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Abstract

Mathematical models are essential to understand infectious disease dynamics, enabling to control the
spread of those diseases and preparing for public health measures. Since time and space are important factors
affecting the transmission of infectious diseases, spatial individual-level models (ILM) with both temporal
and spatial information are developed. Typically, Markov Chain Monte Carlo (MCMC) methods are utilized
for the inference of ILM. Nonetheless, this approach can be computationally intensive for complex or large
models, resulting in repeated likelihood calculations. This thesis explores various spatial and temporal
subset methods to conduct statistical inference for spatial epidemic models, aiming to provide appropriate
parameter estimates with minimum computational resources. In this thesis, we utilize the spatial ILM with

the Euclidean distance between susceptible individuals and infectious individuals as a kernel function.
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Chapter 1

Introduction

Mathematical modelling is necessary to understand more about the dynamics of infectious diseases. With
that information, appropriate public health measures can be implemented to control the spread of those
diseases as well as prepare health systems with the necessary resources to treat the projected number of
patients.

Mathematical models are useful before, during, and after a pandemic. Models are used for planning,
identifying critical gaps, and creating plans to detect and respond to a pandemic before it occurs. Policy-
makers are interested in learning the following information at the beginning of a pandemic: (i) where and
how the pandemic originated; (ii) the likelihood that it will spread within the area; (iii) the likelihood that
it will be imported into other parts of the world; and (iv) a basic understanding of the pathogen and its
epidemiological traits. Researchers start looking into the following as the pandemic spreads: (i) different
intervention and control strategies; non-pharmaceutical interventions are typically the most effective in the
event of a pandemic, (ii) forecasting the epidemic incidence rate, hospitalization rate, and mortality rate;
(iil) effectively allocating limited medical resources to treat the patients; and (iv) understanding the change
in individual and collective behaviour. Modellers are interested in creating simulations of recovery and the
pandemic’s long-term effects after it begins to slow down [1].

Two key ideas that can affect the transmission of disease are time and space. As an epidemic’s severity
grows over time, it frequently spreads in space. The intensity of the disease may not be uniform throughout
a community as a result of its distribution. Incorporating place and time’s effects into a model is critical
because they both hold crucial information about how a disease spreads|[8]. Hence, in this research, we study
individual-level models (ILM) which allows for modelling epidemics of infectious diseases through time and

space at the individual level in the population [5].



In ILM, the probability of a susceptible individual being infected from the infectious pressure exerted
upon it from the surrounding infectious population is quantified[5]. The ILM framework assumes that
individuals in the population go through discrete time points in time and space, and those individuals
are often positioned in a set of square or rectangular areas [19]. It allows us to express the probability of a
susceptible individual becoming infected at a point in discrete time as a function of their interactions with the
surrounding infectious population [11]. ILMs use the Bayesian MCMC framework which is known for having
computational difficulties in computing the full likelihood [5]. Because of that, ILMs are computationally
expensive in finding parameter estimates, especially for a large number of individuals.

There are several types of ILMs depending on different compartmental models. In compartmental models,
individuals within a closed population are divided into compartments, or mutually exclusive groups according
to their disease status. Each person is assumed to be in one compartment at a time, however, they are free
to switch between compartments based on the model’s characteristics [18]. In this thesis, we focus mainly
on the SIR version of spatial ILM, which has susceptible (S), infectious (I) and removed (R) states, and uses
a geometric kernel.

Typically, MCMC methods are used for inference in ILM models. However, for complex models or
large populations, the MCMC approach can become computationally expensive due to repeated likelihood
calculations [20]. To address this, we investigate data subset-based inference methods for spatial epidemic
models that can provide appropriate parameter estimates with minimum computational resources. Given
the spatial and temporal aspects of epidemic data in ILMs, we explore various spatial and temporal subset
methods to conduct statistical inference for infectious disease models with minimal computational resources.
This research focuses on the spatial ILM that uses the Euclidean distance between susceptible individuals
and infectious individuals as a kernel function.

The structure of the thesis is as follows. In Chapter 2, we introduce the general form of ILM, explore
the dynamics of the spatial epidemic model, and introduce concepts such as Bayesian inference, Markov
Chain Monte Carlo and its properties. Additionally, it discusses general simulation methods and defines the
absolute biases in the spatial ILM. Furthermore, it presents a measure of computational power and defines
the spatial and temporal subset methods. In Chapter 3, we summarize the outputs from the simulations.
In Chapter 4, we analyze the results from simulations, reached the conclusion of the ”"best” subset methods,

and finally discuss how those subset methods can be refined for implementation in real-life epidemics.



Chapter 2

Methods

2.1 The ILM Epidemic Model

The general form of the ILM epidemic model is presented in this section. In this research, we use the SIR
version of the general ILM. This assumes that at any given point in time ¢, either individual 7 is susceptible
to disease (5), individual ¢ is infected with the disease (I), or individual i is recovered from the disease
(R).Individuals move through the states, S — I — R. For each time point, ¢t = 1,2, ..., 00, a susceptible or
infected is removed. individual i is said to be in the set S(¢), I(t), or R(t) respectively.[5]

Let P(i,t) be the probability that a susceptible individual ¢ is infected in the continuous interval [¢,¢+1)

under the ILM framework it is given by

P(i,t) =1 — exp[—Qs(i) Z Qr(j)k(i,7) + €(i, )], e(i, t) <0 (2.1)

Jel(t)
where, I(t) is the set of infected and infectious individuals at time ¢, Qg(7) is a function of risk factors
associated with a susceptible individual i acquiring the disease (susceptibility), Qr(j) is a function of risk
factor associated with an infectious individual j (transmissibility), (¢, j) is an infection kernel that contains
risk factors associated with pairs of susceptible and infectious individuals. For example, x(i,j) could be a
function of the spatial proximity between a susceptible individual 7 and an infectious individual j. €(i,t)

represents some infection process otherwise unexplained by the model.It is often set to be zero, or assumed



to be constant over time and individuals. The likelihood over discrete time points ¢t = 1,..., T is given by:

T-1
fD10)= H fi(S(8), 1(t), k() | 0)

i€T(t+D\I(¢) i€S(t+1)
where i € I(t+1)\I(¢) is the set of infectious individuals who are newly infected in time ¢+ 1, and i € S(t+1)

is the set of susceptible individuals at time ¢ + 1.

2.2 Spatial ILM Epidemic Model

In this research, the following spatial ILM epidemic model is considered. Let Qr(j) = 1, Qs(¢) = « and

e(i,t) = 0. We then let k(i,j) = di_jﬁ, resulting in a power-law spatial ILM,

P(i,t) =1 —exp|—« Z d;jﬁ] a,f>0 (2.3)
JEL(t)
where d;; is the Euclidean distance between a susceptible individual ¢ and an infectious individual j, o is

the susceptibility parameter and 3 is the spatial parameter.

2.3 Simulation of Epidemic Data

The SIR epidemic data is generated from the spatial model described in equation 2.3 by using the EpilLM
package in R. In order to keep the population density consistent across different population sizes or n,
individuals are uniformly positioned on the square area /n x y/n. Next, parameters « = 0.2, = 2 are
assigned to the SIR epidemic model with the population sizes of n = 100, n = 1000 or n = 5000.

The SIR epidemic data contains information on not only the locations of the individuals but also infection
time for each individual. The maximum infection time for this simulation is assigned as 15. In addition,
we set the infection period for each individual as 3. Figure 2.1 represents that epidemic that contains 100

individuals along with their infection time.
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Figure 2.1: Example of SIR epidemic data with population size n = 100

2.4 Bayesian Inference

In this research, we use a Bayesian Markov Chain Monte Carlo (MCMC) framework. Specifically, Metropolis-
Hastings Random Walk MCMC is used to sample from the posterior distribution to conduct inference for
the parameters o and S.

Before moving on to the Bayesian MCMC framework, we will explore more about Bayesian inference.
This inference is conducted by using the posterior distribution, which is composed of prior distribution and
likelihood.

Let us assume an unidentified parameter 6 is a random variable with proper prior distribution f(#). It
frequently happens that the researcher will be familiar with the likely value of 8 before seeing the data [8].
Likelihood 1(0) or f(D | @) represents the probability of observing the data D given the parameter 6. After
observing the data (D), the posterior distribution, f(6 | D) is calculated by using Bayes’s theorem. The
posterior distribution can be written as

f(D10)(9)

FO1D) = TRD10)f0)0 24

The denominator in 2.4 represents the marginal probability of data or the normalization constant. The
normalisation constant is used to guarantee that f(6 | D) is a probability density function. However, this

integral is difficult to evaluate and obtain in the closed form. Hence, we rewrite the posterior distribution



up to proportionality:

f(@ D)o f(D]0)f(0) (2.5)

Even in the proportionality format described in eq:2.5, we still need to find integrals for posterior mean
and standard deviation for 8. When we are dealing with high-dimensional parameters, the integral can be
challenging to execute. Because of this, Monte Carlo techniques are frequently employed as an effective

means of obtaining an approximate result by sampling from the posterior distribution.

2.5 Markov Chain Monte Carlo

In this section, we introduce important ideas behind Markov Chain Monte Carlo (MCMC).

2.5.1 Markov Chain

In this thesis, we focus on discrete-time Markov chains. A collection of random variables, typically indexed
by time, makes up a random process. Let the discrete-time random process X be a sequence of random

variables X = {X,,,n € N} over the finite state space S. X is a discrete-time Markov chain if
e for every n >0, X,, € S,
e for every n € N, for all 41,15, .....,5; € S

P(Xy =iy | Xpo1 =i4—1, .., Xo=10) = P( Xy =4y | X4—1 = i1—1) (2.6)

when both conditional probabilities are defined.
The likelihood that the chain will move from location X}, to position X1 depends only on the transition

probability matrix, F; ;. For all ¢,5 € S, P; ; can be defined by

P j=P{X,=j|Xn1=i}, Vn2>1 (2.7)
A matrix having
P ; >0, Vi,jes, (2.8)
Y Pj=1 vies (2.9)
JjES



is called a stochastic matrix [17]. The discrete-time Markov chain described in this thesis is homogeneous
since the probability of changing from one state to another depends only on the present state and not on
any earlier states. Additionally, this Markov chain is memoryless in that its future evolution depends solely
on its current state and not on any previous history. The transition probabilities are constant and do not

change over time.

2.5.2 Stationarity

A probability distribution 7 which satisfies

al =aTP (2.10)

is referred to as a stationary distribution of the transition matrix P or that of the associated homogeneous
Markov chain [2].

In order to reach stationarity, the Markov chain needs to be irreducible, aperiodic and positive recurrent.

Irreducibility

If and only if z — y and y — z, or x = y, we say that x communicates with y, and we denote it as = < y.
The communication classes are the equivalence classes listed under <». The communication class of x is
indicated by [x] for x € X. The Markov chain X is irreducible if there is only one communication class [2],
which means that each state can be reached from any other state by utilising only transitions with a positive

probability [10].

Aperiodicity

Let T'(X) be the set of times when it is possible for the chain to return to its initial position . T'(X) can be
denoted by T(X) := {t > 1 : P:(x,z) > 0}.The greatest common divisor (GCD) of T(X) is defined as the
period of state z. A state x is said to be aperiodic if ged[T(X)] = 1. A Markov chain is said to be aperiodic
when all states have period 1 [10].

Positive Recurrence

A state j is said to be recurrent if and only if

S P =oo (2.11)
n=1



Let uj; be the expected number of transitions needed to return to state j. Then p;; can be denoted as

wig=>_ (2.12)
n=1

n

where f]% is the probability that starting in state j the first transition into j occurs at time n.A state j is

said to be positive recurrent if y;; < oo [15].

2.5.3 Monte Carlo Markov Chain

The majority of problems involving Bayesian inference can be expressed as a function of interest, g(6)

evaluated over the posterior distribution [14], and hence, the expectation can be written as:

Elg(6) | D] = / £(6] D)g(6)do (2.13)

where E represents the expectation.

Sampling from high-dimensional distributions can be challenging, which is why Markov chain Monte
Carlo (MCMCO) is often used to find E[g(f) | D]. The goal of MCMC is to create a random walk or Markov
process that has f(6 | D) as its stationary distribution, and then run the process long enough so that the
resulting sample closely resembles a sample from f(6 | D), ensuring the independence of the samples [3].
These samples can be used directly for parameter inference and prediction. For example, to determine
E[g(0) | D], Monte Carlo integration involves selecting n samples from f(# | D), denoted 6 (i = 1,...,n),

and computing the mean as follows [14].

Blg(6) | D)= = 3 g(6°) (2.14)

The law of large numbers ensure that when the samples 6% are independent, the approximation can be
made as accurate as desired by increasing the sample size n.

Due to the memoryless property of the Markov chain, the chain will eventually forget its initial state and
will converge to a unique stationary distribution. As time increases, #* will be similar to dependent samples
from f(0 | D) after a sufficient long burn-in. When burn-in samples are discarded, an estimator E[g(6) | D]

is calculated by

n

g=—— > g0 (215)
1=m-+1

where, m = number of burn-in iterations, and n = number of total iterations, and g is called an ergodic



average [7]. In this research, we use n = 50000 and m = 10000.

2.5.4 Metropolis-Hastings Algorithm

The Metropolis Algorithm is first created by Metropolis for producing random samples from a probability
distribution by using a Markov chain. Later, Hastings Algorithm, which can produce samples from a larger
range of probability distributions, was created to be more versatile than Metropolis’ algorithm.

The steps for the MH algorithm are as follows.
1. Choose an arbiratiry 6° as a starting value.

enew

2. Create a candidate value, , using proposal density ¢(6™°" | ;) given the current location 00 = ;.

3. Calculate acceptance probability, (6™ | 6;).

new _ . W(anew)q(ei | anew)
a(@™" | 0;) = min (1, T @)g (0 | 67) ) (2.16)

where 7(.) is the target distribution.

4. Using a uniform distribution between 0 and 1, generate a random number u. If u < a(8™¢* | 6;), set

011 = 07" Jotherwise, 6;11 = 6;.

5. Until a predetermined number of MCMC iterations have been completed or a stopping criterion has

been met, go back to step 2.

2.5.5 Metropolis-Hastings Random Walk Algorithm

For the Metropolis-Hastings Random Walk Algorithm, we incorporate the random walk proposal into the
proposal density, ¢(0™¢* | 8;) = f(| 0™¢* — 0, |). Hence, the proposed observation is obtained by adding the

random displacement to the current state #;, and becomes,

grer = 9; + 2, (2.17)

where z ~ f and f is symmetric around zero.
There are many choices of distribution for f. Some of the popular distributions for f are the uniform
distribution on the unit disk, a univaraiate or multivariate normal and student’s t-distributions. In our

research, we will use the multivariate normal distribution as f. Additionally, due to symmetry,

q(0; | 07) = (6™ | 6:) (2.18)



Therefore, the acceptance probability becomes

a(6™" | 6;) = min <1, ”f{;?) (2.19)

where 6; is the current value.

2.5.6 Convergence Diagnostic

In order to ensure accurate results, it is crucial to determine whether the Markov chain has converged to the
stationary distribution, which, in our case, is the posterior distribution. MCMC diagnostic tools are needed
to check for convergence. While running the chain for a longer period generally leads to better Monte Carlo
estimates, it is advisable to have stopping rules in place to use resources efficiently [16].

There are several methods to assess convergence, such as trace plots, Gelman-Rubin diagnostic, Honest
MCMC, and so on. In our study, we used Geweke’s diagnostic test, which evaluates the equality of the first
and last parts of the Markov chain’s means [6]. If the samples are drawn from the stationary distribution of
the chain, the two means are equal and Geweke’s statistic has an asymptotically standard normal distribution

[13]. The null and alternative hypothesis of Geweke’s diagnostic test is as follows:

Hy : The means of the first and last parts are the same. Convergence has been reached.

H, :The means of the first and last parts are different. Convergence has not been reached.

In our research, from Metropolis-Hastings random walk algorithm, we obtain the estimator of g(6) or

Elg(0)] via

Z?:l g9(6")

g(0) = 2.20
g(0) - (2.20)
The z-score, which is calculated as follows, is the test statistic used in Geweke’s diagnostic test.
g(0)A —g(0)B
v(g(®)) | v(9(0))
nA npg

where, §(0)2 and g(0)2 are the means based on the first n4 and np iterations,v(g(6)2) and v(g(0)2) are
the variances of those two disjoint segments [4]. In this thesis, we implement Geweke’s diagnostic test by
computing the first 10% after burn-in and the last part 25% of the MCMC chain. This test is evaluated in

R using the CODA package.

10



2.6 Simulation Study

We implement the Metropolis-Hastings Random Walk Algorithm to sample from the posterior distribution

for fitting our ILMs to simulated data. The procedure is as follows.

10.

. Establish the likelihood function f(D | §). We use the likelihood function from eq:2.2.

Specify the prior distribution, which in this research, we use independent gamma distribution as prior

distributions for o and £.

Define the proposal distribution. In this research, we use a multivariate normal distribution with

correlation ¢, and so have two variance parameters to tune.

Calculate the posterior distribution up to proportionality as follows.
f(0 ] D)o f(D]6)f(0) (2.22)

Generate a candidate value, ™" from the proposal distribution.

Calculate the acceptance probability a(0™" | 6;).

a0 |8, = min (1,152 (223)

Generate a random number u from a uniform distribution between 0 and 1. If the value of u < a/(8™" |
0;), set the new value of the parameter as ;1 = 0"¢*. Otherwise, set the new value of the parameter

as 92‘+1 = 91

Keep repeating step 5-7 until a stopping criterion has been met or the desired number of MCMC

iterations has been completed.
Confirm the convergence of the MCMC chain by using Geweke’s Convergence Diagnostic.

If the simulated epidemic dies out very quickly, i.e, all individuals in the population gets infected in
the earlier infection times, and thus the resulting epidemic dataset is not informative enough for our
ILM to be successfully fitted, the new SIR epidemic data is generated and steps 4-8 are repeated until

we obtain the informative epidemic data.

11



2.7 Absolute Bias in ILMs

Absolute bias is used to measure the absolute difference between the parameter estimate and the true

parameter. The absolute bias of a parameter 6 can be defined as

abs[bias(0)] = abs[d — 0] (2.24)

where, 0 is the parameter estimate and @ is the true parameter.
In our research, we explore the absolute biases of the posterior means (E(.)) and standard deviations

(SD(.)) of the parameters o and 5. The absolute biases of those parameters can be written as

abs[bias(a)] = abs[Ess(a) — E(a)] (2.25)
abs(bias ()] = abs[Ess(8) — E(S)] (2.26)
abs[bias(SD,)] = abs[SDgs(a) — SD(a)] (2.27)
abs[bias(SDg)] = abs[SDgss(8) — SD(B)] (2.28)

where, Fgg(.) and SDgg(.) are the posterior mean and standard deviation under the subsetting method,

E(.) and SD(.) are the posterior mean and standard deviation under the full epidemic data.

2.8 Measure of Computational Power

The amount of time the processor uses to execute instructions for a particular task is known as CPU time.
CPU time is composed of User and System time. User time is the amount of CPU time used by the process
or task directly whereas system time is the amount of CPU time used by the operating system on behalf of
the process or task.

We can estimate how much CPU power is being used by a project as a whole by calculating the total
of the system and user CPU time of the job. In our research, we used the total system and user CPU per

epidemic in CPU hours.

2.9 Model Prediction From Spatial Subsets

For this research, I intend to predict the posterior estimate for the full data set using models fitted to
estimate from smaller through progressively larger subsets. In terms of spatial subset, it means creating

smaller square(s) within the \/n x y/n square grid for the simulations described in the section 2.3.

12



To develop spatial subset methods that can produce appropriate parameters while remaining computa-
tionally efficient, it is interesting to assess the effect of changing the amount of epidemic data in a spatial
subset. Consequently, we have opted to create subset squares centred within the /n x y/n square grid that
contains approximately p% of the original data p = 10, 20, 30, 40, 50, 64. Figure 2.2 demonstrates how a 50%
spatial subset is created within an ILM epidemic data with 100 individuals. Next, we calculate and construct
the posterior means and 95% credible intervals of & and 8 for each subset percentage as well as for the entire
epidemic data. By doing so, we examine the relationship between the subset percentage and the accuracy
of parameter estimation.

Figure 2.3 (a) and (b) show 95% credible intervals and posterior mean estimates for o and § respectively
for a single typical epidemic and population. The red dotted line in Figure 2.3 (a) and (b) refer to parameters,
a = 0.2 and 8 = 2, that are used to generate the epidemic data. From this figure, it can be observed that as
the size of the spatial subset increases, the credible intervals become narrower and their respective posterior
mean estimates get closer to the true values.

Additionally, we observe exponential-like trends in the posterior mean estimates of a and 8 shown in
Figures 2.3 (a) and (b). To better understand the trends of posterior mean estimates of o and 3, we
fitted a linear regression model with percent and percent-squared as predictors and a non-linear least square
exponential model with aePe®®*, We utilized the posterior mean estimates from subsets of the epidemic
data as the training data for both models and predicted posterior mean estimates at 100% of the epidemic
data for the test data.

The results of our models are shown in Figures 2.4 (a) and (b). The green line represents predictions
from the non-linear least square exponential model, the blue line represents predictions from the ordinary
least square model, and the red line represents the posterior mean estimates from different percentages of
the original epidemic data. We can observe that the non-linear exponential model performs better compared
to the ordinary least square model. However, the non-linear exponential model follows a similar trend as the
spatial posterior mean estimates for both o and 3, the difference is quite large at 100%. Therefore, we have

decided not to explore exponential and ordinary least square models further.

13
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n = 100
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2.10 Spatial Subset Methods

Figure 2.3 (a) and (b) indicates the positive association between spatial subset percentage and accuracy
parameter estimation. To validate this finding for different population sizes (n = 100, 1000, 5000), we
implemented the k-percent center method, which selects a square containing k% of the original epidemic
data from the center of the \/n x \/n square where k = 10%, 20%, 30%, 40%, 50%, 64%. By computing Ess(.)
and SDgg(.) using posterior means and standard deviations of the subset, we observed the relationship
between population size and effective subset percentage.

To investigate the impact of the location of the spatial subset data on absolute biases, we modified
the k-percent center method, and developed a new method herein, referred to as k-percent 11 method.
This method involves obtaining a subset from the lower left corner of the square from 0 to vnk where
k = 10%,20%, 30%, 40%, 50% or 64%. Afterwards, we follow the same procedure as k-percent center
method to compute Fgg(.) and SDgg(.).

Next, we explore whether incorporating additional subset areas of different sizes would improve the results
of inference. Hence, we expand two more methods named k-percent corner method,which obtains subsets
from the four corners of the square, and k-percent random method, which takes four subsets randomly
within the /n x \/n square grid. We computed Fgg(.) and SDgg(.) using posterior means and standard
deviations of each subset.

To explore the effect of including different subset percentages on inference, we developed the average
center method. This method selects four subsets, each containing approximately 25%, 36%, 49%, and 64%

of the population from the center of the y/n x \/n square grid. The subsets are chosen to be perfect squares,
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as the epidemics are generated in the square grid. We computed Fgg(.) and SDgg(.) using posterior means
and standard deviations of each subset and obtained the average of these estimates.

In addition, we modified the average center method and created a method, herein referred to as average
11 method to examine the relationship between the location of the spatial subset to the absolute biases of the
parameter estimates. In this method, we create smaller squares containing approximately 25%, 36%, 49%,
and 64% of the population from the lower left of the y/n x \/n square grid, and we computed Esg(.) and
SDgg(.) in the same manner as the average center method.

Finally, we examined whether incorporating considering different subset areas in the square grid would
decrease the absolute biases of parameter estimates compared to average center and average 11 methods.
Therefore, we establish two methods named, average corner and average random methods. Average
corner method obtains four subsets for each of the corners of the square, with each subset compromising
approximately 25%, 36%, 49%, and 64% of the population. We then find the Fgg(.) and SDgg(.) using
posterior means and standard deviations of each subset, obtained the average of these estimates, and find
the mean of those averages. Average random method is similar to average corner method except the

subset areas are chosen randomly.

2.11 Temporal Subsetting

For temporal subsets, ILM epidemic data is placed in subsets based on infection time. In order to establish
temporal subsets, we need to define the minimum and maximum infection times while implementing the
Bayesian MCMC framework. For instance, in Figure 2.5, the area shaded in blue represents the temporal
subset that contains a minimum infection time of 1 and a maximum infection time of 7.

To explore the effect of temporal subsetting, we first split the epidemic data into two temporal subsets:
one containing infection time points from 1 to 7, and another containing infection time points from 8 to 15.
We then calculate the posterior means and construct the 95% credible intervals of @ and 3 for each of those
subsets. We then proceed to follow the same procedure for the entire epidemic data that contains infection
time points from 1 to 15.

Figures 2.6 (a) and 2.7 (a) display the resulting posterior mean estimates and 95% Credible Intervals of
« for 8 for a single typical epidemic and population. The red dotted lines refer to the true susceptibility
parameter o = 0.2 in figure 2.6 (a) and the true spatial parameter § = 2 in figure 2.6 (b), which are used
to generate the epidemic data. In both figures, the subset which contains the first half of the infection time
points (from 1 to 7) performs almost the same as the entire epidemic data that contains all the infection

time points (from 1 to 15). On the other hand, the subset data that contains the last half of the infection
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time has the posterior mean and 95% Credible interval quite different from that of the entire epidemic data.

We then continue to break down more temporal subdivisions in order to precisely locate the infection
times which have the most useful information for parameter prediction. Hence, we divide the epidemic data
into three separate segments: the first segment contains epidemic data with infection times from 1 to 5, the
second segment from 6 to 10, and the last segment from 1 to 15. The posterior means and 95% credible
intervals for o and § are calculated for each segment, as well as for the entire dataset (infection times from
1 to 15).

The results for this analysis are provided in Figures 2.6 (b) and 2.7 (b). The second temporal segment
consisting of the infection times from 6 to 10, produces similar posterior means and 95% credible intervals
for o and 8 as that of the entire epidemic data. Even though the first segment (the infection time from 1
to 5) yields similar outcomes for the posterior mean and 95% credible interval for « as the entire epidemic
data, the same scenario did not apply for .

To further refine our analysis and identify the specific infection times that provide the most valuable
information for parameter prediction, we proceeded to create four temporal subsets. The first subset include
infection time from 1 to 3, the second from 4 to 7, the third from 8-11 and the last from 12 to 15. We then
calculated the posterior means and generated their corresponding 95% credible intervals for o and 3 for each
temporal subset. Subsequently, we repeated the same procedure using the complete epidemic data, which
encompassed infection time points ranging from 1 to 15.

Figures 2.6 (¢) and 2.7 (c¢) present the obtained posterior mean estimates and 95% credible intervals for
the parameters a and ( respectively. From those figures, it can be denoted that second temporal subset
(infection time from 4 to 7) performs similarly as the entire epidemic data in terms of posterior means and
95% credible intervals for « and 3. Aside from this subset, any other temporal subsets have far-off posterior
means and 95% credible intervals for o and 3 than that of the entire epidemic data.

Based on the iteration, it is evident that the temporal subset comprising infection time from 4 to 7 yields
the most accurate inference of o and 8 when compared to other temporal subsets. However, it is important
to ascertain whether this observation is specific to this particular simulation or holds true for a range of

different epidemics and population sizes.
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Figure 2.5: Example of temporal subset of individuals whose infected time is between 1 and 7 for population
size n = 100
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2.12 Temporal Subsetting Methods

For this research, we explore two cases related to the temporal inference of posterior parameter estimates of
« and B: which infection time frame is the most useful, and whether or not including infection time frames
that contain few epidemic data improve the estimation process.

In order to delve deeper into the first topic, we generate a method which is referred to as temporal 1
subset-m. This method involves subsetting epidemic data from minimum infection time (¢ = 1) to desired

infection time m, m = 2,3,4, ..., tmaz- FsS(.) and SDgg(.) are derived via the posterior estimates of the
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subset data. This method is computationally efficient as it only requires one Bayesian MCMC framework to
obtain EgS(.) and SDgs(.).

Concerning the second scenario, we devise two methods, herein referred to as temporal mean subset-
h and temporal median subset-h methods. Those two methods first require temporally subsetting the
epidemic data into h-parts, h = 2, 3,4. Finally, we then acquire Fgg(.) and SDgg(.) by finding the average
of posterior parameter estimates of o and [ across all h groups for temporal mean subset-h method and
median of those posterior estimates for temporal mean subset-h.

The following sets describe the temporal subsets of the epidemic data based on the value of h.When

h =2,
S1=1{1,2,3,4,5,6,7},52 = {8,9,10,11,12,13, 14, 15} (2.29)
When h = 3,
S1=1{1,2,3,4,5},5, = {6,7,8,9,10}, 53 = {11,12,13, 14,15} (2.30)
When h = 4,
S ={1,2,3},5, = {4,5,6,7}, 55 = {8,9,10,11}, S, = {12,13, 14, 15} (2.31)

where Sy refers to the k-th temporal subsets containing associated infection times, k = 1,2, 3,4
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Chapter 3

Results

To understand more about the behaviour of absolute biases of a and [, we generate 20 epidemics under
each subset method. Finally, we calculate the median and third quantile of absolute biases under those 20
epidemics to measure the performance of each method.

Additionally, to enhance the readability of the results, subset methods are grouped, and the minimum
median and third-quantile absolute biases of the parameter estimate for each group are highlighted in green

in Tables 3.1 to 3.6. The organization of the groups is as follows:

e Average Center, Average 11, Average Corner, and Average Random methods,
e k-percent center method, k = 10, 20, 30, 40, 50, 64,

e k-percent 11 method,k = 10, 20, 30, 40, 50, 64,

e k-percent corner method,k = 10, 20, 30, 40, 50, 64,

e k-percent random method,k = 10, 20, 30, 40, 50, 64,

e temporal 1 subset-m, m =2,3,4,5,6,7,

e temporal mean subset-h, h = 2, 3,4, and

e temporal median subset-h, h = 2,3,4

For instance, in Table 3.5, the average center method has the median absolute bias for « highlighted
as green because it has the lowest median absolute bias value in the average center, the average 11, the
average corner, and the average random method group. In this section, we mainly discuss methods that

consistently demonstrate good performance within each group.
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Information about the total system and user CPU per epidemic in CPU hours for each population size
n are in Tables 3.7 to 3.9. The maximum total system and user CPU per epidemic in CPU hours for each
group are highlighted red.

The simulations for all spatial and temporal subset methods are available in the GitHub repository ”Data

Subset Spatial Epidemic Models” by Nyein (May 2023). !

3.1 Spatial Subset Methods

3.1.1 Average Center, Average 1l, Average Corner and Average Random Meth-

ods

When n = 100 and n = 5000, the average center method displays the lowest median absolute bias for
a, measuring 0.044 and 0.005 respectively. In addition, it performs consistently well in predicting SD(«).
For n = 100 and n = 1000, it exhibits the second-lowest median absolute values for SD(«), measuring 0.03
and 0.011. Additionally, for n = 5000, this method exhibits the lowest median absolute values for SD(«),
measuring 0.005.

When n = 1000 and n = 5000, average 1l method demonstrates the lowest median absolute bias for f,
with values of 0.149 and 0.113 respectively. In addition, it displays the second-lowest third-quantile absolute
bias for £, measuring 0.218 for n = 1000 and 0.141 for n = 5000. Furthermore, it portrays the lowest median
and third-quantile absolute biases for SD(«) when n = 100 and n = 5000, measuring 0.028 and 0.005 for
n = 100 and 0.037 and 0.006 for n = 5000. Furthermore, it demonstrates the lowest third-quantile absolute
bias for SD(5) when n = 100 and n = 1000, yielding values of 0.176 and 0.042 respectively. Lastly, it
demonstrates the second-lowest median absolute bias for SD(5) when n = 5000, measuring 0.019.

The average corner method yields the lowest third-quantile absolute bias values for «, 8 and SD(f)
across all population sizes (n). Specifically, it records the following third-quantile absolute bias values for
a: 0.062 for n = 100, 0.017 for n = 1000, and 0.008 for n = 5000. Similarly, for the third-quantile absolute
biases for §, it displays the following values: 0.318 for n = 100, 0.181 for n = 1000, and 0.138 for n = 5000.
Likewise, for SD(/3), it records the following third-quantile absolute bias values: 0.176 for n = 100, 0.042 for
n = 1000, and 0.018 for n = 5000. Additionally, when n = 1000 and n = 5000, this method exhibits the
lowest median and third-quantile absolute bias for SD(«): 0.009 and 0.011 when n = 1000 and 0.005 and
0.006 for n = 5000 respectively. However,for n = 100, it displays the third-lowest median and third-quantile
absolute bias for SD(«): yielding 0.036 and 0.041 respectively.

IData Subset Spatial Epidemic Models. Available at: https://github.com/tnyein99/
Data-Subset-Spatial-Epidemic-Models. Accessed on May 30, 2023.
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The average corner method produces the lowest minimum third quantile absolute biases in the majority
of the population sizes (n) except for n = 100. Even for n = 100, this method displays the lowest median
and third-quantile absolute biases for the majority of parameter estimates, except for SD(a).

Additionally, average 1l method performs similarly to the average corner method when n = 5000.
However, the same scenario does not apply to the smaller population sizes n = 100 and n = 1000.

Furthermore, the average center and average 1l methods exhibit comparable values of median and
third-quantile absolute biases for all parameter estimates across all population sizes.

The average random method performs the worst in this group as it consistently yields the largest or
the second-largest median and third-quantile absolute biases for the majority of parameter estimates across
various population sizes (n). Hence, in this group, the average corner method would be the best method
to use for estimation.

The average center and average 1l methods consume a similar amount of computational resources per
epidemic in terms of the total system and user CPU hours per epidemic. Likewise, the average corner and
the average random methods also demonstrate a similar total system and user CPU per epidemic in CPU
hours when n = 100 and n = 1000.However, as the population size increases to n = 5000, the difference in
total CPU hours per epidemic between these two methods becomes more pronounced.

Hence, in this group, the Average corner method would be the best method to use for estimation since

it has low median and third-quantile absolute biases.

3.1.2 k-percent Center Method

The 50-percent center method displays the second-lowest median and third-quantile absolute bias values
for 8, SD(«), and SD(B) across all population sizes (n). Particularly, it yields the following values for median
and third-quantile absolute bias for 3: 0.266 and 0.425 for n = 100, 0.174 and 0.234 for n = 1000, and 0.092
and 0.114 for n = 5000. Similarly, for SD(«), it demonstrates the following values for median and third-
quantile absolute biases: 0.018 and 0.024 for n = 100, 0.009 and 0.011 for n = 1000, and 0.004 and 0.005 for
n = 5000. Likewise, for SD(f), it exhibits the following values for median and third-quantile absolute biases:
0.091 and 0.109 for n = 100, 0.032 and 0.035 for n = 1000, and 0.01 and 0.015 for n = 5000. Moreover, this
method demonstrates the second-lowest median absolute bias for a when n = 100 and n = 5000, measuring
0.029 and 0.005 respectively. Additionally, this method displays the lowest median absolute bias for a when
n = 1000 at a value of 0.009. Furthermore, it yields the second-lowest third-quantile absolute bias for «
when n = 1000 with a value of 0.02. Lastly, it displays the lowest third-quantile absolute bias for o when

n = 100 and n = 5000, measuring 0.049 and 0.007 respectively.
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The 64-percent center method exhibits the lowest median and third-quantile absolute bias values for
B, SD(«), and SD(/3) across all population sizes (n). Specifically, it produces the following values for median
and third-quantile absolute bias for 5: 0.201 and 0.305 for n = 100, 0.109 and 0.131 for n = 1000, and 0.069
and 0.094 for n = 5000. In particular, it demonstrates the following values for median and third-quantile
absolute bias for SD(«): 0.016 and 0.021 for n = 100, 0.005 and 0.007 for » = 1000, and 0.002 and 0.003 for
n = 5000. Likewise, it exhibits the following values for median and third-quantile absolute bias for SD(5):
0.069 and 0.081 for n = 100, 0.017 and 0.023 for n = 1000, and 0.006 and 0.009 for n = 5000. Additionally,
when n = 5000, this method yields the lowest median and third-quantile absolute biases for «, measuring
0.004 and 0.007. Similarly, it yields the lowest median absolute bias for @ when n = 100, measuring 0.026.
Moreover, for n = 1000, this method displays the second-lowest median absolute bias for a at a value of
0.011. Likewise, this method demonstrates the lowest third-quantile absolute bias for a when n = 1000,
measuring 0.017. Lastly, when n = 100, it demonstrates the second-lowest third-quantile absolute bias for
o, measuring 0.053.

The 64-percent center method performs the best compared to all other k-percent center methods.
However, the 50-percent center method has a similar performance as the 64-percent Center in terms
of median and third-quantile absolute biases of the parameter estimates for larger population sizes n = 1000
and n = 5000.

When taking in account for the computational resources, the k-percent center method tends to have
higher total system and user CPU hours per epidemic as the subset size or the value of k increases. Hence,
the 50-percent center would be the best method out of k-percent center methods for larger population
sizes (n) since 50-percent Center and 64-percent center methods perform similarly in the large value

of n, and k-percent center method has the higher computational cost as the value of k increases.

3.1.3 k-percent 1l Method

The 50-percent 1l method exhibits the second-lowest median and third-quantile absolute biases for SD(5)
for all values of n. In particular, this method displays the following values for median and third-quantile
absolute bias for SD(8): 0.102 and 0.12 when n = 100, 0.024 and 0.034 when n = 1000, and 0.009 and 0.016
when n = 5000. Similarly, it yields the second-lowest third-quantile absolute bias values for SD(«) for all
population sizes (n): 0.033 when n = 100, 0.008 when n = 1000, and 0.005 when n = 5000. In addition,
it demonstrates the second-lowest median SD(«) biases for n = 100 and n = 1000, resulting in values of
0.022 and 0.006 respectively. Moreover, it displays the lowest median absolute for SD(«) when n = 5000,

yielding a value of 0.003. It also results in the second-lowest median and third-quantile absolute biases for
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B when n = 100 and n = 1000. Specifically, it produces the following values for median and third-quantile
absolute bias for #: 0.26 and 0.407 when n = 100 and 0.123 and 0.179 when n = 1000. Furthermore,
when n = 5000, this method displays the lowest median and third-quantile absolute bias for £, measuring
0.057 and 0.065. Moreover, it also displays the lowest third-quantile absolute bias for & when n = 1000
and n = 5000, measuring 0.02 and 0.009 respectively. Finally, for n = 100, it produces the second-lowest
third-quantile absolute bias for a with a value of 0.049.

The 64-percent 1l method demonstrates the lowest median and third-quantile absolute biases for SD(«)
and SD(f) for all population sizes (n). Specifically, it yields the following values for the median and third-
quantile absolute biases for SD(«): 0.01 and 0.015 when n = 100, 0.005 and 0.006 when n = 1000, and 0.003
and 0.004 when n = 5000. Similarly, it demonstrates the following values for the median and third-quantile
absolute biases for SD(): 0.058 and 0.068 when n = 100, 0.015 and 0.017 when n = 1000, and 0.007 and
0.008 when n = 5000. In addition, this method produces the minimum median and third-quantile absolute
biases for & when n = 100, measuring 0.02 and 0.037. Similarly, when n = 5000, it exhibits the lowest median
absolute bias for « at 0.005. Moreover, it displays the second-lowest median and third-quantile absolute bias
values for a when n = 1000, resulting in values of 0.012 and 0.023 respectively. Furthermore, it exhibits
the second-lowest third-quantile absolute bias for a when n = 5000: yielding a value of 0.01. In addition,
it displays the lowest median and third-quantile absolute bias values for 8 when n = 100 and n = 1000:
measuring 0.137 and 0.23 for n = 100 and 0.053 and 0.119 for n = 1000. Lastly, it exhibits the second-lowest
median and third-quantile absolute biases for 8 when n = 5000, measuring 0.076 and 0.093 respectively.

The 64-percent 11 method performs the best in smaller population sizes n = 100 and n = 1000. For
n = 5000, the 50-percent 1l method performs similar or even better in certain parameter estimates compared
to 64-percent 11 method.

Similar to the k-percent center method, the total system and user CPU hours per epidemic increases
as the subset size or the value of k increases. Therefore, the 50-percent 11 method can be considered the
most efficient and effective method among k-percent 11 methods for simulation with larger population due

to low computational cost and small median and third-quantile absolute biases.

3.1.4 k-percent Corner Method

For all population sizes (n), the 64-percent corner method exhibits the second-lowest third-quantile ab-
solute bias of 3: yielding 0.983 when n = 100, 0.563 when n = 1000, and 0.367 when n = 5000. Similarly, it
produces the second-lowest median absolute bias for SD(f) when n = 100 and n = 1000, measuring 0.498

and 0.163 respectively. In addition, when n = 1000, this method displays the second-lowest median bias for
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SD(a) at 0.04. Furthermore, when n = 1000, it exhibits the fourth-lowest third-quantile absolute bias for
SD(«), yielding 0.048.

This method also displays the lowest median and third-quantile absolute bias values for a and SD(«)
when n = 100 and n = 5000. Specifically, it yields the following values for median and third-quantile absolute
bias values of a: 0.321 and 0.357 for n = 100, and 0.011 and 0.016 for n = 5000. Similarly, it produces the
following values for median and third-quantile absolute bias values of SD(«):0.184 and 0.22 for n = 100 and
0.018 and 0.019 for » = 5000. Similarly, when n = 100 and n = 5000, it produces the lowest third-quantile
absolute bias for SD(8), measuring 0.548 and 0.068 respectively.

However, it demonstrates the fifth-lowest median and third-quantile absolute bias values for @ when
n = 1000, yielding 0.051 and 0.071 respectively. Similarly, for n = 5000, it displays the fifth-lowest median
absolute bias of SD(f8), measuring 0.066. Likewise, for n = 1000, it demonstrates the fifth-lowest third-
quantile absolute bias of SD(3), measuring 0.182.

Most of the k-percent corner method, £ = 10,20, 30, 40, 50, do not exhibit consistently good perfor-
mance in terms of parameter estimation compared to k-percent center, k-percent 1l and k-percent
random methods. However, the 64-percent corner method performs with much consistency in terms of
low median and third-quantile absolute biases in the majority of population sizes n = 100 and n = 5000.

In a manner akin to the k-percent 1l method, as the value of k increases, the total system and user

CPU hours per epidemic tend to experience an upward trajectory.

3.1.5 k-percent Random Method

The 50-percent random method displays the second-lowest median and third-quantile absolute bias values
for SD(«) and SD(3) across all parameter estimates for all values of n. In particular, it results in the following
values for the median and third-quantile absolute biases for SD(«):0.027 and 0.034 for n = 100,0.009 and
0.01 for n = 1000, and 0.004 and 0.005 for n = 5000. Likewise, it yields the following values for the median
and third-quantile absolute biases for SD(53): 0.118 and 0.143 for n = 100, 0.029 and 0.033 for n = 1000,
and 0.011 and 0.015 for » = 5000. Similarly, it displays the second-lowest median absolute bias for g
across all population sizes: 0.243 for n = 100, 0.142 for n = 1000, and 0.119 for n = 5000. Likewise, this
method demonstrates the second-lowest third-quantile absolute bias for 8 when n = 1000 and n = 5000:
measuring 0.19 and 0.131 respectively. Furthermore, it yields the third-lowest third-quantile absolute bias
for 8, measuring 0.377. This method also produces the second-lowest third-quantile absolute bias for o when
n = 100 and n = 5000, resulting in values of 0.069 and 0.01 respectively. Lastly, this method produces the

fourth-lowest third-quantile absolute bias for v when n = 1000, measuring 0.021.
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The 64-percent random method yields the minimum median and third-quantile absolute bias values for
all parameter estimates across all population sizes (n). In particular, it results in the following values for the
median and third-quantile absolute biases for a: 0.022 and 0.04 for n = 100, 0.009 and 0.015 for n = 1000,
and 0.005 and 0.007 for n = 5000. For S, it displays the following values for the median and third-quantile
absolute biases: 0.136 and 0.215 for n = 100, 0.106 and 0.122 for n = 1000, and 0.062 and 0.087 for n = 5000.
Likewise, for SD(«), it demonstrates the following values for the median and third-quantile absolute biases:
0.012 and 0.017 for n = 100, 0.005 and 0.006 for n = 1000, and 0.003 and 0.004 for n = 5000. Regarding
SD(3), it exhibits the following values for the median and third-quantile absolute biases: 0.061 and 0.079
for n = 100, 0.015 and 0.017 for n = 1000, and 0.006 and 0.011 for n = 5000.

As the subset size or the value of k increases, the k-percent random methods typically exhibit higher
total system and user CPU hours per epidemic.

The 64-percent Random method outperforms any other k-percent random methods, k£ = 10, 20, 30, 40, 50, 64
for all values of n, n = 100, 1000, 5000. When we increase the value of k from 50% to 64% for n = 5000, the
median absolute biases of 8 and SD(f) are reduced by approximately 50% (from 0.119 to 0.062 and from
0.011 to 0.006). Hence, 64-percent Random method is the best method among k-percent Random
method even though it takes approximately twice as long in terms of total CPU hours per epidemic as

50-percent Random method.

3.2 Temporal Subset Methods

3.2.1 Temporal 1 Subset-m Method

The temporal 1 subset-6 method displays the second-lowest median and third-quantile absolute bias
values for o and § across all population sizes. Specifically, it yields the following values for the median and
third-quantile absolute biases for a: 0.008 and 0.013 for n = 100, 0.006 and 0.01 for n = 1000, and 0.004
and 0.006 for n = 5000. Likewise, for 3, it results in the following values for the median and third-quantile
absolute biases: 0.041 and 0.052 for n = 100, 0.012 and 0.023 for n = 1000, and 0.012 and 0.017 for n = 5000.
Similarly, this method exhibits the lowest median absolute bias values for SD(«) for all population sizes (n),
measuring 0.003 for n = 100, 0.007 for n = 1000, and 0.008 for n = 5000 respectively. In a similar manner,
it yields the lowest median absolute bias for SD(8) across all values of n, resulting in values of 0.011 for
n = 100, 0.009 for n = 1000, and 0.013 for n = 5000 respectively. Furthermore, it exhibits the second-lowest
third-quantile absolute bias values for SD(a) and SD(8) when n = 100 and n = 1000. For third-quantile

absolute biases for SD(«), it results in values of 0.005 for n = 100 and 0.01 for n = 1000 respectively. For
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third-quantile absolute biases for SD(f), it yields the values of 0.019 for n = 100 and 0.011 for n = 1000
respectively. Lastly, it demonstrates the lowest third-quantile absolute bias for SD(«) and SD() when
n = 5000, measuring 0.009 for SD(«) and 0.014 for SD(5) respectively.

The temporal 1 subset-7 method exhibits the lowest median and third-quantile absolute biases for «
and [ for all values of n. In particular, it results in the following values for the median and third-quantile
absolute biases for a: 0.003 and 0.006 for n = 100, 0.001 and 0.002 for n = 1000, and 0.002 and 0.003
for n = 5000. Similarly, for 3, it produces the following values for the median and third-quantile absolute
biases: 0.015 and 0.031 when n = 100, 0.006 and 0.009 when n = 1000, and 0.004 and 0.006 when n = 5000.
Likewise, it demonstrates the lowest median absolute bias for SD(«) for all population sizes (n), measuring
0.002 for n = 100, 0.003 for n» = 1000, and 0.007 for n = 5000. In a similar manner, it displays the minimum
median absolute bias for SD(S) for all values of n, yielding 0.006 for n = 100, 0.005 for n = 1000, and 0.012
for n = 5000. Analogously, when n = 100 and n = 1000, this method exhibits the lowest third-quantile
absolute bias for SD(a) and SD(S). For third-quantile absolute biases of SD(«), it produces 0.004 when
n = 100 and 0.008 when n = 1000 respectively. In addition, for third-quantile absolute biases of SD(S),
it results in the values of 0.015 when n = 100 and 0.009 when n = 1000 respectively. Furthermore, for
n = 5000, it yields the third-lowest third-quantile absolute bias for SD(«), measuring 0.014 as well as the
second-lowest third-quantile absolute bias for SD(/5), measuring 0.019.

The Temporal 1 Subset-m Method follows the same trend as the k-percent center, k-percent
11, k-percent corner, and k-percent random methods since the total CPU hours per epidemic tends to
increase as higher values of m for n = 5000 and n = 1000. However, for smaller sample sizes like n = 100,
the change in computational power is minimal.

The analysis of results in the Figures 3.1 to 3.4 for n = 5000 reveals a consistent pattern: as the value of
m increases, both the median and third quantile absolute biases of all parameter estimates decrease. This
trend is further supported by the findings for n = 100 and n = 1000, as shown in Figures A.62 to A.65 and
Figures A.46 to A.49 in the Appendix.

Furthermore, it is worth noting that once the value of m > 5, the rate of change of the median and third
quantile absolute biases diminishes to zero. Moreover, as depicted in the Figures 3.1 to 3.4, Figures A.46
to A.49 and A.62 to A.65 the interquartile range of absolute biases tends to converge towards zero, indicating
a convergence of bias estimates as m increases.

The temporal 1 subset-6 method is the most efficient. It produces similar absolute biases for parameter
estimates across different population sizes compared to temporal 1 subset-7 method. Moreover, this

method consumes less total system and user CPU per epidemic than temporal 1 subset-7 method.
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Figure 3.1: Alpha Absolute Bias of Temporal 1 Subset-m method for n = 5000
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Figure 3.2: Beta Absolute Bias of Temporal 1 Subset-m method for n = 5000
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Figure 3.3: Alpha SD Absolute Bias Temporal 1 Subset-m method for n = 5000
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3.2.2 Temporal Mean Subset-h Method

When n = 100 and n = 1000, the temporal mean subset-3 method exhibits the lowest median and third-
quantile absolute bias values for a and SD(«). In particular, it yields the following values for the median
and third-quantile absolute biases for a: 0.269 and 0.327 for n = 100, and 0.263 and 0.275 for n = 1000.
For SD(«), it exhibits the median and third-quantile absolute biases of 0.358 and 0.403 for n = 100 and
0.334 and 0.342 for n = 1000. Similarly, when n = 5000, it displays the lowest third-quantile absolute bias
for a and SD(«) at values of 0.282 and 0.343 respectively. Moreover, when n = 5000, it demonstrates the
second-lowest median absolute bias for a, and SD(«) measuring 0.273 and 0.339 respectively.

Moreover, for n = 1000, it displays the lowest median and third-quantile absolute bias for 5: yielding
0.332 and 0.36 respectively. Likewise, this method demonstrates the lowest median absolute bias for § when
n = 100: resulting in a value of 0.413. In a similar manner, when n = 5000, it exhibits the lowest third-
quantile absolute bias for 5 at 0.337. When n = 5000, it displays the largest median absolute bias for 5 at
0.323. Additionally, when n = 100, it exhibits the largest third-quantile absolute bias for 5 at 0.545.

When n = 1000 and n = 5000, this method displays the lowest median and third-quantile absolute biases
for SD(3). Specifically, it produces the following values for the median and third-quantile absolute biases for
SD(3): 0.364 and 0.376 for n = 1000 and 0.346 and 0.362 for n = 5000. However, when n = 100, it yields
the second-lowest median absolute bias for SD(3) at 0.433 as well as, the largest third-quantile absolute bias
for SD(5) at 0.521.

The temporal mean subset-h method demonstrates comparable total CPU hours per epidemic for
different values of h (h = 2,3,4) across all population sizes n (n = 100, 1000, 5000).

The temporal mean subset-3 method tends to perform well consistently, in terms of having the lowest
third quantile absolute bias for most parameter estimates across different population sizes (n). Even though
temporal mean subset-2 and temporal mean subset-4 methods occasionally have the lowest median
and/or third-quantile absolute biases for some parameters, they are not as consistent as temporal mean
subset-3 method. Therefore, it can be implied the temporal mean subset-3 method has the best leverage
against potentially high absolute bias for parameter estimation purposes. There is minimal disparity in the
total system and user CPU per epidemic in CPU hours with temporal mean subset-h methods for all

values of h, (h =2,3,4).

3.2.3 Temporal Median Subset-h Method

When n = 1000 and n = 5000, the temporal median subset-3 method displays the lowest median and

third-quantile absolute bias for all parameter estimates. In particular, it produces the following values for
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median and third-quantiles of a: 0.013 and 0.027 for n = 1000, and 0.01 and 0.018 for n = 5000. For £,
it yields the following values for median and third-quantile absolute biases: 0.045 and 0.128 for n = 1000,
and 0.017 and 0.036 for n = 5000. Regarding SD(«), it produces the following values for median and third-
quantile absolute biases: 0.024 and 0.043 for n = 1000, and 0.012 and 0.013 for n = 5000. Likewise, for
SD(3), this method results in the following values for median and third-quantile absolute biases: 0.11 and
0.191 for n = 1000, and 0.032 and 0.043 for n = 5000.

When n = 100, this method produces the lowest median absolute bias for a and SD(«), yielding 0.036 and
0.067 respectively. However, it displays the largest third-quantile absolute bias for « and SD(«), measuring
0.734 and 0.876 respectively. Furthermore, this method produces the largest median and third-quantile
absolute bias for 8 and SD(): measuring 0.673 and 0.953 for 8 and 0.549 and 0.626 for SD([3)

Analogous to the temporal mean subset-h method, the temporal median subset-h method demon-
strates relatively consistent total CPU hours per epidemic across different values of h (h = 2,3,4) and
population sizes n (n = 100, 1000, 5000).

The temporal median subset-3 method produces the minimum median and third quantile absolute
biases for all parameter estimates in larger populations n = 1000 and n = 5000. Moreover, across all values
of h (h = 2,3,4), the total system and user CPU per epidemic in CPU hours show negligible variation
when employing the temporal median subset-h methods. Due to having the best results in parameter
predictions and also having the computaional cost as the temporal median subset-2 and temporal
median subset-4methods, temporal median subset-3 method can be considered the best method in

this group.
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Table 3.1: Median and third-quantile for absolute biases of & and 3 for n=100

Methods Alpha Beta
Median 3rd Quantile Median 3rd Quantile
Average Center 0.044 0.062 0.340 0.460
Average 1l 0.050 0.077 0.341 0.502
Average Corner 0.057 0.062 0.263 0.318
Average Random 0.069 0.084 0.282 0.484
10 Percent Center 0.320 0.809 1.089 1.294
20 Percent Center 0.131 0.187 0.625 1.093
30 Percent Center 0.052 0.087 0.418 0.699
40 Percent Center 0.050 0.065 0.481 0.639
50 Percent Center 0.029 0.049 0.266 0.425
64 Percent Center 0.026 0.053 0.201 0.305
10 Percent 11 0.218 0.462 0.947 1.246
20 Percent 11 0.059 0.161 0.561 0.790
30 Percent 11 0.033 0.109 0.481 0.900
40 Percent 11 0.038 0.061 0.330 0.518
50 Percent 11 0.034 0.049 0.260 0.407
64 Percent 11 0.020 0.037 0.137 0.230
10 Percent Corner 0.400 0.493 0.739 1.098
20 Percent Corner 0.324 0.386 0.801 1.027
30 Percent Corner 0.414 0.487 0.915 1.061
40 Percent Corner 0.321 0.486 0.711 1.009
50 Percent Corner 0.334 0.444 0.737 0.917
64 Percent Corner 0.321 0.357 0.881 0.983
10 Percent Random 0.420 0.599 0.856 0.922
20 Percent Random 0.118 0.176 0.562 0.837
30 Percent Random 0.059 0.098 0.374 0.800
40 Percent Random 0.067 0.111 0.249 0.353
50 Percent Random 0.035 0.069 0.243 0.377
64 Percent Random 0.022 0.040 0.136 0.215
Temporal 1 Subset-2 0.101 0.138 0.382 0.619
Temporal 1 Subset-3 0.041 0.099 0.237 0.606
Temporal 1 Subset-4 0.025 0.051 0.118 0.225
Temporal 1 Subset-5 0.013 0.022 0.071 0.106
Temporal 1 Subset-6 0.008 0.013 0.041 0.052
Temporal 1 Subset-7 0.003 0.006 0.015 0.031
Temporal Mean Subset-2 0.406 0.458 0.456 0.540
Temporal Mean Subset-3 0.269 0.327 0.413 0.545
Temporal Mean Subset-4 0.395 0.421 0.467 0.525
Temporal Median Subset-2  0.400 0.431 0.511 0.547
Temporal Median Subset-3  0.036 0.734 0.673 0.953
Temporal Median Subset-4 0.392 0.415 0.493 0.580
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Table 3.2: Median and third-quantile for absolute biases of SD(«) and SD(3) for n=100

Methods SD(Alpha) SD(Beta)
Median 3rd Quantile Median 3rd Quantile
Average Center 0.030 0.039 0.161 0.178
Average 1l 0.028 0.037 0.142 0.176
Average Corner 0.036 0.041 0.169 0.176
Average Random 0.043 0.056 0.182 0.199
10 Percent Center 0.176 0.504 0.410 0.666
20 Percent Center 0.067 0.116 0.283 0.366
30 Percent Center 0.037 0.059 0.238 0.296
40 Percent Center 0.029 0.039 0.156 0.169
50 Percent Center 0.018 0.024 0.091 0.109
64 Percent Center 0.016 0.021 0.069 0.081
10 Percent 11 0.137 0.219 0.462 0.551
20 Percent 11 0.046 0.096 0.315 0.366
30 Percent 11 0.033 0.070 0.249 0.270
40 Percent 11 0.024 0.046 0.167 0.206
50 Percent 11 0.022 0.033 0.102 0.120
64 Percent 11 0.010 0.015 0.058 0.068
10 Percent Corner 0.264 0.372 0.550 0.641
20 Percent Corner 0.200 0.252 0.456 0.619
30 Percent Corner 0.224 0.341 0.515 0.598
40 Percent Corner 0.229 0.280 0.503 0.602
50 Percent Corner 0.203 0.301 0.546 0.644
64 Percent Corner 0.184 0.220 0.498 0.548
10 Percent Random 0.272 0.405 0.590 0.634
20 Percent Random 0.081 0.117 0.353 0.413
30 Percent Random 0.045 0.056 0.235 0.251
40 Percent Random 0.042 0.057 0.175 0.196
50 Percent Random 0.027 0.034 0.118 0.143
64 Percent Random 0.012 0.017 0.061 0.079
Temporal 1 Subset-2 0.094 0.182 0.556 0.819
Temporal 1 Subset-3 0.054 0.090 0.285 0.317
Temporal 1 Subset-4 0.018 0.026 0.077 0.118
Temporal 1 Subset-5 0.007 0.015 0.030 0.040
Temporal 1 Subset-6 0.003 0.005 0.011 0.019
Temporal 1 Subset-7 0.002 0.004 0.006 0.015
Temporal Mean Subset-2 0.489 0.504 0.379 0.432
Temporal Mean Subset-3 0.358 0.403 0.433 0.521
Temporal Mean Subset-4 0.496 0.506 0.495 0.504
Temporal Median Subset-2  0.477 0.489 0.385 0.403
Temporal Median Subset-3  0.067 0.876 0.549 0.626
Temporal Median Subset-4  0.469 0.509 0.503 0.581
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Table 3.3: Median and third-quantile for absolute biases of o and 3 for n=1000

Methods Alpha Beta
Median 3rd Quantile Median 3rd Quantile
Average Center 0.020 0.026 0.153 0.282
Average 1l 0.014 0.030 0.149 0.218
Average Corner 0.014 0.017 0.161 0.181
Average Random 0.015 0.020 0.180 0.222
10 Percent Center 0.046 0.127 0.494 0.817
20 Percent Center 0.035 0.045 0.344 0.502
30 Percent Center 0.019 0.036 0.237 0.333
40 Percent Center 0.014 0.027 0.215 0.275
50 Percent Center 0.009 0.020 0.174 0.234
64 Percent Center 0.011 0.017 0.109 0.131
10 Percent 11 0.048 0.082 0.419 0.565
20 Percent 11 0.027 0.038 0.373 0.472
30 Percent 11 0.012 0.024 0.178 0.235
40 Percent 11 0.023 0.029 0.151 0.248
50 Percent 11 0.011 0.020 0.123 0.179
64 Percent 11 0.012 0.023 0.053 0.119
10 Percent Corner 0.044 0.056 0.499 0.618
20 Percent Corner 0.048 0.059 0.477 0.599
30 Percent Corner 0.040 0.066 0.508 0.587
40 Percent Corner 0.072 0.098 0.441 0.527
50 Percent Corner 0.046 0.056 0.556 0.683
64 Percent Corner 0.051 0.071 0.504 0.563
10 Percent Random 0.050 0.090 0.514 0.588
20 Percent Random 0.037 0.047 0.287 0.361
30 Percent Random 0.014 0.017 0.244 0.356
40 Percent Random 0.009 0.020 0.207 0.291
50 Percent Random 0.010 0.021 0.142 0.190
64 Percent Random 0.009 0.015 0.106 0.122
Temporal 1 Subset-2 0.089 0.113 0.343 0.553
Temporal 1 Subset-3 0.054 0.079 0.169 0.248
Temporal 1 Subset-4 0.022 0.034 0.093 0.124
Temporal 1 Subset-5 0.008 0.017 0.020 0.053
Temporal 1 Subset-6 0.006 0.010 0.012 0.023
Temporal 1 Subset-7 0.001 0.002 0.006 0.009
Temporal Mean Subset-2 0.402 0.420 0.494 0.557
Temporal Mean Subset-3 0.263 0.275 0.332 0.360
Temporal Mean Subset-4 0.387 0.406 0.456 0.539
Temporal Median Subset-2  0.401 0.419 0.516 0.552
Temporal Median Subset-3  0.013 0.027 0.045 0.128
Temporal Median Subset-4  0.390 0.406 0.544 0.578
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Table 3.4: Median and third-quantile for absolute biases of SD(«) and SD(8) for n=1000

Methods SD(Alpha) SD(Beta)
Median 3rd Quantile Median 3rd Quantile
Average Center 0.011 0.013 0.042 0.046
Average 1l 0.011 0.014 0.040 0.042
Average Corner 0.009 0.011 0.038 0.042
Average Random 0.011 0.012 0.039 0.045
10 Percent Center 0.050 0.069 0.177 0.241
20 Percent Center 0.022 0.025 0.087 0.095
30 Percent Center 0.014 0.019 0.058 0.063
40 Percent Center 0.010 0.011 0.038 0.042
50 Percent Center 0.009 0.011 0.032 0.035
64 Percent Center 0.005 0.007 0.017 0.023
10 Percent 11 0.034 0.038 0.142 0.149
20 Percent 11 0.021 0.025 0.087 0.095
30 Percent 11 0.013 0.015 0.052 0.062
40 Percent 11 0.011 0.014 0.040 0.042
50 Percent 11 0.006 0.008 0.024 0.034
64 Percent 11 0.005 0.006 0.015 0.017
10 Percent Corner 0.040 0.043 0.161 0.180
20 Percent Corner 0.040 0.046 0.170 0.180
30 Percent Corner 0.039 0.048 0.166 0.180
40 Percent Corner 0.047 0.050 0.172 0.176
50 Percent Corner 0.040 0.043 0.171 0.182
64 Percent Corner 0.040 0.048 0.163 0.182
10 Percent Random 0.043 0.050 0.170 0.186
20 Percent Random 0.023 0.028 0.087 0.097
30 Percent Random 0.014 0.015 0.055 0.061
40 Percent Random 0.010 0.011 0.039 0.041
50 Percent Random 0.009 0.010 0.029 0.033
64 Percent Random 0.005 0.006 0.015 0.017
Temporal 1 Subset-2 0.139 0.195 0.428 0.511
Temporal 1 Subset-3 0.049 0.065 0.141 0.266
Temporal 1 Subset-4 0.022 0.029 0.068 0.078
Temporal 1 Subset-5 0.010 0.015 0.024 0.031
Temporal 1 Subset-6 0.007 0.010 0.009 0.011
Temporal 1 Subset-7 0.003 0.008 0.005 0.009
Temporal Mean Subset-2 0.467 0.484 0.406 0.492
Temporal Mean Subset-3 0.334 0.342 0.364 0.376
Temporal Mean Subset-4 0.490 0.502 0.483 0.510
Temporal Median Subset-2  0.463 0.494 0.393 0.450
Temporal Median Subset-3  0.024 0.043 0.110 0.191
Temporal Median Subset-4  0.485 0.502 0.500 0.532
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Table 3.5: Median and third-quantile for absolute biases of o and S for n = 5000

Methods Alpha Beta
Median 3rd Quantile Median 3rd Quantile
Average Center 0.005 0.010 0.131 0.173
Average 1l 0.007 0.010 0.113 0.141
Average Corner 0.006 0.008 0.122 0.138
Average Random 0.010 0.013 0.132 0.148
10 Percent Center 0.031 0.038 0.472 0.530
20 Percent Center 0.011 0.022 0.288 0.338
30 Percent Center 0.009 0.012 0.186 0.235
40 Percent Center 0.011 0.018 0.111 0.126
50 Percent Center 0.005 0.007 0.092 0.114
64 Percent Center 0.004 0.007 0.069 0.094
10 Percent 11 0.016 0.024 0.410 0.511
20 Percent 11 0.017 0.024 0.199 0.219
30 Percent 11 0.007 0.015 0.169 0.209
40 Percent 11 0.007 0.011 0.103 0.136
50 Percent 11 0.006 0.009 0.057 0.065
64 Percent 11 0.005 0.010 0.076 0.093
10 Percent Corner 0.014 0.024 0.330 0.364
20 Percent Corner 0.014 0.019 0.360 0.396
30 Percent Corner 0.019 0.024 0.338 0.389
40 Percent Corner 0.015 0.020 0.354 0.369
50 Percent Corner 0.011 0.019 0.350 0.384
64 Percent Corner 0.011 0.016 0.328 0.367
10 Percent Random 0.016 0.027 0.364 0.393
20 Percent Random 0.009 0.015 0.243 0.280
30 Percent Random 0.009 0.013 0.162 0.178
40 Percent Random 0.005 0.011 0.134 0.162
50 Percent Random 0.008 0.010 0.119 0.131
64 Percent Random 0.005 0.007 0.062 0.087
Temporal 1 Subset-2 0.097 0.164 0.351 0.633
Temporal 1 Subset-3 0.026 0.067 0.049 0.138
Temporal 1 Subset-4 0.012 0.028 0.059 0.075
Temporal 1 Subset-5 0.012 0.016 0.022 0.029
Temporal 1 Subset-6 0.004 0.006 0.012 0.017
Temporal 1 Subset-7 0.002 0.003 0.004 0.006
Temporal Mean Subset-2 0.054 0.363 0.230 0.440
Temporal Mean Subset-3 0.273 0.282 0.323 0.337
Temporal Mean Subset-4 0.324 0.388 0.242 0.533
Temporal Median Subset-2  0.085 0.396 0.205 0.525
Temporal Median Subset-3  0.010 0.018 0.017 0.036
Temporal Median Subset-4 0.279 0.407 0.215 0.512
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Table 3.6: Median and third-quantile for absolute biases of SD(«) and SD(3) for n = 5000

Methods Alpha SD Beta SD
Median 3rd Quantile Median 3rd Quantile
Average Center 0.005 0.007 0.016 0.021
Average 1l 0.005 0.006 0.017 0.019
Average Corner 0.005 0.006 0.017 0.018
Average Random 0.006 0.008 0.016 0.021
10 Percent Center 0.022 0.027 0.072 0.076
20 Percent Center 0.011 0.012 0.036 0.039
30 Percent Center 0.007 0.009 0.023 0.026
40 Percent Center 0.005 0.007 0.016 0.019
50 Percent Center 0.004 0.005 0.010 0.015
64 Percent Center 0.002 0.003 0.006 0.009
10 Percent 11 0.021 0.023 0.070 0.079
20 Percent 11 0.011 0.013 0.039 0.042
30 Percent 11 0.007 0.008 0.022 0.025
40 Percent 11 0.004 0.006 0.014 0.019
50 Percent 11 0.003 0.005 0.009 0.016
64 Percent 11 0.003 0.004 0.007 0.008
10 Percent Corner 0.018 0.020 0.063 0.071
20 Percent Corner 0.019 0.019 0.064 0.068
30 Percent Corner 0.020 0.021 0.069 0.070
40 Percent Corner 0.018 0.019 0.064 0.068
50 Percent Corner 0.018 0.020 0.065 0.068
64 Percent Corner 0.018 0.019 0.066 0.068
10 Percent Random 0.020 0.022 0.070 0.074
20 Percent Random 0.011 0.012 0.035 0.041
30 Percent Random 0.008 0.009 0.026 0.028
40 Percent Random 0.005 0.006 0.016 0.018
50 Percent Random 0.004 0.005 0.011 0.015
64 Percent Random 0.003 0.004 0.006 0.011
Temporal 1 Subset-2 0.145 0.188 0.360 0.519
Temporal 1 Subset-3 0.047 0.056 0.124 0.142
Temporal 1 Subset-4 0.022 0.030 0.048 0.068
Temporal 1 Subset-5 0.010 0.012 0.021 0.025
Temporal 1 Subset-6 0.008 0.009 0.013 0.014
Temporal 1 Subset-7 0.007 0.014 0.012 0.019
Temporal Mean Subset-2 0.107 0.393 0.357 0.420
Temporal Mean Subset-3 0.339 0.343 0.346 0.362
Temporal Mean Subset-4 0.366 0.489 0.473 0.510
Temporal Median Subset-2 0.107 0.464 0.314 0.415
Temporal Median Subset-3  0.012 0.013 0.032 0.043
Temporal Median Subset-4  0.300 0.506 0.444 0.469
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Table 3.7: Computational Power Results for n = 100

Methods Total CPU in hours per epidemic
Average Center 0.02
Average 1l 0.02
Average Corner 0.05
Average Random 0.05
10 Percent Center 0.01
20 Percent Center 0.01
30 Percent Center 0.01
40 Percent Center 0.01
50 Percent Center 0.01
64 Percent Center 0.01
10 Percent 11 0.01
20 Percent 11 0.01
30 Percent 11 0.01
40 Percent 11 0.01
50 Percent 11 0.01
64 Percent 11 0.01
10 Percent Corner 0.02
20 Percent Corner 0.02
30 Percent Corner 0.02
40 Percent Corner 0.02
50 Percent Corner 0.01
64 Percent Corner 0.01
10 Percent Random 0.01
20 Percent Random 0.02
30 Percent Random 0.02
40 Percent Random 0.02
50 Percent Random 0.02
64 Percent Random 0.02
Temporal 1 Subset-2 0.01
Temporal 1 Subset-3 0.01
Temporal 1 Subset-4 0.01
Temporal 1 Subset-5 0.02
Temporal 1 Subset-6 0.02
Temporal 1 Subset-7 0.02
Temporal Mean Subset-2 0.02
Temporal Mean Subset-3 0.02
Temporal Mean Subset-4 0.02
Temporal Median Subset-2 0.02
Temporal Median Subset-3 0.02
Temporal Median Subset-4 0.02
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Table 3.8: Computational Power Results for n = 1000

Methods Total CPU in hours per epidemic
Average Center 1.01
Average 1l 1.11
Average Corner 2.06
Average Random 2.02
10 Percent Center 0.54
20 Percent Center 0.61
30 Percent Center 0.63
40 Percent Center 0.58
50 Percent Center 0.69
64 Percent Center 0.70
10 Percent 11 0.52
20 Percent 11 0.58
30 Percent 11 0.53
40 Percent 11 0.71
50 Percent 11 0.65
64 Percent 11 0.70
10 Percent Corner 0.56
20 Percent Corner 0.56
30 Percent Corner 0.54
40 Percent Corner 0.56
50 Percent Corner 0.66
64 Percent Corner 0.58
10 Percent Random 0.60
20 Percent Random 0.61
30 Percent Random 0.68
40 Percent Random 0.80
50 Percent Random 1.13
64 Percent Random 1.25
Temporal 1 Subset-2 0.51
Temporal 1 Subset-3 0.54
Temporal 1 Subset-4 0.64
Temporal 1 Subset-5 0.73
Temporal 1 Subset-6 0.78
Temporal 1 Subset-7 0.99
Temporal Mean Subset-2 1.02
Temporal Mean Subset-3 0.88
Temporal Mean Subset-4 1.03
Temporal Median Subset-2 1.07
Temporal Median Subset-3 0.88
Temporal Median Subset-4 0.96
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Table 3.9: Computational Power Results for n = 5000

Methods Total CPU in hours per epidemic
Average Center 22.14
Average 1l 22.60
Average Corner 50.19
Average Random 47.71
10 Percent Center 12.31
20 Percent Center 12.17
30 Percent Center 13.75
40 Percent Center 13.98
50 Percent Center 15.10
64 Percent Center 16.27
10 Percent 11 14.32
20 Percent 11 12.90
30 Percent 11 13.46
40 Percent 11 13.42
50 Percent 11 13.92
64 Percent 11 15.62
10 Percent Corner 11.78
20 Percent Corner 15.29
30 Percent Corner 16.91
40 Percent Corner 18.69
50 Percent Corner 22.50
64 Percent Corner 29.40
10 Percent Random 14.00
20 Percent Random 19.50
30 Percent Random 19.07
40 Percent Random 17.95
50 Percent Random 23.95
64 Percent Random 45.49
Temporal 1 Subset-2 11.54
Temporal 1 Subset-3 11.68
Temporal 1 Subset-4 14.49
Temporal 1 Subset-5 13.07
Temporal 1 Subset-6 16.30
Temporal 1 Subset-7 23.27
Temporal Mean Subset-2 25.77
Temporal Mean Subset-3 24.93
Temporal Mean Subset-4 25.19
Temporal Median Subset-2 22.79
Temporal Median Subset-3 23.12
Temporal Median Subset-4 23.10
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Chapter 4

Comparative Analysis of Spatial and
Temporal Subset Methods,

Conclusion and Future Work

4.1 Comparative Analysis of Spatial and Temporal Subset Meth-
ods

There are several spatial subset methods whose performance remains consistent across all population sizes
(n) and parameter estimates. The average corner method consistently outperforms the k-percent corner
method regardless of the values of k. In addition,the k-percent Center and k-percent 1l methods exhibit
similar median and third quantile absolute biases, as well as similar total CPU hours per epidemic, especially
for larger populations such as n = 1000 and n = 5000.

Moreover, both the k-percent center and k-percent 1l methods consume fewer total system and
user CPU hours per epidemic in comparison to the average Center and average 1l methods. Similar
observations can be made for the k-percent Random method, which outperforms the average random
method for larger values of k, starting from k& = 50% and k = 64%, and also exhibits lower total CPU hours
per epidemic.

Overall, the average, average corner, and average random methods demonstrate similar performance
across the majority of parameter estimates for all population sizes. Moreover, the k-percent Center and

k-percent 11 methods tend to exhibit similar median and third quantile absolute biases, as well as similar
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total CPU hours per epidemic, especially for larger populations such as n = 1000 and n = 5000.
Comparing the k-percent center, k-percent 11, k-percent corner, and k-percent random methods
for n = 100, the k-percent center method exhibits the largest absolute bias across all parameter estimates
when k = 10%. However, as the value of k increases, the k-percent corner method surpasses the k-percent
center method as the method with the highest median and third quantile absolute bias across all parameter
estimates. This same pattern persists when analyzing the results for n = 1000 and n = 5000. These findings

are presented in the corresponding Figures 4.1 to 4.4, A.42 to A.45 and A.58 to A.61.
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Figure 4.1: Alpha Absolute Bias of k-percent, k-percent Corner, and k-percent Random Methods for n = 5000
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Figure 4.2: Beta Absolute Bias of k-percent, k-percent Corner, and k-percent Random Methods for n = 5000
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Figure 4.3: Alpha SD Absolute Bias of k-percent, k-percent Corner, and k-percent Random Methods for
n = 5000
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Figure 4.4: Beta SD Absolute Bias of k-percent, k-percent Corner, and k-percent Random Methods for
n = 5000

For temporal subset methods, temporal mean subset-h and temporal median subset-h methods
produce far-worse absolute biases compared to temporal 1 subset-m method for all values of h, m regardless
of populations sizes n. Furthermore, the temporal 1 subset-m methods exhibit minimal absolute bias
values that approach zero for m > 5 for all parameter estimates and population sizes (n). Finally, temporal
1 subset-m methods have comparatively lower absolute biases for all parameter estimates compared to
their spatial counterparts starting from m = 4.

Regarding computational power, average center, average ll, average corner and average random
methods require higher total system and user CPU times per epidemic compared to all other spatial and
temporal methods for all values of n. k-percent Center and k-percent 1l methods take approximately
the same total CPU time. Relative to other spatial and temporal subset methods, temporal 1 subset-m
is considerably faster, requiring very few computational resources per epidemic regardless of the value of
n. However, temporal mean subset-h and temporal median subset-h methods consume significantly
more average CPU time per epidemic compared to the temporal 1 subset-m methods for the majority of

h,m,n.
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4.2 Conclusion

Based on our findings given the values of « = 0.2 and § = 2, it is apparent that, within our simulations,
both the center and lower left corner of the square contain a substantial amount of relevant information,
particularly for larger population sizes, given that the absolute biases for all parameter estimates are either
relatively small or close to zero for k-percent 1l and k-percent center methods. Hence, it can be concluded
that for large sample sizes, the location where the subset areas occur do not play an influential role in the
inference of posterior parameter estimates.

Moreover, we can deduce that the incorporation of subset areas lacking significant information regarding
infected individuals can potentially worsen estimation accuracy, as evidenced by the results obtained from
the k-percent corner approach. Furthermore, the addition of a randomization factor or random subset
areas did not yield improvements in estimation accuracy, as concluded from our analyses.

Additionally, including multiple spatial subset areas in the analysis shown in the average center, av-
erage ll, average corner and average random methods do not give considerably smaller absolute biases
compared to k-percent center k-percent 1l.k-percent corner, and k-percent random methods, es-
pecially for large value of k. Hence, considering additional subset squares of multiple areas increase the
absolute bias, reducing the performance of the inference.

Based on the findings of temporal 1 subset-m method, it can be concluded that first-half of the infection
time frame (¢t = 1,2,3,4,5,6,7) contains the most information about infected individuals. Moreover, results
from temporal mean subset-h and temporal median subset-h methods suggest that taking in account
for infection time frames that do not contain information about infected individuals can adversely affect the
inference process. Therefore, it can be deduced that considering infection time frames that contain little to
no epidemic data can potentially compromise the accuracy of the estimation process.

Based on the findings of the spatial and temporal subset method, we conclude that temporal 1 subset-m

method, where m > 5 is the best subset method for the inference of the spatial and susceptibility parameters.

4.3 Future Works

This research involved simulations of epidemics with the same population density, despite differences in
population sizes. In each population, individuals were uniformly distributed across a square grid. However,
this scenario may not accurately reflect in models such as geographically dependent individual-level models
(GD-ILMs) [12] that incorporate real-life geographical information. Therefore, spatial subset methods need

to be refined to account for these factors, including adjusting for different population densities and non-square
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geographic areas.

While temporal subset methods can be more accurate and versatile compared to spatial subset methods,
they require further refinement to accommodate different values of «, §, and infection periods. Changes
to these parameters may result in long computational times, which can limit the usefulness of temporal
subset methods in assisting with public health measures during highly contagious epidemics such as Covid-
19. However, the spatial subset methods can be applied as long as the spatial information is available
regardless of changes in values of «, 8, and infection periods. In addition, we need to investigate scenarios
with time-varying covariates to check whether the temporal subset methods have the same effectiveness or
not in predicting parameter estimates.

Furthermore, additional research is required to determine the effectiveness of both spatial and temporal
subset methods for other compartmental models like SEIR, SIRS, SI and so on. Finally, we need to explore
if subset methods derived in this thesis can be combined with other methods such as approximate Bayesian

computation [20] and linear-based approximation [9], in order to reduce the computational burden.

48



Bibliography

[10]

[11]

Aniruddha Adiga et al. “Mathematical models for covid-19 pandemic: a comparative analysis”. In:

Journal of the Indian Institute of Science 100.4 (2020), pp. 793-807.

Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues. Vol. 31. Springer

Science & Business Media, 2001.

Stephen P Brooks and Andrew Gelman. “General methods for monitoring convergence of iterative

simulations”. In: Journal of computational and graphical statistics 7.4 (1998), pp. 434-455.

Mary Kathryn Cowles and Bradley P Carlin. “Markov chain Monte Carlo convergence diagnostics: a

comparative review”. In: Journal of the American Statistical Association 91.434 (1996), pp. 883-904.

Rob Deardon et al. “Inference for individual-level models of infectious diseases in large populations”.

In: Statistica Sinica 20.1 (2010), p. 239.

John F Geweke et al. Fuvaluating the accuracy of sampling-based approaches to the calculation of pos-

terior moments. Tech. rep. Federal Reserve Bank of Minneapolis, 1991.

Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain Monte Carlo in practice.
CRC press, 1995.

Babak Habibzadeh. “Misspecifying latent and infectious periods in space-time epidemic models”. PhD
thesis. University of Guelph, 2009.

Grace PS Kwong and Rob Deardon. “Linearized forms of individual-level models for large-scale spatial

infectious disease systems”. In: Bulletin of mathematical biology 74 (2012), pp. 1912-1937.

David A Levin and Yuval Peres. Markov chains and mizing times. Vol. 107. American Mathematical

Soc., 2017.

Zeyi Liu et al. “Estimating Parameters of Two-Level Individual-Level Models of the COVID-19 Epi-

demic Using Ensemble Learning Classifiers”. In: Frontiers in Physics 8 (2021), p. 602722.

49



[12]

[13]

MD Mahsin, Rob Deardon, and Patrick Brown. “Geographically dependent individual-level models for

infectious diseases transmission”. In: Biostatistics 23.1 (2022), pp. 1-17.

Martyn Plummer et al. “CODA: convergence diagnosis and output analysis for MCMC”. In: R news

6.1 (2006), pp. 7-11.

Song S Qian, Craig A Stow, and Mark E Borsuk. “On monte carlo methods for Bayesian inference”.

In: Ecological modelling 159.2-3 (2003), pp. 269-277.
Sheldon M Ross. Stochastic processes. John Wiley & Sons, 1995.

Vivekananda Roy. “Convergence diagnostics for markov chain monte carlo”. In: Annual Review of

Statistics and Its Application 7 (2020), pp. 387-412.

Gerardo Rubino and Bruno Sericola. “Discrete-time Markov chains”. In: Markov Chains and Depend-

ability Theory. Cambridge University Press, 2014, pp. 26-64. DO1: 10.1017/CB09781139051705.002.

Juliana Tolles and ThaiBinh Luong. “Modeling epidemics with compartmental models”. In: Jama

323.24 (2020), pp. 2515-2516.

Irene Vrbik et al. “Using Individual-Level Models for Infectious Disease Spread to Model Spatio-

Temporal Combustion Dynamics”. In: Bayesian analysis 7.3 (2012). 1sSN: 1936-0975.

Madeline A Ward, Lorna E Deeth, and Rob Deardon. “Computationally efficient parameter estimation
for spatial individual-level models of infectious disease transmission”. In: Spatial and Spatio-temporal

Epidemiology 41 (2022), p. 100497.

50



Appendix A

Name of appendix

51



List of Figures

2.1 Example of SIR epidemic data with population size n =100 . . . . . . . ... ... ... ... 5
2.2 Example of spatial subset containing approximately 50% of data from SIR epidemic data with
population size n =100 . . . . . . .. L e 14
2.3 95% Credible Intervals of (a) alpha (b) beta for spatial subsets for a single typical epidemic
with n =100 . . . . . e e e 14
2.4 Initial Modeling (a) alpha (b) beta parameters for a single typical epidemic with n =100 . . 15
2.5 Example of temporal subset of individuals whose infected time is between 1 and 7 for popu-
lation size m = 100 . . . . . . . .. e e e e e e e 18
2.6 95% Credible Intervals of alpha for (a) 2 temporal subsets (b) 3 temporal subsets (c) 4 temporal
subsets for n =100 . . . . . . . L 19
2.7 95% Credible Intervals of beta for (a) 2 temporal subsets (b) 3 temporal subsets (c) 4 temporal
subsets for n =100 . . . . . . . . .. 20
3.1 Alpha Absolute Bias of Temporal 1 Subset-m method for n =5000 . . . . .. ... ... ... 30
3.2 Beta Absolute Bias of Temporal 1 Subset-m method for n =5000 . . . . . .. ... ... ... 30
3.3 Alpha SD Absolute Bias Temporal 1 Subset-m method for n =5000 . . ... ... ... ... 31
3.4 Beta SD Absolute Bias of Temporal 1 Subset-m method for n =5000. . . . . ... ... ... 31

4.1 Alpha Absolute Bias of k-percent, k-percent Corner, and k-percent Random Methods for

n=250000. . . . . . e 44
4.2 Beta Absolute Bias of k-percent, k-percent Corner, and k-percent Random Methods for n = 5000 45
4.3 Alpha SD Absolute Bias of k-percent, k-percent Corner, and k-percent Random Methods for

n=>5000. . . . . e 45
4.4 Beta SD Absolute Bias of k-percent, k-percent Corner, and k-percent Random Methods for

n=25000. . . . . . e e e 46
A.1 Average Center, Average 11, Average Corner and Average Random Results of n =100 . ... 1
A.2 k—Percent Center Results for n=100 . . . . . . . . . . . . .. ... .. ... 3
A.3 k—Percent 1l Results for n=100 . . . . . . . . . . . . ... 5
A4 k—Percent Corner Results for n=100 . . . . . . . . . .. .. ... ... 7
A5 k—Percent Random Results for n=100 . . . . . . . . .. .. ... . o 9
A.6 Temporal 1 Subset-m Results for n=100 . . . . . . . .. .. ... ... .. ... ... ... 11
A.7 Temporal 1 Subset-m & vs o for n=100 . . . . . . . ... ... Lo 12
A.8 Temporal 1 Subset-m B vs Bforn=100 . . . . . . . . ... 12
A.9 Temporal Mean Subset-h results for n=100 . . . . . .. .. ... .. ... ... ........ 13
A.10 Temporal Median Subset-h results for n=100 . . . . . . . . .. .. ... ... ... ...... 14
A.11 Average Center, Average 11, Average Corner and Average Random Results of n =1000 . . . . 15
A.12 k—Percent Center Results for n=1000 . . . . . . . . .. . ... 17
A.13 k—Percent 1l Results for n=1000 . . . . . . . . . . . . . .. 19
A .14 k—Percent Corner Results for n=1000 . . . . . . . . . . . ... ... ... 21
A.15 k—Percent Random Results for n=1000 . . . . . . . .. .. .. .. ... ... 23
A.16 Temporal 1 Subset-m & vs o for n=1000 . . . . . . . . . . . .. ... 24
A.17 Temporal 1 Subset-m B vs B forn=1000 . . . . . . . .. 24

52



A.18 Temporal 1 Subset-m Results for n=1000 . . . . . . . .. ... . ... ... ... ....... 26

A .19 Temporal Mean Subset-h results for n=1000 . . . . . . . . . . . . .. ... ... ... ..... 27
A.20 Temporal Median Subset-h results for n=1000. . . . . . . . .. .. ... ... ... ...... 28
A.21 Average Center, Average 11, Average Corner and Average Random Results of n = 5000 . . . . 29
A.22 k—Percent Center Results for n=5000 . . . . . . .. .. .. ... . ... ... ... 31
A.23 k—Percent 1l Results for n=5000 . . . . . . . ... L 33
A .24 k—Percent Random Results for n=5000 . . . .. ... .. ... ... ... ... .. ... . 35
A .25 Temporal 1 Subset-m Results for n=5000 . . . . ... ... ... ... ... ... ....... 37
A.26 Temporal 1 Subset-m & vs o for n=5000 . . . . . . . .. .. ... ... 38
A.27 Temporal 1 Subset-m B vs B forn=5000 . . . . . ... 38
A.28 Temporal Mean Subset-h results for n=5000 . . . . . . . .. ... ... .. .. ... ..., 39
A .29 Temporal Median Subset-h results for n=5000. . . . . . . . . .. ... ... ... ....... 40
A.30 Alpha Absolute Bias of Average Center, Average 1, Average Corner, and Average Random
Methods for n=15000 . . . . . . . .. e 41
A.31 Alpha SD Absolute Bias of Average Center, Average 11, Average Corner, and Average Random
Methods for n =5000 . . . . . . . .. e 41
A.32 Beta Absolute Bias of Average Center, Average 11, Average Corner, and Average Random
Methods for n.=15000 . . . . . . . . . e 42
A.33 Beta SD Absolute Bias of Average Center, Average 11, Average Corner, and Average Random
Methods for n=15000 . . . . . . . .. e 42
A.34 Alpha Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods for
n=>5000. . . . . 43
A.35 Beta Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods for
n=250000. . . . . . e 44
A.36 Alpha SD Absolute Bias Temporal Mean Subset-h and Temporal Median Subset-h methods
for m =05000. . . . . . e 45
A.37 Beta SD Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods
for n =5000 . . . . . .. e 46
A.38 Alpha Absolute Bias of Average Center, Average 1, Average Corner, and Average Random
Methods for n=1000 . . . . . . . . . . 46
A .39 Alpha SD Absolute Bias of Average Center, Average 11, Average Corner, and Average Random
Methods for n = 1000 . . . . . . . . . e e 47
A.40 Beta Absolute Bias of Average Center, Average 11, Average Corner, and Average Random
Methods for n = 1000 . . . . . . . . . e e e e e 47
A.41 Beta SD Absolute Bias of Average Center, Average 11, Average Corner, and Average Random
Methods for n=1000 . . . . . . . . . L e 48
A.42 Alpha Absolute Bias of k-percent Center,k-percent 11, k-percent Corner, and k-percent Ran-
dom Methods for n=1000 . . . . . . . . . . e e 48
A .43 Beta Absolute Bias of k-percent Center k-percent I, k-percent Corner, and k-percent Random
Methods for n = 1000 . . . . . . . . . . e e e e e e 49
A.44 Alpha SD Absolute Bias of k-percent Center,k-percent 1l, k-percent Corner, and k-percent
Random Methods for n =1000 . . . . . . .. . .. . L 50
A.45 Beta SD Absolute Bias of k-percent Center k-percent I, k-percent Corner, and k-percent
Random Methods for n =1000 . . . . . . . . . . . . 51
A.46 Alpha Absolute Bias of Temporal 1 Subset-m method for n =1000 . . . . . . . ... .. ... 52
A .47 Beta Absolute Bias of Temporal 1 Subset-m method for n =1000. . . . . .. ... ... ... 52
A .48 Alpha SD Absolute Bias Temporal 1 Subset-m method for n =1000 . . . .. ... ... ... 53
A.49 Beta SD Absolute Bias of Temporal 1 Subset-m method for n =1000. . . . . . .. ... ... 53
A.50 Alpha Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods for
n=1000. . . . . . e e 54
A.51 Beta Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods for
n=1000. . . . . . e 55
A.52 Alpha SD Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods
for n =1000 . . . . . . 56



A.53 Beta SD Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods

for n =1000 . . . . . . . e e e e 57
A.54 Alpha Absolute Bias of Average, Average Corner, and Average Random Methods for n = 100 57
A.55 Alpha SD Absolute Bias of Average, Average Corner, and Average Random Methods for n = 100 58
A.56 Beta Absolute Bias of Average, Average Corner, and Average Random Methods for n =100 . 58
A.57 Beta SD Absolute Bias of Average, Average Corner, and Average Random Methods for n = 100 59
A.58 Alpha Absolute Bias of k-percent Center,k-percent 11, k-percent Corner, and k-percent Ran-

dom Methods for n =100 . . . . . . . . . . . e e e 59
A.59 Beta Absolute Bias of k-percent Center, k-percent 1l, k-percent Corner, and k-percent Random

Methods for n =100 . . . . . . . . . . L e 60
A.60 Alpha SD Absolute Bias of k-percent Center k-percent 11, k-percent Corner, and k-percent

Random Methods for n =100 . . . . . . . . . . . . 61
A.61 Beta SD Absolute Bias of k-percent Center,k-percent 1l, k-percent Corner, and k-percent

Random Methods for n =100 . . . . . . . . . . . 62
A.62 Alpha Absolute Bias of Temporal 1 Subset-m method forn =100. . . . . .. ... ... ... 63
A.63 Beta Absolute Bias of Temporal 1 Subset-m method for n =100 . . . . ... ... ... ... 63
A.64 Alpha SD Absolute Bias Temporal 1 Subset-m method forn =100 . . . . .. ... ... ... 64
A.65 Beta SD Absolute Bias of Temporal 1 Subset-m method for n =100 . .. .. ... ... ... 64
A.66 Alpha Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods for

n=100 . . . . . e 65
A.67 Beta Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods for

n=100 . . . . . 66
A.68 Alpha SD Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods

for n =100 . . . . . e e e e 67
A.69 Beta SD Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods

formn =100 . . . . . e 68

54



List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Median and third-quantile for absolute biases of  and 8 for n=100. . . . . . . ... ... .. 34
Median and third-quantile for absolute biases of SD(«) and SD(8) for n=100 . . . ... ... 35
Median and third-quantile for absolute biases of & and 8 for n=1000 . . . . . . ... .. ... 36
Median and third-quantile for absolute biases of SD(«) and SD(3) for n=1000 . ... .. .. 37
Median and third-quantile for absolute biases of a and g for n =5000 . . . . ... ... ... 38
Median and third-quantile for absolute biases of SD(«) and SD(8) for n =5000 . . . . . . .. 39
Computational Power Results for n =100 . . . . . . . . . . .. .. .. ... . . ... ..... 40
Computational Power Results for n =1000 . . . .. ... ... .. ... .. ... .. ..... 41
Computational Power Results for n =5000 . . . . ... .. ... ... ... ... ...... 42

55



025

saseig anjosqy ds eeg

0.00

saselg ainjosqy eleg

0.00

seselg ainjosay @S eudiy

0.08:

0.00

saselg aInosqy as eieg

Index

Index

Index

Index

Average Center

saselg aInjosqy gs e1eg

0.00

=

saseig anjosqy eleg

0.00

012
0.04

seseig anjosay as eudiy

0.00

seseig anjosay eudiy

=

0

0

0

0

Index

Index

Index

Index

Average 11

025

0.05

saseig aInjosqy as eleg

0.00

&l

sase|g aIn|osqy ela:

0.00

]

saselg anjosqy as eydy

0.00

06

saselg ainjosqy eydy

00

0

10

0

10

Index

Index

Index

Index

Average Corner

025

020

saseig anjosqy ds e1eg

005

0.00

&l

sase|g aIn|osqy el

0.00

seseig ainjosay as eudiy

0.0

0.00

0

saseig anjosqy eydly

00

Index

Index

Index

Index

Average Random

Average Center, Average 11, Average Corner and Average Random Results of n = 100

Figure A.1



g
Index
g
Index
o
Index

<TALY

Index

Index

saseig amnjosay as Eieg B saseig anjosay as eeg - saseIg aniosay aS eIy sa50.g aInjosqy as Eiog 3

saseig aInjosqy viog saselg aInjosqy viog

ik

soseig anjosay wiog Soseig anjosay EI9g

k= 10%
k= 20%
k =30%

g
Index
g
Index
o
Index

40%

k._

Index

o “seseig ainosav as eudly - saseig aimjosay as eydy - saseig amnosay as eudy ‘seseig anjosay as eudly

Index

soselg ainjosay eydly

saseig aInosqy eudiy saseig aInjosqy eydiy



soseIg awnjosay aS w1eg

o

Saseig aInosqy e1eg

-~

“seseig amposav as wydly

000

N ——— o~~~ ——

saseig aInjosqy eydiy

o)

o)

Index

Index

Index

Index

k =50%

saseig aiosay as eled

soselg ainjosqy viog

“saseig amposay aS eudly

saseig ainjosqy eydly

Index

Index

Index

Index

64%

k':

100

Figure A.2: k—Percent Center Results for n



10

.00

saselg anjosqy gs eeg

0.00

saselg ainjosqy e1eg

20

00

saseig aInjosqy as eydly

02

0.0

0

seselg amnjosqy eydiy

100
075

0.00

Index

Index

Index

Index

10%

.00

seseig anjosay as 12

=

050
0.00

soseig ainjosay €108

:

saseig ainjosqy as eydiy

:

00

0
Index

Index

0

Index

Index

100

saselg a1n|0sqy eydjy

0.00

20%

]

10
Index

1.00

saselg anjosqy gs eeg

<

0.00

saselg aInjosqy eleg

-

00

saselg anjosqy as eydiy

0.0

=

0

100

seselg anjosqy eydiy

0.00

Index

Index

Index

30%

k

0
Index

1

saseig aInjosav s e1eg
W x
3
£
22

saseig ainjosay 108

w |
92

saselg ainjosqy as eydyy
w |
92

saselg ainjosay eydiy

k= 40%



0.00

saseig anjosqy as eeg

o
00

seseig anjosqy eleg

mmmm,mym_omémmmﬁ,ﬂ

0.0

)

Index

0

0

0

075
0.00

seselg ainjosqy eydiy

Index

Index

Index

50%

k

1.00

seseig anosqy as eeg

0.75

0.25

0.00

saseIg aNoSqY el

00

m

saseig anjosav as eydiy

0.0

|

0

0
Index

100

0

0.5

saselg ainjosay eydiy

0.00

Index

Index

Index

k =64%

100

k—Percent 1l Results for n

Figure A.3



s

Index
Index
Index

R

saselg anjosqy gs eeg

=

z

0.0

0.0

0
Index
0
Index
0
Index

2

saseig ainjosqy e1og

saseig anjosqy s e1eg

=

00

00

10%
20%
30%

k

Index
Index
Index

2

saseig aInjosav as eudly

=

saselg ainjosqy ejeg

=

0.0

0.0

0
Index
0
Index
0
Index

ks

seselg amnjosqy eydiy

saseig anjosqy as eydiy

=

00

00

saselg ainjosay eydiy

%

Index

0
Index

%

k= 40%

Index

0
Index




0
Index

==

Index

saseig ainjosqy gs eieg

08

saselg anjosqy s eleg

=2

0
Index

100

0
Index

seselg anjosqy e1og

il

15

50%

soseig ainjosay €18

k

0
Index

k =64%
k—Percent Corner Results for n

Index

Figure A.4

saseig anjosqy as eydiy saseig anjosqy as eydiy

Hlk

0
Index

0
Index

12

saseig ainjosay eydy saseig anjosay eudiy



TN

0.0

saselg anjosqy gs eeg

saseig ainjosqy e1eg

00

’
2

0.0

saseig aInjosay as eydly

I

100
075

seselg anjosqy eydiy

0.00

0

Index

Index

Index

Index

10%

E

saseig anjosqy S e1eg

=

saselg ainjosqy ejeg

06

;

seseig anosqy as eydiy

100

j

saselg a1n|0sqy eydjy

0.00

Index

Index

0

Index

Index

20%

i

saseig aInjosqy as eleg

0.0

saselg aInjosqy e1eg

|

00

saselg anjosqy as eydiy

0.0

100

075

seselg anjosqy eydiy

0.00

0

Index

Index

Index

Index

30%

k

W

saseig anjosqy s e1eg

0.0

.

saselg ainjosqy ejeg

00

|

saseig anjosqy as eydiy

0.0

M

saselg ainjosay eydiy

0.00

%

0

%

Index

Index

Index

Index

k= 40%



Index

3 W
o2 9
" seseig ainjosay as weg saseig amnosay as eeg )
| w
3
]
£ 2
X
2 3 3 =) 4 3 3 3
saselg aInjosqy eeg L0 saselg aInjosqy eleg
M | W
o2 9
saseig anjosay as eudiy ) seseig anjosqy as eydly )
M | M
-] 9

saseig ainjosqy eydiy soselg ainjosay eydiy

Index

100

Index

k =64%
k—Percent Random Results for n

Index

Figure A.5



=

saseig aInosqy as v1og

£

0,00

- saselg anjosqy eleg

00

E

)
Index

Index

)

o
Index

seselg anjosqy as eydiy

00

)
Index

04

saseig ainjosqy eydly

00

=

saseig aInosqy as vieg

0.00

- saselg aIn|osqy eleg

00

=

Index

Index

o
Index

saseig ainjosay as eydiy

Index

04

saseig anjosqy eydyy

00

M

saselg aInjosay as eleg

)

0.00

saseig ainjosay eleg

00

w

seselg ainjosqy as eydyy

00

M

saseig anjosqy eydiy

00

Index

Index

Index

Index

100

saseig aInjosay as eleg

saseig ainjosay eleg

seselg ainjosqy as eydyy

saselg anjosay eydyy

Index

Index

Index

Index

10



m

0.00

saseig aInjosay s eleg

m

00

saseig ainjosay e1eg

W

)
Index

Index

)

g
Index

00

saseig ainjosay as eydiy

M

Index

00

saselg anjosqy eydyy

M

100

saseig aInjosay as eleg

0.00

¢

saseig anjosqy eleg

M

2

)

)

saseig aInjosqy as eydiy

00

M

)

saseig amnjosay eydly

Index

Index

Index

Index

Temporal 1 Subset-m Results for n=100

Figure A.6

11



beta hat

alpha hat

°
0.61
o
9]
0.4
8
Q
8
e : g °
e )
@) 6
. ; i ;
0212 g i
o :
© 8
o ¢}
i ‘
0 ° °
o o
2 3 4 5 6 7
time
Figure A.7: Temporal 1 Subset-m & vs « for n=100
e
4.
9]
3.
)
o o

.“r‘. o

s
1 e
®
2 3 4 5 6 7

time

Figure A.8: Temporal 1 Subset-m B vs 3 for n=100

12



:

saseig aInjosay s el

s

saseig ainjosay eleg

-

0

)

0

saseig ainjosqy as eydiy

)

saseig aInosay eudiy

Index

Index

Index

Index

saseig aInjosay s eleg

saseig anjosqy eleg

0
Index

Index

)

0
Index

seselg anjosqy as eydyy

)
Index

saseig ainosay eudiy

:

saseig aInjosay as eleg

z

saseig anjosay LG

-

Index

Index

Index

saselg ainjosqy as eydiy

;

)
Index

06

saseig ainosqy eyd)

100

Temporal Mean Subset-h results for n

Figure A.9

13



L

saseig aInjosay s eleg

.

00

saseig ainjosay e1eg

00

100
050

saseig ainjosqy as eydiy

s

0.00

saseig aInosay eudiy

00

Index

Index

Index

Index

saseig aInjosay s eleg

00

saseig anjosqy eleg

00

100

seselg anjosqy as eydyy

0.00

0

)

)

saseig aInosay eudiy

00

Index

Index

Index

Index

saseig aInjosay s eleg

saseig ainjosqy eleg

100

50

saselg ainjosqy as eydiy

0.00

Index

Index

Index

)

)
Index

o8-

saseig amnjosay eydly

100

Temporal Median Subset-h results for n

Figure A.10

14



0020

0.04 0.04

Beta SD Absolute Biases
Alpha SD A%sulute B\asés
Beta Absolg{e Biases s
Beta SD Absolute Biases
é

02

02

000 0,000 00 0.00
5 o 3 Eg 5 o [ o 5 o 3 o 5 ) [ B
Index Index Index Index
04 0.06
0,020
006
03
o
o 80015 " 8
8
2 4 2 & 0.0
Soos o 4 o
] @ o )
2 32 @ 3
E 2 Soz E]
2 Boow 3 2
2 < 2 <
< a < a
P a s @
Soo K] g & 002
< 5 @ o
< 0.005- o1 @
0.00 0.000 00 0.00
5 i) i3 Ed 5 ) 5 B3 ) i3 % 3 0 5 %
Index Index Index Index
04 0.06
0,020
006
03
o
o 2 0015 8
8 2 2 8
] 8 g 8 0.04
S 004 @ S b
o @ @ )
2 E] 2 3
2 8o g0z 2
H < 2 2
< a < a
P @ P @
£ ] g 0.02
Soo02 £ 3 g
< i @ £
< 0.005- oL @
000 0.000 00 0.00
5 ) i3 B3 5 o b3 o o i3 B 3 ) [ B
Index Index Index Index
04 0.06
006 0,020
" 03
0015 8
2 8 2
g £ H S0
£ 0.04 3 @
@ o &
g | H e
E 2 So2 El
El Boow0 3 2
2 < 2 <
< a < a
P @ P @
£ o g 0.02
Bone £ H g
< 0,005 o1 @
000 0,000 00 0.00
5 o 3 Eg 5 o [ o o 3 o 5 ) [ B
Index Index Index Index

Average Random

Figure A.11: Average Center, Average ll, Average Corner and Average Random Results of n = 1000

15



:

saseig ainjosqy as eeg

=

soselg anjosay eiog

E

saseig anjosay as eudy

E

g
Index

Index

o

E
Index

o
Index

soselg aInjosay eydly

k= 10%

j

saseig anjosay as eeg

:

soseig anjosay ei9g

01

saseig ainjosay as eudiy

W

g
index

Index

o

Index

g

Index

soseig anjosay Bydly

k=20%

soseig anjosay as #1eg

saseig aIniosqy eieg

o

i

o

01

mmmm,m(m_zsﬁawm?«

M

i

saseig aInosqy eudiy

index

Index

Index

Index

k= 30%

sastig aIosqy as eeg

saseig ainjosqy e1eg

W

%

saseig ainjosqy as eydiy

000

M

saseig aInjosqy eydiy

Index

Index

Index

Index

k= 40%

16



0 g 10 9
go 8 ¢ 8oz
2 B0 i :
2 2 E <
2 H
3 3 S0 3
£o1 . £ o1
2 £oo 3 g
- H
. M B . .
Index Index Index Index

i

Beta SD Absolute Biases

Alpha SD Absolute Biases
Beta Absolute Biases

Index Index Index Index

k =64%

Figure A.12: k—Percent Center Results for n=1000

17



saselg anjosqy gs e1eg

=

2
0.20
0.0

0.00

saseig ainjosay eiog

=

00

saselg anjosqy as eydiy

0.08-

0.00

seselg anjosqy eydiy

0.00

10

0

10

Index

Index

Index

Index

10%

0
Index

0
Index

0
Index

saseig anjosay aS @08
Saselg anjosqy eleg

seseig anjosqy as eydy

=

Index

015

0.00

s:

aselg aInjosay eyd)y

20%

N saseig anjosqy ds eleg -
- soseig anjosqy el

saselg aInjosqy as eydiy

aselg ainjosqy eydyy

E

0.00

10

0

10

Index

Index

Index

Index

30%

k

|

0.20-

saseig anjosqy s e1eg

0.15

W

0.00

saselg ainjosqy ejeg

00

W

0.0

seseig anjosqy as eydiy

0.00

015

@njosqy eydiy

0.00

0
Index

Index

0

Index

0

Index

k= 40%

18



Index

W | W
3
o2 o
2k ]
N " seseganosavaswes seseig anosay s eeg )
M | w
3
]
=3 2
N
3 S 3 3 =) B 3 3 3
saselg aInjosqy eeg L0 saselg aInjosqy eleg
W | M
3
o2 o
SE ]
° “saseig anjosqy as eydy “seseig anjosqy as eydly :
W a w
<E 9
saseig ainjosqy eydyy b h “saseig anjosqy eydly

Index

1000

Index

19

k =64%
k—Percent 1l Results for n

Index

Figure A.13



W

025

0.20

0.00

saselg aInjosqy as eeg

E

100

saseig ainjosqy e1og

]

0.00

0.08-

06

saselg anjosqy as eydy

K

0.00

015

0.00

E

aselg ainjosqy eydiy’

10

10

Index

Index

Index

Index

10%

3

seseig anosqy as e
seselg aInjosqy ejeg

seseig anosqy as eydly
E

aselg aInjosay eydly

0

0

Index

Index

20%

Index

Index

saseig ainjosay ds eeg -
soseig amnjosqy eleg

saseig aInosqy as eydiy

=

E

aselg ainjosqy eydyy

0.00

10

10

Index

Index

Index

Index

30%

k

seseig anosqy as e
seselg anjosqy ejeg
~ saseig ainjosav as eudly

amnjosqy eydiy

Index

0

Index

Index

0

Index

k= 40%

20



W

0.25

0.05-

saseig aInjosqy as e1eg

<

0.00

0

o
075
0.5

seseig anjosqy eleg

:

0.00

0.08-

seseig anosqy as eydiy

=

0.00

seselg ainjosqy eydiy

0.00

)

0

)

0
Index

Index

0.25

Index

0.20-

seseig anjosay as eeg

:

0.00

50%

k

Index

100

saselg ainjosqy ejeg

:

0.00

0.08-

saseig anjosqy as eydiy

0.06-

0.00

Index

0

Index

Index

0

Index

015

s:

aselg awnjosqy eydiy

0.00

k =64%

1000

k—Percent Corner Results for n=

Figure A.14

21



;

0.20
0.10:
0.05-

=t

seseig aNjosqy ds e

z

0.00

saseig ainjosqy e1og

08

00

<

saselg anjosqy as eydiy

=

0.00

0125

0100
0.025

mmmm,mms_om?m;n_(

0.000

10

0

10

i)

Index

Index

Index

Index

10%

saseig anjosqy s e1eg
h saselg aInjosqy ejeg
- saselg anjosqy as eydy

saselg a1n|osqy eydjy

Index

Index

20%

Index

Index

N soseig amnosqy as @eg -
saselg aInjosqy eleg

saselg aInjosqy as eydiy

3

0125

seselg anjosqy eydiy

0100
0.025

0.000

10

0

10

i)

Index

Index

Index

Index

30%

k

0.20

0.05
0.00

=

saselg ainjosqy s e1eg

0.06-

saselg ainjosqy ejeg
saseig ainjosqy as eydiy

0.00

0125

0.100

@njosqy eydiy

0

0

0

i)

Index

Index

Index

Index

k= 40%

22



|

0.20

saseig ainjosqy as eieg

;

0.00

06

seseig anjosqy eleg

|

00

0.06-

soseig anosqy as eydiy

0.00

W

0125

0100

seselg ainjosqy eydiy

0.000

)
Index

0

Index

Index

)

i)
Index

50%

k

M

- saseig anjosay as eleg :
h sose|g aInjosay e1eg

seselg anjosay as eydiy

0

0

0

0

0125

0100

050

o7

saseig anjosay eudly

Index

Index

Index

Index

k =64%

1000

k—Percent Random Results for n=

Figure A.15

23



alpha hat

beta hat

0.61

0.41

0.2

3.01

2.51

2.0

1.51

1.01

(0]
Q
Q
(@)
Q
Q
8
8 °
é 0 o
8 9 e
o)

s g ! ‘ 8 ‘.
9 8 o g 8
(¢] (@)

(©)
° °
2 3 4 5 6 7

time

Figure A.16: Temporal 1 Subset-m & vs « for n=1000

time

Figure A.17: Temporal 1 Subset-m B vs 3 for n=1000

24



)
Index
)
Index
Index

I

Index

g g 2 g g g g g g g g g H £ g g g g % ool amosay s s
o oS =l =l < saselg ain|osqy as eeg
saselg ainjosqy as eleg saselg anjosqy as eeg

)
Index

Index
Index

=

Index

N o = ~f = 3

25

Index

Index

- ; c - ; B - 2 ° " saseig anosqy wag
- 2 ° saseig anjosqy g
saseig ainjosay e1eg _ _ saseig ainjosay e1eg _ _ _
5 3
% 3 3
<2 22 22
3 3 S 2 E 3 2 S 3 2 3 2 S S 2 3 2 s ey
° o ¥ ° ° soselg aInjosqy as eydy soseig ANy a
seselg ainjosqy as eydiy saselg anjosqy as eydiy
] ] ]
g sE 22

S S S i
e saseig awnjosay eydly saseig awnjosqy By
seseig anjosay eudiy seseig anjosay eydiy



saseig aInjosay as eleg

saseig ainjosay e1eg

00

)
Index

)
Index

Eg

g
Index

saseig ainjosqy as eydiy

00

Index

saseig anjosay eydyy

00

100

saseig aInjosqy as eleg

saseig anjosqy eleg

2

)
Index

Index

)

Index

soseig aInjosay as eudy

)
Index

saseig amosqy eudiy

Temporal 1 Subset-m Results for n=1000

Figure A.18

26



7

06

saseig aInjosay s eleg

=

seseig anjosqy e1ag

=

saseig ainjosay as eydiy

=

g

)

g

)

saseig aInosay eudiy

Index

Index

Index

Index

M

saseig aInjosay s el

;

(o] 3 53 =

I saseig amjosqy wieg.

i

seselg anjosqy as eydyy

|

0

)

Index

0

)

saseig aInosay eudiy

Index

Index

Index

saseig aInjosay s eleg

saseig anjosqy eleg

saselg ainjosqy as eydiy

Index

Index

Index

)
Index

04

saseig amnjosay eydly

1000

Temporal Mean Subset-h results for n

Figure A.19

27



:

saseig aInjosay s eleg

c

saseig ainjosay e1eg

=

saseig ainjosqy as eydiy

=

saseig aInosay eudiy

Index

Index

Index

Index

X

saseig aInjosay s el

00

M

(o] 3 5 T

I seseig anosay eio

00

o

seselg anjosqy as eydyy

00

|

0

)

0

saseig aInosay eudiy

00

Index

Index

Index

Index

.

06
00

saseig ainjosay s e1eg

=

00

saseig anjosqy eleg

=

00

saselg ainjosqy as eydiy

=

Index

Index

Index

)
Index

00

saseig amnjosay eydly

1000

Temporal Median Subset-h results for n

Figure A.20

28



E

0,02

saselg anjosqy ds eeg

saselg ainjosqy eleg

:

5

00;

saselg anjosqy as eydiy

0.000

saselg aInjosqy as eleg

0.02

0.0

Index

Index

Index

Index

Average Center

0,03

saselg aInjosqy gs eleg

0.0

E

saseig anjosqy eleg

010
005

saselg anjosqy as eydiy

0.000

0.03

m W

0.00

saselg anjosqy eydiy

0

0

0

0

Index

;i

saseig aInjosqy as eleg

Index

0.00

:

seseig aInjosqy eleg

W

Average 11

Index

010
005

saselg anjosqy as eydy

Index

0.000

saselg ainjosqy eydy

0.03

0.00

0

10

10

10

Index

Index

Index

Index

Average Corner

:

0.02

saseig anjosqy s e1eg

0.00

:

saselg aInjosqy eleg

00

5

00:

saselg anjosqy as eydyy’

0.000

0

0

0.03

=

0.02

saseig aInjosay eudiy

0.00

Index

Index

Index

Index

Average Random

Average Center, Average ll, Average Corner and Average Random Results of n = 5000

Figure A.21

29



g

012
003

seseig aniosay as weg

losay eieg

:

g

saselg ainjosay as eydiy

i
Index

saseig aIniosqy eydiy

o

Index

Index

Index

10%

k

° " seseig anjosay s eeg
sosg awosay wog
" seseig ainjosay as eydyy

soselg anjosqy eydly.

k=20%

012

seseig aosay as eeg

o

:

soselg aInjosqy viog

m

g

sase/g 2n(0SqY @S BydIY

o
Index

b

o8

saselg aInjosqy eydiy

Index

Index

Index

30%

k:

)

o)

012

soseig ainosay as we

|

saseig aIniosqy eieg

o)

saselg ainjosqy as eydiy.

)
Index

0

o

saseig aIniosqy eudiy

Index

Index

Index

k = 40%

30



Alpha Absolute Biases

Alpha Absolute Biases

012
o
008
o6 o
g 2 g
a 8 @
H a0 2
Soa ° H
o 2 2 g°
< g £
s
3 5 3
£ 8 H
s . k]
B WW )
i M N W N W\/\/
5 T 3 = 7 7 3 % T 3 7 7 3 %
Index Index Index ndex
o
o8
o
o
a g &
g Go
o4 2 3
< 2
8 3
£ &
<o
) /\/\"\/\/\/\/v\/ . W , . /\M
: = ] 7 = D » 7 = D

o
Index

g
Index

o
Index

k = 64%

Figure A.22: k—Percent Center Results for n=5000

31

g
Index



:

)
Index

saseig aInosqy as eleg

[

0,09

0.00

saseig awnjosay eleg

00

:

i3

)
Index

)
Index

saseig aInosqy as eudly

0.00

=

Index

0.00

saseig anjosqy eydyy

0.06
004

k=10%

)

1

0.00

saseig aInjosay s el

seseig anjosay wiog

0.00

seselg anjosqy as eydy

<

W
:

Index

Index

)
Index

20

Index

saseig amnjosay eydly

k=20%

saseig aInjosay as e1eg

!

)

saselg an|osqy eleg X

)

003

W

saseig ainjosqy as eydiy

0.06

000

saseig awnjosay eydiy

5 ) 5 2
Index

Index

Index

Index

k= 30%

)

saseig aInjosqy as eleg

saseig ainjosay eleg

saselg ainjosqy as eydy

0.00

Index

Index

Index

)

Index

0.06

004
02

saseig amjosay eudly

0.00

40%

k:

32



saseig aInjosay as eleg

seseig aInjosay Bleg

saseig ainjosqy as eydiy

N \/\/\/\/\/\/ )

0

0.06

saseig ainjosqy eudiy

0.00

Index

Index

Index

Index

50%

k

saseIg aInosqy as ek

saseig awnjosay eleg

)
Index

)

Index

Index

)

Index

saseig aInosqy as eudly

saseig anjosqy eydyy

64%

k:

5000

k—Percent 11 Results for n

Figure A.23

33



0,075
o

saselg aInosqy as eleg

:

0,000,

saseig awnjosay eleg

00

:

003

saseig ainjosay as eydiy

0.00

Index

i3

)
Index

Index

)

Index

005

seseig ainjosqy eydly

k=10%

saseig aInjosay s eleg

:

0.000.

saseig anjosqy eleg

w

seselg anjosqy as eydyy

0.00

Index

Index

Index

)

20

Index

saseig amnjosay eydyy

k=20%

W | W |
. &

" soseig amjosay as eieg saselg anjosqy as e1eg

X

Ssselg sinosay Eiog e Saseig amiosqy w108

saseIg aNosqy s eudiy seseig aIiosqy as eudiy
W | W |
£ £
s s 2

saseig awnjosay eydiy

seseig anosqy eydy

40%

k:

34



0,075

050
0.000.

0

saseig aInjosay as e1eg

W

00

saselg ainjosay eleg

003

0.00

saseig ainjosqy as eydiy

;

0
Index

0.04

seseig ainjosay eydiy

000

Index

Index

Index

50%

k

saseig aInjosqy as vleg
saseig awnjosay eleg
saseig ainjosay as eydiy

seseig ainjosqy eydly

Index

)
Index

Index

)

Index

64%

k:

5000

k—Percent Random Results for n=

Figure A.24

35



=

06

saseig aInosqy as v1eg

=

o
Index

)
Index

100
0.00

saseig ainjosay eleg

=

o
Index

00

seselg ainjosqy as eydiy

=

)
Index

03
00

seseig ainjosqy eydiy

|

saseig aInosqy as vieg

o

;

T

saseig awnjosay eleg

0.00

;

o

saseig ainjosay as eydiy

E

o

seseig ainjosqy eydly

00

Index

Index

Index

Index

m

saselg aInosqy as vieg

W

00

Index

o
Index

100

seseig anjosqy e1ag

0.00

|

Index

saselg ainjosqy as eydy

00

j

Index

saseig anjosqy eydly

00

0

06

saseig aInjosay s eleg

100

seseig anjosay eieg

0.00

Index

Index

Index

saselg ainjosqy as eydyy

)
Index

saseig aInosay eudly

36



m

06

saseig aInjosay s eleg

00

M

100

saseig ainjosay e1eg

0.00

W

soseig aIniosqy as eudiy

00

w

Eg

g

0

Eg

g

saselg anjosqy eydy

00

Index

Index

Index

Index

saselg aInjosqy as elg

00

100
07

saseig anjosqy eleg

025
0.00

saseig aInjosqy as eydiy

Index

Index

Index

)
Index

saseig anjosay eydyy

Temporal 1 Subset-m Results for n=5000
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Figure A.26: Temporal 1 Subset-m & vs a for n=5000
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Figure A.27: Temporal 1 Subset-m B vs 3 for n=5000
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Figure A.28: Temporal Mean Subset-h results for n
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Figure A.29: Temporal Median Subset-h results for n
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Figure A.30: Alpha Absolute Bias of Average Center, Average 11, Average Corner, and Average Random
Methods for n = 5000
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Figure A.31: Alpha SD Absolute Bias of Average Center, Average 1, Average Corner, and Average Random
Methods for n = 5000
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Figure A.32: Beta Absolute Bias of Average Center, Average 1, Average Corner, and Average Random
Methods for n = 5000
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Figure A.33: Beta SD Absolute Bias of Average Center, Average 1, Average Corner, and Average Random
Methods for n = 5000
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Figure A.34: Alpha Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods for
n = 5000
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Figure A.35: Beta Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods for
n = 5000
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Figure A.36: Alpha SD Absolute Bias Temporal Mean Subset-h and Temporal Median Subset-h methods
for n = 5000
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Figure A.37: Beta SD Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods
for n = 5000
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Figure A.38: Alpha Absolute Bias of Average Center, Average 11, Average Corner, and Average Random
Methods for n = 1000
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Figure A.39: Alpha SD Absolute Bias of Average Center, Average 11, Average Corner, and Average Random
Methods for n = 1000
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Figure A.40: Beta Absolute Bias of Average Center, Average ll, Average Corner, and Average Random
Methods for n = 1000
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Figure A.41: Beta SD Absolute Bias of Average Center, Average 11, Average Corner, and Average Random
Methods for n = 1000
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Figure A.42: Alpha Absolute Bias of k-percent Center k-percent 1, k-percent Corner, and k-percent Random
Methods for n = 1000
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Figure A.43: Beta Absolute Bias of k-percent Center,k-percent 11, k-percent Corner, and k-percent Random

Methods for n = 1000
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Figure A.44: Alpha SD Absolute Bias of k-percent Center,k-percent ll, k-percent Corner, and k-percent
Random Methods for n = 1000
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Figure A.45: Beta SD Absolute Bias of k-percent Center k-percent ll, k-percent Corner, and k-percent
Random Methods for n = 1000
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Figure A.46: Alpha Absolute Bias of Temporal 1 Subset-m method for n = 1000
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Figure A.47: Beta Absolute Bias of Temporal 1 Subset-m method for n = 1000
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Figure A.48: Alpha SD Absolute Bias Temporal 1 Subset-m method for n = 1000
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Figure A.49: Beta SD Absolute Bias of Temporal 1 Subset-m method for n = 1000
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Figure A.50: Alpha Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods for
n = 1000
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Figure A.51: Beta Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods for
n = 1000
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Figure A.52: Alpha SD Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods
for n = 1000
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Figure A.53: Beta SD Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods
for n = 1000
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Figure A.54: Alpha Absolute Bias of Average, Average Corner, and Average Random Methods for n = 100
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Figure A.55: Alpha SD Absolute Bias of Average, Average Corner, and Average Random Methods for
n =100
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Figure A.56: Beta Absolute Bias of Average, Average Corner, and Average Random Methods for n = 100
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Figure A.57: Beta SD Absolute Bias of Average, Average Corner, and Average Random Methods for n = 100
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Figure A.58: Alpha Absolute Bias of k-percent Center,k-percent 11, k-percent Corner, and k-percent Random
Methods for n = 100
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Figure A.59: Beta Absolute Bias of k-percent Center,k-percent 11, k-percent Corner, and k-percent Random
Methods for n = 100
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Figure A.60: Alpha SD Absolute Bias of k-percent Center,k-percent ll, k-percent Corner, and k-percent
Random Methods for n = 100
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Figure A.61: Beta SD Absolute Bias of k-percent Center k-percent I, k-percent Corner, and k-percent
Random Methods for n = 100

62



0.4

0.31

Alpha Abs Bias
<)
N

0.11

0.01

Figure A.62: Alpha Absolute Bias of Temporal 1 Subset-m method for n = 100
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Figure A.63: Beta Absolute Bias of Temporal 1 Subset-m method for n = 100
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Figure A.64: Alpha SD Absolute Bias Temporal 1 Subset-m method for n = 100
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Figure A.65: Beta SD Absolute Bias of Temporal 1 Subset-m method for n = 100
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Figure A.66: Alpha Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods for
n =100
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Figure A.67: Beta Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods for
n =100
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Figure A.68: Alpha SD Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods
for n = 100
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Figure A.69: Beta SD Absolute Bias of Temporal Mean Subset-h and Temporal Median Subset-h methods
for n = 100
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