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Abstract

In this thesis, we present two new quantum algorithms for graph problems.

The first algorithm we give is a memoryless walk that can find a unique marked

vertex on a two-dimensional grid. Our walk is based on a construction proposed

by Falk, which tessellates the grid with squares of size 2× 2. Our walk uses min-

imal memory, O (
p

N log N ) applications of the walk operator, and outputs the

marked vertex with vanishing error probability. To accomplish this, we apply a

selfloop to the marked vertex—a technique we adapt from interpolated walks.

We prove that with our explicit choice of selfloop weight, this forces the action of

the walk asymptotically into a single rotational space. We characterize this space

and as a result, show that our memoryless walk produces the marked vertex with

a success probability asymptotically approaching one.

Our second algorithm decides whether a graph contains a perfect matching.

This is the first quantum algorithm based on the algebraic characterization by

Tutte, which reduces the problem of detecting perfect matchings to deciding

whether a matrix has nonzero determinant. The key part of our algorithm is a

new span program that can decide whether a matrix is singular. Our span pro-

gram has a simple structure and its witness size matches that of a related span

program by Belovs for matrix rank-finding, up to a constant factor. Using a trans-

formation given by Reichardt, our span program can be compiled into a quan-

tum algorithm, which we use as a subroutine in our algorithm to detect perfect

matchings. We also show that there are families of graphs for which our perfect

matching detection algorithm may have exponential query complexity. These

graphs could be a useful tool in determining the tight quantum query complex-

ity of the perfect matching detection problem, which remains an open problem.
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Preface

The results in this thesis are original work between the author, Janet Leahy, and

supervisor Peter Høyer. Fellow graduate student Zhan Yu participated in the

early stages of the research on memoryless walks by running numerical simu-

lations to test the main statements.

Chapter 3 on memoryless walks is part of an article that has been pubilshed in

Physical Review A. The article is available as “Spatial Search via an Interpolated

Memoryless Walk" at doi:10.1103/PhysRevA.78.012310. The contents of

the article are used in this thesis either verbatim or with minor modifications.

iii

https://doi.org/10.1103/PhysRevA.78.012310


Acknowledgments

Research, as with so many things, is collaborative work, and there are many peo-

ple without whom this thesis would not have been written.

First off, I am deeply thankful to my supervisor, Peter Høyer, for his guid-

ance, ideas, patience, and volumes of feedback. His passion for growth as both a

researcher and a person has inspired me since I was a student in his algorithms

class years ago, and has given me a goal to always strive towards.

Sincere thanks are also due to Dr. David Feder and Dr. Renate Scheidler for

reading my thesis and for serving along with Peter as my examiners. I am grateful

for the time they spent providing valuable and thoughtful feedback, which has

helped me improve as a researcher.

My time as a graduate student has been greatly enriched by the camaraderie

of the quantum walks research group: Dante Bencivenga, Shang Li, Xining Chen,

Zhan Yu, Yehonatan Shabash, and Elliot Evans. The conversations we had, both

technical and otherwise, have both inspired me and helped to pull me through

the tougher times. I’m glad to have them as friends.

I would also like to acknowledge to the organizations that provided fund-

ing my graduate research: the Alberta Graduate Excellence Scholarship program

(AGES), the Alberta Innovates Graduate Student Scholarships program, and the

National Sciences and Engineering Research Council of Canada (NSERC).

Finally, I am eternally grateful to my friends and family for all of the much-

needed support and cups of tea. I am so blessed to know you all, and hope to see

more of you soon.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 2 – Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 3 – Memoryless quantum search . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 4 – Perfect matchings and 0-determinant verification . . . . . . . x

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Quantum walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Span programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Two span programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Memoryless quantum search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Walk construction and main result . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Decomposition of F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Structure ofW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Spectrum ofW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Invariant subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Reduction to the slowest subspace . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.1 Smallest eigenphase ofWF1 . . . . . . . . . . . . . . . . . . . . . . 37

3.5.2 Slowest eigenvector ofWF1 . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.3 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



Table of Contents

3.6 Finding with a memoryless walk . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.1 Relationship withWF1 . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.2 Proof of main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Perfect matchings and 0-determinant verification . . . . . . . . . . . . . . . 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 The Tutte matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Span program for 0-determinant verification . . . . . . . . . . . . . . . 64

4.3.1 Witness size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Algorithm for perfect matching . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Full span program for perfect matching . . . . . . . . . . . . . . 75

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Composition with a reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Decomposition of |+〉 and |−〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Lower bound for 0-determinant verification . . . . . . . . . . . . . . . . . . . . 102

vi



List of Figures

2.1 Invertability of a random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Staggered tessellations of the two-dimensional lattice . . . . . . . . . . . . 26

4.1 Example of an augmenting path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Tutte matrix for a small graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Vectors in our span program for deciding perfect matchings . . . . . . . 77

vii



List of Symbols

Chapter 2 – Background

n number of vertices in a graph G

M the set of marked vertices in a graph

X0 initial state of a random walk

Xk state after k steps of a random walk

P row-stochastic transition matrix for a random walk

deg(v ) degree of the vertex v

π stationary distribution of a random walk

T number of steps in a walk-based search algorithm

S the cost of sampling from π

C the cost of checking whether a vertex is marked

U the cost of taking one step of a random walk according to P

HT(P, M ) hitting time of a random walk with transition matrix P and marked vertices M

N number of vertices in the square two-dimensional toric grid

eHt evolution operator for a continuous quantum walk

d degree of vertices in a regular graph (Section 2.2); dimension of vectors in a span

program (Section 2.3)

{0, 1}n binary strings of length n

P span program

fP function computed by the span programP
|τ〉 target vector in a span program

Vfree free vectors in a span program

Vi ,b a single input vector in a span program

V set of all input vectors in a span program

V (x ) available vectors in a span program

|w+〉, |w−〉 positive, negative witness

wsize(P ) witness size of the span programP

viii



List of Symbols

Chapter 3 – Memoryless quantum search

dim dimension of a vector space

span linear span of a set of vectors

nr , nc number of rows, columns in the grid

N number of vertices in the grid

|⟲〉 selfloop state

A, B reflection about even, odd tessellation of the grid

|g 〉 marked vertex on the grid

|g̃ 〉 interpolated marked state

s interpolation parameter
~G reflection of interpolated marked state

U memoryless walk operator

Uz memoryless walk operator, transformed to z -basis for analysis

W, F input independent, dependent components of Uz

|π〉 starting state of the walk, which is a uniform superposition over vertices

|πz 〉 the state |π〉 after transformation to the z -basis

|+〉, |−〉 orthonormal states spanning the two-dimensional space rotated by F

F1,F2 one-dimensional reflections generating the two-dimensional rotation F= F1F2

| f1〉, | f2〉 vectors reflected by F1, F2

Wk l invariant subspace ofW indexed by k and l

θk l eigenphase associated with subspaceWk l

Πk l projection onto subspaceWk l

ϕ1 smallest positive eigenphase ofWF1

β smallest positive eigenphase ofWF

ix



List of Symbols

Chapter 4 – Perfect matchings and 0-determinant

verification

Tr trace of a matrix

Pr probability of an event

E expectation of a random variable

n number of vertices in a graph (perfect matching), or dimension

of a square matrix (0-determinant verification)

ω exponent of matrix multiplication

c (A) square root of the average squared singular value of A−1

T upper bound on c (A)

L cost of loading a matrix into a high-level span program

T(G ) Tutte matrix of the graph G

S set used for random instantiation of the Tutte matrix

P span program

fP function computed by the span programP
|τ〉 target vector in a span program

Vfree free vectors in a span program

Vi ,b a single input vector in a span program

V (x ) available vectors in a span program

|w+〉, |w−〉 positive, negative witness

wsize(P ) witness size of the span programP
A n ×n matrix, input to 0-determinant verification

|r 〉 column vector of dimension n × 1 whose entries are samples

from the Rademacher distribution

A′ (n+1)×n matrix whose first row is 〈r | and whose remaining n×n

entries are those of A

|τ′〉 (n + 1)× 1 vector whose first entry is 1 and whose remaining n

entries are 0

A′ext matrix whose columns are the available vectors in our span pro-

gram for 0-determinant verification

|τ′ext〉 target vector in our span program for 0-determinant verification

x



Chapter 1

Overview

One of the driving reasons for interest in quantum computing is the discovery

of quantum algorithms that can solve certain problems with a marked asymp-

totic speedup over what is possible with classical computation. A famous exam-

ple of this is Shor’s factoring algorithm [Sho97]. It requires exponentially fewer

operations than the best-known classical algorithms for factoring, and as conse-

quence, has had profound applications on modern cryptography.

An important and ongoing question is finding problems for which quantum

algorithms can achieve asymptotic improvements in the required resources rela-

tive to what can be done classically. Not only is this interesting from a theoretical

perspective, it is practically motivated. Early quantum computers are still sub-

ject to significant constraints on both the amount of memory and the number

of operations that can be applied before the computation is lost to decoherence.

Therefore, quantum algorithms that achieve an asymptotic improvement in the

use of these resources are more feasible for implementation, and finding such

algorithms is an active area of study.

Several models have been developed to characterize the complexity of quan-

tum algorithms. We use the quantum query model, in which the problem input

is accessed through quantum queries to a black box. The query complexity is

defined to be the number of queries needed to solve the problem with bounded

error. The advantage of this model is that counting queries is much simpler than

counting quantum operations or gates. Because each query takes at least one
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1. Overview

time step, the query complexity gives a lower bound on the step complexity of an

algorithm. For most known quantum algorithms, the step complexity is within

a polylogarithmic factor of the query complexity, so the quantum query com-

plexity is often a good indicator of the step complexity of an algorithm. Many

nice results have been proven in the query model, including tight bounds on the

query complexity of a number of problems and the elegant relationship between

span programs, witness size, and the adversary lower bound [HLŠ07, Rei09].

In this thesis, we present two new quantum algorithms. These algorithms

solve spatial search and perfect matching detection, respectively. Both of these

are foundational problems in theoretical computer science. Their problem state-

ments are simple, and yet their study reveals important differences between clas-

sical and quantum models of computation.

Our first algorithm is presented in Chapter 3, where we define a new type of

quantum walk and show that it can optimally solve spatial search on the grid.

The goal in spatial search is to find a marked vertex on a graph, where opera-

tions are subject to locality constraints. These constraints can be imposed by the

physical layout of a system [AA05], or they can arise from the computational cost

of moving from one vertex to another. An example of the latter can be found in

[Amb07], where the element distinctness problem is reduced to spatial search in

a structured graph. A query-optimal algorithm for element distinctness is then

found using a query-optimal algorithm for spatial search.

A natural classical algorithm for spatial search uses a random walk to explore

the graph. A walker is placed at a vertex on the graph following some given initial

distribution. At each time step, the walker then moves to a vertex adjacent to its

current location, chosen according to a fixed probability distribution. If at any

point in the process, the walker’s current vertex is marked, the search is complete,

so the walker will stop and return the vertex it found.

There have been several quantum analogues developed for classical random

walks, all of which are broadly classed as quantum walks. A primary motivation

for developing quantum walks is the ubiquity of random walks as a component

in classical algorithms. The hope is that by developing efficient quantum walks,

they could be used to obtain a quantum speedup for a number of problems.

2



1. Overview

One of the standard types of quantum walk is the Szegedy quantum walk

[Sze04], which is based on the discrete-time random walk. Another standard type

is the continuous walk [FG98, CG04], which is based on a continuous-time evo-

lution of the starting distribution according to the walk P . Both of these types

of quantum walk exhibit markedly different behaviour from their classical coun-

terparts. For example, on a one-dimensional line of vertices, both types of walk

propagate quadratically faster than their classical counterparts [ABN+01]. Con-

tinuous walks have also been proven to give an exponential speedup for finding

a marked vertex on certain black-box graphs, relative to any possible classical

algorithm [CCD+03].

It was recently shown that Szegedy quantum walks can be used to solve the

spatial search problem quadratically faster than classical random walks for any

graph and any configuration of marked vertices [AGJK20]. This result answered

a long-standing open question in the field of quantum walks, giving a method to

obtain a step-optimal spatial search algorithm for any graph.

In this thesis, we give a quantum walk that improves on the Szegedy model

in space complexity, while maintaining a simple structure and optimal step com-

plexity. To do this, we use a memoryless walk.

Memoryless walks are notably different from the Szegedy and continuous

models. They possess the features common to all quantum walks in that they can

be divided into setup, step, and checking operations. Furthermore, like Szegedy

walks, their discrete-time evolution can be decomposed into the product of two

reflections. However, unlike Szegedy walks, which operate on the directed edge

space of the graph, memoryless walks operate directly on the vertex space. This

means that for a graph with N vertices and E edges, the evolving quantum state

for a Szegedy walk lies in a Hilbert space of dimension at least E , while for a mem-

oryless walk the dimension is simply N . The term “memoryless" captures this

property, as this type of walk is designed to minimize the use of quantum mem-

ory.

Using a memoryless walk, we give a spatial search algorithm with a quadratic

improvement in memory requirements relative to Szegedy’s edge-space walk.

We prove that our walk can find a unique marked vertex on the two-dimensional

3



1. Overview

grid with a quadratic speedup over classical walks. Thus, our walk is both memory-

optimal and matches the best edge-space quantum walks in step complexity.

In addition, we show that our walk improves on previous memoryless walks

for spatial search on the grid in its probability of finding a marked vertex. Inspired

by the selfloops applied by [KMOR16] to Szegedy quantum walks, we show how to

introduce selfloops into the memoryless setting. We give a precise description of

how these selfloops affect the dynamics of our memoryless walk. As a result, we

prove that adding a selfloop boosts the probability of finding the marked vertex

from O ( 1
log n ) to 1−O ( 1

log n ).

Our second algorithm is presented in Chapter 4, where we consider the prob-

lem of deciding whether a graph contains a perfect matching. Finding match-

ings is a well-studied problem in computer science, and yet there remains a gap

between the best-known upper and lower bounds for the quantum query com-

plexity of the problem. This gap applies to both the problem of finding a perfect

matching and deciding whether one exists.

To investigate this gap, we give a new quantum algorithm that decides whether

a graph contains a perfect matching. Our algorithm uses a different approach

from previous quantum algorithms, drawing inspiration from an algebraic char-

acterization of the problem by Tutte [Tut47].

Tutte’s characterization reduces the problem of deciding whether a graph

contains a perfect matching to the problem of deciding whether the determi-

nant of the associated Tutte matrix is nonzero. Classically, this reduction has

been used to obtain algorithms that can find a matching on a graph in O (nω)

steps with vanishing error probability [RV89, MS04], whereω< 2.37 is the expo-

nent of matrix multiplication. These algebraic algorithms are asymptotically the

fastest-known classical algorithms for the problem.

In this thesis, we investigate whether an algebraic approach could be ap-

plied in the quantum setting. We give a natural algebraic quantum algorithm

that decides whether a graph contains a perfect matching, and prove bounds on

its query complexity.

The key component of our algorithm is a new quantum subroutine that de-

cides whether the determinant of a matrix is nonzero. We refer to this problem

4



1. Overview

as 0-determinant verification. As might be expected, the query complexity of our

subroutine depends on the spectrum of the input matrix—if the input matrix is

close to singular, the query complexity of the subroutine becomes very large.

As we show, there are classes of pathological graphs for which the matrix

passed to this subroutine may have exponentially small eigenvalues, even when

accounting for adjustable parameters in our algorithm. This would imply that

our algorithm has exponential query complexity. As a result, our algorithm does

not give an improvement in query complexity over the current best quantum al-

gorithms for finding perfect matchings, which implicitly solve the decision prob-

lem and only require O (n 7/4)queries [LL16]. Furthermore, these results may sug-

gest a fatal flaw with the algebraic approach to the matchings problem in the

quantum setting.

On the other hand, our analysis reveals a class of hard-case graphs that have

not yet been considered in the context of matchings. Studying these graphs may

lead to new insights on the problem. Our algorithm may also still improve on

the best existing quantum algorithms when there are restrictions placed on the

allowed input graphs.

Finally, as part of our analysis we show that there remains a gap between the

best upper and lower bounds for the query complexity of 0-determinant verifica-

tion. This gap extends to the problem of determining the rank of a matrix. We do

this in Appendix 5 by reconsidering a statement by Dörn and Theirauf [DT09].

This leaves the open question of proving a tight bound on the quantum query

complexity of these two problems.

5



Chapter 2

Background

We begin with a chapter presenting the requisite terminology and some context

useful for understanding our work. The remaining chapters and appendices fo-

cus on our original contributions in the thesis.

For this thesis, we assume familiarity with the basic principles of quantum

computation and algorithm design. In particular, this includes an understand-

ing of quantum states, quantum evolution and measurement, the quantum cir-

cuit model, complexity measures of quantum algorithms, and quantum search

via amplitude amplification. From an algorithmic perspective, we assume a stan-

dard knowledge of algorithmic design and analysis, including bounded-error ran-

domized algorithms and asymptotic notation. Readers may refer to the canoni-

cal textbook [NC00] for an introduction to each of the topics listed above.

Random walks, introduced in Section 2.1, are a natural classical solution to

search problems with spatial constraints, and have many applications in algo-

rithm design. There have been several quantum analogues developed for ran-

dom walks, collectively known as quantum walks. We discuss some of their com-

mon features and applications in Section 2.2. Our first key result in this thesis is

a new addition to this family of algorithmic tools. Our quantum walk is defined

on the two-dimensional toric grid, defined formally in Section 3.2. We reference

this graph here in our discussion of both random and quantum walks.

Our second main result relies on a subroutine defined in the span program

framework. Span programs are a computational model which can be used to

6



2. Background

design quantum algorithms. Although span programs themselves do not cap-

ture any quantum dynamics, they can be converted into quantum algorithms

whose query complexity depends on the span program’s witness size. We intro-

duce span programs and their witness size in Section 2.3.

2.1 Random walks

An important problem in computer science is that of spatial search. In spatial

search, the search domain is modelled as a graph, where vertices represent ele-

ments in the search space. The problem differs from unstructured search in the

existence of locality constraints on operations. In an unstructured search algo-

rithm, the complexity is determined solely by the number of elements that are

inspected. In spatial search, however, there is an additional cost associated with

traversing the graph. Moving between adjacent vertices incurs a single unit of

cost, so the cost of travelling from one vertex to another depends on the number

of edges between them.

For this thesis, we limit our scope to unweighted, undirected graphs, i.e. the

case where all edges are bidirectional and have weight one. We also assume that

the underlying graph G is strongly connected, meaning that any pair of vertices

in the graph is connected by some path.

Given a graph, the goal of a spatial search algorithm is to find a marked vertex

or output “None" if none exist. A natural solution to this problem is to use a

random walk.

Definition 1 Given a graph G with n vertices, a discrete-time random walk on

G is a sequence of vertices chosen according to a stochastic process. The walk be-

gins at some vertex, captured by random variable X0. At each time step, the walk

transitions randomly to a neighbour of its current vertex according to a fixed dis-

tribution. This distribution is captured by a n×n row-stochastic matrix P, where

the value Pi j is interpreted as the probability of transitioning from vertex i to ver-

tex j . Note that Pi j can only be nonzero if vertex i is adjacent to vertex j .

7



2. Background

We denote the vertex reached after k steps of the walk with the random variable

Xk , and refer to this as the state of the walk after k steps. We refer to X0 as the initial

state of the walk and P as the transition matrix.

We remark that with this definition, any non-initial state Xk of a random walk

depends solely on its previous state, Xk−1. Thus, our random walks are equiva-

lent to discrete-time Markov chains over a finite state space.1

For an unweighted graph, the default way to define the entries of P is to set

Pi j =
1

deg(i ) , so the walk is equally likely to progress to each of the neighbours of

its current vertex. For this thesis, we will always set the initial state to be cho-

sen according to the stationary distribution of the walk, denoted π, where the

probability of starting at vertex i is given by

π(i ) =
deg(i )
∑

j∈V deg( j )
.

For regular graphs, where every vertex has the same degree, each vertex has

equal probability in the stationary distribution. On the grid with toric bound-

aries, which we use in Chapter 3, every vertex has degree four. Therefore, when

starting a random walk on the grid, the initial vertex is simply chosen uniformly

at random from the set of all vertices.

A random walk gives a means of exploring a graph using only local transi-

tions. We can turn this into a search algorithm in the following way. We note that

the behaviour of a random walk is completely specified by three factors: the tran-

sition matrix, the initial state, and the number of steps it is run for. It is therefore

common to refer to the transition matrix P itself as a random walk, with the im-

plication that the initial state is π and that the number of steps is either infinite

or determined from context.

1Note that stochastic processes with this property can be referred to as memoryless. However,
we reserve the term “memoryless" for a different context in this thesis, using it instead to refer to
a class of quantum walks that do not store the previous location of the walker.
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Algorithm 1 (Search via Random Walk) Given a graph G with a set M of marked

vertices, a random walk P on G , and a number of steps T , perform the following:

1. Choose a starting vertex X0 according to the distribution π.

2. Execute the following T times:

2a) Check if the current vertex is marked. If so, output the current vertex

and terminate the algorithm.

2b) Take one step of the random walk according to P.

3. Output “None".

This probabilistic algorithm solves the spatial search problem with one-sided

error. If the set M is empty, this algorithm always produces the correct output. If

there are marked vertices in M , however, the algorithm could incorrectly return

“None" if a marked vertex is not found in the given number of steps, T .

We emphasize that the search algorithm above consists of three distinct op-

erations, for which the cost of each contributes separately to the total. We let

S denote the cost of sampling from the initial state π. We also use C to denote

the cost of checking whether a vertex is marked, and U (update) to denote the

cost of moving from a vertex to its neighbour. With this notation, the total cost

of Algorithm 1 is S+T (C+U).

It therefore remains to choose an appropriate value for T . Recall that we

assume G is strongly connected, so any vertex in G can be reached from any

other vertex in G after a finite number of transitions according to P. By choos-

ing a larger value for T , we can increase the probability that Algorithm 1 returns

a marked vertex, provided one exists. The difficulty of finding a marked vertex

depends on both the number of marked vertices and their placement. Thus, the

appropriate choice of T depends on both the random walk P and the set M of

marked vertices.

The quantity we wish to capture is known as the hitting time, and is defined

as follows.

9
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Definition 2 Given a graph G , a random walk P on G , and a nonempty set M

of marked vertices, the hitting time is the expected number of transitions accord-

ing to P before the walk reaches a marked vertex, given that the initial vertex is

unmarked. The hitting time is denotedHT(P, M ).

The expectation in this case is taken with respect to both the randomness in-

troduced by the movement of the walker and the randomness in the initial choice

of starting vertex.

The hitting time exactly captures the asymptotic complexity of Algorithm 1.

The hitting time is the expected number of steps before the algorithm will find

a marked vertex, given one exists. Therefore, by Markov’s inequality, setting T

to be twice the worst-case hitting time will result in the algorithm returning the

correct answer with probability at least 1
2 .

There are several approaches for computing the hitting time of a random

walk. For a large class of random walks known as ergodic walks, there exists a

spectral formula for computing the hitting time [Sze04, KMOR16]. One can show

that the hitting time on the two-dimensonal
p

N ×
p

N toric grid is O (N log N ).

The goal of quantum walks is to improve on the performance of random walks

using quantum operations. Indeed, many random walks are able to achieve a

quadratic speedup, within logarithmic factors, relative to the hitting time in the

number of queries required.

Finally, we note that in this section, we have presented random walks as a

means of developing spatial search algorithms. However, one of the primary mo-

tivations for studying random walks is their use in developing algorithms for a

variety of other useful problems.

As an example of this, Aleliunas et al. [AKL+79] apply random walks in an al-

gorithm for st -connectivity. In st -connectivity, the input is an undirected graph

G = (V , E )with |V |= n , |E |=m , and two designated vertices s , t ∈V . The goal is

to decide whether there is a path in G from s to t . A standard classical method for

solving this problem would be to run a breadth-first search of G starting at vertex

s . As soon as vertex t is encountered, the algorithm returns “True". If the search

terminates without finding t , the algorithm returns “False". The step complex-

10
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1 2 3

Figure 2.1: Consider a random walk on the graph above. If a walker starts at vertex
1, then after one step of the walk it will land at vertex 2. The same state will be
reached after a single step of the walk if the walker begins at vertex 3. Thus, given
that the walker is at vertex 2, it is not possible to uniquely determine the previous
state of the walk.

ity of breadth-first search is optimal at O (n +m ). However, it requires up to n

vertices to be stored at once in the queue, so its space complexity is O (n log n ).

By exploring the input graph using a random walk, Aleliunas et al. give a

bounded-error randomized algorithm that terminates in O (nm ) steps, at which

point the walker outputs the correct answer with constant probability. Their al-

gorithm only stores the current location of the walker, and therefore requires only

O (log n ) space in total. In this way, their algorithm improves on other approaches

in its use of memory by means of a random walk.

2.2 Quantum walks

Translating random walks into the quantum setting leads to a class of algorithmic

tools called quantum walks. The motivation for studying quantum walks is simi-

lar to that of random walks. Much as random walks have been a useful tool in de-

veloping efficient classical algorithms for a number of problems, quantum walks

have proven to be a valuable tool in quantum algorithm design. Some examples

of their applications include algorithms for element distinctness [Amb07], trian-

gle finding [MSS07], and span program evaluation [Rei09]. Quantum walks have

also been shown to be a universal model of computation [Chi09].

Quantum walks, like random walks, are required to satisfy the locality con-

straints imposed by the structure of the underlying graph. A quantum walk on a

graph G must satisfy the restriction that in a single application of the walk oper-

ator, amplitude can only be moved between adjacent vertices in the graph.

One challenge when translating random walks to the quantum setting is the

11
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fact that quantum evolution must be unitary, and therefore invertible. Random

walks by nature are not an invertible process (see Figure 2.1), nor is the transi-

tion matrix P itself unitary. There have been multiple classes of quantum walk

developed, each of which address this challenge in a different way.

The continuous time quantum walk [CFG02, CG04] evolves an initial quan-

tum state in continuous time using the operator eHt , where the parameter t rep-

resents time. Here,H is a n×n matrix such thatHi j = 0 unless vertex i is adjacent

to vertex j . Common choices for H include the adjacency matrix and the graph

Laplacian, under the constraint that eHt must be unitary. In this sense, the con-

tinuous walk operates directly on the vertices of graph, since it acts on a space

of dimension n . There are a number of notable results proven for continuous

walks, including an exponential speedup over any classical algorithm for search-

ing certain black-box graphs [CCD+03]. On the other hand, continuous walks as

defined above are not known to provide a quadratic speedup over random walks

for spatial search on general graphs. On the
p

N ×
p

N toric grid, the continu-

ous walk defined by Childs and Goldstone [CG04] requires Ω(N ) queries, which

is no better than classical algorithms. By allowing H to have dimension n 2×n 2,

it is possible to obtain a quadratic speedup over random walks for any graph and

any number of marked vertices [ACNR21], although this requires operating on a

larger Hilbert space.

In the discrete-time setting, one method to address the invertability require-

ment is to introduce extra quantum registers to track the previous location of the

walker. This approach is taken in both coined [AAKV01, ABN+01] and Szegedy

[Sze04] quantum walks.

Coined quantum walks are defined on regular graphs, where each of the

n vertices has the same degree, d . A coined quantum walk is defined on the

space Cd ⊕Cn , where the space Cd stores the state of a d -dimensional quan-

tum coin. Updating the location of the walker involves “flipping" this coin and

then updating the vertex of the walker conditioned on the result. Coined quan-

tum walks are used in many of the first algorithms based on quantum walks

[Amb07, MSS07, SKW03]. Ambainis et al. [AKR05] show that on the
p

N ×
p

N

toric grid with a unique marked vertex, the probability of measuring a marked

12
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vertex using a coined quantum walk is maximized at T = Θ(
p

N log N ) steps.

Measuring after this many steps of the walk yields a marked vertex with prob-

ability O ( 1
log N ), so by using amplitude amplification, the total query complexity

of their algorithm is O (
p

N log N ).

Szegedy quantum walks [Sze04] give a general approach to constructing a

quantum walk from a Markov chain. They generalize coined quantum walks,

and on graphs where coined walks can be defined, the two models are isometri-

cally equivalent. On a graph with n vertices, Szegedy quantum walks operate on

the space Cn ⊕Cn . Each of these two registers of dimension n encodes a vertex,

so as a pair, the two registers capture a directed edge of the graph. In this way,

Szegedy walks can be considered to be walking on the edges of the graph rather

than the vertices. The walk state is considered marked if the vertex in the first

register is marked.

Szegedy shows how to construct a walk operator consisting of two opera-

tions. The first operation is a reflection that distributes amplitude between the

neighbours of the vertex in the first register, and the second operation swaps

the contents of the two registers. Using this operator, Szegedy gives a quantum

algorithm for spatial search. Szegedy’s walk can decide whether a graph con-

tains marked vertices with O (
p

HT(P, M )) quantum queries, giving a quadratic

speedup over classical random walks. For certain regular graphs with a single

marked vertex, such as the toric grid, the Szegedy quantum walk can also find a

marked vertex with O (
p

HT(P, M )) quantum queries.

An important modification to Szegedy quantum walks is that of interpolated

walks. First proposed by Krovi et al. [KMOR16], interpolated walks introduce

weighted selfloops on the marked vertices in the underlying graph. A selfloop

is simply an edge connecting a vertex v to itself, captured by the state |v, v 〉. Ad-

justing the weight of the selfloop edge changes the dynamics of the interpolated

quantum walk. Krovi et al. [KMOR16] show that this approach can be used to find

a marked vertex on any graph. Their algorithm gives a quadratic speedup over

the classical hitting time in the case where only a single vertex is marked. Ambai-

nis et al. [AGJK20] strengthen this result by proving that interpolated walks can

find a marked vertex on any graph, with any number of marked vertices, with the

13
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same asymptotic improvement.

Memoryless quantum walks are a separate class of discrete-time quantum

walk. We discuss the development of memoryless walks in Chapter 3. Unlike

coined or edge-based quantum walks, memoryless walks do not use extra reg-

isters to capture the previous location of the walker. Instead, memoryless walks

operate directly on the vertex space of the graph. Amplitude is distributed across

the graph using alternating reflections derived from vertex tessellations. Memo-

ryless walks thus minimize the amount of quantum memory required.

Our new quantum walk in Chapter 3 is an example of a memoryless walk. It

operates on a space of dimension N +1, which is minimal for the problem. Our

walk finds a single marked vertex on the N -vertex square grid in O (
p

N log N )

quantum queries, with success probability asymptotically approaching one. This

matches the performance of the best quantum walks for the problem, and is the

first walk to achieve these parameters with optimal quantum memory. To ob-

tain this result, we adapt the selfloop technique of Krovi et al. [KMOR16] to the

memoryless setting. We introduce a weighted extra state, denoted |⟲〉, that can

exchange amplitude with the marked vertex, and which alters the spectrum of

the walk operator. We show that this state forces the action of the walk into a

two-dimensional subspace, and we use this property to bound the algorithm’s

complexity. We believe that our success with using this technique to obtain opti-

mal parameters for spatial search on the grid shows new potential for the appli-

cation and further development of memoryless quantum walks.

2.3 Span programs

Span programs are a linear-algebraic model of computation introduced by Karch-

mer and Wigderson [KW93]. Informally, a span program computes a boolean

function by determining whether a fixed target vector lies in an input-dependent

linear space. If the target vector lies in this space, then the function evaluates to

one on the input, otherwise it evaluates to zero.

Span programs are closely connected to quantum algorithms, and are the pri-

mary tool we use to design our algorithm in Chapter 4. In this section, we define
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the terminology associated with span programs and discuss how complexity is

measured in this model. We illustrate this discussion with two examples of span

programs in Section 2.3.1.

There are multiple equivalent definitions for span programs. We use the fol-

lowing, as presented by Belovs and Reichardt [BR12].

Definition 3 A span programP is a tuple (n , d , |τ〉, Vfree,{Vi ,b }), where

• inputs to the span program are elements of {0, 1}n ,

• |τ〉 ∈Cd is the target vector,

• Vfree ⊆Cd is a set of free vectors,

• Vi ,b ⊆Cd for 1≤ i ≤ n, b ∈ {0, 1}, and

• V =
⋃

Vi ,b is the set of input vectors.

The span programP computes a boolean function fP : {0, 1}n →{0, 1}. Given

an input x ∈ {0, 1}n , the available vectors are defined by

V (x ) =Vfree ∪
� n
⋃

i=1

Vi ,xi

�

.

Then fP (x ) = 1 if and only if |τ〉 ∈ span(V (x )).

We also use V , Vfree and V (x ) to denote the matrices whose columns are the

vectors in the respective sets.

Classically, span programs have been studied for their applications to com-

plexity theory and secret sharing schemes [KW93]. They also have a surprisingly

tight and beautiful connection to quantum algorithms, which was first discov-

ered by examining read-once formulas [RŠ12]. As shown by Reichardt [Rei09,

Rei11], any span program can be compiled into a bounded-error quantum algo-

rithm for the same function. This is done by converting the span program to a

bipartite graph and applying phase estimation, with the complexity determined

by a span program quantity known as the witness size.

Intuitively, one would expect the cost of evaluating a span program to be high

when |τ〉 is almost orthogonal to the span of the available vectors. The witness
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size captures this difficulty, which in turn characterizes the query complexity of

the corresponding quantum algorithm.

Definition 4 Consider a span programP and an input x ∈ {0, 1}n .

• If fP (x ) = 1, then there exist vectors |wfree〉 and |w+〉 such that Vfree|wfree〉+
V (x )|w+〉 = |τ〉. These vectors contain the coefficients of a linear combina-

tion of available vectors producing the target. Together, they form a positive

witness for x . The size of the witness is defined to be ∥|w+〉∥2.

• If fP (x ) = 0, then |τ〉 is orthogonal to the available vectors. Therefore, there

exists a vector |w−〉 such that 〈w−|τ〉= 1 and |w−〉 ⊥ span(V (x )). The vector

|w−〉 is a negative witness for x with size ∥V †|w−〉∥2. This quantity is the

sum of the squared inner products of |w−〉with all the vectors in V that are

not available.

The positive witness size of a span programP on input x is the minimum size

over all positive witnesses for x , denoted wsize1(P , x ). The negative witness size

ofP on x is defined similarly, and is denoted wsize0(P , x ). Then for b ∈ {0, 1}, we

define

wsizeb (P ) = max
x∈{0,1}n
fP (x )=b

wsizeb (P , x ).

The witness size of a span programP is defined to be

wsize(P ) =
Æ

wsize0(P )wsize1(P ).

Reichardt gives a transformation that can convert a span program P into

a bounded-error quantum algorithm with query complexity O (wsize(P )). This

supports the use of witness size as an appropriate measure of span program com-

plexity. The details of Reichardt’s transformation are beyond the scope of this

thesis. However, we require Reichardt’s main result, which is the following.

Theorem 1 ([Rei11]) For any boolean function f : {0, 1}n → {0, 1}, ifP is a span

program computing f , then there exists a quantum algorithm that evaluates f

with two-sided bounded error using O (wsize(P )) quantum queries.
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By Theorem 1, span program witness size gives an upper bound on the quan-

tum query complexity of a boolean function. In fact, witness size exactly charac-

terizes quantum query complexity, up to a constant factor. For any boolean func-

tion, the general adversary bound of Høyer, Lee, and Špalek [HLŠ07] gives a tight

lower bound on its quantum query complexity. The general adversary bound is

expressed as the solution to a semidefinite program, whose dual is a semidefi-

nite program that minimizes witness size. Using this property, Reichardt [Rei09]

shows that for any boolean function, the optimal span program witness size is

exactly equal to the general adversary bound. This reduces the problem of find-

ing query-optimal quantum algorithms to finding span programs with optimal

witness size.

Span programs are thus a very appealing tool for the design of quantum al-

gorithms. The model does not directly capture any notion of quantum dynam-

ics, and yet can be used to construct query-optimal quantum algorithms. As a

result, span programs have been used to design some highly intuitive and query-

efficient quantum algorithms. Just a few examples of this include algorithms for

st -connectivity and subgraph detection [BR12], graph bipartiteness [Āri16], and

formula evaluation [RŠ12, Rei09, JK17]. In Section 4.3, we add to this list by giv-

ing a new span program for 0-determinant verification, which we then apply in

Section 4.4 to decide whether a graph contains a perfect matching.

2.3.1 Two span programs

To illustrate, we present two examples of span programs. The first is a simple

span program that computes the OR function on n bits. The second is an ele-

gant span program by Belovs and Reichardt [BR12] that solves the graph prob-

lem of st -connectivity. In both cases, we define the span program and analyse

its complexity by computing the witness size.

One of the simplest span programs is the following span program for comput-

ing the logical OR function on n bits of input. We let P = (n , d , |τ〉, Vfree,{Vi ,b }),
where d = 1, |τ〉= [1], Vfree = ;, and Vi ,0 = ; and Vi ,1 = {[1]} for 1≤ i ≤ n . With this

definition, we can see that if any of the n input bits are equal to one, then [1]will

be included in the available vectors. If all input bits are zero, then there will be no
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available vectors. Thus, the target |τ〉 is in the span of the available vectors if and

only if at least one of the n input bits is equal to one. In this wayP computes the

OR function on the n input bits as claimed.

To compute the witness size of this span programP , we consider the positive

and negative cases separately.

• If fP (x ) = 1, then k of the input bits must be equal to one, for some k ≥ 1.

In this case, the minimum-norm positive witness |w+〉 has entries 1
k for

all indices i where xi = 1, and is zero everywhere else. The positive witness

size for input x is then ∥|w+〉∥2 = 1
k . This quantity is maximized when k = 1,

so wsize1(P ) = 1.

• If fP (x ) = 0, then all of the input bits are zero. In this case, |τ〉 is orthogonal

to all available vectors (since V (x ) = ;). The negative witness |w−〉 must

be exactly [1] in this case, due to the requirement 〈w−|τ〉= 1. The negative

witness size is given by the sum of the squared inner products of |w−〉with

all of the unavailable vectors. There are n unavailable vectors in this case,

all equal to [1], so wsize0(P ) = n .

Combining these cases, we obtain a total witness size of

wsize(P ) =
Æ

wsize0(P )wsize1(P ) =
p

n .

Thus, the given span program can be converted to a quantum algorithm that

computes the OR function on n input bits in O (
p

n )quantum queries. This matches

the asymptotic query complexity of amplitude amplification, and is known to be

optimal for the problem.

To show another case where a span programs yields a query-optimal quan-

tum algorithm, we also present a span program for st -connectivity developed by

Belovs and Reichardt [BR12]. This is an example of a span program being used to

decide whether a graph has a given property, similar to our span program-based

algorithm for perfect matchings in Chapter 4.

Recall that in st -connectivity, the input is an undirected graph G = (V , E )with

|V | = n , and two designated vertices s , t ∈ V , and the goal is to decide whether
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there is a path in G from s to t . Because span programs compute boolean func-

tions, we will consider the input to be the adjacency matrix for G . We index this

input using tuples (u , v ), where 1 ≤ u , v ≤ n , and the value at index (u , v ) is one

if and only if (u , v ) ∈ E .

A span program solving st -connectivity can be defined as follows. Let P =
(n , d , |τ〉, Vfree,{Vi ,b }), where d = n . In the space Cn , we identify each of the n

vertices with a standard basis state, so vertex k corresponds to state |k 〉. Using

this correspondence, let |τ〉 = |s 〉 − |t 〉, and set Vfree = ;. The input-dependent

vectors are defined by V(u ,v ),1 = {|u〉− |v 〉} and V(u ,v ),0 = ;.
We now argue both correctness and witness size simultaneously, separating

the positive and negative cases.

• If there is a path from s to t in G , then |τ〉will be in the span of the available

vectors. The edges in the path from s to t give a linear combination of

available vectors that produces |τ〉. For example, if there is a path from s

to t of the form (s , x v1, v2, . . . , vk , t ), then |s 〉 − |v1〉, |vi 〉 − |vi+1〉 for 1 ≤ i ≤
k − 1, and |vk 〉 − |t 〉 are all in the span of the available vectors, and their

sum is equal to |τ〉. A path from s to t can contain at most n − 1 edges, so

∥|w+〉∥2 ≤ n −1 for any input graph. Thus, wsize1(P ) = n −1 ∈O (n ).

• If there is no path from s to t in G , then s and t are in separate connected

components of the graph. In this case, we can define |w−〉 by 〈w−|v 〉 = 1

if and only if v is in the same connected component as vertex s . Then

〈w−|τ〉= 〈w−|s 〉= 1. Because all edges in the graph connect two vertices in

the same connected component as s , or two vertices in a different compo-

nent from s , |w−〉 is orthogonal to all of the available vectors. Thus, |w−〉 is
a negative witness for G .

To compute the negative witness size, note that each vector that is not

available corresponds to an edge that is not in the graph. The squared in-

ner product of |w−〉with each unavailable vector is at most 2, and there are

O (n 2) unavailable vectors. Therefore, wsize0(P ) ∈O (n 2).
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Combining these two results, we can see that

wsize(P ) =
Æ

wsize0(P )wsize1(P ) ∈O (n 3/2).

This matches the lower bound ofΩ(n 3/2)on the query complexity of st -connectivity

proven by [DHHM06]. Thus, Belovs’ and Reichardt’s span program yields a query-

optimal quantum algorithm.

Finally, we recall that Reichardt proved that for any boolean function, the op-

timal span program witness size is exactly equal to the general adversary bound

[Rei09]. This guarantees that for any boolean function, there is a span program

computing it that can be compiled into a query-optimal quantum algorithm.

However, finding optimal span programs is not a simple task. So far, there are

limited techniques for developing span programs, and few span programs are as

naturally structured as the examples given in this section.

In Chapter 4 we give a new span program that decides whether an input ma-

trix is singular. Our span program has two unusual elements in its design. First,

the available vectors in our span program have some randomized values. We

then show that the our span program’s witness size is within our stated bound

with probability at least 5
6 under this distribution. This is sufficient to show that

when our span program is converted into a quantum algorithm, our bound on

the witness size also applies to the query complexity of the algorithm. Second,

our span program is designed so that the available vectors each depend on mul-

tiple bits of the input. To achieve this, we apply a higher-level construction also

used by Belovs [Bel11], which we discuss in Section 4.3 and illustrate with an ex-

ample in Section 4.4.1.

These techniques are another reason our span program from Chapter 4 is

interesting, beyond its applications to the matching problem. We believe that

these techniques could be useful in the search for new span programs, and by

extension, the development of query-efficient quantum algorithms.
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Chapter 3

Memoryless quantum search

3.1 Introduction

Search problems are one of the foundational applications of quantum algorithms,

and are one of the situations in which quantum algorithms are proven to provide

a speedup over their classical counterparts. For example, Grover’s search algo-

rithm [Gro96] can find a single element in an N -element database with Θ(
p

N )

quantum queries, while any classical algorithm requires Ω(N ) queries for the

same task.

In spatial search, the goal is to find a “marked” element on a graph, with the

restriction that in a single time step, amplitude can only be moved between adja-

cent vertices on the graph. Such restrictions can emerge from some underlying

physical structure [AA05], or from the computational cost of moving from one

vertex to another [Amb07]. Quantum spatial search was first considered by Be-

nioff [Ben02], who showed that direct application of Grover’s search on the grid

does not yield a speedup over classical algorithms. A near-quadratic speed-up

was then discovered using a divide-and-conquer quantum algorithm [AA05], and

using quantum walks [AKR05, CG04, San08].

Of the types of quantum walk that have been developed, memoryless, or coin-

less, walks have several advantages. Foremost among these is that they operate

directly on the vertex space of the graph. This differentiates them from coined

or Szegedy-style quantum walks, which use extra registers to encode the pre-
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vious location of the walker. Memoryless walks can therefore be used to pro-

duce spatial search algorithms with optimal memory requirements, as captured

by their name. They also have a simple structure, alternating two or more non-

commuting reflections that can be derived from tessellations of the underlying

graph. This simplicity makes them a natural candidate for implementation. A

proposal for implementing memoryless walks using superconducting microwave

resonators is given by [MdOP17], and an implementation of memoryless walks

on IBM quantum computers is in [AAMP20].

Despite their advantages, memoryless walks are less commonly studied than

other types of quantum walk. Most of the literature on memoryless walks con-

siders staggered walks, a class of memoryless walks defined by Portugal et al.

in [PSFG16]. Staggered walks are based on tessellating a graph with cliques, which

obeys the spatial search constraint and gives a method for constructing memo-

ryless walks on general graphs. Ref. [PSFG16] shows that any quantum walk on a

graph G in the standard Szegedy model [Sze04] can be converted to a staggered

walk on the underlying line graph of G . The conversion preserves the asymp-

totic cost, the success probability, and the space requirement. Staggered walks

have similarly been used to derive relationships between memoryless, coined,

Szegedy, and continuous quantum walks [PBF15, Por16a, Por16b, PdOM17, CP18,

KPSS18].

Memoryless walks have been applied to the spatial search problem on the

grid in the following cases. A memoryless walk on the line was given by Patel,

Raghunathan, and Rungta in [PRR05], who give and analyse a walk with Hamil-

tonians, noting that their walk operator resembles the staggered fermion formal-

ism. In [PRR10], Patel, Raghunathan and Rahaman present numerical simula-

tions on the extension of this walk to the N -vertex grid. Their results show that it

finds a unique marked vertex in Θ(
p

N log N ) applications of the walk operator

with success probability Θ( 1
log N ), and that by using an ancilla qubit, the success

probability can be improved to Θ(1).

Falk [Fal13] gives a memoryless walk on the two-dimensional grid, construct-

ing a discrete walk operator by reflecting about two alternating tessellations of

the grid. The walk by Falk was analysed by Ambainis, Portugal and Nahimovs [APN15],
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3. Memoryless quantum search

who proved that it finds a unique marked vertex on the grid using Θ(
p

N log N )

applications of the walk operator with success probability Θ( 1
log N ). Portugal and

Fernandes [PF17] give a memoryless walk with Hamiltonians that also finds a

unique marked vertex on the two-dimensional grid with Θ(
p

N log N ) applica-

tions of the walk operator and success probability Θ( 1
log N ).

The success probability of [PRR05], [Fal13] and [PF17] is sub-constant. The

success probability can be improved to Θ(1) by applying amplitude amplifica-

tion [BHMT02], but that would increase the number of steps by a factor ofΘ(
p

log N )

and introduce additional operators in an implementation. Two alternative meth-

ods [APN15, PF17] for increasing the success probability are the post-processing

local neighborhood search used in [ABN+12] and Tulsi’s proposal of adding an

ancilla qubit to the grid [PRR10, Tul08].

In this chapter, we present a memoryless walk that finds the marked vertex

in Θ(
p

N log N ) steps with vanishing error probability. Our walk uses minimal

memory and preserves the simple structure given by alternating tessellations of

the grid. To do this, we show how the interpolated walks of Krovi et al. [KMOR16],

which introduce selfloops to walks on the edge space of a graph, can be adapted

to the vertex space of a graph. We define our memoryless walk using the tes-

sellations shown in Figure 3.1, which divide the grid into squares of size 2× 2.

This is the same tessellation structure analysed by [APN15], who proved that us-

ing Falk’s construction, the maximum success probability of the corresponding

memoryless walk scales with Θ( 1
log N ). By using a selfloop to force the action of

the walk into a single two-dimensional subspace, we modify their walk so that

the maximum success probability asymptotically approaches one.

Classically, the interpolated version of a random walk is constructed by adding

weighted selfloop edges to marked vertices. Applying Szegedy’s isometry [Sze04]

to interpolated walks produces quantum walks that can find a unique marked

vertex on any graph [KMOR16]. This approach has recently been used to solve

the spatial search problem on any graph with a quadratic speedup over classi-

cal random walks, even for the case of multiple marked vertices. Solutions of

this form have been obtained for both the discrete [AGJK20, AGJ21] and contin-

uous [ACNR21]models using quantum walks that operate on the edge space of
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3. Memoryless quantum search

a graph.

To extend the approach of [KMOR16] to the memoryless setting, we introduce

a new state corresponding to a selfloop on the marked vertex. Rather than reflect-

ing about the marked vertex, we reflect about an interpolation between the self-

loop state and the marked vertex. The result is a memoryless walk parametrized

by the weight of the selfloop, s . We prove in our analysis that with our explicit

choice of weight, this forces the evolution of the initial state into a single rota-

tional subspace of our walk operator. As a result, our walk achieves a success

probability 1−O ( 1
log N )with Θ(
p

N log N ) steps and minimal memory.

Most of our analysis considers the eigenvector of an operator with the small-

est positive eigenphase. We use the term “slowest eigenvector” to refer to this

eigenvector, and “slowest rotational subspace” to refer to the subspace spanned

by this eigenvector and its conjugate.

To prove our main result, we present a set of techniques for analysing mem-

oryless walks. We analyse an operatorW, whose spectrum is completely known,

composed with a two-dimensional rotation F. As part of our proof, we deter-

mine the asymptotic behaviour of both the smallest positive eigenphase of WF

and its associated eigenvector. The result is a precise asymptotic description of

the slowest rotational subspace of our walk operator. The techniques we use to

obtain this description are general enough that they could be applied in other

contexts as well.

We begin by defining our walk in Section 3.2. An overview of the chapter lay-

out and proof structure is given in Section 3.2.1.

3.2 Walk construction and main result

We consider the task of finding a unique marked vertex on a two-dimensional

grid with nr rows and nc columns, where both nr and nc are even. The grid

boundaries are those of a torus, so there are edges between vertices (i , nc − 1)

and (i , 0) for 0 ≤ i < nr , and between vertices (nr − 1, j ) and (0, j ) for 0 ≤ j < nc .

The total number of vertices is given by N = nr ×nc . After Lemma 5, we restrict

to the case where nr = nc =
p

N .
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3. Memoryless quantum search

We construct a memoryless quantum walk with a selfloop. Our walk oper-

ates on a space of dimension N + 1, which is optimal for this task. The vertex

at position (i , j ) is represented by the quantum state |i , j 〉. In addition to these

N orthogonal basis states, we introduce a new state |⟲〉 corresponding to a self-

loop on the marked vertex. The state |⟲〉 is a basis state orthogonal to the vectors

|i , j 〉, giving a space of total dimension N +1. Our approach and terminology are

inspired by the interpolated walks of Krovi et al [KMOR16], in which additional

basis states are added to a Szegedy-style walk. In their Szegedy-style interpo-

lated walks, the new states correspond classically to adding selfloop edges to the

marked vertices, which is how our state |⟲〉 gets its name.

Our walk applies two alternating reflections about the faces of the graph.

Here, we follow the construction used in [APN15]. For 0 ≤ i < nr
2 , 0 ≤ j < nc

2 ,

define

|ai j 〉=
1

2

1
∑

i ′, j ′=0

|2i + i ′, 2 j + j ′〉, (3.1)

|bi j 〉=
1

2

1
∑

i ′, j ′=0

|2i +1+ i ′, 2 j +1+ j ′〉. (3.2)

The sets {|ai j 〉}i , j and {|bi j 〉}i , j each specify a partition of the grid into 2× 2

squares, positioned at even and odd indices, respectively. These sets form the

tessellations depicted in Figure 3.1.

Define projections onto the even and odd partitions as

Πe =

nr
2 −1
∑

i=0

nc
2 −1
∑

j=0

|ai j 〉〈ai j |, Πo =

nr
2 −1
∑

i=0

nc
2 −1
∑

j=0

|bi j 〉〈bi j |,

and let

A= 2Πe+2|⟲〉〈⟲| − I, (3.3)

B= 2Πo+2|⟲〉〈⟲| − I. (3.4)

In [APN15], these reflections are alternated with a reflection about the marked

state. This is the standard way of adding finding behaviour to memoryless walks,
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3. Memoryless quantum search

Figure 3.1: Staggered tessellations of the two-dimensional lattice into squares of
size 2×2. The dashed red lines represent the states |ai j 〉 and solid blue lines rep-
resent the states |bi j 〉, as defined in equation (3.1) and equation (3.2). The con-
struction based on alternating reflections about this tessellation structure was
originally proposed by [Fal13].

where an operator composed of two or more non-commuting reflections is alter-

nated with a reflection of the marked vertices. In our walk, we replace the reflec-

tion of the marked vertex with a reflection of an interpolated state with parameter

0 ≤ s ≤ 1. Letting |g 〉 denote the marked vertex, we define the interpolated state

to be |g̃ 〉=
p

s |g 〉+
p

1− s |⟲〉. Our input-dependent reflection is then

~G= I−2|g̃ 〉〈g̃ |. (3.5)

By selecting an appropriate value for s , we are able to force the action of the walk

asymptotically into a single two-dimensional subspace. We set s = 1− 1
N+1 , which

is close to the value s = 1− 1
N used by [KMOR16] for interpolated walks.

Given a fixed value for s , we define a single step of our walk to be the operator

U=B~GA~G. (3.6)
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3. Memoryless quantum search

We apply the walk to the initial state |π〉, which is defined by 〈i , j |π〉= 1p
N

for

all vertices (i , j ), and with 〈⟲|π〉= 0. This allows us to present our main result.

Theorem 2 (Main result) Fix s = 1− 1
N+1 and suppose nr = nc . Then there exists

a constant c > 0 such that after c
p

N log N applications of U to |π〉, measuring

the state will produce |⟲〉with probability 1− e (N ), where e (N ) ∈O ( 1
log N ).

We remark that given the state |⟲〉, one can obtain the marked state |g 〉 through

amplitude amplification [BHMT02]. This can be done by alternating the reflec-

tion ~Gwith a reflection about either |g 〉 or |⟲〉. After ⌊π2 (arcsin( 1p
N+1
))−1⌋ ∈Θ(

p
N )

steps of amplification, measuring the resulting state will produce |g 〉 with prob-

ability 1− e (N ), where e (N ) ∈O ( 1
N ).

Note that both the error probability and the query complexity for obtaining

|g 〉 from |⟲〉 are dominated by the cost of finding the state |⟲〉 as in Theorem 2.

Thus, this final step does not affect the asymptotic parameters of our memoryless

search algorithm. We also emphasize that this final amplitude amplification is

conceptually different from applying amplitude amplification or Tulsi’s method

as suggested for previous memoryless walks. Both of the latter methods involve

running the entire quantum walk nested inside amplitude amplification, or with

a global control qubit. Ours is a simple adjustment to the final state of the walk,

constructed from the existing operator ~G and a reflection about |g 〉 or |⟲〉.

3.2.1 Proof strategy

Our proof of Theorem 2 is based on the analysis of an intermediate walk operator,

which we define below.

To simplify the analysis, we also introduce a change of basis. This will allow

us to compute necessary properties of the walk’s spectrum, as the eigenvectors

of BA factor into product states under this basis change. Let cz be an operator

with the action defined by |i , j 〉 7→ −|i , j 〉 if both i and j are even, and being the

identity otherwise. If the coordinates i and j are represented as a tensor product

of qubits, then cz only operates on the least-significant bits in the tensor product

space. Let cz act trivially on |⟲〉. For any operator X, let Xz = czXcz, and let

|πz 〉= cz|π〉.
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We define

W= (BA)z , (3.7)

F= (A~GA~G)z , (3.8)

so that

U=
�

BA
��

A~GA~G
�

= (WF)z . (3.9)

This is analogous to the decomposition ofUused by [APN15] in their analysis.

Recall that our algorithm from Theorem 2 consists of applying the operatorU to

|π〉. In the analysis we give for this algorithm, we instead consider applying the

operator Uz =WF to the initial state |πz 〉. Using the fact that

U
k
z |πz 〉= czUk |π〉

for any positive integer k , we can see that the probability of measuring |⟲〉 in state

Uk
z |πz 〉 is the same as in state Uk |π〉. Thus, using Uz and |πz 〉 for our analysis

simplifies the calculations, while maintaining the same success probability as

our algorithm from Theorem 2.

Note that W is input-independent, with eigenvectors that factor into prod-

uct states as we show in Section 3.4. Meanwhile, F is input-dependent, and de-

pends on both s and the marked vertex. We show in Section 3.3 that F is a two-

dimensional rotation, and therefore can be decomposed as the product of two

reflections, which we write as F= F1F2.

Our intermediate walk consists of W composed with only F1. This choice

of intermediate walk has the advantage that it consists of a real operator whose

spectrum is completely known, composed with a one-dimensional reflection.

This allows us to apply existing results about operators of this type, including

the eigenvector analysis of [Amb07] and the flip-flop theorem from [DH17]. An

overview of these results is given in Appendix 5.

Our proof is based on a tight characterization of the slowest rotational sub-

space of the intermediate walk WF1. This characterization is developed in Sec-

tion 3.5, where we prove asymptotic properties of the rotational angle and the

spanning vectors. To our knowledge, this is the first case of the flip-flop theo-

rem being used to derive properties of a subspace in this way. We show that with
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our choice of selfloop, the action of WF1 on |πz 〉 can be reduced asymptotically

to a Grover-like rotation in the slowest two-dimensional rotational subspace of

WF1. This key property is what allows our main algorithm to achieve a success

probability asymptotically close to 1.

To prove our main result, we relate the slowest rotational subspaces of WF1

andWF in Section 3.6. We show that composingWF1 with the reflection F2 does

not significantly alter the slowest rotational subspace, and therefore thatWF has

the same asymptotic behaviour asWF1 when applied to |πz 〉. The proof of The-

orem 2 follows from the basis-change relationship between U and WF given in

equation (3.9).

With our approach, we are able to derive precise statements about the be-

haviour of an operator composed with a two-dimensional rotation. This ad-

dresses a more general challenge in analysing quantum algorithms, and may

have applications outside of memoryless walks.

3.3 Decomposition of F

In this section, we derive the exact form of the rotation F. We show that it can be

decomposed into two one-dimensional reflections, F1 and F2, which we com-

pose sequentially withW in Sections 3.5 and 3.6.

Without loss of generality, assume |g 〉 = |0, 0〉 is the marked vertex. Consider

the three-dimensional subspace spanned by |g 〉, |⟲〉 and |a00〉, the even-indexed

square containing |0, 0〉. The operator F only acts non-trivially in this subspace,

which is spanned by |⟲〉 and the two orthonormal states

|+〉=
1
p

3
(|g 〉+ |a00〉), (3.10)

|−〉= (|g 〉− |a00〉). (3.11)

Lemma 1 Let 0≤η≤ π3 be such that

sin2(η) =
3

4
s . (3.12)
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Set λ = e ı 4η. Then F = I+ (λ− 1)| f +〉〈 f +|+ (λ−1 − 1)| f −〉〈 f −|, where the two non-

trivial eigenvectors are

| f +〉=
1
p

2

�

|+〉− ı
1

p
4−3s

�p
s |−〉−2

p
1− s |⟲〉
�

�

, (3.13)

| f −〉=
1
p

2

�

|+〉+ ı
1

p
4−3s

�p
s |−〉−2

p
1− s |⟲〉
�

�

. (3.14)

Proof Observe that F is a real-valued operator that only acts non-trivially on the

span of |+〉, |−〉 and |⟲〉. Therefore, any complex eigenvalues of F must come in

conjugate pairs, and F can have at most three non-trivial eigenvectors. Using

the observation that (A~G)z is real-valued, any (−1)-eigenspace of F would nec-

essarily have even dimension. Thus, F must have either two or zero non-trivial

eigenvectors.

Define | f +un 〉=
p

2(4−3s )| f +〉 and compute

(A~G)z | f +un 〉=
�

− (2−3s )
p

4−3s

2
− ı
p

3s (4−3s )
�

|+〉

+
�

−
p

4−3s

2

p
3s + ı
p

s (2−3s )
�

|−〉

+
�

p

3s (1− s )(4−3s )− ı
p

1− s (2−3s )
�

|⟲〉

=−
1

2

�

(2−3s ) + ı
p

3s
p

4−3s
�

| f +un 〉

=−e ı 2η| f +un 〉.

This shows that | f +〉 is an eigenvector ofF= (A~G)z (A~G)z with eigenvalue (−e ı 2η)2 =

λ. It follows that the entrywise conjugate of | f +〉, given by | f −〉, must be an eigen-

vector of Fwith eigenvalue λ−1. □

Lemma 1 shows that F is a rotation by 4η of a single two-dimensional space,

spanned by | f +〉 and | f −〉. Therefore, F can be decomposed as the product of two

one-dimensional reflections. We choose these reflections as follows.
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Lemma 2 Define

| f1〉=
1

p
4−3s

�p
s |−〉−2

p
1− s |⟲〉
�

, (3.15)

| f2〉= sin(2η)|+〉+ cos(2η)| f1〉, (3.16)

and let

F1 = I−2| f1〉〈 f1|, (3.17)

F2 = I−2| f2〉〈 f2|. (3.18)

Then F= F1F2.

Proof We know by Lemma 1 that F is a real-valued rotation of a single two-

dimensional space. Therefore, we can writeFas the product of two one-dimensional

reflections of real-valued vectors. To obtain this decomposition, we could choose

any two real-valued unit vectors | f1〉 and | f2〉 in the rotational space ofF for which

〈 f1| f2〉= cos(2η).

From Lemma 1, we have formulas for the eigenvectors | f +〉 and | f −〉 of F.

Thus, we set | f1〉= ıp
2
(| f +〉− | f −〉), which is a real-valued vector in the rotational

space. Furthermore, |+〉= 1p
2
(| f +〉+| f −〉) is real-valued and orthogonal to | f1〉. By

defining | f2〉= sin(2η)|+〉+cos(2η)| f1〉, we obtain a second vector with the desired

properties. □

3.4 Structure ofW

We give exact formulas for the eigenvectors and eigenphases of W, as well as a

decomposition of the (N + 1)-dimensional domain into subspaces that are in-

variant under W. These properties are required for the precise characterisation

ofWF1 andWF in later sections.

3.4.1 Spectrum ofW

Recall that |⟲〉 is trivially a (+1)-eigenvector ofW. The remaining N eigenvectors

ofW can be indexed by k and l as follows.
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For 0 ≤ k < nr /2, let k̃ = 2πk
nr

, and for 0 ≤ l < nc /2, let l̃ = 2πl
nc

. Let εk =

sign(cos k̃ ) and εl = sign(cos l̃ ). Define the sign of zero to be+1. This case occurs

when nr or nc is divisible by 4, since cos(k̃ ) = 0 when k = nr /4 and cos(l̃ ) = 0

when l = nc /4.

Define

pk l =
p

1− cos2 k̃ cos2 l̃ , (3.19)

θk l = εkεl arccos(1−2p 2
k l ), (3.20)

and

r ±k l =

√

√

√

2
�

1±
sin k̃ cos l̃

pk l

�

=

√

√

√

1+
sin l̃

pk l
±εl

√

√

√

1−
sin l̃

pk l
,

c ±k l =

√

√

√

2
�

1±
cos k̃ sin l̃

pk l

�

=

√

√

√

1+
sin k̃

pk l
±εk

√

√

√

1−
sin k̃

pk l
.

If k = l = 0, then p00 = 0 and the division by zero is ill-defined. In this case,

we define

r +00 = r −00 = c +00 = c −00 =
p

2.

For each 0 ≤ k < nr /2 and 0 ≤ l < nc /2, there is an eigenvector |wk l 〉 of W

with eigenvalue e ıθk l . This |wk l 〉 is the product state

|wk l 〉= |uk l 〉⊗ |vk l 〉, (3.21)

where the factors are given by the normalized states

|uk l 〉=
p

2|φk
r 〉 ◦ (|1nr /2〉⊗ |rk l 〉),

|vk l 〉=
p

2|φl
c 〉 ◦ (|1nc /2〉⊗ |ck l 〉),

|rk l 〉=
1

2

�

r −k l

r +k l

�

,

|ck l 〉=
1

2

�

c −k l

c +k l

�

.

Here, ◦ denotes the Hadamard product and |1n 〉 is the all-ones vector of di-

mension n . The Fourier states are |φk
r 〉=

1p
nr

∑nr−1
i=0 ω

i k
nr
|i 〉and |φk

c 〉=
1p
nc

∑nc−1
i=0 ω

i k
nc
|i 〉,

whereωn = e 2πı/n denotes the n th root of unity.
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Let

|r 1
k l 〉=XZ|rk l 〉,

|c 1
k l 〉=XZ|ck l 〉.

We let |u 1
k l 〉 and |v 1

k l 〉 be defined similarly to |uk l 〉 and |vk l 〉 above, but replac-

ing |rk l 〉 and |ck l 〉with |r 1
k l 〉 and |c 1

k l 〉, respectively. Then replacing |uk l 〉 and |vk l 〉
with |u 1

k l 〉 and |v 1
k l 〉 in the definition of |wk l 〉 yields an eigenvector with eigen-

phase−θk l , and replacing either one of the two yields an eigenvector with eigen-

value +1. We denote |u 0
k l 〉 = |uk l 〉 and |v 0

k l 〉 = |vk l 〉. Let |w B
k l 〉 be defined accord-

ingly for B ∈ {00, 01, 10, 11}.
By this definition, the N eigenvectors {|w B

k l 〉}ofW constitute an orthonormal

basis for the grid, where the eigenvector |w B
k l 〉 has eigenphase θk l , 0, 0,−θk l for

B = 00, 01, 10, 11.

Lemma 3 Both |π〉 and |πz 〉 are (+1)-eigenvectors ofW.

Proof Based on equation (3.20), we note that θ00 = 0. The lemma follows from

the observation that

|π〉= |w 00
00 〉,

|πz 〉=
1

2

�

|w 00
00 〉+ |w

01
00 〉+ |w

10
00 〉− |w

11
00 〉
�

.

□

3.4.2 Invariant subspaces

We partition the domain of W into subspaces Wk l , which we define as follows.

These subspaces will be useful later in our analysis, as they allow us to consider

action ofW on each subspace separately. This in turn allows for precise analysis

of our walk’s behaviour.

The number of subspaces depends on the parity of nc
2 . If nc

2 is odd, there are
(nr+2)(nc−2)

8 + 1 invariant subspaces, and if nc
2 is even, there are (nr+2)nc

8 + ⌊nr
4 ⌋ − 1

invariant subspaces.
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EachWk l is spanned by a set of eigenvectors ofW with eigenphase θk l . The

subspaces are defined such that each subspace is invariant under the action of

W, in the sense that any vector in Wk l will remain in Wk l when acted on by W.

Thus, our partition of the domain of W yields subspaces with the convenient

property that W applies the same eigenphase θk l to all vectors in a given Wk l ,

and that applyingW does not change which vectors are in which subspaces. The

projection onto subspaceWk l is denoted Πk l .

First, observe that θ00 = 0, so the eigenvectors |w 00
00 〉 and |w 11

00 〉 are both (+1)-

eigenvectors. The (+1)-eigenspace ofW therefore has dimension N
2 +2+1, where

the last dimension comes from the selfloop state. We denote the (+1)-eigenspace

asW00 and its associated projection as Π00.

For any 0≤ k < nr /2 and 0≤ l < nc /2, define

k ′ =







nr
2 −k if 0< k < nr

2

0 if k = 0
and l ′ =







nc
2 − l if 0< l < nc

2

0 if l = 0.

Note that k = k ′ exactly when k = 0 or k = nr
4 , and similarly for l = l ′.

For 0< k < nr
2 , k ̸= nr

4 and 0< l < nc
4 , define

Wk l = span
¦

|w 00
k l 〉, |w

00
k ′l ′〉, |w

11
k ′l 〉, |w

11
k l ′〉
©

.

Each of these subspaces has an associated eigenphase θk l ̸= 0,π. When nr or nc

is a multiple of 4,W also has a (−1)-eigenspace. In this case, there are subspaces

with eigenphase π given by

Wk l = span
¦

|w 00
k l 〉, |w

00
k ′l ′〉, |w

11
k ′l 〉, |w

11
k l ′〉
©

.

for k = nr
4 , 0 < l < nc

4 and l = nc
4 , 0 < k ≤ nr

4 . These four vectors will be distinct

unless both k = nr
4 and l = nc

4 , in which case dim(Wk l ) = 2.

For k = 0 and 0< l < nc
2 , the corresponding invariant subspace is

Wk l = span
¦

|w 00
k l 〉, |w

11
k l ′〉
©

,

and similarly for l = 0 and 0< k < nr
2 ,

Wk l = span
¦

|w 00
k l 〉, |w

11
k ′l 〉
©

.
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Partitioning the domain in this way allows us to closely analyse the behaviour

of |+〉 and |−〉 under the action of W. The following results will be used in our

analysis of Uz =WF.

Lemma 4 The following statements hold.

Πk l |+〉 ⊥Πk l |−〉 for all subspacesWk l (3.22)

∥Πk l |+〉∥2 =
2

3

dim(Wk l )
N

for all k , l not both 0 (3.23)

∥Πk l |−〉∥2 = 2
dim(Wk l )

N
for all k , l not both 0 (3.24)

∥Π00|+〉∥2 =
2

3

N +2

N
(3.25)

∥Π00|−〉∥2 =
4

N
. (3.26)

Proof These results are obtained using direct calculations based on the defini-

tions given in this section. The full proof is given in Appendix 5. □

3.5 Reduction to the slowest subspace

Our memoryless walk, given in Theorem 2, achieves a success probability asymp-

totically close to 1. This is possible because our choice of s reduces the walk

asymptotically to a rotation in a single two-dimensional subspace. As we show,

this subspace is exactly the slowest rotational subspace of the applied walk op-

erator. We prove this by giving a tight description of the smallest positive eigen-

value of the walk operator and its associated eigenvector. We also show that the

two-dimensional rotation induced by the walk maps the initial state to the de-

sired state |⟲〉.
We consider two walk operators. The first consists of the real operator W

composed with the one-dimensional reflection F1. The second consists of W

composed with the two-dimensional rotation F. We discuss the first operator in

this section, and then use the results to derive properties of the second operator

in Section 3.6.
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First, we prove three key lemmas about the slowest rotational subspace of

WF1. Lemma 6 gives a tight bound on the smallest positive eigenphase of WF1,

and Lemmas 8 and 9 characterize the asymptotic behaviour of its associated

eigenvector. These three lemmas show that the action of WF1 on |πz 〉 can be

asymptotically reduced to a rotation in the slowest rotational subspace. These

results are the basis of the methods used in Section 3.6 to prove our main result.

The intermediate operator WF1 is fundamentally a tool for analysis. How-

ever, it is interesting to note that WF1 can be used directly to find the marked

state. The proof of the corollary below follows from a similar argument to our

proof of the main theorem.

Corollary 1 Fix s = 1− 1
N+1 and suppose nr = nc . Then there exists a constant

c > 0 such that after c
p

N log N applications ofWF1 to |πz 〉, measuring the state

will produce |⟲〉with probability 1− e (N ), where e (N ) ∈O ( 1
log N ).

Comparing Corollary 1 with Theorem 2 shows that most of the finding be-

haviour of the memoryless walk comes from the first reflectionF1. In Section 3.6,

we show that composingWF1 with the second reflection F2 only changes the be-

haviour of the walk slightly, leading to our proof of Theorem 2.

Our proofs of both Corollary 1 and our main theorem rely on the following

observation.

Lemma 5 The (unnormalized) vector

|U0〉= |πz 〉−
√

√ s

(1− s )N
|⟲〉 (3.27)

is a (+1)-eigenvector for each ofW, F1, and F2.

Proof Both |πz 〉 and |⟲〉 are (+1)-eigenvectors ofW, so |U0〉 is a (+1)-eigenvector

ofW. To show |U0〉 is a (+1)-eigenvector of F1, we compute

〈U0| f1〉=
2
p

s
p

N (4−3s )
+
p

s
p

4−3s
〈πz |−〉= 0.

Finally, |+〉 is orthogonal to both |πz 〉 and |⟲〉, so |U0〉 is orthogonal to | f2〉. There-

fore, |U0〉 is also a (+1)-eigenvector of F2. □
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For the rest of the chapter, we assume a square grid, so nr = nc =
p

N . We

also fix s = 1− 1
N+1 . This choice of selfloop weight means |U0〉= |πz 〉− |⟲〉, so we

can decompose the initial state |πz 〉 as

|πz 〉=
1

2
|U0〉+

1

2

�

|πz 〉+ |⟲〉
�

. (3.28)

We show in Section 3.5.2 that for our chosen s , |πz 〉+ |⟲〉 lies asymptotically

in the slowest rotational subspace ofWF1. Therefore,WF1 can be used to apply a

negative phase to this portion of the initial state. This rotates the state |πz 〉 to the

state 1
2 |U0〉− 1

2

�

|πz 〉+ |⟲〉
�

=−|⟲〉, as we make precise in our proof of Corollary 1.

When s = 1− 1
N+1 , note that the vector | f1〉 has the form

| f1〉=

√

√ N

N +4
|−〉−

2
p

N +4
|⟲〉. (3.29)

3.5.1 Smallest eigenphase ofWF1

We choose the operator WF1 as our intermediate step in the analysis of WF be-

cause it is the composition of a well-characterized real operator with a one-dimensional

reflection. This allows us to apply results from the literature about operators of

this type. Here, we show how these results can be used to obtain a tight bound

on the smallest positive eigenphase ofWF1.

An overview of the applied results is given in Appendix 5.

Lemma 6 The smallest positive eigenphase ϕ1 ofWF1 satisfies ϕ1 ∈Θ( 1p
N log N

).

Proof Observe that W is a real-valued operator and that F1 is a reflection of a

single real-valued vector, | f1〉. Therefore, we can apply the results discussed in

Appendix 5, with the correspondence T=W and |s 〉= | f1〉.
First, we recall from Section 3.4.1 that the smallest positive eigenvalue of W

is given by

θ10 = acos
�

2 cos2
�

2π
p

N

�

−1
�

=
4π
p

N
. (3.30)
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We know by Lemma 4 and the decomposition in equation (3.29) that | f1〉 satisfies

∥Π00| f1〉∥2 =
8

N +4
,

∥Πk l | f1〉∥2 =
2 dim(Wk l )

N +4
for all k , l not both 0.

In particular, | f1〉 overlaps all eigenspaces of W, including the eigenspace with

eigenphase θ10. Therefore, by Theorem 7, ϕ1 <θ10 =
4πp

N
.

By definition, ϕ1 is an eigenphase of the operator WF1, so by Lemma 19, ϕ1

must also satisfy the constraint in equation (3), with α =ϕ1. This constraint de-

pends on the projection of | f1〉 onto each of the two-dimensional rotational sub-

spaces ofW. We rewrite the constraint in equation (3) as a sum over the invariant

subspaces ofW, so that it becomes

∥Π00| f1〉∥2 cot
�

ϕ1

2

�

+
∑

k l ̸=00

∥Πk l | f1〉∥2 cot
�

ϕ1−θk l

2

�

= 0. (3.31)

Here, the sum is taken over all invariant subspaces ofW except the (+1)-eigenspace,

W00. Note that the (−1)-eigenspace is included this sum, while it is written as a

separate term in Lemma 19. Because ϕ1 > 0 and ϕ1 ∈ o (1), we have

∥Π00| f1〉∥2 cot
�

ϕ1

2

�

∈Θ
� 1

ϕ1N

�

.

Therefore, for equation (3.31) to hold, it must be the case that

∑

k l ̸=00

∥Πk l | f1〉∥2 cot
�

θk l −ϕ1

2

�

∈Θ
� 1

ϕ1N

�

. (3.32)

We argue that there cannot be a solutionϕ1 ∈Θ( 1p
N
). By Fact 1, we know that

for such aϕ1, the sum in equation (3.32) has orderΩ( log Np
N
). Therefore, it must be

the case that ϕ1 ∈ o ( 1p
N
).

By Fact 1, we also know that ifϕ1 ∈ o ( 1p
N
), then the sum in equation (3.32) has

order Θ(ϕ1 log N ). Due to the requirement ϕ1 log N ∈ Θ( 1
ϕ1N ), the only possible

solution is ϕ1 ∈Θ( 1p
N log N

), as stated. □
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3.5.2 Slowest eigenvector ofWF1

In this section, we use a constraint-solving approach to analyse the eigenvector

ofWF1 associated with eigenphaseϕ1. By determining its asymptotic behaviour,

we show that the |πz 〉+ |⟲〉 component of equation (3.28) lies in the span of this

eigenvector and its conjugate. This shows that WF1 can be applied to rotate the

initial state |πz 〉 to the target state |⟲〉.
Define |−〉⊥ = |−〉+ 2p

N
|πz 〉 to be the (unnormalized) component of |−〉 that

is orthogonal to |πz 〉. Note that by Lemma 4, this vector is orthogonal to (+1)-

eigenspace ofW.

Let |ζ〉 be an unnormalized eigenvector ofWF1 with eigenphase α ̸= 0,π and

〈ζ|πz 〉 ≠ 0, scaled such that 〈ζ|πz 〉 = 1
2 . Because |ζ〉 is perpendicular to |U0〉, this

implies 〈ζ|⟲〉= 1
2 . We decompose |ζ〉 as

|ζ〉= a |−〉⊥+
1

2
|πz 〉+

1

2
|⟲〉+ |ψ〉, (3.33)

where |ψ〉 is an unnormalized vector orthogonal to |−〉⊥. By analysing the asymp-

totic behaviour of a and |ψ〉, we show that the real part of |ζ〉 tends to 1
2 (|πz 〉+|⟲〉)

when α=ϕ1.

Note that any eigenvector ofWwith eigenphase θk l that is orthogonal to | f1〉
is also an eigenvector of WF1 with eigenphase θk l . Therefore, Πk l |ψ〉 is some

scalar multiple ofΠk l |−〉⊥ for each k , l . We determine this scalar factor in Lemma 7.

We further decompose both |−〉⊥ and |ψ〉 into the invariant subspaces of W.

Both |−〉⊥ and |ψ〉 are orthogonal to the (+1)-eigenspace W00, so we write the

decomposition as

|−〉⊥ =
∑

k l ̸=00

mk l |−k l 〉, (3.34)

|ψ〉=
∑

k l ̸=00

|ψk l 〉, (3.35)

where the vectors |−k l 〉 are normalized for all k , l . We know by Lemma 4 that

mk l =
q

2 dim(Wk l )
N . The vectors |ψk l 〉 in the decomposition of |ψ〉 are unnormal-

ized.

39



3. Memoryless quantum search

Lemma 7 The following equations must be satisfied.

8a (N −4)
p

N (N +4)
−

16

N +4
= e ıα−1 (3.36)

〈−k l |ψk l 〉=mk l

�

a −
p

N

4
(e ıα−1)
�

1

1− e ı (α−θk l )

�

�

for all k , l not both 0. (3.37)

Proof By definition, |ζ〉 is an eigenvector of WF1 with eigenphase α. We ob-

tain the lemma by expanding the equation WF1|ζ〉= e ıα|ζ〉 and solving for con-

straints.

Observe that using equation (3.29),

〈 f1|ζ〉=
1

p
N +4

�

a (N −4)
p

N
−2
�

.

Using this property, we compute

WF1|ζ〉=W|ζ〉−2W〈 f1|ζ〉| f1〉

= γ−W|−〉⊥+γ∗(|πz 〉+ |⟲〉) +W|ψ〉,

where

γ− = a −
2

N +4

�

a (N −4)−2
p

N
�

,

γ∗ =
1

2
+

4
p

N (N +4)

�

a (N −4)−2
p

N
�

.

SettingWF1|ζ〉= e ıα|ζ〉 and comparing coefficients on |πz 〉, we get

γ∗ =
1

2
e ıα,

which can be expanded to give equation (3.36).

To get equation (3.37), we first solveWF1|ζ〉= e ıα|ζ〉 on the subspaceWk l to

get

〈−k l |ψk l 〉=mk l

�

a e ıα−γ−e ıθk l

e ıθk l − e ıα

�

. (3.38)
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Next, we use equation (3.36) to rewrite γ− as

γ− = a −
p

N

4
(e ıα−1).

Substituting this expression for γ− into equation (3.38) produces equation (3.37).

□

Now, fix |ζ〉 to be the eigenvector with eigenphaseϕ1. By Lemma 19, we know

that 〈ζ|πz 〉 ≠ 0, so the constraints given in Lemma 7 apply. These constraints,

together with the bound on ϕ1 from Lemma 6, define asymptotic bounds on a

and the real part of |ψ〉. We use this to show that as N increases, the real part of

|ζ〉 converges to 1
2 |πz 〉+ |⟲〉.

Let |ζ〉 denote the entrywise conjugate of |ζ〉. Then |ζ〉 and |ζ〉 span the slow-

est rotational subspace of WF1. In this way, the following lemmas provide a

close description of the spanning eigenvectors for the slowest rotational sub-

space ofWF1.

Lemma 8 Let α=ϕ1. Then |a | ∈Θ( 1p
log N
).

Proof By Lemma 6, we know that |e ıϕ1 −1| ∈Θ( 1p
N log N

). Applying this to equa-

tion (3.36) produces the stated bound. □

Lemma 9 Let α=ϕ1. Let |ψ〉=ℜ(|ψ〉)+ ıℑ(|ψ〉), where bothℜ(|ψ〉) and ℑ(|ψ〉) are

vectors with real entries. Then ∥ℜ(|ψ〉)∥ ∈O ( 1p
log N
).

Proof From equation (3.37), we know that

|ψ〉=
∑

k l ̸=00

mk l

�

a −
p

N

4
(e ıα−1)
�

1

1− e ı (α−θk l )

�

�

|−k l 〉

= a |−〉⊥+ρ|v 〉,

where we define

ρ =−
p

N

4
(e ıα−1),

|v 〉=
∑

k l ̸=00

mk l

�

1

1− e ı (α−θk l )

�

|−k l 〉.
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We know from Lemma 8 that ∥ a |−〉⊥∥ ∈ Θ( 1p
log N
). Thus, it remains to con-

sider ρ|v 〉.
Examining ρ shows that for α ∈Θ( 1p

N log N
),

|ℜ(ρ)| ∈Θ
�

1
p

N log N

�

, |ℑ(ρ)| ∈Θ
�

1
p

log N

�

.

Therefore, we can prove the lemma by showing that ∥ℜ(|v 〉)∥ ∈O (
p

N log N ) and

∥ℑ(|v 〉)∥ ∈O (1). Observe that for all k , l ,

ℜ
�

1

1− e ı (α−θk l )

�

=
1

2
, ℑ
�

1

1− e ı (α−θk l )

�

=−
1

2
cot
�

θk l −α
2

�

.

Using this property, we split the coefficients of |v 〉 into their real and imagi-

nary parts, giving

|v 〉=
1

2

∑

k l ̸=00

mk l |−k l 〉−
ı

2

∑

k l ̸=00

mk l cot
�

θk l −α
2

�

|−k l 〉

=
1

2
|−〉⊥−

ı

2
|v ′〉,

where

|v ′〉=
∑

k l ̸=00

mk l cot
�

θk l −α
2

�

|−k l 〉.

Note that |−〉⊥ is real-valued and has norm Θ(1).

We now bound the real and imaginary parts of |v ′〉. Recall that for each sub-

space Wk l with eigenphase 0 < θk l < π, there is a corresponding subspace with

eigenphase −θk l , which we denote Wk l . Because |−〉⊥ is real-valued, it must be

the case that the normalized projection of |−〉⊥ onto Wk l is |−k l 〉, the entrywise

conjugate of |−k l 〉. Using this property, we decompose |v ′〉 as

|v ′〉=
∑

0<θk l<π

mk l

�

cot
�

θk l −α
2

�

|−k l 〉− cot
�

θk l +α
2

�

|−k l 〉
�

+
∑

θk l=π

mk l cot
�

θk l −α
2

�

|−k l 〉

= |v1〉+ |v2〉+ |v3〉,

42



3. Memoryless quantum search

where

|v1〉=
∑

0<θk l<π

mk l

�

cot
�

θk l +α
2

�

|−k l 〉− cot
�

θk l +α
2

�

|−k l 〉
�

,

|v2〉=
∑

0<θk l<π

mk l

�

cot
�

θk l −α
2

�

− cot
�

θk l +α
2

�

�

|−k l 〉,

|v3〉=
∑

θk l=π

mk l cot
�

θk l −α
2

�

|−k l 〉.

Note that the sums are taken over the invariant subspaces of W whose eigen-

phases lie in the indicated range. We bound the norms of these three compo-

nents individually. First, observe that

|v3〉= tan
�

α

2

�

∑

θk l=π

mk l |−k l 〉,

where
∑

θk l=π
mk l |−k l 〉 is the projection of |−〉 onto the (−1)-eigenspace of W.

Therefore, |v3〉 must be entirely real-valued, with norm ∥|v3〉∥ ∈ O ( 1p
N log N

) by

Lemma 6.

The vector |v1〉 is entirely imaginary-valued, with norm

∥|v1〉∥2 =
∑

0<θk l<π

mk l
2

�

cot
�

θk l +α
2

�2

+ cot
�

θk l +α
2

�2
�

≤
16

N

∑

0<θk l<π

cot
�

θk l +α
2

�2

=
16

N

∑

0<θk l<π

�

cot(θk l
2 )cot(α2 )−1

cot(α2 ) + cot(θk l
2 )

�2

≤
16

N
cot2
�

α

2

�

∑

0<θk l<π

�

cot(θk l
2 )

cot(α2 ) + cot(θk l
2 )

�2

.

There are O (N ) terms in the final sum, each of which is at most 1, so ∥|v1〉∥2 ∈
O (N log N ).
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Finally, the vector |v2〉 has both real and imaginary parts, and has norm

∥|v2〉∥2 =
∑

0<θk l<π

mk l
2

�

cot
�

θk l +α
2

�

− cot
�

θk l −α
2

�

�2

=
2

N

∑

0<θk l<π

dim(Wk l )

�

cot
�

θk l +α
2

�

− cot
�

θk l −α
2

�

�2

=
1

N

∑

k l ̸=00

dim(Wk l )

�

cot
�

θk l +α
2

�

− cot
�

θk l −α
2

�

�2

.

By Fact 2, this implies ∥|v2〉∥2 ∈O ( 1
log N ).

Combining the bounds on |v1〉, |v2〉 and |v3〉, we bound the norm of the real

and imaginary parts of |v ′〉. Thus,

∥ℜ(|v ′〉)∥ ≤ ∥|v3〉∥+ ∥|v2〉∥ ∈O
� 1
p

log N

�

,

∥ℑ(|v ′〉)∥ ≤ ∥|v1〉∥+ ∥|v2〉∥ ∈O (
Æ

N log N ).

Because |v 〉= 1
2 |−〉
⊥− ı

2 |v ′〉, this shows in particular that ∥ℜ(|v 〉)∥ ∈O (
p

N log N )

and ∥ℑ(|v 〉)∥ ∈O (1). We combine this with the bounds on ρ to obtain ∥ℜ(|ψ〉)∥ ∈
O ( 1p

log N
) as stated. □

Lemmas 8 and 9 show that the real part of |ζ〉 tends to 1
2 (|πz 〉+ |⟲〉) as N in-

creases. This implies that |πz 〉+ |⟲〉 lies asymptotically in the slowest rotational

subspace ofWF1. We make this precise in the following lemma.

Lemma 10 Let Πϕ1
denote the projection onto the slowest rotational subspace of

WF1, which is spanned by the eigenvectors with eigenphases ±ϕ1. Then





Πϕ1

�

|πz 〉+ |⟲〉
�





=
p

2−O
� 1

log N

�

. (3.39)

Proof Letℜ(a ) denote the real part of a . Observe that

|ζ〉+ |ζ〉= |πz 〉+ |⟲〉+2ℜ(a )|−〉⊥+2ℜ(|ψ〉).
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By Lemma 8, we have |ℜ(a )| ∈ O ( 1p
log N
), and by Lemma 9 we have ∥ℜ(|ψ〉)∥ ∈

O ( 1p
log N
). Therefore,

∥|ζ〉+ |ζ〉∥=
p

2+O
� 1

log N

�

.

We can also see that

�

〈ζ|+ 〈ζ|
��

|πz 〉+ |⟲〉
�

= 2.

Noting that Πϕ1
denotes the projection onto span{|ζ〉, |ζ〉}, this implies that





Πϕ1

�

|πz 〉+ |⟲〉
�





≥
p

2−O
� 1

log N

�

.

□

3.5.3 Proof of Corollary 1

Applying the operator WF1 to the initial state |πz 〉 yields an optimal algorithm

for finding |⟲〉. The proof of this corollary follows from a similar argument to

the proof of Theorem 2. We apply our characterization of the slowest rotational

subspace of WF1, given by Lemmas 6 and 10, to show the action of WF1 on |πz 〉
is asymptotically restricted to this single subspace. The result is a Grover-like

algorithm that rotates |πz 〉 to our desired state |⟲〉.

Corollary 1 Fix s = 1− 1
N+1 and suppose nr = nc . Then there exists a constant

c > 0 such that after c
p

N log N applications ofWF1 to |πz 〉, measuring the state

will produce |⟲〉with probability 1− e (N ), where e (N ) ∈O ( 1
log N ).

Proof Recall the decomposition of |πz 〉 in equation (3.28). By Lemma 5, we know

that |U0〉 is a (+1)-eigenvector ofWF1. LettingΠϕ1
denote the projection onto the

slowest rotational subspace ofWF1, we decompose |πz 〉+ |⟲〉 as

|πz 〉+ |⟲〉=Πϕ1

�

|πz 〉+ |⟲〉
�

+ |⊥〉.

for some vector |⊥〉. By Lemma 10, we know that ∥|⊥〉∥ ∈ O ( 1
log N ). We also know

from Lemma 6 that the slowest rotational subspace has eigenphaseϕ1 ∈Θ( 1p
N log N

).
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Therefore, there exists a constant c such that c
p

N log N = ⌊ πϕ1
⌋ = k . After k ap-

plications ofWF1 to |πz 〉, we get the state

(WF1)
k |πz 〉=

1

2

�

|πz 〉− |⟲〉
�

−
1

2
Πϕ1

�

|πz 〉+ |⟲〉
�

+ |ρ〉

=−|⟲〉+
1

2
|⊥〉+ |ρ〉.

Here, |ρ〉 is some state that captures both the result of applying (WF1)k to |⊥〉
and the small error incurred by the rounding of πϕ1

, and has norm ∥|ρ〉∥ ∈O ( 1
log N ).

Thus, measuring the state will produce |⟲〉with probability 1−e (N ), where e (N ) ∈
O ( 1

log N ) as stated. □

3.6 Finding with a memoryless walk

We now present the proof of our main theorem, which is stated as follows.

Theorem 2 (Main result) Fix s = 1− 1
N+1 and suppose nr = nc . Then there exists

a constant c > 0 such that after c
p

N log N applications of U to |π〉, measuring

the state will produce |⟲〉with probability 1− e (N ), where e (N ) ∈O ( 1
log N ).

Our proof uses the decomposition of |πz 〉 given in equation (3.28). We show

that the state 1
2 (|πz 〉+ |⟲〉) lies asymptotically in the slowest rotational subspace

ofWF. Therefore,WF can be used to rotate |πz 〉 to a state close to−|⟲〉. Applying

the change of basis cz yields the result as stated.

The proof is based on relating the slowest rotational subspaces of WF1 and

WF = WF1F2. We continue to apply the results from Appendix 5, this time to

analyse the real operator WF1 composed with the one-dimensional reflection

F2. We show the slowest rotational subspaces of WF1 and WF have the same

asymptotic bound on the rotational angle, and that both asymptotically contain
1
2 (|πz 〉+|⟲〉). By usingWF1 as an intermediate operator, we are thus able to tightly

characterize the slowest rotational subspace of a real operatorW, composed with

a two-dimensional rotation F.
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3.6.1 Relationship withWF1

We begin by relating the slowest rotational subspaces ofWF andWF1. Note that

when s = 1− 1
N+1 , the vector | f2〉 has the form

| f2〉=
p

3N
p

N +4

2(N +1)
|+〉+

2−N

2(N +1)
| f1〉. (3.40)

Let the eigenphases ofWF1 different from 0,π be denoted by±ϕk for 1≤ k ≤
m , where 0< |ϕ1| ≤ |ϕ2| ≤ · · · ≤ |ϕm |<π. Let the associated eigenvectors be |A±k 〉.
Both | f2〉 andWF1 are real-valued, so we can decompose | f2〉 into the eigenbasis

ofWF1 as

| f2〉= g0|A0〉+
m
∑

k=1

gk

�

|A+k 〉+ |A
−
k 〉
�

+ g−1|A−1〉, (3.41)

where |A0〉 is a (+1)-eigenvector, |A−1〉 is a (−1)-eigenvector, and all g i are non-

negative real numbers.

By Lemma 4, Πk l |+〉 ⊥Πk l | f1〉 for each invariant subspaceWk l ofW (includ-

ing W00). Therefore, the eigenvectors Πk l |+〉 of W are also eigenvectors of WF1

with the same eigenphases θk l .

Lemma 11 The decomposition of | f2〉 in equation (3.41) satisfies:

g 2
0 =

1

2
+O
� 1
p

N

�

(3.42)

g 2
1 ∈O
� 1

log N

�

. (3.43)

Proof Recall that 0 < ϕ1 < |θk l | for all nonzero eigenphases θk l of W. Using the

property that Πk l |+〉 is an eigenvector of WF1 with eigenvalue θk l , this implies

that 〈A+1 |Πk l |+〉= 0 for all k , l , so 〈A+1 |+〉= 0. LetΠ(+1) denote the projection onto

the (+1)-eigenspace of WF1. Then we have ∥Π(+1)|+〉∥2 = ∥Π00|+〉∥2 =
2(N+2)

3N by

Lemma 4.
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We bound ∥Π(+1)| f1〉∥2 by observing that

∥Π(+1)| f1〉∥2 =
∑

θk l=π

∥Πk l | f1〉∥2

=
N

N +4

∑

θk l=π

∥Πk l |−〉∥2

=
N

N +4

∑

θk l=π

2 dim(Wk l )
N

∈O
� 1
p

N

�

,

where the final bound follows from the property that there are O (
p

N ) terms in

the sum.

Thus, using equation (3.40) and the property that Π(+1)|+〉 and Π(+1)| f1〉 are

orthogonal,

g 2
0 =

3N (N +4)
4(N +1)2

∥Π(+1)|+〉∥2+
(2−N )2

4(N +1)2
∥Π(+1)| f1〉∥2

=
3N (N +4)
4(N +1)2

�

2(N +2)
3N

�

+O
� 1
p

N

�

=
1

2
+O
� 1
p

N

�

.

To bound g 2
1 , consider the eigenvector decomposition given in equation (3.33)

in the case where α = ϕ1. Then |A+1 〉 is the normalized version of |ζ〉. By defini-

tion, we have ∥|ζ〉∥2 ≥ 1
2 , so

g 2
1 = |〈A

+
1 | f2〉|2

= cos2(2η)|〈A+1 | f1〉|2+ sin2(2η)|〈A+1 |+〉|
2

= cos2(2η)|〈A+1 | f1〉|2

≤ |〈ζ| f1〉|2/∥|ζ〉∥2

≤ 2|〈ζ| f1〉|2

= 2

�

�

�

�

a

√

√ N

N +4

�

1−
4

N

�

−
2

p
N +4

�

�

�

�

2

∈O
� 1

log N

�

,

where the final bound follows from Lemma 8. □

Lemma 11 shows that | f2〉has a large constant overlap with the (+1)-eigenspace

ofWF1, and a vanishing overlap with the slowest rotational space. Intuitively, this
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suggests the reflectionF2 will have little effect on the slowest rotational subspace

of the intermediate walkWF1. As discussed in Section 3.5, this subspace is where

most of the action of the walk takes place. This observation is the basis for the

proof of Lemma 13.

In the next lemma, we use the constraints from Lemma 19 to show that the

smallest positive eigenphase ofWF is asymptotically close to ϕ1.

Lemma 12 Let β denote the smallest eigenphase ofWF. Then

β =ϕ1−O
�

1
p

N (log N )3/2

�

. (3.44)

Note that in particular, this implies β ∈Θ( 1p
N log N

).

Proof First, we derive an upper bound on β using the flip-flop theorem. By

Lemma 4, |+〉 intersects every eigenspace ofW. Each of the eigenvectorsΠk l |+〉 is
also an eigenvector ofWF1, so in particular, this implies that g0 > 0, g−1 > 0, and

gk > 0 for the k corresponding to the eigenphases θk l . Therefore, by Theorem 7,

0<β <ϕ1. Applying Lemma 6, we obtain β ∈O ( 1p
N log N

).

To obtain the upper bound onϕ1−β , we apply Lemma 19, which states that

β must satisfy

g 2
0 cot
�

β

2

�

+
m
∑

k=1

g 2
k

�

cot
�

ϕk +β
2

�

− cot
�

ϕk −β
2

�

�

− g 2
−1 tan
�

β

2

�

= 0. (3.45)

We apply trigonometric identities to rewrite this as

g 2
0 cot
�

β

2

�

−2 cot
�

β

2

� m
∑

k=1

g 2
k

�

cot2(ϕk
2 ) +1

cot2(β2 )− cot2(ϕk
2 )

�

− g 2
−1 tan
�

β

2

�

= 0.

Applying our upper bound on β , we know that g 2
−1 tan2(β2 ) ∈O ( 1

N log N ), so we

have

2
m
∑

k=1

g 2
k

cot2(ϕk
2 ) +1

cot2(β2 )− cot2(ϕk
2 )
= g 2

0 −O
� 1

N log N

�

=
1

2
+O
� 1
p

N

�

, (3.46)

where the last equality follows by Lemma 11.
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Because the smallest positive eigenphase of W has order Θ( 1p
N
), Theorem 7

implies that ϕk ∈ Ω( 1p
N
) for k ≥ 2. Therefore, cot2(ϕk

2 ) ∈ O (N ) for k ≥ 2, while

cot2(β2 ) ∈Ω(N log N ). Also note that
∑

k g 2
k ≤ 1. This means that

m
∑

k=2

g 2
k

cot2(ϕk
2 ) +1

cot2(β2 )− cot2(ϕk
2 )
∈O
� 1

log N

�

. (3.47)

Combining equation (3.46) and equation (3.47), we get

2g 2
1

cot2(ϕ1
2 ) +1

cot2(β2 )− cot2(ϕ1
2 )
=

1

2
−O
� 1

log N

�

.

We know that cot2(ϕ1
2 ) ∈ O (N log N ) by Lemma 6. We also have g 2

1 ∈ O ( 1
log N ) by

Lemma 11. This implies that

cot2
�

β

2

�

− cot2
�

ϕ1

2

�

∈O (N ).

Because cot(β2 ) + cot(ϕ1
2 ) ∈Ω(
p

N log N ), it must be the case that

cot
�

β

2

�

− cot
�

ϕ1

2

�

∈O
�

p
N
p

log N

�

.

Applying the Taylor expansion for cotangent, we get

1

β
−

1

ϕ1
=
ϕ1−β
ϕ1β

∈O
�

p
N
p

log N

�

.

We know that 1
ϕ1
∈Θ(
p

N log N ), so this implies that 1
β ∈Θ(
p

N log N ). Thus,

ϕ1−β ∈O
�

1
p

N (log N )3/2

�

.

□

Finally, we show that |πz 〉+ |⟲〉 lies asymptotically in the slowest rotational

subspace ofWF. To do so, we apply our bounds from Lemmas 11 and 12 to show

that the slowest eigenvectors ofWF are asymptotically close to the slowest eigen-

vectors ofWF1.
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Lemma 13 Let Πβ denote the projection onto the slowest rotational subspace of

WF, which is spanned by the eigenvectors with eigenphases ±β . Then





Πβ
�

|πz 〉+ |⟲〉
�





=
p

2−O
� 1

log N

�

. (3.48)

Proof We use the decomposition of | f2〉 in equation (3.41). By Lemma 19, the

(unnormalized) eigenvector of WF associated with eigenphase β is |eβ 〉 = | f2〉+
ı |e ⊥β 〉, where

|e ⊥β 〉= g0 cot
�

β

2

�

|A0〉+
m
∑

k=1

gk

�

cot
�

β −ϕk

2

�

|A+k 〉+ cot
�

β +ϕk

2

�

|A−k 〉
�

−g−1 tan
�

β

2

�

|A−1〉.

(3.49)

Let |B+1 〉 denote the normalization of |eβ 〉, and let |B−1 〉 denote the conjugate

of |B+1 〉. Then Πβ is a projection onto the span of |B+1 〉 and |B−1 〉.
We know from the proof of Lemma 10 that

�

�

�

�

〈A+1 |+ 〈A
−
1 |
��

|πz 〉+ |⟲〉
�

�

�

�= 2−O
� 1

log N

�

,

where |A+1 〉, |A−1 〉 are the normalizations of |ζ〉 and |ζ〉, respectively. We prove

Lemma 13 by showing that |A+1 〉 and |A−1 〉 have large overlap with |B+1 〉 and |B−1 〉,
respectively.

We know from equation (3.49) that

∥|eβ 〉∥2 = ∥|e ⊥β 〉∥
2+ ∥| f2〉∥2

= g 2
0 cot2
�

β

2

�

+
m
∑

k=1

g 2
k

�

cot2
�

β −ϕk

2

�

+ cot2
�

β +ϕk

2

�

�

+ g 2
−1 tan2
�

β

2

�

+1.

By Lemmas 11 and 12, we know that g 2
0 cot2(β2 ) ∈O (N log N )and that g 2

−1 tan2(β2 ) ∈
O ( 1

N log N ). Recall from equation (3.47) that

m
∑

k=2

g 2
k

�

cot2
�

β −ϕk

2

�

+ cot2
�

β +ϕk

2

�

�

∈O
� 1

log N

�

.
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Finally, we know from Lemma 12 that cot2(β+ϕ1
2 ) ∈O (N log N ). Thus,

∥|eβ 〉∥2 = g 2
1 cot2
�

β −ϕ1

2

�

+O (N log N ).

By Lemma 11, g 2
1 ∈ O ( 1

log N ), and by Lemma 12, cot2(β−ϕ1
2 ) ∈ Ω(N (log N )3).

Therefore,

|〈A+1 |B
+
1 〉|

2 =
|〈A+1 |eβ 〉|2

∥|eβ 〉∥2

=
|〈A+1 | f2〉+ ı 〈A+1 |e

⊥
β 〉|

2

∥|eβ 〉∥2

=

�

�

�g1+ ı g1 cot
�

β−ϕ1
2

�

�

�

�

2

∥|eβ 〉∥2

= 1−O
� 1

log N

�

,

so |〈A+1 |B
+
1 〉|= 1−O ( 1

log N ). Similarly, one can show that

|〈A−1 |B
+
1 〉| ∈O
� 1

log2 N

�

,

|〈A+1 |B
−
1 〉| ∈O
� 1

log2 N

�

,

|〈A−1 |B
−
1 〉|= 1−O
� 1

log N

�

.

Combining these results, we get

�

�

�

�

〈B+1 |+ 〈B
−
1 |
��

|A+1 〉+ |A
−
1 〉
�

�

�

�= 2−O
� 1

log N

�

.

Therefore,




Πβ
�

|πz 〉+ |⟲〉
�





≥
1
p

2

�

�

�

�

〈B+1 |+ 〈B
−
1 |
��

|πz 〉+ |⟲〉
�

�

�

�

≥
1

2
p

2

�

�

�

�

〈B+1 |+ 〈B
−
1 |
��

|A+1 〉+ |A
−
1 〉
�

�

�

�

�

�

�

�

〈A+1 |+ 〈A
−
1 |
��

|πz 〉+ |⟲〉
�

�

�

�

=
p

2−O
� 1

log N

�

.

□
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3.6.2 Proof of main result

Through Lemmas 12 and 13, we have an asymptotic description of the slowest

rotational subspace of WF. The description shows that as N increases, the ac-

tion ofWFon |πz 〉 approaches a rotation in this slowest rotational subspace. This

property is what allows us to map our initial state to the target state |⟲〉with prob-

ability approaching 1. Applying the relationship WF = (U)z , we thus obtain the

proof of our main result.

Theorem 2 (Main result) Fix s = 1− 1
N+1 and suppose nr = nc . Then there exists

a constant c > 0 such that after c
p

N log N applications of U to |π〉, measuring

the state will produce |⟲〉with probability 1− e (N ), where e (N ) ∈O ( 1
log N ).

Proof First, observe that for any k ,

U
k |π〉= cz(WF)kcz|π〉= cz(WF)k |πz 〉.

Thus, we prove that after c
p

N log N applications of WF to |πz 〉, measuring the

state will produce cz|⟲〉= |⟲〉with the stated probability.

Recall from equation (3.28) that |πz 〉 can be decomposed as

|πz 〉=
1

2
|U0〉+

1

2

�

|πz 〉+ |⟲〉
�

.

By Lemma 5, we know that |U0〉 is a (+1)-eigenvector of WF. Letting Πβ denote

the projection onto the slowest rotational subspace ofWF, we decompose |πz 〉+
|⟲〉 as

|πz 〉+ |⟲〉=Πβ
�

|πz 〉+ |⟲〉
�

+ |⊥〉.

for some vector |⊥〉. By Lemma 13, we know that ∥|⊥〉∥ ∈ O ( 1
log N ). We also know

from Lemma 12 that applying WF to a vector in the slowest rotational subspace

will result in a rotation of the vector by the angleβ ∈Θ( 1p
N log N

). Therefore, there

exists a constant c such that c
p

N log N = ⌊πβ ⌋= k . After k applications ofWF to

|πz 〉, we get the state

(WF)k |πz 〉=
1

2

�

|πz 〉− |⟲〉
�

−
1

2
Πβ
�

|πz 〉+ |⟲〉
�

+ |ρ〉

=−|⟲〉+
1

2
|⊥〉+ |ρ〉.
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Here, |ρ〉 is some state that captures both the result of applying (WF)k to |⊥〉 and

the small error incurred by the rounding of πβ , and has norm ∥|ρ〉∥ ∈ O ( 1
log N ).

Thus, measuring the state will produce |⟲〉with probability 1−e (N ), where e (N ) ∈
O ( 1

log N ). □

3.7 Conclusion

We consider the canonical problem of spatial search on the two-dimensional

grid. For this problem, we give a memoryless quantum walk that finds a unique

marked vertex using minimal memory andΘ(
p

N log N ) steps. Compared to pre-

vious memoryless walks on the grid, our walk boosts the probability of measuring

the marked state from O ( 1
log N ) to 1−O ( 1

log N ), while also preserving the simplicity

of the tessellation-based structure.

We achieve this by adding a selfloop to the marked vertex. In doing so, we

show how interpolated walks can be usefully adapted to the memoryless setting.

We also give a precise analysis of how the selfloop affects the walk dynamics. With

our chosen value for the selfloop weight, we show that our walk asymptotically

reduces to a rotation in a single two-dimensional subspace. Applying this rota-

tion evolves the initial state to the selfloop state, from which the marked state

can be obtained by straightforward amplitude amplification.

As part of our proof, we give a precise description of the slowest rotational

subspace of our memoryless walk operator. This is done using its decomposition

into a real operator composed with a two-dimensional rotation. The techniques

we use to analyse such an operator are general enough that they have the poten-

tial to be used in the analysis of other walks as well. This includes developing and

analysing memory-optimal spatial search algorithms for other types of graph, as

well as for handling graphs with multiple marked vertices.
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Chapter 4

Perfect matchings and

0-determinant verification

4.1 Introduction

In the perfect matchings problem, the goal is to find a subset of edges in a graph

such that every vertex is incident to exactly one edge in the set. This could be

applied, for example, to pair all people at a party such that each pair consists

of two people who have never met. Finding matchings in graphs is a canoni-

cal problem in computer science and has driven many new ideas, including the

formulation of polynomial asymptotic growth as the standard for efficient com-

putation [Edm65].

In this chapter, we consider the decision version of the perfect matchings

problem, which we refer to as perfect matching detection. Given a graph G on

n vertices, the goal is to decide whether there exists a subset of the edges in G

that constitutes a perfect matching. The decision version of the problem is more

natural to consider in our chosen model of computation, and is no harder than

the problem of finding such a matching.

We examine the perfect matchings problem in the quantum query model,

where the adjacency matrix for the graph is accessed through quantum queries to

a black box. In this model, the complexity of an algorithm is given by the number

55



4. Perfect matchings and 0-determinant verification
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Figure 4.1: An example of an augmenting path for a graph, indicated by dotted
lines, given the partial matching {(1, 6), (3, 4)} shown in blue on the left graph.
Observe that by exchanging edges in the path that are not in the matching
with those that are, the total size of the matching increases by one to become
{(1, 2), (3, 5), (4, 6)}, as shown on the right.

of times we need to query this black box to solve the perfect matching decision

problem with constant success probability. The advantage of the quantum query

model is that it is simple to work with, and lower bounds on query complexity im-

mediately imply lower bounds on step complexity. We remark that in this model,

where the queries are to the adjacency matrix of a graph, any graph problem can

be solved with O (n 2) queries by simply querying all entries of the matrix.

The earliest classical algorithms for finding matchings are based on an in-

cremental construction by augmenting paths, initially proposed by Edmonds

[Edm65]. Given a partial matching, an augmenting path is one whose edges al-

ternate between edges in the matching and ones that are not, and which starts

and ends at vertices that are not incident to any edges in the matching. Then,

by exchanging edges in the path that are not in the matching with those that are,

the total size of the matching can be increased (see Figure 4.1). An algorithm by

Hopkroft and Karp [HK73] uses this approach to find a maximum matching in a

bipartite graph in O (n 5/2) steps. Remarkably, their algorithm can be extended to

work for general graphs with no increase in asymptotic complexity, as shown by

Micali and Vazirani [MV80].

Quantum algorithms for matchings have so far been developed by applying

quantum techniques to speed up the search for augmenting paths. By using
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quantum search [BHMT02] to find new edges, one can find a maximum match-

ing in O (n 2 log2n ) steps for both bipartite [AŠ06] and general [Dör09] graphs. In

the quantum query model, the first quantum algorithm to improve on the trivial

query complexity of O (n 2) was developed by Lin and Lin [LL16]. They give an

algorithm to find a maximum matching in a bipartite graph using only O (n 7/4)

queries to the adjacency matrix. Their algorithm applies a novel guessing-tree

approach, based on the Elitzur-Vaidman bomb tester [EV93]. Kimmel and Witter

[KW21] show how to apply similar techniques [BT19] to find a maximum match-

ing in a general graph with O (n 7/4) queries.

Despite this recent progress, there remains a gap between the current upper

bound of O (n 7/4) quantum queries and the best-known lower bound of Ω(n 3/2),

as proven by Zhang [Zha05]. This gap holds for both the problem of finding a

perfect matching, and for the restricted problem of deciding whether a graph

contains a perfect matching. In this chapter, we investigate this gap by proposing

a new quantum algorithm for the perfect matching decision problem.

An alternative to the augmenting paths approach for finding matchings was

first proposed by Lovász [Lov79], who gives an algorithm based on a characteri-

zation by Tutte [Tut47]. Tutte shows that a graph contains a perfect matching if

and only if its associated Tutte matrix is nonsingular. Using this property, Lovász

gives a classical randomized algorithm that can detect, but not find, a perfect

matching in O (nω) steps, where 2≤ω≤ 2.38 is the exponent for matrix multipli-

cation. Subsequent modifications by Rabin and Vazirani [RV89] and Mucha and

Sankowski [MS04] show how this algorithm can be applied to find a maximum

matching on any graph in O (nω) steps, also with vanishing error probability.

We give a quantum analogue to Lovász’s algorithm for detecting perfect match-

ings. As with Lovász’s algorithm, our algorithm randomly instantiates the Tutte

matrix for the input graph, and then we apply quantum methods to decide whether

the resulting matrix is singular. To our knowledge, this is the first quantum algo-

rithm to use Tutte’s algebraic characterization.

The key component of our algorithm is a new span program that solves the

0-determinant verification problem. In this problem, we are given an n ×n in-

put matrix A, and the task is to decide whether A is singular. We give an algo-

57



4. Perfect matchings and 0-determinant verification

rithm for this decision problem using the span program framework, which is a

linear-algebraic model of computation that can also be used as a tool to design

quantum algorithms. Because 0-determinant is a linear-algebraic problem, span

programs are a natural choice for this purpose. Using Reichardt’s transforma-

tion [Rei09, Rei11], any span program can be compiled into a quantum algorithm

whose query complexity is determined by a span program quantity known as the

witness size. Thus, bounding the quantum query complexity of our algorithm for

0-determinant verification reduces to bounding the witness size of our span pro-

gram.

The witness size of our span program is determined by the upper bound on

the quantity c (A), which depends on the spectrum of the possible nonsingular

input matrices. Letting σ1, . . .σn denote the singular values of the nonsingular

matrix A, we define

c (A) =

√

√

√
1

n

�

1

σ2
1

+
1

σ2
2

+ . . .+
1

σ2
n

�

. (4.1)

This makes sense intuitively, as it should be hard to decide whether a matrix

is singular when it has eigenvalues that are close to zero. Our first main result is

then the following:

Theorem 3 Our span program algorithm solves the 0-determinant verification

problem with two-sided bounded error in O (
p

n LT ) quantum queries, under the

promise that any input matrix has entries with norm at most one, and any input

matrix with full rank satisfies c (A) ≤ T . Here, L represents the cost of loading a

matrix into a span program.

As discussed in Section 4.3, the loading cost for general matrices is O (n ), al-

though the bound can be improved for sparse matrices.

Belovs gives a span program for matrix rank-finding [Bel11], which can be

applied to solve 0-determinant verification. Our span program gives a simplified

approach to the 0-determinant verification problem and matches Belovs’ algo-

rithm in asymptotic query complexity. Our span program also applies similar de-

sign principles to that of Belovs’ algorithm. Both span programs use randomized
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vectors and are phrased in terms of a high level span program – a construction

defined by Belovs that allows the span program vectors to be constructed from

the columns of the input matrix A.

We apply our span program to detect perfect matchings using an algorithm

inspired by that of Lovász. Given a graph G , we randomly instantiate the Tutte

matrix with elements from a set S and then apply our span program for 0-determinant

verification. This approach leads to our second main result.

Theorem 4 Given a graph G on n vertices, a bound R , and a set S whose elements

have norm at most one, our algorithm can decide whether G contains a perfect

matching with two-sided bounded error in O (n 3/2R ) quantum queries, under the

following condition. If G contains a perfect matching, then the Tutte matrixT(G )

must be nonsingular with constant probability when instantiated uniformly at

random from S, and given this is the case, c (T(G ))≤R with constant probability.

The complexity of our algorithm therefore depends on both the set of possi-

ble input graphs and the choice of S . There may be classes of graphs and sets S for

which our algorithm gives an improvement over the O (n 7/4) algorithm by Kim-

mel and Witter [KW21]. We leave this as an interesting direction for future work.

We argue that there may also be classes of graphs for which the bound R

must be exponential in n , regardless of the choice of set S . We suggest how these

graphs could be constructed based on hard cases for 0-determinant verification.

The resulting class of graphs has not yet been considered in context of matchings,

so may yield new insights into the perfect matchings problem.

The chapter is organized as follows. In Section 4.2, we introduce the Tutte

matrix and show how it can be used to solve the perfect matching detection prob-

lem. In Section 2.3, we give an overview of span programs, which are the frame-

work we use to design our algorithm. In Section 4.3, we present our span pro-

gram for 0-determinant verification. We then discuss how it can be applied to

detect perfect matchings in Section 4.4, where we also provide an explicit exam-

ple of how the loaded span program can be constructed for the small graph in

Figure 4.2.
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Finally, we include a discussion in Appendix 5 concerning the lower bound

for 0-determinant verification, which is the problem solved by our span program

from Section 4.3. We show that the lower bound of Ω(n 2) given by Dörn and

Theirauf [DT09] only applies to general k -determinant verification, where the

problem is to decide whether the determinant of a matrix is equal to some value

k , and does not apply to the specific case of 0-determinant verification. This

leaves a gap between the remaining lower bound of Ω(n ) and the trivial upper

bound of O (n 2) for the problem.

4.2 The Tutte matrix

Let G = (V , E ) be an undirected graph with |V | = n . A matching of G is a subset

M ⊆ E such that no two edges in M share a vertex. We refer to |M | as the size of

the matching.

A matching is perfect if every vertex v ∈V is incident to some edge e ∈M , or

equivalently, if the matching has size n/2. Note that if n is odd, then the graph

trivially has no perfect matching. A matching is maximal if there is no matching

M ′ strictly larger than M such that M ⊂M ′. A matching is maximum if there are

no matchings with size greater than M .

We consider the problem of deciding whether a graph G has a perfect match-

ing. Tutte [Tut47] gave an algebraic characterization of this problem in terms of

the following matrix.

Definition 5 Given a graph G , the Tutte matrix associated with G is the n × n

skew-symmetric matrix T(G ) for which

T(G )i j =















xi j if (i , j ) ∈ E and i < j

−xi j if (i , j ) ∈ E and i > j

0 otherwise

(4.2)

and the xi j are uninstantiated formal variables.
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21

3 4

T(G ) =









0 x12 0 0
−x12 0 x23 0

0 −x23 0 x34

0 0 −x34 0









Figure 4.2: A graph with n = 4 vertices and the corresponding Tutte matrix. Ob-
serve that the Tutte matrix has nonzero determinant, which occurs if and only if
the graph contains a perfect matching.

Note that an uninstantiated formal variable is one for which no value is yet

assigned. Later, we will randomly instantiate the variables xi j by assigning them

numeric values from a set S according to some probability distribution.

An example of the Tutte matrix for a small graph is given in Figure 4.2. The

Tutte matrix encodes useful information about the matchings of G , as shown by

Tutte in the following theorem.

Theorem 5 ([Tut47]) det(T(G )) ̸= 0 if and only if G has a perfect matching.

The Tutte matrix thus reduces the perfect matching decision problem to de-

ciding whether a randomly instantiated matrix is singular.

Directly evaluating the symbolic determinant of T(G ) is not feasible in prac-

tice, as the number of terms in the resulting polynomial can be exponential in n .

However, randomly instantiating the variables xi j allows a probabilistic algo-

rithm for testing whether the determinant of T(G ) is uniformly 0. This idea was

proposed by Lovász [Lov79], who gave an algorithm that instantiates the xi j with

integers chosen uniformly at random from the set S = {1, 2, 3, . . . , n 2}. This instan-

tiation gives an algorithm with one-sided error (the possibility of a false negative)

in the following way. If the graph G has a perfect matching, then the determi-

nant of the instantiated Tutte matrix is nonzero with probability 1− 1
n , otherwise

the determinant is zero with certainty. Lovász’s algorithm can therefore decide

whether G has a perfect matching in time O (nω)with vanishing error probability.
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Lovász’s choice of set S is based on the following lemma, which was pub-

lished in different forms by Schwartz [Sch80], Zippel [Zip79], and DeMillo and

Lipton [DL78].

Lemma 14 (Schwartz-Zippel) Let P ∈ C[x1, . . . , xk ] be a nonzero polynomial of

degree d ≥ 0. Let S be a finite subset ofC and let r1, . . . , rk be selected independently

and uniformly at random from S. Then

Pr[P (r1, . . . , rk ) = 0]≤
d

|S |
.

Our goal is to obtain an algorithm to detect perfect matchings with at most

a constant probability of error. The symbolic determinant of T(G ) is a degree-n

polynomial, so to show the one-sided error probability is at most a constant by

the bound in Lemma 14, one would require |S | to grow asymptotically with n .

Below, we prove a tighter bound using properties of the Tutte matrix. Our result

shows that a constant-size set S is sufficient to achieve a constant bound on the

error probability.

Lemma 15 Let P ∈ C[x1, . . . , xk ] be a nonzero polynomial of degree d ≥ 0 such

that for each term, the maximum degree of any variable xi is 2. Let S be a finite

subset of C with 0 /∈ S, and let r1, . . . , rk be selected independently and uniformly

at random from S. Then if |S | ≥ 12,

Pr[P (r1, . . . , rk ) = 0]≤
1

2
.

Proof We prove the inequality by induction on k . For the case k = 1, we have

Pr[P (r1) = 0]≤
1

|S |
≤

1

2
,

by the fundamental theorem of algebra. Now, suppose k > 1 and that for all poly-

nomials P ′ in 0< k ′ < k variables,

Pr[P ′(r1, . . . , rk ′ ) = 0]≤
1

2
.

We can write

P (x1, . . . , xk ) =
2
∑

i=0

x i
k Pi ,
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where P0, P1 and P2 are polynomials in x1, . . . , xk−1. To bound the probability that

P (r1, . . . , rk ) = 0, we consider cases based on which of P0, P1 and P2 are the uni-

formly zero polynomial. Note that P0, P1 and P2 cannot simultaneously be the

zero polynomial.

1. If any two of P0, P1 and P2 are the zero polynomial, then using the fact that

0 /∈ S , the only way P can evaluate to 0 is if the remaining Pi evaluates to 0.

Each of the Pi is a polynomial in fewer than k variables, so in this case,

Pr[P (r1, . . . , rk ) = 0]≤
1

2
.

2. If only one of P0, P1 and P2 is the uniformly zero polynomial, then either the

other two Pi both evaluate to 0, or there are at most two values of xk such

that the polynomial P evaluates to 0. Therefore in this case,

Pr[P (r1, . . . , rk ) = 0]≤
�

1

2

�2

+
2

|S |
.

3. If none of P0, P1 and P2 are the zero polynomial, then there are three ways

P could evaluate to 0. First, P0, P1 and P2 could all evaluate to 0. Second,

only one of P0, P1 and P2 could evaluate to 0. If it is P0 or P2 that evaluates

to 0, there is at most one value for xk that will cause P to evaluate to 0, and

if it is P1 that evaluates to 0, then there are at most two possible values for

xk that would cause P to evaluate to 0. Third, none of P0, P1 and P2 could

evaluate to 0, in which case there are at most two values of xk that would

cause P to evaluate to 0. Therefore,

Pr[P (r1, . . . , rk ) = 0]≤
�

1

2

�3

+
1

2

�

4

|S |

�

+
2

|S |
.

Using the fact that |S | ≥ 12, the probability that P (r1, . . . , rk ) = 0 is at most 1
2 in

all cases. We have already shown the inequality holds for k = 1, so by induction,

it is true for all values of k . □

The symbolic determinant ofT(G ) satisfies the conditions of Lemma 15. Thus,

any set S such that 0 /∈ S and |S | ≥ 12 can be used to obtain a classical algorithm

for the perfect matching decision problem with one-sided bounded error prob-

ability at most 1
2 .
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4.3 Span program for 0-determinant verification

We present a new span program that can decide whether a given n×n matrixA is

singular. Our span program yields an algorithm that matches existing quantum

algorithms in asymptotic query complexity, and has an attractively simple struc-

ture. We remark that in [Bel11], Belovs gives a span program for deciding whether

the rank of a matrix is at least some threshold r , which solves 0-determinant

verification when r = n . Our approach is different from that of Belovs, but has

the same asymptotic query complexity as applying Belovs’ algorithm to solve 0-

determinant verification.

First, we present our span program and compare it to Belovs’ approach. An

analysis of the witness size for our span program is given in Section 4.3.1.

Both our algorithm and Belovs’ algorithm are given in terms of a high level

span program, for which the available vectors are constructed from the columns

of the input matrix A. In the standard definition of a span program (see Defini-

tion 3), the input vectors are fixed by the program definition, and the input bits

are used to determine which of these input vectors are available. The inclusion

of each input vector depends only on a single bit of the input. Instead, we would

like to have our available vectors equal to the columns of our input matrixA, and

each column depends on multiple bits of the input. To achieve this, an addi-

tional construction is required. In [Bel11], Belovs shows how to build available

vectors from the columns of a matrix by giving a method to construct a standard

span program from a high level span program. This extra construction, known

as matrix loading, incurs a multiplicative cost of L to the witness size.

Belovs shows that loading a general n ×n matrix into a high-level span pro-

gram requires Θ(n ) queries, under the assumption that the matrix entries are

bounded in norm by one. For sparse matrices, it is possible to reduce the loading

cost, which is why it is kept as a separate factor in Theorems 3 and 6. We give a

full example of how a high-level span program can be converted into a standard

span program in Section 4.4.1, showing explicitly how this loading can be done.

Belovs’ approach to 0-determinant verification is to test whether a matrix is

singular by randomly generating a target vector whose entries are chosen from

the normal distribution, and then testing whether it lies in the span of the ma-
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trix columns. We state Belovs’ result in Theorem 6, restricted to the case of 0-

determinant verification. The query complexity depends on the worst-case quadratic

mean of the singular values of a nonsingular input matrix A. This is given as an

upper bound on the value c (A), which we recall from equation (4.1) to be de-

fined as

c (A) =

√

√

√
1

n

�

1

σ2
1

+
1

σ2
2

+ . . .+
1

σ2
n

�

. (4.3)

As noted by Belovs, an equivalent definition is

c (A) =
∥A−1∥Fp

n
, (4.4)

where ∥.∥F denotes the Frobenius norm.

Theorem 6 ([Bel11]) The 0-determinant verification problem can be solved with

two-sided bounded error in O (
p

n LT ) quantum queries, under the promise that

any input matrix has entries with norm at most one, and any input matrix with

full rank satisfies c (A)≤ T . Here, L represents the cost of loading the matrix into a

span program.

We present a new, complementary approach based on the idea that if a matrix

A is singular, then there must be some nonzero linear combination of its columns

that produces the zero vector. To test whether such a linear combination exists,

we augment the input matrixAwith a row of entries taken from the Rademacher

distribution, i.e. chosen uniformly at random from {1,−1}. We define

A
′ =



















±1 ±1 . . . ±1

A1,1 A1,2 A1,n

A2,1
...

...

An ,1 An ,n



















. (4.5)

We let |r 〉= (ri ) denote the transposed first row ofA′, which is an n ×1 vector

whose entries follow the Rademacher distribution.
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Now, define |τ′〉 to be the (n +1)×1 vector

|τ′〉=

















1

0

0
...

0

















. (4.6)

If A has full rank, then |τ′〉 will not be in the column space of A′. If A is sin-

gular, then there is some nonzero vector |u〉 such that A|u〉= 0⃗. In this case, |τ′〉
will be in the column space ofA′ provided 〈r |u〉 ≠ 0. By Lemma 16, 〈r |u〉 ≠ 0 with

probability at least 3/16, so the probability that the instantiation of |r 〉 introduces

an error is at most constant. Thus, given a “good" instantiation of the first row of

A′, |τ′〉 lies in the span of the columns of A′ if and only if A is singular.

Our span program differs from Belovs’ span program in two key ways. First,

our span program samples from a binary distribution, rather from the normal

distribution. This simplifies the implementation of the instantiation step, as sam-

pling from a binary distribution is a standard operation in quantum computa-

tion. It also removes any complications arising from limited precision, and leads

to a more straightforward analysis of the witness size. Second, our span program

uses a fixed target vector, rather than having it determined by a random instanti-

ation. This fixed target vector has the additional nice property that it is a standard

basis state. The result is a simple and clean approach to solving 0-determinant

verification.

4.3.1 Witness size

In this section, we compute the witness size of our high level span program, for

which the available vectors are the columns ofA′ and the target is |τ′〉. Recall that

our high-level span program can be converted into a standard span program with

an additional multiplicative cost of L ∈Θ(n ) to the witness size, and can then be

converted into a quantum algorithm.

The witness size of a high level span program is computed in a similar way to

that of a standard span program. The main difference is in the negative witness
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size, as in a high level span program, there are no unavailable vectors. Instead,

the negative witness size is taken to be the norm of the entire negative witness.

Definition 6 Consider a high level span program P whose available vectors are

given by the columns of an n ×m matrix B, where B is loaded from some input x

in a domainD of binary input strings. Let the target vector be denoted |τ〉, and let

f :D→{0, 1} denote the function computed byP .

• If |τ〉 ∈ span(B), then f (x ) = 1 and there exists some vector |w+〉 such that

B|w+〉= |τ〉. Then |w+〉 is a positive witness for Bwith size ∥|w+〉∥2.

• If |τ〉 /∈ span(B), then f (x ) = 0 and |τ〉 is orthogonal to the column space of B.

Then there exists a vector |w−〉 such that 〈w−|τ〉= 1 and |w−〉 is orthogonal

to the column space of B. Then |w−〉 is a negative witness for B with size

∥|w−〉∥2.

The witness size forP is then defined in the standard way (see Definition 4).

We note that by this definition, rescalingBaffects the positive witness size but

not the negative witness size. This is unlike in a standard span program, where

uniformly rescaling the input vectors has no net effect. For a high level span pro-

gram, this is accounted for in that rescaling B affects both the witness size and

the loading cost. To avoid this complication, we simply assume the entries of B

are bounded in norm by one.

Using Definition 6, we compute the positive and negative witness sizes of our

high level span program. We begin with the following lemma, which we apply to

obtain the positive witness size. The entries of |r 〉 follow a Rademacher distri-

bution, and both concentration and anti-concentration bounds are proven for

random sequence sums of the form 〈r |u〉. The lower bound of 3/16 for the fol-

lowing inequality was recently proven by Dvořák and Klein [DK21], improving on

the previous best value of 1/10 by Oleszkiewicz [Ole96].
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Lemma 16 ([DK21]) Let |r 〉 ∈ Rn be a vector whose entries are instantiated uni-

formly at random from {1,−1} Then for any vector |u〉 ∈Rn ,

Pr
�

|〈r |u〉| ≥ ∥|u〉∥
�

≥
3

16
.

Using this bound, we show that our span-program-based quantum algorithm

outputs the correct answer to the 0-determinant verification problem with prob-

ability at least 2/3. This is the standard requirement for bounded-error random-

ized algorithms.

The first source of random error in our span program algorithm is due to

the randomness in A′, whose first row 〈r | consists of entries sampled from the

Rademacher distribution. As discussed previously, a “bad" instantiation could

result in |τ′〉not being in the span of the columns ofA′, even thoughA′ is nonsin-

gular. The randomness inA′ also has an effect on the witness size of the resulting

span program, as we specify in Lemma 17.

The second source of random error in our span program algorithm comes

from applying Reichardt’s quantum algorithm to solve the span program. Recall

from Theorem 1 that a span program can be compiled into a quantum algorithm

with bounded error. By repeating this quantum algorithm a constant number of

times if necessary, we can assume that the probability of an error being intro-

duced by this step is at most 1/6. Therefore, to obtain an overall success prob-

ability of at least 2/3 in our span program algorithm, we need to show that with

probability at least 5/6,A′ is instantiated such that the resulting span program is

correct and has a witness size within our claimed bound.

To show this, we begin with the following result. The case where A is sin-

gular follows almost immediately from Lemma 16. Our probability bounds for

the case where A is non-singular are chosen so that the negative witness size is

O (c (A))2n with high probability. Later, we will rebalance the success probabil-

ity and witness size between the singular and nonsingular cases so that our span

program is correct and has bounded witness size with probability at least 5/6 in

both cases.

Lemma 17 Consider the randomized high level span programP for which, given

input matrix A ∈ D, the available vectors are the columns of A′ and the target
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vector is |τ′〉. Let f :D→{0, 1} be the function computed byP . Then the following

statements hold.

• Suppose A is singular. Then with probability at least 3
16 , f (A) = 1 and the

positive witness size is at most 1.

• SupposeA is invertible. Then f (A) = 0, and with probability at least 99
100 , the

negative witness size is at most 100c (A)2n +1.

Proof Suppose A is singular. A positive witness will be a vector |w+〉 such that

A|w+〉 = 0⃗ and 〈r |w+〉 = 1. Let |u〉 be any vector such that A|u〉 = 0⃗. By Lemma

16, |〈r |u〉| ≥ ∥|u〉∥ > 0 with probability at least 3
16 . If this condition holds, then

|w+〉= 1
|〈r |u〉| |u〉 is a positive witness for A, and ∥|w+〉∥2 ≤ 1.

Next, consider the case where A is invertible. A negative witness will be a

vector |w−〉 such that 〈τ′|w−〉 = 1 and |w−〉 is orthogonal to the columns of A′.

The requirement 〈τ′|w−〉= 1 implies that the first entry of |w−〉 is equal to 1. The

requirement that |w−〉 ⊥ A′ implies that the remaining n entries of |w−〉, which

we denote |w 〉, must satisfy

A
T |w 〉=−|r 〉. (4.7)

The negative witness size of the high-level span program is then ∥|w−〉∥2 =
1+ ∥|w 〉∥2.

To compute the norm of |w 〉, we use the fact shown by Hutchinson [Hut90]

that for any nonsingular symmetric matrix B and vector |r 〉 with entries drawn

from the Rademacher distribution,

E
�

〈r |B|r 〉
�

= Tr(B).

Therefore,

E
�

∥|w 〉∥2
�

=E
�

〈r |(A−1)(A−1)T |r 〉
�

= Tr
�

(A−1)(A−1)T
�

= ∥A−1∥F
= c (A)2n .
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where c (A) is defined as in equation (4.1). We can then apply Markov’s inequality

to show that ∥|w−〉∥2 ≤ 100c (A)2n +1 with probability at least 99/100. □

By Lemma 17, the expected correctness and witness size of our span program

differ depending on whetherA is singular or not. IfA is singular, then with prob-

ability at least 3/16, the program is correct and the witness size is bounded by a

constant. On the other hand, ifA is nonsingular, then with the much higher prob-

ability of at least 99/100, the program is correct and the witness size is O (c (A)2n ).

To obtain a span program whose instantiation introduces an error probability of

at most 1/6 for any input, we can balance these cases against each other by mak-

ing the following modification to our span program.

Rather than using the columns ofA′ as the available vectors for the span pro-

gram, we use the columns of the extended matrix A′ext, which has size (9n +

1) × 9n . The entries in the first row of A′ext are chosen uniformly at random

from {1,−1}. For notational convenience, we divide these entries into 9 blocks

of length n , which we denote 〈r1| . . . 〈r9|. The remaining 9n × 9n matrix is block

diagonal, consisting of 9 copies of A as shown.

A
′
ext =























〈r1| 〈r2| . . . 〈r9|
A 0 . . . 0

0 A 0 . . .
...

... 0
...

0

0 0 A























. (4.8)

The target vector |τ′ext〉 for the span program is defined similarly to |τ′〉, where the

first entry is 1 and the remaining 9n entries are all 0.

Modifying the high level span program in this way does not affect the asymp-

totic loading cost, but it affects the error probabilities. IfA is singular, then |τ′ext〉
will lie in the span of the columns ofA′ext and the positive witness size will be less

than one as long as at least one of the 〈ri | satisfies the properties required for a

“good" instantiation. By Lemma 17, this will occur with probability 1− ( 13
16 )

9 > 5
6 .

IfA is nonsingular, then any negative witness must be orthogonal to all columns
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of A′ext. The negative witness size is therefore

∥|w−〉∥2 = 1+ ∥|w1〉∥2+ ∥|w2〉∥2+ . . .+ ∥|w9〉∥2,

where the |wi 〉 are defined to satisfy AT |wi 〉=−|ri 〉. Therefore, the negative wit-

ness size of the modified span program will be less than 900c (A)2n +1 as long as

all of the 〈ri | satisfy the properties required for a “good" instantiation. By Lemma

17, this occurs with probability at least ( 99
100 )

9 > 5
6 . Thus, by using the columns of

A′ext in our span program instead of the columns of A′, we obtain the desired

bound for the error stemming from the random instantiation of our span pro-

gram.

Let T be defined such that for any input matrix A with full rank, c (A) ≤ T .

To perform the algorithm, one would then run our modified high level span pro-

gram with the bound

30T
p

n +1≥
p

900T 2n +1≥wsize(P ).

If the error probability of the span program-solving algorithm is at most 1/6,

then our algorithm outputs the correct answer with probability at least 2/3 in

both the positive and negative cases. Thus, we obtain the following theorem,

which is analogous to Belovs’ result in Theorem 6.

Theorem 3 Our span program algorithm solves the 0-determinant verification

problem with two-sided bounded error in O (
p

n LT ) quantum queries, under the

promise that any input matrix has entries with norm at most one, and any input

matrix with full rank satisfies c (A) ≤ T . Here, L represents the cost of loading a

matrix into a span program.

Finally, we show that there are families of matrices for which c (A) grows ex-

ponentially with n , even when restricted to the case of binary matrices.

Lemma 18 Consider the family of matrices {Mn}, where Mn is the n × n upper

antitriangular matrix for which the main antidiagonal and the first and third an-
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tidiagonals above it contain all ones, and all other entries are zero. For example,

M6 =





















0 0 1 0 1 1

0 1 0 1 1 0

1 0 1 1 0 0

0 1 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0





















. (4.9)

Then c (Mn ) ∈ω(1.4n ).

Proof To prove this statement, we consider the (n , n ) entry of the matrix M−1
n .

We begin by noting that because Mn is upper antitriangular, it has determinant

±1. Therefore, the (n , n ) entry ofM−1
n has norm equal to that of the (n , n )th minor

ofMn . This minor is given by det(Rn−1), where Rn−1 is defined to be the (n −1)×
(n −1)matrix obtained by deleting the n th row and the n th column fromMn .

To illustrate, the norm of the (n , n )t h entry ofM−1
6 is norm of the determinant

of R5, where

R5 =

















0 0 1 0 1

0 1 0 1 1

1 0 1 1 0

0 1 1 0 0

1 1 0 0 0

















.

By inspection, we can see that the determinant of the matrixRk can be expressed

by the recurrence

det(Rk ) = det(Rk−1) +det(Rk−3).

The base cases for this recurrence are given by det(R0) = 1, det(R1) = 1 and det(R2) =

1. Thus, the norm of the (n , n )th entry ofM−1
n is given by the n th term in Narayana’s

cows sequence1.

1In fact, the antidiagonals of the matrix M−1
n are elegantly given by the first n terms in this

sequence, with alternating signs.
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Narayana’s cows sequence grows asympotically as Θ(c n ), where c ≈ 1.4656 is

the real root of x 3−x 2−1. Therefore, the largest entry ofM−1
n is alsoΘ(c n ). Using

the definition of c (A) from equation (4.4), we conclude that

c (Mn ) =
∥Mn∥Fp

n
∈Ω(

c n

p
n
) ∈ω(1.4n ).

□

Lemma 18 shows that the algorithms in Theorems 3 and 6 are not optimal

in terms of query complexity, as for certain classes of matrix the query complex-

ity would exceed the trivial upper bound of O (n 2). However, we note the pos-

sibility that our span-program-based algorithm may still be optimal in terms of

quantum time complexity. This is based on the observation that the matrices for

which our algorithm has exponential query complexity have exponentially small

eigenvalues, and are therefore intuitively hard cases for 0-determinant verifica-

tion.

4.4 Algorithm for perfect matching

We apply our span program from Section 4.3 to detect whether a graph G , given

through black-box access to an adjacency matrix, contains a perfect matching.

Our algorithm is based on Tutte’s matrix-based characterization of perfect match-

ings, and is thus a quantum analogue of the classical randomized algorithm by

Lovász [Lov79].

There are two steps to our algorithm. First, we instantiate the formal vari-

ables in the Tutte matrixT(G ) uniformly at random from a sample space S . To do

this, one would instantiate the Tutte matrix for the complete graph on n vertices,

which would be stored in quantum memory. The second step in our algorithm is

to apply our span program for 0-determinant verification as a subroutine to test

whether the instantiated Tutte matrix is nonsingular. Each query to the Tutte

matrix for the input graph would consist of querying both the adjacency matrix

and the stored Tutte matrix, and then multiplying the query outcomes. If our

span program decides the Tutte matrix for the input graph is nonsingular, we

can conclude that G has a perfect matching.
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This method gives the following result.

Theorem 4 Given a graph G on n vertices, a bound R , and a set S whose elements

have norm at most one, our algorithm can decide whether G contains a perfect

matching with two-sided bounded error in O (n 3/2R ) quantum queries, under the

following condition. If G contains a perfect matching, then the Tutte matrixT(G )

must be nonsingular with constant probability when instantiated uniformly at

random from S, and given this is the case, c (T(G ))≤R with constant probability.

For the instantiation step, we intentionally leave some freedom in the choice

of the set S . In [Lov79], Lovász chooses the set S = {1, 2, 3, . . . , n 2}, which by

Lemma 14 means that the probability that a nonsingularT(G ) becomes singular

when instantiated is at most 1
n . The elements in the set S can be rescaled to have

norm at most one without changing this result. However, this may not be the

optimal choice of sample space to minimize R .

To account for this, we refer to Lemma 15, which shows that any set S with

|S | ≥ 12 and 0 /∈ S can be used to obtain a one-sided bounded error of at most
1
2 during the instantiation of the Tutte matrix. This allows more flexibility when

choosing a set S for a particular class of input graphs, with the goal of minimizing

the quantity R .

Given a restricted domain of graphs, if there exists a set S such that R ∈O (1),

then our algorithm achieves a query complexity of O (n 3/2). However, there may

also be families of graphs for which R must grow exponentially with n , regardless

of the choice of S . To see how such graphs could arise, we consider the family of

matrices {Mn}defined in Lemma 18, for which the smallest eigenvalue decreases

exponentially in n .

Let Mn be the biadjacency matrix of a bipartite graph Gn on 2n vertices. We

define Mn (S ) to be the matrix whose (i , j ) entry is zero if the (i , j ) entry of Mn is

zero, and whose entries are otherwise instantiated uniformly at random from the

set S . Then for each instantiation ofMn (S ), there is a corresponding instantiation

of the Tutte matrix T(Gn ), which is given in block form by

T(Gn ) =

�

0 Mn (S )

−Mn (S ) 0

�

.
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If λ is an eigenvalue of Mn (S ), then ±ıλ are eigenvalues of T(Gn ). Therefore,

c (T(Gn )) = c (Mn (S )). We know from Lemma 18 that when Mn (S ) is instantiated

from the set S = {1}, we have c (Mn (S )) ∈ω(1.4n ). Therefore, our algorithm from

Theorem 4 does not run in polynomial time for S = {1}. We suspect this holds for

any choice of S , namely that the class of graphs constructed in this way from the

matricesMn require exponentially large R , under the condition that the elements

in S are bounded in norm by one.

This approach leads to a new class of interesting graphs for perfect match-

ings, namely graphs whose adjacency matrices have exponentially small eigen-

values, such as the family Gn of bipartite graphs described above. These graphs

seem to be inherently resistant to our algebraic approach, and their study may

lead to new insights on the perfect matchings problem.

4.4.1 Full span program for perfect matching

In this section, we show explicitly how one can construct a randomized span pro-

gram to solve the perfect matching detection problem. In Section 4.4, we give an

algorithm to solve the perfect matching decision problem in two steps. First, the

Tutte matrix of the graph is randomly instantiated from the set S , and then we

apply our span program from Section 4.3 to the instantiated matrix.

Alternatively, one could directly apply a span program to solve the perfect

matching detection problem. Such a span program is obtained by combining the

two steps above. We give the resulting span program here and show its explicit

construction for the graph in Figure 4.2. Although our span program for perfect

matching detection is essentially the same as our quantum algorithm described

earlier, we show it here for clarity. This has the added benefit of illustrating the

matrix loading routine, which has allowed us to prove our witness size bounds

using the high-level version of our span program for 0-determinant verification.

For this construction, we tailor Belovs’ matrix loading routine to our appli-

cation by using the fact that the Tutte matrix is antisymmetric and randomly in-

stantiated. As a result, our specialized loading routine reduces the number of

extra dimensions from n 2k , where k is the number of bits of precision used, to

2e = n (n − 1). Our loading incurs the same cost in query complexity as Belovs’
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routine, introducing a multiplicative factor of L ∈Θ(n ) to the witness size.

In our span program for perfect matching detection, the vectors have length

d = 1+n +2e . Our target vector is

|τ〉=

















1

0

0
...

0

















. (4.10)

Let Kn denote the complete graph on n vertices. Our span program has n

free vectors, which are derived from the columns ofT′(Kn ). The first n+1 entries

of the k t h free vector are given by the k t h column of T′(Kn ). Let the remaining

2e entries be indexed by ordered pairs (u , v ), for 1 ≤ u , v ≤ n and u ̸= v . These

entries correspond to the e input bits, acting as flags to indicate which of the

input bits influence a particular column. More precisely, for the k t h free vector,

the bits corresponding to (u , k ) for all u ̸= k are equal to 1. The sets Vi ,b of input

vectors are defined as follows.

If b = 0, meaning edge i = (u , v ), u < v , is not in G , then Vi ,b contains two

vectors. In the first vector, T(Kn )u ,v is at index v , the flag at position (u , v ) is set

to 1, and the remaining entries are 0. Similarly, in the second vector, T(Kn )v,u

is at index u , the flag at position (v, u ) is set to 1, and the remaining entries are

0. Recall that T(Kn )v,u = −T(Kn )u ,v , and that T(Kn )u ,v is instantiated uniformly

from set S .

If b = 1, then edge i = (u , v ) is in G . In this case, Vi ,b contains two different

vectors. Both vectors have all entries equal to 0, except for a single flag set to 1.

In the first vector, the flag is set at position (u , v ), and in the second vector, the

flag is set at position (v, u ).

The reason for this construction is that if edge (u , v ) is not in G , the variable

xu v is not present in T(G ), so we want to enforce T(G )u ,v = T(G )v,u = 0. By our

choice of target, the (u , v ) and (v, u ) flags must be 0 in |τ〉. Therefore, if the k t h

free vector is used to reach the target, then the input vectors with flags (u , k )must

be used to cancel out the flags. If the edge (u , v ) is not in G , then using the vectors
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Vf r e e =
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Figure 4.3: Vectors in our span program for detecting perfect matchings when
n = 4, as in our graph from Figure 4.2. The free vectors and the input vectors
corresponding to the edge i = (2, 3) are shown. The columns of Vi ,0 would be
available if the edge (2, 3) was not in G , otherwise the columns of Vi ,1 would be
available. The relevant flags are highlighted in red.

in Vi ,0 prevents the corresponding valuesT(G )u ,v andT(G )v,u from contributing

to reaching the target |τ〉. On the other hand, if edge (u , v ) is in G , then the vectors

in Vi ,1 must be used to cancel out the two flags for the corresponding edge, and

cannot affect other entries in T(Kn ).

It is then straightforward to check how the witness size of the resulting span

program relates to the witness size of the original high level span program. If

|w+
h 〉 is a positive witness for the high level span program, then the size of the

corresponding positive witness for the full span program will be ∥|w+〉∥2 = (n −
1)∥|w+

h 〉∥
2. If |w−h 〉 is a negative witness for the high level span program, then the
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size of the corresponding negative witness |w−〉 for the full span program will be

∥V †|w−〉∥2 =
∑

1≤i< j≤n

(xi j wi )
2+ (xi j w j )

2 ≤ (n −1)∥|w−h 〉∥
2,

using the fact that |xi j | ≤ 1 by the restriction on S .

Therefore, the total witness size of the loaded span program is equal to that

of the high level span program, with an extra multiplicative factor of L ∈Θ(n ) as

claimed.

4.5 Conclusion

Tutte’s characterization allows the problem of detecting perfect matchings to be

reduced to the problem of deciding whether a given matrix is singular. We apply

this to give an algebraic quantum algorithm for deciding whether a graph con-

tains a perfect matching.

As part of our algorithm for detecting matchings, we give a new span pro-

gram to solve 0-determinant verification. Our span program simplifies aspects of

Belovs’ existing span program for the rank problem, considered in the restricted

setting of 0-determinant verification, and achieves the same asymptotic witness

size. It also serves as a new example of how both randomness and matrix loading

can be used advantageously in designing span programs.

When we apply this span program to solve the perfect matching detection

problem, we obtain an algorithm whose query complexity depends on both the

sample space S used for the random instantiation and the class of allowed graphs.

For certain classes of graphs, this may lead to an improvement over the O (n 7/4)

query complexity of the current best augmenting-paths-based algorithms. We

also show how to find classes of graphs for which our algorithm could have ex-

ponential query complexity. These graphs have not yet been considered when

studying perfect matchings, and may therefore provide new insights into the

problem. To close the remaining gap with Zhang’s lower bound of Ω(n 3/2), new

ideas will be needed, indicating that finding matchings will continue to be a fruit-

ful problem in algorithm design.

78



Chapter 5

Concluding remarks

In this thesis, we give two new quantum algorithms. In doing so, we provide new

insights on two canonical problems in computer science.

Our first algorithm is a new type of memoryless walk, which we obtain by

adding selfloops to marked vertices. We prove that this modification gives an

algorithm for spatial search that matches the best-known algorithms in space,

query, and step complexity. An unusual and interesting feature of our proof is

the precision with which we analyse the effect of the selfloop on the dynamics

of our walk. We are able to show that with our chosen value of selfloop weight,

the action of the walk is asymptotically forced into a single two-dimensional ro-

tational subspace. This property is what allows our spatial search algorithm to

find the marked vertex with success probability asymptotically close to one.

Our algorithm finds a unique marked vertex on the grid. This suggests two

natural extensions. The first extension is modifying our walk so that it can find a

marked vertex when multiple vertices are marked. We discuss this possibility in

[HL22], where we propose an idea for how this case could be handled.

The second extension is applying our memoryless walk to solve spatial search

on other types of graph. In our work, we analysed the effect of adding a selfloop

to a walk on the two-dimensional grid. This choice was made because the struc-

ture of the grid is simple enough that we could obtain a complete description of

the spectrum of our input-independent walk operator. This description is cru-

cial to our analysis. However, we believe that selfloops could be applied to obtain
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optimal memoryless search algorithms on other types of graphs as well. In par-

ticular, it may be possible to prove bounds on the success probability and step

complexity for memoryless search with selfloops on other types of graphs with

sufficient structure, such as the hexagonal lattice used in [CPBS18].

Our second algorithm gives new perspective on the query complexity of de-

tecting perfect matchings—a problem for which the tight asymptotic bound is

not yet known. To investigate this gap, we give a new quantum algorithm based

on an algebraic characterization by Tutte. To our knowledge, this is the first time

this approach has been used in the quantum setting.

As a key component in our approach, we give a new quantum algorithm for

0-determinant verification, which we use as a subroutine in our algorithm for

perfect matchings. Our algorithm for 0-determinant verification is defined using

a span program, a construction in which the query complexity is given by the

span program’s witness size. Our span program for 0-determinant verification

matches a previous span program by Belovs in witness size, while also having a

simple structure and clean analysis.

An unusual aspect of our span program is that it incorporates randomization

into the span program definition. Our span program vectors have entries sam-

pled from a probability distribution, and we show that with constant probability,

this results in a span program that is correct and has a small witness size. Our

span program and Belovs’ span program for rank-finding both use randomiza-

tion, but there are few other such examples. Our span program is therefore a

new example of how randomization can be usefully incorporated into span pro-

grams, which in turn could be a useful tool in the development of new quantum

algorithms.

We note that the query complexity of our algorithm for 0-determinant ver-

ification depends on the spectrum of the input matrix. If an n × n input ma-

trix has small eigenvalues, the query complexity of our algorithm becomes very

large. As an example of this, we give an explicit matrix with binary entries for

which the query complexity is exponential in n . For such matrices, this seems to

contradict the fact that all entries in the input matrix could be accessed in only

O (n 2) queries. However, this can be accounted for by the possibility that matrix
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0-determinant verification is a problem for which there exists an asymptotic sep-

aration between the quantum query complexity, which is trivially O (n 2), and the

quantum step complexity, which may be exponential.

Using the hard-case matrices we identify for 0-determinant verification, we

show how to construct a family of hard-case graphs for our algebraic perfect

matching detection algorithm. These graphs are bipartite, with biadjacency ma-

trices that have exponentially small eigenvalues. Because of their spectral prop-

erties, these graphs seem to be fundamentally resistant to the algebraic approach.

Our algorithm appears to have exponential query complexity on these inputs,

even accounting for adjustable parameters in the algorithm. These graphs have

not yet been considered in the context of perfect matchings, so their study may

lead to new insights on the problem. In particular, it would be interesting to com-

pare the hard-case inputs for our algorithm with hard-case inputs for alternative

approaches to detecting perfect matchings. The difference between the best-

known upper and lower bounds for finding and detecting perfect matchings re-

mains a tantalizing problem for future work.

81



Bibliography

[AA05] Scott Aaronson and Andris Ambainis. Quantum search of spatial re-

gions. Theory of Computing, 1(4):47–79, 2005. arXiv:quant-ph/

0303041, doi:10.4086/toc.2005.v001a004.

[AAKV01] Dorit Aharonov, Andris Ambainis, Julia Kempe, and Umesh Vazirani.

Quantum walks on graphs. In Proceedings of the 33rd Annual ACM

Symposium on Theory of Computing, STOC’01, pages 50–59, 2001.

arXiv:quant-ph/0012090, doi:10.1145/380752.380758.

[AAMP20] Frank Acasiete, F. P. Agostini, Jalil Khatibi Moqadam, and Renato Por-

tugal. Implementation of quantum walks on IBM quantum comput-

ers. Quantum Information Processing, 19, December 2020. arXiv:

2002.01905, doi:10.1007/s11128-020-02938-5.

[ABN+01] Andris Ambainis, Eric Bach, Ashwin Nayak, Ashvin Vishwanath, and

John Watrous. One-dimensional quantum walks. STOC’01, pages

37—-49. Association for Computing Machinery (ACM), 2001. doi:

10.1145/380752.380757.
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Appendices

Composition with a reflection

In this appendix, we discuss techniques to characterize the spectrum of the com-

position of a real operator with a one-dimensional reflection. Operators with this

structure appear at multiple points in Chapter 3. In this section, we present two

lemmas from the quantum walk literature that we apply in our analysis of both

WF1 andWF.

Consider an arbitrary real unitary operator T acting on a space H , and let

|s 〉 ∈H be a state with real amplitudes. Define S= I−|s 〉〈s | to be the reflection of

state |s 〉. The goal of this section is to describe the spectrum of the operator TS.

Because T is real-valued, its eigenvalues different from ±1 come in complex

conjugate pairs. We denote the eigenvalues as e ±ıφk for k = 1, 2, . . . m , corre-

sponding to the eigenvectors |T ±k 〉. We then decompose |s 〉 into the eigenbasis

of T as

|s 〉= s0|T0〉+
∑

k

sk

�

|T +k 〉+ |T
−

k 〉
�

+ s−1|T−1〉. (1)

Here, |T0〉 and |T−1〉 are eigenvectors of T with eigenvalues +1 and −1, respec-

tively. The coefficients s0, s−1, and all sk are chosen to be non-negative real num-

bers by multiplying the eigenvectors with appropriate phases. This decomposi-

tion allows us to state the following lemma, originally given by [Amb07].
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Lemma 19 Consider the (unnormalized) state |eα〉= |s 〉+ ı |eα⊥〉, where

|eα⊥〉= s0 cot
�

α

2

�

|T0〉+
∑

k

sk

�

cot
�

α−φk

2

�

|T +k 〉+ cot
�

α+φk

2

�

|T −k 〉
�

− s−1 tan
�

α

2

�

|T−1〉,

(2)

and |eα⊥〉 is orthogonal to |s 〉. Then |eα〉 is an eigenvector of TS with eigenvalue

e ıα exactly when α is a solution of the equation

s 2
0 cot
�

α

2

�

+
∑

k

s 2
k

�

cot
�

α−φk

2

�

+ cot
�

α+φk

2

�

�

− s 2
−1 tan
�

α

2

�

= 0. (3)

This lemma allows us to determine the eigenvectors and eigenvalues ofTSby

specifying a set of constraints they must satisfy. The lemma is applied in [Amb07],

and with slight variations in [AKR05], [Tul08] and [DH17], to obtain bounds on the

smallest eigenphase of a walk operator. We use the lemma for the same purpose,

applying it to obtain a lower bound for the smallest eigenphase of WF1 and WF

in Lemmas 6 and 12. We also use a similar technique in our analysis of the eigen-

vector |ζ〉 in Lemma 7, where we derive a set of constraints and use them to find

properties of a and |ψ〉.
The next theorem we state describes the behaviour of the eigenphases ofTS

in relation to those of T. The flip-flop theorem of [DH17] describes how the

eigenphases of the operators interlace, with the exact pattern of interlacing de-

pending on the eigenspaces of T that |s 〉 intersects. We limit the theorem state-

ment to the case we apply in this paper, where |s 〉 intersects the (+1)-eigenspace,

the (−1)-eigenspace, and at least one other eigenspace of T.

Theorem 7 (Flip-flop theorem) Consider any real unitaryT and let |s 〉 be a state

with real amplitudes in the same space. Denote the positive eigenphases of T dif-

ferent from 0,π by 0 < φ1 ≤ φ2 ≤ · · · ≤ φm < π. If s0 ̸= 0, s−1 ̸= 0 and sk ̸= 0 for

some k , then TS has m + 1 two-dimensional eigenspaces, and no (+1)- or (−1)-

eigenspaces which overlap |s 〉. The positive eigenphases α j of TS satisfy the in-

equality 0<α0 <φ1 ≤α1 ≤ · · · ≤φm ≤αm <π.

We apply this theorem in Lemmas 6 and 12 to obtain an upper bound on

the smallest positive eigenphases of WF1 and WF, respectively. One of the con-

tributions of our work is to show how Theorem 7 can be used in combination
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with Lemma 19 to tightly bound these eigenphases. We show that this approach

can be used in the case of an operator composed with a reflection, and then by

applying a second reflection, to an operator composed with a two-dimensional

rotation.

Decomposition of |+〉 and |−〉

To analyse the behaviour of WF1 and WF, we specify how W acts on vectors in

the non-trivial eigenspaces of F. This allows us to prove Lemma 4, which is cru-

cial to the analysis of our walk. Recall from the definitions in equation (3.10)

and equation (3.11) that |+〉 and |−〉 are orthonormal vectors that have the same

span as |g 〉 and |a00〉. Together with |⟲〉, they span a space that includes the two-

dimensional subspace on which F acts non-trivially. In this appendix, we prove

Lemma 4, which describes how |+〉 and |−〉 decompose into the invariant sub-

spaces ofW.

To simplify notation, define

s+k l =
1

2
(r +k l + r −k l ) =

√

√

√

1+
sin l̃

pk l

s−k l =
1

2
(r +k l − r −k l ) = εl

√

√

√

1−
sin l̃

pk l

and

d+k l =
1

2
(c +k l + c −k l ) =

√

√

√

1+
sin k̃

pk l

d−k l =
1

2
(c +k l − c −k l ) = εk

√

√

√

1−
sin k̃

pk l
.

In the case where k = l = 0, we define s+00 = d+00 =
p

2 and s−00 = d−00 = 0. Note

that r ±k l = s+k l ± s−k l and c ±k l = d+k l ±d−k l .

Recall that both |a00〉 and |g 〉 lie in the span of the basis states |00〉, |01〉, |10〉
and |11〉. We compute the projections of these basis states onto the components

of the eigenvectors ofW.
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〈0|uk l 〉=
p

2〈0|rk l 〉〈0|φk
r 〉=

1
p

2nr

r −k l

〈1|uk l 〉=
p

2〈1|rk l 〉〈1|φk
r 〉=

1
p

2nr

r +k lω
k
nr

〈0|vk l 〉=
p

2〈0|ck l 〉〈0|φl
c 〉=

1
p

2nc

c −k l

〈1|vk l 〉=
p

2〈1|ck l 〉〈1|φl
c 〉=

1
p

2nc

c +k lω
l
nc

〈0|u 1
k l 〉=
p

2〈0|r 1
k l 〉〈0|φ

k
r 〉=−

1
p

2nr

r +k l

〈1|u 1
k l 〉=
p

2〈1|r 1
k l 〉〈1|φ

k
r 〉=

1
p

2nr

r −k lω
k
nr

〈0|v 1
k l 〉=
p

2〈0|c 1
k l 〉〈0|φ

l
c 〉=−

1
p

2nc

c +k l

〈1|v 1
k l 〉=
p

2〈1|c 1
k l 〉〈1|φ

l
c 〉=

1
p

2nc

c −k lω
l
nc

.

Now, using the property that

1

2

�

r +k lω
k
nr
+ r −k l

�

=
1

2
ωk/2

nr

�

r +k lω
k/2
nr
+ r −k lωnr

−k/2
�

=ωk/2
nr

�

cos
�

k̃

2

�

s+k l + ı sin
�

k̃

2

�

s−k l

�

1

2

�

r −k lω
k
nr
− r +k l

�

=
1

2
ωk/2

nr

�

r −k lω
k/2
nr
− r +k lωnr

−k/2
�

=ωk/2
nr

�

− cos
�

k̃

2

�

s−k l + ı sin
�

k̃

2

�

s+k l

�

,

we compute

1
p

2
(〈0|+ 〈1|)|uk l 〉=

1
p

nr
ωk/2

nr

�

cos
�

k̃

2

�

s+k l + ı sin
�

k̃

2

�

s−k l
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1
p

2
(〈0|+ 〈1|)|u 1
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1
p

nr
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nr
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− cos
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2
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s−k l + ı sin
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k̃

2

�

s+k l

�

1
p

2
(〈0|+ 〈1|)|vk l 〉=

1
p

nc
ωl /2

nc

�

cos
�

l̃

2

�

d+k l + ı sin
�

l̃

2

�

d−k l

�

1
p

2
(〈0|+ 〈1|)|v 1

k l 〉=
1
p

nc
ωl /2

nc

�

− cos
�

l̃

2

�

d−k l + ı sin
�

l̃

2

�

d+k l

�

.

Excluding the case k = l = 0, the squared amplitudes of the projections are

then
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〈0|uk l 〉




2
=

1

nr

�

1−
sin k̃ cos l̃

pk l

�



〈0|u 1
k l 〉




2
=

1

nr

�

1+
sin k̃ cos l̃

pk l

�



〈0|vk l 〉




2
=

1

nc

�

1−
cos k̃ sin l̃

pk l

�



〈0|v 1
k l 〉




2
=

1

nc

�

1+
cos k̃ sin l̃

pk l

�









1
p

2
(〈0|+ 〈1|)|uk l 〉








2

=
1

nr

�

1+
cos k̃ sin l̃

pk l

�









1
p

2
(〈0|+ 〈1|)|u 1

k l 〉








2

=
1

nr

�

1−
cos k̃ sin l̃

pk l

�









1
p

2
(〈0|+ 〈1|)|vk l 〉








2

=
1

nc

�

1+
sin k̃ cos l̃

pk l

�









1
p

2
(〈0|+ 〈1|)|v 1

k l 〉








2

=
1

nc

�

1−
sin k̃ cos l̃

pk l

�

.

Lemma 20 For any subspaceWk l ,

〈g |Πk l |a00〉=







1
2 if k = l = 0

0 otherwise
. (4)

Proof Recall that |g 〉 = |00〉 and |a00〉 = 1
2 (|0〉+ |1〉)⊗ (|0〉+ |1〉). Consider any k , l

not both 0. Then

〈g |w 11
k ′l 〉〈w

11
k ′l |a00〉

=
1

2N
(r +k ′l c +k ′l )
�

ωk ′/2
nr
ωl /2

nc

��

− cos
�

k̃ ′

2

�

s−k ′l + ı sin
�

k̃ ′

2

�

s+k ′l
��

− cos
�

l̃

2

�

d−k ′l + ı sin
�

l̃

2

�

d+k ′l
�

=
−1

2N
(r +k l c −k l )
�

ω−k/2
nr

ωl /2
nc

��

cos
�

k̃

2

�

s+k l + ı sin
�

k̃

2

�

s−k l

��

cos
�

l̃

2

�

d−k l + ı sin
�

l̃

2

�

d+k l

�

=
−1

2N
(r −k l c −k l )
�

ωk/2
nr
ωl /2

nc

��

cos
�

k̃

2

�

s+k l + ı sin
�

k̃

2

�

s−k l

��

cos
�

l̃

2

�

d+k l + ı sin
�

l̃

2

�

d−k l

�

= −〈g |w 00
k l 〉〈w

00
k l |a00〉.

Similarly, it can be derived that

〈g |w 11
k l ′〉〈w

11
k l ′ |a00〉=−〈g |w 00

k l 〉〈w
00
k l |a00〉.

Using the property that (k ′)′ = k , this further implies that 〈g |w 00
k ′l ′〉〈w

00
k ′l ′ |a00〉=

〈g |w 00
k l 〉〈w

00
k l |a00〉. By definition of the invariant subspaces Wk l in Section 3.4.2,

this shows that for any k , l not both 0, 〈g |Πk l |a00〉= 0. It follows that 〈g |Π00|a00〉=
〈g |a00〉= 1

2 . □
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Lemma 4 The following statements hold.

Πk l |+〉 ⊥Πk l |−〉 for all subspacesWk l (3.22)

∥Πk l |+〉∥2 =
2

3

dim(Wk l )
N

for all k , l not both 0 (3.23)

∥Πk l |−〉∥2 = 2
dim(Wk l )

N
for all k , l not both 0 (3.24)

∥Π00|+〉∥2 =
2

3

N +2

N
(3.25)

∥Π00|−〉∥2 =
4

N
. (3.26)

Proof Observe that for any k , l not both zero,

∥〈g |w 00
k l 〉∥

2+ ∥〈g |w 11
k l ′〉∥

2+ ∥〈g |w 11
k ′l 〉∥

2+ ∥〈g |w 00
k ′l ′〉∥

2

=
1

N

�

1−
sin k̃ cos l̃

pk l

��

1−
cos k̃ sin l̃

pk l

�

+
1

N

�

1−
sin k̃ cos l̃

pk l

��

1+
cos k̃ sin l̃

pk l

�

+
1

N

�

1+
sin k̃ cos l̃

pk l

��

1−
cos k̃ sin l̃

pk l

�

+
1

N

�

1+
sin k̃ cos l̃

pk l

��

1+
cos k̃ sin l̃

pk l

�

=
4

N
= ∥〈a00|w 00

k l 〉∥
2+ ∥〈a00|w 11

k l ′〉∥
2+ ∥〈a00|w 11

k ′l 〉∥
2+ ∥〈a00|w 00

k ′l ′〉∥
2.

Therefore, for any subspaceWk l with k l ̸= 00, we have 〈g |Πk l |g 〉= 〈a00|Πk l |a00〉=
dim(Wk l )

N . Next, recall that W00 refers to the (+1)-eigenspace of W. We know that

both |g 〉 and |a00〉 are normalized, so

〈g |Π00|g 〉= 〈a00|Π00|a00〉= 1−
∑

k l ̸=00

dim(Wk l )
N

=
N +4

2N
.

Applying Lemma 20, this implies that

p
3〈−|Πk l |+〉= 〈g |Πk l |g 〉+ 〈g |Πk l |a00〉− 〈a00|Πk l |g 〉− 〈a00|Πk l |a00〉= 0,

for any subspaceWk l . This proves equation (3.22).

To prove equation (3.23), we compute

〈+|Πk l |+〉=
1

3

�

〈g |Πk l |g 〉− 〈g |Πk l |a00〉− 〈a00|Πk l |g 〉+ 〈a00|Πk l |a00〉
�

=
2 dim(Wk l )

3N
,
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and similarly for equation (3.24).

Using the property that |+〉 and |−〉 are normalized, this implies that

∥Π00|+〉∥2 = 1−
∑

k l ̸=00

2 dim(Wk l )
3N

=
2(N +2)

3N
,

which proves equation (3.25). We can similarly compute that ∥Π00|−〉∥2 = 4
N ,

proving equation (3.26). □

Sums

In this appendix, we prove asymptotic bounds on a set of sums over the spectrum

ofW, as defined in equation (3.7). We assume a square grid, with nr = nc =
p

N .

Fact 1 Suppose 0<α< θk l for all k , l , and consider the sum

∑

k l ̸=00

dim(Wk l )cot
�

θk l −α
2

�

. (5)

1. If α ∈Θ( 1p
N
), then the sum has order Ω(

p
N log N ).

2. If α ∈ o ( 1p
N
), then the sum has order Θ(αN log N ).

Proof Instead of taking the sum over the subspaces Wk l , which partition the

domain of W, we convert to a sum over k and l . Recall that each pair 0 ≤ k , l ≤
p

N /2−1 corresponds to two eigenvectors ofW: |w 00
k l 〉 with eigenphase θk l and

|w 11
k l 〉with eigenphase −θk l . Using this property, we rewrite the sum as

∑

k l ̸=00

dim(Wk l )cot
�

θk l −α
2

�

=

p
N
2 −1
∑

k=0

p
N
2 −1
∑

l=0
not both 0

cot
�

θk l −α
2

�

− cot
�

θk l +α
2

�

= 2

p
N
2 −1
∑

k=0

p
N
2 −1
∑

l=0
not both 0

cot(α2 )
�

cot2(θk l
2 ) +1
�

cot2(α2 )− cot2(θk l
2 )

, (6)
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where the final equality follows from angle sum identities.

Next, observe that by the definition of θk l ,

cot2
�

θk l

2

�

+1=
2

1− cosθk l
=

1

1− cos2 k̃ cos2 l̃
.

We therefore consider the sum
p

N
2 −1
∑

k=0

p
N
2 −1
∑

l=0
not both 0

1

1− cos2 k̃ cos2 l̃
.

For the terms where l = 0, we get

p
N
2 −1
∑

k=1

1

1− cos2 k̃
∈Θ(N ),

and similarly for k = 0. The remaining terms satisfy

p
N
2 −1
∑

k=1

p
N
2 −1
∑

l=1

1

1− cos2 k̃ cos2 l̃
∈Θ(N log N ).

Now, consider equation (6) in the case where α ∈Θ( 1p
N
). We have

2

p
N
2 −1
∑

k=0

p
N
2 −1
∑

l=0
not both 0

cot(α2 )
�

cot2(θk l
2 ) +1
�

cot2(α2 )− cot2(θk l
2 )

≥ 2

p
N
2 −1
∑

k=0

p
N
2 −1
∑

l=0
not both 0

cot(α2 )
�

cot2(θk l
2 ) +1
�

cot2(α2 )

=
2

cot(α2 )

p
N
2 −1
∑

k=0

p
N
2 −1
∑

l=0
not both 0

1

1− cos2 k̃ cos2 l̃
.

Therefore,

∑

k l ̸=00

dim(Wk l )cot
�

θk l −α
2

�

∈Ω(
p

N log N ).
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In the case where α ∈ o ( 1p
N
), the denominator in equation (6) is dominated

by the term cot2(α2 ). Therefore, the expression has the same asymptotic order as

1

cot(α2 )

p
N
2 −1
∑

k=0

p
N
2 −1
∑

l=0
not both 0

1

1− cos2 k̃ cos2 l̃
∈Θ(αN log N ),

proving the second clause. □

Fact 2 Suppose 0<α< θk l for all k , l , and that α ∈ o ( 1p
N
). Then

∑

k l ̸=00

dim(Wk l )

�

cot
�

θk l +α
2

�

− cot
�

θk l −α
2

�

�2

∈Θ(α2N 2). (7)

Proof
∑

k l ̸=00

dim(Wk l )

�

cot
�

θk l +α
2

�

− cot
�

θk l −α
2

�

�2

=

p
N
2 −1
∑

k=0

p
N
2 −1
∑

l=0
not both 0

�

cot
�

θk l +α
2

�

− cot
�

θk l −α
2

�

�2

By a similar derivation as in Fact 1, this sum has the same order as

1

cot2(α2 )

p
N
2 −1
∑

k=0

p
N
2 −1
∑

l=0
not both 0

�

1

1− cos2 k̃ cos2 l̃

�2

.

Using the Taylor expansion of cosine, for l = 0 we get
p

N
2 −1
∑

k=0

�

1

1− cos2 k̃

�2

∈Θ(N 2),

and similarly for k = 0. Finally,
p

N
2 −1
∑

k=1

p
N
2 −1
∑

l=1

�

1

1− cos2 k̃ cos2 l̃

�2

∈Θ(N 2).

Therefore,

∑

k l ̸=00

dim(Wk l )

�

cot
�

θk l +α
2

�

− cot
�

θk l −α
2

�

�2

∈Θ(α2N 2).

□

101



Appendices

Lower bound for 0-determinant verification

As a final note, we present an observation on lower bounds for the query com-

plexity of 0-determinant verification. This is the same problem solved by the

span program we present in Section 4.3.

Currently, the best published lower bound for 0-determinant verification is

by Dörn and Theirauf [DT09]. They prove a bound of Ω(n 2) quantum queries for

deciding whether an n ×n matrix has determinant equal to some value k . This

matches the trivial upper bound of O (n 2) queries, obtained by simply querying

all entries in the input matrix, so the query complexity bound on k -determinant

verification is tight. This tight bound is stated and cited as applying to 0-determinant

verification as well. However, the Ω(n 2) lower bound by Dörn and Thierauf does

not apply when the problem is restricted to the case where k = 0. We argue this

as follows.

The proof in [DT09] is based on reducing a series of problems on n ×n ma-

trices to the SU Mn 2 (x1, x2, . . . , xn 2 , a ) problem. In this sum problem, the goal is

to decide whether the sum of the n 2 binary inputs is equal to the input number

a . In general, the query complexity of this problem isΩ(n 2), but this bound does

not apply when the problem is restricted to the case where a = 0. In fact, when

a = 0, the sum problem can be solved in only Θ(n ) quantum queries by using

quantum search [Gro96, BHMT02].

The lower bound for k -determinant verification is proved by a reduction to

SU Mn 2 (x1, x2, . . . , xn 2 , k ). Therefore, the lower bound of Ω(n 2) still holds for gen-

eral k . In 0-determinant verification, where k = 0, it is only possible to obtain the

weaker bound of Ω(n ) quantum queries for the problem through this reduction.

Thus, there remains a gap between the current upper and lower bounds for the

0-determinant verification problem.

As a further observation, we note that in [DT09], the lower bound on query

complexity for 0-determinant verification is also used to derive a bound for the

matrix rank problem. In the matrix rank problem, the goal is to decide whether

the rank of an input matrix is equal to some value k . The lower bound derivation

is based on case k = n , using the property that a matrix has full rank if and only

if its determinant is nonzero. By our previous statement, deciding whether the
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determinant is nonzero has a lower bound of Ω(n ) queries, so our observation

implies that the lower bound shown in [DT09] is in factΩ(n ) for the rank problem

as well.
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