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Abstract 

Detecting the initial signs of neurodegeneration is integral for early diagnosis and intervention. 

Computerized cognitive assessments are accessible, efficient, and precise tools for identifying 

cognitive impairment and risk of neurodegeneration. While computerized instruments can be 

feasibly administered repeatedly for longitudinal cognitive monitoring, their clinical utility 

compared to conventional paper-and-pencil tools is yet unknown. The present study examined the 

utility of a computerized task, the One Card Learning (OCL) test, to detect conversion to dementia 

and associate with amyloid (Aβ) imaging markers using single and repeated test administration 

compared to the Montreal Cognitive Assessment (MoCA) and Rey Auditory Verbal Learning Test 

(RAVLT). The primary and secondary outcomes were conversion from cognitively normal (CN) 

to amnestic mild cognitive impairment (aMCI) or Alzheimer’s disease (AD) over a four-year study 

period and positron emission tomography estimates of Aβ, respectively. Data were collected from 

the Alzheimer’s Disease Neuroimaging Initiative 3 longitudinal cohort study. Participants were 

older adults aged 56 to 98 years who were CN at baseline. Results showed that the OCL did not 

better predict conversion to aMCI or AD from cognitive health compared to the MoCA or RAVLT 

when assessed at baseline or over repeated administrations. Unadjusted baseline OCL performance 

associated with Aβ status comparably to the MoCA and RAVLT. While repeated MoCA scores 

provided the strongest estimate of Aβ accumulation, OCL score trajectories uniquely detected 

diminished practice effects associated with pathological Aβ accumulation. The OCL may offer 

distinct clinical utility to detect preclinical AD biomarker accumulation. Future research is needed 

to examine the application of computerized assessments before they are fully integrated into 

clinical practice.  
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Introduction 

Contemporary changes to society from technological advances have created new opportunities for 

the field of neuropsychology. Among the proposed innovations to current neuropsychological 

methods is the incorporation of computerized technology into assessment procedures (Bilder, 

2011; Minnesota 2022 Update Conference Planning Commission, 2022). Computerized 

assessments are novel instruments that capitalize on the efficiency and widespread availability of 

digital tools while addressing limitations of conventional paper-and-pencil tests (Binng, 

Splonskowski, & Jacova, 2020; Koo & Vizer, 2019; Sternin, Burns, & Owen, 2019). While the 

application of computerized cognitive assessments (CCAs) into clinical practice has the potential 

to improve access to, and quality of, assessment services for millions of Canadians, their 

comparative utility remains to be substantiated empirically. 

It is primarily important to define CCAs and describe how they differ from paper-and-

pencil tests. CCAs measure thinking and memory abilities based on observable performance, 

including domains of executive function, attention, visuo-spatial navigation, processing speed, 

language, and episodic and working memory (De Roeck, De Deyn, Dierckx, & Engelborghs, 2019; 

Staffaroni, Tsoy, Taylor, Boxer, & Possin, 2020). Like conventional tests, digital assessments use 

narrow-band tasks with standardized administration procedures to interpret performance using 

normative data. However, CCAs are unique in that task instructions and stimuli are presented via 

computerized means, and participant responses, latency measurements, and norming of scores are 

recorded automatically (Sternin et al., 2019). In contrast to conventional tools, some CCAs may 

be administered without supervision from a neuropsychologist or trained professional, meaning 

that they can be conducted remotely outside of hospital or clinic settings.  



 

   

 

2 

 

Advantages of CCAs 

CCAs demonstrate improved accessibility, efficiency, and precision over conventional tests. The 

flexibility to administer CCAs outside of healthcare settings provides enhanced accessibility to 

populations who live rurally, have mobility limitations, or are at increased health risk of infectious 

diseases (Binng et al., 2020; O'Connell, Vellani, Robertson, O'Rourke, & McGilton, 2021; 

Staffaroni et al., 2020; Tsoy, Zygouris, & Possin, 2021). Broader accessibility particularly benefits 

equity-seeking communities that face added barriers to assessment services in Canada 

(Reitmanova & Gustafson, 2009; Thomson, Chaze, George, & Guruge, 2015; Williams, 2001). 

CCAs have the capacity to improve testing efficiency, minimize costs, and reduce patient burden. 

Unsupervised testing and digitally mediated stimuli reduce operational costs associated with 

conventional testing (Ohman, Hassenstab, Berron, Scholl, & Papp, 2021). Testing time and fatigue 

can also be cut down using computerized adaptive testing, a process that selects items based on 

the examinee’s proficiency level (Huebner, 2010). Finally, standardized administration, scoring, 

and recording procedures via automated processes result in enhanced precision and reduced risk 

of human error (Koo & Vizer, 2019; Sternin et al., 2019). CCAs can feasibly capture more fine-

grained information on response styles, item-by-item timing, and validity data via person-fit 

statistics, maximizing the value of test data (Bellone & Van Patten, 2020; Huebner, 2010). 

 

Broad Psychometric Support for CCAs 

Given these advantages, research has found support for the use of CCAs to screen for cognitive 

status in neurocognitive disorder populations. Validation studies comparing the concurrent and 

prognostic validity of conventional and computerized assessments show analogous performance 

to conventional tests within multiple sclerosis, Alzheimer’s disease (AD), mild cognitive 
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impairment (MCI), stroke, frontotemporal dementia, and mixed clinical samples (Binng et al., 

2020; Lapshin, O'Connor, Lanctot, & Feinstein, 2012; Ohman et al., 2021; Staffaroni et al., 2020; 

Woodhouse et al., 2013). Among the most widely studied CCAs, there is strong criterion validity 

to distinguish normal controls from early MCI and dementia, and associate with brain biomarkers 

of dementia neuropathology (Binng et al., 2020; De Roeck et al., 2019; Denboer, Nicholls, Corte, 

& Chestnut, 2014; Staffaroni et al., 2020). 

Reliability and feasibility statistics for identifying cognitive impairment in aging suggest 

that CCAs provide acceptable psychometrics in clinical and research settings. There is empirical 

support for adequate to excellent internal consistency (Cronbach’s  = .72-.96) and test-retest 

reliability (r = .70-.97) in the most widely studied CCAs (Binng et al., 2020; De Roeck et al., 2019; 

Staffaroni et al., 2020; Tsoy et al., 2021). Feasibility research, which is particularly important with 

unsupervised administration, indicates that completion rates for self-administered tests range from 

60-97% over repeated testing sessions and are similarly acceptable across sociodemographic 

stratifications (Collerton et al., 2007; Koo & Vizer, 2019; Mielke et al., 2015; Tsoy et al., 2020). 

However, individual factors like low computer familiarity, negative attitudes toward technology, 

and decreased digital experience may affect feasibility estimates in older adults (Iverson, Brooks, 

Ashton, Johnson, & Gualtieri, 2009; Koo & Vizer, 2019; Ohman et al., 2021; Staffaroni et al., 

2020; Tierney et al., 2014; Valdes, Sadeq, Harrison Bush, Morgan, & Andel, 2016).  

 

Mild Cognitive Impairment in the Neurodegenerative Continuum 

MCI is an early-stage neurocognitive syndrome characterized by objective deficits in cognition 

without loss of functional independence (Petersen, 2004). While the typical healthy aging 

trajectory shows small but steady decreases in some thinking and memory abilities, MCI 
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encompasses cognitive decline beyond expected changes (Jack et al., 2018). MCI therefore 

represents an early stage of measurable cognitive dysfunction prior to acute deficits suggestive of 

a dementia diagnosis. It is estimated that 6.7-25.2% of adults aged ≥60 years meet criteria for an 

MCI diagnosis, with rates increasing with age and lower education (Cheng, Chen, & Chiu, 2017; 

Jongsiriyanyong & Limpawattana, 2018; Langa & Levine, 2014; Petersen et al., 2018; Suzuki et 

al., 2013). MCI prevalence is expected to increase as Canada’s population continues to age 

(Alzheimer Society of Canada, 2016). MCI diagnosis is associated with increased medical 

comorbidity, conversion to dementia, and mortality (Bae et al., 2018; Haaksma et al., 2017; 

McGrattan et al., 2022; Petersen et al., 2018; Stephan et al., 2011; Vassilaki et al., 2015). Thus, 

early detection of impaired cognition may not only identify risk of future neurodegeneration, but 

also flag those who may require clinical evaluation for medical concerns and supportive care. 

Examination of MCI subtypes and progression to dementia has improved our knowledge 

of the neurodegenerative continuum and conferred earlier diagnoses. Accelerated diagnosis is 

important for addressing cognitive and behavioural symptoms of MCI, initiating interventional 

approaches that may delay cognitive decline, and aiding patients to engage in long-term planning 

for their care (Kasper et al., 2020; Lissek & Suchan, 2021; Petersen et al., 2018). Amnestic MCI 

(aMCI) is cognitive impairment that includes episodic memory dysfunction and is linked to 1.5 to 

10 times increased risk of developing Alzheimer’s disease (AD) compared to non-amnestic MCI 

(naMCI) (Ferman et al., 2013; Jungwirth, Zehetmayer, Hinterberger, Tragl, & Fischer, 2012; 

Michaud, Su, Siahpush, & Murman, 2017). Relative risk estimates for progressing from aMCI and 

naMCI to AD vary depending on the setting sampled (clinic versus community), follow-up period 

assessed, and diagnostic criteria utilized. aMCI is generally considered a prodromal stage of AD 

whereby patients transition from preclinical “normal” cognition to significant cognitive and 
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functional deficits with accompanying neuropathology. Annual conversion rates from aMCI to AD 

in the community are estimated at 6-17% (Ferman et al., 2013; Landau et al., 2010; Michaud et 

al., 2017; Mitchell & Shiri-Feshki, 2009). In contrast, naMCI, which is cognitive dysfunction in 

alternative domains such as executive function, attention, etc., but not memory, is associated with 

an increased likelihood of developing other neurodegenerative disorders such as fronto-temporal 

and Lewy-body dementias (Molano et al., 2010). Differentiation of MCI subtypes is thus an 

important marker to inform diagnostic decision-making and targeted clinical interventions. 

 

Biological Definitions of AD 

In addition to neuropsychological profiles, biomarkers have emerged as important signals of AD 

pathology and future decline. Briefly, the National Institute on Aging and Alzheimer’s Association 

organizes current AD biomarkers into three broad categories: amyloid beta (Aβ) accumulation, or 

plaque deposits, that lead to synaptic dysfunction and neural death; tau (T) aggregation, or 

neurofibrillary tangles, that disrupt axonal conduction and nutrient delivery to neurons; and 

neurodegeneration (N), such as cerebral hypometabolism and structural volume loss that are 

detected via neuroimaging (Jack et al., 2018; Murphy & LeVine, 2010; Schraen-Maschke et al., 

2008). Together, these three biomarkers are often referred to as ATN, where individuals can be 

classified as ‘positive’ (+) if the biomarker is found to be present, or ‘negative’ (-) if it is not. 

Genetic markers such as apolipoprotein E4 (ApoE ε4) are also implicated in determining AD 

pathology (Liu, Kanekiyo, Xu, & Bu, 2013). ATN biomarkers have shown strong predictive power 

for the onset of cognitive and neuropsychiatric AD symptoms, where biomarker positivity now 

defines the preclinical AD stage in the absence of cognitive or behavioural symptoms (Bucci, 

Chiotis, Nordberg, & Alzheimer's Disease Neuroimaging, 2021; Ebenau et al., 2020; Jack et al., 
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2018; Miao et al., 2022). Emphasis on biomarkers to define AD pathology is advantageous for 

predicting decline prior to the emergence of detectable symptoms and for driving therapeutic 

research that targets mechanisms of neurodegeneration in vivo (Silverberg, Elliott, Ryan, Masliah, 

& Hodes, 2018). While there is some evidence that biomaker data may not significantly improve 

prediction of dementia over demographic and cognitive markers (Callahan et al., 2015; Glymour 

et al., 2018), which are more accessible and cost-efficient data points, biomarkers remain important 

for assessing AD pathology in the current literature (Silverberg et al., 2018). 

 

Current Neuropsychological Assessment Procedures for Cognitive Decline 

Current neuropsychological methods rely on conventional instruments administered at a single 

time point to identify MCI. Conventional cross-sectional methods characterize cognitive 

functioning, where scores of 1 to 1.5 standard deviations (SD) below expected group-level 

normative performance typically signals the presence of deficits, although not all MCI diagnostic 

criteria specify absolute cutoffs for clinically significant impairment (Albert et al., 2011; American 

Psychiatric Association, 2013; Jak et al., 2009; Petersen et al., 2014). Reliance on cross-sectional 

methods using mean- or regression-based normative comparisons to infer progressive decline can 

result in limited specificity and significant bias in detecting deficits. Cross-sectional cutoffs to 

determine dysfunction may over-pathologize normal cognitive performance as 30.8-39.0% of 

healthy older adults perform ≤1.5 SD below adjusted norms on at least one memory test (Brooks, 

Iverson, Holdnack, & Feldman, 2008; Brooks, Iverson, & White, 2007). Adding to the risk of false 

positives is the non-specificity of below average cognitive performance. Numerous non-

neurodegenerative disorders including depression, bipolar disorder, attention-deficit/hyperactivity 

disorder, and schizophrenia are associated with objective cognitive deficits that may mimic 
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neurodegeneration if evaluated only at the cross-sectional level (Aprahamian, Nunes, & Forlenza, 

2013; Callahan, Shammi, Taylor, Ramakrishnan, & Black, 2021; Lanza, Sejunaite, Steindel, 

Scholz, & Riepe, 2020; Morimoto & Alexopoulos, 2013; Mukku et al., 2021; Murante & Cohen, 

2017; Rajji & Mulsant, 2008; Schouws, Comijs, Dols, Beekman, & Stek, 2016). Moreover, 

individual-level characteristics – such as ethno-linguistic diversity and intellectually high- and low 

baseline performance – are poorly represented in normative samples but significantly affect cross-

sectional cognitive performance and may contribute to misidentification of decline (Briceno et al., 

2020; Brooks, Holdnack, & Iverson, 2011; Brooks, Iverson, & White, 2009; Castora-Binkley, 

Peronto, Edwards, & Small, 2015; Gross et al., 2015; Iverson & Karr, 2021).  

 

Longitudinal Neuropsychological Assessment 

Clinical and research-based guidelines for identifying MCI are shifting focus towards longitudinal 

measurement of cognitive trajectories due to the above-mentioned limitations of cross-sectional 

methods (Albert et al., 2011; American Psychological Association, 2021; Jack et al., 2018). 

Longitudinal assessment is theorized to be more sensitive to detect AD pathology by measuring 

rates of decline that better account for baseline cognition and individual-level characteristics that 

impact test performance (Sternin et al., 2019). Emerging research on longitudinal cognitive testing 

indicates that accounting for change over time is indeed an effective strategy for predicting 

conversion to MCI/AD (Mortamais et al., 2017). A study by Nation et al. (2019) found that over 

12-months, repeated neuropsychological testing significantly predicted incident AD over and 

above baseline cognition, demographics, and ApoE ε4 status in cognitively normal (CN) older 

adults with AD biomarkers (odds ratio (OR)= 2.84). In a meta-analysis examining relationships 

between Aβ and cognition, the effect of biomarker positivity on episodic memory was stronger for 
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longitudinal decline (d= 0.24) than cross-sectional impairment (d= 0.15) in CN older adults (Baker 

et al., 2017). In terms of the temporal detection of longitudinal decline, episodic memory decline 

can be observed four years prior to MCI due to AD diagnosis (Mistridis, Krumm, Monsch, Berres, 

& Taylor, 2015), and seven years preceding AD diagnosis (Grober et al., 2008).  

 The effect of learning on performance across repeat test administrations, historically 

considered an assessment confound, has gained recent attention for its potential utility as a marker 

for AD. Practice effects describe improvement in test scores over serial assessments that are due 

to familiarity with items, acquired strategies, or enhanced test-taking comfort rather than changes 

in the target construct being measured (Calamia, Markon, & Tranel, 2012). Within CN adults, 

practice effects are seen in episodic memory tasks, demonstrating interference with scores over six 

years at one-year testing intervals, with maximum effect sizes ranging from Cohen’s d= .20-.72 

(Calamia et al., 2012; Goldberg, Harvey, Wesnes, Snyder, & Schneider, 2015). When comparing 

practice effects between stable CN to MCI/AD converters, converters exhibited equivalent practice 

effects to controls on a memory test across the first two administrations over 15 months, but 

showed weakened practice effects over the next four years (Machulda et al., 2013). A recent 

literature review on practice effects in the AD continuum found that diminished practice effects in 

episodic memory tests predicted progressive cognitive decline and incident dementia (Jutten et al., 

2020). Less robust practice effects were associated with ApoE ε4 status and Aβ status, although 

there is some evidence that the absence of learning is predicted by hippocampal neurodegeneration 

rather than amyloidosis (Jutten et al., 2020; Machulda et al., 2017). In addition, reduced practice 

effects can detect concurrent abnormal Aβ accumulation over three years (Ihara et al., 2018). 

Failure to account for practice effects can impede detection of MCI as previous test exposures 

mask the magnitude of true decline over time (Elman et al., 2018; Sanderson-Cimino et al., 2020). 
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 To summarize, repeated cognitive assessment methods may be more sensitive to detect the 

earliest signs of incipient neurodegeneration compared to a single administration. Repeated 

monitoring allows for identification of early pathological decline before patients demonstrate 

objective deficits severe enough to warrant an MCI diagnosis at predetermined normative cutoffs. 

By accounting for individual-level characteristics that impact performance at any single 

administration, thereby minimizing within-subject error variance, repeated teasing can better 

detect subtle memory changes that indicate non-normative decline. Specifically, repeated testing 

can uniquely identify cognitive performance trajectories that show lack of improvement via 

attenuated practice effects, a novel cognitive marker of AD neuropathology. 

 

CogState Brief Battery 

The CogState Brief Battery (CBB) is among the most widely studied CCAs for measuring 

cognitive functioning in healthy and impaired adults (Maruff et al., 2013; Tsoy et al., 2021). The 

CBB measures psychomotor reaction time, attention, executive function and visual learning and 

memory across four subtests (Hammers et al., 2012; Lim et al., 2012). It can be delivered via 

computer or tablet, requiring no supervision to administer (Fredrickson et al., 2010). The CBB 

demonstrates strong psychometric properties in healthy adults and those with mild traumatic brain 

injury, multiple sclerosis, schizophrenia, HIV-associated dementia, MCI, and AD (De Meijer et 

al., 2018; De Roeck et al., 2019; Lim et al., 2012; Maruff et al., 2013; Maruff et al., 2009; Mielke 

et al., 2015; Tsoy et al., 2021; Wojcik et al., 2019; Zarshenas & Cullen, 2018). It has been used in 

several prospective cohort studies including the Alzheimer’s Disease Neuroimaging Initiative, the 

Australian Imaging, Biomarkers, and Lifestyle Study, and Mayo Clinic Study of Aging. 
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Baseline Assessment with the CBB 

The majority of research has utilized single CBB administrations to measure cognition and classify 

diagnostic groups. The CBB memory subtest which assesses visual learning and recognition, and 

the executive function subtest which measures working memory and visual attention, have both 

demonstrated concurrent and convergent validity with demographic variables and conventional 

tests in neurocognitive disorders (Lim et al., 2012; Mackin et al., 2018; Maruff et al., 2013; Maruff 

et al., 2009; Racine et al., 2016). In terms of diagnostic validity, the CBB can successfully 

differentiate CN from MCI (area under the curve (AUC)= 0.75-0.91, sensitivity= 70-80.4%, 

specificity= 70-84.7%), and AD (sensitivity= 100%, specificity= 84.7%), although cross-sectional 

thresholds for impairment fall within the normal range of performance (-0.21 to –1 SD), calling 

into question the practical utility of implementing such cutoffs clinically (Alden et al., 2021; Lim 

et al., 2012; Mackin et al., 2018; Maruff et al., 2013; Racine et al., 2016).  

To date, only two studies have examined the prognostic validity of a single CBB 

administration to predict incident dementia. In a sample of patients aged ≥50 years who were CN 

at baseline, CBB memory scores predicted incident MCI or dementia (AUC= 0.67, sensitivity= 

60%, specificity= 70%) comparably to the Rey Auditory Verbal Learning Test (RAVLT), a gold-

standard conventional verbal memory test (AUC= 0.70, sensitivity= 70%, specificity= 61%) over 

approximately 3.2 years (Stricker, Lundt, Albertson, et al., 2020). Similarly, Pudumjee et al. 

(2021) found that a single CBB memory score, when assessed at baseline, predicted incident 

MCI/AD over approximately 4.8 years (AUC= 0.64, sensitivity= 70%, specificity= 56%) in older 

adults aged ≥65 years who were CN at baseline. They also compared baseline performance to a 

second memory score assessed 30 months later, finding that prognostic validity improved while 

specificity fell (AUC= 0.66, sensitivity= 86%, specificity= 41%). Although there was a small 
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increase in prediction between the baseline and 30-month testing time points, the loss of 2.5 years 

to intervene may offset the potential benefit of delayed monitoring. 

 Previous research has also examined associations between a single CBB administration 

and biomarkers of AD pathology. Lim et al. (2016) demonstrated that a CBB memory and 

executive function composite score successfully distinguished between CN and MCI Aβ-, as well 

as MCI Aβ- and Aβ+ groups. The same composite, when optimized by maximizing true positives 

and minimizing false positives, also effectively differentiated Aβ-T- from Aβ+T+ participants with 

MCI (AUC= 0.86) (Alden et al., 2021; Unal, 2017). However, in CN older adults aged ≥65 years, 

baseline CBB memory performance differentiated Aβ+T+ from Aβ-T- participants less effectively 

(AUC= 0.64) (Pudumjee et al., 2021). Limited studies have compared the CBB and conventional 

test performance to associate with AD biomarkers, with mixed results. In one study, neither 

computerized (CBB memory) nor conventional (RAVLT/Logical Memory (LM) test) baseline 

performance associated with positron emission tomography (PET) estimates of Aβ status, however 

all three cognitive test scores did predict a small but similar amount of variance in PET 

hypometabolism (Mielke et al., 2014). Another study found that among CN adults aged ≥50 years, 

the RAVLT better differentiated between CN Aβ-T- and Aβ+T+ groups (AUC= 0.66) compared 

to the CBB composite (AUC= 0.59), although the CBB was more sensitive (55% vs. 45%) 

(Stricker, Lundt, Albertson, et al., 2020). Divergent findings may be due to the inclusion of both 

aMCI and naMCI participants in some studies or variations in cognitive domains assessed (Bondi 

et al., 2008; Mickes et al., 2007). Given these inconsistencies, further investigation is warranted to 

better understand the utility of the CBB applied at a single time point to detect Aβ early in the AD 

continuum. 
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Repeated Assessment with the CBB 

Less is known about the efficacy of repeated testing with the CBB to track cognitive decline and 

predict conversion. Memory decline as measured by the CBB subtest associates with older age, 

lower education, family history of memory impairment, cognitive complaints, MCI, and ApoE ε4 

status (Banh et al., 2022; Darby et al., 2011; Lim, Ellis, et al., 2013). Previous research indicates 

repeated CBB memory performance improves model prediction of cognitive status over baseline 

scores alone (Banh et al., 2022). Only one study has investigated serial CBB assessments to predict 

incident MCI/AD. This study also evaluated the comparative predictive power of repeated and 

single CBB. Pudumjee et al. (2021) found that over 30 months, CBB memory change better 

identified MCI/AD converters (OR= 2.02, AUC= 0.68) compared to baseline performance (OR= 

1.70, AUC= 0.64), although the latter had higher sensitivity (70% vs. 64%). Further examination 

on the prognostic validity of the CBB to identify incident aMCI or AD from cognitive health 

compared to current conventional tools will provide valuable information on the clinical utility of 

a novel CCA and inform future applications of computerized tools in clinical practice.    

 In addition to detecting clinical markers of dementia, there is also evidence that repeated 

CBB performance associates with AD biomarkers. In a study comparing single and repeated CBB 

assessments to predict Aβ and T status, Pudumjee et al. (2021) found that serial CBB memory 

testing (AUC= 0.69) better differentiated Aβ+T+ from Aβ-T- participants compared to baseline 

scores alone (AUC= 0.64), although the difference was not statistically significant. CBB memory 

decline has also demonstrated efficacy to predict cortical Aβ positivity over 24 months among CN 

adults aged ≥50 years (OR= 6.34) (Darby et al., 2011). The rate of CBB memory decline 

differentiated Aβ+ aMCI from Aβ- CN and aMCI participants, as well as Aβ+ CN and MCI from 

Aβ- CN controls (Lim, Ellis, et al., 2013; Lim et al., 2014). One study demonstrated that in Aβ+ 
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individuals, both CN and MCI, CBB memory scores declined at an equivalent and consistent rate 

over 36 months compared to Aβ- participants, both CN and MCI (Lim et al., 2014). In that study, 

the CBB detected significant differences in practice effects between Aβ- and Aβ+ groups. Further 

research showed that over 72 months, the CBB memory and executive function composite tracked 

improved performance over time in Aβ- CN and MCI participants, while differentiating from MCI 

Aβ+ individuals that showed significant cognitive decline (d= 0.8) and greater hippocampal 

volume loss (HVL) (d= 1.7) (Lim et al., 2016). In a unique study examining longitudinal 

accumulation of AD biomarkers, Lim et al. (2015) found that repeated CBB memory scores 

associated with increased HVL, which then predicted higher rate of Aβ accumulation over time. 

This complex body of research suggests that a cost-efficient and feasible CCA can successfully 

identify AD neuropathology and track biomarker accumulation as it emerges.  

 In sum, previous research demonstrates that the CBB can accurately classify cognitive 

status and distinguish biomarker groups when administered at a single time point. It has also been 

established that serial CBB assessment can identify individuals who will convert to dementia and 

is sensitive to detect subtle cognitive changes related to AD biomarker status and accumulation. A 

gap in this literature is the need to identify whether the CBB’s clinical utility, when administered 

once or repeatedly, equals, or surpasses that of conventional paper-and-pencil cognitive screening 

tools currently used in clinical practice. If so, this would support its use in primary care settings as 

a feasible and cost-effective measure of cognition to identify dementia risk. 

 

Objectives and Hypotheses 

The present study (A) investigated the utility of a CCA to predict incident aMCI or AD over a 

four-year follow-up period compared to conventional neuropsychological tests, when assessed at 
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baseline and over repeated administrations. This study also (B) examined associations between 

CCA performance and PET Aβ compared to conventional neuropsychological tests, using single 

and repeated assessment. It was hypothesized that changes in serial CCA performance would better 

predict incident aMCI or AD compared to conventional tests, but that baseline performance would 

show equivalent utility to identify incident dementia over the follow-up period. For the secondary 

objective, it was hypothesized that repeated CCA performance would more strongly associate with 

PET Aβ accumulation than repeated conventional tests, but that single assessment associations 

with PET Aβ status would be statistically similar between a CCA and conventional tests. 

 

 

Methods 

Study Design 

This study was a within-subjects longitudinal observational design. Data were extracted from the 

Alzheimer’s Disease Neuroimaging Initiative 3 (ADNI3), a prospective cohort study that 

measured emergent cognitive, clinical, biological, and neuroimaging markers in the AD continuum 

(https://adni.loni.usc.edu). Running from 2017-2023, ADNI3 followed CN, aMCI and AD 

participants over four years. Participants underwent review of demographics, diagnostic 

assessment, conventional neuropsychological battery, in-clinic CBB, and Aβ PET imaging, among 

other tasks, at enrollment (baseline). The schedule of assessments varied by diagnostic status. For 

CN participants, in-clinic visits occurred biennially with repeat diagnostic review, conventional 

neuropsychological and CBB testing, and Aβ PET imaging. For participants with aMCI or AD, in-

clinic visits occurred annually, with repeat diagnostic review, and conventional 

neuropsychological and CBB testing occurring each time, whereas Aβ PET imaging continued to 

https://adni.loni.usc.edu/
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occur biennially. CN and aMCI participants were prompted via email to complete remote CBB 

administrations four times per year between in-clinic visits for the duration of the study.  

 

Recruitment and Inclusion Criteria 

Participants were recruited from nearly 60 sites across the United States. Individuals enrolled in 

previous ADNI trials (“rollover" participants ) were eligible to continue into ADNI3. All ADNI3 

participants were 55-90 years old at enrollment. Inclusion criteria for the present study mirrors that 

of ADNI3. For CN participants, this included absence of subjective memory complaints, normal 

memory functioning based on the delayed Logical Memory (LM) Test, Mini Mental State 

Examination (MMSE)= 24-30, Clinical Dementia Rating (CDR)= 0, preserved daily functioning, 

and four-week pharmacological stability. For aMCI, inclusion criteria were subjective or 

informant-reported memory complaints, impaired delayed LM, MMSE= 24-30, CDR= 0.5, 

absence of impaired daily functioning indicative of AD, and 12-weeks of stable permitted 

medications. For AD participants, this included subjective or informant memory complaints, 

significantly impaired delayed LM, MMSE= 20-24, CDR= 0.5-1.0, impaired daily functioning 

based on NINCDS/ADRDA criteria, and 12-weeks of stable medications (Albert et al., 2011).  

 

Demographics 

In line with previous research on demographic correlates of CBB performance, age, sex, education, 

race/ethnicity, and ApoE ε4 status were collected as covariates. Age was calculated based on 

completion date of the relevant cognitive test for each analysis. Ethnoracial categories were coded 

as Asian, Black, Indigenous, mixed, or White. ApoE ε4+ was defined as ≥1 ApoE ε4 allele. 
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CBB One Card Learning Test 

The CBB is a brief computerized cognitive screener. The One Card Learning (OCL) subtest of the 

CBB was the primary computerized measure of interest. The OCL is characterized as a visual 

learning and recognition test (Hammers et al., 2012; Lim et al., 2012). In this task, participants 

were shown four randomly selected target playing cards face-up from a normal deck, one at a time 

(White et al., 2021). After the targets were presented, 80 cards were presented serially, including 

both targets and distractors (Maruff et al., 2013). Participants were prompted to key “yes” or “no” 

for each card to indicate whether it was one of the four target cards presented earlier (Hammers et 

al., 2012; Lim et al., 2012). The proportion of correct responses formed an accuracy score, which 

was normalized using an arcsine square-root transformation for a more normal distribution. 

Average performance for cognitively healthy older adults is approximately set at 1.0 with a 

standard deviation (SD) = 0.10 (White et al., 2021). In addition, the CBB includes in-built integrity 

measures. Responses were flagged as invalid when OCL item reaction time <3.24log10 (1.75 

seconds) or if <75% of trials were completed or for total accuracy scores <50% (Fredrickson et 

al., 2010; Stricker et al., 2019). Participants retook the OCL a second time if their performance 

failed integrity checks. All OCLs were administered on a PC. OCL administration time is 

approximately 5 minutes. In ADNI3, the OCL was conducted at each in-clinic visit and 

participants were additionally prompted to perform the OCL remotely, four times annually. If a 

participant was diagnosed with AD, they were no longer prompted to complete the CBB at home. 

 The CBB demonstrates strong psychometric properties in CN and MCI adult populations. 

Test-retest values range from r= .68-.87 at 3-months intervals, .90-.96 at 4-month intervals, and 

.65-.91 at 12-month intervals (Lim, Jaeger, et al., 2013; Tsoy et al., 2021). In terms of construct 

and convergent validity, the OCL correlates with age, sex, education, premorbid IQ, global 



 

   

 

17 

 

cognition, and subjective cognitive impairment, as well as conventional verbal and visual memory 

tests like the RAVLT (r= .32), Logical Memory test (r= .20), Spatial Span (r= .69), Brief 

Visuospatial Memory Test (r= .25-.83), and Rey Complex Figure Test (r= .79) (Lim et al., 2012; 

Mackin et al., 2018; Maruff et al., 2013; Maruff et al., 2009; Racine et al., 2016).  

 

Rey Auditory Verbal Learning Test 

The RAVLT is a conventional verbal episodic memory test. In this test, examinees are read a list 

of 15 words over five trials, after which they are prompted to repeat the list back. A second, 

distractor list is then read to the patient, and they are prompted to repeat the distractor items 

followed by a final recall trial for the original list of words. Thirty minutes after the final immediate 

recall trial, examinees are asked to recall as many words as they can from the first list only. The 

total number of words recalled after the delay represents the delayed recall score, the RAVLT 

outcome of interest for this study. The RAVLT is a gold-standard conventional tool for measuring 

verbal learning and recall. Test-rest reliability ranges from .61-.86 at one-month intervals and .38-

.70 at one-year (Lezak & Lezak, 2004). Criterion validity measures indicate that delayed recall 

performance between the RAVLT and a similar test, the California Verbal Learning Test (CVLT), 

covaries in healthy adult (r= .37) and cognitively impaired (r= .81) groups (Crossen & Wiens, 

1994; Stallings, Boake, & Sherer, 1995). Previous factor analytic research shows that the RAVLT 

loads with other verbal and visual memory tests (Strauss, Sherman, Spreen, & Spreen, 2006).  

The decision to compare the OCL to the RAVLT was two-fold. First, existing research 

often compares OCL performance to the RAVLT or a similar verbal learning task (i.e., LM, 

CVLT) (Lim, Ellis, et al., 2013; Mielke et al., 2014; Stricker, Lundt, Albertson, et al., 2020). 

Selecting the RAVLT allowed for continuity to compare results with the current literature. Second, 
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RAVLT performance is indeed an efficacious and sensitive tool for measuring episodic memory 

dysfunction in neurocognitive disorder populations, making it a worthy criterion measure 

(Balthazar, Yasuda, Cendes, & Damasceno, 2010; Estevez-Gonzalez, Kulisevsky, Boltes, 

Otermin, & Garcia-Sanchez, 2003). However, the RAVLT is not validated for use as a screening 

tool, and its relatively long administration time and specialized training required to conduct, score 

and norm it limits it’s feasibility for primary care screening. Thus, the OCL was also compared to 

a conventional tool widely used in clinical settings, the Montreal Cognitive Assessment (MoCA). 

 

Montreal Cognitive Assessment  

The MoCA is specifically designed to detect early signs of MCI. The screener assesses visuospatial 

reasoning, language, memory, executive functioning, attention, and orientation (Hobson, 2015). 

Together, scores form a composite representing global cognitive function, with a maximum score 

of 30. Generally, a cutoff < 26 is indicative of impaired cognitive performance, although research 

suggests that optimal cut points vary by demographic stratifications (Milani, Marsiske, Cottler, 

Chen, & Striley, 2018). The test must be conducted by a trained professional and administration 

time is approximately 10 minutes (Nasreddine et al., 2005). In ADNI3, the MoCA was conducted 

in-clinic according to the same schedule as the RAVLT. Psychometric research indicates that it is 

a reliable and valid tool for detecting early cognitive dysfunction. Test-retest reliability values 

range from .88 over two weeks, .75-.92 over one to two months, and .33-.48 at one to four years 

(Cooley et al., 2015; Koski, 2013; Lee, Lin, & Chiu, 2021; Nasreddine et al., 2005). The MoCA 

covaries with scores from validated cognitive assessments such as the MMSE in MCI (r= .60) and 

AD groups (r= .70) (Freitas, Simoes, Alves, & Santana, 2013). The MoCA shows strong diagnostic 
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accuracy to differentiate CN from MCI (AUC= .86, sensitivity= 81%, specificity= 77%) and AD 

(AUC= .98, sensitivity= 88%, specificity= 98%) (Nasreddine et al., 2005).  

 Selection of the MoCA allowed for improved examination of the comparative clinical 

utility of the OCL as a screening tool. The MoCA is a gold-standard brief instrument for use in 

primary care that was specifically designed to have high sensitivity to detect MCI. However, the 

MoCA is subject to notable limitations of conventional tools discussed previously (i.e., non-

specificity to progressive degenerating disorders, limited norms for ethno-linguistically diverse 

groups, does not account for practice effects over serial assessments). 

 

Aβ Imaging 

Central Aβ levels were quantified using amyloid PET neuroimaging. Briefly, Aβ PET scanning 

identifies the presence of plaque deposits in vivo and is currently utilized in clinical practice to 

determine risk for, or confirm, AD diagnosis (Suppiah, Didier, & Vinjamuri, 2019). Participants 

newly enrolled in ADNI3 received Florbetaben (FBB) amyloid PET scanning (300 MBq +/- 10%) 

to quantify Aβ. Rollover participants underwent Florbetapir (FBP) amyloid PET scanning (370 

MBq +/- 10%) for consistency of comparison over serial neuroimaging scans. Comparison 

between scan types was enabled by converting regional standardized uptake values into 

[11C]Pittsburgh Compound referenced retention values (Weiner et al., 2017). For the single 

assessment analyses, cross-sectional Aβ status was determined using the summary standardized 

uptake value ratio (SUVR) based on whole cerebellum referenced region with a binary positivity 

cutoff ≥ 1.08 for FBB scans and ≥ 1.11 for FBP scans (≥2 SD above control based mean SUVR) 

(Royse et al., 2021). The repeated measures analyses determined Aβ accumulation with a cortical 

composite SUVR based on eroded subcortical white matter, brainstem, and whole cerebellum 
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referenced regions with a binary positivity cutoff ≤ 0.74 for FBB scans and ≤ 0.78 for FBP scans, 

a linear regression-based longitudinal threshold (Royse et al., 2021). 

 

Statistical Analyses 

All statistical analyses were completed using SPSS version 29.0. Data were extracted from ADNI3 

on April 21, 2023. Independent samples t-tests and 2x2 chi-square analyses were utilized for 

descriptive group comparisons of continuous and categorical variables, respectively. To determine 

the utility of a single OCL administration to predict conversion to aMCI or AD over a four-year 

follow-up period and baseline Aβ status compared to conventional tests, area under the curve 

(AUC) receiver operating characteristics were analyzed using multiple logistic regression models. 

Three logistic regression models were conducted separately for the OCL, MoCA, and RAVLT 

with the same covariates: age, sex, education, race/ethnicity, and ApoE ε4 status. Predicted 

probabilities of cognitive status (CN or aMCI/AD) calculated from the logistic regression models 

were entered into the AUC analyses to produce adjusted values. AUCs determine sensitivity and 

specificity levels for binary classification (CN or aMCI/AD) based on test cutoffs at various points 

(Hajian-Tilaki, 2013). Optimal cutoffs for each cognitive test (OCL, RAVLT, MoCA) that 

maximized sensitivity and specificity values were determined using Youden’s index (Unal, 2017).  

To evaluate the utility of repeated OCL administrations to predict conversion to aMCI or 

AD and associate with Aβ accumulation compared to conventional neuropsychological tests, 

separate generalized linear mixed models (GLMMs) were conducted for each instrument. Age, 

sex, education, race/ethnicity, ApoE ε4 status, test session, test score, and a test score*test session 

interaction were entered as fixed effects for each GLMM. The interaction variable accounted for 

difference in cognitive slopes over serial assessments. An additional covariate, test location, was 
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added to the OCL GLMM  to account for in clinic versus remote test administration. No random 

effects were entered as doing so significantly reduced model fit. The GLMMs assumed a binomial 

logistic distribution and logit link as the two outcomes were coded categorically.  

 

Results 

Primary Objective: Baseline Assessments Predicting Conversion to aMCI or AD 

Sample Characteristics 

Demographics for the 339 participants included in this analysis are summarized in Table 1. Ages 

ranged from 56.0 to 92.1 years. The sample was mostly female, highly educated (10-20 years), 

and White. The ethnoracial breakdown of non-White individuals included Indigenous (n= 1, 

0.3%), Asian (n= 3, 0.9%), Black (n= 17, 5.0%), and mixed (n= 9, 2.7%) participants. About one 

third of the sample was ApoE ε4+. Thirty (8.8%) individuals converted from cognitive health to 

aMCI (n= 27, 8.0%) or AD (n= 3, 0.9%). Average time to conversion was 3.2 years. There were 

no significant differences in demographics between conversion groups (Appendix Table A1). 

 

Table 1 

Sample Characteristics for Primary Analyses: Baseline Assessments Predicting aMCI or AD 

N= 339 M (SD) / N (%) 

Age (years) 73.4 (7.2) 

Sex (female) 197 (58.1) 

Education (years) 16.8 (2.3) 

Race/ethnicity (White) 309 (91.2) 

ApoE ε4+ 110 (32.4) 

 

Cognitive Assessment Measures 

Descriptive cognitive scores for nonconverters and converters are shown in Table 2. Mean OCL 

accuracy scores are presented as raw arcsine square-root transformed values. Mean OCL scores 



 

   

 

22 

 

for CN participants were similar (M= 0.987, SD= 0.109) to previous research (M= 1.0 SD= 0.10) 

(White et al., 2021). While converters performed slightly worse than controls at baseline, this 

difference was non-significant and represented only approximately a -0.5 SD change from CN 

performance. Baseline conventional MoCA and RAVLT scores were statistically different 

between groups. At baseline, participants who remained CN had higher total MoCA scores by two 

points and recalled about two more words on the RAVLT 30-minute delay. 

 

Table 2 

Cognitive Scores for Primary Analyses: Baseline Assessments Predicting aMCI or AD 

 Total Sample 

N= 339 

Cognitively 

Normal 

n= 309 

Incident 

aMCI/AD 

n= 30 

pa 

OCL accuracy 0.984 (0.108) 0.987 (0.109) 0.947 (0.099) .052 

MoCA total score 26.5 (2.6) 26.6 (2.6) 24.6 (2.3) <.001 

RAVLT 30-minute delay  8.4 (4.1) 8.5 (4.1) 6.4 (3.6) .007 
a Indicates significant differences between cognitively normal and incident aMCI or AD groups. 

 

Logistic Regression Analyses 

The OCL logistic regression was assessed for goodness-of-fit using the Hosmer-Lemeshow test, 

χ2(8)= 7.67, p= .466, indicating adequate fit. The model was not statistically significant compared 

to the null model, χ2(6)= 6.22, p= .399, Nagelkerke’s R2= .040, indicating that predictors did not 

significantly improve model fit. Baseline OCL accuracy did not significantly predict conversion 

to aMCI or AD (Appendix Table B1). The MoCA logistic regression demonstrated adequate 

goodness-of-fit, χ2(8)= 15.46, p= .051. The model was statistically significant compared to the null 

model, χ2(6)= 16.01, p= .014, Nagelkerke’s R2= .102. Baseline total MoCA score was the only 

significant predictor of conversion (Appendix Table B2). The RAVLT logistic regression had 

adequate goodness-of-fit, χ2(8)= 5.12, p= .745, however the model was not statistically significant 

compared to the null model, χ2(6)= 9.81, p= .133, Nagelkerke’s R2= .063 (Appendix Table B3). 
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AUC Analyses 

Unadjusted AUCs for each cognitive assessment are shown in Table 3. Baseline OCL scores did 

not significantly predict conversion above chance level, while baseline MoCA and RAVLT scores 

did. The MoCA provided the strongest predictive power (Appendix Figure C1). Maximized 

sensitivity and specificity values using Youden’s index produced an optimal baseline OCL arcsine 

transformed accuracy score of 1.035 (sensitivity= 32.7%, specificity= 90.0%), MoCA total score 

of 25.5 (sensitivity= 68.6%, specificity= 73.3%), and RAVLT 30-minute delay score of 8.5 

(sensitivity= 54.7%, specificity= 76.7%). 

After adjusting for age, sex, education, ethnicity/race, and ApoE ε4 status, the three AUCs 

predicted conversion to aMCI or AD above chance as confidence intervals did not cover the 0.50 

AUC threshold (Table 4). The MoCA AUC model had the strongest predictive power, followed 

by the RAVLT and then the OCL (Appendix Figure C2). However, logistic regression results 

indicated that neither the OCL nor RAVLT models improved prediction above the null model. 

 

Table 3 

Unadjusted Area Under the Receiver Operator Curves for Predicting Conversion to aMCI or AD 

 AUC Sensitivity Specificity p 95% CI 

Lower        Upper 

OCL accuracy .603 32.7 90.0 .064 .507 .750 

MoCA total score .732 68.6 73.3 <.001 .646 .818 

RAVLT 30-minute  

delay 

.658 54.7 76.7 .004 .566 .750 

 

Table 4 

Adjusted Area Under the Receiver Operator Curves for Predicting Conversion to aMCI or AD 

 AUC p 95% CI 

Lower          Upper 

OCL accuracy .650 .007 .561 .739 

MoCA total score .735 <.001 .652 .818 

RAVLT 30-minute delay .678 .001 .589 .766 



 

   

 

24 

 

Primary Objective: Repeated Assessments Predicting Conversion to aMCI or AD 

Sample Characteristics 

Demographic characteristics for the 301 participants included in this analysis are summarized in 

Table 5. Ages ranged from 56.0 to 91.4 years and participants were mostly female. The sample 

was highly educated (10 to 20 years) and mainly White. The ethnoracial breakdown of non-White 

individuals included Indigenous (n= 1, 0.3%), Asian (n= 2, 0.7%), Black (n= 14, 4.7%), and mixed 

(n= 9, 3.0%) participants. Approximately one third of the sample was ApoE ε4+. Twenty-five 

(8.3%) individuals included in the analysis converted from cognitive health to aMCI (n= 22, 7.3%) 

or AD (n= 3, 1.0%). The average time to conversion was 3.1 years. There were no significant 

differences in sample characteristics between conversion groups (Appendix Table A2). 

 

Table 5 

Sample Characteristics: Repeated Assessments Predicting Conversion to aMCI or AD 

N= 301 M (SD) / N (%) 

Age (years) 73.1 (7.0) 

Sex (female) 175 (58.1) 

Education (years) 16.9 (2.3) 

Race/ethnicity (White) 275 (91.4) 

ApoE ε4+ 99 (32.9) 

 

Cognitive Assessment Measures 

Participants completed a mean number of 10.0 OCL sessions (SD= 6.6) while the median number 

was 8 and the range was 2 to 49. For testing location, 21.8% of OCL administrations were 

conducted in clinic and 78.2% were performed remotely. The sample completed an average of 2.8 

MoCA sessions (SD= 0.8) with a median of 3 sessions and a range of 2 to 6. Mean RAVLT sessions 

was 2.8 (SD= 0.8) with a median of 3 sessions and a range of 2 to 6. 
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Generalized Linear Mixed Models 

Model fit was assessed for the OCL GLMM using Akaike Information Criterion (AIC)= 1548.03. 

Results showed that the main effect of repeated OCL accuracy was a significant predictor of 

conversion, where higher scores predicted lower risk of conversion (Appendix Table D1). Being 

female, non-White, and remote administration were associated with reduced risk of aMCI or AD.  

Model fit for the MoCA GLMM, AIC= 484.74, was stronger than the OCL GLMM. 

Results indicated that the main effect of repeated total MoCA score was a significant predictor of 

conversion, where higher MoCA scores were associated with lower risk of conversion (Appendix 

Table D2). Being non-White was also associated with reduced risk of incident aMCI or AD. 

Increased number of MoCA sessions was associated with lower risk of conversion. The interaction 

between MoCA session and MoCA total score was significant, whereby aMCI or AD converters 

demonstrated enhanced practice effects over serial MoCA administrations compared to CN peers. 

Model fit for the RAVLT GLMM, AIC= 534.64, was stronger than the OCL model but 

weaker than the MoCA model. Results indicated that the main effect of repeated RAVLT scores 

significantly predicted conversion, where higher RAVLT scores were associated with lower risk 

of incident aMCI or AD (Appendix Table D3). No other variables predicted conversion. 

 

Secondary Objective: Baseline Assessments Associated with Aβ Status 

Sample Characteristics 

Demographic characteristics for the 598 participants included in this analysis are summarized in 

Table 6. Participant’s ages ranged from 56.0 to 97.5 years. The sample was mostly female, highly 

educated (range of 8 to 20 years), and White. The ethnoracial composition of non-White 

individuals included Indigenous (n= 2, 0.3%), Asian (n= 9, 1.5%), Black (n= 25, 4.2%), and mixed 
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(n= 12, 2.0%) participants. There were 210 (35.1%) ApoE ε4+ participants. Two-hundred-thirty-

four (39.1%) individuals were Aβ+ at baseline. Participants who were Aβ+ at baseline were 

significantly older and more likely to be ApoE ε4+ (Appendix Table A3). 

 

Table 6 

Sample Characteristics of the Secondary Analyses: Baseline Assessments Predicting Aβ Status 

N= 598 M (SD) / N (%) 

Age (years) 73.7 (7.5) 

Sex (female) 314 (52.5) 

Education (years) 16.6 (2.4) 

Race/ethnicity (White) 550 (92.0) 

ApoE ε4+ 210 (35.1) 

 

Cognitive Assessment Measures 

Descriptive cognitive scores for Aβ status groups at baseline are shown in Table 7. Mean OCL 

accuracy scores are presented as raw arcsine square-root transformed values. Baseline OCL scores 

were significantly different between Aβ status groups, where Aβ+ individuals performed worse 

than their Aβ- counterparts. Baseline conventional neuropsychological scores for the MoCA and 

RAVLT were statistically different between Aβ status groups. Participants who were Aβ- at 

baseline had higher total MoCA scores by approximately one point and recalled, on average, 1.5 

more words on the RAVLT 30-minute delay. 

 

Table 7 

Baseline Cognitive Scores of the Secondary Analyses: Single Assessments Predicting Aβ Status 

 Total Sample 

N= 598 

Aβ- at 

Baseline 

n= 364 

Aβ+ at 

Baseline 

n= 234 

pa 

OCL accuracy 0.956 (0.114) 0.965 (0.116) 0.943 (0.110) .022 

MoCA total score 25.3 (3.3) 25.7 (3.1) 24.6 (3.6) <.001 

RAVLT 30-minute delay 7.1 (4.4) 7.7 (4.3) 6.2 (4.5) <.001 
a Indicates significant differences between Aβ status groups. 
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Logistic Regression Analyses 

The OCL logistic regression demonstrated adequate goodness-of-fit as measured by the Hosmer-

Lemeshow test, χ2(8)= 5.47 p= .708. The model was statistically significant compared to the null 

model, χ2(6)= 129.87, p< .001, Nagelkerke’s R2= .265, indicating that selected predictors 

significantly improved model fit. Baseline OCL accuracy was not a significant predictor of Aβ 

status (Appendix Table B4). Both increased age and ApoE ε4+ were associated with Aβ+ status.  

The MoCA logistic regression was statistically significant compared to the null model, 

χ2(6)= 133.88, p< .001, Nagelkerke’s R2= .272, and demonstrated adequate fit, χ2(8)= 6.67, p= 

.572. Baseline total MoCA scores significantly predicted Aβ, where higher MoCA scores were 

associated with decreased risk of Aβ+ at baseline (Appendix Table B5). Both increased age and 

ApoE ε4+ were also associated with Aβ+.  

The RAVLT logistic regression was statistically significant compared to the null model, 

χ2(6)= 135.38, p< .001, Nagelkerke’s R2= .275, and demonstrated adequate fit, χ2(8)= 3.84, p= 

.872. Baseline RAVLT scores significantly predicted Aβ status, where higher recall was associated 

with decreased risk of Aβ+ (Appendix Table B6). Increased age, being female, and ApoE ε4+ 

status was associated with Aβ+ status at baseline.  

 

AUC Analyses 

Unadjusted AUCs for each cognitive assessment are shown in Table 8. Baseline OCL scores 

significantly predicted Aβ status above chance level. Baseline MoCA and RAVLT performance 

also significantly predicted Aβ status, with all three cognitive measures providing similar 

prediction (Appendix Figure C3). Maximized sensitivity and specificity values using Youden’s 

index produced an optimal OCL raw arcsine transformed cutoff score of 0.940 (sensitivity= 55.8%, 
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specificity= 53.8%), MoCA total score cutoff of 23.5 (sensitivity= 78.8%, specificity= 36.8%), 

and RAVLT 30-minute delay threshold of 5.5 (sensitivity= 66.8%, specificity= 48.7%). 

After adjusting for age, sex, education, ethnicity/race, and ApoE ε4 status, the three 

adjusted AUCs predicted Aβ status significantly above chance level (Table 9). From the AUC 

results, baseline OCL performance was similarly predictive of Aβ compared to the MoCA and 

RAVLT AUCs (Appendix Figure C4). However, from the logistic regression results, the OCL did 

not significantly predict Aβ status, while the MoCA and RAVLT did.  

 

Table 8 

Unadjusted AUCs for Baseline Cognitive Scores Predicting Aβ Status 

 AUC Sensitivity Specificity p 95% CI 

Lower        Upper 

OCL accuracy .556 55.8% 53.8% .020 .509 .603 

MoCA total score .588 78.8% 36.8% <.001 .541 .636 

RAVLT 30-minute  

delay 

.596 66.8% 48.7% <.001 .549 .643 

 

 

Table 9 

Adjusted AUCs for Baseline Cognitive Scores Predicting Aβ Status 

 AUC p 95% CI 

Lower          Upper 

OCL accuracy .764 <.001 .725 .804 

MoCA total score .766 <.001 .726 .805 

RAVLT 30-minute delay .766 <.001 .726 .806 

 

Secondary Objective: Repeated Assessments Associated with Aβ Accumulation 

Sample Characteristics 

Demographic characteristics for the 331 participants included in this analysis are summarized in 

Table 10. Ages ranged from 56.0 to 91.5 years and participants were mostly female. The sample 
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was highly educated (8 to 20 years) and mostly White. The ethnoracial breakdown of non-White 

individuals included Asian (n= 1, 0.3%), Black (n= 11, 3.3%), and mixed (n= 9, 2.7%) participants. 

There were 130 (39.3%) ApoE ε4+ participants. One-hundred-twenty-three (37.2%) individuals 

showed pathological Aβ accumulation over the study period. Participants who were Aβ+ at 

baseline were more likely to be ApoE ε4+ (Appendix Table A4). 

 

Table 10 

Sample Characteristics: Repeated Assessments Predicting Aβ Accumulation 

N= 331 M (SD) / N (%) 

Age (years) 73.1 (7.2) 

Sex (female) 180 (54.4) 

Education (years) 16.6 (2.5) 

Race/ethnicity (White) 310 (93.7) 

ApoE ε4+ 130 (39.3) 

 

Cognitive Assessment Measures 

Participants completed a mean of 10.2 OCL sessions (SD= 6.7) while the median was 9. OCL 

sessions ranged from 2 to 49. For testing location, 24.4% of OCL administrations were conducted 

in clinic and 75.6% were performed remotely. The sample’s mean completed MoCA sessions was 

3.2 (SD= 0.9) with a median of 3 sessions. MoCA sessions ranged from 2 to 6. Similarly, mean 

RAVLT sessions was 3.2 (SD= 0.9) with a median of 3. RAVLT sessions ranged from 2 to 6. 

 

Generalized Linear Mixed Models 

Model fit for the OCL GLMM produced AIC= 3973.14. Results indicated that the main effect of 

repeated OCL accuracy was a significant predictor of Aβ accumulation, where higher scores 

indicated lower risk of Aβ accumulation (Appendix Table D4). Increased age and ApoE ε4+ were 

associated with increased risk of Aβ accumulation, while being non-White predicted lower risk of 
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pathological Aβ accumulation. The main effect of increased OCL sessions was associated greater 

Aβ accumulation and the interaction between OCL session and score was significant, whereby 

individuals with pathological Aβ accumulation over the study period demonstrated diminished 

practice effects over serial OCL administrations compared to Aβ- peers (Appendix Figure E1). 

Model fit for the MoCA GLMM, AIC= 1230.85, was stronger than for the OCL model. 

Results indicated that the main effect of repeated total MoCA score significantly predicted Aβ 

accumulation, where higher MoCA scores predicted lower risk of Aβ accumulation (Appendix 

Table D5). Increased age, being female, and ApoE ε4+ were associated with higher risk of Aβ 

accumulation, while being non-White predicted lower risk of pathological Aβ accumulation. 

Model fit for the RAVLT GLMM, AIC= 1243.89, was stronger than the OCL model, but 

weaker than the MoCA model. Results indicated that the main effect of repeated RAVLT 30-

minute delay score was a significant predictor of Aβ accumulation, where higher RAVLT scores 

were associated with lower risk of Aβ accumulation (Appendix Table D6). Increased age, being 

female, and ApoE ε4+ were associated with higher risk of Aβ accumulation, while being non-

White predicted lower risk of pathological Aβ accumulation. In addition, the main effect of 

RAVLT sessions was associated with lower risk of Aβ accumulation. 

 

 

Discussion 

The present study investigated the clinical utility of a computerized assessment, the OCL, to 

predict two markers of neurodegeneration in a community-dwelling older adult sample. To my 

knowledge, this is the first investigation of CCA performance to predict conversion to aMCI or 

AD from cognitive health and associate with Aβ imaging markers compared to a gold-standard 

conventional screening tool, the MoCA, using single and repeated assessments. Results showed 
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that baseline OCL scores did not provide comparable efficacy to the MoCA and RAVLT to predict 

aMCI or AD conversion and Aβ status. When assessed over repeated administrations, the OCL 

significantly associated with incident dementia and Aβ accumulation over four years, however 

computerized performance did not provide improved prediction of outcomes compared to 

conventional tests. In line with expectations, the OCL uniquely detected diminished practice 

effects associated with Aβ accumulation. Specific results for each objective are explored in detail. 

 For the primary objective, it was hypothesized that baseline OCL performance would 

provide equivalent utility to the MoCA and RAVLT to identify which CN individuals will go on 

to develop aMCI or AD. This hypothesis was not supported by the observed results. Unadjusted 

baseline OCL scores did not significantly predict conversion. In line with previous research, 

unadjusted MoCA and RAVLT scores identified risk of progression to aMCI or AD from cognitive 

health (Hassenstab et al., 2021; Qin, Zhao, Zhu, & Hu, 2020; Yue et al., 2021). Baseline MoCA 

performance produced stronger predictive power in the current study (AUC= .73) compared to 

Hassenstab et al. (2021) (AUC= .64), although these authors utilized a shorter follow-up period 

and normative cutoffs for prediction. The MoCA AUCs were the only models to provide adequate 

prognostic validity (AUC > .70) for identifying incident aMCI or AD over a four-year-period, 

indicating that baseline MoCA performance alone provides clinically valuable information (Swets, 

1996). Adjusted AUC analyses for the OCL and RAVLT indicated that when accounting for 

demographic and clinical variables, both instruments can successfully predict conversion to aMCI 

or AD from cognitive health. However, the significant AUCs conflicted with non-significant 

omnibus results from the accompanying OCL and RAVLT logistic regression models. One 

potential explanation for discrepant results is that AUC analyses are less robust for testing 
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incremental prediction and are biased towards inflating estimation upwards compared to logistic 

regressions (Vickers, Cronin, & Begg, 2011). In this case, the regression results are preferred.  

Poor prediction of conversion from baseline OCL scores is somewhat unexpected in the 

context of the current literature. The OCL produced less accurate prediction of future conversion 

to aMCI or AD than two previous studies drawn from the Mayo Clinic Study of Aging. Pudumjee 

et al. (2021) found that among a comparable sample of community-dwelling older adults, age-

adjusted OCL scores at baseline significantly predicted conversion to MCI over a period of 4.8 

years. Similarly, Stricker, Lundt, Albertson, et al. (2020) determined that baseline OCL showed 

predictive power to identify MCI incidence over 3.2 years that was comparable to the RAVLT 

when assessed at baseline. The discrepancy in results between the present study and previous 

research may be attributed to differences in MCI subtype for diagnosis. In the current study, 

participants were required to demonstrate memory impairments suggestive of an amnestic type 

disorder, while the above studies included alternative impairments sufficient for diagnosis such as 

executive function, language, and visuospatial domains. The OCL is theorized to be most sensitive 

to memory dysfunction as it is designed as a measure of visual learning and recognition (Hammers 

et al., 2012; Lim et al., 2012). However, the OCL may also tap into domains like executive 

functioning, making this task sensitive to early impairments seen in multidomain and naMCI, and 

thus more effective for predicting conversion as seen in Pudumjee et al. (2021) and Stricker, Lundt, 

Albertson, et al. (2020) (Kirova, Bays, & Lagalwar, 2015). This notion is supported by evidence 

that the OCL is moderately correlated with executive function tasks in participants who are 

cognitively healthy as well as those who are demented (Maruff et al., 2009; Racine et al., 2016). 

In addition, the OCL’s poorer prognostic validity compared to the RAVLT and MoCA may 

be attributed to the specific memory domains assessed in the cognitive instruments evaluated in 
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this study. As the OCL measures visual learning and recognition capacity, it may provide a less 

sensitive estimate of early neurodegenerative processes compared to the RAVLT and MoCA, as 

relevant specifically to the AD continuum. Previous research suggests that while memory 

impairment is the earliest detectable cognitive domain affected in AD, verbally mediated memory 

decline may precede visual memory impairments by up to four years (Mistridis et al., 2015). The 

RAVLT 30-minute delayed recall score, as a direct measure of verbal episodic memory recall, 

may be more sensitive to objective decline in the early transition from cognitive health to aMCI 

than the OCL, which is visually mediated and utilizes a recognition paradigm. While the MoCA 

broadly measures global cognition, it also contains a verbal memory recall subscale that may make 

this conventional tool more sensitive to the earliest objective cognitive impairments in aMCI. 

For the primary objective, it was hypothesized that repeated OCL testing would better 

predict incident aMCI or AD compared to conventional neuropsychological measures. This 

hypothesis was not supported by the observed results. Model fit indicators suggested that the OCL 

repeated measures analysis was outperformed by the RAVLT and MoCA models, with the latter 

having the strongest fit overall. While the OCL model provided the least robust estimate of 

conversion, the main effect of OCL performance, accounting for average OCL accuracy scores 

across all visits, did significantly predict conversion. One explanation for why the OCL model less 

effectively predicted conversion is that task difficulty was inadequately calibrated for subtle 

cognitive decrements expected in a CN sample. Recent research has shown deficient mean 

performance in CN adults and floor effects in AD groups with the OCL version used in ADNI3 

(White et al., 2021). The authors suggest that test difficulty may lead to restricted score ranges that 

inadequately distinguish between healthy and cognitively impaired individuals. A modified OCL 

version with reduced test difficulty demonstrated improved efficacy to differentiate CN and AD 
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groups (White et al., 2021). While, to this author’s knowledge, there is no validation study for the 

modified OCL version in MCI, it is possible that reducing test difficulty may also improve 

sensitivity to detect future conversion. This is a question for future research to explore.  

The interaction variable for change in OCL accuracy over continuous sessions was not a 

significant predictor of conversion to aMCI or AD, indicating that OCL performance trajectories 

did not differ between converters and non-converters. This finding contrasted with previous 

research that showed a significant effect of repeated OCL scores to identify incident MCI over a 

similar follow-up period (Pudumjee et al., 2021). Change in OCL scores may have provided poorer 

prediction of incident aMCI or AD over serial administrations due to contextual factors that were 

not accounted for in this study. ADNI3 participants completed a mixture of supervised in-clinic 

and unsupervised remote OCL sessions, with about four out of every five OCLs conducted 

remotely. Research on the effects of supervision and test-taking location on OCL psychometrics 

show that these contextual factors may affect computerized test performance: OCL within-subject 

performance differences as measured by intra class correlation have moderate reliability (ICC= 

.61) between supervised and unsupervised conditions, indicating that the use of both in ADNI3 

may have introduced additional error variability when estimating longitudinal cognitive 

trajectories (Cromer et al., 2015). While one study showed that mean OCL accuracy scores were 

approximately 0.5 SDs lower when administered remotely, a second study demonstrated negligible 

mean differences between testing locations (Mielke et al., 2015; Stricker, Lundt, Alden, et al., 

2020). Future longitudinal research on the use of computerized tools to track cognitive progression 

may benefit from consistent study designs regarding supervision and test taking location. 

 The MoCA was the only cognitive measure that provided significant prediction of aMCI 

or AD conversion from cognitive health based on change in performance trajectories over testing 
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sessions. Visual inspection of group scores revealed that, unexpectedly, converter’s MoCA scores 

improved over serial administrations while nonconverter performance was relatively stable. It is 

surprising that improved MoCA trajectories predicted incident dementia while CN participants 

demonstrated flat performance slopes over time, however this finding may be an artefact of the 

study design. CN groups were assessed in clinic for conventional neuropsychological testing once 

every two years in ADNI3. If a clinical diagnosis of aMCI or AD was made, participants were then 

evaluated in clinic once annually, meaning that by design, aMCI/AD converters have more 

conventional testing sessions. Post hoc analyses confirmed that converters had significantly more 

MoCA sessions (M= 3.5, SD= 0.7) compared to nonconverters (M= 2.8, SD= 1.2), p= .006, which 

accounts for the main effect of session on the conversion outcome in this analysis. One explanation 

for the significant interaction is that converters benefited from additional MoCA trials with 

stronger practice effects while nonconverters received fewer opportunities to learn from practice. 

Indeed, previous research indicates that the magnitude of practice effects in cognitive testing is 

influenced by the number of testing sessions in both healthy and cognitively impaired adults 

(Bartels, Wegrzyn, Wiedl, Ackermann, & Ehrenreich, 2010; Sanderson-Cimino et al., 2023).  

For the secondary objective, it was hypothesized that baseline OCL performance would 

provide equivalent utility to the MoCA and RAVLT to associate with Aβ. This hypothesis was 

partially supported by the observed results. In the present study, unadjusted AUCs for each 

instrument demonstrated similar and significant, albeit low, efficacy to identify Aβ status. While 

the AUCs between the three cognitive measures were similar, there were notable differences in 

maximized sensitivity and specificity values based on Youden’s index. The OCL produced the 

highest optimized specificity value (53.8%) compared to the MoCA (36.8%) and RAVLT (48.7%) 

but had the lowest sensitivity levels (55.8%) in contrast to the MoCA (78.8%) and RAVLT 
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(66.8%). Relatively low sensitivity values for the OCL indicate that it is an inadequate tool for 

screening for Aβ status in community-dwelling older adults when used alone (Swets, 1996). 

Clinical practice guidelines for identifying dementia risk recommend that validated screening tools 

with optimal sensitivity values be used as a prelude to formal diagnostic assessment in older adults 

with suspected risk of neurodegenerative disease (Petersen et al., 2018) 

Adjusted AUCs for the OCL, MoCA, and RAVLT were nearly identical to each other and 

above the recommended AUC threshold of .70. However, logistic regression results showed that 

OCL accuracy was not a significant predictor of Aβ status when adjusting for demographic and 

clinical variables. This suggests that in the OCL AUC, age and ApoE ε4 mainly contributed to the 

prognostic validity of the analysis. In contrast, the MoCA and RAVLT logistic regressions 

confirmed that both conventional measures maintained their predictive power when accounting 

for added demographic and clinical variables. Results help distinguish mixed findings from 

previous research on baseline OCL scores predicting Aβ. The CBB visual memory (OCL) and 

executive function (One Back) composite, used in two previous studies, may provide a better 

estimate of PET Aβ+ than OCL performance alone (Alden et al., 2021; Pudumjee et al., 2021). 

Apart from the OCL’s correlation with conventional executive function measures and restricted 

score ranges discussed above, this finding may be related to enhanced measurement reliability with 

composite scores versus individual test scores. The use of composite cognitive scores has 

previously shown improved estimation of cognition by reducing error variability using mean 

scores, making significance testing more feasible (Jonaitis et al., 2019).  

It was predicted that repeated OCL scores would better associate with Aβ accumulation 

compared to conventional neuropsychological measures. This hypothesis was partially supported. 

Model fit indices suggested that the OCL repeated measures analysis was outperformed by the 
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RAVLT and MoCA models, with the latter having the strongest fit overall. The main effects for 

all three cognitive measures, accounting for average scores across all visits, significantly predicted 

Aβ accumulation in the expected direction. These findings align with a recent systematic review 

that shows that conventional global cognition and episodic memory measures can effectively 

associate with Aβ accumulation (Parent, Rousseau, Predovan, Duchesne, & Hudon, 2023). For the 

OCL, it is likely that restricted score distributions and contextual factors, such as differences in 

test location and supervision, impacted prediction of Aβ accumulation similar to the primary 

repeated analyses. While the repeated measures analyses used in this study do not allow direct 

comparison of main effects between models, findings indicate that overall, conventional tools used 

in clinical practice provide better estimation of concurrent Aβ pathological processes.  

Interestingly, change in OCL performance was the only cognitive measure to significantly 

predict Aβ accumulation based on slope estimation over serial assessments. Visual plot inspection 

revealed that the Aβ+ accumulation group had diminished practice effects on OCL accuracy across 

serial administrations compared to Aβ- peers. A post hoc analysis to evaluate whether the 

significant interaction was driven by differences in OCL sessions indicated that the number of 

completed trials was similar for Aβ+ (M= 11.0, SD= 7.1) and Aβ- (M= 10.1, SD= 6.8) 

accumulation groups, p= .289. While several studies have found that CCAs can successfully 

differentiate between individuals once they reach clinically significant thresholds that warrant 

biomarker positivity (Lim et al., 2014; Pudumjee et al., 2021; Young et al., 2023), fewer studies 

have examined the use of computerized tools to detect concurrent pathological biomarker 

accumulation (Lim et al., 2015). This is an important distinction as amyloid accumulation is 

estimated to be one of the earliest detectable biomarkers in AD, emerging 15-20 years prior to 

clinical diagnosis (Rowe et al., 2007). While this study used an amyloid-enriched older adult 



 

   

 

38 

 

sample, suggesting that AD processes were well-underway, future research on the OCL and 

associations with cognitive trajectories and biomarker accumulation will inform whether this 

feasible and cost-efficient tool can detect AD pathology earlier in the lifespan. 

 

Clinical Implications 

Findings from this study elucidate potential clinical applications of a novel computerized tool to 

detect incipient neurodegeneration and AD brain pathology in community-dwelling older adults. 

Practitioners are tasked with selecting appropriate screening measures for specific clinical 

questions from an array of available tools. By comparing the clinical utility of the OCL to existing 

conventional screening instruments, this research provides useful information to aid clinical 

decision-making on test selection. Results indicate that the OCL does not offer additional utility 

for predicting progression to aMCI or AD compared to the MoCA in CN older adults. A single 

MoCA assessment alone provided 68.8% sensitivity to detect dementia incidence over four years.  

As it stands, the potential practical utility of computerized screening through remote, unsupervised 

monitoring does not offset loss of prognostic accuracy in the OCL. This pattern was also replicated 

for serial OCL scores to predict aMCI or AD incidence, where global cognition as measured by 

the MoCA demonstrated superior outcome estimation. Routine conventional screening in primary 

care may currently provide clinicians with the best method for assessing risk of cognitive decline.  

Examination of the comparative clinical utility of the OCL to associate with Aβ burden 

and accumulation provided more equivocal results. Cognitive testing with the OCL may be useful 

for clinicians and researchers seeking to identify AD as a biological entity. When considered in 

isolation, all three cognitive measures had similar, albeit low, prediction of Aβ status, signifying 

that a single OCL score provides equivalent predictive power to the MoCA and RAVLT. This 
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finding suggests that in circumstances when paper-and-pencil screening is not possible, such as in 

rural areas with low access to trained professionals, a computerized test may supplant conventional 

assessment methods to identify Aβ burden. While adjusted estimates showed that the MoCA 

provided the highest sensitivity (78.8%) to Aβ burden, the overall predictive power was strongly 

influenced by ApoE ε4 status which is a costly and relatively inaccessible data point compared to 

cognitive information. Repeated analyses showed that the MoCA provided the most accurate 

overall estimation of Aβ accumulation. However, OCL accuracy slopes uniquely detected subtle 

changes in visual learning and recognition performance associated with preclinical AD pathology 

compared to conventional screening tools. This finding suggests that serial OCL performance may 

provide a viable preclinical AD monitoring alternative where collection of costly biomarker data 

is not feasible. Further research is needed to determine whether repeated computerized assessments 

can detect practice effects associated with amyloid biomarkers in other neurodegenerative 

disorders, or if this cognitive marker is unique to AD-related processes. 

 

Strengths and Limitations 

There were several notable strengths of the present study. First, the relatively large sample size 

and longitudinal observational design increased the internal and external validity of the study. 

Longitudinal observation over a four-year-span allowed for detection of the earliest emerging 

cognitive and biological markers of neurodegeneration as they occur in community-dwelling older 

adults. Second, the selected outcomes permitted comparison of the clinical utility of various 

cognitive tools to associate with clinical and biological definitions of neurodegenerative disease. 

There is currently theoretical debate surrounding what constitutes preclinical AD, and thus what 

outcomes current screening tools ought to target in clinical practice and therapeutic research. This 
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study provided useful data for both AD definitions. Third, results have clear clinical implications 

for neuropsychological test selection as digitally mediated tools become more prevalent in research 

and clinical settings. Finally, this study provided an independent evaluation of the OCL as much 

previous research is linked to CogState Ltd. affiliates, the developers of the CBB. 

This study is not without limitations. First, ADNI3 is subject to sampling bias given 

participants’ high levels of education, homogenously White ethnoracial composition, and relative 

amyloid-enrichment. Due to these factors, results from the current study may lack widespread 

applicability to the general Canadian population. Second, the diagnostic criteria utilized to 

determine MCI status relied on episodic memory dysfunction over alternative cognitive domains, 

such as executive function or attention. Thus, the results from this study are specific to aMCI 

versus naMCI, which represents an estimated one out of every three MCI cases (Petersen, 2011). 

Findings should be interpreted with caution when applied to naMCI groups. In addition, the 

Petersen MCI diagnostic criteria utilized in this study require the presence of subjective cognitive 

impairment for diagnosis, however there is ongoing debate about the validity of subjective 

complaints as a true marker of neurodegeneration (Edmonds et al., 2014; Hessen et al., 2017). 

Results should be interpreted as specific to identifying aMCI with accompanying subjective 

impairment. Finally, there are limitations related to OCL testing procedures. As ADNI’s main 

objectives are related to longitudinal aging and biomarkers of dementia, the OCL was not a 

required component for enrolment in the study. There is likely bias in the sample of participants 

who completed computerized testing versus those who did not. Confounding factors, such as low 

computer familiarity and presence of environmental distractions during remote testing, were not 

accounted for in this study and may have affected OCL performance trajectories.  
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Appendix A 

Sample Characteristics for Group Comparisons 

Table A1 

Group Differences for the Primary Analyses: Baseline Assessments Predicting Conversion to 

aMCI or AD 

 Cognitively Normal 

n= 309 

Incident aMCI/AD 

n= 30 

p 

Age (years) 73.2 (7.2) 75.5 (6.8) .093 

Sex (female) 180 (58.3) 17 (56.7) .867 

Education (years) 16.9 (2.3) 16.6 (2.2) .494 

Race/ethnicity (White) 26 (8.4) 4 (13.3) .322 

ApoE ε4+ 100 (32.4) 10 (33.3) .914 
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Table A2 

Group Differences for the Primary Analyses: Repeated Assessments Predicting Conversion to 

aMCI or AD  

 Cognitively Normal 

n= 276 

Incident aMCI/AD 

n= 25 

p 

Age (years) 72.9 (7.0) 74.6 (6.5) .261 

Sex (female) 162 (58.7) 13 (52.0) .516 

Education (years) 16.9 (2.3) 16.5 (2.2) .388 

Race/ethnicity (White) 24 (8.7) 2 (7.7) 1.000 

ApoE ε4+ 90 (29.9) 9 (36.0) .730 
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Table A3 

 Group Differences for the Secondary Analyses: Baseline Assessments Predicting Aβ Status 

 Aβ- at Baseline 

n= 364 

Aβ+ at Baseline 

n= 234 

p 

Age (years) 72.7 (7.5) 75.1 (7.3) <.001 

Sex (female) 191 (52.5) 123 (52.6) .983 

Education (years) 16.7 (2.5) 16.5 (2.4) .247 

Race/ethnicity (White) 33 (9.1) 15 (6.4) .243 

ApoE ε4+ 73 (20.1) 137 (58.5) <.001 
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Table A4 

Group Differences for the Secondary Analyses: Repeated Assessments Predicting Aβ 

Accumulation 

 Aβ- Accumulation 

n= 123 

Aβ+ Accumulation 

n= 208 

p 

Age (years) 72.6 (7.3) 74.0 (7.1) .099 

Sex (female) 110 (52.9) 70 (56.9) .477 

Education (years) 16.7 (2.6) 16.6 (2.4) .811 

Race/ethnicity (White) 191 (91.8) 119 (96.7) .076 

ApoE ε4+ 54 (26.0) 76 (61.8) <.001 
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Appendix B 

Logistic Regressions for Baseline Adjusted Area Under the Receiver Operator Curves 

Table B1 

Logistic Regression for Baseline OCL Performance Predicting Conversion To aMCI or AD 

 B SE Wald df p OR OR 95% CI 

Lower     Upper 

Age .036 .027 1.749 1 .186 1.037 .983 1.094 

Sex .005 .400 .000 1 .990 1.005 .459 2.204 

Education -.053 .081 .433 1 .511 .948 .808 1.112 

Race/ethnicity .395 .592 .444 1 .505 1.484 .465 4.739 

ApoE ε4+ .154 .417 .137 1 .711 1.167 .515 2.645 

OCL accuracy -2.614 1.925 1.843 1 .175 .073 .002 3.188 

Constant -1.699 3.198 .282 1 .595 .183   
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Table B2 

Logistic Regression for Baseline MoCA Performance Predicting Conversion to aMCI or AD 

 B SE Wald df p OR OR 95% CI 

Lower     Upper 

Age .023 .028 .659 1 .417 1.023 .969 1.080 

Sex .238 .416 .327 1 .567 1.268 .562 2.865 

Education .028 .087 .103 1 .748 1.028 .867 1.220 

Race/ethnicity .165 .622 .071 1 .790 1.180 .349 3.991 

ApoE ε4+ .124 .422 .087 1 .768 1.132 .495 2.592 

MoCA total score -.258 .076 11.581 1 <.001 .772 .665 .896 

Constant 2.204 3.030 .529 1 .467 9.062   
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Table B3 

Logistic Regression for Baseline RAVLT Performance Predicting Conversion to aMCI or AD 

 B SE Wald df p OR OR 95% CI 

Lower    Upper 

Age .037 .027 1.931 1 .165 1.038 .985 1.094 

Sex .202 .410 .244 1 .621 1.224 .549 2.732 

Education -.036 .081 .195 1 .659 .965 .823 1.131 

Race/ethnicity .383 .592 .418 1 .518 1.466 .459 4.680 

ApoE ε4+ .126 .418 .090 1 .764 1.134 .500 2.573 

RAVLT 30-minute  

delay 

-.116 .050 5.457 1 .019 .890 .807 .981 

Constant -3.632 2.385 2.319 1 .128 .026   
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Table B4 

Logistic Regression for Baseline OCL Performance Predicting Aβ Status  

 B SE Wald df p OR OR 95% CI 

Lower     Upper 

Age .074 .014 28.757 1 <.001 1.077 1.048 1.107 

Sex -.278 .197 1.981 1 .159 .757 .514 1.115 

Education -.034 .039 .760 1 .383 .967 .896 1.043 

Race/ethnicity -.308 .362 .723 1 .395 .735 .362 1.494 

ApoE ε4+ 2.003 .205 95.324 1 <.001 7.408 4.956 11.074 

OCL accuracy -.860 .859 1.000 1 .317 .423 .079 2.282 

Constant -5.154 1.502 11.772 1 <.001 .006   
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Table B5 

Logistic Regression for Baseline MoCA Performance Predicting Aβ Status 

 B SE Wald df p OR OR 95% CI 

Lower     Upper 

Age .070 .014 25.866 1 <.001 1.073 1.044 1.102 

Sex -.343 .201 2.915 1 .088 .709 .478 1.052 

Education -.010 .041 .060 1 .807 .990 .914 1.072 

Race/ethnicity -.377 .356 1.068 1 .301 .686 .336 1.402 

ApoE ε4+ 1.989 .206 93.299 1 <.001 7.308 4.881 10.942 

MoCA total score -.070 .031 4.943 1 .026 .933 .877 .992 

Constant -4.290 1.416 9.177 1 .002 .014   
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Table B6 

Logistic Regression for Baseline RAVLT Performance Predicting Aβ Status  

 B SE Wald df p OR OR 95% CI 

Lower    Upper 

Age .071 .014 26.507 1 <.001 1.073 1.045 1.103 

Sex .423 .208 4.142 1 .042 1.527 1.016 2.296 

Education -.018 .039 .198 1 .657 .983 .910 1.062 

Race/ethnicity -.281 .363 .600 1 .438 .755 .371 1.537 

ApoE ε4+ 1.979 .206 92.318 1 <.001 7.239 4.834 10.840 

RAVLT 30-minute  

delay 

-.060 .024 6.454 1 .011 .942 .899 .986 

Constant -5.925 1.240 22.816 1 <.001 .003   
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Appendix C 

Area Under the Receiver Operator Curves for Baseline Analyses 

Figure C1 

Unadjusted Area Under the Receiver Operator Curves for Baseline Cognitive Scores Predicting 

Conversion to aMCI or AD 
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Figure C2 

Adjusted Area Under the Receiver Operator Curves for Baseline Cognitive Scores Predicting 

Conversion to aMCI or AD 
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Figure C3 

Unadjusted Area Under the Receiver Operator Curves for Baseline Cognitive Scores Predicting 

Aβ Status 
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Figure C4 

Adjusted Area Under the Receiver Operator Curves for Baseline Cognitive Scores Predicting Aβ 

Status 
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Appendix D 

Generalized Linear Mixed Models for Repeated Measures Analyses 

Table D1 

Generalized Linear Mixed Model for Repeated OCL Performance Predicting Conversion to 

aMCI or AD 

 B SE t p OR OR 95% CI 

Lower       Upper 

Intercept 2.025 1.320 1.534 .125    

Age .005 .010 .485 .628 1.005 .984 1.027 

Sex -.419 .141 -2.967 .003 .657 .498 .867 

Education .025 .030 .840 .401 1.026 .967 1.088 

Race/ethnicity -1.158 .460 -2.517 .012 .314 .128 .774 

ApoE ε4+ -.102 .149 -.682 .495 .903 .675 1.210 

Test location -.499 .161 -3.101 .002 .607 .442 .832 

OCL accuracy -5.115 .874 -5.851 <.001 .006 .001 .033 

Session number .036 .066 .541 .588 1.036 .911 1.178 

OCL accuracy  

*session number 

.030 .060 .505 .614 1.030 .917 1.157 
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Table D2 

Generalized Linear Mixed Model for Repeated MoCA Performance Predicting Conversion to 

aMCI or AD 

 B SE t p OR OR 95% CI 

Lower           Upper 

Intercept 11.162 2.480 4.502 <.001    

Age -.012 .020 -.631 .528 .988 .950 1.027 

Sex -.029 .245 -.199 .905 .971 .601 1.570 

Education -.009 .051 -.184 .854 .991 .896 1.095 

Race/ethnicity -1.140 .513 -2.225 .026 .320 .117 .874 

ApoE ε4+ .388 .243 1.597 .111 1.475 .915 2.377 

MoCA total score -.524 .084 -6.241 <.001 .592 .502 .698 

Session number -.759 .353 -2.149 .032 .468 .234 .936 

MoCA total score 

*session number 

.038 .014 2.706 .007 1.039 1.011 1.068 

 

  



 

   

 

80 

 

Table D3 

Generalized Linear Mixed Model for Repeated RAVLT Performance Predicting Conversion to 

aMCI or AD 

 B SE t p OR OR 95% CI 

Lower      Upper 

Intercept -1.179 1.610 -.732 .464    

Age .004 .020 .228 .820 1.004 .967 1.044 

Sex -.009 .250 -.035 .972 .991 .607 1.619 

Education -.037 .050 -.751 .453 .964 .875 1.061 

Race/ethnicity -.703 .491 -1.431 .153 .495 .189 1.299 

ApoE ε4+ .273 .243 1.123 .262 1.314 .815 2.118 

RAVLT 30-minute 

delay 

-.159 .051 -3.129 .002 .853 .773 .943 

Session number .086 .064 1.357 .175 1.090 .962 1.235 

RAVLT score* 

session number 

-.001 .008 -.117 .907 .999 .983 1.015 
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Table D4 

Generalized Linear Mixed Model for Repeated OCL Performance Predicting Aβ Accumulation 

 B SE t p OR OR 95% CI 

Lower       Upper 

Intercept -1.802 .748 -2.410 .016    

Age .021 .006 3.662 <.001 1.022 1.010 1.033 

Sex .151 .080 1.884 .060 1.163 .994 1.362 

Education .004 .016 .251 .802 1.004 .973 1.035 

Race/ethnicity -.654 .207 -3.155 .002 .520 .347 .781 

ApoE ε4+ 1.507 .078 19.231 <.001 4.514 3.871 5.263 

Test location .017 .093 .184 .854 1.017 .847 1.222 

OCL accuracy -1.180 .549 -2.149 .032 .307 .105 .902 

Session number .201 .054 3.695 <.001 1.222 1.099 1.360 

OCL accuracy  

*session number 

-.176 .052 -3.423 <.001 .838 .758 .927 
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Table D5 

Generalized Linear Mixed Model for Repeated MoCA Performance Predicting Aβ Accumulation 

 B SE t p OR OR 95% CI 

Lower       Upper 

Intercept -2.696 1.328 -2.030 .043    

Age .037 .011 3.393 <.001 1.037 1.016 1.059 

Sex .366 .148 2.468 .014 1.441 1.078 1.928 

Education .052 .030 1.773 .076 1.054 .994 1.117 

Race/ethnicity -1.122 .335 -3.354 <.001 .326 .169 .628 

ApoE ε4+ 1.787 .146 12.269 <.001 5.970 4.486 7.944 

MoCA total score -.079 .038 -2.074 .038 .924 .858 .996 

Session number .197 .170 1.161 .246 1.217 .873 1.698 

MoCA total score 

*session number 

-.010 .007 -1.505 .133 .990 .977 1.003 
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Table D6 

Generalized Linear Mixed Model for Repeated RAVLT Scores Predicting Aβ Accumulation 

 B SE t p OR OR 95% CI 

Lower      Upper 

Intercept -3.996 .931 -4.292 <.001    

Age .046 .011 4.173 <.001 1.047 1.025 1.070 

Sex .407 .151 2.699 .007 1.502 1.117 2.019 

Education .021 .028 .725 .469 1.021 .965 1.079 

Race/ethnicity -1.121 .333 -3.372 <.001 .326 .170 .626 

ApoE ε4+ 1.743 .145 12.035 <.001 5.712 4.299 7.589 

RAVLT 30-minute 

delay 

-.103 .028 -3.718 <.001 .902 .854 .952 

Session number -.135 .036 -3.799 <.001 .873 .814 .937 

RAVLT score 

*session number 

.008 .005 1.601 .110 1.008 .998 1.017 
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Appendix E 

Figure E1 

Interaction Between OCL Accuracy and OCL Sessions for GLMM Predicting Aβ Accumulation 

 


