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Abstract

In omni-channel retail systems, comprising an online sales website and brick-and-mortar (physical) stores,

a physical store typically faces limited shelf-space capacity, while capacity is not an issue for the online

channel. Consequently, a crucial aspect of such retail systems is to choose a subset of products present

online for showcasing in the physical store (i.e., assortment planning).

In my first research stream, I investigate the omni-channel assortment problem when product returns

are allowed. Assortment decisions influence product returns, as showcased products provide information to

online shoppers who visit the physical store. Therefore, although product returns can be a factor for profit

loss, effective assortment planning can mitigate the returns’ adverse impact and optimize profitability. My

results indicate that even with sufficient capacity, showcasing all products in the physical store may not be

optimal. Additionally, retailers generally fare better when customers undervalue hidden attribute levels.

In my second research stream, I explore a decentralized retail supply chain (RSC) comprising an online

channel managed by a manufacturer setting wholesale prices, and an independent retailer managing the

physical store and making assortment decisions. As a benchmark, I examine a centralized setting where both

channels are under a central authority aiming to maximize overall profit. My findings show fundamental

differences in optimal centralized and decentralized assortments, indicating inefficiency in the decentralized

approach. I propose scope contracts for coordination, wherein the manufacturer offers discounts on wholesale

prices for products with specific attribute levels, incentivizing the retailer to adopt the centralized assortment.

The scope contracts ensure both parties’ profitability and coordinate the RSC.

In the third stream, I suppose that the magnitude of inaccuracy in online assessment of products due

to the lack of physical encounter is unknown to the RSC parties, and they make decisions with asymmetric

information. I investigate the assortment and wholesale price decisions along with profit regrets. My findings

under the decentralized setting indicate that while both parties cannot fare better simultaneously, each party

can be advantaged under certain conditions. Under the centralized setting, when supposing accurate online

assessments, showcasing an assortment of the highest utility attribute levels possibly minimizes system-wide

regret.
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Chapter 1

Introduction

This thesis is structured around three research streams focusing on the domain of assortment planning within

the context of omni-channel retailing. The aim of this introductory chapter is to provide an overview of the

thesis, emphasizing the significance of this area of research, and motivating the chosen topic. Each of the

three research streams tackles a distinct research problem but is built upon a shared foundation in terms of

background and modeling approach.

The first section of this chapter will concentrate on explaining the concept of an omni-channel retail

environment and the general settings that have been uniformly applied across all three research streams.

This will provide readers with a comprehensive understanding of the broader context in which the subsequent

research is conducted.

Subsequently, the chapter will delve into a more detailed discussion of each specific research stream,

addressing the research inquiries related to assortment planning in the omni-channel retailing context. By

doing so, the thesis aims to explore various aspects of assortment planning within this retail landscape and

shed light on the particular challenges and opportunities that arise.
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1.1 Introduction to Omni-Channel Assortment Planning

Omni-channel retailing, a prevalent approach in contemporary retail practices, involves operating both

internet-based sales channels and brick-and-mortar (physical) stores. This strategy has become increas-

ingly popular due to its potential to enhance market share and boost retailers’ profitability (Bell et al. 2018).

In such retail systems, physical stores often confront the challenge of limited showcase capacity, resulting

in a constrained selection of products available for customers. Conversely, the online sales channel enjoys

the advantage of virtually unlimited product variety, as it sources directly from a central warehouse or

the manufacturer’s location. Consequently, a crucial deliberation in omni-channel retailing revolves around

determining the optimal selection of products to be showcased in the physical store (i.e., the assortment

decision).

Products can consist of various ‘attributes’, such as color and material, and each attribute can be further

characterized by multiple ‘levels’ – for example, blue and red for the color attribute. According to Dzyabura

and Jagabathula (2018), the appeal of a product to a customer, also known as its utility, can be measured by

summing up the utility of its individual attribute levels. In the context of omni-channel retailing, products

can be categorized as ones with digital or non-digital attributes. The former refers to products for which

physical encounter and trying out are not crucial to make an informed evaluation of their utilities. For

example, song collections or books can be considered as such products. On the other hand, the latter refers

to products for which touching and trying out are essential in the informed evaluation of their utilities. A

wide range of products such as apparel, sunglasses, and handbags are considered as products with non-digital

attributes, which are the main focus of this thesis. For these products, items showcased in a physical store are

accurately evaluated by customers; while, items with attribute levels that are not showcased (but browsed

only online) may be inaccurately evaluated.

The inaccuracy in the customers’ online evaluation of products and attribute levels will influence their

shopping experiences. For example, if a customer overvalues the utility of a product on a computer screen

(i.e., the measured utility is greater than the utility that the customer would have obtained if they evaluated

the product physically), they will be more likely to purchase the overvalued product compared to the case

the customer browses the product in-store with physical evaluation and encounter. Similarly, if the customer

undervalues the utility of the product on a screen, then they will be less likely to purchase it.

Over- or under-valuation of a product utility at the time of purchase will also influence the customer’s

(dis)satisfaction with the product after purchase, which impacts their decision for keeping or returning the

product. If a product was purchased online with an overvaluation at the time of purchase, it will disappoint

2



the customer upon receipt because it does not meet the desired expectations. Consequently, the product

will be more likely to be returned, in contrast to cases where the customer purchased the product with

an accurate evaluation. Likewise, a product purchased with undervaluation will gratify the customer upon

receipt because it exceeds their initial expectation. Thus, the product will be less likely to be returned.

The assortment decision for the physical store impacts customers’ purchase and keep-or-return decisions

in the online channel as well. This influence arises because products showcased in the physical store may

share attribute levels with online-only products, providing partially accurate utility information for these

products. For instance, consider that a red product with a specific style might be available in-store, but

the red color with the style that the customer wants may not be available in-store. In this situation, the

customer can accurately evaluate the utility of the red color, but not the utility of the desired style. As a

result, the customer will evaluate the overall utility of the desired product inaccurately (partially accurately)

in this example. This is specifically crucial for high-value products, where customers prefer to visit the

physical store to obtain accurate utility information of the available products and their attribute levels

before making a purchase, whether online or from the store (Park et al. 2021). Therefore, in this thesis,

we explore the assortment planning problem for the physical store in an omni-channel retail system, while

explicitly studying its impact on customers’ purchase and keep-or-return decisions in the online channel.

Consumer choice models are typically used for modeling customers’ purchase and keep-or-return decisions.

In this thesis, we employ the most widely used choice model, the multinomial logit (MNL) for modeling these

decisions. The MNL is a utility based model in which each customer takes the action that provides the highest

utility for them (Dzyabura and Jagabathula 2018, Ben-Akiva et al. 1985).

1.2 Research Stream 1: Omni-Channel Assortment Planning in

Presence of Product Returns

In modern retailing, a common marketing strategy is to allow product returns with limited inconvenience

or hassle-free. However, the costs associated with product returns, such as transportation, repackaging, and

refurbishing, can accumulate significantly. According to the National Retail Federation of the U.S.A., returns

accounted for $761 billion in lost profit in 2021, representing approximately 16.6% of the total value of retail

profit. Particularly, within the online segment, 20.8% of purchases have been returned (NRF 2021). One

of the reasons for product returns is that customers may not fully experience and accurately evaluate the

products before making a purchase (Alptekinoğlu and Grasas 2014, YouGov 2021). As discussed in Section

1.1, ‘inaccurate evaluation’ is an inherent part of online shopping for products with non-digital attributes.

3



For retailers operating both physical and online stores, showcasing products in the physical store serves as a

means of providing customers with accurate information of the products and their attribute levels (Mantrala

et al. 2009). The product information revealed at the physical store can help alleviate the uncertainties that

customers might encounter in their evaluations of products (Bell et al. 2014). Therefore, in this research

stream, we aim to study the assortment problem in the described omni-channel retail system while product

returns are explicitly modeled and their impacts on profitability are studied.

Customers may prefer purchasing from online sales websites or physical stores. In this stream, we

assume that customers’ shopping preferences have matured and converged such that some prefer shopping

with physical encounter and trying out the products, potentially from a limited selection showcased in

a physical store. Other customers may opt for the convenience of purchasing from the comfort of their

homes and appreciate a wider variety of products available online. These preferences translate into accurate

or inaccurate evaluations of the product utilities in the offline and online channels, respectively. In both

shopping experiences, it is possible that a customer’s subsequent evaluation of a purchased product, such as

when they start using it at home or upon receiving it, may not align with the initial evaluation during the

purchase. This can cause customer dissatisfaction, which is one of the primary reasons for returns.

We show that an increase in product returns does not necessarily result in a decrease in profit, as higher

product returns, in some cases, can be an outcome of greater sales. Moreover, even if the sufficient shelf-

space capacity is provided in the store, it may not be optimal to showcase the full variety of products, as

it can be possible that not revealing accurate information of some attribute levels can yield a higher overall

profit. We also indicate that on average, retailers can attain a greater profit if the attribute levels that are

not showcased in the physical store are slightly undervalued by customers.

1.3 Research Stream 2: Assortment Planning Coordination in

Omni-Channel Retail Supply Chains

In the second research stream, we study the described system in Section 1.1 as a retail supply chain (RSC).

In this RSC, we assume that the online sales channel is the manufacturer’s direct sales medium, and the

physical store is independently managed by a retailer, for example, a franchise or an independent department

store that sells manufacturer’s products. Unlike the first research stream, we assume that customers do not

have a specific preference between the online channel and the physical store. This allows to capture the

competition between the sales channels for higher profits. So, we consider that customers visit the online

channel and the physical store and purchase a product that they evaluate as the highest utility product
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across both channels. An example of such practice is that customers visit the physical store and evaluate

the products available while browsing the complete collection available online using their smartphones or a

computer screen provided in the store.

In this decentralized RSC, the manufacturer and the retailer are independent parties with conflicting

interests, each striving to maximize their own benefits. In a Stackelberg game scenario, the manufacturer

establishes the wholesale price to be charged to the retailer for their products, and the retailer selects its

assortment decisions accordingly. Evidently, the retailer chooses an assortment that maximizes its own

profit. However, as described earlier, the assortment decision’s interaction with the purchase and keep-or-

return decisions impacts the manufacturer’s profit (arising from purchases and returns). As a result, the

retailer’s assortment decision may not be desired for the manufacturer or the entire system. Therefore,

the decentralized assortment decisions may result in inefficiencies in RSC operations. As a benchmark

that optimizes the profit of the entire RSC, we consider a centralized setting in which a central authority

oversees both sales channels and makes the assortment decision to maximize the total profit of the system,

encompassing the retailer’s and the manufacturer’s profits (Chaharsooghi and Heydari 2010). The inefficiency

observed in the decentralized system can be resolved by incentivizing the retailer to showcase the centralized

assortment.

We propose ”scope contracts” as a coordination mechanism that can eliminate the inefficiency of the

decentralized structure while achieving a mutually beneficial outcome for both the retailer and the manu-

facturer. In the scope contract, the manufacturer offers discounts on the wholesale price of the products

based on a predefined scope of their attribute levels. The specified scope and discount rates within this

contract lead the retailer to ordering the optimal centralized assortment, ensuring that the retailer benefits

more from this decision compared to any other assortment, including that of the decentralized setting. The

designed contract also guarantees an increase in the manufacturer’s expected profit in comparison to the

original decentralized adversarial setting.

1.4 Research Stream 3: Omni-Channel Assortment Planning with

Asymmetric Information

According to the preceding discussions in Sections 1.2 and 1.3, as well as the findings of the previous studies

such as Dzyabura and Jagabathula (2018) and Lo and Topaloglu (2022), the inaccuracy in customers’ online

evaluation of product utilities is a critical factor that significantly influences the assortment decisions for

the physical store. The optimal assortment decision can substantially change based on whether customers
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accurately evaluate, overvalue, or undervalue the product utilities in their online evaluations. Considering

this inaccuracy is essential while making the assortment decision to ensure the most effective and profitable

selection of products for the physical store. Therefore, it is crucial to obtain a reliable estimation of this in-

accuracy component to ensure effective management of omni-channel retail operations. However, estimating

the inaccuracy parameters is not a straightforward or trivial task and might demand substantial efforts that

can be both challenging and costly. For instance, devising surveys or lab/field experiments may be necessary

to gain insights into customers’ behavior as they comparatively evaluate online and offline products. Addi-

tionally, the customer profile can vary between different product segments, and the design, appearance, and

the interface of the online website also directly influence the inaccuracies. Consequently, these inaccuracies

are case specific and can differ across different environments. Therefore, the RSC parties make their decisions

based on their own best guesses of the inaccuracy parameters.

It might be reasonable to expect that the party operating the online sales website would conduct the

research to understand customer behavior and assess the inaccuracy. However, even if this party obtains

full information, they may choose not to share it with the physical store operators. As a result, the chal-

lenges faced in practice regarding the estimation of the inaccuracy magnitude revolve around the potential

misalignment between expectations and reality, as well as the information asymmetry between the parties

managing the physical stores and the online sales channels.

In this research stream, we study the assortment and wholesale price decisions under the described

information asymmetry in the RSC. Our results indicate that under the decentralized setting, while both

the retailer and the manufacturer cannot fare better at the same time when there is a deviation between the

obtained estimate of inaccuracy and its true value, each can be better off in certain conditions. Under the

centralized setting, deviations are not desired and never result in higher profitability. Furthermore, when an

estimation of zero inaccuracy is obtained, the RSC can avoid maximum regrets by showcasing an assortment

that includes the highest utility attribute levels.
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Chapter 2

Assortment Planning in

Omni-Channel Retailing Under

Product Returns and Showcase

Capacity

Abstract. In this paper, we investigate the assortment planning decisions of a retailer that operates an

online sales channel and a brick-and-mortar store simultaneously. We consider the impact of product returns

explicitly, which is a norm in modern retailing but also a factor for lost profit. Assortment decisions impact

product returns as the showcased products reveal information to the online shoppers who visit the physical

store before their purchase. We model the purchase and keep-or-return decisions through a multinomial

logit choice model and derive the expected profit function of the retailer for any given assortment selection.

By using analytical and numerical results, we show that (i) the incremental value of showcase capacity is

non-monotonic, (ii) an increase in returns does not necessarily mean a decrease in profit, (iii) retailers are

generally better off if the hidden attribute levels are undervalued rather than correctly or over-valued, (iv)

even if there is enough shelf-space capacity to showcase all products in the offline channel, it is never optimal

to fully utilize the capacity under price differentiation per attribute level, (v) under no price differentiation

per attribute level and if the hidden attribute levels are undervalued (overvalued), retailers benefit from

showcasing some (none) of the attribute levels that are distinctively preferred to others, and (vi) under

generous refund policy, retailers should reveal a limited number of undervalued levels whereas their action

depends on the size of the online market for the overvalued levels. We also provide a greedy heuristic

algorithm that has excellent performance.
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2.1 Introduction

A common sales pitch in modern retailing is to allow product returns with no or limited hassle, even though

costs related to product returns such as transportation, repackaging, and refurbishing can quickly pile up.

According to the National Retail Federation of the U.S.A., returns account for $368 billion of lost profit in

2018, about 10% of the whole value of retail profit (NRF 2018). These are the potential profit that could have

been obtained, but are lost due to product returns. One of the reasons for product returns is that customers

cannot fully experience (i.e. cannot accurately evaluate) the products before purchasing (Alptekinoğlu and

Grasas 2014, YouGov 2021). ‘Inaccurate evaluation’ is an inherent part of online shopping for products

with non-digital attributes — attributes that require physical evaluation (such as touching, feeling, trying

out, etc.) for informed purchasing. For retailers that operate with physical and online stores alongside each

other, the set of products that are showcased in the physical store is a means of providing customers with

information of products and their attributes (Mantrala et al. 2009). The product information revealed at

the physical store can mitigate the uncertainties that customers might have in evaluating those products

(Bell et al. 2014).

In this study, we consider an omni-channel retailer that sells products with non-digital attributes. A

typical product that such a retailer carries consists of several attributes such as color and size, and each

attribute might have several different ’levels’ such as blue and yellow for the color attribute and small,

medium and large for the size attribute. Due to capacity constraints and operational costs, such retailers

may not be able to showcase the full variety of their products in their physical store. However, capacity is

typically not an issue for the online sales channel.

Customers can have different shopping preferences. Some prefer shopping with touching, feeling, and

trying out the products, potentially from a limited selection showcased in a physical store (offline channel).

Other customers may prefer the convenience of buying from home and from a wider variety of products

available online. It should be noted that the shopping preference of customers between online and offline

channels can vary for different types of products or retailers. For example, according to a StatCan (2022),

the share of online sales in clothing retail in Canada was %23.1 in 2021; while this value for electronics and

appliances was %35.9 and for Furniture was %13. These preferences translate into consumer choices that

predicate on an accurate or inaccurate evaluation of the product utilities in the offline and online channels,

respectively. In both shopping experiences, it might be likely that a customer’s subsequent evaluation of a

purchased product (for example, later at home when the customer starts using the product or receives the

product) does not align with the initial evaluation while purchasing. This can cause customer dissatisfaction,
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which is one of the main reasons for product returns.

A common approach in modeling the consumer choice in literature is to assume that each product and

shopping experience (offline or online) has a specific “utility” for a customer and that customers make

purchasing decisions by maximizing the “utility” that they obtain from their purchase (Dzyabura and Jaga-

bathula 2018, Ben-Akiva et al. 1985). The overall utility of a product is naturally a function of the utility

of the levels of its individual attributes and determines the attractiveness of a product for a customer. A

customer’s utility will differ from product to product based on the attribute levels of the product and the

customer’s preferences.

In this paper, an omni-channel retailing system, including one online profit channel and one brick-and-

mortar store, is investigated. In the online channel, all possible products are offered. The problem is

to determine which products to showcase in the offline channel under showcase capacity (i.e, assortment

decision) so that the retailer can maximize their profit by considering potential product returns due to

customer dissatisfaction. For example, Warby Parker, the American giant sunglasses retailer makes this

decision for its retail stores, while all the variety of its sunglasses are present on its website (Bell et al. 2018).

The assortment decision in the physical store affects the purchasing decisions of the customers who visit

the store, before making their purchase either directly from the store or the online channel. The focus of

our study is on this segment of customers and this shopping experience, which often resembles shopping

for products with high value (Park et al. 2021). Without loss of generality, customers who purchase their

products online without visiting the physical store are out of the scope of this study.

In this setting, the physical store plays the role of both a profit channel and a showcase that reveals

information about products and attributes to facilitate online purchases. As our major contribution to the

literature of assortment planning in omni-channels, we consider the possibility of returning products as an

option for customers in both profit channels. Dzyabura and Jagabathula (2018) consider a similar problem

without product returns and show that when the price of products are equal, the retailer should hide a

subset of attribute levels that are overvalued in customers’ online evaluations and showcase attribute levels

that are undervalued. We show that when product returns are allowed, this result does not necessarily hold.

We also provide a framework for the case in which prices are unequal. Our results indicate that identifying

a set of products and attribute levels to showcase in the physical store is complicated, and selecting an

assortment only based on whether an attribute level is undervalued or overvalued will no longer hold true.

This motivates our study to embed returns in the assortment decision and provide new insights.

We can summarize the implications of our results as follows:

• It is not always beneficial to showcase a greater variety of products even if there is freely available
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shelf-space.

• As a first step to assortment planning, retailers should understand their customers’ perceptions of un-

available products through the attribute levels that are not showcased. If those hidden attribute levels

are undervalued by the customers, it is likely that retailers would benefit from this situation. In such

cases, they should not engage in any marketing effort to change this situation because they will make

more profit compared to a case where hidden attribute levels are overvalued. For example, designing

an improved web browsing experience that will lead to accurate or overvalued evaluations is not ben-

eficial for retailers. Similarly, any marketing effort that exaggerates the utility of the hidden attribute

levels is not a preferred action. On the other hand, if the hidden attribute levels are overvalued, then

marketing efforts to change the perception could be valuable.

• For products that have price differentiation based on different attribute levels, retailers should never

showcase the full variety of attribute levels and should prioritize showcasing more valuable attribute

levels if the hidden levels are undervalued. However, retailers may choose to showcase all these attribute

levels if they are overvalued. In both of these cases, the capacity should not be fully utilized if it allows

to showcase all variety of products.

• For products for which the price is isolated from the attribute levels, retailers may be better off

showcasing all attribute levels and utilizing all available capacity. Furthermore, when the utilities of

hidden attribute levels are undervalued, retailers obtain a greater profit if one or more attribute levels

have a distinctively higher utility than others, whereas, when hidden attribute levels are overvalued,

retailers have a higher profit if the utilities of all attribute levels are close to each other and not

distinctively different.

• Finally, we investigate the impact of problem parameters on the optimal decision and profitability of

the retailers. We show that retailers should showcase a less diverse assortment if they provide a greater

refund fraction and/or an easier return process when hidden attribute levels are undervalued. We

also show that when hidden attribute levels are overvalued, the impact of the refund fraction or the

difficulty of the return process on the variety of these levels depends on the size of online and offline

segments. If OnSs are more than OfSs, then for a greater refund fraction or an easier return process,

the retailers should showcase a more diverse assortment, and if OfSs are more, they should showcase a

less diverse assortment.

The remainder of this paper is organized as follows. In Section 2, we review the relevant literature. In

Section 3, we describe the problem environment. In Section 4, the modeling of the problem is presented with
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some analytical results. Section 5 is for numerical studies and sensitivity analyses. Finally, we conclude the

paper in Section 6.

2.2 Literature Review

Assortment planning in a single profit channel has received a lot of attention in the literature. This problem

is the same as product line optimization in the marketing literature, which is defined as a problem for a

manufacturer to select a set of products to offer, to maximize profit or market share. Kohli and Krishnamurti

(1987) investigate this problem for a manufacturer in a multi-attribute environment and show that the

problem is NP-complete. They propose a dynamic-programming heuristic method to solve the problem.

Several studies provide other heuristic solution algorithms for this problem, including Kohli and Krishnamurti

(1989) with a shortest-path based algorithm, Balakrishnan and Jacob (1996) and Fruchter et al. (2006) with

a genetic algorithm, and Dobson and Kalish (1988) with a two-step algorithm based on priority among

products.

Similar to product line optimization in the marketing literature, several studies investigate the assortment

problem in a single channel setting, in the operations management literature. See Kök et al. (2008) for a

literature review of the assortment problem for a wide range of customer choice models. Ryzin and Mahajan

(1999) formulate an unconstrained version of the assortment problem. Davis et al. (2013) investigate the

capacitated version of the assortment problem for a retailer. The aim is to maximize the expected profit,

given a set of uni-modular constraints. Also, Désir et al. (2014) study the capacitated assortment problem

and provide a fully polynomial time-approximation scheme to solve the problem. Rusmevichientong et al.

(2014) explore the assortment optimization problem with random choice parameters. The randomness in

the choice model comes from the fact that there are multiple market segments, and each segment can have

different preferences for products. The goal is to maximize the expected profit for a representative customer

across all segments.

In this paper, we use multinomial logit (MNL) to model customers’ choice behavior. MNL is the most

frequently used customer choice model in the literature and is a utility-based model. In this model, each cus-

tomer visiting the store associates a utility with each item. The associated utility consists of a deterministic

and a stochastic part. The stochastic part is modeled as an error term with the Gumbel distribution. Using

the properties of the Gumbel distribution, the choice probability of each product is obtained (Ben-Akiva

et al. 1985, Anderson et al. 1992, Kök et al. 2008). Besides MNL, there are other choice models, including

nested logit (Gallego and Topaloglu 2014, Davis et al. 2013, Feldman and Topaloglu 2015), d-level nested

logit (Li et al. 2015), mixed logit (Rusmevichientong et al. 2014), and locational choice (Gaur and Honhon
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2006) model.

In an MNL choice model, there are two different approaches to estimating the utility of a product. The

first approach is to associate a utility to a product as a whole, based on its attractiveness. Many studies,

including Ryzin and Mahajan (1999) and Rusmevichientong et al. (2010), use this approach. The second

approach is a standard multi-attribute utility model that associates a utility to a product, based on its

attributes, as a summation of the part-worth utilities of its attributes (see, e.g., Green and Rao 1971; Green

and Srinivasan 1990; Hoch et al. 1999; and Dzyabura and Jagabathula 2018). Van Herpen and Pieters

(2002) argue in favor of the attribute-based assortment planning, which we also adopt in this study, versus

the product-based approach.

Assortment planning in omni-channel systems is a relatively new topic. According to Yrjölä et al. (2018),

retailers that operate several sales channels may offer different product assortments on each channel and

different from the optimal assortment under a single channel. Ye et al. (2018) explore the barriers to

transitioning from single profit channels to omni-channels and discuss difficulties in assortment decisions.

Rooderkerk and Kök (2019) provide a literature review for omni-channel assortment planning. Gallino

and Moreno (2018), Bell et al. (2018), and Bell et al. (2014) investigate the operations of omni-channel

systems in terms of product selection and showcasing, via empirical models or logical arguments. Park et al.

(2021) investigate an omni-channel assortment problem in which in-person visiting of products and gathering

information result in more confident purchases for customers. However, this study does not follow a specific

choice model to capture customers’ behavior. To the best of our knowledge, Dzyabura and Jagabathula

(2018) are the first to propose a model to optimize the assortment decision in a brick-and-mortar store

for a retailer that operates an online sales website as well, in which all products are available. Lo and

Topaloglu (2022) consider a similar setting where they study omni-channel assortment with a features tree

that represents product features. These studies do not allow for product returns.

Assortment decisions and return policies are usually modeled separately in the literature, as the former

are strategic decisions, and the latter are operational ones (Stock et al. 2006, Olavson and Fry 2006).

Return policies are a fundamental part of operational costs in retailing, and their inclusion complicates the

assortment decision even more (Kök et al. 2008, Ramdas 2003). Nageswaran et al. (2020) investigate the

return policies in an omni-channel setting, jointly with price decisions, and explore when full refund policies

are better and when a return fee should be charged. Alptekinoğlu and Grasas (2014) are the first to address

the assortment decision when returns are included. They investigate the assortment decision for a retailer

with a single profit channel, in which returns are included. This study uses MNL and nested logit to model

customers’ purchase and keep-or-return decisions. There are two main differences between this study and

our work. First, we consider an omni-channel system, rather than a single channel. Second, we use an
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attribute-based utility approach rather than a product-based approach.

2.3 Problem Environment

Consider an omni-channel retailer that operates with one physical store (offline channel) — or multiple

stores with identical showcase capacity — and an internet-based sales store (online channel). The retailer

sells products with one or more non-digital attributes, such as sneakers with different styles; purses with

different sizes, shapes, and materials; or dresses with variety of styles and colors. The total number of

combinations of the levels of attributes of such products may yield an abundant number of different items;

it would not be feasible to showcase all of them in the physical store, but it could be feasible to make all of

them available in the online channel.

Since omni-channel retailing has been a common practice for many years, we assume that customers’

shopping preferences have matured and converged to the following three categories. The first group of

customers only prefer to purchase from the online channel without visiting the physical store. We exclude

them from our analysis without loss of generality because their choices would not affect the assortment

decision. An α fraction of the remaining customers are the Offline Shoppers (OfSs) who prefer only buying

from the physical store from an available selection of items, where they can physically (and accurately)

evaluate the products before purchase. Such customers may or may not visit the online channel but they

end up buying from the physical store with full information of the attribute levels due to physical touch.

The remaining 1−α fraction of customers are Online Shoppers (OnSs) who visit the offline channel to garner

information about the products but prefer to shop from the online channel eventually, with the convenience

of shopping from home and from a wider variety of products, potentially without physically (and accurately)

evaluating all the attributes of the product that they purchase (Dzyabura and Jagabathula 2018). It is also

possible that any given type of customer ends up not purchasing a product.

Independent of which channel is used, a customer’s purchase decision is based on the utility received

from the available products. The customer will purchase a product with the maximum positive utility. If

the highest utility is non-positive, then no purchase will take place. An OfS’s purchase predicates on an

”accurate” utility evaluation (because the customer has the opportunity of physically touching, feeling, and

trying out the product before making the purchase decision), whereas OnSs make purchase decisions based

on potentially ”inaccurate” utility evaluations. OnSs visit the physical store and collect accurate utility

information from the attribute levels of available products. Then, they visit the online channel to browse

other products. The evaluation of the products whose attribute levels were not available at the physical

store is likely to be inaccurate. This inaccuracy may cause OnSs to ‘overvalue’ or ‘undervalue’ the utility of
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the products they browse on a computer screen. If the utility of a product is overvalued (undervalued), it

will be more (less) likely to be purchased.

Note that both types of customers would have the option of returning their products. Customers decide

whether to keep or return their purchased products based on comparing the utility of keeping a product

and the utility of returning it. An OfS’s purchase decision is based on the accurate utility evaluation at

the time of purchase. An OnS’s purchase decision may be based on an inaccurate evaluation at the time

of purchase, but they will have the opportunity to accurately evaluate the product when the product is

delivered. Given this, if a product was overvalued in the online channel at the time of purchase, it would

have been more likely to be purchased, but it is also more likely to be returned after purchase because the

product would not be as desired when received. We call this the ‘disappointment’ factor in utility evaluation.

On the other hand, if a product was undervalued, it would have been less likely to be purchased, but it is

also less likely to be returned because the product would be more desired when received, which we call this

the ‘gratification’ factor. Therefore, the utility obtained from keeping a product for OnSs includes the utility

of the product and also the disappointment/gratification factor; while, for OfSs, it will be just the utility

of the product. The utility that a customer obtains from returning a product includes several factors such

as the disutility of the return process (e.g., due to making an extra trip to the store or a post office) and a

potential nonrefundable part of the product price upon return. We assume that the returned products can

be re-sold at the same price in the original channel that they were purchased from, but this can easily be

relaxed in our model.

Determining the subset of products to showcase in the physical store (i.e., the assortment decision) to

maximize the total profit constitutes the foundation of the problem that we analyze in this paper. Our

main contribution is to introduce product returns in this setting and to explicitly examine the impact of

inaccuracy in customers’ online evaluations on profitability. We note that the assortment decision impacts

customers’ purchases and keep-or-return decisions in both sales channels. The set of products showcased in

the physical store determines which attribute levels (and as a result, products) are evaluated accurately in

the online channel and which ones are potentially evaluated inaccurately. The retailer’s profit in this system

is a function of what customers have purchased and what they have returned.

2.4 Modelling Approach

In this section, we propose our main model. All notation is introduced whenever used, but a summary is

also available in Table 2.1.
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Table 2.1: Summary of Notations

Notation Definition

C Capacity of the physical store
dk,l(k) Inaccuracy in evaluating level l(k) of attribute k online
Dx|M Inaccuracy in evaluating product x online, given M

k Index for attributes
K Total number of attributes

l(k) Level index in attribute k
L(k) Set of all possible levels for attribute k
M Decision variable; assortment in the physical store

P f
x|M Purchasing probability for product x in offline channel, given M

Pn
x|M Purchasing probability for product x in online channel, given M

r Disutility in returning a product (r < 0)
Rf

x Returning probability for product x purchased offline
Rn

x|M Probability for product x returned online, given M

S(k|M) Set of levels of attribute k showcased given M
ũk,l(k) Part-worth utility of level l(k) of attribute k

Ux Utility of product x physically evaluated
Un
x|M Utility of product x evaluated online, given M

xk Level of attribute k in product x
X Universal set of all products
α Proportion of offline shoppers (0 ≤ α ≤ 1)
β1 Price sensitivity of utility (β1 ≤ 0)
β2 Refund sensitivity of utility (β2 ≤ 0)
β3 Combined price and refund sensitivities of utility (β3 ≤ 0)
γ Fraction of money refunded upon return (0 ≤ γ ≤ 1)
εx Error term in the utility evaluation of product x
ϕ Disutility of return sensitivity in utility at the time of purchase (ϕ ≥ 0)
µ Homoscedasticty of the population under study in purchase decision
µ′ Homoscedasticty of the population under study in keep-or-return decision
ω Disappointment/gratification sensitivity of inaccuracy in utility (ω ≥ 0)

πk,l(k) Part-worth price of level l(k) of attribute k
Π Retailer’s profit function

Πf Physical store’s contribution to retailer’s profit
Πn Online channel’s contribution to retailer’s profit

2.4.1 Utility Model

Consider a product type with K non-digital attributes, and let L(k) be the set of levels of attribute k ∈

{1, 2, ...,K}. For example, if a product is differentiated by the Color and Size attributes, then K = 2. If

k = 1 corresponds to the Color attribute, then L(1) can be the set {Blue, Yellow}. All combinations of

all levels of all attributes constitute the universal set of product, X, which is the set of all varieties of the

product type that the retailer can sell.

Following the utility model of Dzyabura and Jagabathula (2018), we define the utility of a product as

the summation of the part-worth utilities of its attribute levels. Let ũk,l(k) ≥ 0 be the part-worth utility of

level l(k) ∈ L(k) of attribute k, which is the base utility of that attribute level for a customer who physically
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evaluates the product by touching, trying out, etc. Similarly, each attribute level also contributes to the

price of the product through πk,l(k), which is the part-worth price of level l(k) ∈ L(k). Moreover, the refund

fraction of the price upon a product return (indicated by γ) and also the difficulty of the return process

(indicated by r) affect the utility of a product. A greater refund fraction results in a higher utility of a

product. Similarly, if the return process is easier and not very challenging, the utility will be higher as well.

Given this setting, the utility conceived for a product x when physically evaluated by a customer at the time

of purchase is

Ux = Ũx + β1πx + β2(1− γ)πx + ϕr + εx

where

Ũx =

K∑
k=1

∑
l(k)∈L(k)

ũk,l(k) · 1{xk=l(k)}, and (2.1)

πx =

K∑
k=1

∑
l(k)∈L(k)

πk,l(k) · 1{xk=l(k)},

xk is the level of attribute k in product x, 1{xk=l(k)} is an indicator function that is equal to 1 if xk = l(k)

and 0 otherwise, β1(≤ 0) is the price sensitivity of utility, β2(≤ 0) is the refund sensitivity of utility, r(≤ 0)

is the disutility of the return process, ϕ(≥ 0) is the disutility of return sensitivity in the utility of product x

at the time of purchase, and εx is the error term accounting for unobserved components in composing the

utility of a product. The error term indicates that although the average utility of a product is constant, the

realization for each customer might be different. Re-writing Ux, we get

Ux = Ũx + (β1 + β2(1− γ))πx + ϕr + εx. (2.2)

Defining β3 = β1 + β2(1− γ) and Ux = Ũx + β3πx + ϕr, we can write (2.2) as

Ux = Ux + εx. (2.3)

As explained in Section 3, evaluations of a product attribute in the online channel (via a computer

screen) and the physical store (in-person) can differ. Let dk,l(k) denote this difference (i.e., the magnitude

of inaccuracy in evaluation) for level l(k) of attribute k. Then, the part-worth utility of an attribute level

that is only available online can be represented by ũn
k,l(k) = ũk,l(k)+dk,l(k). Note that dk,l(k) can be positive,

zero, or negative. Positive values correspond to ‘overvaluation’ of the attribute level by the customer, and

negative values correspond to ‘undervaluation’. If the customer overvalues a level of an attribute that is not

available in the physical store, products that include that level will be more likely to be purchased, because
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ũn
k,l(k) > ũk,l(k) and vice versa.

Let M ⊆ X be the subset of products that are showcased in the physical store. Suppose that the retailer

can showcase at most C items, which is the showcase capacity of the physical store. Hence, we should have

|M | ≤ C. Let S(k|M) be the set of all levels of attribute k ∈ K that are present in at least one of the

products in M ; i.e., S(k|M) =
⋃

x∈M{xk}. A product itself might not be offered in the physical store, but

some of its attribute levels can be present there, which means that not all of this product’s attribute levels

are inaccurately evaluated. Therefore, the utility of a product evaluated online consists of the sum of the

part-worth utility of its attribute levels that are in set S(k|M) (showcased in the physical store) and of those

that are not in set S(k|M) (not showcased). Consequently, for any such product y, the utility can be written

as

Un
y|M =

K∑
k=1

 ∑
l(k)∈S(k|M)

(ũk,l(k) + β3πk,l(k)) · 1{yk=l(k)}

+
∑

l(k)/∈S(k|M)

(ũk,l(k) + dk,l(k) + β3πk,l(k)) · 1{yk=l(k)}

+ ϕr + εy. (2.4)

Let the total inaccuracy accrued when evaluating the product y online be defined asDy|M =
∑K

k=1

∑
l(k)/∈S(k|M) dk,l(k)·

1{yk=l(k)}. Then, we can rewrite (2.4) as Un
y|M = Ũy + Dy|M + β3πy + ϕr + εy. Considering that Uy =

Ũy + β3πy + ϕr, we have

Un
y|M = Uy +Dy|M + εy (2.5)

We assume that the idiosyncratic error terms εx in (2.3) and εy in (2.5) follow the standard logit as-

sumption and are independent and identically Gumbel distributed with mean zero and 1/µ scale parameter

(variance µ2π2/6) (Dzyabura and Jagabathula 2018, Anderson et al. 1992, Ben-Akiva et al. 1985), where

µ > 0 is a positive scalar, denoting the homoscedasticity in the population of study. The purchasing experi-

ence of customers in either of the profit channels includes two phases. In the first phase, customers decide

whether to purchase a product or not based on their evaluations of its utility. In the second phase, customers

can decide to return or keep their purchased product after they receive and accurately asses it if purchased

online, and after experiencing it for a while if purchased offline. The model of this experience consists of two

multinomial logit processes, each corresponding to one of the phases. The decision variable for the retailer

is to select a set of products M to showcase in the physical store from the universal products set X so that

its total profit including sales and returns from both channels is maximized.
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2.4.2 Phase 1: Purchase Decisions

A customer in either of the channels purchases a product with the highest utility among the offered products,

if that utility is positive. Using properties of the multinomial logit (MNL) model in making purchase

decisions, the probabilities that a product x is preferred over any product y based on its utility in the

physical store and the online channel are

Pr {Ux > Uy, Ux > 0} ∀x, y ∈M,x ̸= y (a)

Pr
{
Un
x|M > Un

y|M , Un
x|M > 0

}
∀x, y ∈ X,x ̸= y (b)

(2.6)

respectively. Substituting (2.3) and (2.5) in (2.6a) and (2.6b) respectively, we have

Pr
{
Ux + εx > Uy + εy, Ux + εx > 0

}
∀x, y ∈M,x ̸= y (a)

Pr
{
Ux +Dx|M + εx > Uy +Dy|M + εy, Ux +Dx|M + εx > 0

}
∀x, y ∈ X,x ̸= y (b)

. (2.7)

In (2.7), εx and εy are the error terms defined in (2.1) for products x and y at the time of purchase. We can

rewrite (2.7) as

Pr
{
εy − εx < Ux − Uy, Ux + εx > 0

}
∀x, y ∈M,x ̸= y (a)

Pr
{
εy − εx < Ux +Dx|M − Uy −Dy|M , Ux +Dx|M + εx > 0

}
∀x, y ∈ X,x ̸= y (b)

. (2.8)

In (2.8), we know that εy−εx has a Logistic distribution (Ben-Akiva et al. 1985). Let Px|M and Pn
x|M be the

probability that an OfS purchases a product x ∈ M and an OnS purchases a product x ∈ X, respectively,

given that set M is showcased in the physical store. Therefore, by applying the properties of the cumulative

distribution function of Logistic distribution and using the expressions in (2.6), we have the following:

Px|M = eUx/µ

1+
∑

y∈M eUy/µ
∀x ∈M ∪ {0} (a)

Pn
x|M = e

(Ux+Dx|M )/µ

1+
∑

y∈X e
(Uy+Dy|M )/µ

∀x ∈ X ∪ {0} (b)
. (2.9)

In (2.9a) and (2.9b), the fictitious product indicated by ”0” corresponds to the utility of no purchase decision.

The union of each products set and 0 indicates that if the highest utility is not positive, no purchase takes

place (Dzyabura and Jagabathula 2018, Blanchet et al. 2016).
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2.4.3 Phase 2: Keep-or-Return Decisions

Customers in either of the channels make purchase decisions based on the realization of product utilities

at the time of purchase. Next, customers decide whether to keep or return their purchased products. By

considering the disutility of return r and the non-refundable portion of the product price, according to

Alptekinoğlu and Grasas (2014), an OfS will return their purchased product x if

Ũx + β1πx + εx + εkeep|x < r + β1(1− γ)πx + εx + εreturn|x. (2.10)

In (2.10), the left-hand side is the utility that an OfS will obtain by keeping their purchased product x. After

the customer decides to keep the product, the refund sensitivity and disability of return sensitivity will be

eliminated from the utility and the only components left will be the part-worth utility of attribute levels in

the product and the price sensitivity in utility. The right-hand side is the utility in case the customer returns

product x, which includes the disutility of return and the money that will be lost due to the non-refundable

portion of the price. Similar to the purchase decision, we assume that εkeep|x and εreturn|x are to address

the uncertainty in return-or-keep decisions and are i.i.d. Gumbel distribution with zero mean and scale

parameter of µ′.

When OnSs receive their purchased product, they get the opportunity to observe the accurate utility of

the product, and the inaccuracy in their evaluation at the time of purchase, Dx|M , will be resolved. If the

product was overvalued at the time of purchase (Dx|M > 0), there will be a disappointment factor which

would amplify the likelihood of return but if the product was originally undervalued (Dx|M < 0), there will

be a gratification effect which will amplify the likelihood of keep. By considering these effects, an OnS’s

return condition for a purchased product x can be expressed as

Ũx + β1πx − ωDx|M + εx + εkeep|x < r + β1(1− γ)π + εx + εreturn|x. (2.11)

In (2.11), ω (≥ 0) reflects the disappointment/gratification sensitivity originating from the revealed inaccu-

racy in the utility of the product. Given this, if a product has been purchased with overvaluation (Dx|M > 0),

the utility of keeping that product will be smaller because the customer will be disappointed to receive a

product that is not as desired as they expected; however, if the product was purchased with undervaluation

(Dx|M < 0), the utility of keeping it will be greater because the customer will be gratified to receive a product

better than expected. In the literature, Shulman et al. (2009) model the product returns as comparing two

utility values (expected and actual) with no uncertainty, in which disutility of return and the non-refundable

portion of the price are also considered. Moreover, Alptekinoğlu and Grasas (2014) consider the same factors
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in return decision and use a nested logit model to tackle product returns. They include uncertainty in the

purchase decision and in the keep-or-return decision. Our keep-or-return decision model is along the lines of

this literature.

Let Rf
x be the probability of product x ∈M being returned, given that it is purchased from the physical

store. Then, considering µ′ as the homoscedasticity in customers’ keep-or-return decision, by using the

properties of Gumbel distribution and (2.10), we can write

Rf
x = Pr{Ũx + β1πx + εx + εkeep|x < r + β1(1− γ)πx + εx + εreturn|x}

= Pr{εkeep|x − εreturn|x < −Ũx + r − β1γπx}

=
1

1 + e(Ũx−r+β1γπx)/µ′
. (2.12)

Similarly, let Rn
x|M be the probability of product x ∈ X being returned, given that it is purchased from the

online channel. Then

Rn
x|M = Pr{Ũx + β1πx − ωDx|M + εx + εkeep|x < r + β1(1− γ)πx + εx + εreturn|x}

= Pr{εkeep|x − εreturn|x < −Ũx + ωDx|M + r − β1γπx}

=
1

1 + e(Ũx−ωDx|M−r+β1γπx)/µ′
. (2.13)

Moreover, let Kf
x (Kn

x|M ) be the probability of product x ∈M (x ∈ X given M) being kept, given that it is

purchased from the physical store (online channel). Then, we have

Kf
x = 1−Rf

x =
1

1 + e(−Ũx+r−β1γπx)/µ′
,

Kn
x|M = 1−Rn

x|M =
1

1 + e(−Ũx+ωDx|M+r−β1γπx)/µ′
. (2.14)

Before delving into the retailer’s profit function and its analysis, we present a proposition that shows the

impact of product utilities and prices on customers’ return decisions.

Proposition 2.1. Suppose that there are two products x and y such that Ũx ≥ Ũy and πx ≥ πy. Also,

suppose that γ ̸= 0 and either x, y ∈M or Dx|M = Dy|M . Then

(i) if Ũx = Ũy and πx = πy, x and y are equally likely to be returned,

(ii) if Ũx = Ũy and πx > πy, product x is more likely to be returned,.

(iii) if Ũx > Ũy and πx = πy, product y is more likely to be returned,
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(iv) if Ũx > Ũy and πx > πy, product x is more likely to be returned if γ >
Ũx−Ũy

β1(πy−πx)
, and vice versa.

Proposition 2.1 states that when two products have equal utilities, the more expensive product is more likely

to be returned. This is because if customers return either of these two items, they forego an equal utility

by not keeping the item, but they get a greater refund. When the utility of a product is greater than the

other and prices are equal, customers are more likely to return the product with smaller utility, because they

forego a smaller utility. The last criterion states that when the product with greater utility is also more

expensive, then for relatively high values of γ, the greater utility product is more likely to be returned, and

vice versa. Specifically, if the price of the greater utility product is considerably higher than the price of the

other product, it results in a greater return probability for that product.

2.4.4 Retailer’s Objective Function

The decision-maker (retailer) intends to find an optimal assortment plan within the showcase capacity limits

(i.e., |M | ≤ C) such that its profit across both channels is maximized. The profit is composed of the revenue

obtained through selling the products and the loss due to returned sales. Therefore, considering that α

fraction of customers are OfSs, and the remaining 1− α fraction are OnSs, the retailer’s profit function will

be

Π(M) = α

(∑
x∈M

πx · Pr{x purchased ∩ x kept}+
∑
x∈M

(1− γ)πx · Pr{x purchased ∩ x returned}

)

+(1− α)

(∑
x∈X

πx · Pr{x purchased ∩ x kept}

+
∑
x∈X

(1− γ)πx · Pr{x purchased ∩ x returned}

)
(2.15)

By using the conditional probability formula, we have

Pr{x purchased ∩ x returned} = Pr{x returned | x purchased} · Pr{x purchased}

=

 P f
x|M ·R

f
x ∀x ∈M

Pn
x|M ·R

n
x|M ∀x ∈ X

, (2.16)

Pr{x purchased ∩ x kept} = Pr{x kept | x purchased} · Pr{x purchased}

=

 P f
x|M ·K

f
x ∀x ∈M

Pn
x|M ·K

n
x|M ∀x ∈ X

. (2.17)
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Substituting (2.16) and (2.17) into the profit function in (2.15), we get

Π(M) =α

(∑
x∈M

πxP
f
x|M ·K

f
x +

∑
x∈M

(1− γ)πxP
f
x|M ·R

f
x

)
+

(1− α)

(∑
x∈X

πxP
n
x|M ·K

n
x|M +

∑
x∈X

(1− γ)πxP
n
x|M ·R

n
x|M

)
.

Then, the retailer aims to solve the following Omnichannel Assortment Problem with Returns (OCAPwR):

OCAPwR: MaxM⊆X Π(M)

s.to |M | ≤ C.

Unlike the approach of Dzyabura and Jagabathula (2018), OCAPwR cannot be solved in the product at-

tributes space, due to the capacity constraint in our problem. Dzyabura and Jagabathula (2018) propose

the problem to be solved by selecting a set of attribute levels and then showcasing items generated by the

Cartesian product of the selected attribute levels. However, given the capacity constraint, showcasing all the

items in the Cartesian product of the selected attribute levels may not be feasible. Therefore, we propose to

solve OCAPwR with complete enumeration in the product space. This is a combinatorial problem that is

NP-hard (Dzyabura and Jagabathula 2018). In Section 2.4.7, we propose a greedy heuristic algorithm that

is shown to perform excellently.

2.4.5 Should Available Capacity Always be Utilized?

The capacity constraint imposed by C restricts the number of items showcased and impacts the profit

obtained. Extra capacity can provide a retailer with more freedom when it comes to making an assortment

decision, but, typically, extra capacity comes with a cost. An extra capacity is utilized, if the marginal profit

obtained by utilizing it is more valuable than the cost of it. In OCAPwR, we do not introduce the cost of

capacity but solve the constrained problem for a given value of C. One may expect that |M | = C in the

optimal solution to OCAPwR; however, we show that this is not necessarily true in the following Proposition.

Proposition 2.2. For an arbitrary C, let MC be the optimal assortment to showcase. Suppose that an

extra capacity is provided in the showroom such that the shelf-space becomes C + 1. For a specific MC+1,

let Π(MC+1) > Π(M ′),∀M ′ ∈ X such that |M ′| = |MC+1| = C + 1. Then, the extra shelf-space capacity
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provided in the showcase should be unutilized only if

α

1− α
<

[∑
x∈X πxP

n
x|MC+1

(1− γRn
x|MC+1

)−
∑

x∈X πxP
n
y|MC

(1− γRn
x|MC

)
]

[∑
x∈MC

πxP
f
x|MC

(1− γRf
x)−

∑
x∈MC+1

πxP
f
x|MC+1

(1− γRf
x)
] . (2.18)

The fraction on the right-hand side of (2.18) can be positive or negative. If it is negative, then the condition

can not hold and the showcase capacity should be fully utilized. However, if it is positive, then the condition

may hold for certain parameter values and additional capacity should not be utilized to showcase an extra

product even if this extra capacity is costless. Note that as α (proportion of OfSs) decreases, it is more likely

for the condition to hold. This is because showcasing more products to OfSs becomes less critical for higher

profitability. We also numerically investigate this relationship in Section 2.5.2.

2.4.6 Overvaluation Vs. Undervaluation

Customers may overvalue or undervalue the utility of products for which they do not physically evaluate

the attribute levels. In this section, we analyze the conditions under which the retailer prefers customers

whether they overvalue or undervalue the utility of products that are not showcased. The retailers can use

this information for their benefit through design choices at their online sales channels.

For this analysis, we first characterize the profit function Π in terms of the inaccuracy present for a

special case where |M | = 1. Suppose that there are two products x and y. Let d = Dy|{x}. We first rewrite

the profit function Π as a function of d while introducing the same argument to the purchasing, returning,

and keeping probabilities (cf. (2.9b), (2.13), and (2.14)) as follows:

Π(d) = απxP
f
x|{x}

(
Kf

x + (1− γ)Rf
x

)
+ (1− α)πxP

n
x|{x}(d) (K

n
x + (1− γ)Rn

x)

+ (1− α)πyP
n
y|{x}(d)

(
Kn

y|{x}(d) + (1− γ)Rn
y|{x}(d)

) . (2.19)

Because M = {x}, we have Kn
x|{x} = Kf

x|{x} and Rn
x|{x} = Rf

x|{x}. Therefore, we can simplify (2.19) as

Π(d) = πx(1− γRf
x)
(
αP f

x|{x} + (1− α)Pn
x|{x}(d)

)
+ (1− α)πy

(
1− γRn

y|{x}(d)
)
Pn
y|{x}(d).

The following theorem proves that Π(d) is a unimodal function and characterizes the ranges of d that

maximize this function.

Theorem 2.1. Let X = {x, y} and M = {x}. Suppose that πx = πy and, for simplicity, µ = µ′ = 1. Then,

Π(d) is unimodal. Moreover, let d∗ be such that Π(d∗) ≥ Π(d) ∀d : −∞ < d <∞. Then,
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d∗ →∞ if Ux ≤ A1

0 ≤ d∗ <∞ if A1 < Ux ≤ A2

−∞ < d∗ < 0 if max{A1, A2} ≤ Ux

where A1 = ln

(
(1+a1z)(1−γ+γeUy/a2z)

γ

)
, A2 = ln

(
( 1+a1z

γ )
(1−γ)(2a2z+a2

2z
2)−za2γe

Uy+1

2a2z+a2
2z

2−a1z

)
, a1 = e−Ũx , a2 =

e−Ũy , and z = e(r−β1γπx).

This theorem shows that the retailer can benefit from inaccurate assessment of the hidden attribute levels

by their customers, for a small problem instance with two products and one showcase capacity. If the utility

of the showcased product (Ux) is relatively small, the retailer would prefer that customers highly overvalue

the utility of the other product y in the online channel, which falls into the first range. Since Ux is small,

overvaluation of Uy results in more sales in the online channel. In this case, even if product y is returned, the

retailer can benefit from the non-refundable part of the price. When the utility of the showcased is relatively

higher, then the retailer would prefer customers to overvalue the other product y to some extent, which

means that the retailer can benefit from selling both products. However, when the utility of the showcased

product x is even higher so that it falls into the third region, the retailer would prefer customers to undervalue

the utility of the other product y. In this situation, product x is already attractive to customers in both

channels, and the retailer earns profit from it. Selling product y can bring profit to the retailer as well; but,

the retailer would prefer undervaluation, so that if product y is purchased, it will be more likely to be kept.

Our numerical analysis reveals that the main result of this theorem also holds for general problem instances

so that retailers may prefer overvaluation or undervaluation of the hidden attributes rather than them being

accurately assessed.

It should be noted that the retailer cannot determine the value of d, because it is an exogenous variable

inherent to customers’ perceptions. Nevertheless, the retailer may be able to influence the inaccuracy in

customers’ evaluations via some marketing tactics. For example, online shoppers may perceive products

differently on different choice of pictures or website designs. In this way, the retailer may be able to lead

customers towards overvaluation or undervaluation, whichever direction is desirable for them. We further

elaborate on this aspect in the Conclusion section.

2.4.7 Greedy Heuristic Algorithm

Suppose that an optimal assortment has been found for a given showcase capacity in a problem instance but

there is an opportunity to increase the showcase capacity by one. If the problem is resolved from scratch in

this situation, the best decision may contain different products compared to the assortment that is already
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showcased. This is because, with more capacity, the retailer can choose to provide more accurate information

by showcasing a higher variety and combination of attribute levels. This can result in a different combination

of products showcased. In practical applications, retailers may be interested in exploiting the extra capacity

by adding a product, without changing the already showcased assortment, even though the resulting set may

not be optimal. In this section, we exploit this ‘greedy’ policy, albeit suboptimal, which may be easy to

implement in practice as well as easy to compute. Proposition 2.3 provides a framework for this heuristic

policy.

Proposition 2.3. Suppose that an arbitrary set M ⊂ X is selected for showcasing, and πi = πj ,∀i, j ∈ X.

Also suppose that Di|M = Dj|M ,∀i, j ∈ X \M . Consider that M
′
= M + {x} and M

′′
= M + {y},∀x, y ∈

X \M . In selecting one more product between x and y to add to set M , product x is selected over y if the

following condition holds:

1− γRf
x

1− γRn
x|M ′′

 α

1− α
(
∑
i∈M ′

P f

i|M ′ −
∑

j∈M ′′

P f

j|M ′′ ) + (
∑
i∈M ′

Pn
i|M ′ −

∑
j∈M ′′

Pn
j|M ′′ )

 ≥ (Pn
x|M ′′ − Pn

y|M ′

)
.

Given that OCAPwR is NP-hard and cannot be solved to find the optimal solution in polynomial time,

we propose a greedy heuristic algorithm along the lines of Proposition 2.3, that iterates over all C values

and adds the most profitable product to the assortment, if any. The proposed algorithm starts from C = 1

and provides the best marginal solution, as the showcase capacity is increased one by one until C = |X|. At

C = 1, the algorithm calculates the expected profit obtained by showcasing each product in set X and selects

the product that generates the highest profit to showcase. This solution is kept as the optimal solution for

C = 1 and is kept in the assortment in all of the subsequent iterations. Then, the algorithm sets C = 2

and seeks another product from the remaining ones, to maximize the profit of showcases with the already

selected product, when C = 1. The algorithm proceeds with this greedy approach until all showcase capacity

values are iterated. Note that the algorithm does not select an item if adding an item to the assortment

does not increase the overall profit at that iteration (cf. Proposition 2.2). In this situation, for the next

iteration, the algorithm considers the best item that it could choose if it were to fully utilize the capacity. As

defined above, MC is the optimal assortment when capacity is C, and let M ′
C is the optimal assortment when

capacity is C but under the condition that the showcase capacity must be fully utilized. Then, Algorithm 1

presents the proposed greedy heuristic.

Similar greedy policies have been widely used in assortment planning literature, e.g., see Nemhauser and

Wolsey (1978), Talluri and Van Ryzin (2004), and Désir et al. (2014). The performance of this algorithm
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Algorithm 1 Greedy heuristic algorithm for selecting showcase set M

C ← 0 ▷ Initialize variables
MC ← ∅
M ′

C ← ∅
while C < |X| do ▷ Iterate over all possible values of C

C ← C + 1
for all x ∈ X \M ′

C−1 do ▷ Calculate profit for adding each product to M ′
C−1

Πx ← Π(M ′
C−1 ∪ {x})

end for
M ′

C ←M ′
C−1 ∪ {argmaxx∈X\M ′

C−1
Πx} ▷ Find addition with maximum profit

if Π(M ′
C) > Π(MC−1) then ▷ Check if utilizing extra capacity is optimal

MC ←M ′
C

else
MC ←MC−1

end if
end while

is investigated in Section 2.5.5, which indicates that this algorithm captures the optimal decision with very

small error.

2.5 Numerical Studies

This section consists of five parts. We (i) investigate the structure of the optimal solution, (ii) analyze the

effect of problem parameters on showcase variety and capacity utilization, (iii) explore the impact of inac-

curacy on the optimal profit, (iv) provide a sensitivity analysis for problem parameters, and (v) investigate

the performance of the proposed greedy heuristic algorithm.

For our numerical test bed, we consider a representative product type with three attributes, i.e. K =

3. We assume that the attributes have three, two, and three levels, respectively, i.e., L(1) = {1, 2, 3},

L(2) = {1, 2}, and L(3) = {1, 2, 3}. Because a product is a combination of these three attributes, there are

3 × 2 × 3 = 18 possible unique products, i.e., |X| = 18. To isolate the effect of attribute levels, we fix the

part-worth utility of the levels of Attribute 1 (A1) and Attribute 2 (A2) (see Table 2.2) and change only

the part-worth utility of the levels of Attribute 3 (A3). For A3, we consider five different utility scenarios

with an average utility of 1 in each scenario (see Table 2.3). The scenarios differ based on the distribution

of magnitudes. The first three scenarios are symmetric with wide, medium, and narrow ranges and are

denoted by SyW, SyM, and SyN, respectively and the fourth and fifth scenarios are right and left skewed,

denoted by SkR and SkL, respectively. In SyW and SkR scenarios, there is one attribute level that is

distinctively more preferred than the others whereas in the other scenarios two or three attribute levels are

closer to each other in terms of desirability by the customers. Regarding the pricing structure, we define

two scenarios by fixing the part-worth price values of A1 and A2 to 30. The first scenario is ’Equal Prices’,
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in which the part-worth price of all levels of A3 is 40 (i.e., attribute levels contribute equally to the overall

price of the product), and in the ’Unequal Prices’ scenario we consider 50, 55, and 60 as the part-worth

prices of levels 1, 2, and 3 of A3, respectively (i.e., products with Level 3 of A3 are the highest priced).

We let d1,l(1) = d2,l(2) = 0 ∀ l(1) ∈ L(1) and ∀ l(2) ∈ L(2) (i.e., A1 and A2 are accurately evaluated);

and d3,l(3) ∈ {−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6} ∀ l(3) ∈ L(3) such that d3,1 = d3,2 = d3,3 (i.e., magnitude

of inaccuracy is the same for all levels of A3). Finally, we let α ∈ {0.25, 0.5, 0.75}, r ∈ {−0.8,−0.5,−0.2},

µ ∈ {0.5, 1, 1.5}, µ′ = µ, γ ∈ {0.2, 0.4, 0.6, 0.8}, β1 = −0.013, β2 = −0.01, ϕ = 0.4, and ω = 0.5. Given this

setup, we examine 7560 distinct problem instances for each value of showcase capacity C ∈ {1, 2, ..., 18}.

Table 2.2: Part-worth Utilities of Levels of Attributes 1 and 2

Attribute k 1 2
Levels l(k) 1 2 3 1 2

ũk,l(k) 0.8 1 1.2 0.8 1.2

Table 2.3: Part-worth Utilities of Level of Attribute 3 under Different Scenarios

Scenarios
Levels

1 2 3

SyW 0.4 1 1.6

SyM 0.6 1 1.4

SyN 0.8 1 1.2

SkR 0.4 0.6 2

SkL 0.4 1.2 1.4

2.5.1 Analysis of the Optimal Solution

Table 2.4 presents the details of the optimal solution for a problem instance with α = 0.25, r = −0.2,

µ = µ′ = 1.5, γ = 0.6, and d3,l(3) = −0.2 ∀l(3) ∈ L(3), scenario SyM, and unequal prices. For each possible

showcase capacity C ∈ {1, 2, ..., 18}, this table lists the optimal number of showcased products (|M∗|), the

attribute levels showcased (revealed), the optimal profit (Π∗), and the total refunds for returned products

sold in the offline (fR) and online (nR) channel. The numbers in the parenthesis in each row under the

Π∗ column indicate the marginal percentage profit increase with respect to the showcase capacity of the

previous row.

Along the lines of Proposition 2.2, we observe in this problem instance that utilizing an extra capacity to

showcase one more product does not necessarily bring a benefit. For example, all available showcase capacity

is utilized fully when C ≤ 6, but when C = 7, the optimal number of products to be shown remains at six,

leaving one available showcase capacity idle. To understand the reasoning behind this, we forced the model
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Table 2.4: An Example Optimal Solution for a Problem Instance with SyM Scenario, Unequal Prices,
α = 0.25, r = −0.2, γ = 0.6, d3,l(3) = −0.2,∀l(3) ∈ L(3), and µ = µ′ = 1.5

Attribute Levels Showcased
C |M∗| A1 A2 A3 Π∗ (%↑) Πf Πn fR nR

1 1 3 2 3 97.16 (-) 21.06 76.10 1.56 8.27
2 2 2, 3 2 3 99.79 (2.71%) 23.69 76.10 1.86 8.27
3 3 1, 2, 3 2 3 100.75 (0.96%) 24.65 76.10 2.05 8.27
4 4 1, 2, 3 1, 2 3 101.31 (0.60%) 25.21 76.10 2.17 8.27
5 5 1, 2, 3 1, 2 3 101.60 (0.28%) 25.50 76.10 2.28 8.27
6-7 6 1, 2, 3 1, 2 3 101.74 (0.14%) 25.64 76.10 2.40 8.27
8-18 8 1, 2, 3 1, 2 2, 3 101.77 (0.03%) 25.76 76.01 2.44 8.44

to showcase seven products when C = 7 and analyzed the sales and return dynamics. When C = 6, it is

optimal to showcase six products by revealing all levels of A1 and A2 and only Level 3 of A3. If we force the

model to fully utilize the capacity when C = 7, Level 2 of A3 is revealed by showcasing the 7th product which

is cheaper than the previously selected six products. Adding this product to the variety in the physical store

decreases the purchase probability of the previously selected six products, because it steals part of their share

from sales. However, it increases the overall purchase probability of products in the physical store, and in

this case, slightly increases the profit in this channel. In this problem instance, all products are undervalued.

Therefore, introducing a new level of A3 in the physical store will cause all products with Level 2 of A3 in

the online store to be evaluated more accurately, resulting in an increase in the purchase probability of these

products and more sales; however, the return probability increases as well by revealing undervalued attribute

levels (if kept undervalued, sold products are less likely to be returned). In this particular case, the increase

in returns dominates the increase in sales, which leads to a slight decrease in this channel’s overall profit. In

aggregate, because the population of OnSs is three times greater than OfSs (α = 0.25), the decrease in the

profit of the online channel will be greater than the increase in the profit of the physical store, which leads

to not utilizing the extra capacity provided. For C = 8, all showcase capacity is again fully utilized, but any

extra capacity does not bring in any benefit for C ≥ 9 for the retailer. Forcing the model to utilize the extra

capacity when going from C = 8 to 9 will result in adding one more product with Level 2 of A3. In this

case, although the total purchase probability increases, a great part of the purchase probability for products

with Level 3 of A3, which are more expensive, are assigned to products with Level 2 of this attribute, which

decreases the profit of the physical store. The profit of the online channel will not change because this new

addition reveals no additional information to the OnSs. We observe that Level 1 of A3 is never shown, which

attributes to the cheapest products in the portfolio.

We also observe from Table 2.4 that optimal profit (Π∗) is non-decreasing in showcase capacity, which is

expected. However, there are no consistent diminishing returns in the marginal profit as one more showcase
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capacity is made available, even though we observe a general trend towards this direction. This can be better

explained considering cases where one more showcase capacity is made available but it is not utilized (e.g.,

in Table 2.4, when C increases from 6 to 7). In such cases, the marginal profit of adding one more showcase

capacity is zero. However, when one more capacity is added again, and this time it is utilized (e.g., when

C increases from 7 to 8 in Table 2.4), the marginal profit of this addition is positive and greater than the

previous increase in capacity.

The fR and nR values given in Table 2.4 correspond to the ‘lost’ profit due to returns by offline and online

customers, respectively. nR values are higher than fR, because α = 0.25 in this problem instance, which

is the fraction of OfSs. Also, as expected, returns are non-decreasing as the showcase capacity increases.

Showcasing more levels in the physical store (i.e., revealing more information about the products) increases

returns in the online channel. This is because the hidden attributes are undervalued in this example which

implies less returns after sales, but revealing them will increase the returns (an opposite effect would have

been observed if hidden attributes were overvalued). The value of nR is unchanged for 1 ≤ C ≤ 7, because

the showcased level of A3 does not change. At C = 8, two more products are shown with the introduction

of Level 2 of A3 for the first time and the value of nR increases. For C ≥ 8, the nR value does not change

as the levels showcased do not change from this point on.

2.5.2 Analysis of Showcase Variety and Capacity Utilization

Let L be the number of different levels of A3 showcased (revealed) in the optimal solution for a problem

instance. Since there are three levels of A3 in our test bed, L can take a value of 1, 2, or 3, meaning that either

one, two, or three levels are showcased (and hence two, one, or zero levels of A3 are hidden) in the optimal

assortment solution, respectively. One of the challenges of the retailer is to decide whether to showcase and

reveal a limited variety of products (i.e., L = 1 or L = 2) or full variety (L = 3). Recall that A1 and A2

have 3 and 2 levels, respectively, which are always accurately evaluated by the customers, and there are 18

different products that can be showcased. If only one level of A3 is revealed at the optimal solution (L = 1),

then up to 3×2×1 = 6 products can be showcased as the capacity permits; if two levels are revealed (L = 2)

then up to 3 × 2 × 2 = 12 products can be showcased; and if all three are revealed (L = 3) then up to 18

products can be showcased. The retailer should also decide to what extent they need to allocate capacity

to the desired product variety, as it may not always be optimal to utilize the capacity fully (see Proposition

2.2). We use C to denote whether available capacity is fully utilized or not. Supposing that C = 18, if L is

equal to 1 or 2, then C = 0 and if L = 3 then C = 0 or C = 1 where 0 denotes that not all of the available

capacity is utilized and 1 denotes the otherwise. In this section, we attempt to generate managerial insights
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regarding the values of L and C at the optimal solution based on different values of problem parameters.

To eliminate the effect of the limit on capacity, we conduct the analysis under no capacity constraint (i.e,

C = 18). As discussed in the previous section, the decision of showcasing a certain variety of attribute levels

is a trade-off between sales and returns in both channels, which defines the retailer’s profit. Our analyses

indicate that the effect of parameters on the optimal assortment varies with respect to whether attribute

levels contribute to the overall prices (Equal vs Unequal Price scenarios) and are over- or under-valued.

In Tables 2.5 - 2.8, we present the average number of the levels of A3 revealed (Columns L) and the

fraction of cases for which available capacity should be fully utilized (Columns C) at the optimal solution for

different values of α and γ as well as for four utility scenarios (two symmetric and two skewed). For example,

a value of L = 3 means that all three levels of A3 have always been revealed in the optimal solution in all

problem instances with the corresponding α and γ values. A value of L = 2.48 means that although there

are instances in which all three levels of A3 should be revealed, there are also other problem instances in

which 1 or 2 levels should be revealed under the corresponding α and γ values. Similarly, C = 0 means that

in all problem instances in that category, available capacity has not been fully utilized; whereas C = 1 means

that it is fully utilized. Any decimal value indicates the fraction of cases with C = 1 among the problem

instances with the corresponding α and γ values.

Equal Prices and Undervaluation

Table 2.5 presents the L and C values for problem instances where prices are equal and all A3 levels are

undervalued. Smaller values of γ correspond to lower refunds given to customers upon a product return;

hence returns are less detrimental for the retailer under such values and the retailer pays more attention to

increasing sales. Since A3 levels are undervalued, showcasing a greater variety of A3 eliminates the inaccuracy

from more products in the online channel, which results in higher sales. Therefore, as γ decreases, L is non-

decreasing meaning that the retailer tends to showcase a greater variety of attribute levels as the returns from

increased sales is not too detrimental (lower refund). As γ increases (higher refund), the impact of returns

on the retailer’s profit becomes more drastic and the retailer would prefer to avoid returns. Therefore, the

retailer tends to showcase only a subset of attribute levels and utilizes the capacity less. For all problem

instances in our test bed with γ = 0.2, all three levels of A3 are showcased (L = 3) and all available capacity

is utilized in SyW, SyN, and SkL scenarios (C = 1) whereas full capacity is used in most of the instances in

SkR scenario (C = 0.78). This also implies that there can be problem instances in which the full variety of

A3 levels are showcased (L = 3) by not utilizing the available capacity fully (C = 0).

SyW and SyN are symmetric utility scenarios where the utilities are dispersed wider in SyW (0.4/1/1.6)

and narrower in SyN (0.8/1/1.2). Hence there is one level in SyW that has a distinctively higher utility

30



Table 2.5: Effect of α and γ on Showcase Variety and Capacity Utilization under Equal Prices and Utility
Undervaluation for SyW, SyN, SkR, and SkL Utility Scenarios

SyW Utility Scenario SyN Utility Scenario

γ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

α L C L C L C L C L C L C L C L C

0.25 3 1 2.48 0.11 2 0 1.19 0 3 1 3 0.89 2.85 0.11 2.22 0

0.5 3 1 2.81 0.11 2.11 0 1.59 0 3 1 3 0.89 3 0.11 2.63 0

0.75 3 1 2.93 0.11 2.19 0 1.81 0 3 1 3 0.89 3 0.11 3 0

SkR Utility Scenario SkL Utility Scenario

α L C L C L C L C L C L C L C L C

0.25 3 0.78 1.93 0 1 0 1 0 3 1 2.59 0.11 2.11 0 2 0

0.5 3 0.78 2.19 0 1.11 0 1 0 3 1 2.81 0.11 2.11 0 2 0

0.75 3 0.78 2.56 0 1.15 0 1 0 3 1 3 0.11 2.22 0 2 0

value than other levels. Under higher values of γ, the retailer prefers to decrease product returns, therefore,

it would be better off showcasing a smaller variety of A3 and showcase only the level that has distinctively

higher utility in SyW to increase sales, whereas in SyN, retailer benefits from including more levels to obtain

higher sales. A similar effect is also observed when we compare SkR (0.4/0.6/2) and SkL (0.4/1.2/1.6). SkR

has one level that has distinctively higher utility whereas SkL has two levels with high utility compared

to the third one. The retailer is better off showcasing the singled-out level with the highest utility in SkR

whereas is better off showcasing the two levels with relatively high utilities in SkL.

As α increases, a greater portion of customers becomes OfSs. As a result, the retailer prefers to showcase

a greater variety of levels of A3 compared to smaller α values, to increase sales in the physical store. Since

all hidden A3 levels are undervalued, this may lead to higher returns and less profit in the online channel;

however, as α grows, the operations of the online channel fade out. Therefore, the retailer prefers to showcase

a greater variety of A3.

We also investigate the optimal assortment structure based on r. We observe that as the magnitude of

r increases (i.e., the return process becomes harder), the retailer pays more attention to increasing sales;

hence, it tends to showcase a greater variety of A3 to eliminate the undervaluation in product utilities and

obtain more sales. This is similar to the effect of γ stated earlier; however, γ turns out to be more impactful

than r.

Equal Prices and Overvaluation

Table 2.6 presents the L and C values for problem instances where prices are equal and all A3 levels are

overvalued. We first observe that the L values are closer to 3 (showcasing all A3 levels) compared to the

values in Table 2.5 for the undervaluation case. The retailer is generally better off if OnSs undervalue
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the hidden attribute levels (see Section 2.5.3). Therefore, when attribute levels are overvalued, the retailer

prefers to reveal more compared to the case with undervaluation. The impact of γ on L depends on the value

of α. If there are more OnSs than OfSs (lower values of α) then L increases as γ increases (higher refund).

This is because the retailer prefers to eliminate the overvaluation from OnSs’ purchases; otherwise, returns

will be higher and since γ is also high, it results in higher loss of profit. On the other hand, L decreases as

γ increases for higher values of α. In this case, more customers are OfSs who purchase with accurate utility

evaluations. So, the retailer prefers to showcase a more limited variety of levels of A3 that have higher utility

and less return likelihood. It should be noted that this may result in less profit in the online channel, but

as α increases, the contribution of the online channel fades out. Similar to the undervaluation case, it is

preferable to utilize the available capacity fully in more problem instances under lower γ values compared

to higher values.

Table 2.6: Effect of α and γ on Showcase Variety and Capacity Utilization under Equal Prices and Utility
Overvaluation for SyW, SyN, SkR, and SkL Utility Scenarios

SyW Utility Scenario SyN Utility Scenario

γ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

α L C L C L C L C L C L C L C L C

0.25 2.44 0.59 2.74 0 2.93 0 3 0 2.63 0.63 2.74 0.63 2.85 0.04 3 0

0.5 2.85 0.85 2.96 0.07 3 0 3 0 2.89 0.89 2.96 0.85 3 0.11 3 0

0.75 3 1 3 0.11 3 0 2.85 0 3 1 3 0.89 3 0.11 3 0

SkR Utility Scenario SkL Utility Scenario

α L C L C L C L C L C L C L C L C

0.25 2.48 0.52 2.89 0 3 0 3 0 2.63 0.63 2.74 0 2.85 0 3 0

0.5 2.81 0.67 2.96 0 3 0 3 0 2.89 0.89 2.96 0.07 3 0 3 0

0.75 3 0.78 3 0 2.81 0 2.41 0 3 1 3 0.11 3 0 2.93 0

Regarding the impact of α, the general trend is the same as that of the undervaluation case; variety of

showcased products increases as α increases. However, under extreme values of γ (as the retailer approaches

full refund) L is non-increasing because elevated refund obligations makes the retailer prefer to showcase

levels of A3 that are less likely to be returned rather than the full variety. The effect of r depends on the

value of α. If there are more OnSs (lower values of α), then as the magnitude of r increases, the retailer

tends to showcase a smaller variety of A3 to benefit from the increased sales at the online channel due

to overvaluation of product utilities and lower returns as returns become more difficult to the customer.

However, when there are more OfSs (larger values of α), the contribution of the physical store sales become

the dominant factor; so as the magnitude of r increases, the retailer prefers to showcase a greater variety of

A3 to sell more in the physical store.
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Unequal Prices and Undervaluation

Table 2.7 presents the L and C values for problem instances where prices are unequal and all A3 levels

are undervalued. In this case, the effect of changes in γ and r values on L are the same as described in

Section 2.5.2. However, in all problem instances, only a subset of A3 is showcased (i.e., L ≤ 2) and the

capacity is never fully utilized (i.e., C = 0). In this case, levels of A3 with higher utilities are preferred to

others considerably because not only do they have higher sales and smaller return probabilities, but they

are more expensive and profitable. Hence, the retailer is reluctant to showcase levels with smaller utilities.

Furthermore, the effect of changes in α value on L is also similar to that in Section 2.5.2 with some exceptions.

Table 2.7: Effect of α and γ on Showcase Variety and Capacity Utilization under Unequal Prices and
Utility Undervaluation for SyW, SyN, SkR, and SkL Utility Scenarios

SyW Utility Scenario SyN Utility Scenario

γ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

α L C L C L C L C L C L C L C L C

0.25 1.67 0 1.56 0 1.04 0 1 0 2 0 1.85 0 1.63 0 1.26 0

0.5 1.67 0 1.56 0 1.15 0 1 0 2 0 1.81 0 1.67 0 1.56 0

0.75 1.67 0 1.56 0 1.26 0 1.04 0 2 0 1.78 0 1.67 0 1.67 0

SkR Utility Scenario SkL Utility Scenario

α L C L C L C L C L C L C L C L C

0.25 1.44 0 1 0 1 0 1 0 1.78 0 1.67 0 1.56 0 1.18 0

0.5 1.44 0 1 0 1 0 1 0 1.78 0 1.67 0 1.63 0 1.41 0

0.75 1.44 0 1 0 1 0 1 0 1.78 0 1.67 0 1.67 0 1.56 0

Unequal Prices and Overvaluation

Table 2.8 presents the L and C values for problem instances where prices are unequal and all A3 levels are

overvalued. In all problem instances in this case, the capacity is never fully utilized (i.e., C = 0). The effect of

changes in γ and r values on L highly depend on the value of α, similar to the equal price and overvaluation

case.

As α increases, the retailer becomes more interested in increasing the profit obtained from the physical

store. Therefore, the retailer tends to showcase products with higher utilities which are also less likely to be

returned and more profitable. As a result, L is non-increasing in α. Although this statement generally holds,

there are instances in which the opposite behavior is observed. Specifically, in Table 2.8, in SkL scenario

for γ = 0.6, an increase in α from 0.25 to 0.5 results in an increase in L. In this special situation, since

the utility values of levels in SyN are close to each other and less differentiable compared to other scenarios,

the retailer may want to showcase a greater variety to increase sales while return probabilities are not very
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Table 2.8: Effect of α and γ on Showcase Variety and Capacity Utilization under Unequal Prices and
Utility Overvaluation for SyW, SyN, SkR, and SkL Utility Scenarios

SyW Utility Scenario SyN Utility Scenario

γ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

α L C L C L C L C L C L C L C L C

0.25 2.93 0 3 0 3 0 3 0 2.63 0 2.67 0 2.70 0 2.85 0

0.5 2.89 0 2.89 0 2.81 0 2.89 0 2.85 0 2.67 0 2.70 0 2.85 0

0.75 2.48 0 2.44 0 2.22 0 2.07 0 2.52 0 2.22 0 2.15 0 2.15 0

SkR Utility Scenario SkL Utility Scenario

α L C L C L C L C L C L C L C L C

0.25 2.93 0 3 0 3 0 3 0 2.74 0 2.89 0 2.89 0 2.93 0

0.5 2.85 0 2.78 0 2.78 0 2.78 0 2.67 0 2.96 0 2.96 0 2.89 0

0.75 2.33 0 2.04 0 1.89 0 1.89 0 2.33 0 2.26 0 2.22 0 2.22 0

different. But when α gets larger, L decreases because in this situation a greater proportion of customers

are OfSs and even small differences in the value of return probabilities are important.

2.5.3 Impact of Inaccuracy on Optimal Profit

In this section, we investigate the impact of inaccuracy in customers’ evaluations of the products with hidden

attribute levels on the overall profit of the retailer. Even though the evaluations of the customers are inherent

to their self-assessment and perception, the retailers may have some influence on this perception through

design and showcase decisions — we elaborate on potential actions in the Conclusion section. Figure 2.1

shows the average percentage profit deviation from the perfect information case (d3,. = 0) for different utility

scenarios and for C ∈ {3, 6, 12, 18}, under the Equal Price scenario. We first observe that the retailer makes

more profit if their customers undervalue the hidden attribute levels rather than assessing them accurately,

and the opposite is true if hidden attribute levels are overvalued, on the average. In our numerical test bed

with 68,040 instances for each of the Equal and Unequal Price scenarios, a negative d3,. value (undervalued

hidden attribute levels) produced the highest profit in 70. 82% of the instances under Equal Prices and

93. 41% of the instances under Unequal Prices. The percentage benefit increases, as d3,. decreases within

d3,. ∈ {0.6, ...,−0.6}. For C equal to 12 and 18 in Figure 2.1, the deviation is smaller compared to when C

is equal to 3 and 6 for d3,. > 0, because most or all of the attribute levels are showcased in these values of

C in the optimal solution.

In Figure 2.1, we also observe that the magnitude of the average profit deviation changes for different

utility scenarios. In terms of the absolute difference, scenarios with the highest profits change according to

whether attribute levels are undervalued or overvalued. In the case of undervaluation, we observe that the

asymmetric scenario SkR provides the highest profit, which is the one with a singled-out attribute level that
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is much more desired than the others. The next highest profit is observed under the SyW scenario, which

has a similar structure. Within the symmetric scenarios, we observe that the profit increases as the range of

the utility levels increases (from SyN to SyW). These observations indicate that the retailer is better off if a

few of the attribute levels are distinctively more desired than the other attribute levels. On the other hand,

in the case of overvaluation, the exact opposite trend holds. In this case, SkR and SyW scenarios provide

the lowest profits, respectively, and other utility scenarios generate higher profits. This implies that, in case

of undervaluation, as the utility of attribute levels are closer and there is not a considerable difference, the

retailer can obtain a higher profit.

Figure 2.1: % Average profit deviation from profit of d3,. = 0 for different values of d3,., with respect to A3
utility cases, for equal prices

2.5.4 Joint Sensitivity Analysis of γ, µ, and r

In this section, we provide a joint sensitivity analysis for parameters γ (the refund fraction of product price),

µ (the homoscedasticty of the customer population) and r (the disutility of return). Note that γ is a strategic

decision to be set by the retailer, µ is a given exogenous variable that will be different for different businesses

and sectors, and r is also an exogenous parameter inherent to the customers and originates from factors

such as making a trip to a post office or the physical store to return a purchased product or repackaging

the product at home. This analysis is based on the experiments of the equal prices scenario, and the results
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hold for the unequal prices as well.

Figure 2.2 displays the average profit with respect to γ and µ for different values of r. For a smaller µ,

the population under study is more homoscedastic, i.e., customers’ behavior is more similar and less variable.

Therefore, the model captures customers’ behavior with less variability, and, as a result, the average profit is

higher compared to a greater µ. Moreover, under higher values of γ (here 0.8), a smaller disutility of return

(the magnitude of r) results in a decrease in the average profit. If the return process is easier and most of

the price will be refunded upon a product return, even though there will be a tendency for higher sales with

these settings, the loss due to returns increases considerably under large variability. We also note that the

magnitude of the decrease in profit is greater for higher µ. This is because, a greater µ always has an adverse

effect on profitability. On the contrary, for a small value of γ (here 0.2), a smaller disutility of return results

in an increase in profit, since although the return process is easier, only a small portion of the price will be

refunded. Considering that an easier return process means higher utility, sales increase and overall profit

increases as well. Also, the magnitude of the increase in profit is greater for a smaller µ.

Figure 2.2: Average profit with respect to γ and µ for different values of r in equal prices

2.5.5 Performance of the Greedy Heuristic Algorithm

Given that OCAPwR is NP-Hard, complete enumeration is not an efficient method to solve the problem

in practice. Finding the optimal assortment plan for each possible capacity takes about 20 seconds for an

item with three attributes and |X| = 18 using a computer with a Core(TM) i7-10700 CPU @ 2.90 GHz
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processor. Since this duration will increase exponentially with the number of attributes, and the retailers

will typically have several items on which to make assortment decisions, we propose a heuristic algorithm to

find reasonable, feasible solutions (see Algorithm 1 in Section 2.4.7). The heuristic runs in a greedy manner

to select the next item to showcase, as the showcase capacity increases one by one.

To analyze its performance, we extend our test bed such that d1,., d2,. ∈ {−0.6,−0.4,−0.2, 0, 0.2,

0.4, 0.6}. We limit our analysis in this part to the SyW, SkR, and SkL utility scenarios of A3. Therefore, our

extended test bed in this section includes 55,566 problem instances for each of the equal price and unequal

price cases. Given that we solve the problem for every C from 1 to 18, this results in 1,000,188 distinct

problem instances. We compare the results of the complete enumeration and the algorithm. Using complete

enumeration to find the optimal solutions for all problem instances in the test bed takes 705,622 seconds

(196.01 hours) in the unequal prices scenario and 702,720 seconds (195.20 hours) in the equal prices scenario.

The proposed greedy algorithm takes 990.12 seconds (0.28 hours) for unequal prices and 973.36 seconds (0.27

hours) for equal prices.

Figure 2.3: Maximum % of heuristic profit deviation from optimal profit for each capacity

For both scenarios of equal and unequal prices, the average percentage deviation of profit obtained by the

greedy algorithm is negligible for all capacities. The highest average percentage deviation in both scenarios

occurs when C = 18, and the value is 0.0084 % in equal prices and 0.0080 % in unequal prices. However,

there are several cases for which the heuristic has an inferior performance. Figure 2.3 presents the maximum

percentage deviation of the profit obtained by the greedy heuristic, compared to the optimal profit for equal

and unequal price scenarios. As can be seen, the maximum percentage of deviations is 0.86% in unequal
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prices and 0.58% in equal prices, meaning that in the worst case, the greedy solution is an approximation

that is as close to the optimal solution as 99.14%. We observe that the heuristic performs better under

higher α values or if the hidden attribute levels are accurately or with small inaccuracy evaluated (either

overvaluation or undervaluation). For the small values of γ, the deviation is greater than γ values closer to

1. However, the best performance is when γ has a value in between and a bit closer to 1. The deviation is

the smallest under the asymmetric scenario SkR and the greatest under SkL.

2.6 Conclusion

In this paper, we tackle the assortment planning problem for an omni-channel retailer that runs an online

sales channel along with a physical store and customers can return their products after purchase. The

physical store may bear showcase capacity, whereas the capacity is not an issue for the online channel. Our

model applies to high-value products with non-digital attributes that customers prefer to visit the physical

store to experience the product, before purchasing either directly from the store or from the online channel.

Therefore, the showcased assortment in the physical store acts as a medium to reveal information for the

online shoppers, which will lead to more informed purchasing decisions and might affect the post-purchase

keep-or-return decisions of the customers. We explicitly consider this relationship and develop a model to

select an assortment plan that maximizes the overall profit of the retailer, including the losses due to product

returns.

We generate several managerial insights for retailers. One interesting result is that retailers should not

necessarily fully utilize their showcase capacity, even if there is no cost incurred for using this available

capacity. Therefore, retailers should be diligent in checking all possibilities when making decisions. This

check is even more crucial when a retailer offers multiple product lines. In this situation, products compete

for the total space available in the store, and the retailer should carefully find an optimal capacity for each

product line.

One may expect that retailers would prefer their customers to perfectly evaluate the attribute levels that

they cannot experience (i.e., that are not showcased) in the store. This expectation is not true based on an

analytical result for a special case and an extensive numerical analysis. In 82% of the problem instances in

our numerical test bed, the retailers make the highest profit if the hidden attribute levels are undervalued

by the online customers. Hence, in these situations, there is no value for retailers to invest in advanced web

interfaces that make the online shopping experience of the customers more realistic on a computer screen.

Note that this is counter intuitive because online customers will have less tendency to purchase the products

with hidden attribute levels. Retailer is beneficial in this situation because undervaluation also leads to less
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returns. On the other hand, if the customers are overvaluing the hidden attribute levels, the retailer is likely

to benefit from web interfaces that lead to more accurate evaluations. In general, the retailers should avoid

situations in which a hidden attribute level stands out among the showcased attribute levels with increased

unrealistic expectations and exaggerations. This action will lead to overvaluation of such items and, hence,

will hurt the retailer when product returns are also considered.

Retailers may consider having computers in their stores for customers to be able to browse their online

sales website for items that are not present in the store. In line with the discussion above, retailers should

investigate the impact of having such a mechanism in their stores. If this in-store computer browsing leads

customers to undervalue the utility of the hidden attribute levels, then retailers should take advantage of

inserting such computers in their showrooms.

Full refund return policies are common in modern omni-channel retailing practices. This strategic decision

can have positive effect on retailers’ sales. Our results indicate that when a full-refund policy is employed,

the retailers should showcase a limited variety of undervalued attribute levels to obtain a higher profit. If

the hidden attributes are overvalued, then the retailer should showcase a large variety of the product if the

majority of the retailer’s customers are online shoppers and should showcase a limited variety if the majority

prefer to shop from the physical store. We also observe a similar strategy when it comes to the difficulty of

the return process. That is, if the return process is easy, the retailers should showcase a limited variety of

undervalued attribute levels. When the hidden attribute levels are overvalued, the retailers should showcase

a large variety of the product if the majority of the customers are online shoppers, and vice versa.

We observe that the retailer is better off if the variability of the uncertainty in customer preferences is

lower and if the disutility of return for the customers is higher. In addition, when hidden attribute levels are

undervalued, the retailers make more profit if there is a prevalent attribute level that is preferred significantly

higher than the others. Hence, products which provide less differentiation between the different levels of

an attribute provide lower benefit to the retailer compared to the products for which a few attribute levels

are much more desired than the others. On the contrary, when hidden attribute levels are overvalued, the

retailers make more profit if there is not an one or more levels that are significantly preferred to others.

Retailers may interpret the decrease in product returns as an increase in profit, because returns corre-

spond to lost sales. However, our analyses indicate that an increase in returns does not necessarily lead to a

decrease in the profit. There is an intricate interaction between the increased or decreased sales and the cor-

responding decreased or increased product returns for which our approach should be implemented to find the

best assortment decisions. We note that some of our recommendations are based on the extensive numerical

analysis that we conducted. Under situations where the choice of parameters in our test bed does not reflect

the business environment, the directions for the optimal actions should be found by solving the problem with
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the exact problem parameters. We proposed a greedy heuristic algorithm with excellent performance that

can be used to solve the problem within a short amount of time. As a potential line of research for future

work, one might investigate an omni-channel retail setting with multiple physical stores. It is expected that,

if physical stores operate with different showcase capacities, then store selection by customers affects their

purchasing decisions in both physical and online channels. Moreover, we used the MNL consumer choice

model in this study. Although this consumer choice model is widely used in the literature, it has its lim-

itations, such as the Independence of Irrelevant Alternatives (IIA) property. Recent modeling approaches,

such as Markov-chain based models, eliminate this assumption and can provide a direction for future research.
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Chapter 3

Scope Contracts to Coordinate

Assortment Planning in

Omni-Channel Retail Supply Chains

Abstract. We consider operations of an omni-channel retail supply chain (RSC) entailing an online sales

website as the manufacturer’s sales medium and a physical store as an independent retailer selling manu-

facturer’s products. While it is possible to showcase all product variety online, the physical store may have

limited showcase capacity that allows showcasing only a limited product variety. Through a Stackelberg

game, we investigate the manufacturer’s wholesale price decision to be charged to the retailer, and the re-

tailer’s assortment decision, both to maximize their profits independently. As a benchmark, we explore the

RSC in a centralized setting where the aim is to maximize the total profit as a whole. Our results indicate

that the decentralized setting is inefficient, resulting in a lower total profit compared to the centralized set-

ting. To address this inefficiency and coordinate the RSC, we propose a scope contract that offers discounts

on wholesale prices based on specific attribute levels. This contract incentivizes the parties to make their

decision as if the RSC were centralized, by ensuring their profitability. Our results indicate that (i) the

optimal decentralized assortment balances showcasing the highest utility products with a high variety of

overvalued (low variety of undervalued) attribute levels, (ii) the optimal wholesale price of products should

be set at the highest value that allows the retailer to operate its store, (iii) in the centralized setting, select-

ing inaccurately assessed attribute levels determines the optimal assortment and there can be multiple such

assortments, (iv) there can be multiple discount rates in the proposed scope contract that coordinate the

RSC, each resulting in a different profit distribution, and (v) isolating the RSC from outside competition,

the profit functions are unimodel with respect to the retail price.
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3.1 Introduction

Omni-channel retailing, which refers to the coexistence of an internet-based sales channel and brick-and-

mortar (physical) stores, is a common practice in modern retailing. It increases market share and provides

retailers with the opportunity for more profitability (Bell et al. 2018). In such systems, physical stores

generally have limited showcase capacity so that customers can choose only from a limited variety of available

products; while the online sales channel is practically not limited in product variety because of being directly

supplied from a central warehouse or the manufacturer’s location. Therefore, a primary decision for omni-

channel retailers such as Ray-Ban and Sport Chek is to determine the product variety to showcase in their

physical stores given their limited capacity, i.e., the assortment problem.

Products can be comprised of several ‘attributes’ such as color and material, and each attribute can have

several ‘levels’ such as blue and red for the color attribute. According to Dzyabura and Jagabathula (2018),

the utility of a product for a customer (i.e., the attractiveness of that product to the customer) can be

measured as the summation of the utility of its attribute levels. One characteristic of omni-channel retailing

is the asymmetry in the customers’ shopping experience for products with non-digital attributes. These

are products such as clothes and sunglasses for which physical assessment and trying out provide accurate

information of their utility. For these types of products, items showcased in a physical store are accurately

assessed by the customers; whereas, items with attribute levels that are not showcased (but browsed only

online) may be inaccurately assessed.

The asymmetry in the customers’ shopping experience will result in different purchase likelihoods. For

example, if a customer overvalues the utility of a product on a computer screen (i.e., the assessed utility

is greater than the utility that the customer would have obtained if they assessed the product physically),

they will be more likely to purchase the product compared to the case the customer browses the product

in-store with physical touch and feel. Similarly, if the customer undervalues the utility of the product on

a screen, then the purchase likelihood will be lower. Over- or under-valuation at the time of purchase will

also influence the extent of the customer’s (dis)satisfaction with the product after purchase, which impacts

their keep-or-return decision for the product. A product that was purchased with overvaluation in the online

channel at the time of purchase will disappoint the customer when received because it is not as desired as

expected. Therefore, the product will be more likely to be returned compared to the case when the customer

purchased the product with an accurate assessment. Similarly, a product purchased with undervaluation will

gratify the customer when received because it turns out to be better than expected. Therefore, the product

will be less likely to be returned.
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The assortment decision for the physical store impacts customers’ purchase and keep-or-return decisions

in the online channel as well, because products showcased in the physical store can have attribute levels in

common with online-only products and can provide partially accurate utility information for these products.

For example, a red product with a certain style might be available in-store but the red color of the style

that the customer wants may not be available in-store. In such cases, the customer can assess the utility

of the red color accurately, but not the utility of the style desired. Hence, the customer will assess the full

utility of the desired product inaccurately (partially accurately) in this example. This is specifically crucial

for high-value products that customers would prefer to visit the physical store to gather accurate utility

information of available products and their attribute levels before purchasing either online or in the store

(Park et al. 2021).

In this paper, we investigate the operations of an omni-channel retail supply chain (RSC) that consists

of an online sales channel run by the manufacturer as its direct sales medium and a physical store (or several

stores with identical showcase capacities), for example, a franchise or an independent department store (the

retailer) that sells manufacturer’s products. For instance, Ray-Ban, the giant sunglasses manufacturer sells

its products online, while various authorized retailers and department stores like Hudson’s Bay also carry

and sell its sunglasses. Without loss of generality, we assume that all customers visit both the online channel

and the physical store and purchase a product that they assess as the highest positive utility across both

channels1. If the highest utility is non-positive for a customer, no purchase will take place. An example of

such practice is that customers visit the physical store and assess the products available while browsing the

complete collection available online using their smartphones or a computer screen provided in the store. We

assume that the physical store is a showroom in which a number of products are showcased without keeping

any inventories2. If a customer decides to purchase an item from the showcased products in the physical

store, the retailer manages to order the product from the manufacturer for a wholesale price and delivers

it to the customer. On the other hand, if a customer decides to purchase a product available only online,

the manufacturer receives the order on its website and delivers the product to the customer. Our model

also applies to a physical store that operates with inventories. For such situations, the required assumptions

for our models to be valid are (i) the inventory management decisions are not coupled with the assortment

decisions, (ii) shortages are backordered without extra cost, and (iii) excess inventory at the retailer can be

returned to the manufacturer at no cost.

1There might be customers who do not visit both channels and only buy from the online store. Such customers are out of
the scope of this study since the assortment decision at the physical store does not affect their purchasing decisions.

2Referring to Bell et al. (2018), ”even a zero-inventory store (which provides informational but not fulfillment capabilities)
increases demand and operational efficiency in its trading area. Given that offline showrooms are much less costly to operate
than conventional stores and maintain the benefits of centralized fulfillment, they provide a very appealing growth option to
online-first firms.”
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The manufacturer and the retailer are independent entities with an adversarial relationship seeking

to maximize their own benefit independently. In this ‘decentralized’ structure, the manufacturer sets the

wholesale price to be charged to the retailer for their products, and the retailer makes its assortment decisions

accordingly. Not to create any market segmentation and to isolate the problem from market dynamics, we

assume that the retail price of products is fixed in both sales channels. Naturally, the retailer chooses an

assortment that maximizes its own expected profit. Due to the interaction of the assortment decision with

the purchase and keep-or-return decisions as explained above, the decision made by the retailer affects the

expected profit of the manufacturer (resulting from purchases and returns). Consequently, the retailer’s

assortment decision may not yield the highest possible expected profit for the manufacturer or the whole

system. Therefore, the assortment decision under this decentralized setting can lead to inefficiencies in

RSC operations. As a benchmark that yields the maximum possible expected profit for the whole system,

we consider a centralized RSC in which a central authority manages both sales channels and makes the

assortment decision to maximize the total expected profit of the system (including the retailer’s and the

manufacturer’s expected profits) (Chaharsooghi and Heydari 2010). The only decision to make in the

centralized structure is the assortment decision for the physical store, and the wholesale price is no more

relevant. The aforementioned inefficiency in the decentralized system can be eliminated if the retailer could

be incentivized to choose the optimal assortment of the centralized system.

In this paper, we propose a contracting mechanism that can eliminate the inefficiency of the decentralized

structure and yield a win-win situation for the retailer and the manufacturer. In specific, we propose a ”scope

contract” designed by the manufacturer that incentivizes the retailer to choose the optimal assortment of the

centralized setting. In a scope contract, the manufacturer offers discounts on the wholesale price of the prod-

ucts based on a given scope of their attribute levels. The scope and the discount rates defined in this contract

lead the retailer to order the optimal assortment of the centralized structure and yet assure that the retailer

is better off compared to any other assortment decision (including that of the decentralized setting). The

designed contract also assures that the manufacturer increases its expected profit compared to the original

decentralized adversarial setting. Scope contracts are commonly used in practice in traditional supply chain

settings. For example, a bearing manufacturer typically produces thousands of different bearings supplied to

spare parts resellers. In order to increase the sales volume with a buyer (reseller), the manufacturer (as the

supplier of the product) can design an ”economies of scope” contract by offering discounts to the buyer when

a higher variety of products are purchased in one transaction. In this way, the manufacturer can guarantee

a higher volume of business with this buyer and retain them to seek other suppliers for different varieties.

Our main contribution to the literature in this paper is to propose a coordination mechanism through

scope contracts for omni-channel RSCs. To accomplish this, we first propose closed-form expressions to
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characterize the assortment and wholesale price decisions under decentralized and centralized settings. We

show that in a specific case where product returns are not allowed when the utility of products are overvalued

(undervalued), the optimal assortment under the decentralized structure is a trade-off between showcasing

the highest utility products and showcasing the highest possible (the most limited) variety of the overvalued

(undervalued) attribute levels; whereas under the centralized structure, the priority is to showcase the most

limited (the highest possible) variety of the overvalued (undervalued) attribute levels. In the general case

where product returns are allowed, the optimal assortments are more complex because the marginal profits

obtained by selling products can be different. This being said, we observe substantial differences in optimal

decentralized and centralized assortments as well. By using these results, we show that scope contracts are

instrumental in coordinating the RSC by determining a set of discount rates on the wholesale price of all

the products that contain a given ”scope” of attribute levels, which are the levels that exist in the optimal

assortment of the centralized setting. We also show that the profit allocation between the two parties under

this mechanism depends on the discount rate set in the contract and that the retailer receives a greater

share of the additional profit under higher discount rates, and vice versa. Moreover, although the discount

rates are not necessarily equal for all products, we show that a single parameter scope contract in which

the discount rates are equal for the entire desired scope defined in the contract is equivalent to the original

contract and guarantees the same profit allocation between the manufacturer and the retailer.

The remainder of this paper is organized as follows. In Section 3.2, we review the relevant literature. In

Section 3.3, we propose the utility model and study customers’ purchase and keep-or-return decisions. In

Section 3.4, the dynamics of the decentralized and centralized decision settings are discussed and modeled.

In Section 3.5, we characterize the optimal decisions under each setting. In Section 3.6, we propose our

coordination mechanism and show that it is capable of fully coordinating the RSC. Finally, Section 3.7 is

for numerical demonstration, and we conclude the paper in Section 3.8.

3.2 Literature Review

The primary step in assortment planning is to understand customers’ decision-making behavior and to model

it. This is because, after all, the goal is to optimize the profit obtained via selling products to customers. For

this, usually ’consumer choice models’ from the interface of operations management and marketing literature

are used. The most commonly used choice model, which we also use in this study, is the multinomial logit

(MNL) model. In this model, each customer assigns a utility to each product as its attractiveness. The

assigned utility consists of a deterministic and a stochastic part, where the stochastic part is modeled as an

error term with the Gumbel distribution. Then, the choice probability of each product is determined using
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properties of this distribution (Ben-Akiva et al. 1985, Anderson et al. 1992). Other choice models used in

the literature include nested logit (Gallego and Topaloglu 2014, Davis et al. 2013), d-level nested logit (Li

et al. 2015), mixed logit (Rusmevichientong et al. 2014), and locational choice (Gaur and Honhon 2006)

models. Blanchet et al. (2016) develop a Markov chain model which is shown equivalent to MNL and a good

approximation to other models.

Assortment planning in single-channel retailing where a retailer decides on a selection of products for

showcasing in its store has received considerable attention in the literature. See (Kök et al. 2015) for a

literature review on this research stream. However, assortment planning in omni-channel retailing is a

relatively new topic, albeit it has received attention recently. Yrjölä et al. (2018) discuss that each channel

can have a different assortment in an omni-channel system, and also different from that in single-channel

systems. Ye et al. (2018) discovers barriers in transitioning from single-channel retailing to omni-channel,

which includes assortment planning decisions. There are also empirical and discussion-based studies on omni-

channel assortment planning (Gallino and Moreno 2018, Bell et al. 2018, 2014). Rooderkerk and Kök (2019)

provide a literature review on this topic and discuss that coordination of different aspects of assortment

decisions across different channels is inevitable for a convenient experience for customers.

To the best of our knowledge, Dzyabura and Jagabathula (2018) are the first to propose an optimization

model for assortment planning in omni-channel retailing. Lo and Topaloglu (2022) consider a similar setting

where they study omni-channel assortment with a features tree that represents product features. These

studies consider products in terms of their attributes and in a centralized setting with fixed online and

offline customer segments (i.e., no channel substitution by customers). Hense and Hübner (2022) study

omni-channel assortment planning and corresponding inventory for online and physical stores with stochastic

and independent demand models. They consider in-channel and cross-channel substitutions by customers

and model the problem as an integer program. Schäfer et al. (2023) discuss that the effects of assortment

on demand in brick-and-mortar stores, web-shops, and across channels can significantly influence retailers’

profitability. They come up with an assortment planning model to capture these effects. Note that all the

mentioned studies investigate omni-channel assortment planning in a centralized setting and none of them

allow for product returns.

Product returns are a norm in modern retailing and for customer satisfaction. However, returns are

usually modeled independently of assortment decisions as they are operational, but assortment planning is a

strategic decision (Stock et al. 2006, Olavson and Fry 2006). Alptekinoğlu and Grasas (2014) model product

returns along with assortment planning for a retailer operating a single-sales channel. To our knowledge,

our first research stream in chapter 2 is the first to include product returns in omni-channel assortment

planning. To indicate the importance of information provided by showcasing products, we consider a dis-
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appointment/gratification factor for products available only online and may be purchased with inaccurate

utility assessments. The same approach is used in our study.

Coordination contracts are used in SCs as mechanisms for coordinating the business relationship between

two or more independent parties. Once there is a conflict between the benefits of parties, these mechanisms

can be designed effectively to provide a framework for cooperation in a way that all parties are better off.

Coordination contracts are extensively discussed in the SC literature. See Govindan et al. (2013) for a

comprehensive review of this literature. The classic coordination contracts that set the precedent for other

proposed contracts include the wholesale price (Lariviere and Porteus 2001), the two-part tariff (Laffont

and Tirole 1993, Rey and Vergé 2004), the buyback (Padmanabhan and Png 1997, Kanda et al. 2008)

and similarly, the backup (Eppen and Iyer 1997, Kobbacy et al. 2011), the revenue-sharing (Cachon and

Lariviere 2005) and the two-way revenue-sharing (for dual-channel SCs) (Xu et al. 2014), the sales rebate

(Taylor 2002), and the quantity discount (Rubin et al. 1983, Shi and Su 2004) contracts. The design of

coordination contracts is a fast-evolving topic and many studies have been carried out in the literature

that are built upon these basic contracts. For example, contracts in multi-channel SCs and those under

information asymmetry (Zhan et al. 2019, Vosooghidizaji et al. 2020, Aslani and Heydari 2019, De Giovanni

2017, Li et al. 2012). Most of these contracts provide wholesale price discounts or other incentives to decrease

the risk and motivate the retailer to place larger order sizes in an SC with one product. However, in SCs with

multiple products where assortment planning is a decision, these classic contracts are no longer instrumental.

The coordination of SCs where assortment planning is the decision to make is rarely addressed in the

literature. Cachon and Kök (2007) study assortment decisions of several product categories (considered as

different retailers) where each customer purchases from multiple categories. They show that independently

made assortment decisions by retailers lead to inefficiency. They propose a basket profit metric which,

although does not fully coordinate the system, achieves near-centralized profitability. Aydιn and Hausman

(2009) consider a single channel RSC with a manufacturer and a retailer where the retailer selects a subset of

the manufacturer’s products for showcasing in its store. To achieve coordination, the manufacturer considers

a prepayment fee for every product offered by the retailer in excess of a certain target level. Note that both

these works coordinate the assortment decisions in a single-channel RSC. Consequently, they measure the

impact of their mechanisms on the manufacturer only through wholesale price payments it receives from the

retailer; while the retailer’s showcase as a means of providing information to customers is overlooked.

The scope contract for coordination that we introduce in this study is essentially originated from the

concept of ”economies of scope”. Panzar and Willig (1975) and Teece (1980) define economies of scope as

when the cost of joint production of two or more outputs (e.g., products) is less than the cost of producing

each output separately. This is different from economies of scale when producing more outputs per setup is
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less costly. As per the definition, we can suppose that the ”diseconomies of scope” exist when the cost of

joint production of two or more outputs is greater than that of producing each output separately. In this

paper, by transferring the concepts of economies and dis-economies of scope to the variety of attribute levels

in the assortment that the retailer selects, we devise the scope contract that coordinates the RSC.

3.3 Modelling Approach

In this section, we first introduce the utility model that we use for the products sold in the physical store

and the online channel. Then, we develop models for customers’ purchase and keep-or-return decision. We

define the notation whenever introduced but we also provide all the notation in Table 3.1 for reference.

3.3.1 Utility Model

Consider a product with non-digital attributes. Let A be the set of attributes of this product, K = |A| be

the total number of attributes, k ∈ A be a specific attribute, and L(k) be the set of all levels of attribute

k. For example, A = {color,material, style} can be the set of attributes of a product with K = 3 and

L(k) = {black, blue, silver} can be the set of levels for attribute k = “color”. One level from each attribute

will constitute a unique product and all possible such combinations will form the universal set of products

X, where N = |X| =
∏

{k∈A} |L(k)|.

We adopt the utility model of Dzyabura and Jagabathula (2018) in which it is assumed that the product

utility is the summation of the part-worth utilities of its attribute levels. Let ũk,l(k) be the part-worth utility

of level l(k) ∈ L(k) of attribute k ∈ A assessed through physical encounter; touching, seeing, or trying out.

Then, the ‘attribute utility’ of a product x ∈ X (the utility of the product that is associated only to the

attributes of the product) can be written as

Ũx =
∑
k∈K

∑
l(k)∈L(k)

ũk,l(k) · 1{xk=l(k)} (3.1)

where xk is the level of attribute k in product x and 1{xk=l(k)} is an indicator function which is equal to 1

if the level of attribute k in product x is equal to l(k), and 0 otherwise. In addition to the attribute utility

given in (3.1), customers can also factor in the price of the product, πx, the disutility of the return process

(i.e., how difficult it would be to return the product), r, and the refundable portion of the price upon return,

γ while deciding whether to purchase the product x or not (Alptekinoğlu and Grasas 2014). Consequently,

the ‘product utility’ of x ∈ X becomes
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Table 3.1: Summary of Notations

Notation Definition

A Set of all attributes in the product type
C Capacity of the physical store

dk,l(k) Inaccuracy in assessing level l(k) of attribute k online
Dx|M Inaccuracy in assessing product x online, given M

k Index for attributes
K Total number of attributes

l(k) Level index in attribute k
L(k) Set of all possible levels for attribute k
M Decision variable; assortment in the physical store
N Total number of products

P f
x|M Purchase probability for product x ∈M , given M

Pn
x|M Purchase probability for product x ∈ X \M , given M

Pr
x Marginal profit obtained by a product x sold in the physical store

Pm
x Marginal profit obtained by a product x sold in the online website

QC Set of potential optimal assortments in capacity C
Q′′

C Set of potential optimal selections of levels of attribute k in capacity C
r Disutility of the return process (r < 0)

Rf
x Return probability for product x ∈M

Rn
x|M Return probability for product x ∈ X \M , given M

S(k) Set of levels of attribute k showcased
ũk,l(k) Part-worth utility of level l(k) of attribute k
UxM Utility of a product x ∈ X
Ux Effective utility of product x physically assessed

Un
x|M Effective utility of product x assessed online, given M

dk Inaccuracy in assessing levels of attribute k, ∀k ∈ A online
k The attribute considered to be inaccurately assessed (dk ̸= 0)
v Value of selling a returned product in a second market

wx Wholesale price of product x
xk Level of attribute k in product x
X Universal set of all products
αx Discount ratio on the wholesale price of product x,∀x ∈M∗

C in scope contract
β1 Price sensitivity of utility (β1 ≤ 0)
β2 Refund sensitivity of utility (β2 ≤ 0)
β3 Combined price and refund sensitivities of utility (β3 ≤ 0)
γ Fraction of money refunded upon return (0 ≤ γ ≤ 1)
εx Error term in the utility assessment of product x
ϕ Disutility of return sensitivity in utility at the time of purchase (ϕ ≥ 0)
µ Homoscedasticty of the population under study in purchase decision
µ′ Homoscedasticty of the population under study in keep-or-return decision
ω Disappointment/gratification sensitivity of inaccuracy in utility (ω ≥ 0)
πx Retail price of product x

πk,l(k) Part-worth retail price of level l(k) of attribute k
ΠT

C Total RSC’s expected profit under the Centralized/Decentralized structure
Πm

D Manufacturer’s expected profit under the Decentralized structure
Πr

D Retailer’s expected profit under the decentralised structure
Ω Retailer’s opportunity cost
[n] The product that has the nth highest product utility

[n]k:i The nth highest utility product out of the ones of which kth attribute’s level is i
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Ux = Ũx + β1πx + β2(1− γ)πx + ϕr, (3.2)

where β1 is the price sensitivity of utility, β2 is the sensitivity of utility to the non-refundable fraction of the

price, and ϕ is the sensitivity of utility to the difficulty (disutility) of the return process. Note that β1 ≤ 0

to reflect an inverse effect with the price of the product, β2 ≤ 0 to reflect the negative impact of a higher

non-refundable portion of the price, and ϕ ≥ 0 since the disutility of the return process is defined as r ≤ 0.

The product utility given by (3.2) is an expected value for an average customer, but because of differences

in individual preferences, each customer can have a different realization of the product utility. Therefore the

utility of a product x that is showcased (available in the physical store) can be written as

Ux = Ux + εx (3.3)

where εx is the error term accounting for the unobserved components that are not caught by the utility model.

These idiosyncratic error terms in the utility of products are assumed to be independent and identically

distributed (i.i.d) of a Gumbel distribution with mean zero and scale parameter 1/µ – a standard assumption

in MNL models, see Kök et al. (2015), Anderson et al. (1992). Here, µ is a positive scalar representing the

homoscedasticity of the population such that a larger value of µ reflects a more heterogeneous population.

In the omnichannel retail setting that we consider, the customers who end up purchasing from the online

channel also visit the physical store to collect information about the products. Hence, those customers

would have an accurate knowledge of the part-worth utilities, ũk,l(k), if the level l(k) of attribute k is present

in one of the showcased products (available in the store) but would have an inaccurate knowledge of the

part-worth utilities of the attribute levels that are not showcased. Therefore, the utility of the products that

are available only online depends on the assortment decision implemented in the physical store. Let dk,l(k)

be the magnitude of this inaccuracy in assessing the level l(k) of attribute k if that level is not showcased.

Then, the part-worth utility of a level l(k) of attribute k which is not showcased is given by

ũk,l(k) + dk,l(k) (3.4)

where dk,l(k) > 0 if the customers overvalue the level l(k) of attribute k, ∀l(k) ∈ K,∀k ∈ A, in the online

channel, and dk,l(k) < 0 if they undervalue it.

Let M ⊆ X be an assortment of products selected for showcasing in the physical store. Let S(k|M)

be the set of all levels of attribute k that are present in at least one of the products available in M , i.e.,

S(k|M) =
⋃

x∈M{xk}, and let S′(k|M) = L(k) \ S(k|M) be the set of levels of attribute k that are not
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available in any of the products in M . In other words, S(k|M) is the set of levels of k that are showcased

and S′(k|M) is the set of levels of it that are not showcased. Note that a product itself may not be showcased

in the physical store, but some of its attribute levels can be present in S(k|M),∀k ∈ A, which means that

some of this product’s attribute levels are accurately assessed. Hence, the utility of an online-only product

consists of the sum of the part-worth utilities of the attribute levels that are present in set S(k|M),∀k ∈ A

and those that are in set S′(k|M),∀k ∈ A with an inaccuracy adjustment as stated in (3.4). Consequently,

we can write the utility of a product y ∈ X \M for any given assortment M as

Uy|M =
∑
k∈K

 ∑
l(k)∈S(k|M)

ũk,l(k) · 1{xk=l(k)} +
∑

l(k)∈S′(k|M)

(
ũk,l(k) + dk,l(k)

)
· 1{yk=l(k)}



+β1πx + β2(1− γ) + ϕr + εy (3.5)

If we let

Dy|M =
∑
k∈K

∑
l(k)∈S′(k|M)

dk,l(k) · 1{yk=l(k)}

then

Uy|M =
∑
k∈K

 ∑
l(k)∈S(k|M)

ũk,l(k) · 1{xk=l(k)} +
∑

l(k)∈S′(k|M)

ũk,l(k) · 1{yk=l(k)}

+
∑

l(k)∈S′(k|M)

dk,l(k) · 1{yk=l(k)}

+ β1πx + β2(1− γ) + ϕr + εy

=
∑
k∈K

∑
l(k)∈L(k)

ũk,l(k) · 1{xk=l(k)} +Dy|M + β1πx + β2(1− γ) + ϕr + εy

= Uy +Dy|M + εy (3.6)

The utility functions Ux given by (3.3) and Uy|M given by (3.6) represent the utility of the products

that are showcased in the physical store and that are available online only, respectively. By the definition

of the set S′(k|M) and for any product x ∈ M , we note that 1{xk=l(k)} = 0 for all l(k) ∈ S′(k|M). Hence,

Dx|M = 0 and

Ux|M = Ux +Dx|M + εx = Ux + εx = Ux

for any product x ∈ M . For brevity, we use the notation Ux|M to denote the utility of any product x ∈ X
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in the remainder of this section.

3.3.2 Customers’ Purchasing Experience

Purchasing experience of customers consists of two subsequent stages. In the first stage, customers decide

whether to purchase or not based on their utility assessment of products across both channels. In the second

stage, customers decide whether to keep or return their purchased items after using or experiencing the

product post-purchase. Customers’ decisions are usually modeled using consumer choice models from the

interface of operations management and marketing literature. In these models, customers’ decisions are

represented by probability measures that reflect their likelihood of that decision. In this study, we use the

multinomial logit (MNL) choice model, as one of the most commonly used choice models in the literature

(Ben-Akiva et al. 1985, Anderson et al. 1992). Since customers’ purchase and keep-or-return decisions

subsequently occur at two stages, the problem consists of two MNL choice models each corresponding to one

of these stages.

Stage 1: Customers’ Purchase Decisions

A customer purchases the product that has the highest utility for them across both channels if this highest

value is positive. If that product is available in the physical store, then the customer purchases it from the

store, otherwise orders from the online sales website. The probability that a product x is preferred over any

other product for purchasing when the assortment selected in the physical store is M can be written as

Pr{Ux|M > Uy|M , Ux|M > 0} ∀x, y ∈ X. (3.7)

By using (3.6), (3.7) can be rewritten and reorganized as

Pr{Ux|M > Uy|M , Ux|M > 0} = Pr{Ux +Dx|M + εx > Uy +Dy|M + εy, Ux +Dx|M + εx > 0}

= Pr{εy − εx < Ux +Dx|M − Uy −Dy|M , Ux +Dx|M + εx > 0}

Note that if εx and εy are i.i.d. of Gumbel distribution with zero mean and scale parameter 1/µ, then εy−εx

follows a Logistics distribution with zero mean and scale parameter 1/µ (Ben-Akiva et al. 1985, Anderson

et al. 1992). To estimate the profits of the retailer and the manufacturer in the problem under concern,

we need to differentiate the purchase probability of a product sold by the retailer, denoted by P r
x|M for a

product x ∈M ∪{0} and the purchase probability of a product sold online by the manufacturer, denoted by
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Pm
x|M for a product x ∈ X \M ∪ {0}, where the set {0} corresponds to the no purchase probability. Using

the properties of the cumulative distribution function of the Logistics distribution and noting that Dx|M = 0

for a product x ∈M , we have

P r
x|M =

e(Ux+Dx|M )/µ

1 +
∑

y∈X e(Uy+Dy|M )/µ

=
eUx/µ

1 +
∑

y∈M eUy/µ +
∑

y∈X\M e(Uy+Dy|M )/µ
∀x ∈M ∪ {0}

Pm
x|M =

e(Ux+Dx|M )/µ

1 +
∑

y∈X e(Uy+Dy|M )/µ

=
e(Ux+Dx|M )/µ

1 +
∑

y∈M eUy/µ +
∑

y∈X\M e(Uy+Dy|M )/µ
∀x ∈ X \M ∪ {0}.

Stage 2: Customers’ Keep-or-Return Decisions

After purchasing a product, each customer can decide whether to keep or return their product. A product

that is purchased from the physical store has been purchased with accurate utility assessment at the time

of purchase (i.e., Ux = Ux + εx). The utility of keeping the product includes the utility that the customer

obtains from the product itself whereas the utility of returning the product includes the disutility of the

return process and the effect of the non-refundable fraction of the price. Hence, a product x purchased from

the retailer’s physical store will be returned if the utility of returning it is greater than the utility of keeping

it, which is given by the following condition:

Ũx + β1πx + εx + εkeep|x < r + β1(1− γ)πx + εx + εreturn|x, (3.8)

where the left-hand side is the utility of keeping the product and the right-hand side is the utility of returning

it. It should be noted in the keeping utility that the refund sensitivity and disutility of return sensitivity are

no longer included in the utility, and the only components included are the part-worth utility of attribute

levels in the product and the price sensitivity. Here, εkeep|x and εreturn|x are error terms to address the

uncertainty in keeping and returning utilities, respectively, and we assume they are i.i.d of the Gumbel

distribution with zero mean and scale parameter of µ′.

A product x that is purchased from the online sales website may be purchased with inaccurate utility

assessment at the time of purchase (i.e., Ux|M = Ux + Dx|M + εx). In this situation, if the product has

been purchased with overvalued assessment (Dx|M > 0) at the time of purchase, when it is delivered, the
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customer will be ”disappointed” with their purchase, because the product is not as desired as expected, and

the customer will be more likely to return the product. But, if the product was purchased with undervalued

assessment (Dx|M < 0), the customer will be ”gratified” because the product turns out better than expected,

and the customer will be more likely to keep the product. Hence, the utility of keeping the product includes

the utility that the customer obtains from the product itself and the disappointment/gratification component

as well. The utility of returning the product will be the same as a product purchased from the physical store.

Therefore, a product x purchased from the manufacturer will be returned if

Ũx + β1πx − ωDx|M + εx + εkeep|x < r + β1(1− γ)π + εx + εreturn|x. (3.9)

In (3.9), ω (≥ 0) reflects the disappointment/gratification sensitivity in the utility of the product. Similar

to the physical store case, εkeep|x and εreturn|x are error terms to address the uncertainty in keeping and

returning utilities, respectively, which are assumed i.i.d of the Gumbel distribution with zero mean and scale

parameter of µ′.

Shulman et al. (2009) model the product returns by considering the difference between expected and

actual utility assessments of a product with no uncertainty in utility values. They include the disutility of

return and the non-refundable part of the product price in their return function. Also, Alptekinoğlu and

Grasas (2014) consider the same factors in tackling the return decision. They use a nested logit model in

which uncertainties in making the purchase and keep-or-return decisions are considered. Along these lines

of literature, we develop our keep-or-return model for the purchased products.

Let Rr
x indicate the return probability of product x ∈M that is purchased from the retailer. Using (3.8),

we can write

Rr
x = Pr{Ũx + β1πx + εx + εkeep|x < r + β1(1− γ)πx + εx + εreturn|x}

= Pr{εkeep|x − εreturn|x < −Ũx + r − β1γπx}

=
1

1 + e(Ũx−r+β1γπx)/µ′
. (3.10)

Similarly, let Rm
x|M indicate the return probability of product x ∈ X \M that is purchased from the

online channel. By using (3.9), we can write
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Rm
x|M = Pr{Ũx + β1πx − ωDx|M + εx + εkeep|x < r + β1(1− γ)πx + εx + εreturn|x}

= Pr{εkeep|x − εreturn|x < −Ũx + ωDx|M + r − β1γπx}

=
1

1 + e(Ũx−ωDx|M−r+β1γπx)/µ′
. (3.11)

Let Kr
x be the keep probability of product x ∈ M that it is purchased from the retailer, and Km

x|M be

this probability of product x ∈ X \M that it is purchased from the online sales channel of the manufacturer.

Then,

Kr
x = 1−Rr

x =
1

1 + e(−Ũx+r−β1γπx)/µ′
,

Km
x|M = 1−Rm

x|M =
1

1 + e(−Ũx+ωDx|M+r−β1γπx)/µ′
. (3.12)

3.4 Decision Making Processes in Retail Supply Chains

In this section, we summarize the decision process and the dynamics in a retail supply chain when it

is operated in a decentralized (Section 3.4.1) or centralized (Section 3.4.2) fashion. In a decentralized

setting, the retailer and the manufacturer act independently by aiming to maximize their own profit. The

manufacturer sets the wholesale price of its products to be offered to the retailer and the retailer makes the

assortment decision for its physical store based on the quoted wholesale prices. In a centralized setting, the

assortment decision at the physical store is made by a central authority with the aim of maximizing the

overall profit of the chain. Assortment is the only decision to be made; the wholesale price is not relevant in

this setting.

3.4.1 Decentralized Setting

To find the optimal assortment and wholesale price values, we use a Stackelberg game, where the manufac-

turer is the leader and the retailer is the follower. In specific, the manufacturer sets the wholesale price for

their products and the retailer decides its assortment according to this price. Within the game dynamics,

the manufacturer anticipates the retailer’s assortment decision for a given wholesale price, w, and then, sets

the optimal wholesale price (w∗) that maximizes its own profit. We first assume that the wholesale and the

retail prices of all products are equal; so that w = wx and π = πx,∀x ∈ X. In Section 3.6, we relax this

55



assumption and let the wholesale prices be different and develop a coordination mechanism for the RSC.

Under the decentralized setting, the sequence of events is as follows:

1. The manufacturer decides the wholesale price of its products w.

2. The retailer decides the assortment of products M in its store, based on the value of w.

3. Customers visit the online website and the physical store and make purchase decisions.

4. Customers decide whether to keep or return their purchased products.

5. Returned products will be sold in a secondary market for a reduced value of v by the channel it was

purchased from.

We first analyze the retailer’s problem to find the optimal assortment M for a given w. The retailer’s

expected profit function can be written as

Πr
D(M |w) =

∑
x∈M

[
(π − w)P r

x|MKr
x + ((1− γ)π + v − w)P r

x|MRr
x

]
(3.13)

where the first term refers to the expected profit obtained from the products that are sold at the retailer’s

physical store and are kept post-purchase, and the second term refers to the profit obtained from the products

that are sold but returned. In both terms in (3.13), the value of the wholesale price is deducted from the

marginal profit gained from selling a product, as the retailer needs to fulfill the customers’ purchase by

ordering them from the manufacturer for the unit cost of w. Noting that Kr
x = 1 − Rr

x and defining

Pr
x = (1−Rr

x)π+Rr
x [(1− γ)π + v] = π−Rr

x(γπ− v),∀x ∈M in (3.13) as the marginal profit obtained from

a product sold in the physical store, the retailer’s expected profit can be re-written as

Πr
D(M |w) =

∑
x∈M

P r
x|M (Pr

x − w) . (3.14)

Consequently, the retailer solves

max
M⊂X

Πr
D(M |w)

s. to |M | ≤ C

(3.15)

to find the optimal M where C is the showcase capacity at the retailer. Let M∗(w) be the assortment

decision that solves (3.15).
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Anticipating the retailer’s assortment decision for a given w, M∗(w), the manufacturer can estimate their

expected profit for any given value of w, Πm
D, as

Πm
D(w) =

∑
x∈X\M∗(w)

πPm
x|M∗(w)K

m
x|M∗(w) +

∑
x∈X\M∗(w)

[(1− γ)π + v]Pm
x|M∗(w)R

n
x|M∗(w)

+
∑

x∈M∗(w)

wP r
x|M∗(w) (3.16)

where the first term refers to the profit obtained from products that are purchased from the manufacturer’s

online channel and kept by the customers post-purchase, the second term is the profit obtained from products

that are purchased from the online channel and returned, and the last term is the profit obtained from

selling the products to the retailer for the wholesale price, as the retailer orders products to fulfill the

purchases by customers in the physical store. Noting that Km
x|M∗(w) = 1−Rm

x|M∗(w) and defining Pm
x|M∗(w) =

(1−Rm
x|M∗(w))π+Rm

x|M∗(w) [(1− γ)π + v] = π−Rm
x|M∗(w)(γπ−v),∀x ∈ X \M∗(w) in (3.16) as the marginal

profit obtained from a product sold in the online sales website, the manufacturer’s expected profit can be

rewritten as

Πm
D(w) =

∑
x∈X\M∗(w)

Pm
x|M∗(w)P

m
x|M∗(w) +

∑
x∈M∗(w)

wP r
x|M∗(w). (3.17)

Consequently, the manufacturer solves the following problem to find the optimal wholesale price, w:

max
w

Πm
D(w). (3.18)

In the following, we propose two lemmas that characterize the set of potential optimal assortments

from different perspectives. Let M∗ be the optimal assortment of a retailer with showcase capacity C in a

decentralized setting. To avoid any speculative problem parameters, we assume that γ > v/π so that a ”sold

and not returned” product is more profitable than a ”sold and returned” product for the manufacturer and

the retailer.

Lemma 3.1. In the decentralized setting, M∗ contains the highest utility product from each of the selected

levels in S(k|M∗), and the remaining C − |S(k|M∗)| products in M∗ are the ones with the highest utility

values among all the remaining products consisting of the attributes in S(k|M∗).

Lemma 3.1 characterizes the products in an optimal assortment of the retailer in the decentralized setting.

The retailer showcases the products with the highest utility values by picking at least the highest utility

product from each of the selected levels. As we discuss later in Sections 3.5.1 and 3.5.2, the optimal variety
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of the products in the optimal assortment (number of distinct levels of an attribute to showcase) is a function

of whether the hidden attributes are over- or under-valued.

Lemma 3.2. For an attribute k, let dk,l(k) = dk,∀l(k) ∈ L(k). In the decentralized setting, suppose that the

retailer prefers to showcase ζ levels of attribute k so that |S(k|M∗)| = ζ. If product returns are not allowed,

it is optimal for the retailer to select ζ levels of k with the highest ũk,l(k) values for any value of dk. If product

returns are allowed, the same result is also true for dk > 0 and it is true for dk < 0 only when ζ = 1.

Lemma 3.2 characterizes the levels of attribute k present in the optimal assortment if the optimal number

of distinct attribute levels to showcase, ζ, is known. This result coupled with Lemma 3.1 will provide a basis

for the analytical results of the decentralized setting under different scenarios.

3.4.2 Centralized Setting

In the centralized setting, the central authority manages the RSC so that the total expected profit is max-

imized. This function is the sum of the expected profit functions of the retailer and the manufacturer in

(3.14) and (3.17):

ΠT
C(M) =

∑
x∈X\M

Pm
x|MPm

x|M +
∑
x∈M

P r
x|MPr

x. (3.19)

Hence, the central authority solves the following problem:

max
M⊂X

ΠT
C(M)

s. to |M | ≤ C

. (3.20)

Lemma 3.3 below provides a basis for choosing optimal assortments in the centralized setting.

Lemma 3.3. Suppose that dk,l(k) = dk,∀k ∈ A, l(k) ∈ L(k). In the centralized setting, selecting a subset of

levels of attributes that are inaccurately assessed in the online channel (i.e., attributes with dk ̸= 0,∀k ∈ A)

suffices to determine optimal assortments. Any arbitrary assortment representing the selected levels of such

attributes is optimal.

According to Lemma 3.3, the set of levels of inaccurately assessed attributes showcased in the physical store

dictates the inaccuracy present in the online channel. Hence, once a level of an inaccurately assessed attribute

is selected for showcasing, it does not matter which product that contains the chosen level is showcased,

because once a product with this level is showcased, that attribute level will be accurately assessed in the

online channel, too. This implies that although the optimal selection of levels of inaccurately assessed

attributes can be unique, there may exist multiple optimal assortments of products under the centralized
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structure. Note that this result is true due to the nature of the centralized setting in which the aim is to

maximize the overall total profit rather than the individual profits of the manufacturer and the retailer.

Lemma 3.4. Under the centralized setting, suppose that dk = 0 ∀k ∈ A, l(k) ∈ L(k). Then any arbitrary

assortment M is optimal.

Lemma 3.4 refers to a specific case where there is no inaccuracy in the assessment of products and attribute

levels in the online channel and hence, M does not provide any additional information. Given that the RSC

is centralized, any arbitrary assortment at the physical store yields the same total expected profit.

3.5 Optimal Decisions

In this section, we investigate the optimal decisions of the RSC under both the decentralized and centralized

settings. To accentuate the importance of considering product returns on profitability and show how they

influence optimal assortment decisions, we study the RSC under two scenarios: when returns are not allowed

(RNA), and when returns are allowed (RA). Note that RNA is a special case of the models given in Sections

3.4.1 and 3.4.2 and can be obtained by setting β2 = 0 and ϕ = 0 in the product utility function given in

(3.2). Moreover, Rm
x|M = Rr

x = 0 and we have Pm
x|M = Pr

x = π in the expected profit functions in (3.14),

(3.17), and (3.19) when returns are not allowed. This means that the marginal profit obtained from selling

a product in either of the channels is its retail price.

Under the RNA scenario, the focus should only be on increasing sales by choosing products with a higher

purchase probability, which guarantees to maximize the overall profit in the physical store (the whole RSC)

under the decentralized (centralized) setting. However, under the RA scenario, increasing sales does not

necessarily result in higher profitability, because the marginal profit obtained from selling different products

is influenced by potential product returns. Therefore, the assortment should be selected to compromise the

revenues and losses from sales and returns in RA.

For the analysis of the problem environment, we assume that dk,l(k) = dk,∀l(k) ∈ L(k),∀k ∈ A, i.e., all

levels of an attribute are equally inaccurately assessed in the online channel and there is only one attribute,

say k, that is inaccurately assessed so that dk ̸= 0,∀l(k) ∈ L(k) and dk = 0,∀k ∈ A : k ̸= k. The latter

assumption is made to facilitate the analysis by containing the effect of the inaccuracy in levels of one

attribute. We define [n] as the product with the nth highest utility among all the products in X. Given this,

products can be denoted by [1], [2], ..., [N ], with [1] and [N ] being the products having the highest and lowest

Ux values, respectively. For example, [3] denotes the third-highest utility product. According to this, we let

[n]k indicate the level of attribute k in the nth highest utility product. For example [n]k = 2 means that the
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nth highest utility product consists of level 2 of attribute k. We also define [λ]k:l(k) as the λ
th highest utility

product that includes level l(k) of attribute k. For example, [4]k:2 is the fourth highest utility product that

includes level 2 of attribute k. Finally, let the levels of an attribute k ∈ A be numbered as 1, 2, ..., |L(k)|,

with 1 and |L(k)| being the levels with the highest and lowest attribute utility values, ũk,l(k),∀l(k) ∈ k,

respectively.

3.5.1 Scenario RNA: When returns are not allowed

Decentralized Setting

Inaccuracy in the online assessment of attribute levels, either overvaluation or undervaluation, is a critical

factor in determining the optimal assortment of products in the physical store. In either case, the retailer has

a tendency to showcase higher utility products (cf. Lemmas 3.1 and 3.2). However, if the hidden attributes

are overvalued (i.e., dk > 0), the retailer would also prefer to showcase a higher variety of these attribute

levels because overvaluation leads to a larger utility assessment of the hidden (not-showcased) attribute

levels, which means that the probability of sales for the online items with hidden attributes will be higher

than normal. The retailer can avoid this by showcasing a higher variety and increase the sales in their store.

Nevertheless, since showcasing an assortment with a high variety of levels of k may not necessarily result

in showcasing the highest utility products, there is a trade-off between the two strategies (showcasing the

highest utility vs a higher variety) to be resolved to identify the optimal assortment. For example if C = 2,

the retailer can possibly select among a number of products. If the two highest utility products do not have

the same levels of k (i.e., [1]k ̸= [2]k), the optimal assortment includes these two products, as it results in

showcasing both the highest utility products and the highest possible variety of k. However, if [1]k = [2]k,

the retailer should compare showcasing these two products as one option with showcasing product [1] and

the highest utility product with the second highest part-worth utility level of k (i.e., [1]k:2) as an option in

which two products with different levels of k are included. Similarly, when C = 3, if [1]k ̸= [2]k ̸= [3]k,

the optimal assortment is to showcase these three products. However, if [1]k = [2]k = [3]k, then given

Lemmas 3.1 and 3.2, the retailer should compare three potential assortments including {[1], [2], [3]}, {[1],

[2], [1]k:2}, and {[1], [1]k:2, [1]k:3}. Also, if [1]k = [2]k ̸= [3]k (or [1]k = [3]k ̸= [2]k), there are two potential

assortments including {[1], [2], [3]} and {[1], [3], [1]k:3} (or {[1], [2], [1]k:3)}. Similarly, for greater values of

C, all potential assortments given that the retailer prefers both a high variety of levels of k and the highest

utility products should be compared to find the optimal assortment.

If the hidden attribute levels are undervalued (i.e., dk < 0), the retailer would prefer to select an

assortment that reveals only a limited number of levels of k, because undervaluation leads to lower utility
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assessments of the products with the hidden (not-showcased) attribute levels and as a result, the showcased

products are more likely to be purchased. Since showcasing an assortment of products with a limited variety

of levels of k may not necessarily result in showcasing the highest utility products, the trade-off between

the benefits of these two strategies (showcasing higher utility products vs lower variety) should be resolved.

For example when C = 2, if [1]k = [2]k, the optimal assortment includes these two products, as it results in

showcasing both the highest utility products and the smallest possible variety of k. However, if [1]k ̸= [2]k,

the retailer should compare showcasing these two products as one option with showcasing product [1] and the

second highest utility product that has the same level of k as [1] (i.e., [2]k:1). When C = 3, if [1]k = [2]k =

[3]k, the optimal assortment is to showcase these three products. However, if products [1]k ̸= [2]k ̸= [3]k,

given Lemmas 3.1 and 3.2, the retailer should compare three potential assortments including {[1],[2], [3]},

{[1], [2], [2]k:1}, and {[1], [2]k:1, [3]k:1}. Also, if [1]k = [2]k ̸= [3]k (or [1]k = [3]k ̸= [2]k), there are two

potential assortments to compare including {[1],[2], [3]} and {[1], [2], [3]k:1} (or {[1], [2]k:1, [3]k:1}). Similarly,

for any C > 3, all potential assortments given that the retailer prefers both a small variety of levels of k and

the highest utility products should be compared to find the optimal assortment.

In what follows, we characterize the optimal assortment decision for the retailer under the decentralized

setting and RNA scenario, which is mainly predicated on resolving the trade-off between utility and variety

as explained above. We first define a feasibility set denoted by QC of which each element is a tuple of

C products that can be showcased by the retailer (i.e., a feasible solution to problem (3.15)). This set is

constructed according to the following procedure so that its elements can be an optimal solution based on

Lemmas 3.1 and 3.2.

Procedure 1. Construction of Set QC

1. Qc = ∅

2. For ζ = 1, 2, ...,min{C, |L(k)|}

(a) Create an empty tuple of size C denoted by T

(b) Fill the first ζ elements of T by the products [1]k:1, [1]k:2, ..., [1]k:ζ

(c) Fill the remaining C−ζ elements of T by that many products that have the highest product

utilities out of the remaining products that contains one of attribute levels 1, 2, ..., ζ

(d) QC = QC ∪ T

In the above procedure, ζ is the counter for possible number of distinct levels of attribute k, corresponding

to the possible variety of products in the selected assortment. For each possible value of ζ, step 2b picks the
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highest utility product from each attribute level selected. Note that since the attribute levels are numbered

as 1, 2,... |L(k)| in the descending order of their part-worth utilities, the first ζ levels are guaranteed to

have the highest part-worth utilities. Step 2c selects from the remaining products with one of the first ζ

levels by picking the ones with the highest product utility values as much as the remaining capacity. This

procedure guarantees that the set QC contains all possible feasible solutions that satisfy the properties laid

out by Lemmas 3.1 and 3.2.

Proposition 3.1. Suppose that the RSC has a decentralized setting and product returns are not allowed.

Let QC be a set of feasible solutions constructed according to Procedure 1. For any value of dk, the retailer’s

optimal assortment is given by

If C = 1: M∗
D = {[1]}, S(k|M∗

D) = {1},∀k ∈ A

If 2 ≤ C ≤
∏

k∈A,k ̸=k |L(k)| × (|L(k)| − 1):

M∗
D = argt1∈QC

{Tt1,t2e
dk > T

′

t1,t2 ∀t2 ∈ QC , t2 ̸= t1}, S(k|M∗
D) =

⋃
x∈M∗

D
{xk},∀k ∈ A

If C >
∏

k∈A,k ̸=k |L(k)| × (|L(k)| − 1):

M∗
D = {[1], [2], ..., [C]}, S(k|M∗

D) = L(k), S(k|M∗
D) =

⋃
x∈M∗

D
{xk},∀k ∈ A, k ̸= k,

where

Tt1,t2 = (E + F )
∑

i∈t1
eUi − (E +H)

∑
i∈t2

eUi ,

T ′
t1,t2 = (G+ F )

∑
i∈t2

eUi − (G+H)
∑

i∈t1
eUi .

E =
∑

i∈X,ik /∈S(k|t1)∪S(k|t2) e
Ui , F =

∑
i∈X,ik∈(S(k|t1)\S(k|t2)) e

Ui , H =
∑

i∈X,ik∈(S(k|t2)\S(k|t1)) e
Ui , and

G = 1 +
∑

i∈X,ik∈(S(k|t1)∩S(k|t2)) e
Ui .

The optimal assortment in each case is decided by comparing the expected profits resulting from each

possible assortment in QC of that case. The terms Tt1,t2 and T ′
t1,t2 are derived by comparing the expected

profit functions of showcasing assortments t1 and t2. If C = 1 and C >
∏

k∈A,k ̸=k |L(k)| × (|L(k)| − 1),

Proposition 3.1 results in the same assortments under both dk < 0 and dk > 0. If C = 1, the optimal

assortment includes product [1], i.e., the product with the highest utility. For all capacities C such that

C >
∏

k∈A,k ̸=k |L(k)| × (|L(k)| − 1), it is inevitable to showcase all levels of attribute k. Therefore, there

will be no inaccuracy remaining in the online channel. At these capacities, the products with the highest

utilities are selected for showcasing. For 2 ≤ C ≤
∏

k∈A,k ̸=k |L(k)| × (|L(k)| − 1), however, Proposition 3.1

can yield different assortments for dk > 0 and dk < 0. At these capacities, the condition Tt1,t2e
dk > T ′

t1,t2

determines which assortment in QC of each case is optimal. Identifying the optimal assortment by using

Proposition 3.1 requires at most |L(k)| − 1 comparisons since the cardinality of set QC is min{C, |L(k|}.
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It should be noted in Proposition 3.1 that there are specific cases where showcasing the highest utility

products and showcasing the highest possible (the most limited) variety of k for dk > 0 (dk < 0) result in

the same assortment. For example, at C = 2, if [1]k = [2]k ([1]k ̸= [2]k), the assortment consisting of these

products is selected as optimal. Also, at C = 3, if [1]k = [2]k = [3]k ([1]k ̸= [2]k ̸= [3]k), the assortment

consisting of these products is optimal. These specific cases can be extended for greater C values as well.

In the following, Corollaries 3.1 and 3.2 generalize these examples for any C values, for dk > 0 and dk < 0,

respectively.

Corollary 3.1. Suppose that dk > 0. Let xk ̸= yk,∀x, y ∈ {[1], [2], ..., [|L(k)|]}, x ̸= y. Then the optimal

assortment in an arbitrary C is to showcase the highest utility products; i.e., M∗
D = {[1], [2], ..., [C]}, and

S(k|M∗
D) =

⋃
x∈M∗

D
{xk},∀k ∈ A.

Corollary 3.1 states that if all the products ranked among the |L(k)| highest utility products consist of

different levels of attribute k, then showcasing the highest utility products for any 1 ≤ C ≤ |L(k)| results in

showcasing the highest possible variety of k as well, which is desired. For |L(k)| < C, the optimal assortment

again includes just showcasing the highest utility products, because it already showcases all the different

levels of k.

Corollary 3.2. Suppose that dk < 0. Let Γ =
∏

k∈A,k ̸=k |L(k)| indicate the number of products in X with

each level of attribute k. Also, for products x, y ∈ {[mΓ+1], [mΓ+2], ..., [(m+1)Γ]}, and m ∈ {0, 1, ...,K−1},

let xk = yk. Then, the optimal assortment in an arbitrary C is to showcase the highest utility products;

M∗
D = {[1], [2], ..., [C]}, and S(k|M∗

D) =
⋃

x∈M∗
D
{xk},∀k ∈ A.

Corollary 3.2 states that if the utility of level 1 of k is sufficiently higher than other levels that all the

products consisting of this level compose the list of the Γ highest utility products, then showcasing the

highest utility products for any 1 ≤ C ≤ Γ also results in showcasing the most limited variety of levels of

k, which is desired. Next, if the utility of level 2 of k is so higher than the remaining levels of k that all

the products consisting of this level compose the list of the next Γ highest utility products, then for any

1 ≤ C ≤ 2Γ, it is optimal to showcase the highest utility products. Similarly, if the described pattern holds

for all the other levels of k until the Γ lowest utility products all consist of the lowest utility level of k, then

it is optimal to showcase the highest utility products at any C.

After characterizing the optimal assortment decision in the physical store, the manufacturer, as the leader

of the game, uses the decision of the retailer to maximize its own profit by finding the optimal wholesale

price w. Let Ω be the retailer’s ‘opportunity cost’, such that if its profit is less than Ω fraction of its sales,

it will no longer operate the physical store. Given this, Proposition 3.2 states the optimal value of w for a

selected M as the following.
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Proposition 3.2. Suppose that the retailer has an opportunity cost of 0 < Ω < 1. Then, the optimal

wholesale price of a product x is w∗
D = (1− Ω)π,∀x ∈ X.

Proposition 3.2 states that the manufacturer should set the optimal value of w equal to the maximum value

that the retailer is willing to pay as the wholesale price of the products and still run its physical store.

Centralized Setting

In this setting, a central authority runs the RSC in a way to maximize the system-wide expected profit.

The set of showcased levels of attribute k in the physical store dictates the level of inaccuracy (and the

purchase probability) in the online channel, which is the main and only factor that influences the RSC’s

total expected profit. Due to Lemma 3.3, once a level of attribute k is selected to showcase, it does not

matter which product that contains the chosen level is showcased. In the following, Propositions 3.3 and 3.4

determine the optimal assortments of products M∗
C and their corresponding attribute levels, when hidden

attribute levels are overvalued (dk > 0) and undervalued (dk < 0), respectively.

Proposition 3.3. Suppose that dk > 0, Γ =
∏

k∈A,k ̸=k |L(k)|, product returns are not allowed, and the RSC

has a centralized setting. Let levels of each attribute be numbered as 1, 2, ..., |L(k)|,∀k ∈ A with 1 and |L(k)|

being the highest and lowest utility levels, respectively. For any m = 1, 2, ...,K, we have:

For(m− 1)Γ ≤ C < mΓ : S∗
C(k) = {|L(k)| −m+ 1, |L(k)| −m+ 2, ..., |L(k)|},

M∗
C = {C arbitrary products | S∗

C(k)},

S∗
C(k) =

⋃
x∈M∗

C

{xk},∀k ∈ A, k ̸= k.

When dk > 0, it is preferred to showcase the smallest possible variety of levels of attribute k, because

showcasing more levels of k leads to accurate utility assessments of products in the online channel, which

results in a smaller total purchase probability of products. Given this, levels of k should be hidden as much

as possible, and new attribute levels should be revealed as the capacity forces to do so. It is also preferred to

select the levels with lowest part-worth utility values, since eliminating the inaccuracy from these levels leads

to a greater total purchase probability compared to any other combination of the same number of levels.

Once the level(s) of k are selected, the optimal assortment does not depend on which specific product(s)

consisting of those levels are displayed, and hence, any arbitrary set of products that represents S∗
C(k) could

be showcased (Lemma 3.3).

Proposition 3.4. Suppose that dk < 0, product returns are not allowed, and the RSC has a centralized
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setting. Then

If C ≤ |L(k)| : S∗
C(k) = {1, 2, ..., C},

M∗
C = {C arbitrary products | S∗

C(k)},

S∗
C(k) =

⋃
x∈M∗

C

{xk},∀k ∈ A, k ̸= k.

If C > |L(k)| : S∗
C(k) = L(k),

M∗
C = {C arbitrary products | S∗

C(k)},

S∗
C(k) =

⋃
x∈M∗

C

{xk},∀k ∈ A, k ̸= k.

When dk < 0, it is optimal for the RSC to showcase the highest possible variety of levels of k because it will

eliminate as much inaccuracy as possible from the online-only products, which results in an increase in the

total purchase probability. If C ≤ |L(k)|, the optimal assortment is to include C highest part-worth utility

levels of k in S∗
C(k). If C > |L(k)|, all levels of attribute k should be included in S∗

C(k). Similar to the

previous case, an arbitrary set of products that represents S∗
C(k) can be showcased.

3.5.2 Scenario RA: When returns are allowed

Decentralized Setting

Lemma 3.1 holds for the RA scenario as well for any value of dk, but Lemma 3.2 holds only for dk > 0 for

any value of C. Therefore, the set QC constructed by Procedure 1 is still instrumental in identifying the

optimal assortment when dk > 0, since the retailer still prefers to showcase a high variety of levels of k and

also the highest utility products in its physical store. In this case, not only do the highest utility products

have higher purchase probabilities compared to the products with lower utilities, but they are also less likely

to be returned.

Similar to the RNA scenario for dk < 0, the retailer prefers to showcase higher utility products from

each selected level of k (Lemma 3.1), but a smaller variety of these levels. Lemma 3.2 does not hold for

dk < 0 case, unless the retailer is determined to showcase only one level of attribute k. Therefore, in the

general situation, the retailer may or may not prefer to showcase products consisting of the levels with higher

part-worth utility values. Consequently, we define a new feasibility set denoted by Q′
C which still picks the

products with the higher product utility values but also includes the levels with lower part-worth utility

values as stated below.
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Procedure 2. Construction of Set Q′
C

1. Q′
C = ∅

2. For ζ = 1, 2, ...,min{C, |L(k)|}

(a) Let COMB be the set of ζ attribute levels consisting of all combinations ”Choose ζ out of

min{C, |L(k)|}”

(b) For AL ∈ COMB

i. Create an empty tuple T of size C

ii. Fill the first ζ elements of T by products [1]k:1, [1]k:2, ..., [1]k:ζ

iii. Pick the C − ζ highest utility products that have one of the attribute levels in AL and

fill the remaining C − ζ elements of T with these products

iv. Q′
C = Q′

C ∪ T

Proposition 3.5 below characterizes the optimal assortment of products and attribute levels when levels

of k are either overvalued or undervalued in the online channel. For both cases, Proposition 3.5 provides a

comparison term for comparing potential assortments in QC (for dk > 0) and Q′
C (for dk < 0), to select the

optimal one.

Proposition 3.5. Let the levels of each attribute be numbered as 1, 2, ..., |L(k)|,∀k ∈ A. Suppose that the

RSC has a decentralized setting and product returns are allowed. Let QC (Q′
C) be the set of all the potential

optimal assortments for dk > 0 (dk < 0) when the showcase capacity is C. Then the retailer’s optimal

assortment is given by

If C = 1: M∗
D = {[1]}, S(k|M∗

D) = {1},∀k ∈ A

If 2 ≤ C ≤
∏

k∈A,k ̸=k |L(k)| × (|L(k)| − 1):

For dk > 0:

M∗
D = argt1∈QC

{Tt1,t2e
dk > T′

t1,t2 ∀t2 ∈ QC , t2 ̸= t1}, S(k|M∗
D) =

⋃
x∈M∗

D
{xk},∀k ∈ A

For dk < 0:

M∗
D = argt1∈Q′

C
{Tt1,t2e

dk > T′
t1,t2 ∀t2 ∈ Q′

C , t2 ̸= t1}, S(k|M∗
D) =

⋃
x∈M∗

D
{xk},∀k ∈ A

If C >
∏

k∈A,k ̸=k |L(k)| × (|L(k)| − 1):

M∗
D = {[1], [2], ..., [C]}, S(k|M∗

D) = L(k), S(k|M∗
D) =

⋃
x∈M∗

D
{xk},∀k ∈ A, k ̸= k,

where
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Tt1,t2 = (E + F )
∑

i∈t1
(Pr

i − w)eUi − (E +H)
∑

i∈t2
(Pr

i − w)eUi ,

T′
t1,t2 = (G+ F )

∑
i∈t2

(Pr
i − w)eUi − (G+H)

∑
i∈t1

(Pr
i − w)eUi .

E =
∑

i∈X,ik /∈S(k|t1)∪S(k|t2) e
Ui , F =

∑
i∈X,ik∈(S(k|t1)\S(k|t2)) e

Ui , H =
∑

i∈X,ik∈(S(k|t2)\S(k|t1)) e
Ui , and

G = 1 +
∑

i∈X,ik∈(S(k|t1)∩S(k|t2)) e
Ui .

Proposition 3.5 can be interpreted the same as Proposition 3.1. Note that in Proposition 3.5, the difference

between the cases dk > 0 or dk < 0 is the set QC or Q′
C when searching for t1. When dk < 0, identifying

the optimal assortment by using Proposition 3.5 requires at most
∑|L(k)|

i=1

(|L(k)|
i

)
− 1 comparisons since

the cardinality of set Q′
C is such that all selections of 1 to min{C, |L(k|} levels of attribute k should be

considered. Note that Q′
C includes more potential assortments compared to QC .

Proposition 3.6 below provides the optimal wholesale price decision of the manufacturer, that is obtained

by knowing the retailer’s assortment decision that follows it.

Proposition 3.6. Given the retailer’s opportunity cost of 0 < Ω < 1, the optimal wholesale price of a

product x is

w∗
D =

(1− Ω)
∑

x∈M∗
D
P f
x|M∗

D

Pr
x∑

x∈M∗
D
P f
x|M∗

D

.

Proposition 3.6 can be interpreted like Proposition 3.2.

Centralized Setting

Lemmas 3.3 holds under the RA scenario and states that selecting only a subset of levels of inaccurately

assessed attributes is sufficient to determine the optimal assortment. Therefore, we need to select a subset

of levels of attribute k for showcasing. The complexity of finding the optimal solution will be a function of

the order of the number of distinct attribute levels, rather than the total number of unique products. Let

Q′′
C be the feasibility set that includes all the selections of levels of attribute k that can be possibly the

optimal selection and should be compared. Note that unlike the sets QC and Q′
C in Procedures 1 and 2 that

included assortments of products, set Q′′
C includes the feasible selections of levels of attribute k.
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Procedure 3. Construction of Set Q′′
C

1. Q′′
C = ∅

2. For ζ = 1, 2, ...,min{C, |L(k)|}

(a) Let COMB be the set of ζ attribute levels consisting of all combinations ”Choose ζ out of

min{C, |L(k)|}”

(b) For AL ∈ COMB, Q′′
C = Q′′

C ∪AL

In the following, Proposition 3.7 characterizes the optimal selection of attribute levels for showcasing

under the centralized setting.

Proposition 3.7. Suppose that the RSC has a centralized setting and product returns are allowed. Let Q′′
C

be the set of all the potential optimal selections of levels of attribute k when the showcase capacity is C.

Then the retailer’s optimal assortment is given by

If 1 ≤ C ≤
∏

k∈A,k ̸=k |L(k)| × (|L(k)| − 1):

S∗
C(k) = argt1∈Q′′

C
{Tt1,t2e

dk +T′
t1,t2e

2dk > T
′′
t1,t2 ,∀t2 ∈ Q′′

C , t2 ̸= t1},

M∗
C = {C arbitrary products | S∗

C(k)},

S∗
C(k) =

⋃
x∈M∗

C
{xk},∀k ∈ A, k ̸= k.

If C >
∏

k∈A,k ̸=k |L(k)| × (|L(k)| − 1):

S∗
C(k) = L(k),

M∗
C = {C arbitrary products | S∗

C(k)},

S∗
C(k) =

⋃
x∈M∗

C
{xk},∀k ∈ A, k ̸= k.

where

Tt1,t2 = (G+H)
∑

ik /∈t1
Pm
i|MeUi +(E+F )

∑
ik∈t1

Pr
i e

Ui − (G+F )
∑

ik /∈t2
Pm
i|MeUi − (E+H)

∑
ik∈t2

Pr
i e

Ui ,

T
′
t1,t2 = (E + F )

∑
ik /∈t1

Pm
i|MeUi − (E +H)

∑
ik /∈t2

Pm
i|MeUi ,

T
′′
t1,t2 = (G+ F )

∑
ik∈t2

Pr
i e

Ui − (G+H)
∑

ik∈t1
Pr
i e

Ui ,

E =
∑

i∈X,ik /∈(t1∪t2)
eUi , F =

∑
i∈X,ik∈(t1\t2) e

Ui , H =
∑

i∈X,ik∈(t2\t1) e
Ui , and G = 1+

∑
i∈X,ik∈(t1∩t2)

eUi .

In Preposition 3.7, when 1 ≤ C ≤
∏

k∈A,k ̸=k |L(k)|×(|L(k)|−1), the optimal selection of levels of attribute k

can be found by comparing the potential such selections in Q′′
C . The comparison term in this situation is to

compare the expected profits of showcasing levels in set t1 and t2. When C >
∏

k∈A,k ̸=k |L(k)|×(|L(k)|−1),

it becomes inevitable to showcase the full variety of levels of k.
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Note that identifying the optimal selection of levels of k requires at most
∑|L(k)|

i=1

(|L(k)|
i

)
−1 comparisons

since the cardinality of set Q′′
C is such that all selections of 1 to min{C, |L(k|} levels of attribute k should

be considered. Therefore, the complexity of set Q′′
C is the same as Q′

C .

3.6 Scope Contracts for Coordination

As it is well documented in the supply chain literature, managing supply chains in a centralized fashion may

increase the total profit generated in the chain compared to the summation of the individual profits of each

entity when managed in a decentralized fashion (Govindan et al. 2013). Aligned with these results, we note

that the optimal assortment decisions and their corresponding variety of levels of k under the centralized

setting can be considerably different from that under the decentralized setting in the problem environment

that we consider. In specific, it is possible that the solutions to problems (3.15) and (3.20) do not align,

making the decentralized setting inefficient so that Πm
D(w∗

D) + Πr
D(M∗

D|w∗
D) < ΠT

C(M
∗
C). The inefficiency

here is given by ΠT
C(M

∗
C)−Πm

D(w∗
D)−Πr

D(M∗
D|w∗

D), which is the squandered profit due to not coordinating

the decisions across the supply chain. In this section, we propose mechanisms that can be implemented by

the manufacturer to coordinate the assortment decisions made by the retailer under the decentralized setting

so that the inefficiency can be eliminated and the maximum possible profit can be generated across the chain

to create a win-win situation for both parties.

First we note that the alignment of the optimal attribute levels in M∗
D and M∗

C (i.e., attaining S(k|M∗
D) =

S∗
C(k)) is sufficient to coordinate the chain (and hence eliminate the inefficiency) even if M∗

D ̸= M∗
C, be-

cause the optimal selection of the showcased attribute levels implies the remaining inaccuracy in the on-

line assessment of products. Hence, if it turns out that S(k|M∗
D) = S∗

C(k) for a problem instance, then

Πm
D(w∗

D) + Πr
D(M∗

D|w∗
D) = ΠT

C(M
∗
C) with no inefficiency. If S(k|M∗

D) ̸= S∗
C(k), then the RSC is run inef-

ficiently as the selected assortment by the retailer is M∗
D but not M∗

C. The retailer does not showcase M∗
C

because it would mean implementing a suboptimal assortment by sacrificing from their own profit. If the

retailer can be induced to showcase the variety of attribute k given by S∗
C(k), the extra profit generated

(i.e., ΠT
C(M

∗
C)−Πm

D(w∗
D)−Πr

D(M∗
D|w∗

D)) can be distributed between the manufacturer and the retailer such

that the retailer’s loss of profit is compensated at a minimum and the supply chain can be coordinated. To

this end, we propose scope contracts as a mechanism that can be instrumental in accomplishing the desired

coordination.

Definition 3.1. A scope contract, SC, is defined as a contract that incentivizes the buyers to purchase a

69



certain variety of products in the same transaction. It is given by

SC = [α1, α2, ..., α|L(k)|]

where αj such that 0 ≤ αj ≤ 1 is the discount rate applied on all products that contain the level j of the

attribute k. If αj = 0 then the products that contain level j are sold at the regular price. An SC endorses

Economies of Scope if there are greater number of instances with αj ̸= 0 so that buyers are incentivized

to purchase a larger variety of products whereas an SC endorses Diseconomies of Scope if there are fewer

number of instances with αj ̸= 0 so that buyers are incentivized to purchase a smaller variety of products.

For an arbitrary M∗
C , let Φ = 1+

∑
x∈M∗

C
eUx +

∑
x∈X\M∗

C
e
Ux+Dx|M∗

C , G1 =
∑

x∈X\M∗
C
Pm
x|Me

Ux+Dx|M∗
C ,

and G2 =
∑

x∈M∗
C
Pr
xe

Ux . Theorem 3.1 below proves that the scope contract is instrumental in coordinating

the omni-channel RSC considered in this paper.

Theorem 3.1. Let S∗
C(k) be the levels of attribute k in M∗

C (solution to (3.20)). Let α⃗ = [α1, α2, ..., α|L(k)|]

and β⃗ = [β1, β2, ..., β|L(k)|] be such that

{αj = 0;βj = 0} if j /∈ S∗
C(k),Φ

(
Πm

D(w∗
D)−G1

)
w∗

D

≤
∑

x∈M∗
C
,xk=j

(1− αj)e
Ux ≤

Φ
(
G2 −Πr

D(M∗
D|w∗

D)
)

w∗
D

;βj = 1

 if j ∈ S∗
C(k). (3.21)

If G2 −Πr
D(M∗

D|w∗
D) ≥ 0, i.e., non-negative upper-bound for (3.21), then SC = α⃗ coordinates the RSC.

Otherwise, SC = [β⃗,L] coordinates the RSC where L is a lump-sum payment made by the manufacturer to

the retailer such that

Πr
D(M∗

D|w∗
D)−Πr

SC(M
∗
C|w∗

D, β⃗) ≤ L ≤ Πm
SC(w

∗
D, β⃗)−Πm

D(w∗
D)

where

Πr
SC(M

∗
C|w∗

D, β⃗) =
∑

x∈M∗
C
,xk=j

P r
x|M∗

C
(Pr

x − (1− βj)w
∗
D) and

Πm
SC(w

∗
D, β⃗) =

∑
x∈X\M∗

C

Pm
x|M∗

C
Pm
x|M∗

C
+

∑
x∈M∗

C
,xk=j

(1− βj)w
∗
DP r

x|M∗
C

are the retailer’s and the manufacturer’s expected profit functions under SC = β⃗, respectively.

The scope contract in Theorem 3.1 incentivizes the retailer to showcase S∗
C(k) by providing discounts

on all the products consisting of level j of k,∀j ∈ S∗
C(k). According to Lemma 3.3, showcasing S∗

C(k) is
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sufficient to achieve the highest possible system-wide expected profit (i.e., the centralized expected profit),

and there can be multiple assortments M∗
C that all represent S∗

C(k). However, the specific M∗
C selected by

the retailer impacts its own and the manufacturer’s expected profits, and not all of the optimal assortments

result in the same profit distribution for the parties. Hence, as a rational party, the retailer selects the M∗
C

that yields the highest expected profit for itself. Among the potentially multiple M∗
C sets, we define M∗

SC

as the assortment that provides the retailer with the highest expected profit. Note that by knowing S∗
C(k),

M∗
SC can easily be identified via Lemma 3.1. By knowing M∗

SC, the manufacturer can substitute this set into

M∗
C in Theorem 3.1, as the assortment that the retailer would eventually choose under the scope contract,

to create the contract and propose the discount rates. Below, as a summary, we propose a framework for

designing and implementing a scope contract that coordinates the RSC.

Procedure 4. SC Design Process

Step 1: Find S∗
C(k).

Step 2: Find M∗
SC(k) by using Lemma 3.1.

Step 3: Using M∗
SC(k), find α⃗ and β⃗ such that

{αj = 0;βj = 0} if j /∈ S∗
C(k),Φ

(
Πm

D(w∗
D)−G1

)
w∗

D

≤
∑

x∈M∗
SC

,xk=j

(1− αj)e
Ux ≤

Φ
(
G2 −Πr

D(M∗
D|w∗

D)
)

w∗
D

;βj = 1

 if j ∈ S∗
C(k).

Step 4: If G2 − Πr
D(M∗

D|w∗
D) ≥ 0 then offer SC = α⃗ to the retailer. Otherwise, offer SC = β⃗ with a

lump sum payment of L such that Πr
D(M∗

D|w∗
D)−Πr

SC(M
∗
C|w∗

D, β⃗) ≤ L ≤ Πm
SC(w

∗
D, β⃗)−Πm

D(w∗
D).

For each j ∈ S∗
C(k), there may be infinitely many αj that satisfy (3.21) for an SC that coordinates the

RSC. Although any of these values would successfully coordinate the RSC, different αj values can result in

different profit distributions between the manufacturer and the retailer. In Section 3.7, we investigate the

impact of selecting different discount rates on profit distributions between the parties. The exact value of

each αj within the valid range can be determined though negotiation powers of the parties. For the exposition

and implementation in practice, several different discount rates for different attribute levels would pose a

challenge to the manufacturer. Theorem 3.2 below shows that for any SC, there is a single discount rate that

can be used instead of all αj ,∀j ∈ S∗
C(k) to coordinate the RSC and to ensure the same profit distribution

between the parties as the original contract.

Theorem 3.2. Suppose that G2 −Πr
D(M∗

D|w∗
D) ≥ 0 and SC = α⃗ = [α1, α2, ..., α|L(k)|] coordinates the RSC.
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Let α = 1−
∑

x∈M∗
SC

,x
k
=j(1−αj)e

Ux∑
x∈M∗

SC
eUx

. Construct a new discount vector α⃗′ = [α′
1, α

′
2, ..., α

′
|L(k)|] such that α′

j = α

if j ∈ S∗
C(k) and α′ = αj = 0 if j /∈ S∗

C(k). Then, SC = α⃗′ coordinates the RSC with a single discount factor.

Theorem 3.2 proves the existence of a single parameter scope contract that coordinates the RSC with all the

benefits of the original SC being preserved. Given this, we can construct a scope contract with one discount

rate applicable to all j ∈ S∗
C(k). Consider the discount vector α⃗′ = [α′

1, α
′
2, ..., α

′
|L(k)|] such that α′

j = α′ if

j ∈ S∗
C(k) and α′

j = 0 if j /∈ S∗
C(k). Then, SC = α⃗′ coordinates the RSC with a single discount factor.

3.6.1 Discussion

To facilitate the process of finding the optimal assortments in the physical store in Section 3.5, we assumed

that dk ̸= 0,∀l(k) ∈ L(k) and dk = 0,∀k ∈ A : k ̸= k. This assumption states that there is only one

attribute in the product under concern that is inaccurately assessed in the online channel. Suppose now that

there are two attributes k and k′ that are inaccurately assessed (i.e., dk ̸= 0, dk′ ̸= 0). When both k and k′

are inaccurately assessed in the same directions meaning that they are both overvalued or undervalued (i.e.,

dk > 0 and dk′ > 0 or dk < 0 and dk′ < 0), the results regarding the optimal assortment decisions in Section

3.5 still hold. When the inaccuracies in levels of k and k′ are in different directions (i.e., k > 0,k′ < 0

or k < 0,k′ > 0), although the results in Section 3.5 are applicable to k and k′ individually, finding the

optimal assortments can involve higher complexity as the inaccuracies are in different directions and also the

overall inaccuracy dk+dk′ can be positive or negative which means products are overvalued or undervalued,

respectively. In these situations, complete enumeration or a greedy heuristic algorithm similar to the one

proposed in Chapter 2 can be needed in finding the optimal assortment decisions.

Suppose that there are two attributes that are both either overvalued or undervalued. Let S∗(k) and

S∗(k′) be the optimal levels of k and k
′ to showcase in the centralized setting. We define αi,j as the

discount rate on all the products containing level i of attribute k and level j of attribute k′. Then, the

scope contract defined in Theorem 3.1 can be modified so that SC = α⃗ = [α11, α21, ..., α|L(k)|,|L(k′)|] such that

αi,j = 0,∀i /∈ S∗(k) or ∀j /∈ S∗(k′) would still coordinate the RSC with a modification of the conditions

given in the Theorem 3.1. Note than for all products containing a level i ∈ S∗(k) but a level of j /∈ S∗(k′) (or

vice versa), we consider αi,j = 0 because their level of attribute k′ is not present in S∗(k′). We numerically

demonstrate this setup in Section 3.7.4.

In this part, we interpret the proposed scope contract for the RNA scenario. In the RNA scenario, when

dk < 0, the optimal assortment in the centralized setting is to showcase the highest possible variety of levels

of attribute k given C. However, in the decentralized setting, it can be to showcase only a limited variety

of levels of k, which results in S(k|M∗
D) ≤ S∗

C(k). Therefore, by switching from M∗
D to M∗

SC, the variety of
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showcased levels of k increases. In this case, the scope contract can be called an ”Economies of Scope” that

increases the showcased variety of levels of k. On the other hand, when dk > 0, the optimal centralized and

decentralized assortments are such that S(k|M∗
D) ≥ S∗

C(k). So, by switching from M∗
D to M∗

SC, the variety

of showcased levels of k decreases. In this case, the scope contract can be called a ”Dis-economies of Scope”

contract. In the RA scenario, we may encounter S(k|M∗
D) ≥ S∗

C(k) or S(k|M∗
D) ≤ S∗

C(k), in both dk < 0

and dk > 0.

3.7 Numerical Demonstration

In this section, we numerically demonstrate an implementation of scope contracts, including finding the

optimal assortment and wholesale price decisions, determining the inefficiency in the RSC, devising and

implementing the scope contract for coordination, and profit distribution between the manufacturer and the

retailer.

3.7.1 Test Bed

Suppose that the product under concern in the RSC consists of 3 attributes, K = 3, where attributes 1, 2,

and 3 (A1, A2, and A3) include three, two, and three different levels, respectively, making up 3× 2× 3 = 18

combinations of different attribute levels, each corresponding to a unique item. The part-wroth utility of

levels of attributes are presented in Table 3.2. We assume that d1 = d2 = 0 and d3 ∈ {−0.6, 0.6, 0.8} so

that the attribute k = 3 is the one that is inaccurately assessed. Finally, we let π = 100, v = 30, Ω = 0.5,

r = −0.8, γ = 0.6, µ = µ′ = 1, β1 = −0.013, β2 = −0.01, ω = 0.5, and ϕ = 0.4. The showcase capacity in

the physical store is assumed to be C = 6, which corresponds to a capacity that can hold one third of the

product portfolio (six out of 18) and the remaining 12 products are available only online. Table 3.3 presents

the attribute levels in each product listed in the descending order of their product utilities, Ux, in columns.

Table 3.2: Part-worth Utilities of Levels of Attributes 1, 2, and 3

Attribute k 1 2 3
Levels l(k) 1 2 3 1 2 1 2 3

ũk,l(k) 0.4 0.25 0.1 0.3 0.2 0.35 0.25 0.15

Table 3.3: Products based on Ux and their corresponding attribute levels. [n] represents the product which
has the nth highest product utility.

Product [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]

A1 level 1 1 1 2 1 1 2 2 1 3 2 2 3 3 2 3 3 3
A2 level 1 2 1 1 2 1 1 2 2 1 1 2 1 2 2 1 2 2
A3 level 1 1 2 1 2 3 2 1 3 1 3 2 2 1 3 3 2 3
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3.7.2 Optimal Decisions in Decentralized and Centralized Settings

We first compare and contrast the optimal decisions under decentralized and centralized settings. Table 3.4

presents the attribute levels revealed (S∗) in the optimal assortment (M∗) decision under both settings, and

the optimal wholesale price decisions in the decentralized setting for d3 = −0.6 and d3 = 0.6 when product

returns are allowed.

Table 3.4: Comparison of Centralized and Decentralized Settings under RA scenario

d3 = −0.6 d3 = 0.6

M∗ S∗(3) w∗
D

ΠT M∗ S∗(3) w∗
D

ΠT

Decentralized [1],[2],[4],[8],[10],[14] 1 45.61 71.98 [1] – [6] 1 – 3 45.81 75.81
Centralized ∗ 1 – 3 – 75.81 [6],[9],[11],[15],[16],[18] 3 – 79.29
∗Any six of [1] to [18] by selecting at least one of Levels 1 to 3

As can be observed from Table 3.4, when d3 = −0.6, a specific set of six products should be showcased

(see M∗ column) by revealing only attribute level 3 under the decentralized setting whereas any six products

can be showcased by revealing all attribute levels under the centralized setting. The profit of the retailer

and the manufacturer under the decentralized setting are 53.57 and 18.41, respectively, totaling up to 71.98

whereas the system wide total profit is 75.81, showing the inefficiency of the decentralized setting as the

total profit can be increased by 3.83 which corresponds to 5.3%.

When d3 = 0.6, the revealed attribute levels change from all to level 1 as we switch from the decentralized

to the centralized setting. The optimal assortments are also completely different as expected. The total

inefficiency in this case corresponds to a 4.6% increase in profit in the centralized setting compared to the

decentralized one.

3.7.3 Optimality of the Scope Contract for Coordination

In this section, we demonstrate how the inefficiencies reported above can be eliminated with a scope contract

designed with Procedure 4.

Scope Contract when d3 = −0.6

According to Table 3.4, manufacturer should design a scope contract that will induce the retailer to reveal the

levels in S∗
C(3) = {1, 2, 3}. By implementing Lemma 3.1, the manufacturer can anticipate that the retailer

would select an assortment of the highest utility products given by M∗
SC = {[1], [2], ..., [6]}. The next step is

to find SC = α⃗ by explicitly writing (3.21). Finding the values of Φ, G1, and G2, and substituting them into

(3.21), we have:
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1.06 ≤
∑

x∈M∗
SC

(1− αj)e
Ux ≤ 1.57. (3.22)

Since the upper-bound is greater than zero, SC = α⃗ coordinates the RSC. Explicitly writing (3.22) with

M∗
SC, we get:

1.06 ≤ (1− α1)(e
U [1] + eU [2] + eU [4]) + (1− α2)(e

U [3] + eU [5]) + (1− α3)(e
U [6]) ≤ 1.57.

Therefore, any α⃗ = [α1, α2, α3] that satisfies the following will coordinate the RSC.

0.44 ≤ 1.05α1 + 0.65α2 + 0.31α3 ≤ 0.95.

For example, one valid SC = α⃗ is α⃗ = [0.5, 0.4, 0.3]. By Theorem 3.2, it can be found that α = 0.44 and

hence SC = α⃗′ = [0.44, 0.44, 0.44] also coordinates the RSC, with the same profit distribution between the

manufacturer and the retailer as α⃗ = [0.3, 0.4, 0.5]. Furthermore, this can be transformed into a single

parameter contract by letting α1 = α2 = α3 = α′, which results in 0.22 ≤ α′ ≤ 0.47. Although any discount

rate in 0.22 ≤ α′ ≤ 0.47 is valid and coordinates the RSC, different α′ values result in different distributions

of the additional profit gain between the manufacturer and the retailer.

Figure 3.1 shows the profit distribution between the manufacturer and the retailer for different values

of α′ in the 0.22 ≤ α′ ≤ 0.47 range. In this figure, neither the retailer nor the manufacturer is worse off

compared to their optimal decentralized expected profits. One end of the range of α′ determines the retailer’s

minimum expected profit under contract (i.e., equal to its expected profit in the decentralized structure),

and the other end of the range of α′ determines that of the manufacturer. When α′ gets its least value

(i.e., α′ = 0.22), the manufacturer gains its highest possible expected profit under the contract while the

retailer is also not worse off compared to its decentralized expected profit. Similarly, when α′ gets its highest

value (i.e., α′ = 0.47), the retailer gains its highest possible expected profit under the contract while the

manufacturer is not worse off compared to its decentralized expected profit.

Scope Contract when d3 = 0.6

According to Table 3.4, manufacturer should design a scope contract that will induce the retailer to reveal

only attribute level 1 since S∗
C(3) = {3}. The target optimal assortment by the manufacturer should be

M∗
SC = {[6], [9], [11], [15], [16], [18]}. The next step is to find SC = α⃗ by explicitly writing (3.21). Finding the
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Figure 3.1: Profit Distribution between Manufacturer and Retailer Given 0.22 ≤ α′ ≤ 0.47, when d3 = −0.6

values of Φ, G1, and G2, and substituting them into (3.21), we have:

−0.65 ≤
∑

x∈M∗
SC

(1− α3)e
Ux ≤ 0.04. (3.23)

Since the upper-bound is greater than zero, SC = α⃗ coordinates the RSC. Explicitly writing (3.22) with

M∗
SC, we get:

−0.65 ≤ (1− α3)(e
U [6] + eU [9] + eU [11] + eU [15] + eU [16] + eU [18]) ≤ 0.04.

Therefore, any α⃗ = [0, 0, α3] that satisfies the following will coordinate the RSC:

0.97 ≤ α3 ≤ 1.42.

Note that the upper-bound is not binding; so we have 0.97 ≤ α3 ≤ 1. Since there is only one discount rate in

this contract, we do not need to implement Theorem 3.2 in this case, and the corresponding single parameter

version of the contract is also 0.97 ≤ α′ ≤ 1

In the following, Figure 3.2 indicates the profit distribution between the RSC parties when d3 = 0.6 for

the 0.97 ≤ α′ ≤ 1 range. The same analysis as Figure 3.1 holds here as well. In Figure 3.2, while an α′ value

less than 0.97 will worsen the retailer compared to the decentralized setting, there is no value of α′ that will

worsen the manufacturer, because such α′ should be greater than 1.42.
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Figure 3.2: Profit Distribution between Manufacturer and Retailer Given 0.97 ≤ α′ ≤ 1, when d3 = 0.6

Scope Contract for Coordination when d3 = 0.8

When d3 = −0.6 or d3 = 0.6, a scope contract with SC = α⃗ can be found to coordinate the RSC without

the need of a lump sum payment by the manufacturer to the retailer. When d3 = 0.8, this is not the

case. First, we note that M∗
D = {[1], [2], [3], [4], [5], [6]} with revealing all levels of attribute 3 so that

S(3|M∗
D) = {1, 2, 3}. Similar to the d = 0.6 case, the optimal assortment in the centralized setting is

M∗
C = {[6], [9], [11], [15], [16], [18]} with revealing only level 3, S∗

C = {3}. The inefficiency is 80.08-60.74-15.07

= 4.27 which corresponds to 5.6% increase in the centralized setting from the decentralized setting. In this

case, the inequality given by (3.21) turns out to be

−1.41 ≤
∑

x∈M∗
SC

(1− α3)e
Ux ≤ −0.43 (3.24)

not letting for any feasible α1 value. Hence, we design a SC = [β⃗,L] contract with β⃗ = [0, 0, 1] and an L

value that satisfies

15.07− 13.17 ≤ L ≤ 66.91− 60.74

1.9 ≤ L ≤ 6.17.

Note in this problem instance that w∗
D = 45.81, Πr

D(M∗
D|w∗

D) = 15.07, Πr
SC(M

∗
C|w∗

D, α⃗) = 13.17,

Πm
SC(w

∗
D, β⃗) = 66.91, and Πm

D(w∗
D) = 60.74.
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3.7.4 Scope Contracts with Multiple Inaccurately Assessed Attributes

When there is inaccuracy in assessing levels of more than one attribute, the optimal decisions may differ

compared to the case where only levels of one of the attributes are inaccurately assessed. In this section,

we investigate the operations of the RSC when levels of attributes 2 and 3 are simultaneously inaccurately

assessed. Let d2 = 0.6 and d3 = −0.6, while the values of all other parameters are the same as described

at the beginning of Section 3.7. In the following, Table 3.5 shows the optimal decisions of the RSC in the

decentralized and centralized settings.

Table 3.5: Optimal Solutions for the Representative Examples under RA Scenario, when d2 = 0.6 and
d3 = −0.6

Decentralized Centralized

Πm
D

∗ Πr
D

∗ Πm
D

∗+Πr
D

∗ S(1|M∗
D
) S(2|M∗

D
) S(3|M∗

D
) M∗

D
w∗

D
ΠT

C

∗
S∗
C
(2) S∗

C
(3)

53.57 18.41 71.98 1-3 1-2 1 [1],[2],[4],[8],[10],[14] 45.61 78.66 2 1-3

In Table 3.5, S(2|M∗
D) = {1, 2} and S(3|M∗

D) = {1}. Whereas, S∗
C(2) = {2} and S∗

C(3) = {1, 2, 3}. Hence,

coordinating this RSC means decreasing the scope of attribute 2 and increasing the scope of attribute 3.

Given S∗
C(2) and S∗

C(3), there are multiple optimal assortments (and as a result, multiple S(1|M∗
C) sets).

Given Lemma 3.1, among all M∗
C sets, we have M∗

SC = {[2], [5], [8], [9], [12], [14]}.

To achieve coordination in this problem instance, a scope contract should be devised such that both the

inaccurately assessed attributes are considered in proposing the discounts. Let SC = α⃗ = [α2,1, α2,2, α2,3],

where α2,1 is the discount rate on products consisting of level 2 of attribute 2 and level 1 of attribute 3,

α2,2 is the that on products consisting of level 2 of attribute 2 and level 2 of attribute 3, and α2,3 is that on

products with level 2 of attribute 2 and level 3 of attribute 3. Therefore, the condition of the scope contract

can be written as

−1.09 ≤ (1− α2,1)(e
U [2] + eU [8] + eU [14]) + (1− α2,2)(e

U [5] + eU [12])(1− α2,3)e
U [9] ≤ 0.12,

Since the upper-bound is non-negative, SC = α⃗ coordinates the RSC. Simplifying the inequality, we get a

non-binding upper-bound. Therefore, we have

0.93 ≤ 0.89α2,1 + 0.58α2,2 + 0.28α2,3 ≤ 1.

Letting α2,1 = α2,2 = α2,3 = α′, the corresponding single parameter contract can also be written. Hence, the

proposed scope contract in this paper as a coordination mechanism is not limited to cases where only levels

of one attribute are inaccurately assessed. This contract can be simply written for cases where an arbitrary

number of attribute levels are inaccurately assessed with arbitrary values of inaccuracies for each of them.
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3.7.5 Analysis of the Impact of Retail Price

As stated in Section 3.4, we assume that the retail price π is fixed. This assumption is meant to isolate

the results and insights from the market dynamics and the potential competition between different retail

supply chains of competing products. This price can be considered as the equilibrium price for the product

under concern in such competitive environments, but there might still be some room for price adjustments

for increasing the total profit of the chain. In this section, we investigate the impact of changes in π on

the profitability of the RSC members and the whole retail system. It should be noted that we assume the

changes in the retail price do not affect the chain’s potential customer base; however, they can affect the

purchase and return probability of products, and hence, the overall observed demand. A greater π, for

example, can lead to smaller purchase probabilities and higher return probabilities. On the other hand, it

can be expected to increase the profit margin obtained by selling each product for the RSC as a whole.

Therefore, the trade-off between the decreased number of sales and the increased profit margins determines

whether greater or smaller prices can be desired, while the competition effect with other similar products in

the market is neglected.

For the numerical experiment presented in this section, suppose that we have a menu of retail prices from

which a π can be selected to sell the products to the customers so that π ∈ {60, 80, 100, 120, 140, 160,

180, 200, 220, 240, 260}. We assume that d3 ∈ {−0.6, 0.6} and γ = 0.75 (note that the γ value should be high

enough to be valid due to the required condition γ > v/π). To explicitly observe the effect of π on purchase

probabilities and returns, we let the price sensitivity of utility take any of the β1 ∈ {−0.013,−0.018,−0.024}

and the part-worth utility of levels of attribute 1 be 0.5, 0.3, and 0.1, attribute 2 be 0.35 and 0.15, and

attribute 3 be 0.45, 0.25, and 0.05, respectively. The values of all other parameters are the same as Section

3.7.1. The following results are stated for when d3 = −0.6, but they all hold for d3 = 0.6 as well.

Figure 3.3 shows the changes in ΠT∗

C with respect to different π and β1 values under the centralized

setting. Recall that β1 is the price sensitivity of product utilities. As can be observed, ΠT∗

C has a unimodal

structure (not necessarily concave) in an increasing-decreasing pattern. Note that for extreme values of

the retail price, the total expected profit approaches zero. This general trend states that an increase in

price initially improves profitability because although it decreases the purchase probability and increases

returns, the increase in profit margin is substantial and results in higher profit. However, once the retail

price gets larger, the decrease in the purchase probability and increase in returns dominate the increase in

the marginal profit, and overall the total expected profit decreases. It should be noted in Figure 3.3 that

when the magnitude of β1 is greater, the impact of the decrease in the purchase probability and increase

in returns dominates the increase in marginal profit at smaller prices. This is because in this case, product
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utilities are more sensitive to the price.

Figure 3.3: ΠT∗

C values with respect to π and β1 under the centralized setting when d3 = −0.6

Table 3.6 indicates the w∗
D values with respect to changes in π and β1 under the decentralized setting.

As expected, an increase in π results in an increase in w∗
D. Given the retailer’s opportunity cost Ω, a higher

π translates into a greater marginal profit from each product and allows for more flexibility regarding w∗
D

by the retailer. On the contrary, greater β1 values lead to smaller purchase probabilities and higher returns,

which overall yields smaller profits. Hence, given Ω, the w∗
D that the retailer can tolerate will be smaller.

Table 3.6: w∗
D values with respect to π and β1 under the decentralized setting when d3 = −0.6

β1 -0.024 -0.018 -0.013

π w∗
D

60 33.11 33.61 33.98
80 40.75 42.23 43.33
100 46.74 49.69 51.94
120 51.14 55.92 59.74
140 54.62 60.90 66.66
160 56.63 64.71 72.68
180 57.98 68.17 77.77
200 59.05 70.16 81.98
220 60.10 71.54 86.30
240 61.31 72.55 89.00
260 62.75 73.39 91.04

Figure 3.4 below shows the changes in the total expected profit of the RSC (i.e., Πm∗

D +Πr∗

D ) with respect

to different π and β1 values under the decentralized setting. This figure can be interpreted the same as
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we explained Figure 3.3. It should be noted that the Πm∗

D + Πr∗

D values in Figure 3.4 are smaller than

the corresponding ΠT∗

C values in Figure 3.3, which denotes the inefficiency of the decentralized setting. In

Figure 3.5, we depict the changes in the manufacturer’s and retailer’s expected profits individually. As can

be observed, the same trend similar to Figure 3.4 holds individually as well. It should be noted that the

manufacturer’s average profit stands at a higher level for any π and β1. This is in part because the store

capacity is assumed to be C = 6, which results in the manufacturer selling more products than the retailer.

Note that at extreme prices in which the total RSC expected profit approaches zero, the difference between

the manufacturer’s and the retailer’s expected profits shrinks.

Figure 3.4: Πm∗

D +Πr∗

D values with respect to π and β1 under the centralized setting when d3 = −0.6

Figure 3.6 indicates the percentage of inefficiency in the total expected profit of the RSC under the

decentralized setting compared to the centralized setting. According to this figure, the inefficiency for all

β1 values shows similar behavior with respect to the retail price. First, the inefficiency increases up to its

maximum value. Then, it shows a decreasing trend after which, it increases again. Note that the stated

behavior takes place at smaller prices for greater β1 values since a greater β1 translates into a greater impact

from π on product utilities.

According to Propositions 3.5 and 3.7, the utility of products is crucial in the optimal assortment of

products and attribute levels. The changes in π directly impact the utility of products. Therefore, the

assortment of products and attribute levels may be subject to change with alterations in π. In the following,

Table 3.7 shows the impact of changes in retail price on the optimal assortment when β1 = −0.024 under
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Figure 3.5: Πm∗

D and Πr∗

D values with respect to π and β1 under the centralized setting when d3 = −0.6

the centralized and decentralized settings for d = −0.6 and d = 0.6. We observe that the optimal assortment

under the decentralized setting when d = −0.6 can include a greater variety of levels of attribute 3 as π

increases. Although we do not see any changes in the selected levels under the centralized setting for this

problem instance, the assortment can obviously change for different problem instances for different π values.

We do not observe any change in the assortment for d = 0.6 because only level 3 of attribute 3 is showcased

in this case and it remains optimal to only showcase this level as π increases.

Table 3.7: Optimal assortment decisions with respect to π when β1 = −0.024

π 60 100 180 260

d3 setting S∗ M∗ S∗ M∗ S∗ M∗ S∗ M∗

-0.6
C 1-3 ∗ 1-3 ∗ 1-3 ∗ 1-3 ∗

D 1 [1]-[3],[5],[6],[9] 1 [1]-[3],[5],[6],[9] 1-2 [1]-[6] 1-2 [1]-[6],[7]

0.6
C 3 ∗∗ 3 ∗∗ 3 ∗∗ 3 ∗∗

D 1-3 [1]-[5],[8] 1-3 [1]-[5],[8] 1-3 [1]-[5],[8] 1-3 [1]-[4],[7],[8]
∗Any six of [1] to [18] by selecting at least one of Levels 1 to 3
∗∗All six products with Level 1 of attribute 3

3.8 Conclusion

In this paper, we investigate the operations of an omni-channel retail supply chain (RSC) consisting of

an online sale website and a physical store. We study two decision settings including decentralized and

centralized. In the decentralized setting, the manufacturer owns the online channel as its direct sales medium,
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Figure 3.6: % inefficiency in the RSC profit with respect to π and β1 under the centralized setting when
d3 = −0.6

and the retailer sells the manufacturer’s products in its physical store, both trying to maximize their own

profits independently. Through a Stackelberg game, the manufacturer decides the wholesale price of its

products to be charged to the retailer, and consequently, the retailer selects an assortment of manufacturer’s

products for showcasing. In the centralized setting, both sales channels are considered to be run by a central

authority that aims to maximize the system-wide profit by an assortment decision for the physical store.

The manufacturer should charge the retailer the highest wholesale price that the retailer can bear with

while operating its store. This depends on the retailer’s opportunity cost; i.e., the amount of profit that it

expects to attain as a fraction of its sales; otherwise, it would invest its capital elsewhere. While assortment

decisions can be complex, we propose analytical results shown to be effective in reducing the complexity of

the problem considerably.

When product returns are not allowed (RNA), under the decentralized setting, if customers overvalue

the hidden attribute levels (i.e., not showcased in the physical store), the retailer should select an assortment

that balances the benefits of showcasing the highest utility products and a high variety of such levels. If

customers undervalue the hidden attribute levels, this will be a trade-off between showcasing the highest

utility products and a limited variety of attribute levels. Under the centralized setting, the assortment

decisions can be fundamentally different as it is optimal to showcase the most limited variety of hidden

attribute levels that are overvalued and the highest possible variety of undervalued levels.

When product returns are allowed (RA), under the decentralized setting, the same strategy as RNA
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holds if the hidden attribute levels are overvalued. However, if the hidden levels are undervalued, it can be

optimal to showcase lower utility levels as well. This means that in this case, for example, products with

unpopular colors can be candidates for showcasing as well; on the contrary to the RNA case where these

products would not have a chance to appear in the assortment. Also, under the centralized setting, any

selection of attribute levels can be a potential optimal selection, and there can be multiple such assortments.

The differences among assortment decisions under the decentralized and centralized settings in both

scenarios can lead to higher total profitability under the centralized setting, which indicates the inefficiency

of the decentralized assortment decisions. To incentivize the retailer to switch to the centralized assortment,

we propose scope contracts as a coordination mechanism in which the manufacturer offers discounts on

the wholesale price of products with attribute levels that it prefers the retailer to showcase (for example,

products with certain colors). By adjusting the discount rates, the manufacturer increases the attractiveness

of showcasing such products for the retailer. This contract is widely applicable for the coordination of

assortment planning problems, and it resembles the ”economies of scope” and ”dis-economies of scope” in

the literature.

In the scope contract, if the manufacturer prefers a great variety of attribute levels to be showcased by the

retailer, designing the contract can be difficult since several discount rates should be adjusted. To address

this issue, we show that a scope contract in which the discount rates are equal can coordinate the RSC while

the benefits of the contract with several rates are preserved. Manufacturers can implement this contract

with minimum hassle to improve the overall profitability of their RSC.

In this study, we suppose that the retail price of products are at equilibrium with competition with other

retail supply chains selling similar products. Isolating the RSC under concern from the outside competition

in the market, we analyze the changes in the retail price. Our results indicate that the expected profit

of the RSC is unimodal, implying that prices that are too high or too small can result in a loss of profit.

Specifically, if the price is extremely high, the demand for the products will approach zero resulting in zero

expected profit. The best price can be determined based on the price sensitivity of utility.

As a future study, this paper can be extended to a situation where the physical store carries an inventory

of products along with the showcase. Carrying the right amount of each showcased product is a crucial key

to profitability. Note that in this problem, once a product goes out of stock, the purchase probability of all

products can be impacted. Moreover, this problem can be investigated in a multi-period sales horizon where

the assortment and inventory decisions can be made for each period. The decisions for each period will have

an influence on the other sales periods, as excess inventory or shortages can be carried over to the next periods.
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Chapter 4

Assortment Planning in

Omni-Channel Retail Supply Chains

Under Information Asymmetry

Abstract. In omni-channel retail supply chains (RSCs), online assessment of products with non-digital

attributes can be inaccurate and different from physical stores. These are products like apparel for which

physical assessment and trying out provide accurate information about their utility. It is known in the

literature that the aforementioned inaccuracy in customers’ online assessments plays a crucial role in the

assortment of products that retailers decide to showcase in their physical stores, because physical stores are

not only a sales medium but also means of providing accurate information for customers who visit them.

However, the inaccuracies may not be known to RSC decision makers, resulting in an asymmetric information

situation where they need to make an assortment decision based on their best estimates. We investigate

a RSC consisting of an online sales website and a physical store under a decentralized setting where the

sales channels are independently managed, and a centralized setting where both channels are managed by a

central authority. Based on our numerical study, we observe that if an estimation of inaccuracy results in

the same assortment as the true value of inaccuracy, there will be no regret in profitability in both settings.

Under the decentralized setting, each party can also fare better under certain conditions, but both cannot

fare better at the same time. Under the centralized setting, the RSC is never better off with an imprecise

estimation of the inaccuracy. Furthermore, if an estimation of zero inaccuracy is obtained, the RSC is likely

to minimize its regret by showcasing an assortment that contains the highest utility attribute levels.
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4.1 Introduction

Omni-channel retailing, a widely adopted practice in contemporary retail, involves the co-presence of both

online sales channels and physical stores. This strategy contributes to expanding market share and offers

retailers opportunities for increased profitability (Bell et al. 2018). In such retail systems, the online sales

channel enjoys the advantage of virtually unlimited product variety, as it sources directly from central

warehouses or manufacturers. On the other hand, physical stores often face capacity constraints in showcasing

products, resulting in customers having access to a limited variety. Consequently, omni-channel retailers

encounter a crucial decision that revolves around determining the assortment of products to be displayed in

physical stores, which is commonly known as the assortment problem.

Products possess various attributes, such as color and material, each with multiple levels, like blue and

red for the color attribute. According to Dzyabura and Jagabathula (2018), the customer’s perceived utility

or attractiveness of a product can be evaluated by summing up the utilities associated with its attribute

levels. One distinctive feature of omni-channel retailing is the difference in shopping experience for products

that have non-digital attributes. These are items such as clothing and sunglasses where physical assessment

and trying them out provide reliable information about their utility. In the case of these products, customers

can accurately assess the items displayed in physical stores. However, items with attribute levels that are

not showcased in the store but only browsed online may be subject to ’inaccurate’ assessments.

The (in)accuracy in customers’ assessments of product utilities have a significant impact on their pur-

chase likelihoods. When a customer assigns a higher utility to a product based on its online representation

compared to what they would have assessed physically (i.e., overvaluation), they are more inclined to pur-

chase the product. Conversely, if the customer undervalues the product based on its online presentation,

the purchase likelihood will be lower. The degree of inaccuracy during the purchase phase also influences

customer’s satisfaction with the product, subsequently affecting their decision to keep or return it. If a

product was purchased online with an overvaluation, the customer may be disappointed upon receiving it as

it doesn’t meet their expectations. In such cases, the likelihood of returning the product is higher compared

to when the customer made an accurate assessment. Conversely, if the product was undervalued during

the online purchase, the customer may be pleasantly gratified by its quality upon receipt. As a result, the

likelihood of returning such a product decreases.

The assortment decision made for the physical store has implications not only for customers’ purchasing

decisions in-store but also for those when shopping online. This is because products showcased in the

physical store may share certain attribute levels with online-only products, providing partial accurate utility
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information for these items. For instance, a red product of a specific style may be available in-store, but

the desired red color for the preferred style might not be in stock. Thus, the customer can accurately assess

the utility of the red color but not the utility of the desired style available only online. Consequently, the

customer’s assessment of the overall utility of the desired product will be partially accurate, as illustrated by

this example. Assortment planning becomes particularly significant for high-value products, where customers

prefer to visit the physical store to gather precise utility information about the available products and their

attribute levels before making a purchase, either online or in-store (Park et al. 2021).

Based on the preceding discussion as well as the findings of Dzyabura and Jagabathula (2018), Lo and

Topaloglu (2022), the inaccuracy in customers’ assessments of product utilities in the online sales website

plays a crucial role in making an optimal assortment decision for the physical store. The optimal assortment

decision can significantly change based on whether products are accurately assessed, overvalued, or under-

valued in online assessments, and it is crucial to take the inaccuracy into account while making this decision.

Therefore, a trustworthy estimation of this inaccuracy component is imperative for effective management

of omni-channel retail operations. However, estimating the inaccuracy parameters is not straightforward or

trivial. It might require substantial efforts which might be challenging and costly. For example, surveys or

lab/field experiments can be devised to understand the customers behaviour in their relative assessment of

the online and offline products. The customer profile might be different from one segment of products to

another. The design, look, and the interface of the online sales channel would also directly impact whether

the customers over- or under-value the hidden attributes. For instance, for sunglasses or furniture, customers

may have different perception of the utility, and the inaccuracy in each customer’s assessment can be dif-

ferent. This can be different even for the same RSC with a another product. Therefore, such inaccuracies

would be case specific and change from an environment to another. In certain cases, the online sales channel

may be owned and operated independent of the physical stores. In those settings, each party’s operational

decisions would be predicated on their own best guesses of the inaccuracy parameters. It might be reason-

able to expect the party which operates the online sales channels to conduct the research in understanding

the customer behavior. For example, through sampling and comparing the utilities that customers assign to

certain group of products when physically assessed and when observed online. Even if this party has it in full,

this information may not be shared with the physical store operators. In summary, the challenges that are

faced in practice regarding the estimation of the magnitude of the inaccuracy are the potential misalignment

of the expectation and the reality and information asymmetry between the parties that operate the physical

stores and the online sales channels.

In this paper, we examine the impact of the challenges arising from having incomplete or asymmetric

information about the assessment inaccuracy in a retail supply chain setting, which is composed of an
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online sales channel, operated directly by a manufacturer, and a physical store (a retailer) that sells the

manufacturer’s products. We assume that all customers have access to both the online channel and the

physical store, and their purchase decisions are based on selecting the product with the highest positive

utility across both channels1. If a customer does not find any product with positive utility, no purchase

occurs. For instance, customers may visit the physical store to assess the available products while also

browsing the complete collection online using their smartphones or a computer screen provided in the store.

The physical store serves as a showcase, displaying an assortment of products without maintaining inventory.

If a customer chooses to purchase an item from the showcased products in the physical store, the retailer

places an order with the manufacturer at a wholesale price and arranges for the product to be delivered

to the customer. On the other hand, if a customer decides to purchase a product that is only available

online, the order is placed through the manufacturer’s website, and the product is delivered directly to the

customer. The manufacturer sells the products to the retailer at a wholesale price. Based on this price and

their estimation of the inaccuracy in the assessment of the customers of the hidden attributes, the retailer

makes the assortment decision, which is determining the products to showcase in their store, to maximize

their own profit. The manufacturer can anticipate the action that the retailer would take (i.e., the assortment

decision) and set a wholesale price accordingly so that they maximize their own profit. In this process, the

manufacturer needs to estimate the profit of the retailer and itself under different configurations and the

magnitude of the inaccuracy parameters should be factored in these estimations.

In a decentralized setting of this RSC, the inaccuracy parameter should be estimated by each party

separately as they are independent entities. In this paper, we investigate the impact of making erroneous

estimations of this parameter and explore whether being optimistic or pessimistic could be a better strategy

when the decision maker is dubious about the true value of this parameter. We analyze this situation under

the possibility of both parties not knowing the true value (in a decentralized and centralized setting) and one

party knowing the true value without sharing it with the other party (in a decentralized setting). In specific,

we define a regret function for the retailer, the manufacturer, and the whole RSC as the difference between

their expected profit if they knew the value of inaccuracy and their expected profit when an estimate is

obtained. We investigate which type of estimation of the inaccuracy by the retailer and the manufacturer

(i.e., supposing customers would over- or under-value or accurately assess utilities) can lead to smaller regret

for them in the decentralized setting, and that for the whole RSC in the centralized setting. The main

contribution of this paper to the literature is to explore information asymmetry in the context of omni-

channel retailing. This work also addresses asymmetry about a crucial parameter (i.e., the inaccuracy in

1This study focuses on customers who visit both channels and primarily considers high-value products, as customers tend
to gather as much information as possible before making a purchase. For other product types, this study is applicable to the
segment of customers that visit both channels.
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online assessments) in an omni-channel RSC that has not been previously studies.

4.2 Literature Review

The initial step in assortment planning involves understanding customers’ decision-making behavior and

representing it. This is crucial since the objective is to optimize the profit obtained from selling products

to customers. Typically, ’consumer choice models’ are draw upon to model the customers’ behavior. In

this paper, we adopt the multinomial logit (MNL) as the most widely used choice model. In MNL, each

customer corresponds a utility to each product, which consists of a deterministic and a stochastic part, where

the stochastic part is modeled as an error term with the Gumbel distribution. Then, the choice probability

of each product is determined using properties of this distribution (Ben-Akiva et al. 1985, Anderson et al.

1992). Other choice models employed in the literature contain nested logit (Gallego and Topaloglu 2014,

Davis et al. 2013), d-level nested logit (Li et al. 2015), mixed logit (Rusmevichientong et al. 2014), locational

(Gaur and Honhon 2006), and Markov chain-based (Blanchet et al. 2016) choice models.

Assortment planning in single-channel retailing, where a retailer determines the product selection for

its physical store, has been extensively studied in the literature. Refer to the literature review by Kök

et al. (2015) for an overview of this research stream. Nonetheless, assortment planning in the context

of omni-channel retailing is a relatively an emerging topic, although it has gained attention recently. Ye

et al. (2018) discuss the challenges that retailers face when, including more complex assortment planning,

expanding their operations across multiple channels. Several empirical and discussion-based studies have

explored omni-channel assortment planning (Bell et al. 2014, 2018, Gallino and Moreno 2018). Rooderkerk

and Kök (2019) provide a literature review specifically focused on omni-channel assortment planning.

To our knowledge, the study by Dzyabura and Jagabathula (2018) is the first to propose an optimization

model specifically for assortment planning in omni-channel retailing. In a similar vein, Lo and Topaloglu

(2022) examined omni-channel assortment planning using a features tree for product features. Hense and

Hübner (2022) investigate omni-channel assortment planning and corresponding inventory management,

incorporating stochastic and independent demand models. Schäfer et al. (2023) highlight the significant

influence of assortment on demand in brick-and-mortar stores, web-shops, and across channels, ultimately

impacting retailer profitability. These studies on omni-channel assortment planning assume all problem

parameters affecting the assortment decisions are known a priori.

According to Ha (2001), each party in an SC aims to optimize its own profit and does not wish to reveal

its private information unless a sufficient incentive is provided. Information asymmetry and its effects on

decision-making are widely studied in different realms of SC management. One approach to information
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asymmetry in SC decision-making is to consider one sales season and try to optimize the operations by

obtaining a probability distribution as an estimate for the value of unknown parameters. Studies in this

approach mainly address the demand uncertainty for a product in an RSC when pricing or ordering decisions

are explored (Yue and Raghunathan 2007, Mishra and Prasad 2004, Yue et al. 2006, Arcelus et al. 2008,

Akan et al. 2011, Yan and Pei 2011, Raj et al. 2021). Shen et al. (2019) and Vosooghidizaji et al. (2020)

provide reviews on SC contracting and SC coordination with information asymmetry, respectively. Also,

Arcelus et al. (2007) consider a setting where a retailer’s risk preference is unknown to its supplier, and

Çakanyıldırım et al. (2012) study a setting where a supplier’s unit production cost is privately known to

itself. Another approach to information asymmetry is to study the problem over multiple sales seasons

and update information about the unknown parameters. For example, Aviv (2001) studies a two-stage SC

consisting of a retailer and a supplier, where parties update their forecasts of future demand periodically.

In the domain of assortment planning, studies with full information are typically modeled as static

problems (Talluri and Van Ryzin 2004, Désir et al. 2014, Bultez and Naert 1988). However, in the case that

problem parameters are not known a priori, problems are usually modeled as dynamic where over the course

of time, the optimal decisions are improved through updating information about the unknown parameter

(Caro and Gallien 2007, Rusmevichientong et al. 2010, Agrawal et al. 2019, Chen et al. 2020, Bernstein et al.

2019). However, all these studies consider a single-channel RSC where the parameter considered unknown is

customers’ preferences among products. With the advent of omni-channel RSCs, inaccuracy in customers’

assessment of products in the online channel is a real obstacle (and opportunity) that retailers encounter. In

this study, we investigate omni-channel RSCs in a single sales season where inaccuracies in online assessments

of customers are unknown.

4.3 Modelling Approach

In this section, we first introduce the utility model that we use for the products sold in the physical store

and the online channel. Then, we develop models for customers’ purchase and keep-or-return decision.

4.3.1 Utility Model

Consider a product with non-digital attributes. Let A be the set of attributes of this product, K = |A| be

the total number of attributes, k ∈ A be a specific attribute, and L(k) be the set of all levels of attribute

k. For example, A = {color,material, style} can be the set of attributes of a product with K = 3 and

L(k) = {black, blue, silver} can be the set of levels for attribute k = “color”. One level from each attribute

will constitute a unique product and all possible such combinations will form the universal set of products
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X, where N = |X| =
∏

{k∈A} |L(k)|.

We adopt the utility model of Dzyabura and Jagabathula (2018) in which it is assumed that the product

utility is the summation of the part-worth utilities of its attribute levels. Let ũk,l(k) be the part-worth utility

of level l(k) ∈ L(k) of attribute k ∈ A assessed through physical encounter; touching, seeing, or trying out.

Then, the ‘attribute utility’ of a product x ∈ X (the utility of the product that is associated only to the

attributes of the product) can be written as

Ũx =
∑
k∈K

∑
l(k)∈L(k)

ũk,l(k) · 1{xk=l(k)} (4.1)

where xk is the level of attribute k in product x and 1{xk=l(k)} is an indicator function which is equal to 1

if the level of attribute k in product x is equal to l(k), and 0 otherwise. In addition to the attribute utility

given in (4.1), customers can also factor in the price of the product, πx, the disutility of the return process

(i.e., how difficult it would be to return the product), r, and the refundable portion of the price upon return,

γ while deciding whether to purchase the product x or not (Alptekinoğlu and Grasas 2014). Consequently,

the ‘product utility’ of x ∈ X becomes

Ux = Ũx + β1πx + β2(1− γ)πx + ϕr, (4.2)

where β1 is the price sensitivity of utility, β2 is the sensitivity of utility to the non-refundable fraction of the

price, and ϕ is the sensitivity of utility to the difficulty (disutility) of the return process. Note that β1 ≤ 0

to reflect an inverse effect with the price of the product, β2 ≤ 0 to reflect the negative impact of a higher

non-refundable portion of the price, and ϕ ≥ 0 since the disutility of the return process is defined as r ≤ 0.

The product utility given by (4.2) is an expected value for an average customer, but because of differences

in individual preferences, each customer can have a different realization of the product utility. Therefore the

utility of a product x that is showcased (available in the physical store) can be written as

Ux = U + εx (4.3)

where εx is the error term accounting for the unobserved components that are not caught by the utility model.

These idiosyncratic error terms in the utility of products are assumed to be independent and identically

distributed (i.i.d) of a Gumbel distribution with mean zero and scale parameter 1/µ – a standard assumption

in MNL models, see Kök et al. (2015), Anderson et al. (1992). Here, µ is a positive scalar representing the

homoscedasticity of the population such that a larger value of µ reflects a more heterogeneous population.

In the omni-channel retail setting that we consider, the customers who end up purchasing from the online
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channel also visit the physical store to collect information about the products. Hence, those customers would

have an accurate knowledge of the part-worth utilities, ũk,l(k), if the level l(k) of attribute k is present in one

of the showcased products (available in the store) but would have an inaccurate knowledge of the part-worth

utilities of the attribute levels that are not showcased. Therefore, the utility of the products that are available

only online depends on the assortment decision implemented in the physical store. Let dk,l(k) be the true

value of inaccuracy in customers’ assessments of level l(k) of attribute k if that level is not showcased. Then,

the part-worth utility of a level l(k) of attribute k which is not showcased is given by

ũk,l(k) + dk,l(k) (4.4)

where dk,l(k) > 0 if the customers overvalue the level l(k) of attribute k, ∀l(k) ∈ K,∀k ∈ A, in the online

channel, and dk,l(k) < 0 if they undervalue it. In this paper, we assume that this parameter (its true value)

may not be known by the decision maker, and we analyze the impact of deviations in estimations.

Let M ⊆ X be an assortment of products selected for showcasing in the physical store. Let S(k|M)

be the set of all levels of attribute k that are present in at least one of the products available in M , i.e.,

S(k|M) =
⋃

x∈M{xk}, and let S′(k|M) = L(k) \ S(k|M) be the set of levels of attribute k that are not

available in any of the products in M .

By letting,

Dy|M =
∑
k∈K

∑
l(k)∈S′(k|M)

dk,l(k) · 1{yk=l(k)}

and following the derivation in Chapter 2,

Uy|M =
∑
k∈K

∑
l(k)∈L(k)

ũk,l(k) · 1{xk=l(k)} +Dy|M + β1πx + β2(1− γ) + ϕr + εy

= Uy +Dy|M + εy. (4.5)

4.3.2 Customers’ Purchasing Experience

The purchasing experience of the customers follow the same logic explained in Chapter 2: Customers decide

whether to purchase or not based on the product utility given by (4.5) through the MNL model. If the

product is purchased from the physical store with accurate assessment, then the keep-or-return decision

is predicated on how the product utility compares to the disutility of return. If purchased from the online

channel, then in addition to the disutility, it is predicated on whether the customer had over- or under-valued
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the product during purchase. Consequently, the purchase probability of a product x given an assortment M

at the retailer and the manufacturer, P r
x|M and Pm

x|M , are given by

P r
x|M =

e(Ux+Dx|M )/µ

1 +
∑

y∈X e(Uy+Dy|M )/µ

=
eUx/µ

1 +
∑

y∈M eUy/µ +
∑

y∈X\M e(Uy+Dy|M )/µ
∀x ∈M ∪ {0}

Pm
x|M =

e(Ux+Dx|M )/µ

1 +
∑

y∈X e(Uy+Dy|M )/µ

=
e(Ux+Dx|M )/µ

1 +
∑

y∈M eUy/µ +
∑

y∈X\M e(Uy+Dy|M )/µ
∀x ∈ X \M ∪ {0}.

Similarly, the keep-or-return probabilities can be written as follows. Let Rr
x indicate the return probability

of product x ∈M that is purchased from the retailer. Then,

Rr
x = Pr{Ũx + β1πx + εx + εkeep|x < r + β1(1− γ)πx + εx + εreturn|x}

= Pr{εkeep|x − εreturn|x < −Ũx + r − β1γπx}

=
1

1 + e(Ũx−r+β1γπx)/µ′
. (4.6)

Let Rm
x|M indicate the return probability of product x ∈ X \M that is purchased from the online channel.

Then,

Rm
x|M = Pr{Ũx + β1πx − ωDx|M + εx + εkeep|x < r + β1(1− γ)πx + εx + εreturn|x}

= Pr{εkeep|x − εreturn|x < −Ũx + ωDx|M + r − β1γπx}

=
1

1 + e(Ũx−ωDx|M−r+β1γπx)/µ′
. (4.7)

Let Kr
x be the keep probability of product x ∈ M that it is purchased from the retailer, and Km

x|M be

this probability of product x ∈ X \M that it is purchased from the online sales channel of the manufacturer.

Then,
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Kr
x = 1−Rr

x =
1

1 + e(−Ũx+r−β1γπx)/µ′
,

Km
x|M = 1−Rm

x|M =
1

1 + e(−Ũx+ωDx|M+r−β1γπx)/µ′
. (4.8)

In concluding this section, we note that each of the measures presented above is a function of the inaccuracy

parameter Dx|M =
∑

k∈K

∑
l(k)∈S′(k|M) dk,l(k) ·1{xk=l(k)}. Also note that these probability measures are the

key components of the expected profit function as given in the next section. Hence, whether the estimated

magnitude of the inaccuracy term, dk,l(k), aligns with the true magnitude that transpires in practice plays a

key role in making profound decisions by the decision makers.

4.4 Expected Profit and Regret Functions

In this section, we derive the expected profit functions under the decentralized and centralized settings

and define a regret function of not knowing the true value of the inaccuracy parameter. We assume that

dk,l(k) = dk∀l(k) ∈ L(k),∀k ∈ A, i.e., all levels of an attribute are equally inaccurately assessed in the

online channel, and we let d = (d1, d2, ..., dK) be the vector of true values of the inaccuracies for all levels

of all attributes in A = {1, 2, ...,K}. Let d̂m = (d̂m1 , d̂m2 , ..., d̂mK) and d̂r = (d̂r1, d̂
r
2, ..., d̂

r
K) be the estimated

inaccuracy vector by the manufacturer and the retailer, respectively. In other words, these vectors are

their best guesses of the inaccuracy parameters dk for all k ∈ A. Naturally, the decision makers of the

manufacturer and the retailer use their own best guesses when making their operational decisions.

4.4.1 Decentralized Setting

In a decentralized setting, the manufacturer quotes the wholesale price w, and the retailer decides which

products to purchase and showcase in their store. In this setting, for any given value of w and the inaccuracy

vector d, the retailer’s expected profit function can be stated as (see Chapter 2)

Πr
D(M |w,d) =

∑
x∈M

[
(π − w)P r

x|MKr
x + ((1− γ)π + v − w)P r

x|MRr
x

]
(4.9)

where the first term refers to the expected profit obtained from the products sold at the retailer’s physical

store and are kept post-purchase, and the second term refers to the profit obtained from the products that

are sold but returned. Recall that the probability measures P , R, and K are also functions of the inaccuracy

vector d in the above equation. Noting that Kr
x = 1−Rr

x and defining Pr
x = (1−Rr

x)π+Rr
x [(1− γ)π + v] =
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π − Rr
x(γπ − v),∀x ∈ M in (4.9) as the marginal profit obtained from a product sold in the physical store,

the retailer’s expected profit can be re-written as

Πr
D(M |w,d) =

∑
x∈M

P r
x|M (Pr

x − w) . (4.10)

Consequently, by using their best estimate d̂r for the inaccuracy vector d, the retailer solves

max
M⊂X

Πr
D(M |w, d̂r)

s. to |M | ≤ C

(4.11)

to find the optimal M where C is the showcase capacity at the retailer. Let M(w, d̂r) be the assortment

decision that solves (4.11). This action can be anticipated by the manufacturer for any given w value, but

the best guesses of inaccuracy vector made by the retailer and the manufacturer may not align. In such

cases (if d̂r ̸= d̂
m), the manufacturer will anticipate that the retailer would order M(w, d̂m) whereas they

would order M(w, d̂r) and it is possible that these two assortment decisions are not the same. Nevertheless,

the manufacturer estimates their expected profit for any given value of w as

Πm
D(w|d̂m) =

∑
x∈X\M(w,d̂m)

πPm
x|M(w,d̂m)

Km
x|M(w,d̂m)

+
∑

x∈X\M(w,d̂m)

[(1− γ)π + v]Pm
x|M(w,d̂m)

Rn
x|M(w,d̂m)

+
∑

x∈M(w,d̂m)

wP r
x|M(w,d̂m)

(4.12)

where the first term refers to the profit obtained from products that are purchased from the manufacturer’s

online channel and kept by the customers post-purchase, the second term is the profit obtained from products

that are purchased from the online channel and returned, and the last term is the profit obtained from

selling the products to the retailer for the wholesale price, as the retailer orders products to fulfill the

purchases by customers in the physical store. Noting that Km
x|M(w,d̂m)

= 1 − Rm
x|M(w,d̂m)

and defining

Pm
x|M(w,d̂m)

= (1−Rm
x|M(w,d̂m)

)π+Rm
x|M(w,d̂m)

[(1− γ)π + v] = π−Rm
x|M(w,d̂m)

(γπ− v),∀x ∈ X \M(w, d̂m)

in (4.12) as the marginal profit obtained from a product sold in the online sales website, the manufacturer’s

expected profit can be rewritten as

Πm
D(w|d̂m) =

∑
x∈X\M(w,d̂m)

Pm
x|M(w,d̂m)

Pm
x|M(w,d̂m)

+
∑

x∈M(w,d̂m)

wP r
x|M(w,d̂m)

. (4.13)
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Consequently, the manufacturer solves the following problem to find the optimal wholesale price, w:

max
w

Πm
D(w|d̂m). (4.14)

In the previous chapter, in Proposition 3.6, we showed that the determined wholesale price depends on the

assortment showcased in the physical store and the retailer’s opportunity cost; i.e., the fraction of its sales

that the retailer wishes to be its profit. Our results denoted that the wholesale price will be set to the

greatest value that the manufacturer believes the retailer is willing to pay and operate its store, and we

formulated this decision.

If there is no asymmetry between the estimations and the true values, then all parties would have used

the inaccuracy vector d in identifying their respective optimal actions. Let M∗
D and w∗

D be the optimal

assortment and the wholesale price under this ideal situation. Since asymmetry can exist in practice, the

optimal solutions might differ from the ideal situation and from one party to the other. Let M̂r
D be the

optimal assortment that the retailer would order with d̂r and let ŵr
D be the maximum wholesale price that

they would be willing to pay in this situation. Similarly, let M̂m
D be the optimal assortment found with d̂m

that the manufacturer anticipates that the retailer will order and ŵm
D be the optimal wholesale price quoted

by the manufacturer.

After these parameters are resolved by each party independently, the manufacturer announces ŵm
D . If

it is greater than ŵr
D, the retailer decides not to order from this manufacturer because the charged price

is greater than the maximum value that it can pay. Therefore, the manufacturer operates its online sales

channel as the only sales medium for this particular product family. Whereas, if ŵm
D ≤ ŵr

D, the retailer

accepts the quoted wholesale price and showcases its assortment. In this situation, the final wholesale price

and assortment decisions under which the retail system operates are ŵm
D and M̂r

D.

Note that if the retailer exits the market, there will be no medium to reveal information about products’

utilities and attribute levels; so customers have to purchase with inaccurate assessments. Moreover, all the

customers who could have ended up purchasing in either of the channels now will have to purchase from the

online website.

Depending on the level of the information asymmetry, expectations of each party may not be met when

the customers starts browsing and buying from the showcased assortment and the online sales channel, and

then potentially returning their products as they are disappointed. We introduce the following notation to

denote the expected profit of each party under their best estimate of the inaccuracy vector and under the
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true inaccuracy vector:

Π̂r
D = Πr

D(M̂r
D|ŵm

D , d̂r)

Πr
D

∗ = Πr
D(M∗|w∗,d)

Π̂m
D = Πm

D(ŵm
D , d̂m)

Πm
D

∗ = Πm
D(w∗,d)

In the above expressions, ŵm
D is the solution to (4.14) with d̂m, and M̂r

D is the optimal assortment found

by solving (4.11) with ŵm
D and d̂r. Obviously, Πr

D
∗ and Πm

D
∗ are the ideal expected profits of the retailer

and the manufacturer if there was no information asymmetry.

We define Rr
D(d̂r, d̂m,d) as the retailer’s regret function when the true inaccuracies d are estimated

by the retailer as d̂r and by the manufacturer as d̂m. Rr
D(d̂r, d̂m,d) is the disparity between the retailers

optimal expected profit that it would have achieved if d was known and the expected profit that it obtains

as a result of d̂r and d̂m. Similarly, the manufacturer’s regret function is denoted by Rm
D(d̂r, d̂m,d), and

the total RSC regret function is given by RT
D(d̂r, d̂m,d). Therefore, according to the definition, we have

Rr
D(d̂r, d̂m,d) = Πr

D
∗ − Π̂r

D (4.15a)

Rm
D(d̂r, d̂m,d) = Πm

D
∗ − Π̂m

D (4.15b)

RT
D(d̂r, d̂m,d) = Πr

D
∗ +Πm

D
∗ − Π̂r

D − Π̂m
D. (4.15c)

Consequently, we let PRr
D(d̂r, d̂m,d), PRm

D(d̂r, d̂m,d), and PRT
D(d̂r, d̂m,d) be the percentage of regret for

the retailer and the manufacturer, respectively, defined as the percentage of deviation from their optimal

profit if the true value of inaccuracies, i.e., d, were known. Therefore

PRr
D(d̂r, d̂m,d) =

(Πr
D

∗ − Π̂r
D)× 100

Πr
D

∗ (4.16a)

PRm
D(d̂r, d̂m,d) =

(Πm
D

∗ − Π̂m
D)× 100

Πm
D

∗ (4.16b)

PRT
D(d̂r, d̂m,d) =

(ΠT
D

∗ − Π̂T
D)× 100

ΠT
D

∗ . (4.16c)

Proposition 4.1 below states a specific situation where there is no inaccuracy in customers’ online assess-

ments of products.

Proposition 4.1. Suppose that dk = 0,∀k ∈ A. Under the decentralized setting, if ŵr
D ≥ ŵm

D, for any
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arbitrary d̂r and d̂m, we have Πr
D

∗ +Πm
D

∗ = Π̂r
D + Π̂m

D.

Proposition 4.1 states that if dk = 0,∀k ∈ A and the manufacturer quotes a wholesale price that the retailer

can bear with (i.e., is willing to pay), then independent of what estimation of the inaccuracies the retailer

and the manufacturer make, the total expected profit of the RSC is the same as that if dk = 0,∀k ∈ A were

known. However, given M̂r
D, the retailer and the manufacturer sell certain products that may not align with

M∗
D, resulting in possibly different individual expected profits compared to those if dk = 0,∀k ∈ A were

known; i.e., although we have Πr
D

∗ +Πm
D

∗ = Π̂r
D + Π̂m

D, we may encounter Π̂r
D ̸= Πr

D
∗ and Π̂m

D ̸= Πm
D

∗.

4.4.2 Centralized Setting

In the centralized setting, there is a central authority that manages the RSC in a way to maximize the total

expected profit. This function is the sum of the expected profit functions of the retailer and the manufacturer

in (4.10) and (4.13):

ΠT
C(M |d) =

∑
x∈X\M

Pm
x|MPm

x|M +
∑
x∈M

P r
x|MPr

x. (4.17)

Hence, the central authority solves the following problem:

max
M⊂X

ΠT
C(M |d)

s. to |M | ≤ C

. (4.18)

Let M∗
C be the optimal assortment that solves this problem under the true values of the inaccuracy vector,

d and ΠT
C

∗
be the total system-wide optimal expected profit. Similar to the decentralized case, we define

the best guess of the central authority for the inaccuracy vector as d̂. Let M̂C be the optimal assortment

showcased and Π̂T
C be the total expected profit, both under d̂.

Similar to the decentralized setting, we define RT
C(d̂,d) as the RSC’s regret function when the true

inaccuracies d are estimated by d̂. RT
C(d̂,d) is the disparity between the total RSC’s optimal expected

profit that would have been achieved if d was known and the expected profit that is obtained as a result of

d̂. Given this definition, we have

RT
C(d̂,d) = ΠT

C

∗ − Π̂T
C (4.19)

Moreover, we also let PRT
C(d̂,d) be the percentage of regret for the total RSC profit, defined as the percentage

of deviation from the optimal total profit if the true value of inaccuracies, i.e., d, was known. Hence

PRT
C(d̂,d) =

(ΠT
C

∗ − Π̂T
C)× 100

ΠT
C

∗ . (4.20)
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Note that in the centralized setting, the profits in both sales channels are obtained by the central authority

as the total expected profit of the system. Therefore, it does not matter if a specific product is showcased

and sold in the physical store or in the online channel. Rather, the critical factor is the showcased levels of

attributes that are supposed to be inaccurately assessed on the online website. In the following, Proposition

4.2 describes the optimal assortment in this situation.

Proposition 4.2. In the centralized setting, selecting a subset of levels of attributes that are estimated to be

inaccurately assessed in the online channel (i.e., attributes with d̂k ̸= 0,∀k ∈ A) suffices to determine optimal

assortment. Any arbitrary assortment of products (and hence, attributes with d̂k = 0,∀k ∈ A) representing

the selected levels of such attributes is optimal.

Proposition 4.2 indicates that under the centralized setting, determining SC(k),∀k ∈ A is sufficient to have

an optimal assortment. Therefore, there may be multiple assortments under this setting.

Proposition 4.3. Under the centralized setting:

(i) Suppose that dk = 0,∀k ∈ A. For any estimate of inaccuracy d̂, any arbitrary assortment is optimal

and results in the same total expected profit.

(ii) When an estimate of d̂ = 0 is obtained, any selection of attribute levels showcased in the physical

store is considered optimal by the central authority. However, these assortments can result in different

Π̂T
C(M̂C) and PRT

C(d̂,d), depending on the true value of inaccuracies, i.e., d.

In part (i) of Proposition 4.3, note that there is no inaccuracy present in customers’ assessment of products

on the online channel. Therefore, no specific assortment reveals additional information to the customers.

Since we face the centralized setting, profits from both channels are obtained by the central authority;

hence, any assortment yields the same total expected profit. Part (ii) of Proposition 4.3 states that if

d̂ = 0 is the obtained estimate of inaccuracies, under the centralized setting, according to Proposition 4.2,

any assortment is considered optimal by the central authority. Note that the central authority makes its

assortment decision based on its assumed estimate d̂ = 0; therefore, based on this estimation, any assortment

is considered optimal. However, depending on the assortment that is eventually showcased, and given the

true inaccuracies, the expected profit and regret can be different.

4.5 Numerical Studies and Managerial Insights

In this section, we conduct numerical analysis to investigate the expected profits and regret values under the

centralized setting (Section 4.5.2) and the decentralized setting (Section 4.5.3).
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4.5.1 Test Bed

Suppose that the product under concern in the RSC consists of 3 attributes, K = 3, where attributes 1, 2, and

3 include three, two, and three different levels, respectively, making up 3×2×3 = 18 combinations of different

attribute levels, each corresponding to a unique item. The part-worth utility of levels of attributes are pre-

sented in Table 4.1. We assume that d = (0, 0, d3) where d3 ∈ {−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1}

and d̂ = (0, 0, d̂3) where d̂3 can take any of the possible values of d3 as the best estimate of the decision

maker. Finally, we let π = 100, v = 30, Ω = 0.4, r = −0.8, γ = 0.6, µ = µ′ = 1, β1 = −0.013, β2 = −0.01,

ω = 0.5, and ϕ = 0.4. We consider three different showcase capacities in the physical store as C ∈ {3, 6, 12}

such that they refer to small, medium, and large showrooms, respectively. Table 4.2 presents the attribute

levels in each product listed in the descending order of their product utilities, Ux, in columns.

Table 4.1: Part-worth utilities of levels of attributes 1, 2, and 3

Attribute k 1 2 3
Levels l(k) 1 2 3 1 2 1 2 3

ũk,l(k) 0.1 0.3 0.5 0.15 0.35 0.05 0.25 0.45

Table 4.2: Products based on Ux and their corresponding attribute levels. [n] represents the product which
has the nth highest product utility.

Product [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]

A1 level 3 3 3 2 3 3 2 2 3 1 2 2 1 1 2 1 1 1

A2 level 2 1 2 2 1 2 2 1 1 2 2 1 2 1 1 2 1 1

A3 level 3 3 2 3 2 1 2 3 1 3 1 2 2 3 1 1 2 1

4.5.2 Centralized Setting

Optimal Decisions When d3 is Known

Table 4.3 below presents the optimal S∗
C(3) and ΠT

C

∗
for each of the small, medium, and large capacities,

when d3 is known. Note that given Proposition 4.2, determining S∗
C(3) is sufficient since attribute 3 is

the only attribute with inaccurately assessed levels. Given this, after identifying S∗
C(3), any assortment of

products selected given C representing this set is optimal; i.e., an optimal M∗
C.

In Table 4.3, the central authority turns out to be willing to showcase all levels of A3 when d3 < 0 so

that no inaccuracy will be present in the customers’ online assessment of products. Therefore, in all C = 3,

C = 6, and C = 12, we have S∗
C(3) = {1, 2, 3}. One implication of this decision is that since all inaccuracy is

eliminated from the online channel, ΠT
C

∗
values are all equal for d3 < 0. Note that for d3 < 0, ΠT

C

∗
values are

equal to that of d3 = 0. This is also because S∗
C(3) = {1, 2, 3} includes all the levels of A3 in the showcase;
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Table 4.3: Optimal solutions for examples in the test bed under centralized setting when d3 is Known*

d3
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C = 3
S∗
C(3) 1-3 1-3 1-3 1-3 1-3 ** 1 1 1 1 1

ΠT
C

∗
77.09 77.09 77.09 77.09 77.09 77.09 78.44 79.61 80.58 81.36 81.93

C = 6
S∗
C(3) 1-3 1-3 1-3 1-3 1-3 ** 1 1 1 1 1

ΠT
C

∗
77.09 77.09 77.09 77.09 77.09 77.09 78.44 79.61 80.58 81.36 81.93

C = 12
S∗
C(3) 1-3 1-3 1-3 1-3 1-3 ** 1-2 1-2 1-2 1-2 1-2

ΠT
C

∗
77.09 77.09 77.09 77.09 77.09 77.09 77.92 78.73 79.50 80.20 80.81

∗Under the centralized setting, any C products that represent S∗
C(3) is an optimal M∗

C

∗∗Any selections of levels of attribute 3 is an optimal S∗
C(3), since there is no inaccuracy

therefore, no inaccuracy will be present in the online sales website. Hence, ΠT
C

∗
in all these cases is the same

as d3 = 0.

Furthermore, when d3 > 0, the central authority is reluctant to showcase a great variety of levels of

A3, unless capacity forces it to do so. Therefore, at C = 3 and C = 6, it only showcases one level of A3.

However, at C = 12 the capacity forces to showcase a greater variety, although it is not desired by the central

authority; Thus, one more level of A3 is included in the showcase, ΠT
C

∗
decreases. Note that since S∗

C(3)

for C = 3 and C = 6 is the same when d3 > 0, the value of ΠT
C

∗
at each d3 also the same. However, at

C = 12, because one additional level is included in S∗
C(3) compared to that at C = 3 and C = 6, and it was

undesired, ΠT
C

∗
is smaller.

Decisions and Regret Analysis When d3 is Unknown

When d3 is not known to the central authority, it will be estimated as d̂3. Note that the selected levels of

attribute 3 in Table 4.3 also hold for this section, albeit they will be obtained based on an estimation of the

inaccuracy, i.e., d̂3, and therefore, the expected profit values may not be the same as Table 4.3. This is, the

central authority makes an estimation of the true value of inaccuracy, and then based on this estimation,

it selects the levels of attribute 3 that would optimize the total expected profit if the estimate was correct.

Therefore, as can be inferred, although the decisions in Table 4.3 hold for any estimation d̂3, the Π
T
C

∗
values

may not hold true, since the value of d3 may be different than d̂3. In this case, an assortment selected based

on d̂3 may not be actually optimal when d3 ̸= d̂3.

Figures 4.1, 4.2, and 4.3 below indicate the PRT
C(d̂3, d3) for all combinations of d̂3 and d3, with color

codes. Regarding the color codes, PRT
C(d̂3, d3) = 0 indicates that the regret percentage in the total expected

profit when d3 is estimated by d̂3 is zero, and we use color ”white” to describe this situation. As the value

of PRT
C(d̂3, d3) increases (i.e., there is greater regret through the obtained estimation), the color will become

a darker shade of ”red”.
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Figure 4.1: PRT
C(d̂3, d3) for different combinations of d̂3 and d3 when C = 3, under centralized setting

Figure 4.2: PRT
C(d̂3, d3) for different combinations of d̂3 and d3 when C = 6, under centralized setting

Figure 4.3: PRT
C(d̂3, d3) for different combinations of d̂3 and d3 when C = 12, under centralized setting

In Figures 4.1 to 4.3, if d̂3 = d3 (i.e., the estimation of the true value of inaccuracy is exactly correct), then

PRT
C(d3, d̂3) = 0. If the resulting showcased attribute levels based on an obtained estimation of inaccuracy is

the same as the optimal selection if the true inaccuracy was known (i.e., ŜC(3) = S∗
C), then PRT

C(d3, d̂3) = 0.

In Table 4.3, for all d3 > 0 and for all d3 < 0, for each of C = 3, 6, 12, the selected levels of A3 are the
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same. Therefore, in Figures 4.1 to 4.3, when d3 > 0 and d̂3 > 0, or d3 < 0 and d̂3 < 0, we also have

PRT
C(d̂3, d3) = 0. Moreover, according to Proposition 4.3, when d3 = 0, any estimation obtained by the

central authority results in PRT
C(d̂3, d3) = 0, because the showcased levels do not reveal any additional

information about products and attribute levels.

If the resulting showcased attribute levels based on an obtained estimation is different than the optimal

selection when the true inaccuracy was known (i.e., ŜC(3) ̸= S∗
C), then PRT

C(d̂3, d3) > 0. According to Table

4.3, ŜC(3) for d̂3 > 0 and d̂3 < 0 are different. Therefore, in Figures 4.1 to 4.3, estimating the true value

of inaccuracy with d̂3 > 0 while d3 < 0 (or vice versa), results in different showcased levels of attribute 3,

and therefore results in regret. Note that under the centralized setting, the RSC cannot fare better when an

inaccurate estimation is obtained.

Comparing the regret values for pairs of (d̂3, d3) in Figures 4.1 to 4.3, for a greater C, we observe that

PRT
C(d̂3, d3) is non-increasing. When d3 < 0, Table 4.3 indicates that the optimal decision is to showcase the

full variety of levels of attribute 3; but, if d̂3 > 0, the estimation suggests showcasing only a limited variety.

As C increases, although the central authority would like to showcase only a limited variety based on its

estimation, at some C it becomes inevitable to showcase a greater variety of levels of attribute 3, resulting

in a similar showcased variety to the actual optimal assortment. Whereas, when d3 > 0, Table 4.3 indicates

that the optimal decision is to showcase only a limited variety of attribute 3; but if d̂3 < 0, the estimation

suggests showcasing the full variety. In this situation, a larger C can mean that the optimal variety of levels

of attribute 3 is inevitable to include more levels and becomes more similar to that of estimation. Therefore,

as C increases, PRT
C(d̂3, d3) is non-increasing.

Generally, RSCs may be interested in obtaining an estimation of inaccuracy that results in smaller regret

for them. This can provide insights and directions in minimizing the potential regret. Our analysis indicate

that given specific circumstances, d̂3 < 0 or d̂3 > 0 can be estimated with minimum regret. In all Figures

4.1 to 4.3, both the maximum and the average PRT
C(d̂3, d3) values when a d̂3 < 0 is obtained is smaller than

when d̂3 > 0. To observe this in the mentioned figures, consider a d̂3 < 0 and observe its row, which indicates

PRT
C(d̂3, d3) for different d3 values. This implies that in this problem instance, the RSC is on average better

off with smaller regret when a negative estimation of inaccuracy is obtained. However, this result is specific

to this problem instance. Our analysis shows that there exist problem instance where the opposite is true.

For example, consider the stated test bed in Section 4.5.1 with γ = 0.98 and the part-wroth utility of levels

of A3 as 0.05, 0.35, and 0.65, respectively. Figure 4.4 below shows the PRT
C(d̂3, d3) values in this problem

instance when C = 3. As can be observed, both the maximum and the average PRT
C(d̂3, d3) values when a

d̂3 > 0 is obtained is smaller than when d̂3 < 0.

One crucial case in the regret analysis for the centralized setting is when an estimation of d̂3 = 0 is
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Figure 4.4: PRT
C(d̂3, d3) for different combinations of d̂3 and d3 when C = 3 under centralized setting, with

γ = 0.98 and A3 levels 0.05/0.35/0.65

obtained. According to Proposition 4.3, when d̂3 = 0, any selected levels of attribute 3 is considered optimal

by the central authority. However, the specific levels that are decided to be showcased considerably impact

the resulting regret. Once the optimal selection based on the true value of inaccuracy is to showcase a greater

(or a limited) variety, the best decision is to showcase this variety. However, d3 is not known to the RSC. In

this part, we aim to explore the cases where d̂3 = 0 is the estimate for d3, to indicate which variety of levels

of attribute 3 results in a smaller regret. For this, we consider all the possible SC(3) given C. Given this, at

C = 3 and 6, SC(3) can be any possible selections including only one level (which can be either of levels 1,

2, or 3), two levels (either levels 1 and 2, levels 1 and 3, or levels 2 and 3), and showcasing all three levels of

attribute 3. However, at C = 12, given that there are only six products consisting of each level of attribute

3, at least two levels must be selected, resulting in showcasing two levels (either levels 1 and 2, levels 1 and

3, or levels 2 and 3), and showcasing all three levels of attribute 3. In the following, Tables 4.4 and 4.5 show

PRT
C(d̂3, d3) values when d̂3 = 0 is adopted but d3 can be any arbitrary value in the defined test bed, for

each possible SC(3).

Table 4.4: PRT
C(d̂3, d3) when d̂3 = 0 for all the possible SC(3) when C = 3, 6

d3

SC(3) −1 −0.8 −0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Max. Avg.

1 10.85 8.58 6.30 4.07 1.96 0 0 0 0 0 0 10.85 2.89

2 9.10 7.25 5.37 3.50 1.70 0 0.20 0.35 0.46 0.53 0.58 9.10 2.64

3 7.10 5.71 4.27 2.81 1.37 0 0.47 0.84 1.11 1.31 1.45 7.10 2.40

1, 2 4.85 4.01 3.10 2.11 1.07 0 0.66 1.10 1.34 1.42 1.37 4.85 1.91

1, 3 3.40 2.83 2.19 1.50 0.77 0 0.95 1.66 2.13 2.41 2.53 3.40 1.85

2, 3 2.37 1.97 1.53 1.05 0.54 0 1.18 2.10 2.77 3.23 3.51 3.51 1.84

1, 2, 3 0 0 0 0 0 0 1.72 3.17 4.34 5.25 5.91 5.91 1.85
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Table 4.5: PRT
C(d̂3, d3) when d̂3 = 0 for all the possible SC(3) when C = 12

d3

SC(3) −1 −0.8 −0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Max. Avg.

1, 2 4.85 4.01 3.10 2.11 1.07 0 0 0 0 0 0 4.85 1.38

1, 3 3.40 2.83 2.19 1.50 0.77 0 0.29 0.56 0.80 1.01 1.18 3.40 1.32

2, 3 2.37 1.97 1.53 1.05 0.54 0 0.52 1.01 1.45 1.84 2.17 2.37 1.31

1, 2, 3 0 0 0 0 0 0 1.07 2.09 3.04 3.88 4.61 4.61 1.33

In Tables 4.4 and 4.5, the last two columns reflect the maximum and average PRT
C(d̂3, d3) when selecting

its corresponding SC(3). Given these values, in Table 4.4, the smallest maximum PRT
C(d̂3, d3) associates with

SC(3) = {1, 3}, and the smallest average PRT
C(d̂3, d3) pertains to SC(3) = {2, 3}, albeit the latter is very

close to that for SC(3) = {1, 3} and SC(3) = {1, 2, 3}. In Table 4.5, both the smallest maximum and the

smallest average PRT
C(d̂3, d3) pertain to SC(3) = {2, 3}, although the smallest average is also very close to

that for SC(3) = {1, 3} and SC(3) = {1, 2, 3}. We also carry out the same analysis for the problem instance

with γ = 0.98 and the part-worth utility of levels of A3 as 0.05, 0.3, and 0.65, at C = 3. In the following,

Table 4.6 indicates the regret analysis for this example. As can be observed, in this case, showcasing the full

variety of levels of A3 can achieve both the smallest maximum and average regret. In all Tables 4.4, 4.5,

and 4.6, the desired set of levels include the level with the highest part-wroth utility.

Table 4.6: PRT
C(d̂3, d3) when d̂3 = 0 for all the possible SC(3) when C = 3, with γ = 0.98 and A3 levels

0.05/0.35/0.65

d3

SC(3) −1 −0.8 −0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Max. Avg.

1 6.58 4.86 3.32 2.00 0.94 0 0.21 0.57 1.04 1.60 2.80 6.58 2.18

2 4.13 3.04 2.07 1.25 0.60 0 0.49 1.07 1.71 2.41 3.73 4.13 1.86

3 0.72 0.39 0.13 0 0 0 1.04 2.12 3.21 4.33 6.01 6.01 1.63

1, 2 4.31 3.51 2.66 1.80 0.96 0 0 0 0 0.04 0.74 4.31 1.28

1, 3 1.46 1.20 0.91 0.64 0.38 0 0.56 1.10 1.60 2.11 3.24 3.24 1.20

2, 3 0 0 0 0.02 0.07 0 0.87 1.70 2.49 3.28 4.66 4.66 1.19

1, 2, 3 0.70 0.72 0.69 0.59 0.42 0 0.36 0.49 0.36 0 0 0.72 0.39

4.5.3 Decentralized Setting

Under the decentralized setting, we consider two information asymmetry scenarios. In the first scenario,

MDRD, neither the manufacturer nor the retailer knows d3. However, we suppose that their estimates are

equal, i.e., d̂r3 = d̂m3 = d̂3. This scenario may resemble a situation where the parties cooperate or one party

shares their estimation with the other. In the second scenario, MKRD, the manufacturer possesses private

105



information about the inaccuracy (i.e., the manufacturer knows d3), but it does not share this information

with the retailer. Hence, the retailer estimates d3 as d̂r3. We use PRr
D(d̂3, d3), PR

m
D(d̂3, d3), and PRT

D(d̂3, d3)

in MDRD where d̂3 denotes the cooperatively obtained estimation. Also, in MKRD, we use PRr
D(d̂r3, d3),

PRm
D(d̂r3, d3), and PRT

D(d̂r3, d3) where the retailer obtains d̂r3 as its estimation while the manufacturer knows

d3.

Optimal Decisions When d3 is Known

Table 4.7 below indicates the optimal decisions for each of the small, medium, and large capacities when it

is assumed that d3 is known to both the manufacturer and the retailer.

Table 4.7: Optimal solutions for the examples in the test bed under decentralized setting when d3 is known

C = 3
d3 Πm

D
∗ Πr

D
∗ Πm

D
∗+Πr

D
∗ S(1|M∗

D
) S(2|M∗

D
) S(3|M∗

D
) M∗

D
w∗

D

-1 60.78 10.83 71.61 2-3 1-2 3 [1],[2],[4] 55.81
-0.8 62.47 10.21 72.68 2-3 1-2 3 [1],[2],[4] 55.81
-0.6 64.25 9.55 73.80 2-3 1-2 3 [1],[2],[4] 55.81
-0.4 66.08 8.84 74.92 2-3 1-2 3 [1],[2],[4] 55.81
-0.2 67.92 8.11 76.03 2-3 1-2 3 [1],[2],[4] 55.81
0 69.73 7.37 77.09 2-3 1-2 3 [1],[2],[4] 55.81
0.2 70.50 7.01 77.51 2-3 2 2-3 [1],[3],[4] 55.81
0.4 70.15 6.93 77.08 3 2 1-3 [1],[3],[6] 55.64
0.6 70.15 6.93 77.08 3 2 1-3 [1],[3],[6] 55.64
0.8 70.15 6.93 77.08 3 2 1-3 [1],[3],[6] 55.64
1 70.15 6.93 77.08 3 2 1-3 [1],[3],[6] 55.64

C = 6

-1 53.18 18.43 71.61 1-3 1-2 3 [1],[2],[4],[8],[10],[14] 55.33
-0.8 55.31 17.37 72.68 1-3 1-2 3 [1],[2],[4],[8],[10],[14] 55.33
-0.6 57.56 16.24 73.80 1-3 1-2 3 [1],[2],[4],[8],[10],[14] 55.33
-0.4 59.88 15.04 74.92 1-3 1-2 3 [1],[2],[4],[8],[10],[14] 55.33
-0.2 62.77 13.90 76.67 1-3 1-2 2-3 [1],[2],[3],[4],[5],[10] 55.51
0 63.76 13.32 77.08 1-3 1-2 2-3 [1],[2],[3],[4],[8],[10] 55.51
0.2 63.76 13.32 77.08 1-3 1-2 1-3 [1],[2],[3],[4],[6],[10] 55.51
0.4 63.76 13.32 77.08 1-3 1-2 1-3 [1],[2],[3],[4],[6],[10] 55.51
0.6 63.76 13.32 77.08 1-3 1-2 1-3 [1],[2],[3],[4],[6],[10] 55.51
0.8 63.76 13.32 77.08 1-3 1-2 1-3 [1],[2],[3],[4],[6],[10] 55.51
1 63.76 13.32 77.08 1-3 1-2 1-3 [1],[2],[3],[4],[6],[10] 55.51

C = 12

-1 48.79 26.47 75.26 1-3 1-2 2-3 [1]-[5],[7],[8],[10],[12],[13],[14],[17] 55
-0.8 49.66 25.91 75.57 1-3 1-2 2-3 [1]-[5],[7],[8],[10],[12],[13],[14],[17] 55
-0.6 50.65 25.26 75.91 1-3 1-2 2-3 [1]-[5],[7],[8],[10],[12],[13],[14],[17] 55
-0.4 51.78 24.50 76.27 1-3 1-2 2-3 [1]-[5],[7],[8],[10],[12],[13],[14],[17] 55
-0.2 53.04 23.64 76.67 1-3 1-2 2-3 [1]-[5],[7],[8],[10],[12],[13],[14],[17] 55
0 53.78 23.30 77.08 1-3 1-2 1-3 [1]-[8],[10],[12]-[14] 55.01
0.2 53.78 23.30 77.08 1-3 1-2 1-3 [1]-[8],[10],[12]-[14] 55.01
0.4 53.78 23.30 77.08 1-3 1-2 1-3 [1]-[8],[10],[12]-[14] 55.01
0.6 53.78 23.30 77.08 1-3 1-2 1-3 [1]-[8],[10],[12]-[14] 55.01
0.8 53.78 23.30 77.08 1-3 1-2 1-3 [1]-[8],[10],[12]-[14] 55.01
1 53.78 23.30 77.08 1-3 1-2 1-3 [1]-[8],[10],[12]-[14] 55.01

Note that in Table 4.7, the retailer decides its assortment to maximize its own expected profit function,

and the manufacturer sets its wholesale price to the maximum value that the retailer would pay, given
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Ω = 0.4. Hence, unlike the centralized setting, other than S(3|M∗
D), the specific products selected, i.e., M∗

D

determines each party’s and also the total expected profits. In this table, for the same d3, as C increases,

the retailer’s expected profit is increasing, which is expected since the retailer can showcase more products

and obtain a higher profit. In specific, as can be observed, the ratio of store showcase size (i.e., C) is roughly

reflected on the ratio of Πr
D

∗ values. Whereas, the manufacturer’s and the total RSC’s expected profits do

not show a consistent behavior; i.e., they can increase or decrease because, under the decentralized setting,

the assortment is determined by the retailer to optimize its own expected profit. Furthermore, the variety of

showcased levels of attribute 3, as the attribute inaccurately assessed in the online sales channel, is greater

when d3 > 0 compared to when d3 < 0.

Decisions and Regret Analysis in MDRD

In the following, Figures 4.5 to 4.7 show PRr
D(d̂3, d3), PR

m
D(d̂3, d3), and PRT

D(d̂3, d3) for any combination of

d̂3 and d3. It should be noted that since both the manufacturer and the retailer obtain the same estimation

of d3 in this scenario, the wholesale price determined by the manufacturer is always the same as the highest

price that the retailer is willing to pay. Therefore, the retailer never prefers to withdraw from the market.

When the selected assortments given Table 4.7 are the same for a d3 and its estimation d̂3, there is no

regret for either of the parties because resulting expected profits will be the same as if the estimate was

precise. This can explain the PRr
D(d̂3, d3) = 0, PRm

D(d̂3, d3) = 0, and PRT
D(d̂3, d3) = 0 values in Figures

4.5 to 4.7. Moreover, when d3 = 0, different estimations can yield PRr
D(d̂3, d3) < 0 and PRm

D(d̂3, d3) > 0;

however, we always have PRT
D(d̂3, d3) = 0 because similar to the centralized setting, there is no inaccuracy

in the online assessments, and so, any assortment results in the same total expected profit for the RSC.

Under the MDRD scenario, the RSC’s total expected profit under an imprecise estimation of inaccuracy

can be higher, lower, or the same as the total expected profit if the true value of inaccuracy was known. If

the estimated assortment includes the attribute levels that are preferred under the centralized setting, the

total expected profit will be higher. If the estimated assortment includes the levels that are not desired under

the centralized setting, then the total expected profit will be lower. Moreover, if the estimated assortment is

the same as the optimal decentralized assortment, the expected total profits will be the same. However, with

an imprecise estimation, it is not possible that both parties fare better at the same time. This will resemble

a quasi-coordinated RSC, but since no adjustment is provided (i.e., a coordination mechanism), one of the

parties is always worse off and the other is better off. Depending on the decisions that the retailer and the

manufacturer make, a number of possibilities can happen in terms of the value of regrets. In the following,

we elaborate on these possibilities.

First, the retailer and the manufacturer can obtain their optimal expected profits, such that PRm
D(d̂3, d3) =
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Figure 4.5: PR(d̂3, d3) for different combinations of d̂3 and d3 when C = 3, under the MDRD scenario

and PRr
D(d̂3, d3) = 0. This case happens if the M̂D (and consequently the ŵD) with the estimation d̂3 is

the same as M∗
D if d3 was known. For example, when d̂3 = −0.8 and d3 = −0.6, given Table 4.7, we

have M̂D = M∗
D and ŵD = w∗

D. Therefore, for d̂3 = −0.8 and d3 = −0.6, we have PRm
D(d̂3, d3) = and

PRr
D(d̂3, d3) = 0 in Figures 4.5 to 4.7.

Second, the manufacturer is better off while the retailer is worse off, such that PRm
D(d̂3, d3) > 0 and

PRr
D(d̂3, d3) < 0. This case can happen when the imprecise d̂3 leads to sub-optimal assortment and wholesale

price decisions; i.e., M̂D ̸= M∗
D and ŵD ̸= w∗

D. In such situations, if the difference between ŵD and w∗
D is

negligible, but M̂D is considerably different from M∗
D, then the retailer’s loss due to showcasing a sub-optimal

assortment cannot be compensated with the sub-optimal wholesale price, even if ŵD < w∗
D. However, the

manufacturer can benefit from the retailer’s sub-optimal assortment because it can include products that
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Figure 4.6: PR(d̂3, d3) for different combinations of d̂3 and d3 when C = 6, under the MDRD scenario

benefit the manufacturer compared to the retailer’s optimal assortment where the manufacturer’s benefit

was completely overlooked. For example, when d̂3 = −0.4 and d3 = 1, given Table 4.7, the difference in

wholesale prices are minimal. However, the assortments are considerably different, and under the estimation,

the assortment is the same as the optimal centralized assortment, which is preferred by the manufacturer.

Hence, in Figures 4.5 to 4.7, PRm
D(d̂3, d3) > 0 and PRr

D(d̂3, d3) < 0.

Third, both the retailer and the manufacturer are worse off, such that PRm
D(d̂3, d3) < 0 and PRr

D(d̂3, d3) <

0. In this case, due to an imprecise estimation of d3, we have ŵD ̸= w∗
D, and the sub-optimal assortment

M̂D is neither desired by the retailer nor the manufacturer. Therefore, neither of the parties can benefit

from such situation. For instance, when d̂3 = 0.6 and d3 = 0.2 when C = 3, given Table 4.7, the wholesale

prices and assortments are different. Moreover, the assortment under estimation is also different from the
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Figure 4.7: PR(d̂3, d3) for different combinations of d̂3 and d3 when C = 12, under the MDRD scenario

centralized assortment when d3 = 0.2, which is undesired by the manufacturer as well. Therefore, in Figure

4.5, we have PRm
D(d̂3, d3) < 0 and PRr

D(d̂3, d3) < 0.

Fourth, the retailer is better off while the manufacturer is worse off, such that PRm
D(d̂3, d3) < 0 and

PRr
D(d̂3, d3) > 0. Unlike the second case, in this case, despite M̂D ̸= M∗

D, ŵD is considerably smaller than

w∗
D. Hence, the retailer can benefit from low wholesale prices. We do not observe this case in any of the

Figures 4.5 to 4.7. Considering a problem instance with γ = 0.98 and A3 attribute levels 0.05, 0.35, and

0.65, PRr
D(d̂3, d3) for C = 6 will be as in Figure 4.8. As can be observed, when d̂3 = −0.8 and d3 = −0.2,

the retailer fares better while the manufacturer is worse off.
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Figure 4.8: PR(d̂3, d3) for different combinations of d̂3 and d3 when C = 6, γ = 0.98, and A3 levels
0.05/0.35/0.65, under the MDRD scenario

Decisions and Regret Analysis in MKRD

In this scenario, the manufacturer privately possesses information about the true value of inaccuracy, i.e., d3.

However, the retailer does not know this value and needs to estimate it. So, the manufacturer, based on d3,

determines its wholesale price (i.e., w∗
D) according to its expectation of the retailer’s assortment (i.e., M∗

D)

and quotes this price to the retailer. On the other hand, the retailer, based on d̂r3, determines its assortment

M̂r
D and the maximum wholesale price that it can pay (i.e., ŵr

D). In this situation, if w∗
D ≤ ŵr

D, the retailer

accepts the quote and the transaction will be completed. However, if w∗
D > ŵr

D, the retailer does not accept

the quoted price and decides to withdraw from the market. In this situation, the only sales channel is the

manufacturer’s online website. Figures 4.9 to 4.11 indicate PRr
D(d̂r3, d3), PR

m
D(d̂r3, d3), and PRT

D(d̂r3, d3) for
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any pair of (d̂r3, d3) for the test bed described in Section 4.5.1. We investigate this scenario in two cases

including w∗
D > ŵr

D where the retailer withdraws from the market, and w∗
D ≤ ŵr

D where it operates its store.

Figure 4.9: PR(d̂3, d3) for different combinations of d̂3 and d3 when C = 3, under the MDRD scenario

I. Analysis of MKRD When w∗
D > ŵr

D

In this case, the retailer withdraws from the market and, in Figures 4.9 to 4.11, we use ”NaN” as the

retailer’s percentage of regret. In this case, we assume that all the customers who would have purchased from

the store, now make purchase decisions in the online channel. Therefore, the manufacturer can sell products

to more customers. On the other hand, the potential assortment that could have been showcased in the

physical store was a means for the manufacturer to provide information to the customers. In this situation,

if showcasing products and attribute levels could positively affect the manufacturer’s expected profit, the

withdrawal of the retailer from the market can negatively impact the manufacturer. Given these influences,
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Figure 4.10: PR(d̂3, d3) for different combinations of d̂3 and d3 when C = 6, under the MDRD scenario

two possibilities can take place to the manufacturer’s expected profit that we investigate in the following.

First, the manufacturer obtains a greater expected profit compared to its expected profit if the retailer

knew d3. This case happens either when the manufacturer would have preferred the retailer to showcase no

or a limited variety of attribute levels (so that with its withdrawal, the manufacturer is better off), or when

the increase in the number of customers who purchase online dominates the useful information that the

retailer could have provided but now is lost. For example, when d̂r3 = 1, and d3 = −0.2 at C = 3, Table 4.7

indicates that S∗
D = {3} while Ŝr

D = {1, 2, 3}. Therefore, the manufacturer expected the retailer to showcase

a limited variety of A3 while the retailer would have showcased a great variety if it operated the store. In

such case, the retailer’s withdrawal benefits the manufacturer and in Figure 4.9, we have PRm
D(d̂r3, d3) < 0.

Second, the manufacturer obtains a smaller expected profit compared to its expected profit when the
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Figure 4.11: PR(d̂3, d3) for different combinations of d̂3 and d3 when C = 12, under the MDRD scenario

retailer also knew d3. This case happens when the manufacturer benefits if the retailer would have showcased

a great variety levels of A3. However, the retailer’s withdrawal eliminated this benefit for the manufacturer,

such that the increase in the number of customer purchasing online cannot compensate for the value of the

eliminated information that could have been revealed by the store. Hence, we have PRm
D(d̂r3, d3) > 0.

It should be noted that given whether the manufacturer benefits from the retailer’s withdrawal or not,

and its magnitude, the total RSC expected profit can change accordingly.

II. Analysis of MKRD When w∗
D < ŵr

D

In this case, the retailer operates its store with w∗
D and M̂r

D. But it cannot fare better compared to when

it knew d3, because the manufacturer makes optimal decisions while the retailer can showcase sub-optimal

assortments. Under this case, there can be a number of possibilities that we explore.
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First, both the retailer and the manufacturer obtain their optimal expected profits, such that PRm
D(d̂3, d3) =

0 and PRr
D(d̂3, d3) = 0. This case takes place when M̂r

D = M∗
D. For example, when d̂r3 = 0.8 and d3 = 0.4,

according to Table 4.3, this situation holds for all C values observed. Therefore, in Figures 4.9 to 4.11, we

have PRm
D(d̂3, d3) = and PRr

D(d̂3, d3) = 0.

Second, the manufacturer is better off but the retailer is worse off, such that PRm
D(d̂3, d3) > 0 and

PRr
D(d̂3, d3) < 0. This case happens when M̂r

D ̸= M∗
D, but M̂r

D includes attribute levels preferred by the

manufacturer (e.g., the centralized assortment). For instance, when d̂r3 = 0.6 and d3 = −1 at C = 12,

according to Table 4.3, M̂r
D represents levels 1, 2, and 3 of A3, while S∗

C also includes the same levels.

Therefore, the retailer’s imprecise estimation of inaccuracy is desired by the manufacturer; so PRm
D(d̂3, d3) >

0.

Third, both the retailer and the manufacturer are worse off, such that PRm
D(d̂3, d3) < 0 and PRr

D(d̂3, d3) <

0. Unlike the second case, this situation happens if M̂r
D is also undesired by the manufacturer. In the

following, Figure 4.12 denotes PR(d̂3, d3) values for C = 6 with γ = 0.98 and levels of A3 as 0.05, 0.35, and

0.65. As can be observed, when d̂r3 = −0.2 and d3 = 0.2, both the retailer and manufacturer are worse off

based on the argument provided.

4.6 Conclusion

In this paper, we investigate the operations of an omni-channel retail supply chain (RSC) containing an

online sale website and a physical store. Due to the limited showcase capacity, an assortment decision is

needed to determine the subset of products to be made available in the physical store. For products with

non-digital attributes like apparel, for which customers’ online assessment may be inaccurate and different

from their physical assessment, understanding this inaccuracy is critical in making the assortment decision.

We consider a situation where information about the inaccuracy is not available and estimations should be

adopted for it. Under the decentralized setting, the physical store is assumed to be an independent retailer

that sells a manufacturer’s products, while the manufacturer runs its own online sales channel, both to

maximize their own profits. In this setting, the retailer makes an assortment decision for its store, and the

manufacturer decides on the wholesale price to be charged to the retailer. Under the centralized setting,

both channels are run by a central authority who endeavors to maximize the total profit of the RSC.

Under both settings, if the resulting assortment with an estimation of the inaccuracy is the same as the

assortment of the true inaccuracy, there will be no regrets. Under the decentralized setting, we investigate

two scenarios. In the first scenario, we assume that none of the retailer and the manufacturer knows the

true value of inaccuracy (MDRD), but they cooperatively obtain an estimation. In this situation, while both
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Figure 4.12: PR(d̂3, d3) for different combinations of d̂3 and d3 when C = 6, γ = 0.98, and A3 levels
0.05/0.35/0.65, under the MKRD scenariog

parties can not fare better at the same time with an imprecise estimation, each can be better off under certain

conditions. In the second scenario, we assume that the manufacturer possesses private information about

the true value of inaccuracy but does not share it with the retailer (MKRD). In this scenario, the retailer

cannot be better off compared to when it also knows the true value of inaccuracy; however, the manufacturer

can be more profitable if the retailer imprecisely estimates the inaccuracy. Hence, the manufacturer does

not share its private information with the retailer, unless an incentive is provided.

Under the decentralized setting, we show that if the true value of inaccuracy is zero (i.e., customer

accurately assess products and attribute levels online), any arbitrary estimations by the manufacturer and

the retailer result in the same total RSC expected profit, while this may not hold for the manufacturer and

the retailer individually.
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Under the centralized setting, no imprecise assessment of inaccuracy can result in higher expected profit

for the RSC; hence, the best case is when the estimated assortment includes the same attribute levels if

the true value of inaccuracy was known, which implies zero regret. For an imprecise assortment, the value

of regret increases as the disparity between the true value of inaccuracy and its estimation gets larger. If

customers’ online assessment is in fact the same as their physical assessment, then any arbitrary assortment

results in the same expected profit.

A specific case under the centralized setting is when it is assumed that customers accurately assess

products and attribute levels online (i.e., a zero estimation of inaccuracy is obtained). In this case, the

central authority supposes that any assortment yields the same expected profit. However, due to the possible

error in the estimation, this may not take place in practice. We show that the RSC can avoid substantial

regrets if an assortment including the highest utility attribute levels is showcased.

One potential extension to this study is to consider the retailer’s understanding of the manufacturer’s

announced wholesale price in cases when the manufacturer knows the true value of inaccuracy but does not

share it with the retailer. When the manufacturer quotes its wholesale price to the retailer, if it is different

from the price that the retailer is willing to pay, it can be a ”signal” to the retailer that its estimation is

not precise. This can help the retailer to obtain a better understanding of the inaccuracy. For example,

through a backward process, the retailer may be able to find the true value of inaccuracy (or at least a better

estimation of it) based on the price quoted by the manufacturer.
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Chapter 5

Conclusion

Omni-channel retailing, comprising brick-and-mortar (physical) stores and online sales websites, is a common

practice in modern retailing. While capacity may not be an issue for an online sales channel, a physical store

may have a limited shelf-space capacity. Hence, one primary question in such retail systems is to select an

assortment of products to be made available in the store. Our study applies to high-value products with non-

digital attributes that customers prefer to visit the physical store to experience products, before purchasing

either directly from the store or from the online channel. Thus, the selected assortment of products influences

the purchase and keep-or-return decisions of both in-store and online customers. This is because through

strategic assortment selection, retailers can provide customers with accurate utility information of showcased

products and their attribute levels, resulting in more informed purchase and keep-or-return decisions.

In our first study, we address the omni-channel assortment planning problem when product returns are

allowed. We explicitly model product returns and study their impacts on profitability of the retail system.

We find that retailers should not necessarily fully utilize their showcase capacity, even if sufficient capacity

is available. Also, retailers may not necessarily attain a higher profit as product returns decrease. Although

product returns usually are associated with profit loss, it is shown that an increase in returns may originate

from an increase in sales, and overall can result in higher profit. In addition, our findings suggest that when

operating under a full-refund policy, commonly seen in modern retail, retailers should offer a small variety

of undervalued attribute levels to maximize profits. Alternatively, if the hidden attributes are overvalued,

retailers should offer a high variety of the products when their customer base predominantly consists of

online shoppers. Conversely, they should limit the variety of showcased products if most customers prefer

to shop in physical stores.

Our results in the first study indicate that the retailers generally fare better if not showcased attribute
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levels are undervalued in the online channel, rather than accurately or over-valued. This unintuitive result

implies marketing strategies in their website design. If hidden attribute levels would be undervalued, retailers

should avoid tools that lead to more accurate evaluations. However, if hidden attribute levels would be

overvalued, retailers may employ web interfaces that eliminate the inaccuracy as much as possible.

In our second study, we address the coordination problem of a decentralized retail supply chain (RSC)

containing a manufacturer that operates its online sales website making wholesale price decisions, and a

retailer that independently runs a physical store deciding the assortment of manufacturer’s products for its

store. We show that the assortment decisions under this decentralized setting should balance the benefits

of showcasing the highest utility products and the highest (smallest) variety of overvalued (undervalued)

attribute levels. Out findings indicate that the assortment decisions under the decentralized fashion are

inefficient compared to those under a centralized setting. So, we propose scope contracts for coordination

and eliminating the inefficiency. In our devised contract, the manufacturer offers discounts on the wholesale

price of products that consist of certain attribute levels showcasing which benefits the whole RSC. The

contract is shown to be instrumental in coordinating the RSC under various situations.

Moreover, for limited-hassle design and implementation, we propose a specific version of the contract

where the discount factors are the same for all the products with the desired attribute levels. The manufac-

turer (or any other type of supplier in a supplier-buyer framework) can employ this contract and attain the

highest possible profitability for their supply chains. In the scope contracts, we show that there may exist

multiple discount factors that all guarantee coordination of the RSC. However, different discount factors can

yield different profit distributions between the manufacturer and the retailer. We show that greater discounts

increase the profit share of the retailer and vice versa. The specific discount rates can be determined through

the negotiation power of the parties.

In our third study, we tackle the omni-channel assortment planning when inaccuracy in customers’ online

evaluations of products and attribute levels are not known, and the RSC parties should obtain estimations

for these parameters to make their assortment and wholesale price decisions. Our analyses under the de-

centralized setting indicate that the retailer and the manufacturer never fare better at the same time if an

imprecise estimation is obtained. However, they can be better off separately under certain conditions. In a

specific case when the manufacturer privately possesses information about the true value of inaccuracy, it

can benefit from this private information, but the retailer is never better off. Therefore, it is crucial for the

retailer to strive for more information regarding the inaccuracies. However, the manufacturer may not share

their private information with the retailer, unless an incentive is provided from the retailer.

Under the centralized setting, RSCs are not better off with imprecise estimations of the inaccuracies.

Furthermore, RSCs may estimate the inaccuracies to be zero; i.e., supposing that customers accurately
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evaluate products in the online channel. However, since there can be potentially errors in these estimations,

they should generally showcase an assortment of products that represent the highest utility attribute levels

in the physical store for less regret.
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Çakanyıldırım, M., Q. Feng, X. Gan, S. P. Sethi. 2012. Contracting and coordination under asymmetric production

cost information. Production and Operations Management 21(2) 345–360.

Caro, F., J. Gallien. 2007. Dynamic assortment with demand learning for seasonal consumer goods. Management

science 53(2) 276–292.

Chaharsooghi, S. K., J. Heydari. 2010. Supply chain coordination for the joint determination of order quantity and

reorder point using credit option. European Journal of Operational Research 204(1) 86–95.

Chen, X., Y. Wang, Y. Zhou. 2020. Dynamic assortment optimization with changing contextual information. The

Journal of Machine Learning Research 21(1) 8918–8961.

Davis, J., G. Gallego, H. Topaloglu. 2013. Assortment planning under the multinomial logit model with totally

unimodular constraint structures. Work in Progress .

De Giovanni, P. 2017. Closed-loop supply chain coordination through incentives with asymmetric information. Annals

of Operations Research 253 133–167.

Désir, A., V. Goyal, J. Zhang. 2014. Near-optimal algorithms for capacity constrained assortment optimization.

Available at SSRN 2543309.

Dobson, G., S. Kalish. 1988. Positioning and pricing a product line. Marketing Science 7(2) 107–125.

Dzyabura, D., S. Jagabathula. 2018. Offline assortment optimization in the presence of an online channel. Management

Science 64(6) 2767–2786.

Eppen, G. D., A. V. Iyer. 1997. Backup agreements in fashion buying—the value of upstream flexibility. Management

science 43(11) 1469–1484.

Feldman, J. B., H. Topaloglu. 2015. Capacity constraints across nests in assortment optimization under the nested

logit model. Operations Research 63(4) 812–822.

Fruchter, G., A. Fligler, R. Winer. 2006. Optimal product line design: Genetic algorithm approach to mitigate

cannibalization. Journal of optimization theory and applications 131(2) 227–244.

122



Gallego, G., H. Topaloglu. 2014. Constrained assortment optimization for the nested logit model. Management

Science 60(10) 2583–2601.

Gallino, S., A. Moreno. 2018. The value of fit information in online retail: Evidence from a randomized field

experiment. Manufacturing & Service Operations Management 20(4) 767–787.

Gaur, V., D. Honhon. 2006. Assortment planning and inventory decisions under a locational choice model. Manage-

ment Science 52(10) 1528–1543.

Govindan, K., M. N. Popiuc, A. Diabat. 2013. Overview of coordination contracts within forward and reverse supply

chains. Journal of cleaner production 47 319–334.

Green, P. E., V. R. Rao. 1971. Conjoint measurement-for quantifying judgmental data. Journal of Marketing research

8(3) 355–363.

Green, P. E., V. Srinivasan. 1990. Conjoint analysis in marketing: new developments with implications for research

and practice. Journal of marketing 54(4) 3–19.

Ha, A. Y. 2001. Supplier-buyer contracting: Asymmetric cost information and cutoff level policy for buyer partici-

pation. Naval Research Logistics (NRL) 48(1) 41–64.
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Appendix A

Appendix: Proofs of Chapter 2

Proof. Proposition 2.1.

Suppose that x, y ∈ M ; so, they are accurately evaluated by customers in the online channel (Dx|M =

Dy|M = 0). Therefore, the return probability of these products once purchased online are equal to their

offline return probability; i.e., Rn
x|M = Rf

x and Rn
y|M = Rf

y . Given (2.12), (i), (ii), and (iii) in Proposition

2.1 can be easily observed. For (iv), to have Rf
x > Rf

y , we can write

1

1 + e(Ũx−r+β1γπx)/µ′
>

1

1 + e(Ũy−r+β1γπy)/µ′
.

Simplifying A, we get

e(Ũy−r+β1γπy)/µ
′
> e(Ũx−r+β1γπx)/µ

′
,

which can be further simplified and result in in (Ũx − Ũy)/β1(πy − πx) < γ.

If x, y ∈ X \M and Dx|M = Dy|M , the same argument holds for comparison of Rn
x|M and Rn

y|M given

(2.13).

Proof. Proposition 2.2.

For the extra capacity to be left unutilized, we need Π(MC+1) < Π(MC). Noticing that K
f/n
x|M = 1−Rf/n

x|M ,

MC+1 and MC can be written as the following, respectively:

Π(MC+1) = α
∑

x∈MC+1

πxP
f
x|MC+1

(1− γRf
x) + (1− α)

∑
x∈X

πxP
n
x|MC+1

(1− γRn
x|MC+1

),

Π(MC) = α
∑

x∈MC

πxP
f
x|MC

(1− γRf
x) + (1− α)

∑
x∈X

πxP
n
x|MC

(1− γRn
x|MC

).
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Substituting Π(MC+1) and Π(MC) into Π(MC+1) < Π(MC), and simplifying, we can get (2.18).

Proof. Theorem 2.1.

The retailer’s profit as a function of d, d = Dy|x, is shown in (2.19). Simplifying and writing (2.19)

explicitly, we get:

Π(d) =πx

(
1− γ

1 + e(−r−β(1−γ)πx)/µ

)(
α

eUx/µ

1 + eUx/µ
+ (1− α)

eUx/µ

1 + eUx/µ + e(Uy+d)/µ

)
+

(1− α)πy

(
1− γ

1 + e(−d−r−β(1−γ)πx)/µ

)
e(Uy+d)/µ

1 + eUx/µ + e(Uy+d)/µ

. (A.1)

Suppose that απx(1 − γ) eUx

1+eUx
= A, απxγ

eUx

1+eUx
= G, (1 − α)πx(1 − γ)eUx = B, (1 − α)πxγe

Ux = H,

e(r−β1γπx) = z, 1 + eUx = C, eUy = b, (1 − α)πy(1 − γ)eUy = E, (1 − α)πyγe
Uy = f , a1 = e−Ũx , and

a2 = e−Ũy . Given these, the profit function in (A.1) can be written as the following:

Π(d) = A+
G

1 + a1z
+

(
B + Eed

C + bed

)
+

H

(1 + a1z)(C + bed)
+

fed

(1 + a2zed)(C + bed)
.

Taking the first derivative of Π(d) with respect to x and simplifying it, we get:

∂Π(d)

∂d
=

fed(C − a2bze
2d)

(1 + a2zed)2(C + bed)2
− ed(bH − (1 + a1z)E)

(1 + a1z)(C + bed)2
.

Extremums (if any) of Π(d) take place at ∂Π(d)/∂d = 0. This is to solve the following equation for finding

d:

fed(C − a2bze
2d)

(1 + a2zed)2(C + bed)2
− ed(bH − (1 + a1z)E)

(1 + a1z)(C + bed)2
= 0. (A.2)

By simplifying (A.2), we have:

f(C − a2bze
2d)

(1 + a2zed)2
=

bH − (1 + a1z)E

1 + a1z
.

This can be more simplified as the following:

f(C − a2bze
2d)(1 + a1z) = (bH − (1 + a1z)E)(1 + a2ze

d)2. (A.3)

Substituting the value of the defined parameters into (A.3) and considering t = eUy

(
1 + a1z(1 + γeUx)

)
,

h = 2a2ze
Uy

[
(1 + a1z)(1− γ)− γeUx

]
, and q = ha2z

2 − (1 + a1z)za2γe
2Uy , (A.3) can be re-written as the
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following:

Φ(d) = qe2d + hed + t = 0.

limd→−∞ Φ(d) = t > 0; which means that Φ(d) starts from a positive value. Also, taking derivative of Φ(d)

with respect to d, we have:

∂Φ(d)

∂d
= ed(2qed + h).

Given that q = ha2z
2 − (1+a1z)za2γe

2Uy , only three cases are possible for values of q and h: 1. q ≥ 0, h > 0;

2. q < 0, h ≥ 0; and 3. q < 0, h < 0.

1. q ≥ 0, h > 0

For this case, ∂Φ(d)
∂d ≥ 0. Therefore, Φ(d) is an increasing function, and it can never be zero because

limd→−∞ Φ(d) = t > 0. So, there is no root for Φ(d) = 0.

2. q < 0, h ≥ 0

In this case, Φ(d) is an increasing function for d ≤ ln
(

−h
2q

)
, and a decreasing function for d ≥ ln

(
−h
2q

)
.

Therefore, since limd→−∞ Φ(d) = t > 0, Φ(d) becomes equal to zero only once. As a result, there is one root

for Φ(d) = 0.

3. q < 0, h < 0

In this case, Φ(d) is a decreasing function, since ∂Φ(d)
∂d = ed(2qed+h) ≤ 0. Therefore, because limd→−∞ Φ(d) =

t > 0, Φ(d) becomes equal to zero only once. This means that there is one root for Φ(d) = 0.

Given the above cases, when q ≥ 0, there is no root for Φ(d) = 0. However, when q < 0, there is one root

for Φ(d) = 0. Since Φ(d) is a quadratic function, this root is the maximum point of Π(d); which means that

Π(d) is unimodal. We investigate these cases separately in the following.

1. q ≥ 0

In this case, since there is no maxima for the profit function, the maximum profit takes place either when

d→ +∞ or d→ −∞. The first derivative of Π(d) with respect to d at d→ −∞ is:

lim
d→−∞

∂Π(d)

∂d
= lim

d→−∞

(
fed(C − bze2d)

(1 + zed)2(C + bed)2
− ed(bH − (1 + z)E)

(1 + z)(C + bed)2

)
≥ 0. (A.4)

As a result, Π(d) is increasing at d→ −∞. Given this, for q ≥ 0, the maximum profit happens at d→ +∞.

2. q < 0

In this case, there is one maxima for the profit function. To find this maxima, we need to solve ∂Π(d)
∂d = 0.

Given (A.4), ∂Π(d)
∂d is a quadratic function, so it can potentially have two roots, as the following:
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d1 = ln

(
−h−

√
h2 − 4qt

2q

)
,

d2 = ln

(
−h+

√
h2 − 4qt

2q

)
.

Earlier, we showed that that ∂Π(d)
∂d = 0 has only one root. Therefore, only one of d1 or d2 can be acceptable.

The acceptable root is the one that returns a positive value inside the natural logarithm function. Since q < 0

in the denominator, the numerator of the acceptable root must be negative. Because −h −
√
h2 − 4qt ≤

−h+
√
h2 − 4qt, d1 is the acceptable root for

∂Π(d)
∂d = 0, and the maxima for Π(d). To have a positive maxima

(d ≥ 0), we need to have
−h−
√

h2−4qt

2q ≥ 1. Since q < 0, we can write this inequality as the following:

−
√

h2 − 4qt ≤ 2q + h. (A.5)

In (A.5), the right-hand side is positive if h > −2q and negative or zero if h ≤ −2q.

2.1. h > −2q

In this case, given that whether
√
h2 − 4qt is greater than or less than or equal to |2q + h| we can have

2.1.1.
√

h2 − 4qt ≥ |2q + h|

In this situation, (A.5) can be simplified as −t ≤ q + h.

2.1.2.
√

h2 − 4qt < |2q + h|

In this situation, (A.5) can be simplified as −t > q + h.

As can be observed, in case of 2.1, both −t ≤ q + h and −t ≥ q + h result in a positive maxima. Therefore,

in this case, the maxima is always positive.

2.2. h ≤ −2q

In this situation, (A.5) can be simplified as −t ≤ q + h. Therefore, if −t > q + h, then the root is positive;

otherwise, the root is negative.

Therefore, to wrap up, the maximum profit takes place at:



d→∞ if q ≥ 0

0 ≤ d <∞ if q < 0, h > −2q

0 ≤ d <∞ if q < 0, h ≤ −2q,−t ≤ q + h

−∞ < d < 0 if q < 0, h ≤ −2q,−t > q + h

. (A.6)

The conditions in (A.6) can be explicitly written as the following:
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q < 0 ≡ Ux > ln

(
(1 + a1z)(1− γ + γeUy/a2z)

γ

)
,

h ≤ −2q ≡ Ux ≥ ln

(
(1 + a1z)(1− γ − eUy )

γ

)
,

and

−t > q + h ≡ Ux > ln

(
(
1 + a1z

γ
)
(1− γ)(2a2z + a22z

2)− za2γe
Uy + 1

2a2z + a22z
2 − a1z

)
.

We define A1 = ln

(
(1+a1z)(1−γ+γeUy/a2z)

γ

)
, A2 = ln

(
( 1+a1z

γ )
(1−γ)(2a2z+a2

2z
2)−za2γe

Uy+1

2a2z+a2
2z

2−a1z

)
, and A3 =

ln

(
(1+a1z)(1−γ−eUy )

γ

)
. Because A1 > A2, q < 0 and h > −2q in (A.6) is impossible to happen and

q < 0 implies h ≤ −2q. Therefore, (A.6) can be simplified as


d→∞ if q ≥ 0

0 ≤ d <∞ if q < 0,−t ≤ q + h

−∞ < d < 0 if q < 0,−t > q + h

. (A.7)

substituting the equivalents conditions found earlier for the criterion in (A.7) and considering that A1 can

be greater than, equal, or smaller that A2, we get


d→∞ if Ux ≤ A1

0 ≤ d <∞ if A1 < Ux ≤ A2

−∞ < d < 0 if max{A1, A2} ≤ Ux

.

Proof. Proposition 2.3.

The profit function of showcasing set M ′ and that of showcasing set M ′′ can be written in simplified

forms similar to (22) as the following, respectively:

Π(M
′
) = α

(
(1− γRf

x)
∑
i∈M ′

πiP
f

i|M ′

)
+ (1− α)

(
Pn
y|M ′ (1− γRn

y|M ′) + (1− γRf
x)
∑
i∈M ′

πiP
n
i|M ′

)
,

Π(M
′′
) = α

(
(1− γRf

y )
∑

j∈M ′′

πjP
f

j|M ′′

)
+ (1− α)

(
Pn
x|M ′′ (1− γRn

x|M ′′) + (1− γRf
y )
∑

j∈M ′′

πjP
n
j|M ′′

)
.
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Because πx = πy, we have Rf
x = Rf

y . Moreover, since it is assumed that Dx|M = Dy|M , we can conclude

that Dx|M ′′ = Dy|M ′ . Hence Rn
y|M ′ = Rn

x|M ′′ . For M ′ to be preferred to M ′′ for showcasing, (i.e., for x to

be selected over y), we should have Π(M
′
) ≥ Π(M

′′
). As a result, we get:

1− γRf
x

1− γRn
x|M ′′

(
α

1− α
(
∑
i∈M ′

P f

i|M ′ −
∑

j∈M ′′

P f

j|M ′′ ) + (
∑
i∈M ′

Pn
i|M ′ −

∑
j∈M ′′

Pn
j|M ′′ )

)
≥
(
Pn
x|M ′′ − Pn

y|M ′

)
.
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Appendix B

Appendix: Proofs of Chapter 3

Proof. Lemma 3.1.

For an arbitrary attribute k, suppose that arbitrarily S(k|M∗) = {1, 2, ...,m}. Without loss of generality,

let the levels of all attributes except k be accurately assessed by customers. First, for C = m, we show

that selecting the highest utility product with each level in S(k|M∗) yields a higher expected profit for

the retailer compared to any other selection of products. for this, we define M∗
C = {[1]k:1, [1]k:2, ..., [1]k:m},

and an arbitrary M ′
C = {[1]k:1, [1]k:2, ..., [1]k:t−1, [2]k:t, [1]k:t+1, ..., [1]k:m}. Then, we can write the retailer’s

expected profit function for M∗
C and M ′

C as the following, respectively:

Πr
D(M∗

C) =

(
Pr
[1]k:1

− w
)
eU [1]k:1 + ...+

(
Pr
[1]k:t

− w
)
eU [1]k:t + ...+

(
Pr
[1]k:m

− w
)
eU [1]k:m

1 +
∑

x∈X,xk=1 e
Ux + ...+

∑
x∈X,xk=m eUx +

∑
x∈X,xk /∈S(k|M∗) e

Ux+dk,xk

, (B.1)

Πr
D(M ′

C) =

(
Pr
[1]k:1

− w
)
eU [1]k:1 + ...+

(
Pr
[2]k:t

− w
)
eU [2]k:t + ...+

(
Pr
[1]k:m

− w
)
eU [1]k:m

1 +
∑

x∈X,xk=1 e
Ux + ...+

∑
x∈X,xk=m eUx +

∑
x∈X,xk /∈S(k|M∗) e

Ux+dk,xk

. (B.2)

The denominator in (B.1) and (B.2) are the same, since the both represent S(k|M∗). Therefore, to show

Πr
D(M∗

C) > Πr
D(M ′

C), we need to compare the numerators. So, we have

(
Pr
[1]k:1

− w
)
eU [1]k:1 + ...+

(
Pr
[1]k:t

− w
)
eU [1]k:t + ...+

(
Pr
[1]k:m

− w
)
eU [1]k:m >(

Pr
[1]k:1

− w
)
eU [1]k:1 + ...+

(
Pr
[2]k:t

− w
)
eU [2]k:t + ...+

(
Pr
[1]k:m

− w
)
eU [1]k:m .

Simplifying this inequality, we get
(
Pr
[1]k:t

− w
)
eU [1]k:t >

(
Pr
[2]k:t

− w
)
eU [2]k:t which always holds since

U [1]k:t
> U [2]k:t

and also Pr
[1]k:t

> Pr
[2]k:t

. For any other M ′, the same comparison can be carried out which
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yields the same result.

Next, we suppose that C > m. Here, we aim to show that other than [1]k:i,∀i ∈ S(k|M∗), the remaining

capacity C − |S(k|M∗)| should be filled with the remaining highest utility products that include one of the

levels of k included in S(k|M∗). Let M∗
C−|S(k|M∗)|. Without loss of generality, let M ′

C−|S(k|M∗)| be a set

of C − |S(k|M∗)| products with the levels in S(k|M∗) other than [1]k:i,∀i ∈ S(k|M∗) that differs from

MC−|S(k|M∗)| in at least one element. Defining M∗ = M∗
C ∪M∗

C−|S(k|M∗)| and M ′ = M∗
C ∪M ′

C−|S(k|M ′)|, for

showing Πr
D(M∗) > Πr

D(M ′), similar to the previous step, we need to compare the numerators of these two

retailer’s expected profit functions. By explicitly writing Πr
D(M∗) and Πr

D(M ′), we get

∑
i∈S(k|M∗)

(
Pr
[1]k:i

− w
)
eU [1]k:i +

∑
x∈M∗

C−|S(k|M∗)|

(Pr
x − w) eUx >

∑
i∈S(k|M∗)

(
Pr
[1]k:i

− w
)
eU [1]k:i +

∑
x∈M ′

C−|S(k|M∗)|

(Pr
x − w) eUx .

Simplifying this inequality, we have

∑
x∈M∗

C−|S(k|M∗)|

(Pr
x − w) eUx >

∑
x∈M ′

C−|S(k|M∗)|

(Pr
x − w) eUx ,

which always holds because products in M∗
C−|S(k|M∗)| are the highest utility products other than [1]k:i,∀i ∈

S(k|M∗) that include one of the levels of k included in S(k|M∗), while at least one of the products in

products in M∗
C−|S(k|M∗)| is not among these highest utility products other than [1]k:i,∀i ∈ S(k|M∗).

Proof. Lemma 3.2.

Let levels of k be numbered as 1 to |L(k)| with 1 being the highest utility level and |L(k) be the lowest

utility level. To facilitate the proof process, assume that each level of an attribute k is present in one

product. Note that this does not reduce the generality of the proof, since if there are more than one product

with each level of k, when a number of these levels are selected for showcasing, the specific products can

be determined using Lemma 3.1. We begin the proof with the generic case (RA) and then break it down

to specific cases stated in the lemma. Given |S(k|M∗)| = ζ and the setting above, we assume that M∗ =

{[1]k:1, [1]k:2, ..., [1]k:ζ}. Also, we define a set M ′ = {[1]k:1, [1]k:2, ..., [1]k:t−1, [1]k:t+1, ..., [1]k:ζ , [1]k:t′}, ζ < t′ <

|(L(k)| which differs from M∗ in one element. The retailer’s expected profit function by showcasing each of

these sets are, respectively:

Πr
D(M∗) =

(
Pr
[1]k:1

− w
)
eU [1]k:1 + ...+

(
Pr
[1]k:ζ

− w
)
e
U [1]k:ζ

1 + eU [1]k:1 + ...+ e
U [1]k:ζ + eU [1]

k:t′
+dk +

∑
x/∈M∗,x ̸=[1]k:t′

eUx+dk

, (B.3)
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Πr
D(M ′) =

(
Pr
[1]k:1

− w
)
eU [1]k:1 + ...+

(
Pr
[1]k:ζ

− w
)
e
U [1]k:ζ −

(
Pr
[1]k:t

− w
)
eU [1]k:t +

(
Pr
[1]k:t′

− w
)
e
U [1]

k:t′

1 + eU [1]k:1 + ...+ e
U [1]k:ζ − eU [1]k:t + eU [1]k:t

+dk + e
U [1]

k:t′ +
∑

x/∈M′,x ̸=[1]k:t
eUx+dk

. (B.4)

Let H =
(
Pr
[1]k:1

− w
)
eU [1]k:1 + ... +

(
Pr
[1]k:ζ

− w
)
e
U [1]k:ζ −

(
Pr
[1]k:t

− w
)
eU [1]k:t and G = 1 + eU [1]k:1 + ... +

e
U [1]k:ζ − eU [1]k:t +

∑
x/∈M∗,x ̸=[1]k:t′

eUx+dk . Then, (B.3) and (B.4) can be written as

Πr
D(M∗) =

H +
(
Pr
[1]k:t

− w
)
eU [1]k:t

G+ eU [1]k:t + eU [1]
k:t′

+dk

, (B.5)

Πr
D(M ′) =

H +
(
Pr
[1]k:t′

− w
)
eU [1]

k:t′

G+ eU [1]k:t
+dk + eU [1]

k:t′
. (B.6)

Using (B.5) and (B.6) in Πr
D(M∗) > Πr

D(M ′), we will get

G
[(

Pr
[1]k:t

− w
)
eU [1]k:t −

(
Pr
[1]k:t′

− w
)
eU [1]

k:t′

]
+H

[
eU [1]k:t

+dk − eU [1]
k:t′

+dk

]
+

H
[
eU [1]

k:t′ − eU [1]k:t

]
+
[(

Pr
[1]k:t

− w
)
eU [1]k:t eU [1]k:t

+dk −
(
Pr
[1]k:t′

− w
)
eU [1]

k:t′ eU [1]
k:t′

+dk

]
+[(

Pr
[1]k:t

− w
)
eU [1]k:t eU [1]

k:t′ −
(
Pr
[1]k:t′

− w
)
eU [1]

k:t′ eU [1]k:t

]
> 0,

which can be further simplified as the following

G
[(

Pr
[1]k:t

− w
)
eU [1]k:t −

(
Pr
[1]k:t′

− w
)
eU [1]

k:t′

]
+H

(
edk − 1

) [
eU [1]k:t − eU [1]

k:t′

]
+(

Pr
[1]k:t

− w
)
eU [1]k:t

(
eU [1]k:t

+dk + eU [1]
k:t′

)
−
(
Pr
[1]k:t′

− w
)
eU [1]

k:t′

(
eU [1]

k:t′
+dk + eU [1]k:t

)
> 0.

The first term in this inequality is always positive. However, the signs of the combination of the second,

third, and fourth terms depend on the value of dk. If dk > 0, then these terms are also always positive

and the inequality holds. However, when dk < 0, depending on the magnitude of dk they can be positive

or negative, which means that the inequality may or may not hold. Therefore, in this case, it may not be

necessarily optimal to showcase the highest utility levels of k for showcasing. Note that if ζ = 1 (i.e., only

one level of k is to be showcased), then H = 0. Then, in this specific case, the inequality holds even for

dk < 0. Under the RNA scenario, since product returns are not allowed, we have Pr
x = π. substituting this

into (B.3) and (B.4) and simplifying, it can be observed that Πr
D(M∗) > Πr

D(M ′) holds for both dk > 0 and

dk < 0. Note that for any M ′ that differs from M∗ in an arbitrary number of elements, the same proof can

be conducted.

Proof. Lemma 3.3.

Under the centralized setting, the profits through selling products in both channels are obtained by the
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central authority. Therefore, it does not matter which channel sells a specific products. However, showcasing

products that reveal information about the inaccurately assessed attribute levels is important. As a result,

once a level of an inaccurately assessed attribute is selected, any product consisting of this level can be

showcased.

For an arbitrary attribute k, suppose that arbitrarily S(k|M∗) = {1, 2, ...,m}. Without loss of generality,

let the levels of all attributes except k be accurately assessed by customers. Here we show that any arbitrary

M that represents S(k|M∗) is an optimal assortment. Suppose that M1 and M2 are two assortments that

represent S(k|M∗) but differ in at least one element. We can write the total RSC expected profit for M1

and M2 as the following, respectively

ΠT
C(M1) =

∑
x∈X,xk∈S(k|M∗) P

r
xe

Ux +
∑

x∈X,xk /∈S(k|M∗) P
m
x eUx+dk

1 +
∑

x∈X,xk∈S(k|M∗) e
Ux +

∑
x∈X,xk /∈S(k|M∗) e

Ux+dk

, (B.7)

ΠT
C(M2) =

∑
x∈X,xk∈S(k|M∗) P

r
xe

Ux +
∑

x∈X,xk /∈S(k|M∗) P
m
x eUx+dk

1 +
∑

x∈X,xk∈S(k|M∗) e
Ux +

∑
x∈X,xk /∈S(k|M∗) e

Ux+dk

. (B.8)

As can be observed, ΠT
C(M1) = ΠT

C(M2) because the only important factor is S(k|M∗) which is represented

by both M1 and M2. Similarly, if levels of more than one attribute are inaccurately assessed, the same

analysis can be conducted. Note that when levels of all attributes are inaccurately assessed, it will be

important which specific set of products are showcased, because in such cases, each not-showcased product

hides specific inaccuracy information from customers.

Proof. Lemma 3.4.

In Lemma 3.3, it is discussed that only selecting a subset of levels of inaccurately assessed attributes,

independent of which products that consist of these attributes are selected, determines the optimal assort-

ment. This Lemma is a specific case of Lemma 3.3. Here, since levels of all attributes are accurately assessed

by customers in the online channel, any arbitrary selection of attribute levels and products is considered an

optimal assortment.

Proof. Proposition 3.1

Note that this proposition represents the RNA scenario. Hence, both Lemmas 3.1 and 3.2 hold for both

dk > 0 and dk < 0. When C = 1, one product should be selected for showcasing. According to Lemmas 3.1

and 3.2, this product should represent the highest part-wroth utility level of attribute k and the highest utility

product with this level, which results in showcasing product [1]. When C >
∏

k∈A,k ̸=k |L(k)| × (|L(k)| − 1),

the capacity is so large that the retailer becomes inevitable to showcase the full variety of levels of k (i.e.,

L(k)). In this situation, given Lemma 3.1, the optimal decision is to showcase the highest utility products.
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When 2 ≤ C ≤
∏

k∈A,k ̸=k |L(k)|×(|L(k)|−1), the potential optimal assortments in QC obtained through

Procedure 1 should be compared. Here, we derive the comparison term for such capacities. Let t1, t2 ∈ QC .

Then, the retailer’s expected profit function by showcasing t1 and t2 can be written as

Πr
D(t1) =

∑
i∈t1

(π − w)eUi

1 +
∑

i∈X,ik∈S(k|t1) e
Ui +

∑
i∈X,ik /∈S(k|t1) e

Ui+dk
, (B.9)

Πr
D(t2) =

∑
i∈t2

(π − w)eUi

1 +
∑

i∈X,ik∈S(k|t2) e
Ui +

∑
i∈X,ik /∈S(k|t2) e

Ui+dk
. (B.10)

Using E, F , H, and G defined in the proposition, we have

Πr
D(t1) =

∑
i∈t1

(π − w)eUi

G+ F + (E +H)edk
, (B.11)

Πr
D(t2) =

∑
i∈t2

(π − w)eUi

G+H + (E + F )edk
. (B.12)

For t1 to be preferred over t2, we must have Πr
D(t1) > Πr

D(t2). Writing and simplifying this condition using

(B.9) and (B.10), we get

edk

[
(E + F )

∑
i∈t1

eUi − (E +H)
∑
i∈t2

eUi

]
>

[
(G+ F )

∑
i∈t2

eUi − (G+H)
∑
i∈t1

eUi

]
.

Letting (E+F )
∑

i∈t1
eUi − (E+H)

∑
i∈t2

eUi = Tt1,t2 and (G+F )
∑

i∈t2
eUi − (G+H)

∑
i∈t1

eUi = T ′
t1,t2 ,

Proposition 3.1 will be proven.

Proof. Corollary 3.1

As it is explained in Section 3.5.1, when dk > 0, the retailer’s optimal assortment balances the benefits

of showcasing the highest utility products and showcasing the highest possible variety of levels of k based on

Lemma 3.2, as both strategies are desired but may work against each other (i.e., it is possible that showcasing

the highest utility products does not result in showcasing the highest possible variety, and vice versa). If the

|L(k)| highest utility products all consist of different levels of k, then for C ≤ |L(k)|, showcasing the highest

products in fact results in showcasing the highest possible variety of levels of k. Similarly, for C > |L(k)|,

also showcasing the C highest utility products is optimal.

Proof. Corollary 3.2

As discussed in Section 3.5.1, when dk < 0, the retailer’s optimal assortment balances the benefits of

showcasing the highest utility products and showcasing the most limited variety of levels of k based on

Lemma 3.2. If the
∏

k∈A,k ̸=k |L(k)| highest utility products all consist of the same level of k, then for
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C ≤
∏

k∈A,k ̸=k |L(k)|, showcasing the highest products results in showcasing only one level of k (the most

possible limited variety), which is desired. Moreover, if all the next
∏

k∈A,k ̸=k |L(k)| highest utility products

also consist of one level of k, then for |L(k)| < C ≤ 2×|L(k)|, also showcasing the C highest utility products

is optimal because it result in showcasing only two levels of k (the most possible limited variety). Similarly,

Lemma 3.2 can be argued for greater C values.

Proof. Proposition 3.2.

The retailers expected profit function in the RNA scenario is indicated by (3.14) when Pr
x = π. We can

write its expected sales function by taking out the wholesale price paid for each products that the retailer

sells. Therefore the retailer’s expected sales function
∑

x∈M πP r
x|M . Considering the retailer’s opportunity

cost, it operates the physical store only if

∑
x∈M

P r
x|M (π − w) ≥ Ω

∑
x∈M

πP r
x|M .

This can be written as π(1 − Ω)
∑

x∈M P r
x|M ≥ w

∑
x∈M P r

x|M , which results in w ≤ π(1 − Ω). The

manufacturer sets the wholesale price to the maximum value that the retailer is willing to pay; therefore,

w∗ = (1− Ω)π,∀x ∈ X.

Proof. Proposition 3.3.

Proposition 3.3 states that when dk > 0, under the centralized setting, it is optimal to showcase the

most limited variety of the lowest part-worth utility levels of attribute k. Once S∗
C(k) is determined, then

given Lemma 3.3, any product assortments that represents this set is an optimal assortment. To facilitate

the proof process, without loss of generality we assume that each level of k is represented by one product.

Here, we first show that (i) showcasing m levels of k with the smallest part-worth utilities is preferred to

any other m levels. Next, we show that (ii) showcasing m levels of the lowest part-wroth utility levels of k

is preferred over showcasing more levels of k with the lowest part-wroth utilities.

(i) Let S∗
C(k) = {|L(k)| − m + 1, ..., |L(k)|} and S

′

C(k) = {t′, |L(k)| − m + 1, t − 1, t + 1, ..., |L(k)|}, t′ <

|L(k)|−m+1. Note that S∗
C(k) includes the m lowest utility levels of k, and S

′

C(k) differs from S∗
C(k) in one

element. Also, suppose that M∗ is the assortment of products representing S∗
C(k) and M ′ is the assortment

of products representing S
′

C(k).

ΠT
C(M

∗) =

∑|L(k)|−m
i=1 πeU [1]k:i

+dk +
∑|L(k)|

i=|L(k)|−m+1 πe
U [1]k:i

1 +
∑|L(k)|−m

i=1 eU [1]k:i
+dk +

∑|L(k)|
i=|L(k)|−m+1 e

U [1]k:i

, (B.13)
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ΠT
C (M

′) =

∑|L(k)|−m

i=1,i ̸=t′ πeU [1]k:i
+dk +

∑|L(k)|
i=|L(k)|−m+1,i ̸=t πe

U [1]k:i + πe
U [1]

k:t′ + πeU [1]k:t
+dk

1 +
∑|L(k)|−m

i=1,i ̸=t′ eU [1]k:i
+dk +

∑|L(k)|
i=|L(k)|−m+1,i̸=t e

U [1]k:i + e
U [1]

k:t′ + eU [1]k:t
+dk

. (B.14)

Supposing A =
∑|L(k)|−m

i=1,i̸=t′ eU [1]k:i
+dk +

∑|L(k)|
i=|L(k)|−m+1,i̸=t e

U [1]k:i , we can write ΠT
C(M

∗) and ΠT
C(M

′) as

ΠT
C(M

∗) =
πA+ πeU [1]

k:t′
+dk + πeU [1]k:t

1 +A+ eU [1]
k:t′

+dk + eU [1]k:t

,

ΠT
C(M

′) =
πA+ πeU [1]

k:t′ + πeU [1]k:t
+dk

1 +A+ eU [1]
k:t′ + eU [1]k:t

+dk
.

Since dk > 0, we know that eU [1]
k:t′

+dk + eU [1]k:t > eU [1]
k:t′ + eU [1]k:t

+dk . Therefore, it can be easily observed

that ΠT
C(M

∗) > ΠT
C(M

′). Note that if S∗
C(k) and S

′

C(k) differ in more than one element, the same proof can

be carried out.

(ii) In this step, let S
′

C(k) = {|L(k)| −m, |L(k)| −m+ 1, ..., |L(k)|}. Note that in this case, S
′

C(k) includes

all the levels in S∗
C(k) plus one more level, i.e., |L(k)| −m.

ΠT
C(M

∗) =

∑|L(k)|−m
i=1 πeU [1]k:i

+dk +
∑|L(k)|

i=|L(k)|−m+1 πe
U [1]k:i

1 +
∑|L(k)|−m

i=1 eU [1]k:i
+dk +

∑|L(k)|
i=|L(k)|−m+1 e

U [1]k:i

,

ΠT
C(M

′) =

∑|L(k)|−m−1
i=1 πeU [1]k:i

+dk +
∑|L(k)|

i=|L(k)|−m πeU [1]k:i

1 +
∑|L(k)|−m−1

i=1 eU [1]k:i
+dk +

∑|L(k)|
i=|L(k)|−m eU [1]k:i

.

Since dk > 0, we know that e
U [1]k:|L(k)|−m

+dk > e
U [1]k:|L(k)|−m . Hence, it can be easily observed that

ΠT
C(M

∗) > ΠT
C(M

′). Note that if S
′

C(k) includes more levels in addition to S∗
C(k), the same result still

holds.

Proof. Proposition 3.4.

Proposition 3.4 states that when dk < 0, under the centralized setting, it is optimal to showcase the

highest possible variety of the highest part-worth utility levels of attribute k. Once S∗
C(k) is determined,

then given Lemma 3.3, any product assortments that represents this set is an optimal assortment. To

facilitate the proof process, without loss of generality we assume that each level of k is represented by one

product. Here, we first show that (i) showcasingm levels of k with the highest part-worth utilities is preferred

to any other m levels. Next, we show that (ii) showcasing m levels of the highest part-wroth utility levels of

k is preferred over showcasing fewer levels of k with the highest part-wroth utilities.

(i) Let S∗
C(k) = {1, 2, ...,m} and S

′

C(k) = {1, 2, ..., t − 1, t + 1, ...,m, t′}, t′ > m. Note that S∗
C(k) includes

the m highest utility levels of k, and S
′

C(k) differs from S∗
C(k) in one element. Suppose that M∗ is the
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assortment of products representing S∗
C(k) and M ′ is the assortment of products representing S

′

C(k).

ΠT
C(M

∗) =

∑m
i=1 πe

U [1]k:i +
∑|L(k)|

i=m+1 πe
U [1]k:i

+dk

1 +
∑m

i=1 e
U [1]k:i +

∑|L(k)|
i=m+1 e

U [1]k:i
dk

, (B.15)

ΠT
C(M

′) =

∑m
i=1,i̸=t πe

U [1]k:i +
∑|L(k)|

i=m+1,i̸=t′ πe
U [1]k:i

+dk + πeU [1]
k:t′ + πeU [1]k:t

+dk

1 +
∑m

i=1,i̸=t e
U [1]k:i +

∑|L(k)|
i=m+1,i̸=t′ e

U [1]k:i
+dk + eU [1]

k:t′ + eU [1]k:t
+dk

. (B.16)

Supposing B =
∑m

i=1,i̸=t′ e
U [1]k:i

+dk +
∑|L(k)|

i=m+1,i̸=t e
U [1]k:i , we can write ΠT

C(M
∗) and ΠT

C(M
′) as

ΠT
C(M

∗) =
πB+ πeU [1]k:t + πeU [1]

k:t′
+dk

1 +B+ eU [1]k:t + eU [1]
k:t′

+dk
,

ΠT
C(M

′) =
πB+ πeU [1]k:t

+dk + πeU [1]
k:t′

1 +B+ eU [1]k:t
+dk + eU [1]

k:t′
.

Since dk < 0, we know that eU [1]k:t + eU [1]
k:t′

+dk > eU [1]k:t
+dk + eU [1]

k:t′ . Therefore, it can be observed that

ΠT
C(M

∗) > ΠT
C(M

′). Note that if S∗
C(k) and S

′

C(k) differ in more than one element, the same proof can be

carried out.

(ii) In this step, let S
′

C(k) = {1, 2, ...,m − 1}. Note that in this case, S
′

C(k) includes all the levels in S∗
C(k)

except one level, i.e., level m. This can be any other level that has been excluded from S∗
C(k).

ΠT
C(M

∗) =

∑m
i=1 πe

U [1]k:i +
∑|L(k)|

i=m+1 πe
U [1]k:i

+dk

1 +
∑m−1

i=1 eU [1]k:i +
∑|L(k)|

i=m eU [1]k:i
+dk

,

ΠT
C(M

′) =

∑m−1
i=1 πeU [1]k:i

+dk +
∑|L(k)|

i=m πeU [1]k:i

1 +
∑m−1

i=1 eU [1]k:i
+dk +

∑|L(k)|
i=m eU [1]k:i

.

Since dk < 0, we know that eU [1]k:m > eU [1]k:m
+dk . Hence, it can be observed that ΠT

C(M
∗) > ΠT

C(M
′). Note

that if S
′

C(k) includes fewer levels than S∗
C(k), the same result holds, too.

Proof. Proposition 3.5

Note that this proposition represents the RA scenario. Hence, both Lemmas 3.1 and 3.2 hold for dk > 0,

but only the former holds all the time for dk < 0. In both cases, for C = 1 and C >
∏

k∈A,k ̸=k |L(k)| ×

(|L(k)| − 1), the same argument as the proof of Proposition 3.1 holds.

When 2 ≤ C ≤
∏

k∈A,k ̸=k |L(k)| × (|L(k)| − 1), the potential optimal assortments in QC for the dk > 0

case and Q′
C for the dk < 0 obtained through Procedures 1 and 2 should be compared. Here, we derive the

comparison term for such capacities. Let t1, t2 ∈ QC or similarly t1, t2 ∈ Q′
C . Then, the retailer’s expected

profit function by showcasing t1 and t2 can be written as
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Πr
D(t1) =

∑
i∈t1

(Pr
i − w)eUi

1 +
∑

i∈X,ik∈S(k|t1) e
Ui +

∑
i∈X,ik /∈S(k|t1) e

Ui+dk
, (B.17)

Πr
D(t2) =

∑
i∈t2

(Pr
i − w)eUi

1 +
∑

i∈X,ik∈S(k|t2) e
Ui +

∑
i∈X,ik /∈S(k|t2) e

Ui+dk
. (B.18)

Using E, F , H, and G defined in the proposition, we have

Πr
D(t1) =

∑
i∈t1

(Pr
i − w)eUi

G+ F + (E +H)edk
, (B.19)

Πr
D(t2) =

∑
i∈t2

(Pr
i − w)eUi

G+H + (E + F )edk
. (B.20)

For t1 to be preferred over t2, we must have Πr
D(t1) > Πr

D(t2). Writing and simplifying this condition using

(B.19) and (B.20), we get

edk

[
(E + F )

∑
i∈t1

(Pr
i − w)eUi − (E +H)

∑
i∈t2

(Pr
i − w)eUi

]
>[

(G+ F )
∑
i∈t2

(Pr
i − w)eUi − (G+H)

∑
i∈t1

(Pr
i − w)eUi

]
.

Letting (E + F )
∑

i∈t1
(Pr

i − w)eUi − (E +H)
∑

i∈t2
(Pr

i − w)eUi = Tt1,t2 and (G+ F )
∑

i∈t2
(Pr

i − w)eUi −

(G+H)
∑

i∈t1
(Pr

i − w)eUi = T′
t1,t2 , Proposition 3.5 will be proven.

Proof. Proposition 3.6.

The retailer’s expected profit function is given by (3.14), and its expected sales function can be written

by taking out the wholesale price from (3.14). Therefore, the retailer’s expected sales function will be∑
x∈M Pr

xP
r
x|M . Given the retailer’s opportunity cost, Ω, the wholesale price can be determined such that

∑
x∈M

P r
x|M (Pr

x − w) > Ω
∑
x∈M

Pr
xP

r
x|M .

Simplifying this inequality, we get w ≤
(1−Ω)

∑
x∈M P f

x|MPr
x∑

x∈M P f
x|M

. Therefore, the manufacturer sets the wholesale

that the retailer could pay given its opportunity cost. So

w∗ =
(1− Ω)

∑
x∈M P f

x|MPr
x∑

x∈M P f
x|M

.
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Proof. Theorem 3.1.

Under the SC = α⃗, neither of the parties should be worse off compared to their decentralized expected

profits. Therefore, we must have

Πr
SC(M

∗
C|w∗

D, α⃗) ≥ Πr
D(M∗

D|w∗
D) (B.21a)

Πm
SC(w

∗
D, α⃗) ≥ Πm

D(w∗
D). (B.21b)

Substituting corresponding profit functions into (B.21), we get (3.21). We need the upper-bound of (3.21) to

be greater than or equal to its lower-bound. Writing this condition yields Πr
D(M∗

D|w∗
D)+Πm

D(w∗
D) ≤ ΠT

C(M
∗
C),

which always holds. Moreover, since
∑

x∈M∗
C
,xk=j(1 − αj)e

Ux obtains a non-negative value, it is necessary

for the upper-bound to be non-negative. Otherwise, if the upper-bound is negative, there is no SC = α⃗ that

can compensate for the retailer’s loss. In this situation, by using SC = β⃗, a one-time payment of L from

the manufacturer to the retailer can compensate its loss (i.e., Πr
D(M∗

D|w∗
D) ≤ Πr

D(M∗
C|w∗

D, β⃗) + L). The

value of this payment should also guarantee that the manufacturer is not worse off either compared to its

decentralized profit (i.e., Πm
D(w∗

D) ≤ Πm
D(w∗

D, β⃗)− L).

Proof. Theorem 3.2.

We need to show that Πr
SC(M

∗
SC|w∗

D, α) = Πr
SC(M

∗
SC|w∗

D, α⃗) and Πm
SC(w

∗
D, α) = Πm

SC(w
∗
D, α⃗). Note that

if we show that these two equalities hold, there is not need to check whether α satisfies the coordination

conditions in (3.21). This is because the coordination conditions are used to satisfy (B.21a) and (B.21b),

which if Πr
SC(M

∗
SC|w∗

D, α) = Πr
SC(M

∗
SC|w∗

D, α⃗) and Πm
SC(w

∗
D, α) = Πm

SC(w
∗
D, α⃗) hold, then α is equivalent to

α⃗ that is assumed to satisfy the conditions.

To have Πr
SC(M

∗
SC|w∗

D, α) = Πr
SC(M

∗
SC|w∗

D, α⃗) and Πm
SC(w

∗
D, α) = Πm

SC(w
∗
D, α⃗), we can write

∑
x∈M∗

SC

P r
x|M∗

SC
(Pr

x − (1− α)w∗
D) =

∑
x∈M∗

SC
,xk=j

P r
x|M∗

SC
(Pr

x − (1− αj)w
∗
D) ,

∑
x∈X\M∗

SC

Pm
x|M∗

SC
Pm
x|M∗

SC
+
∑

x∈M∗
SC

(1−α)w∗
DP r

x|M∗
SC

=
∑

x∈X\M∗
SC

Pm
x|M∗

SC
Pm
x|M∗

SC
+

∑
x∈M∗

SC
,xk=j

(1−αj)w
∗
DP r

x|M∗
SC
.

Simplifying both equations, we get the same outcomes as the following

∑
x∈M∗

SC

(1− α)P r
x|M∗

SC
=

∑
x∈M∗

SC
,xk=j

(1− αj)P
r
x|M∗

SC
. (B.22)

Substituting the value of α into (B.22) and simplifying, we get

∑
x∈M∗

SC
eUx

(∑
x∈M∗

SC,x
k
=j

(1−αj)e
Ux

)
Φ

∑
x∈M∗

SC
eUx

. This
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can be further simplified as
∑

x∈M∗
SC

,xk=j(1−αj)P
r
x|M∗

SC
, which is equal to the right-hand side of (B.22) and

completes the proof.
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Appendix C

Appendix: Proofs of Chapter 4

Proof. Proposition 4.1.

There sum of the retailer’s and manufacturer’s expected profit functions can be written as the sum of

the functions in (4.10) and (4.13). So, we have

Π̂r
D + Π̂m

D =
∑

x∈X\M

Pm
x|MPm

x|M +
∑
x∈M

P r
x|MPr

x.

Since d = 0, we have Pm
x|M = P r

x|M and Pm
x|M = Pr

x,∀x ∈ X. Therefore, for the total expected profit if

the RSC, it does not matter if a product is purchased online or from the store. Furthermore, it also does

not matter which products or attribute levels are showcased because assortment do not reveal any specific

accurate utility information. Note that if ŵr
D < ŵm

D , the retailer will withdraw from the market and no

assortment will be showcased.

Proof. Proposition 4.2.

This proposition can be shown the same way as Lemma 3.3 in Chapter 3.

Proof. Proposition 4.3.

(i) This part can be shown the same way as Proposition 4.1.

(ii) This part is an extension of Proposition 4.2. We showed in Proposition 4.2 that only selecting levels

of attributes estimated to be inaccurately assessed suffices for assortment planning. When d̂ = 0, it is

estimated that there is no inaccuracy in any of the attribute levels. Therefore, any selection of levels and

products is supposed to be optimal.
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