
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2023-09-13

Effective Control System Framework

Selection through Checklist-based

Software Quality Evaluation

Imani, Alireza

Imani, A. (2023). Effective control system framework selection through checklist-based software

quality evaluation (Master's thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca.

https://hdl.handle.net/1880/117068

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Effective Control System Framework Selection through Checklist-based Software Quality

Evaluation

by

Alireza Imani

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING

CALGARY, ALBERTA

SEPTEMBER, 2023

© Alireza Imani 2023

Abstract

The Herzberg Astronomy and Astrophysics Research Centre (HAA) of the National Re-

search Council (NRC) is Canada’s premier center for astronomy and astrophysics. It main-

tains the largest and most powerful observatories in Canada and represents Canada at many

of the world’s leading astronomical events. In the context of my pursuit of a master’s degree,

a collaborative effort unfolded between HAA and myself, centered around the multifaceted

project named ARTTA4.

In the realm of control systems, the significance of prioritizing the evaluation of open-

source software’s quality is undeniable. This emphasis arises from the essential role that

a thorough appraisal of these components plays in safeguarding the security, stability, and

efficiency of such systems. Neglecting this assessment exposes control systems to a range of

vulnerabilities, including bugs and compatibility concerns that could result in operational

disruptions, security breaches, and potential risks across diverse industries. Ensuring the

integrity and performance of control systems demands a rigorous approach to software quality

assessment, serving to preempt unforeseen complications and bolstering the overall reliability

and functionality of these systems.

Through my engagement with HAA, I recognized the pivotal role of an open-source

control system toolkit named Tango Controls in shaping their antenna control system. Con-

sequently, a comprehensive evaluation of Tango Controls’ software quality emerged as a vital

undertaking for guaranteeing the ultimate dependability and maintainability of the resultant

control system.

Accordingly, we conducted a generalizable checklist-driven software quality assessment

ii

approach to examine Tango Controls. This evaluation brought to light three specific limita-

tions within this open-source toolkit. This finding prompted me to investigate a substitute

control system toolkit to replace Tango Control. Thus, we adopted a Component-based

Software Development (CBSD) methodology to propose two potential substitute solutions.

These alternatives were put into practice through the implementation of a control system

module at HAA, in parallel with the utilization of Tango Controls. To quantify their effi-

cacy, we used SonarQube to generate a static source code analysis report. Furthermore, we

conducted an empirical comparison centered around the development process spanning all

three methodologies. Drawing from empirical and quantitative analyses, it became evident

that one of the proposed solutions outperformed Tango Controls in terms of efficacy and

performance.

In conclusion, this thesis stands as a pivotal stepping stone in the realm of open-source

software selection for the development of industrial control systems. As we move forward,

the path to fully realizing the potential of open-source technologies lies in sustained research

efforts and collaborative endeavors. By delving into the criteria commonly referenced by

industry practitioners, we can glean insights that refine the selection process. Furthermore,

the introduction of a natural language processing-based tool holds promise in revolution-

izing how we approach open-source software comparison and adoption. Such a tool aims

to streamline the process by autonomously aggregating pertinent information from diverse

online sources. Through this holistic approach, we aspire to foster an environment where

open-source technologies are harnessed to their fullest extent, driving the evolution of indus-

trial control systems and propelling technological advancement.

Preface

Chapter 2 was presented at the International Conference on Information Systems and

Advanced Technologies (ICISAT 2021) and it is published by IEEE as:

A. Imani, M. Moshirpour and L. Belostotski, ”Checklist-based Software Quality Evalu-

ation of Tango Controls,” 2021 International Conference on Information Systems and Ad-

vanced Technologies (ICISAT), Tebessa, Algeria, 2021, pp. 1-7

Chapter 3 of this thesis was initially submitted to the International Conference on Com-

puter, Control, and Robotics (ICCCR 2023), and it received acceptance for presentation.

Nevertheless, as we have plans to enhance our analysis and publish it in a different venue

in the future, we opted to withdraw our submission from the conference. You can find

a screenshot of the notification confirming the acceptance of this portion of our study at

ICCCR 2023 in the Appendix.

iv

Acknowledgements

Despite residing thousands of miles distant from my family, I’ve successfully acclimated

to a new university, surmounting fresh challenges through the continuous affection bestowed

upon me by my family since I relocated to Calgary. Their unwavering care and support have

always inspired me to uphold my scholastic advancements. I wish to convey my profound

gratitude to my esteemed mentor, Dr. Mohammad Moshirpour, whose sagacious guidance

and unwavering support have been instrumental in shaping my research trajectory and fa-

cilitating my transition to the rigors of graduate-level studies.

Equally deserving of my appreciation is my co-supervisor, Dr. Leonid Belostotski, whose

constructive feedback and endorsement of my academic choices have been invaluable through-

out my master’s program. I also wish to express my sincere thanks to the members of Dr.

Moshirpour’s research lab, particularly Mr. Ali Salmani, whose assistance and encourage-

ment have been of great significance.

v

Table of Contents

Abstract . ii
Preface . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . viii
List of Figures . ix
List of Symbols . x
1 Introduction . 1

1.1 Motivation . 1
1.2 Research Objectives . 2
1.3 Research Contributions . 5
1.4 Significance of the research and thesis organization 6

2 Checklist-based Software Quality Evaluation of Tango Controls 8
2.1 Abstract . 8
2.2 Introduction . 9
2.3 Literature Review . 10
2.4 Tango Controls Evaluation . 15

2.4.1 General Control Systems . 16
2.4.2 Distributed Control Systems . 22

Tango Access Control . 23
HAProxy . 24

2.5 Conclusion . 24
3 Towards Replacing Tango Controls: A Comparative Empirical Study 26

3.1 Abstract . 26
3.2 Introduction . 26
3.3 Literature Review . 29
3.4 Available Candidate Solutions . 32

3.4.1 gRPC + Envoy . 32
3.4.2 Ice . 36

3.5 Case Study . 39
3.5.1 Initial Configuration . 41
3.5.2 Antenna Motion Control . 41
3.5.3 DriveAxis Motion Control . 43
3.5.4 Antenna Interface Unit: The implemented component 44

3.6 Evaluation . 45
3.7 Quantitative Results . 47

3.7.1 Maintainability . 47
3.7.2 Complexity . 48
3.7.3 Size . 48
3.7.4 Results Conclusion . 49

3.8 Empirical Analysis . 49
3.9 Threats To Validity . 51

vi

3.10 Conclusion & Future Work . 51
4 Conclusion and Future Work . 53

4.1 Summary and Conclusion . 53
4.2 Limitations . 55
4.3 Future Work . 56

Bibliography . 59
A . 71

vii

List of Tables

2.1 Our Checklist Items With Their Corresponding Criteria or Definitions 17
2.1 Our Checklist Items With Their Corresponding Criteria or Definitions 18
2.1 Our Checklist Items With Their Corresponding Criteria or Definitions 19
2.1 Our Checklist Items With Their Corresponding Criteria or Definitions 20
2.1 Our Checklist Items With Their Corresponding Criteria or Definitions 21
2.1 Our Checklist Items With Their Corresponding Criteria or Definitions 22
2.2 Violated Checklist Items . 25

3.1 Maintainability Measures of The Implementations 47
3.2 Complexity Measures of The Implementations 48
3.3 Size Measures of The Implementations . 49

viii

List of Figures and Illustrations

2.1 Tango REST API Request processing procedure [1] 23

3.1 Schema of a device in a control system built using gRPC and Envoy 35
3.2 Schema of a device in an Ice-based control system 37
3.3 Software context diagram of the Antenna Controller 40
3.4 Sequence diagram of message flow between the Antenna and DriveAxis interfaces 42
3.5 Activity diagram of communication between Antenna Controller and Antenna

Interface Unit . 44

A.1 Chapter 3 Notification of Acceptance . 71

ix

List of Symbols, Abbreviations and Nomenclature

Symbol Definition

ALTS Application Layer Transport Security

AMPQ Advanced Message Queuing Protocol

API Application Programming Interface

COTS Commercial of the Shelf

DRAO Dominion Radio Astrophysical Observatory

ESRF European Synchrotron Radiation Facility

GUI Graphical User Interface

HAA Herzberg Astronomy and Astrophysics Research Centre

ICE Internet Communication Engine

JWT JSON Web Token

NRC National Research Council

OSS Open-source Software

RPC Remote Procedure Call

SCADA Supervisory Control And Data Acquisition

SV E Shared Variable Engine

TLS Transport Layer Security

x

Chapter 1

Introduction

1.1 Motivation

The Herzberg Astronomy and Astrophysics Research Centre (HAA), a distinguished en-

tity within the framework of the National Research Council (NRC), occupies a pivotal role

as the foremost hub for astronomy and astrophysics in Canada. It boasts the operation

of the Dominion Radio Astrophysical Observatory (DRAO), situated beyond the confines

of Penticton in British Columbia. Additionally, the HAA oversees the management of the

Canadian Astronomy Data Centre and orchestrates Canadian participation in a spectrum of

astronomical endeavors. These encompass the Canada-France-Hawaii Telescope, the Gemini

Observatory, the Atacama Large Millimeter Array, the Square Kilometre Array, and the

Thirty Meter Telescope. Furthermore, the HAA is responsible for stewarding Canada’s na-

tional astronomy data center, accentuating its significance as a central pillar within the realm

of astronomy and astrophysics endeavors. Therefore, the facilities housed within DRAO are

classified as mission-critical infrastructure. Given this criticality, software component quality

assurance assumes paramount significance, particularly when these components contribute

to the operational functionality of these vital settings.

In the study conducted by Laila et al., a survey involving 110 IT executives was under-

taken to discern the factors influencing the adoption decision of Open-source Software (OSS)

within the context of Mission-Critical IT Infrastructures [2]. The findings of this research

1

revealed that within mission-critical settings, the decision to adopt OSS is notably influenced

by factors related to OSS quality as well as security concerns.

Tango Controls is a distributed object-oriented control system framework, establishing

the groundwork for an underlying communication protocol and an Application Program-

ming Interface (API). As part of my master’s degree experiments, I engaged in a collabo-

rative project with the HAA at the Dominion Radio Astrophysical Observatory (DRAO).

This undertaking was centered on the development of control system modules. Throughout

this collaboration, it became evident that Tango Controls was the primary OSS utilized in

developing the control system.

In light of this, conducting a comprehensive evaluation of the software quality embedded

within Tango Controls assumed a critical role. This endeavor extended beyond safeguarding

the dependability and maintainability of the control system modules under development at

DRAO. It also held significance as an academic benchmark, offering a reference point for the

broader community of developers engaged with this extensively utilized OSS. The insights

gleaned from this assessment are poised to contribute not only to the immediate refinement

of the ongoing project but also to serve as an academic reference for addressing any potential

shortcomings in subsequent iterations of Tango Controls.

1.2 Research Objectives

The primary aim of this research encompasses the identification of potential threats

to the software quality inherent within Tango Controls. Drawing from [3], the landscape

of OSS evaluation methodologies is organized into three overarching categories: checklist,

2

measurement, and hybrid. This delineation ushers in the inaugural research inquiry:

RQ1: What OSS evaluation methodology should be employed to discern the vulnerabil-

ities within Tango Controls’ software quality?

Given that measurement-based methodologies furnish quantitative outcomes for assessing

software quality, as exemplified by [4] who introduce a metric-oriented evaluation model

geared toward open-source software, resulting in categorization into ”Excellent,” ”Good,”

”Fair,” and ”Poor,” it is important to note that such approaches offer quantitative reflections

of software quality across various facets. However, they are limited in their capacity to

directly pinpoint threats to software quality within an OSS toolkit. Consequently, we elected

to structure our evaluation method around a checklist paradigm. This checklist acts as a

repository of evaluation criteria integral to our process.

Acknowledging the generic nature of evaluation methodologies and their inherent appli-

cability across domains, an imperative emerges to tailor these methodologies to the unique

landscape of control systems. This adaptation becomes essential to ensure alignment with

domain-specific requirements and nuances. Consequently, the ensuing research question

takes form:

RQ2: How can the selected evaluation methodology be refined and tailored to harmonize

with the distinctive characteristics of the control systems domain?

We embarked on a comprehensive review of academic references, leveraging their insights

to compile an evaluation checklist. This compilation was carefully tailored to encompass the

array of Supervisory Control And Data Acquisition (SCADA) systems’ requirements and the

fundamental dimensions crucial to control systems.

After the completion of the evaluation, our focus shifts towards unveiling the drawbacks

3

associated with Tango Controls. This progression leads us to the subsequent research ob-

jective, which centers on the identification of an appropriate substitute for Tango Controls.

To achieve this objective, the initial step is to curate a roster of potential candidate replace-

ments that effectively address the vulnerabilities of Tango Controls. In this pursuit, our goal

is to ensure that these candidates remain unaffected by Tango Control shortcomings. This

leads us to the following research question:

RQ3: How can we effectively identify potential candidates to replace Tango Controls,

while guaranteeing their immunity to the recognized limitations?

Recent growth in open-source software use has spurred the adoption of a component-

based software development (CBSD) approach, which aims to avoid unnecessary redundancy.

This methodology uses existing software components to construct new software products,

thus eliminating the need to reinvent existing solutions. Hence, each potential candidate

is crafted by integrating existing software components. This approach not only expedites

the development process but also taps into the cumulative expertise embedded within these

components, enhancing the efficiency and effectiveness of the resulting candidates.

After compiling a list of potential substitutes, the next step is to choose the most qualified

candidate. By examining the features and qualities of these candidates, we can assess their

capability to address the identified issues. To aid in this evaluation, we require a method to

compare candidates against Tango Controls, focusing on the quality of the underlying code.

This evaluation process is pivotal in the pursuit of optimal software solutions. Serving as

a critical link, this process guides us toward a thoughtful decision that not only tackles the

current shortcomings but also steers us toward improved software quality. Consequently, the

final objective of this thesis is framed as:

4

RQ4: How can we rigorously evaluate and select the most suitable candidate among

replacements and Tango Controls?

Our analysis of the candidate solutions we put forth, in comparison to Tango Controls,

unfolds through the practical implementation of a control system component at DRAO

called Antenna Controller. This practical examination involves employing the candidate

solutions to construct this component, thereby subjecting them to a real-world test within the

DRAO environment. The resulting source code from each implementation is then compared

quantitatively using static source code analysis and qualitatively through empirical analysis.

1.3 Research Contributions

The contributions of this thesis can be summarized as follows:

1. Investigating the vulnerabilities of Tango Controls, a widely used control sys-

tem toolkit, and recommending an alternative.

2. Introducing a comprehensive checklist for the evaluation of control system

software toolkits. The methodology employed in the creation of this checklist

can seamlessly be replicated in alternate contexts, enabling the construction

of tailored assessment criteria.

3. As an academic reference, our methodology serves as a guide to dissecting

potential threats to OSS libraries’ software quality through the lens of their

documentation.

4. Providing an example of comparing OSS libraries by implementing a case study

5

and conducting quantitative and qualitative analyses

1.4 Significance of the research and thesis organization

The analysis conducted to uncover threats to the software quality of Tango Controls has

led to the identification of its inherent drawbacks. This revelation holds substantial value for

the TANGO Collaboration Steering Committee, as it equips them to adjust their roadmap

in light of these insights. Furthermore, our published findings [5] serves as a cautionary

measure for prominent industrial users of the toolkit, particularly those situated in pivotal

industrial contexts. The publication effectively highlights potential weaknesses within the

toolkit, which prompts a proactive response from users. This assertion gains credence as

indicated by the engagement of key figures from industrial entities. Notably, the head of

the Control System Section at ALBA and the head of the Software group at ESRF initiated

discussions based on the published paper. This direct interaction underscores the significance

of the research findings in influencing and guiding industrial practices and decisions within

the realm of control system toolkits.

Moreover, this research marks a significant stride toward domain-specific software quality

assessment. Considering the unique characteristics of each domain, tailoring software qual-

ity evaluation methodologies is crucial. This study serves as a high-level pipeline that can

be implemented by various mission-critical industrial and governmental settings to continu-

ously test the software quality of the OSS libraries they are using and to identify potential

alternatives if necessary.

The remainder of this thesis is organized as follows:

6

In Chapter 2, we first discuss our methodology for selecting an evaluation approach to

assess Tango Controls’ software quality. Subsequently, we unveil the intricacies surrounding

the customization of this evaluation method, aligning it with our unique requirements. The

chapter then progresses to a detailed exposition of two overarching categories within the

control systems domain, thereby broadening our purview to include domain-specific consid-

erations. Lastly, we shed light on the existing mechanisms inherent in Tango Controls that

pose potential risks to our customized software quality criteria. This chapter answers RQs

1 and 2.

Chapter 3 elaborates on our methodology to compile a list of candidate replacements

for Tango Controls. We thoroughly discuss each candidate’s capabilities and their ability to

cover Tango Controls’ drawbacks. Following this, we transition to the practical application of

these candidates through a case study conducted at DRAO. This practical phase involves the

implementation of the candidates and a subsequent evaluation using SonarQube-generated

static source code analysis. The chapter then shifts focus to a developer-oriented perspective,

engaging in an empirical analysis of the candidates. This perspective allows us to discern

and discuss the unique strengths that each alternative presents compared to others. The

superior alternative to Tango Controls is introduced to fulfill RQs 3 and 4.

In the end, chapter 4 summarizes the thesis, discusses the limitations of this study, and

explores future directions of the study to facilitate OSS evaluation and adoption in real-world

applications by employing natural language processing.

7

Chapter 2

Checklist-based Software Quality Evaluation of Tango

Controls

2.1 Abstract

Tango Controls is an open-source framework for distributed control systems used by

a growing number of industrial and institutional partners. Despite the many benefits it

provides to users, such as a growing community, industrial support, highly scalable, and so

on, there are some disadvantages to this trending framework. Uncovering these drawbacks

creates users’ awareness while considering using this open-source software in their control

systems and motivates the Tango Controls development community to fix these issues.

In this chapter, first, we review the research conducted to evaluate, optimize and compare

Tango Controls with other trending commercial and open-source control system frameworks.

Afterwards, we evaluate Tango Controls via a checklist-based approach by considering two

types of control systems and scrutinizing the frameworks’ documentation. As a result, we

detect reliability and security drawbacks that have not been identified in relevant studies as

the first step of our future work to optimize Tango Controls by introducing a toolset.

8

2.2 Introduction

A Control System (CS) is a manual or automated mechanism employed to handle real-

time processes by maintaining or setting physical quantities such as mass, temperature, or

speed [6]. Supervisory Control And Data Acquisition (SCADA) is a software package acting

as an interface to hardware modules [7]. SCADA is widely used in industry to control varying

facilities like controlling a whole oil refinery [8], transport of oil, gas, water, electrical power

grids, and railway systems [6]. Like many other softwares, there are Commercial Off the

Shelf (take FTV-SE and PVSS as examples) and open-source (Tango Controls and EPICS,

for instance) SCADA packages suitable for diverse control systems, making it challenging

to decide on which to opt for [9]. Thus, research has been done to evaluate and compare

different SCADA packages, facilitating future users’ decisions.

Tango Controls was initially proposed in a paper in 1998 by W-D. Klotz, A. Götz, E.

Taurel, and J. Meyer. It has been created based on an RPC-based control system called

TACO. The Tango Controls key concept, devices in a device server, was an improved version

of what had been developed in TACO. Tango development was initiated in 1999 at the

ESRF (European Synchrotron Radiation Facility), and the latest major release was made

in September 2015 [10]. Over 40 international partners and institutions use this tool kit

worldwide, reflecting that Tango Controls is well-maintained, highly scalable, easy to use,

and reliable [11].

Although Tango Control is a mature control system framework, since it is an open-source

candidate for industrial parties that plan to choose a SCADA package, evaluating it against

control system requirements and challenges, not only helps the industry as an academic

9

reference but also provides the Tango Controls community with potential long-term goals to

enhance their framework. Thus, we performed this research to answer two research questions:

• RQ1: What are the criteria that should be considered during the evaluation

process?

• RQ2: How can we evaluate Tango Controls concerning open-source software

characteristics?

Hence, in section 2.3, we review the literature for any study relative to evaluation, op-

timization, and comparing Tango Controls to other well-known control system frameworks.

Moving forward to section 2.4, we elaborate on our evaluation methodology and evaluate

Tango Controls using a checklist-based from new aspects that have not been addressed by

related works. We conclude the results and contributions of this chapter in section 2.5, and

finally, we introduce our future work to address the identified drawbacks in section 2.6.

2.3 Literature Review

We have reviewed studies relevant to our research, which includes any recent research

conducted on optimization, evaluation, and comparing Tango Controls in different terms

such as GUI consistency, accessibility, interoperability, ease of application setup and per-

formance. Moreover, since Tango Controls is an open-source software, we have studied a

recent systematic literature review on open-source software evaluation, selection, and adop-

tion methodologies. To assess the reliability of Tango Controls, we also review a recent novel

component-based software reliability assessment method in this section. We elaborate on

each of the studies as mentioned earlier next.

10

GUI consistency matters may apply to any cooperative project on which members need

to adjust the generic tools to their contexts. Tango Controls consists of various services and

toolkits managed by a group of applications developed either by the core team or other com-

munity members [12]. ALBA is a third-generation Synchrotron Light facility in Barcelona,

the latest source in the Mediterranean region [13]. At ALBA, the GUI inconsistency prob-

lems were addressed by deploying Taurus as the default GUI framework for all their appli-

cations [12]. Taurus is a python framework for data acquisitio and control interfaces that

supports a variety of control systems or data sources such as Tango Controls and EPICS [14].

Manrique et al. [12] have implemented a Taurus-based application to unify Tango Controls

services in a customizable graphical user interface.

In terms of accessibility, Goryl et al. [15] have elaborated on projects and activities

performed by the Tango Community to promote collaboration and make starting with Tango

Controls smoother. Briefly, the projects are as below:

• Unifying Tango Controls documentation from TangoBook, a pdf file provided

with the source, and many other documents in a collaborative way that enables

the community members to suggest enhancements and contribute to the new

Tango Controls Documentation.

• Developing and maintaining a Tango Controls demo virtual machine image,

namely TangoBox, to provide:

– A way to use Tango Controls without putting effort into the

investigation, selection and configuration of most of Tango Con-

trols

11

– A working configuration example

– An environment for developers to create and test new software

• A web application called Device Classes Catalogue [16] to consider effective

search if a particular device is already supported. It encourages open-source

software, allows for software reuse, and hinders rework.

Bourtembourg et al. [17] have conducted a research on mitigating the limits of HDB++,

Tango Controls archiving system, using PostgreSQL and Timeseries databases. They have

compared the different database backends supported by HDB++, e.g. MySQL/MariaDB,

Cassandra, PostgreSQL, TimescaleDB, and Elasticsearch. Using a Github repository con-

taining HDB++ archiving system benchmarking tools, they have evaluated the perfor-

mance of the supported database backends in different scenarios such as insertion, scalar

attribute query, and arrays query benchmark. It has been concluded that the PostgreSQL

and TimescaleDB backends outperforms when dealing with Tango spectrum attributes.

Furthermore, Drochner et al. [18] have reported the problems observed while switching

from TACO to Tango Controls in a neutron scattering instrument control system. After

facing ”serialization timeout” errors, they realized that in a Tango Controls device server,

no command can take more than 3 seconds to be executed. While trying to add individual

”busy” states explaining to all clients what a server is currently waiting for, it has been

observed that using custom values in Tango Controls states would cause confusion in other

parts of the framework.

Bolkhovityanov and Cheblakov [19] have performed a comparative analysis of the ar-

chitecture of control systems of physical research facilities. They have compared Tango

12

Controls, EPICS, and CXv4 in terms of interoperability. According to their research, in a

Tango Controls system, the client-server exchange is achieved within the paradigm of devices,

rather than through channels, limiting access to other control systems for Tango Controls

users. Below summerizes their analysis and the obtained results:

• Tango Controls does not provide direct access to other control systems.

• EPICS supposes that control systems operate only under EPICS, but allows

the creation of gateway servers to other control systems.

• CX allows the direct data exchange from an arbitrary control system.

Research has been conducted to choose a SCADA package for a new device at Con-

sorzio RFX by Barana et al. [9]. They performed tests on two commercial (FTV-SE by

Rockwell Automation and PVSS II by ETM) and two open-source packages (EPICS and

Tango Controls) SCADA packages to evaluate them in ease of application setup and perfor-

mance. According to their results, despite Tango Controls being better than other candidates

in terms of performance, since understanding the Tango Controls structure required more

effort than the other SCADAs, substantial programming expertise was required, and a re-

markable effort was unavoidable to implement the data exchange in an effective way, they

discarded Tango Controls as an option to be used to develop the new device.

A systematic literature review has been performed by Lenadruzzi et al. [3] on studies

concerning open source software evaluation (OSS), selection, and adoption methodologies,

factors, measures, and information that characterize the analyzed models. Having reviewed

60 studies concerning open-source software evaluation, selection, and adoption, they have

13

made a comparison between the studies in terms of the importance of different measures and

factors involving in OSS selection, evaluation, and adoption. They have classified the studies

into three categories based on what the studies are based on: Checklist, Measurement, and

Hybrid. We discuss these categories in section 1.4.

Moreover, Barcelos et al. [20] have conducted a systematic literature review to identify

existing architectural evaluation approaches. They have reviewed 20 studies proposing an

architectural evaluation approach through December 2004. Similar to [3], they have grouped

the studies based on the evaluation techniques and have classified them into questioning,

measuring, and hybrid techniques. Besides, they have proposed a checklist-based inspec-

tion approach architectural evaluation method to cover domain-specificness and solution-

specificness of other checklist-based methodologies.

In a recent study by Chen and Yan [21], a novel reliability assessment method by taking

into account the effects of components has been proposed. They have proved the effectiveness

of their method by evaluating three existing examples. Their paper has defined component

importance for each component in component-based software based on three factors: self-

influence, failure influence, and propagation influence. Briefly, if we consider a component

Ci, its self-influence depends on the number of visits to it during a single complete software

system operation. Also, its failure influence depends on the number of components informa-

tion flows from them to Ci. Finally, the propagation influence of Ci relies on the count of

components to which information flows from Ci. Thereby, the importance of component Ci

is calculated by the weighted sum of the three mentioned factors for it. Then, the reliability

of a software system can be calculated by multiplication of rα
i for each component Ci, where

ri indicates the reliability of Ci and α is the calculated component importance for Ci.

14

2.4 Tango Controls Evaluation

As briefly mentioned in section 1.3, according to [3], there are three general categories of

open-source software evaluation methodologies depending on what they are based on: check-

list, measurement, and hybrid. Since measurement-based methodologies generate quantita-

tive results to evaluate software quality (as an example, [4] have presented a metric-oriented

software quality evaluation model, specifically targeted to open-source software, and catego-

rized the result of evaluating software quality aspects into four categories: Excellent, Good,

Fair, and Poor), they only reflect the software quality from different aspects and cannot be

used to directly identify the threats to software quality in an open-source software product.

Accordingly, we opted for basing our evaluation method on a checklist. The checklist

should help as a collection of evaluation criteria in our process. Thus, we reviewed academic

references to compile the checklist with a set of supervisory control and data acquisition

(SCADA) systems’ requirements and essential aspects of control systems.

Alcaraz et al. [22] have identified five control system requirements that are real-time per-

formance, sustainability, dependability, survivability, and safety critical. Industrial control

systems requirements have been discussed by Stouffer et al. [23]. They have mentioned data

confidentiality and integrity, timeliness, availability, continuity, pre-deployment testing, and

resource-constrained. More specific research on non-functional requirements in distributed

control systems has been conducted by Frank et al. [24]. Installability, modularity, reusabil-

ity, analysability, testability, interoperability, time behaviour, resource utilization, reliability,

fault tolerance, performance efficiency, compatibility, maintainability, and portability are the

critical non-functional requirements mentioned in the study.

15

Table 2.1 presents the checklist we compiled from the abovementioned studies after re-

moving identical and not applicable requirements. For instance, according to [25], Depend-

ability is a combination of Availability, Reliability, Safety, Confidentiality, and Integrity.

Another example is Sustainability. Since the sustainability of a software system depends on

the (hardware) resources used [26], it does not apply to our evaluation.

To evaluate our checklist items, we have considered the characteristics of two types of

control systems: general control systems and distributed control systems. Next, we will

elaborate on each of the types and evaluate the relevant principles of Tango Controls to the

traits of that specific type by referring to the Tango Controls documentation publicly avail-

able on the readthedocs platform [14]. Our goal was to detect any subsystem, functionality,

or mechanism that violates our checklist items according to their criteria and definitions

during our crawling process. The next subsections discuss the results of our evaluation.

2.4.1 General Control Systems

Every control system constitutes a set of hardware devices. SCADA acts as an interface

to control, monitor, and manage these devices, as stated in the introduction. Thus, the logic

behind defining and characterizing each hardware device in SCADA reflects on the general

performance of a control system.

Correspondingly, Tango Controls has been built around two concepts called devices and

device classes [27]. Devices are objects that have the ability to establish access to their

pipes, properties, attributes, and commands as defined by their device classes [28]. Device

servers are processes implementing a set of device classes. Device classes translate hardware

communication protocols to Tango Controls communication [27].

16

Each Tango Controls system is associated with a centralized database called Tango Host.

Tango Host stores configuration data used at startup of device servers, serves as a name

server for dynamic network addresses, and acts as a repository for retaining settings that

need to be kept. An extensive system may consist of tens of thousands of devices [27]. All

these devices depend on Tango Host to continue functioning correctly.

Table 2.1: Our Checklist Items With Their Corresponding Criteria or Definitions

Checklist Item Criteria [22, 23, 29–31] Definition [32–34]

Real-time

performance
Fault tolerance, Fault forecast-

ing, fault detection, fault pre-

vention, fault removal, main-

tainability, and coordination

Survivability A system’s ability to provide a pre-defined

minimum level of service if it is threatened

by one or more specified threats.

Safety-Critical When the failure of a system could result

in unacceptable consequences, then it is

safety-critical.

17

Table 2.1: Our Checklist Items With Their Corresponding Criteria or Definitions

Checklist Item Criteria [22, 23, 29–31] Definition [32–34]

Data

confidentiality

and integrity

How well the software product protects

data and information from unauthorized

access, either accidentally or consciously.

Ascertaining the completeness and accu-

racy of assets.

Timeliness When performing its function, under

stated conditions, how responsive and fast

the software product is with its response

time, processing speed, and throughput

rate.

Availability A software component’s availability and

operational state at the time of request.

Continuity Avoiding unexpected outages,

easily get stopped and started

without affecting production, re-

dundant components

18

Table 2.1: Our Checklist Items With Their Corresponding Criteria or Definitions

Checklist Item Criteria [22, 23, 29–31] Definition [32–34]

Resource

Utilization
Under stated conditions, the amount and

types of resources the software product

uses when it performs its function.

Fault Tolerance When a software product is subject to

software faults or infringements of its

specified interface, the extent to which the

product can maintain a specified level of

performance.

Analysability An assessment of how well the software

product may be diagnosed for its deficien-

cies or causes of malfunctions, as well as

identified which parts of the software may

need to be modified.

Modularity Composition of a system or computer pro-

gram as such that a change to one compo-

nent will not adversely affect the others.

19

Table 2.1: Our Checklist Items With Their Corresponding Criteria or Definitions

Checklist Item Criteria [22, 23, 29–31] Definition [32–34]

Interoperability Communications commonality,

data communality

Specific characteristics of software that

determine its ability to interact with spe-

cific systems.

Installability A software product’s ability to be suc-

cessfully installed and uninstalled within

a designated environment.

Portability Complexity, concision, consis-

tency, expandability, generality,

modularity, self-documentation,

simplicity

Self contentedness, device inde-

pendence

Transferability of systems or compo-

nents between environments (Extension

of hardware or software).

Maintainability Concision, consistency, mod-

ularity, instrumentation, self-

documentation, software inde-

pendence

A software product’s ability to be modi-

fied. Corrections, improvements, or adap-

tation of the software to the environment,

as well as requirements and functional re-

quirements may be part of modifications.

20

Table 2.1: Our Checklist Items With Their Corresponding Criteria or Definitions

Checklist Item Criteria [22, 23, 29–31] Definition [32–34]

Compatbility The ability of multiple software compo-

nents to communicate with one another

or to perform their functions while they

share a common hardware or software en-

vironment.

Reliability Accuracy, complexity, consis-

tency, error tolerance, modular-

ity, simplicity

Self contentedness, accuracy,

completeness, robustness/ in-

tegrity, consistency

Frequency and security of fail-

ure, Recoverability, predictabil-

ity, accuracy, mean time be-

tween failure

When used under specified conditions, the

extent to which the software product can

maintain a specified level of performance.

Reusability Generality, hardware inde-

pendence, modularity, self-

documentation, software inde-

pendence

A software asset’s potential for reuse in

the development of other assets, as well

as in multiple software systems.

21

Table 2.1: Our Checklist Items With Their Corresponding Criteria or Definitions

Checklist Item Criteria [22, 23, 29–31] Definition [32–34]

Testability Audit ability, complexity, in-

strumentation, modularity, self-

documentation, simplicity

Accountability, communicative-

ness, self descriptiveness, struc-

turedness

To what extent can modified software be

validated by the software product.

According to the explained reliability assessment method in [21], considering a Tango

Controls system, if we think of each device as a component in a component-based software,

information flow from every component to Tango Host and vice versa. Therefore, the impact

of the reliability of the Tango Host component on the control system reliability will be

significant since α is a relevantly large number due to the high importance of the Tango

Host component when computing rα
i . Thus, the existence of Tango Host can undermine a

Tango Controls system’s reliability.

2.4.2 Distributed Control Systems

Large-scale distributed control systems (DCS) often are consisted of dozens of interacting

units. Automated highway systems, airplane formation flight, and satellite constellations are

examples of such control systems [35]. Due to the variety of human resources skills, available

facilities, and other considerations, each unit might have been developed using a different

software control system framework/toolkit, e.g. unit A uses Tango Controls and unit B with

22

which unit A interacts uses EPICS. In such cases, the interoperability of units should be

assured.

To enable integration with third-party technologies, Tango provides REST API speci-

fications. REST API requests are processed through HAProxy configured to use HTTPS

protocol for secure communication. Tango REST server that HAProxy interfaces with pro-

vides access to a single Tango Host in which a device of class ForwardComposer is defined.

This device gives read-only access to the MStatus Tango device with status information

about the storage ring at ESRF. Finally, Tango REST API uses Tango Access Control to

validate each request [1]. Fig. 2.1 shows the process as mentioned earlier for each REST

API request. The following discusses two elements of the elaborated process by referring to

Tango Controls documentation and literature.

Tango Access Control There are two tables in the centralized Tango database of a control

system that store all the user rights. A device server called TangoAccessControl accesses

these tables directly, and only one device can configure it. However, although having a

controlled access system running, it is possible to circumvent it by setting the environment

variable SUPER TANGO to True in the client’s application environment [36].

Figure 2.1: Tango REST API Request processing procedure [1]

23

HAProxy A rapid I/O layer, HAProxy is non-blocking and event-driven with a multi-

threaded scheduler based on priorities. By assigning connections to the same CPU as much

time as possible, this optimizes the CPU cache efficiency [37]. Nadig [38] has investigated

different available service proxies in his thesis. Concerning HAProxy, he has stated that

that:

• It does not have a pluggable architecture.

• It does not integrate with a remote service discovery service.

• It does not integrate with a global rate limiting service.

2.5 Conclusion

We reviewed studies relevant to the evaluation, adoption, and optimization of Tango

Controls. Although they have reported issues regarding the high programming skills that

are required while using Tango Controls to develop a control system, interoperability issues,

application setup, and performance, none has stated our detected drawbacks. In addition, we

discussed two systematic literature reviews concerning open-source software evaluation and

adoption and software architecture evaluation approaches to opt for a suitable evaluation

method.

Having explained our methodology, we evaluated Tango Controls using a checklist in two

common types of control systems, which lead us to identify deficiencies with Tango Controls

that violates some of our checklist items according to their criteria and definitions. Table

2.2 summarizes our evaluation results.

24

Table 2.2: Violated Checklist Items

Drawback Description Violated Checklist Items

The existence of a centralized database with vital stored

data

reliability, availability, continuity

The possibility of bypassing TangoAccessControl data confidentiality and integrity

The existence of HAProxy in REST API request pro-

cessing procedure

interoperability

Accordingly, by elaborating our evaluation approach and arguing the results, this chapter

contributes in two ways:

• Creating a checklist of software control systems’ evaluation criteria and aspects

• Evaluating Tango Controls using the checklist and reporting the identified

reliability and security issues

In future, evaluation of other requirements that cannot be detected by documentation

analysis like maintainability, testability and other metric-based control systems’ requirements

can be considered. Furthermore, we plan to devise a solution pack of open-source tools to

address the detected deficiencies of Tango Controls. We will evaluate our proposed toolset by

implementing a real-world astronomical case study using Tango Controls and our suggested

solution pack.

25

Chapter 3

Towards Replacing Tango Controls: A Comparative

Empirical Study

3.1 Abstract

In previous chapter, we evaluated Tango Controls software quality using a checklist-based

approach. Accordingly, we identified drawbacks threatening reliability, availability, continu-

ity, data confidentiality and integrity, and interoperability. Our purpose in this chapter is

to remediate the deficiencies of Tango Controls by describing two scenarios for deploying

multiple open source projects/frameworks to form a control system middleware framework.

We have examined the two scenarios in the context of a real-world astronomical project at

the Dominion Radio Astrophysical Observatory (DRAO). After conducting the static code

analysis and an empirical analysis, we compared and analyzed the project developed using

the two scenarios and Tango Controls in terms of the maintainability and complexity of

the software. In conclusion, we introduced the scenario that achieved superior results in

comparison and discussed its advantages over Tango Controls.

3.2 Introduction

As a distributed object-oriented control system framework, Tango Controls defines an

underlying communication protocol and an Application Programming Interface (API) and

26

provides a set of tools and libraries to help programmers build software for industrial control

systems, particularly Supervisory Control and Data Acquisition (SCADA) systems [27]. In

previous chapter, we aimed at evaluating the software quality of Tango Controls. There

are multiple studies with a similar objective, but they have generally aimed to compare

Tango Controls with other open-source and Commercial Off-the-Shelf (COTS) alternatives.

Our approach has been focused on identifying structures and procedures that compromise

software quality. For the purpose of evaluation, we compiled a checklist of control systems

requirements from literature and evaluated Tango Controls in different typical scenarios of

control systems such as general and distributed control systems. Accordingly, we identified

some drawbacks that threatened our checklist items. The results are available in Table 2.2.

Frameworks and libraries employed in software development play a major role in deter-

mining the overall quality of the final product. Using a library migration in Java, Alrubaye

et al. investigated the impact of library migrations on software quality and code readabil-

ity [39]. As a result of their analysis, software quality attributes such as coupling, cohesion,

and cyclomatic complexity can be optimized through library migration. Additionally, read-

ability of the code can be optimized for reasons such as more meaningful method names to

achieve the same functionality in the new library.

The Component-based Software Engineering (CBSE) technique refers to a methodology

for building software using pre-made, reusable software components [40]. According to a

recent study by Chatzipetrou et al. [41], components can be selected from the following four

categories: (1) Open-source Software (OSS), (2) Commercial of the Shelf (COTS) Software,

(3) Internally Developed Software, and (4) Outsourced Developed Software. Based on the

results of their research, open-source software has been the practitioners’ second popular

27

choice as a component selection option.

In this chapter, we propose replacing Tango Controls with a solution pack of open-source

software not only to address the determined shortcomings, i.e., third-party integration, data

storage and exchange, and assurance of the security of the control system, but also to enhance

the software quality attributes in a control system. Our solution pack has been proposed to

use open-source software to enable the final resulting control system to employ the CBSE

approach and to facilitate component selection for the developer of such a control system.

The rest of this chapter is organized as follows: we discuss recent related works in open-

source software adoption, selection, framework development, and middleware framework

trends in Section 3.2. Section 3.3 presents two candidate solutions resulting from the com-

bination of cutting-edge open source projects. To evaluate the efficiency of our candidate

solutions, we take advantage of a real-world control system as a case study and implement

the devices using our potential solutions in Section 3.4. We explain our methodology for eval-

uating candidate solutions in Section 3.5. We present in section 3.6 a quantitative analysis of

the case study implementations using the possible alternatives to Tango Controls acquired

through static code analysis. Our analysis in Section 3.7 examined each implementation

empirically and discussed the differences between them using various terms. The potential

threats to the validity of the methodology of this chapter are presented in section 3.8. In

our final section, Section 3.9, we will conclude the chapter.

28

3.3 Literature Review

In order to collect a set of candidate open-source solutions to address each identified

deficiency, first we need to review literature for studies concerning component adoption

criteria, and risks especially those related to open-source specific materials.

Morandini, Siena, and Susi have conducted a systematic literature review on the risks

within OSS versus COTS components adoption in order to derive appropriate measures [42].

They have used the collected knowledge from literature along with the measures available

on OSS projects websites to build evidence graphs. Such graphs are being used in their

proposed decision making procedure to assess and rank the risks of OSS projects.

Having employed cumulative voting, Chatzipetrou et al. [41] have conducted an anony-

mous survey among industry practitioners responsible for component selection to understand

the characteristics of components that are most important to consider when selecting new

components. According to their results, cost, longevity prediction, and support of the com-

ponent have been the most important attributes that are being considered by practitioners.

Similarly, Butler et al. [43] have anonymously surveyed 13 individuals from six Swedish

software companies to analyze contemporary approaches to OSS component adoption and

the challenges that are faced during this procedure at the attending companies. According

to the responses of interviewees, the authors have categorized the challenges into four groups

as follows: Technical aspects, License related matters, OSS project attributes, and Risks.

For each class, items have been gathered from responses and discussed in detail.

Spinellis has explained how to choose open source components by introducing 13 cri-

teria [44]. This work has separated the considerations into product and process related

29

examination. Several examples of questions have been offered for each criterion, as well as

hints or guidelines on how to assess the criterion.

A framework for component-based software development has been introduced by Khan

et al. [45]. They have proposed a component selection approach by considering standards,

component functionality, and component cost. They have also mentioned ”replacement” as

part of their framework. That is, the component should be substituted due to changes in

requirements or emergence of new functionalities.

Al-Debagy et al. investigated the performance of microservices compared with monolithic

architectures based on throughput, response time, and number of fulfilled requests [46].

Based on their result, monolithic architecture outperforms microservices with a low number

of users. Moreover, monolithic applications are capable of handling requests more rapidly.

A discussion of the design of the distributed control system implemented at the Iranian

National Observatory telescope (INO340) has been conducted by Ravanmehr and Jafarzadeh

[47]. As part of their implementation of a three-tier hierarchical architecture, they have opted

for a publish and subscribe model and Shared Variable Engine (SVE) as the middleware

framework. The criteria for selection have been cited as being widely used, and supporting

multiple operating systems and programming languages.

Similarly, Kirill has described a software architecture that is capable of reducing develop-

ment time, allowing an efficient means of exchanging data, and controlling mobile robots [48].

For this architecture, they have considered supporting multiple platforms, having a mini-

mal size of software components, and having low prior knowledge of requirements. ZeroMQ

messaging library has been employed for the purpose of command transmission between

mechatronic devices to address multi-platformity criterion. In addition, they have suggested

30

using JSON format to communicate control commands and data.

In a study relevant to our case study, Li et al. have discussed trends in architecture

and middleware of radio telescope control systems [49]. They have categorized the software

architectures used in radio telescope control systems into three different classes based on time

periods, i.e. before 1990’s, between 1990 and 2000, and after 2000. They have mentioned

Ice, Tango Controls, and EPICS as the trending middleware frameworks as replacements of

ACS and CORBA.

Garćıa-Valls, Garrido, and Dı́az have conducted a research on comparing a set of se-

lected middleware frameworks based on their run-time architecture types [50]. They have

categorized middleware frameworks from this perspective into two groups: direct execution,

and gateway execution. Therefore, they selected Ice C++ and Corba as representatives for

direct execution and Ice C# and Advanced Message Queuing Protocol (AMPQ) as examples

of gateway execution architectures to be compared in terms of the amount of time needed by

both architectures for executing a predefined remote operation with a fixed processing time.

According to their results, Ice C++ outperforms all other candidate middleware frameworks

by having the lowest overhead time in a lower-performance hardware environment. Built

by ZeroC company, Ice (Internet Communication Engine) is a middleware framework that

provides benefits such as being object-oriented, easy to learn and use, and having efficient

resource usage, and a built-in security. In addition to the mentioned advantages, Ice supports

multiple programming languages, operating systems, and OS architectures [51].

31

3.4 Available Candidate Solutions

Considering the growth of open source software in recent years, to prevent reinventing the

wheel, we have used a Component based software development (CBSD) approach. In this

method, a software product is developed by integrating software components to form each

candidate. According to Synopsys, the average number of open source components employed

in a software product raised by 259% from 2015 to 2020 [52]. Because Tango Controls, the

framework we evaluated, is also open-source, we decided to implement our proposed toolkit

by selecting open source components for each required functionality. In this section, we

will review each Tango Controls deficiency separately and discuss potential open source

components that have the capability to address that shortage through the functionalities

they provide.

The first drawback is the existence of a centralized database with vital stored data. In-

stead, we suggest using an alternative communication protocol for the devices in a control

system to keep connected to each other and continue collaborating. According to the con-

ducted literature review, we will review the candidate solutions to replace Tango Controls.

3.4.1 gRPC + Envoy

gRPC is an open-source, supercharged Remote Procedure Call (RPC) framework that

can be used in any environment. It can efficiently connect polyglot services in a microservice-

style architecture [53]. Two gRPC features that encouraged us to consider deploying it in our

framework are: Diverse supported authentication mechanisms and gRPC server reflection.

First, we need to define a control system schema in gRPC. We think of control system

32

devices as a set of highly encapsulated software components that perform well-defined tasks.

Each device defines a set of services specifying the methods that can be called remotely by

other devices. It also has a stub (client) that provides the same methods as it requires to

call from other devices (servers) [54]. In this way, each device in a control system can be

comprised of gRPC servers and clients.

Having identified how devices are defined, we may begin the process of decentralizing

Tango Controls by repurposing one of the Tango Host roles that is acting as a name server

by storing dynamic network addresses. Burns et al. [55] have conducted research on design

patterns for container-based distributed systems. They have mentioned the Sidecar pattern

as the first and mostly adopted pattern for multi-container deployments, providing reusabil-

ity, and preventing failure propagation. The sidecar proxy pattern handles communications

among microservices [56]. [57] has mentioned Linkerd [58] and Envoy [59] as two popular

sidecar proxies over the last years. Among the primary reasons given by the authors to choose

Envoy over Nginx is the ease of implementing a fully functional traffic management system.

Furthermore, according to Nadig’s [38] research, Linkerd requires substantially higher CPU

and memory requirements. Contrary to Envoy, Linkerd provides a basic configuration lan-

guage and does not support hot reloads, but instead it relies on dynamic provisioning and

service abstractions. Thus, We opt for Envoy to enable service discovery in our framework.

Envoy is an L7 proxy and communication bus designed for large modern service-oriented

architectures. It has been created based on the belief that the network should be transpar-

ent to applications. When network and application problems do occur, it should be easy to

determine the source of the problem [60].

One of the high-level features of Envoy is gRPC support. It supports all of the HTTP/2

33

features needed to be used as the routing and load balancing substrate for gRPC requests

and responses [60]. According to Envoy’s terminology, endpoints are network nodes grouped

in clusters and implement a logical service. Endpoints in a cluster are upstream of an Envoy

proxy [61]. Envoy originated as a service mesh sidecar proxy and removes the responsibility

of load balancing, routing, observability, security, and discovery services from devices. In

the service mesh model, requests flow through Envoys as a gateway to the network. Each

Envoy is equipped with A. Ingress listeners receive requests from other nodes and forward

them to the local application. Envoy flows back responses from the local application to the

downstream. At the same time, egress listeners take requests from the local applications and

forward them to other nodes in the network [61]. Accordingly, each device in a control system

that uses this candidate solution is counted as a node in a service mesh and is associated

with an Envoy.

On the other hand, each device is responsible for storing its startup and any other config-

uration data in a local database accessible only by itself. Hence, we could remove the role of

Tango Host without leaving any of its primary tasks undone. Figure 3.1 illustrates a device

in a control system using our framework.

To ensure the security of our framework, we can leverage the many features offered by

gRPC. One of these features is the authentication mechanisms that gRPC provides, including

SSL/TLS, ALTS (Application Layer Transport Security), and Token-based authentication

with Google. gRPC allows users to extend gRPC to plug in their customized authentication

mechanisms [62]. Moreover, Envoy supports multiple security protocols such as TLS, JSON

Web Token (JWT) Authentication, External Authorization, and Role-Based Access Control

[63].

34

Figure 3.1: Schema of a device in a control system built using gRPC and Envoy

Also, Envoy is a participant in Google’s Vulnerability Reward Program (VRP), meaning

that it is open to all security researchers and will offer rewards for vulnerabilities detected and

reported according to Google and Alphabet Vulnerability Reward Program (VRP) Rules [64].

Besides that, Envoy has encouraged volunteers and users to report any security issues or En-

voy crash reports using email [65]. For instance, on December 10, 2019, three vulnerabilities

in the Envoy proxy were made public; one of which was categorized as “high severity” and

two as “medium severity”. On the same day, Envoy released a new version fixing the is-

sues [66]. Hence, not only the internal communications between the gRPC client and gRPC

server with Envoy within a device is secure, but also the security of external communications

between devices is being managed by Envoy.

35

3.4.2 Ice

An open-source object-oriented RPC-based middleware framework called Ice (Internet

Communication Engine) has emerged as a prominent solution to the problem of communi-

cating in distributed systems, as outlined in the literature review section. In order to provide

an explanation of the control system schema that makes use of this framework, we must first

define all devices in terms of Ice terminology.

According to Ice terminology [67], a device can be defined as a combination of an Ice

object, a set of servants, one or more object adapters, and a number of proxies. Ice objects

are abstract concepts that can respond to other devices’ requests. They are equipped with

at least one interface and globally unique object identity. Interfaces represent a set of named

operations supported by an object. In addition to a return value, each operation has zero or

more parameters. Each parameter and return value has its own type. Known as a servant,

an artifact on each device provides behavior for operation invocations from other devices.

A proxy is a representation of an Ice object from another device that allows a device to

make requests to the other devices. Clients communicate with a server through an object

adapter, a server-side component that provides proxies. Moreover, object adapter routes

incoming requests to appropriate methods of the servant representing the target Ice object

of the request. In Figure 3.2, we have illustrated the structure of an Ice-based device in a

control system that is divided into two components: client-side and server-side.

Ice supports plug-ins that let you add new features to your distributed system without

changing its source code. To ensure the integrity of data and verify the identity of the parties

performing the communication, the IceSSL plug-in can be installed on devices as a security

36

Figure 3.2: Schema of a device in an Ice-based control system

37

measure. These features are provided by IceSSL through the use of the Transport Layer

Security (TLS) protocol [68].

For devices to be able to dynamically locate and communicate with each other, an Ice

plug-in called IceDiscovery can be used. IceGrid is an alternative plug-in that provides more

features, but since it is associated with a centralized database like Tango, we do not use it

to avoid repeating the same error in our solution and keep the solution as light-weight as

possible. IceDiscovery utilizes a type of proxy known as indirect proxy in order to achieve

its goals. The object’s identity is included in all indirect proxies, but some also include an

adapter identifier. A location service implements an Ice object called a locator. A locator is

responsible for transcribing the information provided by an indirect proxy into an endpoint.

A custom locator implementation is installed with IceDiscovery to enable discovery via UDP

multicast [69].

A control system that has been implemented using Ice allows devices to communicate

with each other by sending protocol messages over a medium known as a transport. By

default, TCP, UDP, and WebSocket transports are supported, while SSL, Bluetooth, and

iAP can be enabled by installing their corresponding Ice plug-ins. Hence, we can explain the

communication life cycle between devices. Following our understanding of the components

of an Ice-based device, we can discuss how they interact with each other.

An indirect proxy should be used when a device (e.g. client) is trying to make an RPC

call from another device (e.g. server). IceDiscovery performs a discovery procedure when

using an indirect proxy for the first time in order to determine the proxy server that must be

provided to the client’s location service. Through client’s location service, the client caches

the endpoints for the object adapter that may be utilized to directly communicate with

38

the server over the server object adapter’s supported transports. As a result of the server’s

object adapter, a request is received through an endpoint and mapped to the corresponding

method of the servant that exists as the manifestation of the requested Ice object. By using

the current request’s id, the servant will be able to send a Reply protocol message to the

client.

For the control system to work with an event management system that can function as

an alarm system, such as Tango PANIC [70], the IceStorm service can be employed. This

service is used as a publish-and-subscribe mechanism to distribute events for Ice applications.

Each group of devices, whose work depends on each other, can utilize the same topic on

IceStorm to subscribe to others’ events and publish their own. Furthermore, IceStorm allows

unidirectional links between topics, allowing messages published on one topic to be published

on the receiving topics (i.e. topics linked to a topic with a unidirectional link). This allows the

control system to have a hierarchical distributed event handling function, thereby allowing

for the management of complex control systems to be flexible. By utilizing redundancy and

creating a replica group of IceStorm servers, high availability is ensured in IceStorm.

3.5 Case Study

The Herzberg Astronomy and Astrophysics Research Centre (HAA) of the National Re-

search Council (NRC) is Canada’s premier center for astronomy and astrophysics. It main-

tains the largest and most powerful observatories in Canada and represents Canada at many

of the world’s leading astronomical events [71]. One of the recent projects that HAA is

working on is a control system to control and position dishes, at the Dominion Radio Astro-

39

physical Observatory [72]. The control system also manages processing the received signals

by receivers, and stores the generated data by devices in a database.

An analysis of our proposed candidate solutions against Tango Controls is done by im-

plementing a component of the control system, called Antenna Controller, using both candi-

dates. Figure 3.3 illustrates the software context diagram of the Antenna Controller in the

observatory system.

Internal to each Antenna Controller software are two DriveAxis instances (ANT-AST-

MTR), corresponding to the two axes of motion for the antenna (latitude and longitude).

The Antenna Controller converts on-sky coordinates into motor encoder coordinates and

performs pointing corrections and coordinate transformations. The DriveAxis are then re-

sponsible for actual interfacing with the motor control and status hardware. The latitude

axis (ANT-AST-MTR(lat)) is the axis that controls pointing in the fundamental plane (el-

evation or declination) and the longitude axis (ANT-AST-MTR(lon)) controls pointing in

Antenna_1..7

ANT-AST

ANT-AST-MTR(lat) ANT-AST-MTR(lon)

Executor

Figure 3.3: Software context diagram of the Antenna Controller

40

the primary direction (azimuth or hour angle).

Moreover, the executor is the client that maintains a constant connection to the Antenna

Controller to carry out commands and monitor the status of the antenna. The ANT-AST is

the server that controls the position and velocity of a single antenna by transforming antenna

commands into individual commands for the two motors (DriveAxis) that drive the antenna

axis. In this section, we explain the requirements for the Antenna Controller component.

3.5.1 Initial Configuration

In order for the Antenna Controller to transition from an initial state to a ready state,

the executor will need to send it an initial configuration. The initial configuration is a set of

parameters and values which remain constant during the operation of the Antenna Controller

(i.e. soft position limits, pointing model coefficients).

3.5.2 Antenna Motion Control

In most situations, querying or sending a command to the Antenna Controller leads to

a coordinate transformation followed by a query or command to the DriveAxis interfaces.

If the coordinates in the command are not the same coordinate system as the axes of the

DriveAxis, they will be transformed to the coordinate system of the axes.

The pointing correction model will then be applied to transform the real (on-sky) coor-

dinates to the encoder (motor device) coordinates.

A sequence diagram is presented in Figure 3.4. This diagram illustrates the flow of

requests/responses through the Antenna and DriveAxis interfaces. Thus, implementing lo-

cation and/or velocity tracking can be achieved in a number of ways as follows:

41

Executor

Executor

ANT-AST

ANT-AST

ANT-AST-MTR✕2

ANT-AST-MTR✕2

Real AZ/EL coordinates

New motion setpoint in AZ/EL

Transform to setpoint in HA/DEC

Real AZ/EL coordinates

Apply pointing model

Encoder coordinates

New encoder setpoint

Encoder motion

Apply Pointing model

Real HA/DEC coordinates

Transform to AZ/EL

Real AZ/EL coordinates

Apply motion

Figure 3.4: Sequence diagram of message flow between the Antenna and DriveAxis interfaces

42

• Encoder coordinates are written directly to the underlying motor hardware

within each ANT-AST-MTR instance if the hardware supports position and/or

velocity tracking.

• Encoder coordinates are setpoints of a software PID loop within each ANT-

AST-MTR instance. The PID loop can track position or velocity by feeding

control actions to the motor hardware.

• Linear Quadratic and other space-state style tracking within the ANT-AST

instance for optimizing control of both axes. The outputs of these models can

feed the position, velocity, or manual control actions of each ANT-AST-MTR.

3.5.3 DriveAxis Motion Control

The Antenna Controller receives commands in the form of setpoints for the antenna’s

position or velocity. In order for the DriveAxis to move to the commanded position or

velocity, the Antenna Controller will transpose these coordinates into the coordinate system

of the two DriveAxis instances. As soon as the DriveAxis has a setpoint, a thread managing

the communication to the Antenna Interface Unit (AIU) continually reads the motor encoders

and updates the motor drive parameters in order to track to the setpoint.

The Executor can command the Antenna Controller to track a target by continuously

updating the setpoint with the up-to-date position of the target. When new setpoints are

received, they are compared to the current encoder value, and the control thread adjusts the

velocity of the motors to close the error gap between the setpoint and the actual position. The

activity diagram of the communication between Antenna Controller and Antenna Interface

43

Unit is presented in Figure 3.5.

3.5.4 Antenna Interface Unit: The implemented component

The AIU is controlled by an optically isolated RS-422 interface and can also be operated

by RS-232. The interface is controlled by a computer system sending a serial command byte

followed by any data bytes that are required. A multi-drop communication link is possible

with the RS-422 serial communication option for the AIU. The AIU provides support for six

Focus box M&C Unit

ANT-AST

ANT-AST

ANT-AST-MTR✕2

ANT-AST-MTR✕2 PID

AIU_RS422

AIU_RS422

Encoder coordinates

New encoder setpoint

New encoder setpoint

PID

Encoder motion

Encoder motion

AIU send

AIU rcv

AIU send

AIU rcvPID loop continues
tracking setpoint...

Figure 3.5: Activity diagram of communication between Antenna Controller and Antenna

Interface Unit

44

commands as follows:

• Function 0: Reads the antenna data; syncros, limits, status, and mode.

• Function 1: Writes the motor command; turns motors on for a given time.

• Function 2: Reads from a memory location and returns back the value.

• Function 3: Writes a given byte to a memory location.

• Function 4: Echo test command; Returns a value equal to the antenna address.

• Function 5: Power command; Toggles D7 of the motor direction byte.

We implemented the AIU using three different libraries, including Tango Controls, gRPC

and Envoy (Proposed Candidate number 1), and Ice (Proposed Candidate number 2). The

AIU has not been connected to an antenna during pre-deployment; therefore, a simulator

has been developed in order to simulate the behaviour of the antenna in response to com-

mands. C++ 11 was used as the programming language in order to implement AIU using the

three libraries to avoid the ramifications that would arise from using different programming

languages. In the following section, we will evaluate the three mentioned implementations.

3.6 Evaluation

The source code of the three implementations named in section 4 e.g. Tango Controls,

gRPC, and Ice allows us to evaluate the candidate approaches according to Tango Controls,

by utilizing source code software quality analysis techniques. In a recent study, using empir-

ical research, Nilsson [73] has examined the existing tools for internal quality assessment of

45

software. Among 130 quality assessment tools available, six have been selected by the author

based on criteria such as their ability to integrate with IDEs, version control systems, contin-

uous integration and issue tracker systems. The six selected tools were chosen also based on

their support for 18 scientifically validated internal quality metrics that were validated by at

least two studies in Nilsson’s study. In evaluating the six chosen tools, QA-C, Understand,

CPPDepend, SonarQube, Eclipse Metrics, and Source Monitor, the results indicate that

Understand, QA-C, and SonarQube scored the highest scores respectively. Of the available

tools, SonarQube is the only one (at the time of writing this paper) that provides scores for

Reliability, Maintainability, Security, and Complexity of the source code. Hence, we chose

to use the premium version of this tool, which is equipped with all the features necessary to

evaluate our implementations.

In all three implementations, i.e. using Tango Controls, Ice, and gRPC, a tool automat-

ically generated the header files required for the device to be developed. Pogo is a graphical

user interface (GUI) used in Tango Controls for the definition of device commands, attributes,

and properties. Pogo is able to generate skeleton files, i.e. header files. With gRPC, protoc

was used to create header files from .proto files, which contain messages and service defini-

tions. Like gRPC, Ice uses a compiler called slice2cpp to generate header files from .slice

(Specification Language for Ice) files that encompass modules, interfaces and services. In

our evaluation we considered both the auto-generated files and the source codes developed

manually for each implementation. In the next section, we will discuss the results gathered

from running SonarQube analysis on the implementations.

46

3.7 Quantitative Results

SonarQube produced various measures with respect to reliability, security, maintainabil-

ity, size, and complexity for all three of our implementations. Based on the reliability and

security assessments, all three implementations received an A rating. In the following sub-

sections, we will discuss the remaining measures.

3.7.1 Maintainability

SonarQube metric definitions [74] define Technical Debt as the effort necessary to fix all

Code Smells. Values in days are assumed to be based on an 8-hour work day. Technical

debt ratio refers to the ratio of the cost of developing software to the cost of fixing it.

These measures are presented in Table 3.1 for each of the three implementations. The

maintainability metrics for Ice were lowest,

whereas the Technical Debt and the Technical Debt Ratio were highest for gRPC and

Tango Controls.

Table 3.1: Maintainability Measures of The Implementations

Implementation Technical Debt Technical Debt

Ratio

gRPC 11 Days 3.2%

Ice 7 Hours 31 Minutes 0.7%

Tango Controls 3 Days 5 Hours 4.5%

47

3.7.2 Complexity

Cyclomatic Complexity is measured by counting the number of paths through the code.

The complexity counter is incremented whenever the control flow of a function is split.

Cognitive Complexity refers to the difficulty of understanding the control flow of a program.

Campbell has provided a detailed explanation of this metric [75]. Analysis of the results state

that Ice achieved the least degree of cyclomatic and cognitive complexity, however gRPC

exhibited the greatest degree of cyclomatic complexity, and Tango Controls demonstrated

the least degree of understandability. A numerical analysis of the complexity metrics for the

implementations is presented in Table 3.2.

3.7.3 Size

Four metrics have been collected from the analysis of the results regarding size. Lines of

code can be described as the number of physical lines that contain at least one character.

This character does not belong to whitespace, a tabulation, or a comment. Classes encompass

the entire set of classes, including interfaces, enums, annotations, and nested classes. The

Table 3.2: Complexity Measures of The Implementations

Implementation Cyclomatic Complexity Cognitive Com-

plexity

gRPC 605 159

Ice 105 116

Tango Controls 255 173

48

other two metrics count the number of functions and files for each implementation. The

implementation using gRPC resulted in the largest size across three of the four size metrics,

i.e. lines of code, classes, and functions. Conversely, the implementation by Ice achieved

the lowest number of files, functions and classes. Table 3.3 outlines the results of the size

metrics calculated for the three implementations.

3.7.4 Results Conclusion

The scoring for Ice was favorable in seven of the eight measures, making it the best

candidate to replace Tango Controls based on maintainability and complexity. In contrast,

the other candidate, gRPC, achieved the poorest results in half of the metrics, and therefore,

cannot be considered a suitable alternative to Tango Controls.

3.8 Empirical Analysis

The purpose of this section is to summarize the empirical analysis conducted using the

three candidates to implement the case study. Tango Controls offers a graphical user interface

Table 3.3: Size Measures of The Implementations

Implementation Lines of Code Classes Functions Files

gRPC 5531 59 516 5

Ice 2239 7 56 3

Tango Controls 1315 22 158 7

49

known as Pogo to generate Skeleton codes for the device server, as discussed in the Evaluation

section. When using this tool, novice users are faced with the challenge of selecting between

device properties, read-only device attributes, write-only device attributes, and read/write

device attributes. The limited number of input arguments for Tango commands presents a

further challenge to overcome. Specifically, Tango Controls allow only one input and output

argument per command [76]. Though the argument may be an array of a specific data type,

since a command may output or input data of different types, the developer must deal with

data conversions manually in order to fit the data into the array.

This means that during the development process more code will be added, which could

affect the maintainability of the implementation. Moreover, the implementation of the de-

vice server takes place within one of the automatically generated source code files by Pogo

within the defined protected regions of the code. As a result of the presence of both au-

tomatically generated and manually added codes in a file, maintainability issues may arise

since developers will have to locate code blocks that have been added manually. With gRPC

and Ice, the auto-generated files are kept apart from the implementation source code that is

developed manually.

On the other hand, the implementation procedure using gRPC and Ice was similar, since

both are RPC-based frameworks. Both frameworks require the supported services to be

defined with a specific syntax in a file that is used to generate the skeleton (header) files. In

the case of gRPC, however, the use of a supported proto data type for the input or output

arguments of the RPC is not permitted. In other words, basic data types should be defined

as messages before being used in RPC arguments. The result is an extra amount of work

and the creation of multiple messages with a single message field. In addition, each field in

50

the message definition is uniquely numbered in the Proto language [77]. The field number is

used to identify each field in the binary format of a message, and should not be changed once

your message type is in place. This number should be assigned manually, so the developer’s

involvement is required. In contrast, Ice did not experience the difficulties noted above in

defining RPCs in the Slice language.

3.9 Threats To Validity

In our methodology focused only on open-source candidates, but there may also be com-

mercial solutions that may be considered as Tango Controls alternatives. In addition, while

we used static source code analysis to compare the candidates based on maintainability,

complexity, and size, more advanced metrics related to performance, such as load testing,

could be used to further examine the discussed candidates. Furthermore, considering the size

and complexity of the device to which the candidate solutions were applied, the concluded

results may or may not be applicable to larger and more complex devices that form a control

system.

3.10 Conclusion & Future Work

This chapter explored two potential middleware frameworks to replace Tango Controls

by reviewing relevant literature and gathering trends in solutions that are currently being

used in similar settings. With gRPC and Ice as the candidates, we conducted a real-world

case study at the Dominion Radio Astrophysical Observatory using these candidates and

Tango Controls. We used SonarQube to conduct a static analysis of the source code of each

51

implementation to determine metrics relevant to maintainability, complexity, and size of the

source code of each candidate solution. In addition, we discussed the empirical analysis of

those implementations from different perspectives. Considering the results of the SonarQube

analysis and our own empirical analysis, Ice is the most appropriate replacement for Tango

Controls. In the future, we may include commercial off-the-shelf middleware frameworks in

our comparison, as well as perform performance and scalability tests, as well as measure

overhead for each candidate solution.

52

Chapter 4

Conclusion and Future Work

4.1 Summary and Conclusion

This thesis elaborated on a process to analyze Tango Controls’ software quality threats.

We proposed alternative solutions to replace Tango Controls and introduced the superior.

The overall process started with creating an evaluation checklist based on the SCADA

intrinsic requirements. The checklist was then used to analyze Tango Controls’ mechanisms

by scrutinizing its documentation. The mechanisms and features were examined by consid-

ering two general types of control systems, distributed and centralized. The analysis led to

the identification of three drawbacks that violated our checklist items. Chapter 2 discussed

the process up to this point.

In Chapter 3, we continued the research progress by proposing two candidate solutions

combined based on the CBSD approach. Our candidates were gRPC along with Envoy,

and Ice. We discussed the potential of each candidate solution to cover Tango Controls’

disadvantages. Since we showed both candidates could cover the drawbacks, we needed to

evaluate them against Tango Controls further. Hence, we implemented a real-world control

system module at DRAO using candidate solutions and Tango Controls.

We relied on SonarQube’s static source code analysis results to evaluate the implementa-

tion in terms of code complexity, maintainability of the code, and their sizes. According to

the quantitative results, Ice outperformed Tango Controls and the combination of gRPC and

53

Envoy in 7 out of 8 measures. It was only on the lines of code that Ice could not compete

with other alternatives.

Furthermore, we empirically analyzed the implementation from a developer’s perspective

to highlight each candidate’s strengths and weaknesses. The following are the highlights of

each candidate:

• Tango Controls

– Issues

∗ Confusing GUI options for novice users without a

guideline.

∗ Limited input and output arguments.

∗ User-written code is mixed with auto-generated

code.

– Impact

∗ Lowering code maintainability

∗ Increased code complexity

• gRPC+Envoy

– Issues

∗ Lack of support for proto data types in RPC ar-

guments

∗ Requiring manual input from the developer for

field numbers.

54

– Impact

∗ Increased lines of code

According to our quantitative results and empirical analysis, Ice is superior to gRPC+Envoy

and Tango Controls.

4.2 Limitations

The initial constraint of our study pertains to the sources we utilized to compile our

evaluation checklist. While scholarly references offer a scientific foundation for conceptual

understanding, incorporating the viewpoints of practitioners would have strengthened our

checklist’s reliability. By engaging with control system practitioners from institutions like

DRAO and global observatories like ALBA in Spain, a more triangulated perspective could

have been achieved. This avenue would have provided insights into real-world scenarios and

diversified our control systems scenarios.

The subsequent limitation we encounter revolves around the resources employed to iden-

tify software quality threats within Tango Controls. Our reliance on its documentation stems

from its status as a primary guideline shaped by the OSS developer community. This ap-

proach aimed to minimize potential misinformation by tapping directly into the expertise of

OSS developers. However, broadening the spectrum of information sources during the evalu-

ation phase could have exposed additional issues. Such diversification would have mitigated

any inherent bias towards Tango Controls’ content.

The formulation of our alternative solutions rested on references to OSS libraries, a choice

rooted in the widespread adoption of OSS across industrial and governmental domains. How-

55

ever, exploring Commercial Off-The-Shelf (COTS) alternatives might have yielded different

candidates. In the context of static source code analysis, we drew from a prior study that

evaluated various tools, elevating SonarQube – our chosen tool – to their elite selections. The

objective selection of SonarQube was guided by existing research and the comprehensiveness

of its metrics. While our analysis encompassed three distinct measurement dimensions for

each implementation, further comparisons could delve into advanced metrics like load testing.

However, it’s important to note that our findings might not readily extend to expansive

control systems with multifarious modules, given our focus on a rudimentary control system

module during implementation. Additionally, the evaluation’s foundation in the researcher’s

developed code introduces the potential for researcher-based expertise influencing quantita-

tive outcomes. Nevertheless, this influence remains minimal due to the uniform familiarity

with all alternatives and Tango Controls held by the researcher, thus mitigating the risk of

bias.

4.3 Future Work

This study highlighted a notable concern: the considerable time and resource investment

required for executing an assessment of OSS quality. This concern is particularly relevant

for small to medium-sized businesses.

In recent years, the adoption of Deep Learning techniques to address diverse text clas-

sification assignments has gained substantial traction. Tasks such as question answering,

sentiment analysis, topic analysis, natural language inference, and news categorization have

all witnessed a surge in the application of Deep Learning methodologies. In particular, Nat-

56

ural Language Inference has garnered attention for its capacity to enable machines to deduce

conclusions based on an understanding of real-world principles, extending beyond explicit

textual content [78].

Numerous online resources are at our disposal to gather information about OSS projects.

GitHub, a prominent platform hosting a plethora of open-source projects, serves as a repos-

itory of valuable insights. It offers extensive data on pull requests, forked repositories,

stars, tags, and incorporates social coding functionalities [79]. Leveraging this information,

valuable software-related metrics can be inferred, aiding in assessing maintenance activities

within OSS projects [80].

In the realm of developer engagement, Stack Overflow stands as a prime illustration of the

escalating popularity of community-driven question-and-answer (Q&A) platforms. Boasting

over a hundred million monthly visitors and a user base exceeding 21 million, Stack Overflow

underscores the growth in the appeal of such platforms among developers [81]. Given the

vast wealth of information amassed on this platform, researchers have efficiently mined its

resources for an array of Software Engineering tasks [82–85].

Consequently, the trajectory of this research points towards the expansion and general-

ization of the findings presented in this thesis. This will be achieved by introducing a natural

language processing (NLP)-powered tool that systematically processes various online infor-

mation sources related to an OSS library. The ultimate goal of this tool is to furnish a

comprehensive software quality report. Moreover, this tool’s potential is not limited to re-

porting; it has the capacity to evolve into a dynamic recommendation system for open-source

software. This recommendation system would not only offer insightful suggestions but also

possess the capability to adapt and refine its recommendations over time, driven by ongoing

57

monitoring of pertinent information sources.

In conclusion, the fusion of deep learning techniques, comprehensive online resources,

and the development of an intelligent NLP-powered tool marks a promising direction for the

future. This trajectory has the potential to reshape how businesses approach OSS assessment

and adoption, fostering more informed decision-making, optimizing resource allocation, and

ultimately contributing to the advancement of software quality and innovation. As this

research evolves into actionable tools, the impact on both small and medium-sized enterprises

and the wider software development community could be transformative.

58

Bibliography

[1] “Tango REST API — Tango Controls 9.3.4 documentation.” [Online]. Available:

https://tango-controls.readthedocs.io/en/latest/development/advanced/rest-api.html

[2] N. A. K. Umm-e Laila, A. Arfeen, and S. Hassan, “TRENDS OF OPEN SOURCE

SOFTWARE IN MISSION CRITICAL ITS SERVICES INFRASTRUCTURES ADOP-

TION IN LOCAL ENVIRONMENT.”

[3] V. Lenarduzzi, D. Taibi, D. Tosi, L. Lavazza, and S. Morasca, “Open Source Software

Evaluation, Selection, and Adoption: A Systematic Literature Review,” Proceedings -

46th Euromicro Conference on Software Engineering and Advanced Applications, SEAA

2020, pp. 437–444, 8 2020.

[4] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, “The SQO-OSS Quality

Model: Measurement Based Open Source Software Evaluation,” IFIP International

Federation for Information Processing, vol. 275, pp. 237–248, 2008. [Online]. Available:

https://link.springer.com/chapter/10.1007/978-0-387-09684-1 19

[5] A. Imani, M. Moshirpour, and L. Belostotski, “Checklist-based Software Quality Evalua-

tion of Tango Controls,” in Proceedings - 2021 International Conference on Information

Systems and Advanced Technologies, ICISAT 2021, 2021.

[6] R. M. Van Der Knijff, “Control systems/SCADA forensics, what’s the difference?” Dig-

ital Investigation, vol. 11, no. 3, pp. 160–174, 9 2014.

[7] A. Daneels and W. Salter, “What is SCADA?” 1999. [Online]. Available:

59

https://tango-controls.readthedocs.io/en/latest/development/advanced/rest-api.html
https://link.springer.com/chapter/10.1007/978-0-387-09684-1_19

https://accelconf.web.cern.ch/ica99/papers/mc1i01.pdf

[8] I. Morsi and L. M. El-Din, “SCADA system for oil refinery control,” Measurement,

vol. 47, no. 1, pp. 5–13, 1 2014.

[9] O. Barana, P. Barbato, M. Breda, R. Capobianco, A. Luchetta, F. Molon, M. Moressa,

P. Simionato, C. Taliercio, and E. Zampiva, “Comparison between commercial and

open-source SCADA packages—A case study,” Fusion Engineering and Design, vol. 85,

no. 3-4, pp. 491–495, 7 2010.

[10] “About us - TANGO Controls.” [Online]. Available: https://www.tango-controls.org/

about-us/#History

[11] “Why choose Tango Controls ? - TANGO Controls.” [Online]. Available:

https://www.tango-controls.org/why-tango-controls/

[12] S. Rubio-Manrique, G. Cuńı, D. Fernández-Carreiras, C. Pascual-Izarra, D. Roldán,

and E. Al-Dmour, “Unifying all TANGO control services in a customizable graphical

user interface,” Proceedings of the 15th International Conference on Accelerator

and Large Experimental Physics Control Systems, 1 2016. [Online]. Available:

http://inis.iaea.org/Search/search.aspx?orig q=RN:51100788

[13] “WELCOME TO ALBA — en.” [Online]. Available: https://www.albasynchrotron.es/

en/about/welcome

[14] “Welcome to Tango Controls documentation! — Tango Controls 9.3.4 documentation.”

[Online]. Available: https://tango-controls.readthedocs.io/en/latest/index.html

60

https://accelconf.web.cern.ch/ica99/papers/mc1i01.pdf
https://www.tango-controls.org/about-us/#History
https://www.tango-controls.org/about-us/#History
https://www.tango-controls.org/why-tango-controls/
http://inis.iaea.org/Search/search.aspx?orig_q=RN:51100788
https://www.albasynchrotron.es/en/about/welcome
https://www.albasynchrotron.es/en/about/welcome
https://tango-controls.readthedocs.io/en/latest/index.html

[15] P. P. Goryl and M. Liszcz, “TOWARDS IMPROVED ACCESSIBILITY OF THE

TANGO CONTROLS *,” 2019. [Online]. Available: https://www.docslikecode.com

[16] “Classes Catalogue - TANGO Controls.” [Online]. Available: https://www.

tango-controls.org/developers/dsc/

[17] R. Bourtembourg, S. James, J. L. Pons, P. Verdier, G. Cuni, S. Rubio-Manrique, G. A.

Fatkin, A. I. Senchenko, V. Sitnov, L. Pivetta, and others, “Pushing the Limits of Tango

Archiving System using PostgreSQL and Time Series Databases,” in 17th Biennial In-

ternational Conference on Accelerator and Large Experimental Physics Control Systems,

2019.

[18] M. Drochner, L. Fleischhauer-Fuss, H. Kleines, M. Wagener, S. v. Waasen, and F. Z.

Jülich, “Neutron scattering instrument control system modernization-front-end hard-

ware and software adaption problems,” 2015.

[19] D. Bolkhovityanov and P. Cheblakov, “A Comparative Analysis of the Architecture

of Control Systems of Physical Research Facilities,” Physics of Particles and

Nuclei Letters 2020 17:4, vol. 17, no. 4, pp. 571–573, 7 2020. [Online]. Available:

https://link.springer.com/article/10.1134/S1547477120040123

[20] R. Barcelos and G. Travassos, “Evaluation Approaches for Software Architectural Doc-

uments: a Systematic Review.” 9 2006, pp. 433–446.

[21] Y. Chen, X. Yan, and A. A. Khan, “A Novel Reliability Assessment Method Based

on the Effects of Components,” in Proceedings - 19th IEEE International Conference

61

https://www.docslikecode.com
https://www.tango-controls.org/developers/dsc/
https://www.tango-controls.org/developers/dsc/
https://link.springer.com/article/10.1134/S1547477120040123

on Software Quality, Reliability and Security, QRS 2019. Institute of Electrical and

Electronics Engineers Inc., 7 2019, pp. 69–76.

[22] C. Alcaraz and J. Lopez, “Analysis of requirements for critical control systems,” Inter-

national Journal of Critical Infrastructure Protection, vol. 5, no. 3-4, pp. 137–145, 12

2012.

[23] K. Stouffer, J. Falco, K. Scarfone, and others, “Guide to industrial control systems

(ICS) security,” NIST special publication, vol. 800, no. 82, p. 16, 2011.

[24] T. Frank, M. Merz, K. Eckert, T. Hadlich, B. Vogel-Heuser, A. Fay, and C. Diedrich,

“Dealing with non-functional requirements in distributed control systems engineering,”

IEEE International Conference on Emerging Technologies and Factory Automation,

ETFA, 2011.

[25] A. Avižienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy

of dependable and secure computing,” IEEE Transactions on Dependable and Secure

Computing, vol. 1, no. 1, pp. 11–33, 1 2004.

[26] B. Penzenstadler, “Towards a Definition of Sustainability in and for Software Engineer-

ing,” Proceedings of the 28th Annual ACM Symposium on Applied Computing - SAC

’13, 2013.

[27] “Overview of Tango Controls — Tango Controls 9.3.4 documentation.” [Online].

Available: https://tango-controls.readthedocs.io/en/latest/overview/overview.html

[28] “Glossary — Tango Controls 9.3.4 documentation.” [Online]. Available: https:

//tango-controls.readthedocs.io/en/latest/reference/glossary.html

62

https://tango-controls.readthedocs.io/en/latest/overview/overview.html
https://tango-controls.readthedocs.io/en/latest/reference/glossary.html
https://tango-controls.readthedocs.io/en/latest/reference/glossary.html

[29] J. McCall, P. Richards, and G. Walters, “Factors in software quality. volume

i. concepts and definitions of software quality,” vol. I, 1977. [Online]. Available:

https://apps.dtic.mil/sti/citations/ADA049014

[30] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of software qual-

ity,” in Proceedings of the 2nd international conference on Software engineering, 1976,

pp. 592–605.

[31] R. Grady, Practical software metrics for project management and process improvement,

1992. [Online]. Available: https://dl.acm.org/doi/abs/10.5555/140207

[32] J. P. Miguel, D. Mauricio, and G. Rodriguez, “A Review of Software Quality

Models for the Evaluation of Software Products,” International Journal of Software

Engineering & Applications, vol. 5, no. 6, pp. 31–53, 12 2014. [Online]. Available:

https://arxiv.org/abs/1412.2977v1

[33] J. C. Knight, “Safety critical systems: challenges and directions,” in Proceedings of the

24th International Conference on Software Engineering. ICSE 2002, 2002, pp. 547–550.

[34] V. R. Westmark, “A definition for information system survivability,” Proceedings of the

Hawaii International Conference on System Sciences, vol. 37, pp. 4827–4836, 2004.

[35] R. D’Andrea and G. E. Dullerud, “Distributed Control Design for Spatially Intercon-

nected Systems,” IEEE Transactions on Automatic Control, vol. 48, no. 9, pp. 1478–

1495, 9 2003.

[36] “The Tango controlled access system — Tango Controls 9.3.4 documentation.”

63

https://apps.dtic.mil/sti/citations/ADA049014
https://dl.acm.org/doi/abs/10.5555/140207
https://arxiv.org/abs/1412.2977v1

[Online]. Available: https://tango-controls.readthedocs.io/en/latest/administration/

services/access-control.html

[37] “HAProxy version 2.3.10 - Starter Guide.” [Online]. Available: http://cbonte.github.

io/haproxy-dconv/2.3/intro.html

[38] N. Dattatreya Nadig, “Testing Resilience of Envoy Service Proxy with Microservices,”

DEGREE PROJECT IN TECHNOLOGY, 2019.

[39] H. Alrubaye, D. Alshoaibi, E. Alomar, M. W. Mkaouer, and A. Ouni, “How

Does Library Migration Impact Software Quality and Comprehension? An

Empirical Study,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Springer, Cham, 12 2020, vol. 12541 LNCS, pp. 245–260. [Online]. Available:

http://link.springer.com/10.1007/978-3-030-64694-3 15

[40] C. Szyperski, Component software: beyond object-oriented programming. New York

: Harlow, England ; Reading, Mass.: ACM Press ; Addison-Wesley, 1997.

[Online]. Available: //catalog.hathitrust.org/Record/003963284http://hdl.handle.net/

2027/mdp.39015040372081

[41] P. Chatzipetrou, E. Papatheocharous, K. Wnuk, M. Borg, E. Alégroth, and

T. Gorschek, “Component attributes and their importance in decisions and component

selection,” Software Quality Journal, vol. 28, no. 2, pp. 567–593, 6 2020. [Online].

Available: https://link.springer.com/article/10.1007/s11219-019-09465-2

[42] M. Morandini, A. Siena, and A. Susi, “Risk Awareness in Open Source Component

64

https://tango-controls.readthedocs.io/en/latest/administration/services/access-control.html
https://tango-controls.readthedocs.io/en/latest/administration/services/access-control.html
http://cbonte.github.io/haproxy-dconv/2.3/intro.html
http://cbonte.github.io/haproxy-dconv/2.3/intro.html
http://link.springer.com/10.1007/978-3-030-64694-3_15
//catalog.hathitrust.org/Record/003963284 http://hdl.handle.net/2027/mdp.39015040372081
//catalog.hathitrust.org/Record/003963284 http://hdl.handle.net/2027/mdp.39015040372081
https://link.springer.com/article/10.1007/s11219-019-09465-2

Selection,” Lecture Notes in Business Information Processing, vol. 176 LNBIP,

pp. 241–252, 2014. [Online]. Available: https://link.springer.com/chapter/10.1007/

978-3-319-06695-0 21

[43] S. Butler, J. Gamalielsson, B. Lundell, C. Brax, A. Mattsson, T. Gustavsson,

J. Feist, B. Kvarnström, and E. Lönroth, “Considerations and challenges for

the adoption of open source components in software-intensive businesses,” Journal

of Systems and Software, vol. 186, p. 111152, 4 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0164121221002442?via%3Dihub

[44] D. Spinellis, “How to Select Open Source Components,” Computer, vol. 52, no. 12, pp.

103–106, 12 2019.

[45] F. Khan, M. Tahir, F. Arif, M. Babar, and S. Khan, “Framework for Better Reusability

in Component Based Software Engineering,” Journal of Applied Environmental and

Biological Sciences, vol. 6, pp. 77–81, 1 2016.

[46] O. Al-Debagy and P. Martinek, “A Comparative Review of Microservices and Monolithic

Architectures,” 18th IEEE International Symposium on Computational Intelligence and

Informatics, CINTI 2018 - Proceedings, pp. 149–154, 11 2018.

[47] R. Ravanmehr and A. Jafarzadeh, “INO340 telescope control system: Software archi-

tecture and development,” vol. 9152, 2 2014, p. 91521Q.

[48] K. Kirill, “Software Architecture of Control System for Heterogeneous Group of Mobile

Robots,” Procedia Engineering, vol. 100, no. January, pp. 278–282, 1 2015.

65

https://link.springer.com/chapter/10.1007/978-3-319-06695-0_21
https://link.springer.com/chapter/10.1007/978-3-319-06695-0_21
https://www.sciencedirect.com/science/article/pii/S0164121221002442?via%3Dihub

[49] J. Li, N. Wang, Z. Liu, Y. Song, N. Li, L. Xu, and J. Wang, “Trends in Architecture

and Middleware of Radio Telescope Control System,” Advances in Astronomy, vol.

2021, p. 2655250, 2021. [Online]. Available: https://doi.org/10.1155/2021/2655250

[50] M. Garćıa-Valls, D. Garrido, and M. Dı́az, “Impact of Middleware Design on the

Communication Performance,” in International Conference on Green, Pervasive, and

Cloud Computing, vol. 10232 LNCS. Springer, Cham, 2017, pp. 505–519. [Online].

Available: https://link.springer.com/chapter/10.1007/978-3-319-57186-7 37

[51] Y. Li, J. Zhou, L. Guo, Y. Wang, and R. Yi, “Research on Distributed

Network Communication Based on ICE Middleware,” in Proceedings of the 2016

6th International Conference on Machinery, Materials, Environment, Biotechnology

and Computer. Atlantis Press, 6 2016, pp. 577–581. [Online]. Available:

https://doi.org/10.2991/mmebc-16.2016.124

[52] “[Analyst Report] 2021 Open Source Security and Analysis Report — Syn-

opsys.” [Online]. Available: https://www.synopsys.com/software-integrity/resources/

analyst-reports/open-source-security-risk-analysis.html

[53] “About gRPC — gRPC.” [Online]. Available: https://grpc.io/about/

[54] “Introduction to gRPC — gRPC.” [Online]. Available: https://grpc.io/docs/

what-is-grpc/introduction/

[55] B. Burns and D. O. Google, “Design patterns for container-based distributed systems.”

[56] “Sidecar proxy — Mastering Service Mesh.” [Online].

66

https://doi.org/10.1155/2021/2655250
https://link.springer.com/chapter/10.1007/978-3-319-57186-7_37
https://doi.org/10.2991/mmebc-16.2016.124
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://grpc.io/about/
https://grpc.io/docs/what-is-grpc/introduction/
https://grpc.io/docs/what-is-grpc/introduction/

Available: https://learning.oreilly.com/library/view/mastering-service-mesh/

9781789615791/fa3c5838-691d-40e9-b582-a34d3a904e4b.xhtml

[57] A. Khatri and V. Khatri, Mastering Service Mesh: Enhance, secure, and observe cloud-

native applications with Istio, Linkerd, and Consul. Packt Publishing Ltd, 2020.

[58] “The world’s lightest, fastest service mesh. — Linkerd.” [Online]. Available:

https://linkerd.io/

[59] “Envoy Proxy - Home.” [Online]. Available: https://www.envoyproxy.io/

[60] “What is Envoy — envoy 1.19.0-dev-4533ea documentation.” [Online]. Available:

https://www.envoyproxy.io/docs/envoy/latest/intro/what is envoy

[61] “Life of a Request — envoy 1.19.0-dev-4533ea documentation.” [Online]. Available:

https://www.envoyproxy.io/docs/envoy/latest/intro/life of a request

[62] “Authentication — gRPC.” [Online]. Available: https://grpc.io/docs/guides/auth/

[63] “Security — envoy 1.19.0-dev-5c8d4d documentation.” [Online]. Available: https:

//www.envoyproxy.io/docs/envoy/latest/intro/arch overview/security/security

[64] “Google Vulnerability Reward Program (VRP) — envoy 1.19.0-dev-5c8d4d docu-

mentation.” [Online]. Available: https://www.envoyproxy.io/docs/envoy/latest/intro/

arch overview/security/google vrp#google-vulnerability-reward-program-vrp

[65] “Security Policy · envoyproxy/envoy.” [Online]. Available: https://github.com/

envoyproxy/envoy/security/policy

67

https://learning.oreilly.com/library/view/mastering-service-mesh/9781789615791/fa3c5838-691d-40e9-b582-a34d3a904e4b.xhtml
https://learning.oreilly.com/library/view/mastering-service-mesh/9781789615791/fa3c5838-691d-40e9-b582-a34d3a904e4b.xhtml
https://linkerd.io/
https://www.envoyproxy.io/
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/life_of_a_request
https://grpc.io/docs/guides/auth/
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/security
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/security
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/google_vrp#google-vulnerability-reward-program-vrp
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/google_vrp#google-vulnerability-reward-program-vrp
https://github.com/envoyproxy/envoy/security/policy
https://github.com/envoyproxy/envoy/security/policy

[66] “Recent Vulnerabilities in Envoy Explained, Including Impact to Istio.” [Online]. Avail-

able: https://www.paloaltonetworks.com/blog/2019/12/cloud-envoy-vulnerabilities/

[67] “Terminology - Ice.” [Online]. Available: https://doc.zeroc.com/ice/3.7/ice-overview/

ice-architecture/terminology

[68] “IceSSL - Ice.” [Online]. Available: https://doc.zeroc.com/ice/3.7/ice-plugins/icessl

[69] “IceDiscovery - Ice.” [Online]. Available: https://doc.zeroc.com/ice/3.7/ice-plugins/

icediscovery

[70] “PANIC Description — panic documentation.” [Online]. Available: https://

tango-controls.readthedocs.io/projects/panic/en/latest/description.html

[71] “Herzberg Astronomy and Astrophysics Research Centre.” [Online].

Available: https://nrc.canada.ca/en/research-development/research-collaboration/

research-centres/herzberg-astronomy-astrophysics-research-centre

[72] “Dominion Radio Astrophysical Observatory research facility.” [On-

line]. Available: https://nrc.canada.ca/en/research-development/nrc-facilities/

dominion-radio-astrophysical-observatory-research-facility

[73] M. Nilsson, “A Comparative Case Study on Tools for Internal Software Quality

Measures,” 2019. [Online]. Available: http://hdl.handle.net/2077/62453

[74] “Metric Definitions — SonarCloud Docs.” [Online]. Available: https://docs.sonarcloud.

io/digging-deeper/metric-definitions/

68

https://www.paloaltonetworks.com/blog/2019/12/cloud-envoy-vulnerabilities/
https://doc.zeroc.com/ice/3.7/ice-overview/ice-architecture/terminology
https://doc.zeroc.com/ice/3.7/ice-overview/ice-architecture/terminology
https://doc.zeroc.com/ice/3.7/ice-plugins/icessl
https://doc.zeroc.com/ice/3.7/ice-plugins/icediscovery
https://doc.zeroc.com/ice/3.7/ice-plugins/icediscovery
https://tango-controls.readthedocs.io/projects/panic/en/latest/description.html
https://tango-controls.readthedocs.io/projects/panic/en/latest/description.html
https://nrc.canada.ca/en/research-development/research-collaboration/research-centres/herzberg-astronomy-astrophysics-research-centre
https://nrc.canada.ca/en/research-development/research-collaboration/research-centres/herzberg-astronomy-astrophysics-research-centre
https://nrc.canada.ca/en/research-development/nrc-facilities/dominion-radio-astrophysical-observatory-research-facility
https://nrc.canada.ca/en/research-development/nrc-facilities/dominion-radio-astrophysical-observatory-research-facility
http://hdl.handle.net/2077/62453
https://docs.sonarcloud.io/digging-deeper/metric-definitions/
https://docs.sonarcloud.io/digging-deeper/metric-definitions/

[75] G. Ann Campbell, “Cognitive Complexity — An Overview and Evaluation,”

Proceedings of the 2018 International Conference on Technical Debt, 2018. [Online].

Available: https://doi.org/10.1145/3194164.3194186

[76] “Guidelines — Tango Controls 9.3.4 documentation.” [Online]. Avail-

able: https://tango-controls.readthedocs.io/en/latest/development/device-api/

ds-guideline/device-server-guidelines.html

[77] “Language Guide (proto3) — Protocol Buffers — Google Developers.” [Online].

Available: https://developers.google.com/protocol-buffers/docs/proto3

[78] S. Storks, Q. Gao, and J. Y. Chai, “Recent Advances in Natural Language Inference:

A Survey of Benchmarks, Resources, and Approaches,” 4 2019. [Online]. Available:

https://arxiv.org/abs/1904.01172v3

[79] M. AlMarzouq, A. AlZaidan, and J. AlDallal, “Mining GitHub for research and educa-

tion: challenges and opportunities,” International Journal of Web Information Systems,

2020.

[80] J. Coelho, M. T. Valente, L. Milen, and L. L. Silva, “Is this GitHub project

maintained? Measuring the level of maintenance activity of open-source projects,”

Information and Software Technology, vol. 122, p. 106274, 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0950584920300240

[81] “Empowering the world to develop technology through collective knowledge - Stack

Overflow.” [Online]. Available: https://stackoverflow.co/

69

https://doi.org/10.1145/3194164.3194186
https://tango-controls.readthedocs.io/en/latest/development/device-api/ds-guideline/device-server-guidelines.html
https://tango-controls.readthedocs.io/en/latest/development/device-api/ds-guideline/device-server-guidelines.html
https://developers.google.com/protocol-buffers/docs/proto3
https://arxiv.org/abs/1904.01172v3
https://www.sciencedirect.com/science/article/pii/S0950584920300240
https://stackoverflow.co/

[82] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto, “Sentiment

Analysis for Software Engineering: How Far Can We Go?” in Proceedings of the 40th

International Conference on Software Engineering, ser. ICSE ’18. New York, NY,

USA: Association for Computing Machinery, 2018, pp. 94–104. [Online]. Available:

https://doi.org/10.1145/3180155.3180195

[83] S. Wang, N. Phan, Y. Wang, and Y. Zhao, “Extracting API Tips from Developer

Question and Answer Websites,” in 2019 IEEE/ACM 16th International Conference on

Mining Software Repositories (MSR), 2019, pp. 321–332.

[84] G. Uddin and F. Khomh, “Automatic Mining of Opinions Expressed About APIs in

Stack Overflow,” IEEE Transactions on Software Engineering, vol. 47, no. 3, pp. 522–

559, 2021.

[85] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment Polarity Detection

for Software Development,” Empirical Software Engineering, vol. 23, no. 3, pp.

1352–1382, 2018. [Online]. Available: https://doi.org/10.1007/s10664-017-9546-9

70

https://doi.org/10.1145/3180155.3180195
https://doi.org/10.1007/s10664-017-9546-9

Appendix A

Figure A.1: Chapter 3 Notification of Acceptance

71

