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Abstract 24 

The North American fossil record of dinosaur eggshells for the Cretaceous is primarily restricted 25 

to formations of the middle (Albian–Cenomanian) and uppermost (Campanian–Maastrichtian) 26 

stages, with a large gap in the record for intermediate stages. Here we describe a dinosaur 27 

eggshell assemblage from a formation that represents an intermediate and poorly fossiliferous 28 

stage of the Upper Cretaceous, the Santonian Milk River Formation of southern Alberta, Canada. 29 

The Milk River eggshell assemblage contains five eggshell taxa: Continuoolithus, 30 

Porituberoolithus, Prismatoolithus, Spheroolithus, and Triprismatoolithus. These ootaxa are 31 

most similar to those reported from younger Campanian–Maastrichtian formations of the 32 

northern Western Interior than they are to ootaxa  reported from older middle Cretaceous 33 

formations (i.e., predominantly Macroelongatoolithus). Characteristics of the Milk River ootaxa 34 

indicate that they are ascribable to at least one ornithopod and four small theropod species. The 35 

taxonomic affinity of the eggshell assemblage is consistent with the dinosaur fauna known based 36 

on isolated teeth and fragmentary skeletal remains from the formation, although most 37 

ornithischians and large theropods are not represented by eggshell. Relative to the Milk River 38 

Formation eggshell, similar oospecies occurring in younger Cretaceous deposits tend to be 39 

somewhat thicker, which may reflect an increase in body size of various dinosaur lineages during 40 

the Late Cretaceous. 41 

 42 

 43 

 44 
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 47 

1. Introduction 48 

Dinosaur eggshells are useful indicators of taxonomic diversity and faunal composition, 49 

particularly in formations or paleogeographic regions where skeletal remains are sparse (Tanaka 50 

et al., 2016; Zelenitsky et al., 2017). Cretaceous dinosaur egg remains from North America are 51 

reported primarily from formations of the middle (Albian–Cenomanian) and uppermost 52 

(Campanian–Maastrichtian) stages. Uppermost Cretaceous formations (e.g., Oldman, Dinosaur 53 

Park, Two Medicine, Fruitland, Aguja, Hell Creek, North Horn, and Willow Creek formations) 54 

have yielded several dinosaur ootaxa , which have been ascribed primarily to ornithopods (e.g., 55 

Spheroolithus) and small theropods (e.g., Continuoolithus, Prismatoolithus) (Zelenitsky and 56 

Hills, 1996, 1997; Zelenitsky et al., 1996, 2017; Bray, 1999; Zelenitsky and Sloboda, 2005; 57 

Welsh and Sankey, 2008; Jackson and Varricchio, 2010, 2016; Tanaka et al., 2011). Only one 58 

ootaxon, Macroelongatoolithus, has been described from middle Cretaceous formations (e.g., 59 

Dakota, Wayan, and uppermost Cedar Mountain formations), and has been assigned to giant 60 

oviraptorosaurs (Zelenitsky et al., 2000; Huh et al., 2014; Simon, 2014; Krumenacker et al., 61 

2017). The differences in eggshell taxonomic composition between middle and uppermost 62 

Cretaceous formations reflect some of the changes indicated by skeletal remains that occurred in 63 

dinosaur faunas during the Late Cretaceous in North America (Weishampel et al., 2004). There 64 

is, however, a dearth of dinosaur fossils from intervening Upper Cretaceous stages, specifically 65 

from the Turonian through the Santonian. Here we provide the description of a dinosaur eggshell 66 

assemblage from the Santonian Milk River Formation of southern Alberta, Canada, which has 67 

bearing on our understanding of the Late Cretaceous dinosaur faunas of North America. 68 

 69 
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 70 

2. Geological Setting and Locality 71 

The Milk River Formation is widespread in the subsurface of southern Alberta, although 72 

exposures are limited to coulees and river valleys east of the town of Milk River. This formation 73 

is the first of several regressive-transgressive clastic wedges deposited during the Late 74 

Cretaceous in the Western Canada Basin in response to Cordilleran orogenic pulses. It overlies 75 

the calcareous marine shales of the Colorado/Alberta Group and is overlain by the marine 76 

Pakowki Formation, making it stratigraphically equivalent to the Telegraph Creek and Eagle 77 

formations of Montana (Payenberg et al., 2002). The Milk River Formation is subdivided into 78 

three members. In ascending stratigraphic order, they are: 1) the Telegraph Creek member, 79 

dominated by offshore shales; 2) the Virgelle member, composed of storm-dominated shoreface 80 

sandstones at the base and tidal channel or estuarine sandstones at the top; and 3) the Deadhorse 81 

Coulee member, consisting of mudstones, sandstones, and coal beds of alluvial origin (for a 82 

review, see Meyer et al., 1998; Braman, 2001; and Payenberg et al., 2002). The age of the 83 

formation has been constrained to the late Santonian (~84.5–83.5 Ma) on the basis of bio-, 84 

palyno-, and magnetostratigraphy as well as radiometrically-dated volcanic deposits (Payenberg 85 

et al., 2002). 86 

The Deadhorse Coulee Member is considered to be latest Santonian in age (Braman, 87 

2001; Payenberg et al., 2002) and is the only member of the Milk River Formation known to 88 

preserve fossil remains of terrestrial organisms. Macrofloral remains suggest that the Santonian 89 

was characterized by a warm and humid climate (Bell, 1963; Wolfe and Upchurch, 1987; 90 

Upchurch and Wolfe, 1993), while microfloral assemblages indicate a landscape of open forests 91 

with shallow ponds (Braman, 2001; Kalgutkar and Braman, 2008). The Deadhorse Coulee 92 
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Member has produced a diverse fauna composed of amphibians, bony fishes, chondrichthyans, 93 

crocodylomorphs, dinosaurs, mammals, squamates, and turtles, although most are represented by 94 

microvertebrate remains and isolated or partial skeletal remains (for a recent review, see Larson, 95 

2010; Ryan et al., 2012; Evans et al., 2013; Larson et al., 2014). This faunal assemblage 96 

documents a transitional phase in Late Cretaceous ecosystems that preserves the last occurrences 97 

of archaic taxa and the earliest representatives of faunas typical of the latest Cretaceous (e.g., 98 

Fox, 1968; Larson, 2010). 99 

While bones and teeth are known from the Deadhorse Coulee Member, fossil eggshells 100 

have yet to be reported. Here we describe fossil eggshell fragments (n ≈ 400) recovered from a 101 

single locality over several field seasons between 2009 and 2015 in outcrops of the member 102 

exposed along Verdigris Coulee (Fig. 1). The fossil locality is inferred to be situated in the upper 103 

half of the member, based on correlation with regional stratigraphic sections (see Larson, 2010). 104 

The eggshells were found on a small hill where the exposures consist of channel sandstones 105 

interbedded with pedogenically modified mudstones, and appear to have weathered out of a 106 

cross-stratified channel sandstone near the top of the butte (Fig. 2).  107 

 108 

 109 

3. Materials and Methods 110 

Eggshell fragments were classified into various morphotypes based on macro- and 111 

microstructures using a stereomicroscope, and their thicknesses (with and without 112 

ornamentation) were measured with digital calipers and a micrometer. The microstructure and 113 

ultrastructure of each eggshell morphotype were studied using stereoscopic (Leica M80), 114 

petrographic (Leica DM 2500P), and scanning electron (FEI Quanta FEG 250 SEM) 115 
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microscopes. Radial thin sections for each eggshell morphotype were produced for examination 116 

with a petrographic microscope, particularly for polarized light microscopy (PLM). For scanning 117 

electron microscopy (SEM), eggshell fragments were ultrasonically cleaned, dried with 118 

compressed gas, and were affixed to aluminum stubs with double-sided carbon tape. The 119 

fragments were then examined on the inner and outer surfaces, as well as on freshly-fractured 120 

radial surfaces.  121 

The description of the eggshell focuses on morphological features that differ from similar 122 

ootaxa found in other formations. The eggshells are classified using a parataxonomic scheme 123 

previously established for fossil eggs (Zhao, 1975; Hirsch, 1994).  124 

The eggshells are accessioned in the collections of the Royal Tyrrell Museum of 125 

Palaeontology (TMP), Drumheller, Alberta, Canada, and in the Zelenitsky Egg Catalogue (ZEC) 126 

at the University of Calgary, Calgary, Alberta, Canada. Although all eggshells are from the same 127 

locality and horizon, they have been assigned different catalogue numbers as they have been 128 

collected by different individuals and over several years.  129 

 130 

 131 

4. Systematic Description 132 

 133 

 134 

Oofamily Prismatoolithidae Hirsch, 1994 emend. Moreno-Azanza et al., 2014 135 

Oogenus Prismatoolithus Zhao and Li, 1993 emend. Zelenitsky and Hills, 1996 136 

Oospecies Prismatoolithus sp.  137 

 138 
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Material. Isolated eggshell fragments (n = 6) (TMP2009.151.1, n = 4; ZEC-449, n = 2). 139 

 140 

Description and Comparison. This eggshell morphotype is thin, ranging from 0.21–0.27 mm, 141 

with an average of 0.24 mm. The smooth outer surface (Fig. 3A) and microstructure are 142 

comparable to Prismatoolithus sp. and Prismatoolithus hirschi reported from the lower Willow 143 

Creek Formation and lowermost Two Medicine Formation (Jackson and Varricchio, 2010; 144 

Zelenitsky et al., 2017), respectively, although it is thinner (Table 1). 145 

 146 

Taxonomic affinity. Theropoda (see Zelenitsky et al., 2017). 147 

 148 

 149 

Oofamily Spheroolithidae Zhao, 1979 150 

Oogenus Spheroolithus Zhao, 1979 emend. Mikhailov, 1994a 151 

Oospecies Spheroolithus cf. S choteauensis 152 

 153 

Material. Isolated eggshell fragments (n = 313) (TMP2009.151.1, n = 202; ZEC-448, n = 24; 154 

ZEC-449 n = 87). 155 

 156 

Description. Spheroolithus cf. S. choteauensis is the dominant eggshell morphotype recovered 157 

from the locality, representing approximately 82% of all eggshell fragments recovered. The 158 

eggshell thickness ranges from 0.40 to 0.70 mm (mean 0.57 mm), which is slightly thinner than 159 

Spheroolithus choteauensis reported from the lowermost Two Medicine Formation and from the 160 

lower Willow Creek Formation (Table 1). The outer surface of most fragments is relatively 161 
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smooth, although some show weakly ornamented or undulating surface textures (Fig. 3B) as 162 

reported for Spheroolithus choteauensis (Jackson and Varricchio, 2010). The eggshell consists of 163 

individual shell units that have parallel to slightly divergent lateral boundaries in radial thin 164 

section. The inner part of the shell units consist primarily of acicular crystals that grade into 165 

coarser wedges in the remainder of the shell unit. The shell units show an overall sweeping 166 

extinction pattern in PLM, although sometimes appear blocky presumably due to 167 

recrystallization. The base of the shell units in many fragments preserve basal plate groups that 168 

would have been anchored in the shell membrane in life. 169 

 170 

Taxonomic affinity. Ornithopoda (see Jackson and Varricchio, 2010; Zelenitsky et al., 2017). 171 

 172 

Oofamily Incertae sedis 173 

Oogenus Continuoolithus Zelenitsky et al., 1996 174 

Oospecies Continuoolithus cf. C. canadensis. 175 

 176 

Material. One eggshell fragment (ZEC-448). 177 

 178 

Description and Comparison. The eggshell thickness is 0.43 mm and 0.61 mm, without and with 179 

ornamentation, respectively. The outer surface ornamentation (Fig. 3C) and microstructure of 180 

this fragment are comparable to those of other egg remains ascribed to Continuoolithus, although 181 

it is slightly thinner than known Continuoolithus eggshells reported from Campanian and 182 

Maastrichtian localities in the northern Western Interior (Table 1).  183 

 184 
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Taxonomic affinity. Theropoda (see Zelenitsky et al., 2017). 185 

 186 

 187 

Oogenus Porituberoolithus Zelenitsky et al., 1996 188 

Oospecies Porituberoolithus cf. P. warnerensis Zelenitsky et al., 1996 189 

 190 

Material. One eggshell fragment (ZEC-448). 191 

 192 

Description and Comparison. The eggshell thickness is 0.37 mm and 0.71 mm, without and with 193 

ornamentation, respectively. The eggshell fragment is comparable in morphology (Fig. 3D) and 194 

microstructure to Porituberoolithus warnerensis from the Oldman and Willow Creek formations 195 

(Zelenitsky et al., 1996, 2017), although it is slightly thinner (Table 1). 196 

 197 

Taxonomic affinity. Theropoda (see Zelenitsky et al., 2017). 198 

 199 

 200 

Oogenus Triprismatoolithus Jackson and Varricchio, 2010 201 

Oospecies Triprismatoolithus sp. 202 

 203 

Material. Isolated eggshell fragments (n = 60) (TMP2009.151.1, n = 39; ZEC-448, n = 6; ZEC-204 

449, n = 15). 205 

 206 
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Description and Comparison. This ootaxon is the second most abundant from the locality, 207 

representing approximately 16% of all eggshell fragments recovered. The eggshell thickness 208 

ranges from 0.40 to 0.60 mm (mean 0.50 mm) without ornamentation, and the nodes are up to 209 

half of the eggshell thickness in height. The outer surface ornamentation consists of circular to 210 

oval nodes (in plan view) that are interconnected by a network of narrow ridges that give the 211 

outer surface a pitted appearance (Fig. 4A). The ornamentation differs from Triprismatoolithus 212 

stephensi, which has nodes but lacks the network of ridges (Jackson and Varricchio, 2010). Pore 213 

openings, located between the nodes and ridges, are circular to oval  in plan view and connect to 214 

narrow, straight canals. The microstructure consists of narrow columnar shell units that reveal an 215 

overall prismatic extinction in PLM. At least two structural layers, an outer prismatic layer and 216 

an inner mammillary layer, are present (Fig. 4B). In SEM, the uppermost part of the prismatic 217 

layer (about 100 µm in thickness) appear to consist of more blocky crystals than the remainder of 218 

the prismatic layer, and may be analogous to the third structural layer (i.e., external layer) as 219 

described for  Triprismatoolithus stephensi (Fig. 4C). Of the fragments examined with SEM, the 220 

prismatic layer appears more coarsely crystalline and does not show squamatic ultrastructure as 221 

described for Triprismatoolithus stephensi. This is presumably due to obliteration of the 222 

squamatic textures as a result of recrystallization. The boundaries between structural layers of the 223 

shell units are gradual, and tabular ultrastructure can be found to varying degrees throughout the 224 

shell units. The mammillae are formed of wedge-like crystals and are tightly packed on the inner 225 

surface (Fig. 4D). 226 

 227 

Taxonomic affinity. Theropoda/Aves (see Jackson and Varricchio, 2010). 228 

5. Discussion 229 
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The Milk River Formation preserves one of the most diverse pre-Campanian dinosaur 230 

eggshell assemblages reported from North America. The eggshells described here reveal the 231 

presence of at least one ornithopod (Spheroolithus) and four theropod species (Continuoolithus, 232 

Porituberoolithus, Prismatoolithus, Triprismatoolithus) in the Santonian of the northern Western 233 

Interior. The thinness of the theropod ootaxa indicates that the eggshells belong to animals of 234 

small body size (<100 kg; Tanaka et al., 2016), potentially species of caenagnathids, 235 

dromaeosaurids, troodontids, or birds. The taxonomic composition of the eggshell assemblage is 236 

consistent with that known from skeletal remains (Brown et al., 2015), although most 237 

ornithischian and large theropod taxa known are not represented by eggshell. A diversity of 238 

small theropod ootaxa is also typical of the Dinosaur Park and lower Willow Creek formations of 239 

Alberta (Zelenitsky and Sloboda, 2005; Zelenitsky et al., 2017), the Fruitland Formation of New 240 

Mexico (Tanaka et al., 2011), and the Sasayama Group of Japan (Tanaka et al., 2016). 241 

The ootaxa of the Milk River eggshell assemblage are thinner, on average, than the same 242 

ootaxa reported from younger formations (i.e., Dinosaur Park, Oldman, Two Medicine, and 243 

Willow Creek formations) of the northern Western Interior (Table 1). Since eggshell thickness is 244 

related to egg mass and presumably body mass in theropods (Tanaka et al., 2016), perhaps the 245 

increase in eggshell thickness in stratigraphically younger formations represents an increase in 246 

body size of various theropod lineages (e.g., caenagnathids, dromaeosaurids, troodontids) toward 247 

the end of the Cretaceous. Unfortunately, the fragmentary nature of skeletal remains from the 248 

Milk River Formation (as well as from other Santonian formations in North America) precludes 249 

accurate assessment of the body size of most dinosaur species during that stratigraphic interval. 250 

Nevertheless, a general trend of increase in tooth size among various theropod lineages observed 251 
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between the Milk River Formation and terminal Cretaceous formations (see Larson and Currie, 252 

2013: fig. 3) supports such an inference of increase in body size during the Late Cretaceous. 253 

The Milk River eggshell assemblage contains ootaxa similar to those previously 254 

described from Campanian and Maastrichtian deposits of Alberta and Montana. This research 255 

extends the stratigraphic range of several ootaxa, such as Continuoolithus canadensis, 256 

Porituberoolithus warnerensis, Prismatoolithus sp., and Spheroolithus choteauensis, from the 257 

Campanian–Maastrichtian into the Santonian, and Triprismatoolithus from the lowermost 258 

Campanian into the Santonian. Overall, dinosaur ootaxonomic diversity appears to have 259 

remained relatively consistent from the latest Santonian through the Maastrichtian (see also 260 

Jackson and Varricchio, 2010). 261 

The composition of the Milk River eggshell assemblage differs from that of the next 262 

oldest, middle Cretaceous (Albian–Cenomanian) eggshell assemblages known from North 263 

America, namely those from the Mussentuchit Member of the Cedar Mountain Formation 264 

(Zelenitsky et al., 2000), Dakota Formation (Zelenitsky et al., 2000; referred to as Naturita 265 

Formation by Carpenter, 2014), and Wayan Formation (Simon, 2014; Krumenacker et al., 2017). 266 

Many dinosaur eggshell fragments have been collected from these formations and nearly all 267 

eggshell described is assignable to Macroelongatoolithus, an oogenus attributable to giant 268 

oviraptorosaurs (Zelenitsky et al., 2000; Huh et al., 2014; Simon, 2014; Krumenacker et al., 269 

2017; Pu et al., in press). Skeletal remains of these animals are as yet undescribed from North 270 

America, but such remains and Macroelongatoolithus eggs/eggshells have been reported from 271 

the Cenomanian through lower Campanian of Asia (Wang and Zhou, 1995; Fang et al., 2000; Jin 272 

et al., 2007; Xu et al., 2007; Wang et al., 2010; Huh et al., 2014; Tsuihiji et al., 2015; Pu et al., in 273 

press). Nevertheless, the abundance of Macroelongatoolithus eggshell reveals that giant 274 
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oviraptorosaurs were relatively common in North America during the middle Cretaceous. The 275 

absence of Macroelongatoolithus eggshell in the Milk River and younger formations suggests 276 

that giant oviraptorosaurs disappeared in North America prior to the latest Santonian (~83.5 Ma), 277 

while they purportedly persisted in Asia through the early Campanian (Kim et al., 2011; Huh et 278 

al., 2014).  Thus, the eggshell taxa observed between middle and Upper Cretaceous formations 279 

may reflect the extinction of giant oviraptorosaurs prior to the late Santonian and the radiation of 280 

smaller-bodied maniraptorans during the latest Cretaceous in North America. 281 

Ootaxa from the Late Cretaceous of North America reflect some of the faunal changes 282 

that occurred between the middle and later part of this time period, an interval that saw the 283 

decline of allosauroids, sauropods and tenontosaurs, and the rise of ceratopsids, hadrosauroids, 284 

maniraptorans and tyrannosaurids (Weishampel et al., 2004). Although faunal changes should 285 

result in changes in the taxonomic composition of eggshell assemblages, this is complicated by 286 

the limited preservation potential of egg fossils (i.e., there are few pre-Campanian Cretaceous 287 

egg sites known) and the limitations of our understanding of the taxonomic affinity of many 288 

ootaxa, as the egg remains of many dinosaur clades known from the middle or Upper Cretaceous 289 

of North America have yet to be identified (e.g., ankylosaurs, basal neoceratopsians, ceratopsids, 290 

iguanodontids, pachycephalosaurs, therizinosaurs, tyrannosaurids). Nevertheless, the eggshell 291 

and fragmentary skeletal remains from the Milk River Formation indicates that the dinosaur 292 

fauna that characterizes the latest Cretaceous in North America was already present by the late 293 

Santonian, albeit potentially represented by less massive species. 294 

 295 

Conclusions 296 
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An eggshell assemblage from the Santonian Milk River Formation of Alberta represents 297 

the oldest fossil eggshells reported to date from Canada. Because Santonian eggshells are 298 

exceedingly rare in North America, this new assemblage fills an important gap in the fossil 299 

record of Late Cretaceous eggshells. The Milk River eggshell assemblage, representing 300 

ornithopods and small theropods, reflects the establishment of typical latest Cretaceous 301 

dinosaurian faunas in North America by the latest Santonian (~83.5 Ma). The Milk River ootaxa 302 

are unreported in the next oldest eggshell assemblages known from the middle Cretaceous 303 

(Albian–Cenomanian), which are dominated by eggshell of giant oviraptorosaurs 304 

(Macroelongatoolithus). As such, the Milk River eggshell assemblage suggests that the 305 

extinction of giant oviraptorosaurs in North America occurred prior to the latest Santonian. 306 

Finally, Milk River theropod ootaxa tend to be thinner than similar ootaxa found in younger 307 

Cretaceous formations, indicating that a trend toward increased body size may have occurred in 308 

maniraptorans during the Late Cretaceous. 309 

 310 
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Figure captions 508 

Figure 1. Map showing the location of the Milk River Formation eggshell locality in Verdigris 509 

Coulee, southern Alberta, Canada. 510 

 511 

Figure 2. Stratigraphic section of the rock exposure at the Milk River eggshell locality, Verdigris 512 

Coulee, southern Alberta, Canada. 513 

 514 

Figure 3. Photographs of the outer surface of Milk River ootaxa. (a) Prismatoolithus 515 

(TMP2009.151.1). (b) Spheroolithus (TMP2009.151.1). (c) Continuoolithus (ZEC-448). (d) 516 

Porituberoolithus (ZEC-448). Scale bars are 1 mm. 517 

 518 

Figure 4. SEM micrographs of eggshell of Triprismatoolithus sp. (TMP2009.151.1) from the 519 

Milk River Formation, southern Alberta. (a) Outer surface showing nodes and network of ridges. 520 

Pore openings indicated by arrows. (b) Radial view showing mammillary layer (ML) and 521 

prismatic layer (PL). (c) Possible external layer (arrow) near the outer surface of the eggshell. (d) 522 

Mammillary layer (radial view) with tablular ultrastructure (arrow). 523 

 524 
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Table 1 527 

Comparison of eggshell thickness of Milk River Formation oospecies with comparable 528 

ooospecies in the northern Western Interior. Eggshell thicknesses of Triprismatoolithus, 529 

Porituberoolithus, and Continuoolithus exclude height of ornamentation. Parentheses indicate 530 

mean thickness values if available. * and † indicate ootaxa including "cf." and "sp.", 531 

respectively. References: a, this study; b, Jackson and Varricchio (2010); c, Jackson et al. (2010); 532 

d, Zelenitsky and Hills (1996); e, Zelenitsky and Hills (1997); f, Zelenitsky et al. (1996); g, 533 

Zelenitsky and Therrien (2008); h, Zelenitsky and Sloboda (2005); i, Hirsch and Quinn (1990); j, 534 

Zelenitsky et al. (2017). Abbreviations: C, Campanian; M, Maastrichtian; S, Santonian. 535 

Formation Milk 
Rivera 

Lower 
Two 
Medicineb 

Judith 
Riverc 

Oldman d–

g 
Dinosaur 
Parkh 

Upper 
Two 
Medicineg, 

i 

Willow 
Creekj 

Age S C C C C C M 

Continuoolithus* 0.43 0.69–0.86   0.84–1.04   1.00–1.08 0.86–0.94 
(0.91) 

Porituberoolithus 0.37     0.50–0.65     0.45–0.78 
Prismatoolithus 

hirschi*/sp. 
0.21–0.27 
(0.24) 

0.50–0.56         0.31–0.63 

S. choteauensis* 0.40–0.70 
(0.57) 

0.80–0.85         0.40–0.93 

Triprismatoolithus† 0.40–0.60 
(0.50) 

0.53–0.85           

 536 
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