library in

Python. The other service transcribes the audio files using the AWS Transcriber service. The other service

was utilized for data preparation for the video modality and also relevant lambda functions for audio and

text modalities. The line of codes for the implementation of Python codes is 38000, and for the labelling

system, it is 5000. The code of the AI modules is maintained in https://github.com/aranite-open/vidkids-ai

and for the labelling system in https://github.com/aranite-open/vidkids-ai-labeling.

1https://aws.amazon.com/amplify/
2https://aws.amazon.com/dynamodb/
3https://aws.amazon.com/s3/
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Figure C.1: Labelling system
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Appendix D

Copyright Permissions

In this thesis, I used three datasets. Two datasets related to Chapter 2 and Chapter 4 are collected from

the data in the labelling system C, and one dataset related to the Chapter 2 is downloaded from the publicly

available dataset at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/C5Z3SC

with licence CC0 1.0 which implies “No Copyright”.

Below is the confidentiality agreement form that was signed before starting to use parent-child interaction

data in this research.
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