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Abstract

Radiation therapy is a critical modality in the eld of oncology. The primary goal of radia-

tion therapy is to destroy or control the growth of cancerous cells while minimizing damage

to healthy tissues. Intensity Modulated Proton Therapy (IMPT) is a type of radiation ther-

apy that utilizes protons to irradiate the tumor. The unique physical properties of protons

enable precise control over the radiation dose distribution within the tumor and more ef-

fective sparing of healthy tissues. Typically, radiation therapy treatment planning is posed

as a multi-criteria optimization problem, whereby the challenge is nding the best possible

treatment plan. In this study, we formulate and compare two optimization approaches for

IMPT treatment planning. We rst explore a linear programming (LP) approach, followed

by a moment-based approach where we incorporate the dose-volume requirements into the

uence map optimization (FMO) problem. The evaluation of these models is conducted

using anonymized patient data corresponding to a lung cancer case, with a focus on gener-

ating a good-quality initial plan that is amenable to further renement. The moment-based

approach has a drawback in terms of its high memory usage. To mitigate this limitation, we

explore several sparsication strategies aimed at reducing memory requirements. Employing

an aggressive sparsication method, we demonstrate that the moment-based approach out-

performs the LP model in dosimetric outcomes and computational run-time. We highlight

a trade-o between the quality of the treatment plan and computational run-time when

utilizing dierent sparcication strategies for the moment-based approach. By adopting a

less strict sparsication method, we anticipate achieving higher-quality treatment plans at

the expense of increased computational run-time.
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Chapter 1

Introduction

In Canada, cancer accounts for 28.2% of all deaths. It was estimated that in 2022, 233, 900

people would be diagnosed with cancer, 85, 100 of whom would die from this disease [3].

There are dierent methods for treating cancer, including surgery, chemotherapy, and radi-

ation therapy. One or a combination of two treatment procedures is chosen for each patient,

depending on the type and stage of cancer [4].

1.1 Radiation Therapy

Radiation therapy is a ubiquitous treatment for several types of cancer. There are two

types of radiation therapy, namely external (beam) radiation therapy and internal radiation

therapy. In internal radiation therapy, radioactive materials are placed in the body, whereas

in external radiation therapy, a machine directs high-energy beams to the point in the body

where the tumor lies. In this study, we will focus on external radiation therapy. Various

techniques are used to deliver external radiation therapy, including Intensity Modulated

Radiation Therapy (IMRT) and Intensity Modulated Proton Therapy (IMPT). IMRT is an

advanced approach where the radiation intensity is tailored to match the target’s shape.

Moreover, the intensity of each individual beam can vary, resulting in the delivery of a

higher radiation dose to the tumor while minimizing the radiation dose to adjacent healthy

1



tissues. IMPT uses protons instead of traditional radiation such as X-ray. We will discuss

the dierences between the two approaches in Section 1.6. The radiation damages the

deoxyribonucleic acid (DNA) of cancerous cells, stopping them from growing and dividing

[5]. An inevitable side eect of this treatment is that the radiation can damage healthy

tissues as it passes through the body. Therefore, the objective of radiation therapy is to

minimize the damage to healthy tissues while destroying or shrinking the tumor.

1.2 Treatment planning

After being diagnosed with cancer, the radiation therapist orders imaging tests such as a

computed tomography (CT) scan or magnetic resonance imaging (MRI) based on the type

of cancer. The information collected from these tests is imported into a treatment planning

system (TPS) and is used to build the treatment plan for the patient. The treatment plan

species the intensity of the radiation beams that are delivered to the patient’s body during

each treatment session.

Typically, radiation therapy treatment planning is posed as a multi-criteria optimization

problem. Depending on the type of cancer and where the tumor lies, the medical physicist

collaborates with the radiation oncologist to determine the dose distribution for both the

target and the organs at risk (OAR). An OAR refers to a healthy organ that is close to

the target. The objective function and the constraints are dened to meet the desired

dose distribution. After the optimization problem is solved and the beam intensities are

obtained, the dose distribution for each organ is computed and compared using dose-volume

histograms (DVH) to the desired dose distribution dened before planning. We will talk

more about the DVH in Section 1.4. This comparison determines the quality of the plan.

The closer the resulting dose distribution is to the desired dose, the higher the quality of

the treatment plan.

1.3 Dose-Volume Constraints

Recognizing that only constraining the minimum dose to the target and the maximum dose

to the healthy structures would not result in an optimal treatment plan, Spirou et al. [6] was

one of the rst groups to introduce the dose-volume requirements into the radiation therapy

2



Structure Name DVH Objective Evaluator

PTV D95%[cGy] ≥ 6650

Esophagus V60Gy[%] ≤ 17

Heart V50Gy[%] ≤ 25

Heart V30Gy[%] ≤ 35

Heart V5Gy[%] ≤ 50

Lungs-IGTV V20Gy[%] ≤ 25

Lungs-IGTV V25Gy[%] ≤ 20

Lungs-IGTV V35Gy[%] ≤ 15

Lungs-IGTV V50Gy[%] ≤ 10

Lungs-IGTV V5Gy[%] ≤ 70

Table 1.1: The dose-volume requirements for a lung case.

treatment planning [7]. Nowadays, dose-volume-based constraints are an inseparable part

of the optimization process in most commercial treatment planning systems.

Table 1.1 shows an example of the dose-volume requirements for a lung case. Let us look at

the rst constraint for the planning target volume (PTV). The PTV consists of the tumor

plus a margin that surrounds it. We will provide a formal denition of the PTV in the

following sections. The rst constraint can be described as the following: at least 95% of

the PTV should receive a dose greater than or equal to 6650 centigray (cGy). The second

requirement, which constrains overdosing the esophagus, can be interpreted in the following

way: no more than 17% of the esophagus should receive a dose greater than or equal to 60

gray (Gy). Furthermore, we can see the constraint on the mean dose to a healthy structure

which limits the mean dose to the OAR to the prescribed dose.

The incorporation of the dose-volume constraints is one of the main challenges in radiation

therapy treatment planning. In practice, each structure is discretized into small rectangular

elements called voxels. There are a large number of voxels within each organ, making the

treatment planning optimization problem large-scale in nature. Although dose-volume con-

straints play a crucial role in achieving high-quality treatment plans for patients, they induce

non-convexity into the optimization problem, resulting in models that are computationally

expensive to solve. In section 1.5, we will briey discuss some of the models proposed to

3



Figure 1.1: DVH for a prostate patient. The * denotes the point with coordinates x = 60
and y = 0.1 on the DVH of the bladder[1].

incorporate the dose-volume constraints in IMRT treatment planning.

1.4 Dose-Volume Histogram

There are two types of DVHs known as the dierential DVH and the cumulative DVH. We

will use the cumulative DVH for plan evaluation purposes in our study. The cumulative

DVH, shown in Figure 1.1, is a non-increasing function. Each point on the cumulative DVH

describes the percentage of the volume of the organ receiving dose greater than or equal

to a specic amount. For instance, take the point with coordinates x = 60 and y = 0.1

on the DVH of the bladder for a prostate patient, which means that no more than 10% of

the bladder receives a dose greater than or equal to 60 Gy. The DVH is one of the most

common tools for evaluating a treatment plan after completing the optimization step.

1.5 Previous Work

Several models have been proposed to handle dose-volume constraints, including but not

limited to mixed integer programming (MIP) and linear programming (LP) approaches.

Langer et al. [8] presented a MIP approach to incorporate dose-volume requirements in

radiation therapy treatment planning. In 2002, the MIP formulation was further investigated

by Bednarz et al. [9]. Due to the large number of binary variables in the MIP formulation,

these models are computationally expensive to solve. An LP approach was suggested by

Romeijn et al. [10], where they further used the concept of conditional value-at-risk to bound

the mean value of the tail of the dierential DVH of a structure. Among other approaches

proposed for handling the dose volume requirements, we can note the work of Spirou et al.

[6], who used a gradient-based algorithm for this purpose. Zhang et al. [11] devised a greedy
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approach, solving a sub-problem in each iteration. This method is time-consuming due to

its trial-and-error nature.

The notion of generalized equivalent uniform dose (gEUD), also known as moments, was

introduced to radiation therapy treatment planning by Niemierko et al. [12] as an alter-

native to purely DVH-based dose distribution. The incorporation of the gEUD into the

treatment planning optimization problem was further investigated by Wu et al. [13], where

the study involved the integration of the gEUD into the objective function. Comparing the

resulting plans with those generated using dose-volume-based criteria, the authors’ ndings

indicated that gEUD-based treatment plans could outperform the dose-volume-based plans

in terms of sparing the healthy tissues. Building on the work of Wu et al., Beong and Deasy

[14] conducted further investigation into the utilization of the gEUD in radiation therapy

treatment planning. Their study focused on analyzing the convexity of the gEUD equation

when incorporated into either the objective function or constraints.

Zinchenko et al. [15] was the rst group to propose using the gEUD values to approximate a

desired DVH, highlighting the one-to-one correspondence between the DVH and an innite

sequence gEUDα values for α = 1, 2, . . . . This approach showed promising results in terms

of demanding less computing resources compared to the traditional dose-volume-based for-

mulations. Following that, Zarepisheh et al. [1] proposed a convex-moment-based approach

to replace the non-convex DVH constraints resulting in plans whose DVHs are close to the

desired DVHs.

For more on dose-volume-based approaches, we refer the reader to Langer et al. [16], Wu et

al. [17], Starkschall et al. [18] and Dai et al. [19].

1.6 Proton Therapy

Proton therapy is a type of external beam radiation therapy that uses protons to kill cancer-

ous cells. There is an advantage to using protons to irradiate the tumor instead of traditional

radiation such as X-ray. The X-rays have high energy when entering the body, irradiating

healthy tissues on their way to the tumor. After reaching the tumor, they penetrate it with
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Figure 1.2: Dose distribution of protons versus x-rays [2].

high energy and exit the body.

Although their energy decreases as they travel through the body, they cause a lot of damage

to the healthy tissues on their way. In contrast, protons have low energy when entering the

body and have the ability to stop at the tumor, releasing their maximum energy, known as

the Bragg peak, at the target, as shown in Figure 1.2. Therefore, proton therapy performs

better at delivering a sucient dose to the target while sparing the healthy tissues in the

body.

Figure 1.3 illustrates the color wash dose distributions for a patient with lung cancer treated

with photon and proton beams. The color scale on the right-hand side shows the dose

intensity, where lower doses correspond to blue hues and higher doses to red hues. The

gures distinctly showcase the dierences in the behavior of proton and photon beams upon

penetrating the patient’s body, as described earlier.

1.7 Sources of Uncertainty in Radiation Therapy

Radiation therapy treatment planning is subject to a range of uncertainties that may arise

either within a single treatment session or between sessions. These uncertainties can be

6



(a) Photon (b) Proton

Figure 1.3: The color wash dose distributions for a patient with lung cancer treated with
photon and proton beams.

caused by factors such as patient movement or organ motion from breathing within one

treatment session, or changes in the patient’s weight and set-up errors from one treatment

session to another. Disregarding the uncertainty in the treatment plan results in an uneven

dose distribution, causing cold spots in the tumor.

A conventional method for addressing these uncertainties is to introduce a margin to the

gross tumor volume (GTV), treating the area with a highly uniform dose. The GTV refers

to the tumor itself. The clinical target volume (CTV) encompasses the GTV along with an

additional margin to account for sub-clinical disease spread. The PTV, which includes the

CTV plus a margin, accounts for uncertainties in planning or treatment delivery. Irradiating

the PTV with a uniform dose produces a plan that is more robust against uncertainties.

However, this approach can lead to increased radiation exposure to surrounding healthy

structures, negatively impacting the patient’s quality of life.

There have been numerous attempts to systematically create a robust treatment plan ca-

pable of addressing the uncertainties present during the course of treatment. One such

approach relies on robust optimization, a sub-eld of optimization that deals with uncer-

tainties in the data. The assumption in the robust optimization is that the input data for

the optimization problem is not precisely known but rather belongs to a set referred to as

7



the uncertainty set. By ensuring that the coecients fall within this set, robust optimization

guarantees that the constraints of the optimization problem at hand will not be violated.

For an excellent reference on robust optimization, see [20].

Regarding the utilization of robust optimization in radiation therapy treatment planning,

we can mention the work of Chu et al. [21] and Chan et al. [22]. Chu et al. have proposed a

probabilistic method and a robust linear programming approach with ellipsoidal uncertainty

set on the cumulative dose to a voxel for intensity-modulated radiation therapy. Chan et al.

have developed a robust framework for handling uncertainties in breathing motion which

outperforms the conventional methods of using margins around the tumor at sparing the

healthy tissues.

In addition to photon therapy, robust optimization has also been employed in proton ther-

apy treatment planning. The minimax approach, also known as the worst-case approach,

has been utilized in IMPT. In this approach, the penalty associated with the worst-case

scenario is minimized with the goal of obtaining a treatment plan that is as good as possible

for the worst scenario. Unkelbach et al. ([23], [24]) have proposed a stochastic program-

ming approach where each error scenario (for instance an overshoot or undershoot scenario

caused by range uncertainty) is associated with an importance weight. This method in-

volves assigning a high weight to probable scenarios while allocating a small weight to error

scenarios that are considered feasible but improbable and minimizing the weighted sum of

objective functions evaluated for all these error scenarios. For more on robust optimization

in radiation therapy treatment planning, we refer the interested reader to [25].

1.8 Our Work

We will formulate and compare two optimization approaches for the treatment planning

optimization problem in proton therapy focusing on a patient with lung cancer. We will

rst investigate a linear programming approach where we constrain the average dose to the

healthy structures while ensuring that the target receives a sucient dose. Subsequently,

we will explore a moment-based approach built on the aforementioned linear programming

model, where we incorporate a relaxation of the dose-volume requirements. Our goal is

8



to compare these models in terms of generating a good initial plan. We believe better

basic models would result in more optimal nal treatment plans. The models developed in

this study are suitable for integration into the robust proton therapy treatment planning

framework.

In Chapter 2, we will introduce the technical basics relevant to our work and describe the

two optimization models in detail. In Chapter 3, we will discuss the experiments and how

the input data was obtained using a radiation therapy treatment planning software named

matRad. In Chapter 4, we will report the results and compare the two models in terms

of both dosimetric outcomes and computational run-time, and in the nal chapter, we will

discuss future work.

9



Chapter 2

Methodology

2.1 Preliminaries

We begin by introducing some of the technical preliminaries relevant to our work.

2.1.1 Notation and Technical Basics

Deterministic quantities are represented using small case letters such as t and α, while

deterministic vectors are represented using small case bold letters like d and w. We use

capital letters and their combinations, like F , DVH , and D, to denote functions and random

variables. Matrices are represented using bold capital letters like∆, and sets are represented

using script capital letters such as V.

As mentioned in the previous chapter, each treatment volume, including the target and the

OARs, is discretized into small cubes known as voxels. For each structure with the voxel

set V and the number of voxels equal to |V|, let the vector d ∈ ℜ|V| denote the dose to each

voxel within the structure. Let the vector w ∈ ℜ|B| determine the intensity of each beamlet,

where B is the set of all beamlet indices of cardinality |B|. Suppose ∆v,b represents the

amount of dose that is delivered to voxel v at the unit intensity of beamlet b, then the dose

10



delivered to voxel v is

dv =


b∈B
∆v,bwb. (2.1)

The matrix ∆ ∈ ℜ|V|×|B| with entries ∆v,b is known as the deposition matrix or the dose-

inuence matrix. With the deposition matrix xed, we describe all realizable dose vectors

with the following linear system of equations and inequalities,





d = ∆w,

w ≥ 0.

(2.2)

For a structure with number of voxels equal to |V|, the gEUD value for parameter α is

dened as,

gEUDα =


1

|V|


v∈V
dα
v

 1
α

. (2.3)

where dv denotes the dose to voxel v. The convexity of gEUD for α ≥ 0, with respect to

the dose d ≥ 0, can be easily seen since it is a scalar multiple of the α-norm of the vector

d ∈ ℜ|V|.

The α-degree moment of the dose delivered to a structure is dened as,

Mα(d) =
1

|V|


v∈V
dα
v . (2.4)

2.1.2 A Simple Model

For better understanding, let us formulate a prototypical treatment planning optimization

model without the incorporation of the dose-volume requirements. For simplicity, assume

that we have only one target and one OAR with voxel indices T and C respectively. Let

dC and ∆C denote the dose vector and the dose-inuence matrix for the healthy structure.

Similarly, we dene dT and ∆T as the dose vector and the dose-inuence matrix for the

tumor. As there is a high chance that at least a few voxels in the target cannot meet the
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prescribed homogeneous dose, a common approach is to relax this requirement by dening

non-negative auxiliary variables ut and ot which quantify the degree to which the target is

under- or over-dosed, respectively. By minimizing these variables in the objective function

we are constraining the dose to each voxel of the target to remain between the minimum

and maximum prescribed dose values.

The resulting model can be formulated in the following way:

min
w,d,o,u


c∈C

dc +

t∈T

(ot + ut)

subject to dC = ∆Cw,

dT = ∆T w,

dt − ot ≤ πmax, ∀t ∈ T ,

dt + ut ≥ πmin, ∀t ∈ T ,

w,o,u ≥ 0,

(2.5)

where constants πmin and πmax correspond to the minimum and maximum prescribed dose

to the target, respectively.

2.2 Models Under Consideration

In this section, we will present the two models used in this study. For simplicity, we assume

to have only one target and one healthy structure when describing the models. For our

numerical experiments, we will extend the models to account for more than one OAR.

2.2.1 Linear Programming Approach

The LP formulation utilized in this study serves as a base model upon which the moment-

based approach is constructed. Specically, this model imposes constraints on the mean

dose delivered to each healthy structure to its prescribed dose values. For the target, a

similar approach as outlined in the prototype model (2.5) is adopted, whereby the under-

and over-dose variables are minimized in the objective function to ensure that the dose to

the target falls within the prescribed dose range.

12



The LP model is formulated as follows:

min
w,o,u


t∈T

(ot + ut)

subject to dC = ∆Cw,

dT = ∆T w,

1
|C|


c∈C

dc ≤ τmean,

dt − ot ≤ πmax, ∀t ∈ T ,

dt + ut ≥ πmin, ∀t ∈ T ,

w,o,u ≥ 0,

(2.6)

where constants πmin and πmax correspond to the minimum and maximum prescribed dose

to the target, and τmean refers to the mean prescribed dose to the healthy structure, respec-

tively.

2.2.2 Moment-Based Approach

The formal relationship between the gEUD values and the DVH was investigated in [15].

Zinchenko et al. [15] note: Given a DVH, the innite sequence of values

gEUDα


α=1,2,...

is determined uniquely. Conversly, the sequence

gEUD1, gEUD2, gEUD3, . . .


uniquely

determines the DVH. Drawing from this fact, Zarepisheh et al. [1] proposed a moment-

based approach, which we will adopt in this study.

Let d̄ denote some ideal, not necessarily realizable, dose corresponding to the reference

DVH. For a given structure, the reference DVH refers to a dose-volume histogram meeting

all the prescribed dose-volume criteria.

We dene the reference moments as,

µC
α = Mα


d̄C


,

µT
ω = Mω


d̄T


.

(2.7)
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To obtain the reference moments, it is not required to know d̄ explicitly. The dierential

DVH, denoted as DVH∆, can be used to calculate the rst reference moment as follows:

µC
1 =

 ∞

0

t DVH∆(t) dt = −t DVH(t)|∞0 +

 ∞

0

DVH(t) dt =

 ∞

0

DVH(t) dt. (2.8)

Note that in M
∞
0

DVH(t)dt, we can replace the upper integration limit +∞ with δmax,

which represents the highest dose allowed to the structure. The higher degree reference

moments for the OARs and the target are calculated in a similar way.

To achieve a treatment plan resulting in a dose distribution that matches the reference

DVHs, it suces to solve the following semi-innite non-linear feasibility problem,





dC = ∆Cw,

dT = ∆T w,

Mα(dC) = µC
α, α = 1, . . . ,∞,

Mω(dT ) = µT
ω , ω = 1, . . . ,∞,

w ≥ 0,

(2.9)

where the moments are dened as in (2.4), and µT
α , µ

T
ω correspond to the reference moments,

dened as in (2.7), for the OAR and target respectively.

There are two main challenges in solving the problem (2.9).

The moment constraints specied in (2.7) are non-convex. Although the moments are convex

and increasing functions of the dose, the equalities in the constraint specication result in

non-convex constraints. To address this, we replace the equality constraints,

Mα(dC) = µC
α, α = 1, . . . ,∞ (2.10)

by the inequality constraints

Mα(dC) ≤ µC
α, α = 1, . . . ,∞. (2.11)

14



Furthermore, the problem has an innite number of constraints. To overcome this issue,

we use a nite number of moment constraints (rst and second-degree moments) for each

structure.

Keeping this in consideration, the moment-based approach is formulated in the following

way:

min
w,o,u


t∈T

(ot + ut)

subject to dC = ∆Cw,

dT = ∆T w,

Mα(dC) ≤ µC
α, α = 1, 2

1
|C|


c∈C

dc ≤ τmean,

dc ≤ τmax, ∀c ∈ C,

dt − ot ≤ πmax, ∀t ∈ T ,

dt + ut ≥ πmin, ∀t ∈ T ,

w,o,u ≥ 0,

(2.12)

To keep our model simple, we have not used moment-based constraints for the target and

used an approach similar to the methodology employed in (2.5) to avoid under- or over-

dosing the target.

15



Chapter 3

Computational Set up and

Results

3.1 Patient Data and Plan Objectives

To evaluate the performance of our models, we performed our study on a patient with lung

cancer; for a sample geometry, see Figure 3.1. The anonymized patient data was provided

by our collaborators at the University of Pennsylvania. It is worth noting that for this study,

we have used the clinical data of a patient who has undergone prior treatment. To obtain

the plan parameters suitable for this patient, we imported their CT scans into Eclipse [26].

Eclipse is a treatment planning system developed by Varian medical systems, which is used

to create a treatment plan given the data of a patient. After importing the CT scans of our

patient into Eclipse, we dened two beams at angles 0◦ and 270◦ based on the experience of

the radiation oncologist. As the tumor for this patient is close to the surface of the body, we

have introduced two range shifters (RS) with a width of 5 cm for each beam. A range shifter

is a stopping material inserted between the nozzle and the patient, which is used to reduce

the beam energy when the tumor is in a shallow depth [27]. We have introduced a margin of

1 cm around the tumor to ensure that the target receives a uniform dose and is suciently
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Figure 3.1: CT slice of the lung patient scan with contours for structures of interest.

irradiated. After dening the plan parameters, we initialized the optimization module of

Eclipse to obtain the DVHs. Please note that multiple iterations of the optimization step

may be necessary to yield a high-quality treatment plan. After achieving an acceptable plan,

see Figure 3.2, we exported the CT les from Eclipse, now containing the plan parameters.

As mentioned earlier, to derive the dose vector for each structure, we need to calculate the

dose-inuence matrix specic to each organ. In this study, we have used matRad [28] to

nd the dose-inuence matrices. matRad is an open-source software for radiation therapy

treatment planning developed entirely in Matlab. The rst step in obtaining the dose-

inuence matrices is to import the patient data into matRad. Using matRad’s Digital

Imaging and Communications in Medicine (DICOM) import module, we imported the CT

data obtained from Eclipse, now containing the plan parameters, such as the width of the

range shifter, into Matlab. This module can be accessed via the graphical user interface

(GUI) or by calling the relevant function manually.

Once the les are imported, this module stores the data obtained from the DICOM les into

a Matlab structure and cell array named ct and cst, respectively. The ct structure contains

information about the voxels, such as their size and number in the x-, y-, and z- directions.

The cell array cst contains information about the volumes of interest (VOI), including but

not limited to the VOI’s name, type (whether the VOI is an OAR, a target volume, or
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Figure 3.2: The DVHs exported from Eclipse.

should be ignored), and voxel indices (vectors containing the indices of all voxels covered by

the VOI) [29]. The next step is to determine the treatment plan parameters, which can be

accomplished in two ways: via the GUI or using the Matlab structure named pln. The plan

parameters to be specied are the radiation modality (photons, protons, and carbon), gantry

and couch angles, the iso-center, the number of fractions, and the voxel width. Following

that, the dose calculation function can be called in the same two ways mentioned earlier.

Within matRad, the conventional dose-to-water-pencil beam algorithm described in [30] is

employed to compute the dose deposition matrix for the proton module [31]. The dose

calculation function returns the structure dij, which holds the dose-inuence matrix stored

in a cell named physicalDose. The size of the dose-inuence matrix generated by matRad

is |V| × |B|, where |V| represents the number of voxels in all the structures, and |B| denotes

the number of beams. The resulting matrix was used as the input to both our moment

and LP approaches. It is worth noting that matRad has a built-in optimization algorithm

that relies on the interior point optimizer package (IPOPT) [32] to solve the treatment

planning optimization problem given a set of clinical objectives [31]. Upon solving the

optimization problem, matRad generates the DVHs for each organ. In our study, however,

we have only used the dose-inuence matrices generated by matRad and implemented our

own optimization models.

Regarding the beam arrangements, we used two elds at the gantry angles 0◦ and 270◦, which

have been pre-dened when developing a plan in Eclipse. We used the proton radiation mode

with 3 mm voxel width. The number of fractions was used at its default value of 30, and

the iso-center was determined through calculations performed by matRad. This resulted

in a total of 120, 182 voxels for three OARs and 7, 599 for the target and a total of 83, 359
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Structure Name DVH Objective Evaluator

Esophagus Mean[cGy] ≤ 3400

Heart Mean[cGy] ≤ 1000

Lungs-IGTV Mean[cGy] ≤ 1800

Table 3.1: The mean dose constraints for the OARs.

beamlets.

The planning objectives for this patient consist of a minimum prescribed dose of 70 Gy

and a maximum prescribed dose of 72 Gy to the PTV for both the LP and moment-based

approach. For the LP approach, we constrain the mean dose to the healthy structures as in

Table 3.1. For the moment-based approach, in addition to limiting the mean dose to each

structure, we add second-moment constraints as in (2.12), corresponding to the dose-volume

requirements as specied in Table 3.2. Furthermore, we limit the maximum dose to each

healthy structure to 72 Gy.

In particular, the moment-based approach requires calculating the reference moments. These

reference moments can be obtained from the reference DVHs. One strategy for nding the

reference DVHs is to utilize the treatment plans from patients who were previously treated

and had the same type and stage of cancer. This method requires having a database con-

taining treatment plans of previously treated patients in addition to an algorithm capable

of identifying the best match based on the location of the tumor and the organs involved.

An alternative methodology is to create the reference DVHs based on the dose-volume

requirements prescribed for the specic patient. Given a set of critical points, one can

construct a reference DVH by connecting these points forming a piece-wise linear function.

In this study, we have used the second approach, constructing the reference DVHs from the

patient’s prescribed dose requirements provided by the University of Pennsylvania. Figure

3.3 shows the reference DVHs for the OARs created by connecting the critical DVH points
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Structure Name DVH Objective Evaluator Acceptable Variation

Esophagus Mean[cGy] ≤ 3400 -

Heart V50Gy[%] ≤ 25 -

Heart V30Gy[%] ≤ 35 -

Heart V5Gy[%] ≤ 50 -

Heart Mean[cGy] ≤ 1000 2000

Lungs-IGTV V20Gy[%] ≤ 25 35

Lungs-IGTV V25Gy[%] ≤ 20 30

Lungs-IGTV V35Gy[%] ≤ 15 25

Lungs-IGTV V50Gy[%] ≤ 10 20

Lungs-IGTV V5Gy[%] ≤ 70 75

Lungs-IGTV Mean[cGy] ≤ 1800 2000

Table 3.2: The dose-volume requirements for the OARs.

based on the dose-volume constraints outlined in Table 3.2.

3.2 Computational Environment

The computational experiments were conducted on a workstation equipped with AMD

Ryzen 7 4800H with eight 2.90 GHz cores and 16 GB RAM. Both the linear and the

moment-based approaches were implemented in Matlab R2021a with CVX using Gurobi

v9.00. CVX is a modeling system for building and solving disciplined convex programming

problems, which supports several standard problem types, including linear and quadratic,

second-order cone, and semi-denite programs.

3.3 Model Evaluation Criteria

Our primary objective is to evaluate both the LP and moment-based models in terms of

generating a good initial plan which can be further enhanced with an emphasis on the

controllability of the resulting DVHs. For this purpose, we will compare the two models

with regard to:
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Figure 3.3: The reference DVHs used for the lung patient.

• generating an initial treatment plan of good quality,

• producing the plan in a time-frame suitable for clinical use, utilizing conventional

computing resources.

3.4 Numerical Results

3.4.1 The Linear Programming Approach

We rst start by presenting the results of the LP approach. As mentioned earlier, in this

approach, we are constraining the mean dose to the healthy structures without incorporating

the dose-volume requirements. For the target, we are penalizing over- or under-dosing the

PTV. In Figure 3.4, we can see the resulting DVHs. For the PTV, at least 95.8% of the

volume receives the prescribed dose of 70 Gy, while 6.7% of the volume receives a dose

greater than 72 Gy. The minimum dose to the PTV is 69 Gy, and the maximum dose is 73

Gy. For the OARs, the mean dose to the lungs-IGTV, heart, and esophagus is 18.8, 10, and

34 Gy respectively, satisfying the mean dose constraints for the heart and the esophagus and

meeting the acceptable variation for the lungs-IGTV. The run-time for the LP approach is

approximately 1.5 hour.
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Figure 3.4: The resulting DVHs for the LP approach, where the * represents the critical
DVH points.

3.4.2 The Moment-based Approach

In this approach, we are implementing the dose-volume requirements on top of the lin-

ear model, in other words imposing more limitations on the dose delivered to the healthy

structures. We use the same method as in the LP approach for the target.

In our rst experiment running the moment-based model, the program terminated unex-

pectedly due to memory overow. Therefore, we investigated the dose inuence matrices for

each structure to nd the underlying factors. The deposition matrices in the treatment plan-

ning optimization problem are highly sparse. We observed that the dose-inuence matrices

for the lungs-IGTV, heart, esophagus, and PTV contain approximately 1.3%, 0.13%, 0.9%,

and 1.8% non-zero values, respectively. The total number of non-zeros in these matrices

is 118, 899, 327. Moreover, our investigation revealed that the values in the dose-inuence

matrices range from as small as 1.2852e− 21 to 2.0695e− 05 for the OARs and 8.3957e− 21

to 9.4484e− 06 for the target for this patient.

The Gurobi optimizer oers two primary methods for solving continuous models and the

continuous relaxations of MIP models: the barrier and the simplex algorithm. For our
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(a) A (b) AAT

Figure 3.5: The sparsity patterns of matrices A and AAT .

model, which is a second-order conic programming (SOCP) problem, Gurobi uses the barrier

algorithm. It is worth mentioning that generally, the barrier algorithm performs better for

complex, large-scale models; however, it is more numerically sensitive [33].

In each iteration of the barrier algorithm, the scaled matrix AAT is formed, and subse-

quently, Cholesky factorization is performed. Here, matrix A corresponds to the dose inu-

ence matrix for each structure. Figure 3.5, shows the sparsity patterns of matrices A and

AAT . We can observe that matrix A has 13, 526, 262 non-zeros and this number increases to

229, 455, 228 in AAT . Furthermore, the Cholesky factor L, where A = LLT , contains more

non-zeros compared to A, as the computation of the Cholesky factorization creates ll-in

non-zeros. Therefore, storing the matrix AAT and performing the factorization operations

for a matrix with a large number of non-zeros within a small range would require signicant

memory resources.

To reduce the memory requirements, we decided to experiment with several variants of spar-

sication strategies. As previously noted, each entry of the dose inuence matrix determines

the amount of dose that each voxel receives. It is worth noting that a subset of these entries

which have small values, capture scattered energy. Therefore, converting small values to

zero does not aect the overall quality of the treatment plan.

In our rst experiment, we used an aggressive sparsication method, converting any number

less than 10−5 and 10−7 to 0 for the OARs and the PTV, respectively, resulting in the total
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Figure 3.6: The resulting DVHs for Method 1, where the * represents the critical DVH
points.

number of 13, 699, 756 non-zeros in the deposition matrices. See Figure 3.6 for the resulting

DVHs. Henceforth, we will refer to the this approach as Method 1. The minimum dose

to the PTV is 70 Gy, and the maximum dose is 72 Gy. For the OARs, the mean dose to

the lungs-IGTV, heart, and esophagus is 14.37, 6.8, and 21.32 Gy respectively, satisfying all

the mean dose constraints. The maximum dose to the lungs-IGTV, heart, and esophagus

is 70.34, 59.65, and 70.91 Gy respectively, not exceeding the maximum prescribed dose for

any of the healthy structures. In terms of the dose volume requirements for the lungs-IGTV

and the heart, see Table 3.3. From the table, we can see that Method 1 has met all the

requirements for the heart while has been able to meet two requirements and one acceptable

variation for the lungs-IGTV. The run-time for this approach is approximately 3 minutes.

In our next experiment, we used a less aggressive sparsication method, converting any

number less than 0.6×10−5 and 10−7 to 0 for the OARs and the PTV respectively, resulting

in the total number of 22, 816, 928 non-zeros in the deposition matrices. See Figure 3.7 for

the resulting DVHs. Henceforth, we will refer to this approach as Method 2. For the PTV,

the results are the same as the previous moment-based approach. For the OARs, the mean

dose to the lungs-IGTV, heart, and esophagus is 17.52, 8.87, and 33.91 Gy respectively,

satisfying all the mean dose constraints. The maximum dose to the lungs-IGTV, heart, and
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Structure Name Dose (Gy) Volume (%) Meeting the Requirement

Heart 5 33 ✓

Heart 30 5 ✓

Heart 50 0 ✓

Lungs-IGTV 5 44 ✓

Lungs-IGTV 20 38 #

Lungs-IGTV 25 34 #

Lungs-IGTV 35 20 N

Lungs-IGTV 50 2 ✓

Table 3.3: Shows whether the dose-volume requirement has been met in Method 1. ✓
identies as meeting and # identies as not meeting the requirement, and N identies
as meeting the acceptable variation.

esophagus is 71.94, 48.19, and 70.77 Gy respectively, not exceeding the maximum prescribed

dose for any of the healthy structures. In terms of the dose volume requirements for the

lungs-IGTV and the heart, see Table 3.4. From the table, we can see that Method 2 has met

all the requirements for the heart while has been able to meet two requirements and one

acceptable variation for the lungs-IGTV. The run-time for this approach is approximately

34 hours.

In our nal experiment, we set all values less than 10−7 to 0 for the OARs and the PTV

resulting in the total number of 98, 428, 835 non-zeros in the deposition matrices. Running

this model on a machine with 16 GB of memory was infeasible due to memory constraints.

As a result, we attempted to run the model on a machine with 143 GB of memory. However,

after running the program for a week, we manually terminated it as the model was deemed

unsuitable for clinical use. The results obtained by the one-week mark were inconclusive.

In the next section, we will summarize the results of our experiments in terms of both the

dosimetric outcomes and computational run-time.
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Figure 3.7: The resulting DVHs for Method 2, where the * presents the critical DVH
points.

Structure Name Dose (Gy) Volume (%) Meeting the Requirement

Heart 5 50 ✓

Heart 30 5 ✓

Heart 50 0 ✓

Lungs-IGTV 5 76 #

Lungs-IGTV 20 45 #

Lungs-IGTV 25 29 N

Lungs-IGTV 35 8 ✓

Lungs-IGTV 50 1 ✓

Table 3.4: Shows whether the dose-volume requirement has been met for Method 2. ✓
identies as meeting and # identies as not meeting the requirement, and N identies
as meeting the acceptable variation.

26



3.5 Comparative Results

3.5.1 Dosimetric Outcome

In terms of PTV coverage, the moment-based approach outperforms the LP approach,

satisfying the minimum/maximum dose requirements. In the moment-based approach, the

PTV receives at least 70 Gy and at most 72 Gy, while in the LP approach, at most 4.2%

of the PTV receives a dose less than 70 Gy and approximately 6% of the volume, receives a

dose greater than 72 Gy. Despite using the same constraints and objective function for the

target in both the LP and moment-based approaches, we have observed dierent results.

This outcome can be attributed to the sparsication of dose deposition matrices for the

moment-based approach, which leads to a considerably smaller model and dierent results.

For the PTV, both Method 1 and Method 2 for the moment-based approach yield the same

result.

Regarding the OARs, the moment-based approach provides better results as we are im-

posing more restrictions on the dose requirements for the lungs-IGTV and the heart. It is

worth noting that in the moment-based approach, we are not implementing dose-volume

requirements for the esophagus, and we are only limiting the mean dose.

Comparing the two sparsication methods used in the moment-based approach, in terms

of dose-volume requirements for the healthy structures, we see that in both approaches,

the dose-volume requirements for the heart have been satised. For the lungs-IGTV, both

Method 1 and Method 2 satised two requirements and one acceptable variation. It is

important to note that in Method 2, for the lungs-IGTV, as the dose increases, the relative

volume decreases, meaning that the OARs receive less dose in Method 2 compared to Method

1. For instance, in the second method for the lungs-IGTV, approximately 8% of the volume

receives 35 Gy, while in the rst approach, approximately 20% of the volume receives 35

Gy.

3.5.2 Computational Run-time

As we observed, the moment-based approach Method 1 has the fastest run-time of approx-

imately 3 minutes, followed by the LP approach at 1.5 hour, and then the moment-based
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approach Method 2 at 34 hours. The moment-based approach Method 1 is the only method

suitable for clinical use in terms of computational run-time. Although the moment-based

approach is a more sophisticated model with second-order conic constraints, Method 1 has a

faster run-time compared to the LP approach. This nding could be explained due to faster

computations for sparse problems, as opposed to problems of comparable size but higher

density.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this study, we have formulated and implemented two approaches for proton therapy

treatment planning optimization problem, namely the linear programming and the moment-

based approach. We assessed these models based on their ability to generate good-quality

initial treatment plans, as we assume that better initial plans would lead to higher-quality

nal plans. We compared these models in terms of dosimetric outcomes and computational

run-time. It is noteworthy that we performed this study on the clinical data of a patient

with lung cancer.

For the target, we penalized over- and under-dosing the PTV in both approaches. In the

LP approach, we constrained the mean dose to the healthy structures, while in the moment-

based approach, we went one step further, incorporating the dose-volume requirements

into the treatment planning optimization problem. We observed that the moment-based

approach outperforms the LP model in terms of target coverage. Regarding the OARs, as

expected, the moment-based approach yields better results compared to the LP approach as

we are imposing more limitations on the dose delivered to the healthy structures. However,

as the model becomes more sophisticated, there will be additional drawbacks to consider,
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in this case, higher memory usage and slower computational run-time.

Due to the high memory usage required for solving the moment-based approach, we oered

a solution setting all values less than a specic threshold to 0 in the dose deposition matrices

for the target and the OARs. First, we used an aggressive sparsication method reducing

the number of non-zero elements from 118, 899, 327 to 13, 699, 756. Although this approach

satised all the dose-volume requirements for the heart, it violated two requirements for the

lungs-IGTV with a run-time of approximately 3 minutes, which is considered suitable for

clinical implementation.

Subsequently, we used a less aggressive sparsication method this time, reducing the num-

ber of non-zero elements from 118, 899, 327 to 22, 816, 928. This approach satised all the

dose-volume constraints for the heart and violating two requirements for the lungs-IGTV.

Moreover, Method 2 led to better dosimetric outcomes, outperforming the previous ap-

proach in sparing the healthy structures while providing the same coverage for the target.

The run-time for this method was approximately 34 hours, which is considerably higher

than the previous moment-based approach.

Therefore, we can conclude that there is a trade-o between the quality of the plan in terms

of dosimetric outcomes and the computational run-time. As we use a less strict sparsication

method in the moment-based approach, we anticipate achieving higher-quality treatment

plans but at the expense of increased run-time.

4.2 Future Work

For future work we suggest investigating other sparsication methods for the moment-based

approach to further optimize the trade-o between dosimetric outcomes and computational

run-time. Further studies could also expand the scope of this work by evaluating the per-

formance of the moment-based approach on larger patient datasets and other disease sites.

Furthermore, as mentioned earlier in Chapter 1, the moment-based approach formulated in

this study is well-suited to be embedded into the robust proton therapy treatment planning
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framework. Based on the type of cancer and source of uncertainty, the moment-based

approach can be combined with existing robust optimization models such as the work of

Chu et al. [21] and Chan et al.[22]. This can lead to treatment plans that not only satisfy

the dose-volume requirements but are also more robust against uncertainty, resulting in a

higher quality of life for the patient.
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