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Abstract

Secure multiparty computation (MPC) protocols enable multiple parties to collab-
orate on a computation using private inputs possessed by the different parties in
the computation. At the same time, MPC protocols ensure that no participating
party learns anything about the other parties’ private inputs beyond what they can
infer from the computation’s output and their own inputs. MPC has wide ranging
applications for privacy protecting systems. However, these systems have been
plagued by limited performance, lack of scalability, and poor accuracy.

In this thesis, we demonstrate several novel techniques for using distributed
point functions (DPFs) in combination with MPC to obtain significant performance
improvements in several different applications. Namely, using novel observations
about the structure of the most efficient available DPF construction in the literature,
we show that DPF keys from untrusted sources can be checked for correctness
using an MPC protocol between the two key holders, with direct applications in
sender-anonymous messaging. We expand these observations to produce the most
efficient available method to evaluate piecewise-polynomial functions, also known
as splines. The scalability and efficiency of this method allows for splines to be
used for extremely high accuracy approximation of non-linear functions in MPC.
Furthermore, the protocols proposed in this thesis far outperform prior solutions
both in large-scale asymptotic measurements and in concrete benchmarks using
high-performance software implementations at both small- and large-scale.
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Chapter 1

Introduction

1.1 Background and motivation

The ever increasing use of the internet and computers has driven wave upon wave
of technological progress in a vast array of fields including research, communication,
collaboration, entertainment, and education. However, this advancement has come
at a cost. Privacy has been trampled by the rapid growth of theft and extortion by
cybercriminals, invasive behavioural advertising by corporations, and surveillance
by oppressive governments. Technological safeguards have struggled to keep up
with the incessant growth in the depth and breadth of data being collected about
internet users and the equally ceaseless development of the machine learning and
data analytics tools required to process and exploit that data.

The response to these pervasive invasions of privacy comes in the form of
privacy-enhancing technologies (PETs). PETs are a diverse assortment of techniques,
systems, and mechanisms designed to give users control over how their data is col-
lected, shared, and used, through the use and application of advanced cryptographic
primitives. This enables the development of privacy-friendly alternatives to existing,
privacy-agnostic, technologies.

Secure multiparty computation (MPC) is one such component within PETs.
Intuitively, MPC allows multiple parties to work together to perform a computation
over private inputs held by various participating parties. This computation is done
with the added privacy requirement that an honest party in the protocol will not

1



1. Introduction

leak any information about their input to other parties, beyond the information
those parties could already compute from their own private inputs and the protocol’s
output. While existing MPC frameworks are capable of performing any computation,
most applications are unwilling to accept the significant increase in time required for
MPC protocols, which is due, in large part, to the relatively slow movement of data
between remote systems over a network. This limitation has led to extensive research
being performed on improving the performance of MPC systems through new
methodologies, hybrid frameworks which link together multiple existing systems,
and other innovations.

The distributed point function (DPF) is a recently developed cryptographic prim-
itive that has seen significant use in the PETs literature. DPFs were originally devel-
oped and formalized in the literature on privately reading and writing to databases,
referred to as private information retrieval (PIR) and PIR-writing respectively [29].
Later works generalized on the DPF to create the broader concept of function secret
sharing (FSS). The applications for DPFs have also been extended for use in MPC.
Some of these extensions used DPFs directly [60, 62], but others use different FSS
primitives, primarily the distributed comparison function (DCF) [11,12,14,35].

1.2 Thesis statement

This thesis considers the intersection of DPF and MPC-based PETs with the aim
of reducing the overall communication and computation cost for PETs based upon
these techniques. Both DPFs and MPC are extremely popular in the PETs literature,
with MPC having a long history in PETs and DPFs rapidly growing in popularity
since their formalization in 2014. However, even after considerable development and
research, the limiting factor on PETs employing these techniques is still efficiency.
In the following chapters, this thesis introduces multiple protocols that combine
MPC with DPFs to significantly improve the performance of PETs based upon DPFs
and PETs based upon MPC, both asymptotically and concretely.

The primary technical contributions of this thesis fall into two categories, tech-
niques for fast MPC through leveraging DPFs and techniques for efficiently processing

DPF keys in MPC. In the case where DPFs are used to improve MPC protocols, the
primary focus is on how DPFs can be precomputed and then used in additive secret

2



1. Introduction

share-based MPC to allow complicated non-linear functions to be computed eas-
ily. These techniques primarily exploit the traditional DPF application of private
information retrieval along with the unique structure of a DPF key to enable these
optimizations. At the same time, the protocols for processing DPF keys in MPC are
primarily focused on how a new pair of DPF keys can be generated and how to prove
the correctness of DPF keys received from an untrusted source. In both cases, the
structure of the DPF key and the DPF key generation algorithm forms a clear basis
to enabling these techniques. These techniques can be applied in a large number
of contexts, including for sender-anonymous messaging and as a key component
in privacy preserving machine learning. In each of these cases, the techniques in-
troduced here improves on the state-of-the-art solutions enabling faster and more
scalable PETs both in theoretical analysis and in experimental studies.

1.3 Research contributions

This section summarizes the primary research contributions presented in the follow-
ing chapters.

1. Parity-segment trees and the prefix parity algorithm. Chapter 4 introduces
the concept of a parity-segment tree, a variant of the existing segment tree
data structure specifically designed for parity queries over a bitstring. This
data structure is closely related to the prefix-parity algorithm introduced in
Section 4.1.1. The prefix-parity algorithm provides an efficient method to
determine the parity of all intervals specified by an arbitrary partition of a
bitstring, represented as a prefix-segment tree.

2. Formal characterization of Boyle-Gilboa-Ishai DPFs. Chapter 3 introduces
the DPF construction of Boyle, Gilboa, and Ishai [14], and provides a novel
characterization of this DPF construction to clarify the properties of these
DPFs. In particular, by classifying DPF nodes into 0-nodes and 1-nodes, it
becomes clear that DPF keys can act as secret shared parity-segment trees, as
is shown in Section 4.3. It is also shown in Section 4.2 that, by viewing DPFs
as compressed forms of selection vectors, it is possible to efficiently “rotate”

3



1. Introduction

precomputed DPFs to have a new, secret shared, distinguished point chosen
at runtime.

3. Improved protocols for fixed-point arithmetic. Section 5.3.1 introduces a
novel protocol for performing MPC polynomial evaluation using one round
of communication. It also introduces new probabilistic and exact fractional
precision-reduction procedures for signed fixed-point numbers

4. Use Boyle-Gilboa-Ishai DPFs to create the Grotto framework. Grotto
evaluates non-linear functions by using spline functions to approximate the
given function with sufficiently high accuracy that, in many cases, the “approx-
imation” is as close to the exact answer as is possible for a fixed-point numbers
being used. The spline evaluation step leverages both the parity-segment tree
structure of Boyle-Gilboa-Ishai DPFs and the improved fixed-point polyno-
mial evaluation techniques from Section 5.3.1.

5. Protocol for MPC verification of DPF key correctness. Section 7.2 describes
a novel MPC protocol to verify that a Boyle-Gilboa-Ishai DPF is well-formed.
This protocol traverses down from the root of the DPF tree to the leaf node
corresponding to the distinguished point for that DPF. At each level of the
tree, the parties can exploit the characteristics of Boyle-Gilboa-Ishai DPFs
in order to check the correctness at that level. Having this property hold for
every node on the path from the root of the tree to the distinguished point’s
leaf is sufficient to prove that the DPF key pair is valid. We use this protocol
to create the Sabre system

6. Protocol for MPC generation of DPF keys. Section 7.2 observes that theMPC
protocol for verifying DPF keys shares a common structure with the algorithm
for generating DPF key pairs. The clear application of this idea is to oblivi-
ously generate DPFs with secret shared distinguished points. This is especially
important for adapting MPC systems that use DPFs, such as Grotto, to work
in two-party settings where there is no third party to provide precomputed
DPF keys.

4



1. Introduction

Abbreviation Definition
MPC Secure Multiparty
ZKP Zero-Knowledge Proof

ZKPoK Zero-Knowledge Proof of Knowledge
PIR Private Information Retrieval
DPF Distributed Point Function
DCF Distributed Comparison Function
FSS Function Secret Sharing
LUT Lookup Table
SAM Sender-Anonymous Messaging
PET Privacy-Enhancing Technology
DoS Denial-of-Service
OT Oblivious Transfer
AHE Arithmetic Homomorphic Encryption

Table 1.1: Common abbreviations used throughout this work

1.4 Prior works

Because Grotto and Sabre explore the relationship between MPC and DPFs in two
different settings, the prior works related to these systems differs substantially.

1.4.1 Grotto prior works

In the related works that are most closely related to Grotto, there are two primary
directions that have been pursued.

DPFs with full-domain evaluation. The two examples of this approach are Pir-
sona [60] and Pika [62]. In these systems, the primary goal is to convert the
computation into a PIR query. To do this, the parties need to first produce
a DPF whose distinguished point is equal to the given input 𝑥 . In order to
generate this DPF while keeping 𝑥 private, both of these systems employ the
technique of shifting the outputs of the DPF to change the distinguished point,
which we discuss in Section 4.2. However, neither of these works employ
the technique of rotating the database being queried backwards. In both of
these existing protocols, the two parties each hold a copy of a precomputed
database, which we refer to as a lookup table (LUT). Each party can use the
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DPF key it possesses to perform a PIR query against the LUT. In Pika, in-
dex 𝑖 in the LUT contains the outputs of the function being computed at the
corresponding input value. Pirsona uses the same technique for computing
integer comparisons, but for computing the inverse square root of fixed-point
numbers Pirsona’s LUT contains the coefficients for a linear approximation of
the function near the given input value. This allows a lower precision input
value to be used for the PIR query, reducing the cost of the PIR query and
the size of the DPF key and the LUT, while also allowing a higher precision
version of the same input to be used when evaluating the linear approximation.
In both of these systems, the primary performance bottleneck is due to the
PIR query which requires an expensive full-domain evaluation of the DPF.

DCFs and other FSS primitives. FSS was developed as an extension of DPFs with
the goal of creating secret-shared forms of functions other than point func-
tions [11, 12, 14]. The most relevant of these FSS primitives is the DCF, which
is the secret shared form of the less-than comparison function. These, in
turn, can be used to create FSS schemes for tasks such as bit-decomposition
and interval containment, which can itself be used for spline evaluation [11].
Boyle et al. show that these FSS schemes can be used directly for MPC ap-
plications [11]. In contrast, the Llama system, by Gupta et al., uses DCFs
to retrieve polynomial coefficients for a spline function approximating the
non-linear function being evaluated, similar to what we describe in Section 5.2.
They can then evaluate the retrieved polynomial. In both of these cases, the
added complexity of the more complex FSS schemes reduces the system’s
overall efficiency. In particular, the key sizes of these FSS schemes is much
higher than for a DPF. At the same time, the computational cost, while better
than many DPF-based techniques, is still quite high in Llama.

Clearly, existing MPC techniques based upon DPFs and more general FSS are
extremely effective at evaluating non-linear functions, either exactly or approxi-
mately depending on the system. However, high computation costs for DPF-based
systems and large keys in FSS-based systems limits the practicality of these systems.
In Chapter 4 and Chapter 5, we show how Grotto can combine DPFs with our novel
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prefix-parity algorithm in order to achieve performance that is faster than any prior
solution using only DPF keys.

1.4.2 Sabre prior works

There are two primary priorworks on sender-anonymousmessaging (SAM) protocols.
The first of these is Riposte [21], a system in the sender-anonymous bulletin board
model of SAM protocols. The other is Express, which is in the sender-anonymous
mailbox model [25]. The primary difference between these two models is that the
bulletin board model allows for anonymous posting to a public location, like an
anonymous version of Twitter, whereas the mailbox model allows messages to be
sent anonymously to an individual user’s mailbox by any sender that knows that
user’s secret mailbox address.

In both cases, the SAM protocol is based on using PIR-writing with DPFs to
perform message writes. Because the writes are being performed by a potentially
malicious client, the servers in these systems need a way to verify the correctness
of the DPF keys they receive. Riposte can use a three-party MPC protocol or a
zero-knowledge proof (ZKP) to verify the DPFs it uses. However, both methods
require the use of a DPF with keys of size O(√𝑁 ) [21] rather than the Boyle-Gilboa
-Ishai DPFs, which have keys of size O(log𝑁 ) [14]. Additionally, the ZKP-based
solution, which can tolerate 𝑠 − 1 out of 𝑠 malicious servers, requires the use of
a computationally expensive seed-homomorphic pseudorandom generator. Express
takes a different approach by using the logarithmic size Boyle-Gilboa-Ishai DPFs
in combination with a two-server auditing protocol that requires O(1) rounds of
communication and a full-domain evaluation of the DPF being audited, which has
computational cost of O(𝑁 ) [25]. This protocol works very well when the queries
being received are primarily valid, as the full-domain evaluation is required for the
PIR-writing step anyway. However, performing the full-domain evaluation as part of
the audit makes Express vulnerable to a denial of service attack which overwhelms
the server with invalid DPFs that it needs to audit.

Sabre addresses the shortcomings of both Riposte and Express. In particular,
Sabre uses the logarithmic size Boyle-Gilboa-Ishai DPFs that are used in Express. In
order to make the auditing step more resistant to denial of service attacks, Sabre em-
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ploys a (2 + 1)-party MPC auditing protocol, which does not require the full-domain
evaluation of the DPF. This protocol has has computation cost and round complex-
ity O(log𝑁 ). It can also be converted into a zero-knowledge proof of knowledge
(ZKPoK) through the use of our novel variant of the MPC-in-the-head paradigm of
Ishai, Kushilevitz, Ostrovsky, and Sahai [39], which we describe in Section 7.3. The
mailbox model version of Sabre, called Sabre-M, also uses a highly efficient mailbox
address verification process, which we describe in Section 7.5.2.

1.5 Thesis layout

The remainder of this thesis describes the way in which we address the problems and
shortcomings in prior works. In Chapter 2, we present the relevant cryptographic
preliminary material. The Boyle-Gilboa-Ishai DPF construction is presented and
characterized in detail in Chapter 3, and in Chapter 4 we detail how these DPFs can be
used as a novel data structure, known as a parity-segment tree. Chapter 5 shows how
the structure of Boyle-Gilboa-Ishai DPFs can be used to create the Grotto system
for fast non-linearMPC. This system is expanded to enable efficient bit decomposition
in Chapter 6. The Sabre system and its techniques for DPF verification are described
in Chapter 7, along with related techniques for DPF key generation in MPC. The
conclusions and results are summarized in Chapter 8.
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Chapter 2

Cryptographic preliminaries

In this chapter we introduce the notation, concepts, and prior works which serve
as the building blocks for the major contributions presented in the subsequent
chapters.

2.1 Mathematical notation

We deal extensively with vectors over Z𝑁 . For the special case where 𝑁 = 2, we
equate such a vector with the corresponding bitstring (i.e., the bitstring composed
of the same bits, in the same order). We use ‘⊕’ to denote the bitwise exclusive-OR
(XOR) operator and ‘+’ to denote normal addition in a ring (or a module over a ring)
of characteristic other than 2.

We write ≫ and ≪ respectively for the arithmetic (sign-extended) right shift
and logical left shift applied to fixed-width bitstrings; likewise, we write≫ and≪
for cyclic rotation to the right and left, whether of a bitstring or of a vector. When the
cyclic rotation is by a negative distance 𝑖 , we define the rotation to be a distance −𝑖
rotation in the opposite direction or, equivalently, a rotation in the original direction
by the smallest positive integer congruent to 𝑖 modulo the bitstring length, 𝑁 .

Let 𝑠 be a bitstring. We denote the substring of 𝑠 starting at index 𝑎 (inclusive)
and ending at 𝑏 (exclusive) by 𝑠 [𝑎 . . 𝑏). We call a substring 𝑠 [0 . . 𝑏) with starting
index 0 a prefix of 𝑠 .

Some of the primitives and constructions considered herein provide computa-
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tional security guarantees. In such instances, a special value 𝜆 ∈ N called a security
parameter acts as a tuning knob, enabling defenders to select efficiency–security
tradeoffs they deem palatable. Loosely speaking, the resources required of “hon-
est” players are bounded by some (reasonably small) polynomial 𝑝 (𝜆), whereas an
attacker whose resources are bounded by any polynomial in 𝜆—even an astronomi-
cally large one—will provably succeed in compromising security with at most some
“insignificant” probability.

More precisely, the success of the attacker in such cases is described by a so-called
negligible function [31, 43].

Definition 1. A function N→ R≥0 is negligible if 𝜀 (𝜆) ∈ o(𝜆−𝑎) for every 𝑎 ∈ N.

Intuitively, a function 𝜀 being negligible means that it vanishes asymptotically
faster than any positive inverse polynomial; hence, by making the honest parties
expend slightly more resources, we can force attackers to expend super-polynomially

more resources in order to maintain the same successful attack probability. Of-
ten, we find ourselves concerned with the probability that some undesirable event
does not happen; if 𝜀 (𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦) is negligible, then its complement 1 − 𝜀 (𝜆) is called
overwhelming.

As is customary, we model both defenders and attackers alike as probabilistic
polynomial-time (PPT) algorithms, and we pass the security parameter to these
algorithms in unary 1𝜆 for consistency with traditional input length–based charac-
terizations of running times.

Given a finite set 𝑆 , we use 𝑎 ∈R 𝑆 to denote the uniform random selection of 𝑎
from 𝑆 .

A pseudorandom generator (PRG) is a cryptographic primitive which takes a
short random “seed” and uses it to generate some number of pseudorandom bits,
which are computationally indistinguishable from random bits.

2.2 Fixed-point arithmetic

Fixed-point representations encode (approximations to) real numbers using signed
integers in two’s-complement format [65]. Specifically, the fixed-point approximation
to 𝑥 ∈ R is

⌊
𝑥 ·2𝑝 ⌋ , where 𝑝 ∈ N is a fractional precision parameter indicating how
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many bits to reserve for the fractional (non-integer) part of 𝑥 . Assuming 64-bit
representations, this leaves 64 − 𝑝 − 1 bits for the integer part of 𝑥 (plus one bit for
the sign).

For example, the fixed-point approximation to 𝜋 = 3.14159 . . . using 𝑝 = 16
fractional bits is ⌊

𝜋 ·216⌋ = ⌊
205887.41614566 . . .

⌋
= 205887

= 0x000000000003
sign bit + integer part

fractional part

243f .

Addition (or subtraction) of fixed-point numbers (assuming a common 𝑝) is
realized using addition (or subtraction) of the underlying integers. The resulting
sum (or difference) is exact, provided no overflow occurs.

To multiply fixed-point numbers 𝑥0 and 𝑥1, respectively having 𝑝0 and 𝑝1 frac-
tional bits, it suffices to multiply the underlying integer representations. The result-
ing product has 𝑝 = 𝑝0 + 𝑝1 fractional bits and is likewise exact when no overflow
occurs [65].

For example, we can compute the area of a circle with (unitless) radius 𝑟 = 1.25
by expressing 𝑟 as a fixed-point number and computing⌊

𝜋 ·216⌋ ·⌊1.25·216⌋ 2 = 205887·819202

= 1381684268236800

= 0x0004
sign bit + integer part

fractional part

e8a270000000 ,

a fixed-point number with 𝑝 ′ = 16 + (16 + 16) = 48 fractional bits and, consequently,
just 64 − 48 − 1 = 15 bits remaining for the integer part.

To “reset” the number of fractional bits back to 𝑝 = 16, it suffices to perform an
arithmetic (sign-extending) right shift by 𝑝 ′ − 𝑝 = 32 bits; that is,(

0x0004
sign bit + integer part

fractional part

e8a270000000 ≫ 32
)
= 0x

redundant sign bits

000000000004
sign bit + integer part

fractional part

e8a2 (2)

= 321698

=
⌊
4.908721923828125·216⌋ .
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Meanwhile, 𝜋 ·1.252 = 4.9087385 . . . so that

𝜋 ·𝑟 2 − 4.908721923828125 ≈ 0.0000165974059 .

This technique demonstrates the more general phenomenon that right shifting a
fixed-point number reduces that number’s precision. Similarly, left shifting increases
precision without increasing the accuracy of the resulting approximation.

2.2.1 ULP error

It is impossible to perfectly represent all real numbers using a finite number of bits.
As a result, floating-point and fixed-point computations often deviate from the exact
real-number result for that computation. A common metric used to evaluate the
accuracy of a mathematical computation being performed by a computer is units in
the last place (ULP) error [30].

The idea behind ULP error, in the case of fixed-point numbers, is to suppose
that 𝑟1 ∈ R is the exact result of a given computation, and that 𝑟2 is the approximate
fixed-point result produced by the actual computation. The ULP error is then defined
as being the number of representable fixed-point values between 𝑟1 and 𝑟2. The same
idea is generally applied to floating-point numbers, but we focus specifically on the
case of fixed-point numbers.

For example, consider the fixed-point computation for the area of a circle shown
previously in Equation (2). Here, the difference between the real solution and its
fixed-point approximation is approximately 0.0000165974059 which is greater than
2−16 and less than 2·2−16. Since 2−16 is the smallest difference between two fixed-
point numbers with 16 bits of fractional precision, there is one representable fixed-
point values between the true solution and the fixed-point approximation, so this
computation has 1 ULP of error. We can also see this by looking at the integer
value used to represent the fixed-point numbers. The approximated fixed-point
calculation produces an underlying integer 321698, whereas the fixed-point ap-
proximation of the exact solution is

⌊
4.9087385 . . . ·216⌋ = 321699. Similarly, if the

fixed-point precision is reduced by performing an arithmetic right shift by one
bit, then the fixed-point calculation produces a fixed-point number with an un-
derlying integer

⌊
4.908721923828125·215⌋ = 160849 and the exact solution become

12



2. Cryptographic preliminaries

⌊
4.9087385 . . . ·215⌋ = 160849. Since these two results are the same, this result, with

15 bits of precision in the answers, has 0 ULPs of error. Conversely, we can increase
the precision of the fixed point number from 16 fractional bits to 17 fractional bits
by shifting the bits to the left by four places, this does not change the accuracy of
the fixed-point number but it does increases the precision. The resulting fixed-point
number, computed at 16 bits of precision but increased to 17 bits of precision af-
terward, has an underlying integer value 643396 to represent 4.908721923828125.
The exact solution represented as a fixed-point number with 17 bits of fractional
precision has an underlying integer value

⌊
4.9087385 . . . ·217⌋ = 643398. As a result,

this approximation, using 17 bits of precision, has 2 ULPs of error.

2.3 Secret sharing

Secret sharing allows a dealer to distribute a secret among two or more shareholders
in such a way that individual shareholders learn nothing while “authorized subsets”
of shareholders easily learn the whole secret [57]. A common form of secret sharing
is (𝑡, 𝑛)-threshold secret sharing. In this scenario, which was independently formal-
ized by Shamir [57] and Blakley [9], there are 𝑛 shareholders and any subset of 𝑡 or
more among them is authorized to learn the secret. Various threshold secret-sharing
techniques have been developed, but this work focuses on simple “additive” schemes
wherein secret reconstruction is accomplished via addition (or XOR) [40]. These
schemes, described in the following sections, are especially popular in MPC appli-
cations. Unless otherwise stated, all shares in this thesis are assumed to be 64-bit
(2, 2)-threshold shares. This means that the dealer splits the secret into 𝑛 = 2 shares
which it then sends to the 𝑛 = 2 shareholders, and both (𝑘 = 2) shareholders need to
work together in order to reconstruct the secret value.

2.3.1 (2, 2)-Additive sharing

A (2, 2)-additive sharing of a number 𝑎 ∈ 𝑧 [𝑛] is denoted [𝑎] = ( [𝑎]0, [𝑎]1) ∈
𝑧 [𝑛] × 𝑧 [𝑛], such that [𝑎]0 + [𝑎]1 = 𝑎.

To share a 64-bit integer 𝑆 , the dealer samples [𝑆]0 uniformly at random, sets
[𝑆]1 ← 𝑆− [𝑆]0 mod 264, and then sends [𝑆]𝑏 to shareholder 𝑏 for 𝑏 = 0, 1. To recover
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𝑆 , the shareholders pool their shares and compute

[𝑆]0 + [𝑆]1 ≡ [𝑆]0 +
(
𝑆 − [𝑆]0

)
≡ 𝑆 (mod 264) .

Additive secret sharing is linearly homomorphic: Given additive sharings [𝑆] B
( [𝑆]0, [𝑆]1) and [𝑇 ] B ( [𝑇 ]0, [𝑇 ]1) alongside non-secret scalars 𝑐 and 𝑑 ,(

𝑐 ·[𝑆]0 + 𝑑 ·[𝑇 ]0
) + (𝑐 ·[𝑆]1 + 𝑑 ·[𝑇 ]1) = 𝑐 · ([𝑆]0 + [𝑆]1)

+ 𝑑 · ([𝑇 ]0 + [𝑇 ]1)
≡ 𝑐 ·𝑆 + 𝑑 ·𝑇 (mod 264) ,

so that
(
𝑐 ·[𝑆]0 + 𝑑 ·[𝑇 ]0, 𝑐 ·[𝑆]1 + 𝑑 ·[𝑇 ]1

)
is a (2, 2)-additive sharing of the linear

combination 𝑐 ·𝑆 + 𝑑 ·𝑇 . Notice that shareholder 𝑏 can compute [𝑐 ·𝑆 + 𝑑 ·𝑇 ]𝑏 B
𝑐 ·[𝑆]𝑏 + 𝑑 ·[𝑇 ]𝑏 locally—i.e., without interacting with its peer. Consequently, they
can collaborate to learn the linear combination 𝑐 ·𝑆 + 𝑑 ·𝑇 without learning anything
extra about 𝑆 or 𝑇 .

(2, 2)-XOR sharing

XOR-shares are just 𝑛-tuples of additive shares over Z2. In this setting, “addition”
is just the bitwise exclusive-OR operator and, by convention, “multiplication” is
the bitwise logical-AND operator. We write L𝑥M = (L𝑥M0, L𝑥M1) to denote an XOR-
sharing of 𝑥 (in contrast with writing [𝑥] = ( [𝑥]0, [𝑥]1) for an additive sharing of
the same).

2.4 Zero-knowledge proofs

A zero-knowledge proof of knowledge (ZKPoK) is a powerful cryptographic primitive
with which one party, known as a “prover”, convinces one or more “verifiers” that it
has knowledge of a witness attesting to the truth of a given statement. The correct
prover and verifier algorithms are denoted as 𝑃 and 𝑉 respectively. Arbitrary, and
potentially malicious, prover and verifier algorithms are denoted as 𝑃 ∗ and𝑉 ∗.

The prover in the protocol must convince the verifier that it has a witness to the
specified statement being true. If the statement is false, an arbitrary, computationally
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unbounded prover algorithm 𝑃 ∗, must be incapable of convincing𝑉 that the statement
is true. When an assumption of computational boundedness on 𝑃 ∗ is required to
prove the soundness of the protocol, the resulting protocol is referred to as a zero-
knowledge argument of knowledge. At the same time, the zero-knowledge property
of a ZKPoK requires that an arbitrary verifier algorithm 𝑉 ∗ learn nothing from
the protocol except that the prover possesses the claimed witness, and whatever
information can be inferred from that.

A key concept when defining the zero-knowledge properties of zero-knowledge
proofs and arguments is simulation. Now, a protocol (𝑉 , 𝑃) is said to be “simulatable”
if an arbitrary verifier algorithm 𝑉 ∗ can simulate, without any information from 𝑃 ∗,
an interaction which is indistinguishable from a real interaction between 𝑃 and 𝑉 ∗

on the same common input. This implies that any information that 𝑉 ∗ can learn
using any strategy in this protocol can be easily computed using the common input
𝑠 and the knowledge that the given statement is true on input 𝑠 .

A central component in the formalization of simulatability is the transcript of the
execution of a protocol. The transcript is simply a tuple of the messages sent between
𝑉 ∗ and 𝑃 . This is then used to create the view of the verifier𝑉 ∗. Intuitively, the view,
denoted view𝑃,𝑉 ∗ (𝑠), is simply the information that 𝑉 ∗ “sees” when the protocol is
executed. This consists of, the transcript, and the common input 𝑠 as well as any
private inputs given to 𝑉 ∗ and any random coin flips performed by 𝑉 ∗. All ZKPs
need at least one of the participant algorithms to be probabilistic, so view𝑃,𝑉 ∗ (𝑠) is a
random variable.

2.5 Secure Multiparty Computation (MPC)

A secure multiparty computation (MPC) protocol is a cryptographic protocol through
which two or more mutually distrusting parties jointly compute some function over
their private inputs while disclosing nothing to any curious parties beyond what that
curious party can deduce from its own private input, the shared public output, and
any private knowledge it possesses [63]. In an MPC protocol taking place between ℓ
parties, we denote the parties as P𝑏 where 0 ≤ 𝑏 < ℓ . In addition to the functionality
being computed, MPC protocols are typically parameterized by (i) the number “ℓ” of
parties to the computation, and (ii) the size “𝑡 + 1” of coalition needed to violate the
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privacy of non-coalition members’ inputs.
The concepts of simulatability, transcripts, and views, introduced for the ZKPs

in Section 2.4, directly translate into MPC protocols. The privacy of a 𝑡-private MPC
protocol is based upon simulatability. However, the simulation can be performed
by an attacker who controls, and sees the views of, a coalition of multiple parties
in the protocol, as long as the coalition size is no larger than the maximum privacy
protecting coalition size 𝑡 . The concept of a transcript is similarly expanded in MPC,
namely for each pair of parties there is a transcript of messages sent between those
two parties. A simulated party’s view then includes all transcripts between that
party and any other parties in the protocol.

MPC adversary models

In MPC, there are two primary types of adversaries to consider. These are semi-
honest adversaries and malicious adversaries. A semi-honest party, also known as an
"honest-but-curious" party, is simply a party in an MPC protocol which must follow
the protocol, but may attempt to undermine the privacy guarantees of the protocol
by observing intermediate results in the computation. In contrast, a malicious party
is not required to follow the protocol in any way. This type of adversary can send
arbitrary messages in order to extract private information that it should not have
access to [32].

Secure (2 + 1)-party computation

One special case of MPC is so-called secure (2 + 1)-party computation (also known as
server-aided 2-party computation), wherein two mutually distrusting parties enlist
the help of a semi-honest third party (who provides no input and receives no output)
to assist in the computation. The computation performed by this third party is
independent of the actual data being processed and can be computed ahead of time
in a precomputation step. Such protocols have received considerable attention due to
their superior performance relative to “pure” 2-party protocols or ℓ-party protocols
secure against stronger attackers. In addition, (2 + 1)-party protocols are generally
preferable over three-party protocols because the role of the assisting server is data
independent. Therefore, it can be replaced with a two-party precomputation protocol
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that computes the same values, easily converting a (2+1)-party computation protocol
into an equivalent two-party protocol. Since the role of the assisting party is replaced
by a precomputation phase that is completely agnostic to the parties’ inputs, the
online portion of the two-party protocol is at least as fast as the corresponding
(2 + 1)-party protocol.

MPC-in-the-head

MPC-in-the-head [16, 27, 39, 42] is a conceptual framework for constructing zero-
knowledge proofs of knowledge (ZKPoKs) from MPC building blocks. ZKPoKs
based on MPC-in-the-head leverage the dual observations that (i) MPC protocols are
simulatable—even from the perspective of an “insider” (i.e., an attacker who controls
a size-𝑡 subset of the parties to the computation, where 𝑡 is the maximum number
of parties that can collude without compromising the privacy of non-colluding
parties’ inputs)—and (ii) dishonest behaviour by a coalition in an MPC protocol
execution necessarily yields incontrovertible evidence in the coalition members’
joint view.

Consider an MPC protocol Π for the witness-checking procedure of some NP
relation 𝑅. In light of the preceding two observations, one can transform Π into a
ZKPoK for 𝑅 as follows: Given a (public) instance 𝐼 and (private) witness 𝑤 such
that 𝑅(𝐼 ,𝑤) = 1, the prover secret shares𝑤 among ℓ imaginary computation parties,
and then it simulates a complete run of Π among these imaginary parties, up to and
including the point where the functionality attests to the validity of𝑤 by outputting
1. The prover commits (say, via Merkle tree) to the simulated view of each imaginary
party, presenting the resulting commitments to the verifier.

If the prover is attempting to cheat, then the correctness property of the MPC
protocol ensures that incontrovertible evidence must exist in at least one coalition’s
view. Thus, the verifier attempts to uncover such evidence by challenging the prover
to reveal the view of a random size-𝑡 coalition of parties. The probability of detecting
cheating varies based on the collusion threshold 𝑡 and number of imaginary parties
ℓ . To amplify the probability of detecting cheating, the prover and verifier apply
the cut-and-choose technique [48], engaging in multiple parallel instances of the
procedure of simulating the protocol, committing to simulated views, and revealing a
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randomly chosen size-𝑡 coalition’s view to the verifier, each one operating on a “fresh”
simulation. If a single simulation has a probability 𝑝 of detecting catching prover
and 𝑛 simulations are performed for the cut-and-choose technique, the resulting
probability of catching a cheating prover increases to 1 − (1 − 𝑝)𝑛 .

2.5.1 Secret share-based MPC

Secret share-based MPC is an approach to MPC that relies upon using private inputs
stored as additive or XOR secret shares [33]. Because additive secret shares are
based upon modular addition, they are especially amenable to linear operations.
Specifically, given additive secret shares [𝑥]𝑖 and [𝑦]𝑖 along with public constants 𝑎
and 𝑏, party 𝑖 can locally compute [𝑎·𝑥 +𝑏·𝑦]𝑖 = 𝑎·[𝑥]𝑖 +𝑏·[𝑦]𝑖 . While multiplication
of two secret shared values is more difficult, Beaver Triples, as discussed in Sec-
tion 2.5.3, allow for two secret shared numbers to be multiplied using precomputation
and one online round of communication. A primary advantage of this type of
protocol is that expensive operations using oblivious transfer (OT) and arithmetic
homomorphic encryption (AHE) can be completely moved into the preprocessing
phase of the protocol or, sometimes, replaced through the use of additional parties
in the computation as described in Section 2.5. While OT and AHE along with their
use in MPC protocols, such as the precomputation of Beaver triples [5, 15, 28], are
important, the details of these protocols are not relevant to the work discussed in
this thesis. Moving these computationally costly operations into precomputation
comes at the cost of higher round complexities. At the start of a secret share-based
MPC protocol, all private inputs are secret shared according to the secret sharing
protocol being used. As described in Section 2.3.1, additive shares are linearly
homomorphic, allowing additively secret shared values to be multiplied by non-
secret shared constants and added together without any communication. Similarly,
XOR shares, as 𝑛-tuples of additive shares over Z2, are also linearly homomorphic
with bitwise exclusive-OR as “addition” and bitwise logical-AND as “multiplication”.
Multiplication of two secret shared values is commonly performed using Beaver
multiplication triples [6].
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2.5.2 Garbled circuit-based MPC

Another method for performing MPC is to use Yao’s Garbled circuit technique [64].
The techniques and developments presented in this thesis do not use garbled cir-
cuits, but we do contrast some of our constructions against garbled circuit-based
techniques. Therefore, this section only presents a high-level explanation of garbled
circuits.

This type of protocol is performed by two parties, a garbler and an evaluator.
The garbler prepares a garbled circuit made up of garbled gates. These are encrypted
forms of the truth tables for the corresponding Boolean gates. Each bit of input,
from either party, has a key corresponding to a value of one on that bit and a
key corresponding to a zero bit. An output 𝛾𝑔,𝑒 corresponding to an input bit 𝑔
from the garbler and 𝑒 from the evaluator, is then encrypted by the garbler using a
combination of keys𝑊 𝑔

𝐺 and𝑊 𝑒
𝐸 . Thus, the output can only be decrypted by a party

who knows both of those keys. The garbler randomizes the order of these ciphertext
outputs and sends them to the evaluator along with the keys corresponding to the
garbler’s private inputs. Thus, without revealing the garbler’s bits, the evaluator
cannot decrypt outputs which don’t correspond to the garbler’s inputs. In order to
get the keys for the evaluators’ input bits, OT is used to retrieve only𝑊 𝑒

𝐸 from the
garbler without revealing 𝑒 . The details of how the various versions of OT work
is not important for this explanation. Then the evaluator has the keys to decrypt
the output ciphertext corresponding to the true inputs 𝑔 and 𝑒 and no other output
ciphertext. If this output is to be used as an input to another garbled gate in the
circuit, the encrypted output is another key corresponding to an input for those later
gates. Otherwise, it can be the output value of the gate.

One key strength of garbled circuits is that their performance is not related to
the linearity of the computation being performed. This is in contrast to secret share-
based MPC protocols which are extremely efficient at linear computations, but much
less efficient when computing non-linear functions. As a result, garbled circuits
are generally the method most suited to computations that are largely non-linear
whereas primarily linear computations are more efficient in secret share-based MPC
protocols.

Garbled circuits also have an advantage in round complexity since they only
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require a small constant number of rounds of communication for evaluating any
circuit. However, each gate in the circuit requires all of the encrypted ciphertext
outputs to be sent by the garbler along with the garbler’s input keys. This results in
a significant communication cost. The further communication and computation cost
of using OT to retrieve the evaluator’s input keys significantly slows the protocols as
does the need to perform multiple decryptions for each gate in the circuit. The basic
form of garbled circuits has been extended with various optimizations such as point-
and-permute [8] and free XOR [44] which respectively remove the extra decryptions
required to find the output ciphertext and allow for XOR to be performed without
needing any encryption operations. The half-gates optimization, proposed by Zahur,
Rosulek, and Evans, is another feature that has been added to garbled circuits [66].
Half-gates allow garbled AND gates to be computed using only two ciphertexts rather
than the four ciphertexts required in the original version of garbled circuits. Garbled
circuit computations have also reduced the number of OTs required by employing
the OT extension technique. An OT extension is simply a method for taking a small
number of standard OTs and then using fast symmetric cryptography to stretch those
initial OTs into a large number of OTs, without the expensive computations required
for standard OTs [7, 38]. OT extension can be further optimized for garbled circuits
throught the use of correlated OT (C-OT) [4]. C-OT relies upon the fact that when
using the free-XOR and point-and-permute technique, the two keys, 𝑘0 and 𝑘1, which
the evaluator could choose for a given OT are always correlated. In particular, 𝑘0 is
chosen at random and 𝑘1 = 𝑘0 ⊕ Δ, where Δ is a randomly selected bitstring where
the least significant bit is always set. C-OT exploits this relationship to generate two
keys with the required correlation and then obliviously transfer one to the evaluator
more efficiently than is possible using normal OT extension. Since the keys in C-OT
are generated as part of the OT extension, this optimization does have the side
effect of forcing the garbler to garble the circuit after performing the OT extension.
Despite these optimizations, garbled circuits still have a high communication and
computation cost due to key sizes, oblivious transfers, and decryption operations.
To address these downsides, other MPC techniques have been proposed.
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2.5.3 Beaver multiplication triples

Beaver multiplication triples [6] enable the efficient multiplication of (2, 2)-additively
shared secrets. Each triple comprises three shares

([𝑋 ], [𝑌 ], [𝑍 ]) , where 𝑋 and 𝑌
are uniform random scalars and

𝑍 B [𝑋 ]0·[𝑌 ]1 + [𝑋 ]1·[𝑌 ]0.

The shareholders typically precompute Beaver multiplication triples using either
additively homomorphic encryption [52] or oblivious transfer [55] during a (rather
costly) precomputation phase; alternatively, in the case of (2 + 1)-party computation,
well-formed triples are provided to the shareholders for “free” by the semi-honest
third party [24].

Given a pair of shares [𝑥] and [𝑦] and a Beaver triple ( [𝑋 ], [𝑌 ], [𝑍 ]), each
shareholder 𝑏 sends([𝑥 + 𝑋 ]𝑏, [𝑦 + 𝑌 ]𝑏 ) B ([𝑥]𝑏 + [𝑋 ]𝑏, [𝑦]𝑏 + [𝑌 ]𝑏 )
to its peer, and then it outputs

[𝑧]𝑏 B [𝑥]𝑏 ·( [𝑦]𝑏 + [𝑦 + 𝑌 ]1−𝑏) − [𝑌 ]𝑏 ·[𝑥 + 𝑋 ]1−𝑏 + [𝑍 ]𝑏

so that

[𝑧]0 + [𝑧]1 =
([𝑥]0·( [𝑦]0 + [𝑦 + 𝑌 ]1)

− [𝑌 ]0·[𝑥 + 𝑋 ]1 + [𝑍 ]0
)

+ ([𝑥]1·( [𝑦]1 + [𝑦 + 𝑌 ]0)
− [𝑌 ]1·[𝑥 + 𝑋 ]0 + [𝑍 ]1

)
=
([𝑥]0· ([𝑦]0 + ([𝑦]1 +���HHH[𝑌 ]1)

)
− [𝑌 ]0·(���HHH[𝑥]1 +���HHH[𝑋 ]1) +���HHH[𝑍 ]0

)
+ ([𝑥]1· ([𝑦]1 + ([𝑦]0 +���HHH[𝑌 ]0)

)
− [𝑌 ]1·(���HHH[𝑥]0 +���HHH[𝑋 ]0) +���H

HH[𝑍 ]1
)

= [𝑥]0·[𝑦]0 + [𝑥]0·[𝑦]1 + [𝑥]1·[𝑦]1 + [𝑥]1·[𝑦]0
= 𝑥 ·𝑦 .

Beaver triples are ephemeral, each enabling just a single multiplication. Each
multiplication requires a round of communication. When multiple multiplications
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need to be performed. The same round of communication can exchange the values,
blinded using the Beaver triples, for multiple multiplications in parallel. The resulting
number of rounds depends upon the multiplicative depth of the computation. For
example, consider secret shared numbers [𝑣], [𝑤], [𝑥], [𝑦], [𝑧]. In order to compute
shares of 𝑥 ·𝑦+(𝑤 ·𝑣)·𝑧, the parties first use a round of communication and two Beaver
triples to compute [𝑥 ·𝑦] and [𝑤 ·𝑣] in parallel. Another round of communication and
a third Beaver triple can then be used to compute [(𝑤 ·𝑣)·𝑧] from [𝑧] and [𝑤 ·𝑣]. The
final sum can then be computed locally by the parties.

Beaver multiplication is also agnostic to whether 𝑥 and 𝑦 represent “actual”
integers or fixed-point numbers. Of course, in the latter case, multiplication will
increase the fractional bits in 𝑧 relative to 𝑥 and𝑦, possibly necessitating a subsequent
fractional bit reduction.

Du-Atallah multiplication

While Beaver triples are designed for 2-party MPC with precomputation, the same
concept can be applied to (2 + 1)-party protocols as well. This variant is referred to
as Du-Atallah multiplication [24].

In this setting, P2, the assisting party, selects [𝑋 ] and [𝑌 ] at random. It then
computes [𝑍 ] using the shares of 𝑋 and 𝑌 . P2 then sends ( [𝑋 ]𝑏, [𝑌 ]𝑏, [𝑍 ]𝑏) to party
P𝑏 , for 𝑏 ∈ {0, 1}.

P0 and P1 then proceed to use the multiplication triple in exactly the same way
they would use a precomputed triple in a 2-party setting.

Plaintext Du-Atallah multiplication

In an MPC multiplication of 𝑥 and 𝑦 where P0 holds 𝑥 as a plaintext and P1 holds
𝑦 as a plaintext, a variant of Du-Atallah can be used. The same idea can also be
applied to Beaver triples in order to produce a Beaver triple variant for multiplying
plaintext values with analagous performance improvements.

The modified multiplication triple consists of (𝑋,𝑌, [𝑍 ]) where 𝑍 = 𝑋 ·𝑌 . In this
protocol, P0 receives 𝑋 and [𝑍 ]0. Similarly, P1 receives 𝑌 and [𝑍 ]1.
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P0 sends 𝑥 +𝑋 to P1, and P1 sends 𝑦 +𝑌 to P0. The resulting shares of 𝑧 = 𝑥 ·𝑦 are
then,

[𝑧]0 = [𝑍 ]0 + 𝑥 ·(𝑦 + 𝑌 )
[𝑧]1 = [𝑍 ]1 − 𝑌 ·(𝑥 + 𝑋 )

We can confirm the correctness of these results, by computing 𝑧,

𝑧 = [𝑧]0 + [𝑧]1
= ( [𝑍 ]0 + 𝑥 · (𝑦 + 𝑌 )) + ([𝑍 ]1 − 𝑌 · (𝑥 + 𝑋 ))
= ( [𝑍 ]0 + [𝑍 ]1) + 𝑥 ·𝑦 + 𝑥 ·𝑌 − 𝑌 ·𝑥 − 𝑌 ·𝑋
= 𝑍 + 𝑥 ·𝑦 − 𝑌 ·𝑋
= 𝑌 ·𝑋 + 𝑥 ·𝑦 − 𝑌 ·𝑋
= 𝑥 ·𝑦

Compared to standard Du-Atallah, this protocol reduces the number of server
computed values sent to each party and the online communication cost. The reduc-
tion in precomputed or server computed values comes from the fact that each party
only receives two numbers, 𝑋 and [𝑍 ]0 for P0 and 𝑌 and [𝑍 ]1 for P1, as opposed to
standard Du-Atallah in which each party receives one share from each of [𝑍 ], [𝑋 ],
and [𝑌 ]. Since each party only sends one blinded value, 𝑥 + 𝑋 for P0 and 𝑦 + 𝑌 for
P1, rather than two the communication cost of Du-Atallah on plaintexts is half that
of standard Du-Atallah.

𝑫-ary MPC Multiplication

As can be seen in the earlier example, when computing the product of 𝐷 elements
𝑎1·𝑎2 · · ·𝑎𝐷 , known as a 𝐷-ary multiplication, standard Beaver triples require 𝐷 − 1
rounds of communication. In ABY2.0, Patra et al. show that the ideas underlying
MPC multiplication using Beaver triples and Du-Atallah multiplication can be
extended, using additional precomputation, to allow for 𝐷-ary MPC multiplication
to be performed using a single round of communication [54].

Consider the following derivation for MPC 3-ary multiplication of [𝑥], [𝑦], and
[𝑧]. The precomputation chooses three random values 𝑋 , 𝑌 , and 𝑍 to be the blinding
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factors for 𝑥 , 𝑦, and 𝑧 respectively. In the one round of communication, the parties
exchange shares of 𝑥 = 𝑥 + 𝑋 , 𝑦 = 𝑦 + 𝑌 , and 𝑧 = 𝑧 + 𝑍 . From there, the necessary
precomputed values can be found by expanding the desired product.

[𝑥𝑦𝑧] = (𝑥 − [𝑋 ])·(𝑦 − [𝑌 ])·(𝑧 − [𝑍 ])
= 𝑥 ·𝑦·𝑧 − 𝑥 ·𝑦·[𝑍 ] − 𝑥 ·𝑧·[𝑌 ] − 𝑦·𝑧·[𝑋 ] + 𝑥 ·[𝑌𝑍 ] + 𝑦·[𝑋𝑍 ] + 𝑧·[𝑋𝑌 ] − [𝑋𝑌𝑍 ]

Thus, the precomputation needs to compute [𝑋𝑌 ], [𝑋𝑍 ], [𝑌𝑍 ], and [𝑋𝑌𝑍 ] in
addition to [𝑋 ], [𝑌 ], and [𝑍 ]. Party P𝑏 receives shares [𝑋 ]𝑏 , [𝑌 ]𝑏 , [𝑍 ]𝑏 , [𝑋𝑌 ]𝑏 ,
[𝑋𝑍 ]𝑏 , [𝑌𝑍 ]𝑏 , and [𝑋𝑌𝑍 ]𝑏 . This allows it to locally compute [𝑥𝑦𝑧]𝑏 = 𝑏·𝑥 ·𝑦·𝑧 −
𝑥 ·𝑦·[𝑍 ]𝑏 − 𝑥 ·𝑧·[𝑌 ]𝑏 − 𝑦·𝑧·[𝑋 ]𝑏 + 𝑥 ·[𝑌𝑍 ]𝑏 + 𝑦·[𝑋𝑍 ]𝑏 + 𝑧·[𝑋𝑌 ]𝑏 − [𝑋𝑌𝑍 ]𝑏 .

This same process can be performed for any choice of 𝐷 in order to produce
a single-round 𝐷-ary MPC multiplication with the amount of precomputed terms
increasing as 𝐷 increases.

2.5.4 The ABY framework

In order to achieve a balance of the advantages and disadvantages of different MPC
methods, mixed-protocol frameworks have been proposed. These frameworks com-
bine multiple methods with the goal of emphasizing the strengths of each method
while minimizing the impact of the weaknesses of each method. The ABY frame-
work [22] is one of the most popular mixed-protocol frameworks. This framework
combines arithmetic secret share, XOR secret share, and garbled circuit-based two-
party MPC protocols. It does this using two party protocols for converting between
these different representations of the secret values.

Mixed-protocol frameworks were further developed by Patra et al.’s ABY2.0 [53].
This framework used increased preprocessing and modified secret shares in order to
reduce the required online cost of its protocols. In particular, ABY2.0 makes heavy
use of a version of the𝐷-ary multiplication discussed in Section 2.5.3 which improves
online costs, at the cost of increased preprocessing.

ABY has also been extended to work for 3-party MPC with the ABY3 framework
by Mohassel and Rindal [50]. In ABY3, a secret 𝑣 is additively shared into three
pieces [𝑣]0, [𝑣]1, and [𝑣]2 where 𝑣 = [𝑣]0 + [𝑣]1 + [𝑣]2. Each party is given two of
these shares, to form a (2, 3)-threshold additive secret sharing. Additionally, at an
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increased communication cost, ABY3 can provide security against actively malicious
participants in addition to the passive adversaries protected against by ABY and
ABY2.0.

2.6 Selection vector

A selection vector is a vector in which one element is 1 and all others are 0. We
refer to the length-𝑁 selection vector having its 1 in position 𝑖 ∈ [0 . . 𝑁 ) as the 𝑖th
selection vector of length 𝑁 , and we denote this vector by ®𝑒𝑖 . This is also referred to
as the one-hot vector encoding the number 𝑖 .

Selection vectors have a variety of applications in information-theoretic secure
PIR and PIR-writing as described in Section 2.8. However, the scalability of these
techniques are limited, because the size of the vector grows linearly with 𝑁 .

2.7 Point functions

A binary point function is a “functional” representation of a selection vector; that is,
a Boolean-valued function that has a selection vector as its truth table.

Definition 2. The 𝑖th binary point function on Z𝑁 is the function P𝑖 : Z𝑁 → {0, 1}
for which

®𝑒𝑖 B
(
P𝑖 (0), P𝑖 (1), . . . , P𝑖 (𝑁 − 1)

)
is the 𝑖th selection vector of length 𝑁 .

Generalized point functions expand on binary point functions by functionally
representing a selection vector which has been scaled by some value. Thus, the
truth table of a generalized point function is zero at all indices except for one, which
contains the point function’s specified output value 𝑦 [29].

Definition 3. The generalized point function P𝑥,𝑦 : Z𝑁 → G is the function defined
by

P𝑥,𝑦 (𝑖) B

𝑦 if 𝑖 = 𝑥 , and
0 otherwise.
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Where G is a group, and 𝑦 ∈ G.

Both binary and generalized point functions are used in the following chap-
ters.

2.7.1 Distributed point functions

Intuitively, a distributed point function (DPF) is a compact, secret-shared representa-
tion of a point function [29]. We wrote the following formal definition specialized
for the case of (2, 2)-DPFs with arbitrary domain and range.

Definition 4. A (2, 2)-distributed point function, or (2, 2)-DPF, is a pair of PPT
algorithms (Gen, Eval) defining an infinite family of secret-shared representations
of generalized point functions; that is, given (i) a security parameter 𝜆 ∈ N, (ii) a
domain 𝐷 and range 𝑅, where there exists an additive identity 0 ∈ 𝑅, and (iii) a
distinguished point (𝑥,𝑦) ∈ 𝐷 × 𝑅, Then, we have
1. Correctness: If (J(𝑥,𝑦)K0, J(𝑥,𝑦)K1) ← Gen(1𝜆, 𝐷, 𝑅; 𝑥,𝑦), then, for all 𝑖 ∈ 𝐷 ,

Eval(J(𝑥,𝑦)K0, 𝑖) + Eval(J(𝑥,𝑦)K1, 𝑖) B

𝑦 if 𝑖 = 𝑥 , and
0 otherwise.

2. Simulatability: There exists a PPT simulator S such that, for any given domain
𝐷 , range 𝑅, distinguished point (𝑥,𝑦) ∈ 𝐷 ×𝑅, and bit 𝑏 ∈ {0, 1}, the distribution
ensembles {S(1𝜆, 𝐷, 𝑅; 𝑏)}

𝜆∈N

and {
J(𝑥,𝑦)K𝑏

�� (J(𝑥,𝑦)K0, J(𝑥,𝑦)K1) ← Gen(1𝜆, 𝐷, 𝑅; 𝑥,𝑦)}
𝜆∈N

are computationally indistinguishable. In the case of the Boyle-Gilboa-Ishai DPF
construction discussed in Section 3.2, each key is made up entirely of random
and pseudorandom numbers. Therefore S(1𝜆, 𝐷, 𝑅; 𝑏) simply needs to produce
an output with the same format as a real DPF key, but all entries are sampled
uniformly at random from the appropriate ring or group. As a result, the two
distribution ensembles are computationally indistinguishable.
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The J(𝑥,𝑦)K𝑏 output by Gen are called (2, 2)-DPF keys; the 𝑥-coordinate of the
distinguished point is the distinguished input.

In the special case where the domain is 𝐷 = Z𝑁 and the output is a 1-bit value
(i.e., 𝑅 = Z2), the DPF corresponds to a binary point function. The generation
function for a binary DPF is denoted as Gen(1𝜆, 𝑁 ; 𝑥) with output (J®𝑒𝑥K0, J®𝑒𝑥K1).
This is equivalent to the general DPF generation function Gen(1𝜆,Z𝑁 ,Z2; 𝑥, 1). That
is, the input is a non-negative number less than the upper bound 𝑁 ∈ N, and, on the
distinguished input 𝑥 ∈ Z𝑁 , the evaluation function outputs XOR shares of 𝑦 = 0 or
𝑦 = 1.

The next chapter introduces the Boyle-Gilboa-Ishai construction for (2, 2)-
DPFs [14], and its structural properties. This design is the most efficient DPF con-
struction currently available, producing keys of size 𝑛(𝜆+2) bits where 𝑛 is the input
size in bits and 𝜆 is the security parameter.

2.8 Private information retrieval (PIR)

PIR is a cryptographic primitive which enables a reader to retrieve data from an
untrusted database server or servers without revealing what data they fetched [18].
A closely related idea is PIR-writing, where data is obliviously written into a database
held by untrusted servers without revealing what data was written or where it was
written.

2.8.1 Private information retrieval (PIR) from selection

vectors

As their name hints, selection vectors are useful for selecting items from a list. For
example, consider a database ®𝑃 . By encoding this database as a vector and taking
an inner product with ®𝑒 𝑗 , we find that ⟨®𝑒 𝑗 , ®𝑃⟩ = 𝑃 𝑗 , where 𝑃 𝑗 is the 𝑗 th element of
®𝑃 [18]. In order to keep the data being written private from the servers holding
the database, the selection vector ®𝑒 𝑗 can be secret shared into multiple vectors
[®𝑒 𝑗 ]0, [®𝑒 𝑗 ]1, . . . , [®𝑒 𝑗 ]ℓ−1 such that ®𝑒 𝑗 = [®𝑒 𝑗 ]0 + [®𝑒 𝑗 ]1 + . . . + [®𝑒 𝑗 ]ℓ−1. The two server
version of this protocol is shown in Figure 2.1 where the client is denoted as 𝐶 and
the two servers are 𝑆0 and 𝑆1.
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𝑪

[®𝑒 𝑗 ]0, [®𝑒 𝑗 ]1

𝑺0

[ ®𝑃 𝑗 ]0 = ⟨[®𝑒 𝑗 ]0, ®𝑃⟩

®𝑃

𝑺1

[ ®𝑃 𝑗 ]1 = ⟨[®𝑒 𝑗 ]1, ®𝑃⟩

®𝑃[®𝑒 𝑗] 0

[ ®𝑃 𝑗] 0

[®𝑒𝑗 ]1

[ ®𝑃
𝑗 ]1

Figure 2.1: A two server information theoretic secure PIR protocol using selection
vectors.

Since the selection vector ®𝑒 𝑗 contains exactly one entry with the value one, and
all other entries have the value zero, we know that [ ®𝑃 𝑗 ]0 and [ ®𝑃 𝑗 ]1 in Figure 2.1 sum
to zero at all indices except 𝑗 , where they sum to one. Therefore, the inner products
[ ®𝑃 𝑗 ]0 = ⟨[®𝑒 𝑗 ]0, ®𝑃⟩ and [ ®𝑃 𝑗 ]1 = ⟨[®𝑒 𝑗 ]1, ®𝑃⟩ sum to [ ®𝑃 𝑗 ]0 + [ ®𝑃 𝑗 ]1 = ⟨[®𝑒 𝑗 ]0, ®𝑃⟩ + ⟨[®𝑒 𝑗 ]1, ®𝑃⟩ =
⟨®𝑒 𝑗 , ®𝑃⟩ = ®𝑃 𝑗 . Thus, the result returned by the protocol in Figure 2.1 is [ ®𝑃 𝑗 ]0+[ ®𝑃 𝑗 ]1 = ®𝑃 𝑗 ,
the 𝑗 th element in ®𝑃 .

Additionally, if ®𝑒 𝑗 is XOR shared, rather than being additively shared, into ®𝑒 𝑗 =
L®𝑒 𝑗M0 ⊕ L®𝑒 𝑗M1 ⊕ . . . ⊕ L®𝑒 𝑗Mℓ−1 then the same protocol can be performed except using
XOR instead of addition. This includes the inner product of ⟨L®𝑒 𝑗M𝑖, ®𝑃⟩ which becomes⊕𝑁−1

𝑘=0 L®𝑒 𝑗M𝑖,𝑘 · ®𝑃𝑘 when using XOR. The same logic used in the additive sharing setting
continues to apply, so, when using XOR shares, the result becomes L ®𝑃 𝑗M0 ⊕ L ®𝑃 𝑗M1 =
®𝑃 𝑗 .

Additionally, since each share of the selection vector is random, the sharing is
information theoretically secure. As a result, the overall protocol has information
theoretic security.

PIR example

Consider a toy example of a PIR system in which there are two servers 𝑆0 and 𝑆1. Let
the database held by these servers be the vector containing 𝑁 = 4 bitstrings

®𝐷 =
(
101010 001100 000111 110011

)
Suppose that a client wants to retrieve the value at index 𝑗 = 0, which we know to
be 101010. The client can then generate XOR shares [®𝑒 𝑗 ]0 and [®𝑒 𝑗 ]1 of ®𝑒 𝑗 , for example
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we use
[®𝑒 𝑗 ]0 =

(
1 0 1 1

)
[®𝑒 𝑗 ]1 =

(
0 0 1 1

)
The client proceeds to send [®𝑒 𝑗 ]0 to 𝑆0 and [®𝑒 𝑗 ]1 to 𝑆1. 𝑆0 then computes the inner

product of [®𝑒 𝑗 ]0 and ®𝐷 , which gives us

L ®𝑃 𝑗M0 = 101010·1 ⊕ 001100·0 ⊕ 000111·1 ⊕ 110011·1
= 101010 ⊕ 000111 ⊕ 110011

= 011110

Similarly, 𝑆1 computes the inner product of [®𝑒 𝑗 ]1 and ®𝐷 , which gives us

L ®𝑃 𝑗M1 = 101010·0 ⊕ 001100·0 ⊕ 000111·1 ⊕ 110011·1
= 000111 ⊕ 110011

= 110100

When the client receives L ®𝑃 𝑗M0 and L ®𝑃 𝑗M1 from the servers, it can compute L ®𝑃 𝑗M0 ⊕
L ®𝑃 𝑗M1 = 011110 ⊕ 110100 = 101010, which is the bitstring stored at index 𝑗 in the
database ®𝐷 .

2.8.2 DPF-based PIR

One of the earliest proposed applications for DPFs is two-server PIR [29]. As dis-
cussed in Section 2.8.1, PIR is the problem of retrieving an entry from a database
without revealing which entry was accessed.

The selection vector-based PIR protocol shown in Figure 2.1 can easily be con-
verted to use DPFs for PIR in place of selection vectors. To do this, the generation
of the vectors [®𝑒 𝑗 ]0 and [®𝑒 𝑗 ]1 is removed. Instead, a DPF key pair (J®𝑒 𝑗K0, J®𝑒 𝑗K1) ←
Gen(1𝜆, 𝑁 ; 𝑗) is generated. DPF key J®𝑒 𝑗K𝑖 is then sent to server 𝑆𝑖 in place of the
vector [®𝑒 𝑗 ]𝑖 . When the server receives the DPF key, it performs an evaluation of
the DPF at all 𝑁 points within its domain producing the vector, [®𝑒 𝑗 ]𝑖 such that
[®𝑒 𝑗 ]0 ⊕ [®𝑒 𝑗 ]1 = ®𝑒 𝑗 exactly like the query vectors from Figure 2.1. The server then
calculates the inner product [ ®𝑃 𝑗 ]𝑖 = ⟨[®𝑒 𝑗 ]𝑖, ®𝑃⟩, as in the selection vector-based PIR
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protocol. The client then receives the response shares which again have the property
that [ ®𝑃 𝑗 ]0 ⊕ [ ®𝑃 𝑗 ]1 = ®𝑃 𝑗 , producing the desired output.

The process of evaluating a DPF at all 𝑁 points within its domain is referred to as
a full-domain evaluation. The naive method for performing a full domain evaluation
is to simply iterate through all 𝑁 values in the domain, and evaluate the DPF at
each point. In the Boyle-Gilboa-Ishai DPF construction, a single evaluation has
time complexity 𝑂 (𝑛), where 𝑛 is the previously defined height of a point function
tree. Thus, the naive method requires 𝑂 (𝑛𝑁 ) time. As will be discussed in more
detail in Section 3.2, the Boyle-Gilboa-Ishai DPF construction is based on the tree
structure of a point function. This allows for several optimizations in the full-domain
evaluation which were proposed in [14]. The first optimization is to notice that
each 𝑘-bit leaf only needs to be computed once to get all 𝑘 inputs that fall within
that leaf this reduces the time complexity to 𝑂 (𝑛2𝑛). The second optimization takes
this idea even further and only calculates each node in the point function tree once.
This reduces the time complexity to 𝑂 (2𝑛), since there are 2𝑛 − 1 nodes in the point
function tree.

Using a DPF in place of a secret shared vector means that this protocol is no
longer information-theoretically secure, as DPFs are rely on the mild computational
assumption of the existence of a one-way function rather than on information-
theoretic assumptions. However, the use of DPFs also significantly reduces the
communication cost from 𝑁 = 2𝑛 bits sent to each server down to 𝑛(𝜆 + 2) bits sent
to each server, when using the most space efficient logarithmic-size DPF construction
from Boyle et al. [14].

2.8.3 DPFs for private writing

Another application proposed for DPFs is PIR-writing, where a client privately
writes to a secret shared database [29]. In this application, the domain is Z𝑁 , and
the database 𝐷 is secret shared into L𝐷M0 and L𝐷M1. The share L𝐷M𝑏 is held by
server 𝑆𝑏 , for 𝑏 ∈ {0, 1}. A client wanting to write an value 𝑣 ∈ Z𝑚2 , where 𝑚
is the bitlength of entries in 𝐷 , to location 𝑖 can then generate a DPF key pair
(J(𝑖, 𝑣)K0, J(𝑖, 𝑣)K1) ← Gen(1𝜆,Z𝑁 ,Z𝑚2 ; 𝑖, 𝑣). In this case, the DPF outputs are the
same size as the entries in the database. The key J(𝑖, 𝑣)K𝑏 is then sent to server
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𝑆𝑏 . Upon receiving the key, server 𝑆𝑏 evaluates J(𝑖, 𝑣)K𝑏 across its whole domain
expanding it into the vector L𝑑M𝑏 , where L𝑑M0 ⊕ L𝑑M1 = 𝑑 the vector with 𝑣 at location
𝑖 and zero at all other locations, as required for the output of a DPF. Server 𝑆𝑏 then
updates its database share to be L𝐷 ′M𝑏 = L𝐷M𝑏 ⊕ L𝑑M𝑏 . When the plaintext of the
database is reconstructed, the result is 𝐷 ′ = 𝐷 ⊕ 𝑑 which will write the value 𝑣 to
index 𝑖 as required.

To prove the correctness of the write, consider an arbitrarily selected index
𝑘 ∈ Z𝑁 . We will denote the 𝑘th entry in L𝑑M𝑏 as L𝑑𝑘M𝑏 . Similarly, the 𝑘th entry in L𝐷M𝑏
will be denoted as L𝐷𝑘M𝑏 . Obviously, the plaintexts corresponding to these shares are
𝑑𝑘 = L𝑑𝑘M0 ⊕ L𝑑𝑘M1 and 𝐷𝑘 = L𝐷𝑘M0 ⊕ L𝐷𝑘M1, the existing 𝑘th value in 𝐷 . Now, there
are two cases to consider.

𝒌 = 𝒊: In this case, the definition of a DPF requires 𝑣 = 𝑑𝑘 . When the write is
performed, the 𝑘th element in L𝐷 ′M𝑏 is L𝑑𝑘M𝑏 ⊕ L𝐷𝑘M𝑏 . Reconstructing the 𝑘th
element of 𝐷 ′ gives us

(L𝑑𝑘M0 ⊕ L𝐷𝑘M0) ⊕ (L𝑑𝑘M1 ⊕ L𝐷𝑘M1)
= L𝑑𝑘M0 ⊕ L𝑑𝑘M1 ⊕ L𝐷𝑘M0 ⊕ L𝐷𝑘M1 = 𝑑𝑘 ⊕ 𝐷𝑘

= 𝑣 ⊕ 𝐷𝑘
If no prior value has been written at index 𝑘 , then 𝐷𝑘 = 0, and the plaintext
value is 𝑣 . Similarly, if a value 𝑢 has already been written to index 𝑘 , we have
𝐷𝑘 = 𝑢, so the plaintext entry is 𝑣 ⊕ 𝑢. This is exactly what we expect for the
index being written to, so we can conclude that the message has been written
at the desired index 𝑖 .

𝒌 ≠ 𝒊: Here, the definition of a DPF tells us that 𝑑𝑘 = 0. Reconstructing the 𝑘th
element of 𝐷 ′ gives us

(L𝑑𝑘M0 ⊕ L𝐷𝑘M0) ⊕ (L𝑑𝑘M1 ⊕ L𝐷𝑘M1)
= L𝑑𝑘M0 ⊕ L𝑑𝑘M1 ⊕ L𝐷𝑘M0 ⊕ L𝐷𝑘M1 = 𝑑𝑘 ⊕ 𝐷𝑘

= 0 ⊕ 𝐷𝑘
= 𝐷𝑘

Thus, the plaintext forms of all database entries is the same as it was prior to
the write.
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From these two cases, it is clear that the described DPF-based PIR-writing procedure
will write the desired value 𝑣 to the 𝑘th location in the database without changing
the values written at any other location in the database.

If a prior request has written a value 𝑢 to the index 𝑖 where the value 𝑣 is being
written, the entry at that index will become corrupted and contain the value 𝑢 ⊕ 𝑣 .
In order to prevent this, most PIR writing systems first perform a query to see if any
data has already been written to that entry. If an existing value 𝑢 has already been
written, the writer can either write to a different location or perform a write with a
value of 𝑣 ⊕ 𝑢 resulting in the value 𝑣 = (𝑣 ⊕ 𝑢) ⊕ 𝑢 being written at index 𝑖 .

2.9 LowMC block cipher

LowMC [1] is a block cipher specially designed for secure computation settings, such
as MPC protocols based on linear secret sharing, fully homomorphic encryption, and
ZKPoKs. In such applications, linear operations are generally regarded as “free”, while
non-linear operations (e.g., the multiplication of two or more unknowns) are costly;
thus, LowMC strives to balance multiplicative complexity and depth on one hand
with concrete security on the other. In the context of (2 + 1)-party computation (and
associated MPC-in-the-head), multiplicative complexity dictates communication cost
(transcript size) while multiplicative depth dictates round complexity (dependency-
chain length for the verifier). Several tuning knobs allow protocol designers to tailor
LowMC’s performance for an intended application. This flexibility and focus on
efficient MPC implementation makes LowMC extremely valuable for analyzing and
modifying DPF keys in MPC. In particular, implementations of the Boyle-Gilboa
-Ishai DPF construction which use LowMC to construct their length-doubling PRGs
can be more efficiently processed in an MPC setting. This is especially important for
MPC or MPC-in-the-head verification, evaluation, or generation of DPF keys.
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Chapter 3

Point function trees and the

Boyle-Gilboa-Ishai DPF

construction

In this chapter we introduce the concept of a point function tree. We then explain
how this concept forms the basis of the Boyle-Gilboa-Ishai (BGI) DPF construction,
which is the most efficient DPF construction currently available.

3.1 Point function trees

Consider the 𝑖th binary point function, P𝑖 , on Z𝑛 . If we suppose, that 𝑁 = 2𝑛+𝑘 for
some non-negative integers 𝑛 and 𝑘 , then the 𝑖th point function on Z𝑁 has a natural
representation as a full binary tree of height 𝑛 whose 2𝑛 leaf nodes partition ®𝑒𝑖 into
𝜆-bit segments, where 𝜆 = 2𝑘 . Figure 3.1 illustrates this representation for the 45th
point function on Z23+3.

This tree structure can be extended to work with generalized point functions.
Consider the generalized point function P𝑥,𝑦 , where the outputs are represented as
ℓ-bit values. Given that 𝑁 = 2𝑛+𝑘 , the tree height continues to be 𝑛. However, each
of the 2𝑛 leaves now has a bitlength of 𝜆 = ℓ ·2𝑘 . These leaves partition the vector
𝑦·®𝑒𝑖 into 2𝑛 length 2𝑘 vectors where each entry is ℓ bits in size.
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In both the binary and generalized forms of the point function tree, the parameter
𝑘 can be set to 0 in order to make each leaf node in the tree correspond to one output
of the point function.

The above-described tree structure is the Boyle-Gilboa-Ishai DPF construction
which we discuss in Section 3.2. Before discussing the details of this construction,
we will outline the critical concepts and terminology for point function trees.

3.1.1 0/1-leaves, 0/1-nodes, and 1-paths

Let 𝐵
(
P𝑥,𝑦

)
denote the height-𝑛 binary-tree representation of a point function on

Z𝑁 with a distinguished point (𝑥,𝑦). We assign a discrete “type” to each node of
𝐵
(
P𝑥,𝑦

)
based on its pedigree. This taxonomy divides nodes into three types and

also accounts for the cases where 𝑘 > 0, so that each leaf node captures the image of
2𝑘 > 1 consecutive inputs to P𝑥,𝑦 . This taxonomy applies to the tree representation
of both binary and general point functions.

Definition 5. A leaf node is called a 1-leaf if it holds a 𝜆-bit scaled selection vector;
it is called a 0-leaf if it holds a 𝜆-bit zero vector.

Notice that, for every point function P𝑥,𝑦 , precisely one leaf node of 𝐵
(
P𝑥,𝑦

)
is

a 1-leaf and all others are 0-leaves. We colour the sole 1-leaf in Figure 3.1 (and,
likewise, in Figure 3.2) red (i.e.,

) while all 0-leaves are green (i.e.,

).

The notions of 0-leaves and 1-leaves have natural, recursively defined analogues
for interior nodes.

Definition 6. An interior node is a 0-node if its children are both 0-leaves or both
0-nodes; it is a 1-node if its children are either (i) a 1-leaf and a 0-leaf or (ii) a 1-node
and a 0-node. The node is defined as a 2-node if either both of its children are 1-nodes
or 1-leaves, or if at least one of the children is a 2-node.

In Figure 3.1, we use light shading (i.e., ) to indicate an interior node is a 0-node
and dark shading (i.e., ) to indicate that it is a 1-node. Notice that, by construction,
there are no 2-nodes in a well-formed point function tree. At the same time, every
leaf node descendant from any 0-node is a 0-leaf whereas exactly one leaf node
descendant from any 1-node is a 1-leaf (and all others are 0-leaves). From here, we
can further define the notion of a 1-path as follows.
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Definition 7. A sequence of edges in 𝐵
(
P𝑥,𝑦

)
is a 1-path if it originates at a 1-node

and terminates at the sole 1-leaf descendent from that 1-node.
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Figure 3.1: Binary-tree representation for the 45th point function on Z23+3. Each leaf
holds either a zero vector or a selection vector of length 23.

Notice that every node along a 1-path is either a 1-node or a 1-leaf. An immediate
consequence of Definitions 5–7 follows in Theorem 1.

Theorem 1. The following three characterizations are all equivalent: A full binary

tree of height 𝑛 represents a point function if and only if

1. exactly one leaf is a 1-leaf and all others are 0-leaves;

2. its root is a 1-node; or

3. it contains a 1-path of height 𝑛.

Consequent to Bullet 3 of Theorem 1, the tree 𝐵
(
P𝑥,𝑦

)
has exactly one 1-node at

each non-leaf level (and exactly one 1-leaf at the leaf level).

3.2 Boyle-Gilboa-Ishai DPF construction

The BGI DPF construction is the most efficient DPF design currently available. In
order to reduce evaluation time and key size to be logarithmic in the domain size,
BGI DPFs leverage the structure of point function trees. This is combined with the
following elementary observation about pseudorandom generators (PRGs) seeded
with (pseudo)randomly-sampled XOR sharings.
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Figure 1: The BGI tree shares induced by J®𝑒27K over Z23+3.

1

Figure 3.2: The BGI tree shares induced by J®𝑒27K over Z23+3.

Observation 1 (PRGs preserve “zeroness”). Let {G𝜆}𝜆∈N be a length-doubling PRG
family and consider (𝐿, 𝑅) ← G𝜆 ( [𝑧]0) ⊕ G𝜆 ( [𝑧]1). If 𝑧 = 0𝜆 , then 𝐿 = 𝑅 = 0𝜆 ;
otherwise, if 𝑧 ≠ 0𝜆 , then both 𝐿 ≠ 0𝜆 and 𝑅 ≠ 0𝜆 with a probability overwhelming in 𝜆.

In other words, either both halves of the output are equal (because the inputs
were equal), or neither half is equal (because the inputs were unequal)—at least with
a very high probability. The idea from here is to use G𝜆 as a black box to build what
we call a pseudorandom traversal function, wherein it is easy to force equality for a
chosen half of the output while ensuring that “inadvertent equalities” in the other
half remain cryptographically rare.

Definition 8. Let {G𝜆}𝜆∈N be a length-doubling PRG family. The pseudorandom
traversal function family from {G𝜆}𝜆∈N is the infinite family {G̃𝜆}𝜆∈N of functions
G̃𝜆 : Z 𝜆−12 × Z2 ×

(
Z 𝜆−12 × (Z2)2

) → Z 𝜆2 × Z 𝜆2 such that

G̃𝜆 (𝑠
𝜆 − 1 bits

,
1 bit

advice, cw
(𝜆 − 1) + 2 bits

)B
{
G𝜆 (𝑠 | |0) if advice = 0, and
G𝜆 (𝑠 | |0)⊕ (cw𝐿, cw𝑅) if advice = 1,

where cw𝐿 B cw | |𝑡𝐿 and cw𝑅 B cw | |𝑡𝑅 for cw = (cw, 𝑡𝐿, 𝑡𝑅).

An ordered couple ((𝑠0, advice0, cw), (𝑠1, advice1, cw)) of G̃𝜆 inputs that share a
common cw term is called an input pair. Intuitively, the advice0 and advice1 bits of
an input pair indicate whether or not to “correct” the output of G𝜆 (via perturbing it
by cw) before returning it from G̃𝜆 when the PRG seed is 𝑠0 or 𝑠1, respectively.
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Taxonomy of input pairs: Every input pair has one of four types; namely, setting
(𝐿0, 𝑅0) ← G̃𝜆 (𝑠0, advice0, cw) and (𝐿1, 𝑅1) ← G̃𝜆 (𝑠1, advice1, cw), the pair is

1. a 0-pair if both 𝐿0 = 𝐿1 and 𝑅0 = 𝑅1;

2. an 𝐿-pair if 𝐿0 ≠ 𝐿1 while 𝑅0 = 𝑅1;

3. an 𝑅-pair if 𝐿0 = 𝐿1 while 𝑅0 ≠ 𝑅1; or

4. a 2-pair if neither 𝐿0 = 𝐿1 nor 𝑅0 = 𝑅1.

When the 𝐿- versus 𝑅- “handedness” of a pair is irrelevant to the discussion (or is a
secret), we refer to 𝐿-pairs and 𝑅-pairs alike as 1-pairs. A BGI DPF tree is made up
of 0-pairs and 1-pairs. 2-pairs are explicitly prevented in the DPF’s construction in
order to ensure the DPF is well-formed.

At a high level, the BGI construction uses pseudorandom traversal function fam-
ilies to construct concise, XOR-shared binary-tree representations of point functions.
To see how this works, we first examine how to construct 0- and 1-pairs for a given
G̃𝜆.

To construct both 0-pairs and 1-pairs, we define the following terminology. We
define the PRG outputs on the given seeds to be (𝐿0, 𝑅0) ← G𝜆 (𝑠0 | |0) and (𝐿1, 𝑅1) ←
G𝜆 (𝑠1 | |0). These can be parsed as, 𝐿𝑏 = (𝐿𝑏, 𝑡𝐿𝑏 ) ∈ Z 𝜆−12 × Z2 and 𝑅𝑏 = (𝑅𝑏, 𝑡𝑅𝑏 ) ∈
Z 𝜆−12 × Z2 for 𝑏 ∈ {0, 1}. We also define 𝑅 B 𝑅0 ⊕ 𝑅1, and 𝐿 B 𝐿0 ⊕ 𝐿1, which are
parsed as 𝐿 = (𝐿̃, 𝑡𝐿) ∈ Z 𝜆−12 × Z2 and 𝑅 = (𝑅̃, 𝑡𝑅) ∈ Z 𝜆−12 × Z2. This also implies that
𝑡𝐿 = 𝑡𝐿0 ⊕ 𝑡𝐿1 and 𝑡𝑅 = 𝑡𝑅0 ⊕ 𝑡𝑅1 .

3.2.1 Constructing 0-pairs

Constructing a 0-pair is trivial: Choose (𝑠0, advice0, cw) arbitrarily, and then set
𝑠1 B 𝑠0 and advice1 B advice0. A straightforward calculation confirms that the
resulting input pair is indeed a 0-pair.

Suppose that cw has been chosen arbitrarily, and that 𝑠0, 𝑠1, advice0, and advice1
have all been chosen as specified. Now, we know that (𝐿0, 𝑅0) ← G̃𝜆 (𝑠0, advice0, cw)
and (𝐿1, 𝑅1) ← G̃𝜆 (𝑠1, advice1, cw). We are given that 𝑠0 = 𝑠1 and advice0 = advice1.
Thus,

G̃𝜆 (𝑠0, advice0, cw) = G̃𝜆 (𝑠1, advice1, cw)
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Since G̃𝜆 is deterministic. Therefore 𝐿0 = 𝐿1 and 𝑅0 = 𝑅1, which is the definition of a
0-pair. As a result, 𝑡𝐿0 = 𝑡𝐿1 which implies that 𝑡𝐿 = 𝑡𝐿0 ⊕ 𝑡𝐿1 = 𝑡𝐿0 ⊕ 𝑡𝐿0 = 0, and by
the same reasoning 𝑡𝑅 = 0.

3.2.2 Constructing 1-pairs

To construct a 1-pair, choose 𝑠0, 𝑠1, and advice0 arbitrarily subject to 𝑠0 ≠ 𝑠1, compute
(𝐿0, 𝑅0) ← G𝜆 (𝑠0 | |0) and (𝐿1, 𝑅1) ← G𝜆 (𝑠1 | |0), set advice1 B 1⊕ advice0, 𝑅 B 𝑅0 ⊕𝑅1,
and 𝐿 B 𝐿0 ⊕ 𝐿1, and then parse 𝐿 and 𝑅 as specified previously.

To make an 𝐿-pair, set

cw B (𝑅̃, 1 ⊕ 𝑡𝐿, 𝑡𝑅) ; (3.1)

to instead make an 𝑅-pair, set

cw B (𝐿̃, 𝑡𝐿, 1 ⊕ 𝑡𝑅) . (3.2)

A slightly more involved, albeit fully mechanical, calculation confirms that in both
cases the resulting input pair is indeed a 1-pair of the desired handedness.

In this calculation, we will consider the case of a 𝐿-pair. The calculations for a
𝑅-pair is completely symmetric. Now, since advice0 = advice1 ⊕ 1, we can assume
without loss of generality that advice0 = 0 and advice1 = 1. We then have that
𝐿0 = 𝐿0 ⊕ cw𝐿 and 𝐿1 = 𝐿1. Similarly, 𝑅0 = 𝑅0 ⊕ cw𝑅 and 𝑅1 = 𝑅1. This gives the
following for the right child

𝑅0 = 𝑅0 ⊕ cw𝑅

= 𝑅0 ⊕ (cw | |𝑡𝑅)
= 𝑅0 ⊕ (𝑅̃ | |𝑡𝑅)
= (𝑅0 | |𝑡𝑅0) ⊕ (𝑅̃ | |𝑡𝑅)
= (𝑅0 ⊕ 𝑅̃) | | (𝑡𝑅0 ⊕ 𝑡𝑅)
= (𝑅0 ⊕ (𝑅0 ⊕ 𝑅1)) | | (𝑡𝑅0 ⊕ (𝑡𝑅0 ⊕ 𝑡𝑅1))
= 𝑅1 | |𝑡𝑅1
= 𝑅1

This implies that 𝑡𝑅0 = 𝑡𝑅1 meaning that 𝑡𝑅 = 𝑡𝑅0 ⊕ 𝑡𝑅1 = 𝑡𝑅0 ⊕ 𝑡𝑅0 = 0.
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For the left child, the result is

𝐿0 = 𝐿0 ⊕ cw𝐿

= 𝐿0 ⊕ (cw | |𝑡𝐿)
= 𝐿0 ⊕ (𝑅̃ | |𝑡𝐿)
= (𝐿0 | |𝑡𝐿0) ⊕ (𝑅̃ | |𝑡𝐿)
= (𝐿0 ⊕ 𝑅̃) | | (𝑡𝐿0 ⊕ 𝑡𝐿)
= (𝐿0 ⊕ 𝑅̃) | | (𝑡𝐿0 ⊕ (1 ⊕ 𝑡𝐿))
= (𝐿0 ⊕ (𝑅0 ⊕ 𝑅1)) | | (𝑡𝐿0 ⊕ (1 ⊕ 𝑡𝐿0 ⊕ 𝑡𝐿1))
= (𝐿0 ⊕ (𝑅0 ⊕ 𝑅1)) | | (1 ⊕ 𝑡𝐿1)

Now, 𝐿1 = 𝐿1 = (𝐿1, 𝑡𝐿1). In order to have 𝐿0 = 𝐿1, we must have 𝐿1 = 𝐿0 ⊕ (𝑅0 ⊕ 𝑅1).
However, 𝐿1 is pseudorandom by its definition, and 𝐿0 ⊕ (𝑅0 ⊕ 𝑅1) is pseudorandom,
since it is the XOR of three pseudorandom values. Thus, the probability that 𝐿1 =
𝐿0 ⊕ (𝑅0 ⊕𝑅1) is 1

2𝜆−1
. Since 2𝜆−1 is an exponential function, 𝜆𝑎 ∈ o(2𝜆−1) for all 𝑎 ∈ R+.

As a result, the probability 1
2𝜆−1

is negligible in the security parameter 𝜆. At the same
time, 𝑡𝐿1 ≠ 1 ⊕ 𝑡𝐿1 = 𝑡𝐿0 by definition. Thus, 𝑡𝐿 = 𝑡𝐿1 ⊕ (1 ⊕ 𝑡𝐿1) = 1.

3.2.3 Chaining 1-pairs

Notice that 0-pairs are agnostic to the values of cw and advice𝑏 (provided advice1 =

advice0 holds), whereas 1-pairs require a very specific choice for cw (i.e., one that
depends on 𝑠0, 𝑠1, and the desired handedness) and also that advice0 = 1 ⊕ advice1.
We recast part of this as a formal observation, to be used in the next chapter.

Observation 2. If ((𝑠0, advice0, cw), (𝑠1, advice1, cw)) is a 𝑏-pair for 𝑏 ∈ {0, 1}, then
advice0 ⊕ advice1 = 𝑏.

Equations (3.1) and (3.2) together ensure the nonzero half of G̃𝜆 (𝑠0, advice0, cw) ⊕
G̃𝜆 (𝑠1, advice1, cw) has a 1 as its rightmost bit so that parsing that half of G̃𝜆 (𝑠0,
advice0, cw) and G̃𝜆 (𝑠1, advice1, cw) each as Z𝜆−12 ×Z2 elements yields a pair of values
suitable for constructing another 1-pair. This enables the natural construction of
1-pair chains consisting of the initial (𝑠𝑏, advice𝑏) values linked by an array of cw
terms.
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Chaining 1-pairs example

Consider the bitstring 𝑥 = 101. We want to build a 1-pair chain that corresponds to
this bitstring.

• Select the initial seeds, 𝑠00 and 𝑠01 , and advice bit values, advice0 and advice1, as
specified in Section 3.2.2.

• We then construct cw0 so that the first pair is a 𝑅-pair.

• Now, the resulting right children are 𝑅1
0 ≠ 𝑅

1
1 .

• Parse the right children as 𝑅1
0 = (𝑠10, advice10) and 𝑅1

1 = (𝑠11, advice11).

• As shown in Section 3.2.2, 𝑠10 ≠ 𝑠11 and advice10 = 1 ⊕ advice11.

• Since the seeds and advice bits meet the requirements for constructing a 1-pair,
construct cw1 so that the resulting pair is a 𝐿-pair.

• Now, the resulting left children are 𝐿20 ≠ 𝐿21 .

• Parse the left children as 𝐿20 = (𝑠20, advice20) and 𝐿21 = (𝑠21, advice21).

• As shown in Section 3.2.2, 𝑠20 ≠ 𝑠21 and advice20 = 1 ⊕ advice21.

• Since the seeds and advice bits meet the requirements for constructing a 1-pair,
construct cw2 so that the resulting pair is a 𝑅-pair.

• Now, the resulting right children are 𝑅3
0 ≠ 𝑅

3
1 , which can be used as seeds for

later rounds of 1-pair chaining if needed.

This demonstrates how a chain of 1-pairs can be constructed in a chain based upon
a specified point 𝑥 .

BGI share generation

At a high level, the BGI construction assembles a chain of 1-pairs whose handedness
reflect the leftmost bits of the distinguished input. We note the similarities between
the construction of this chain and the definition of the 1-path in the corresponding
point-function tree (cf. Theorem 1). Suppose the distinguished point is (𝑥,𝑦) where
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𝑥 ∈ [0 . . 𝑁 ) and 𝑦 ∈ [0 . . 2ℓ), given 𝑁 = 2𝑛+𝑘 and 𝜆 = ℓ ·2𝑘 . The chain begins with a
uniformly random 𝐿-pair if the leftmost bit of 𝑥 is 0 and a uniformly random 𝑅-pair
if it is 1; the next link is an 𝐿-pair if the second-leftmost bit of 𝑥 is 0 and an 𝑅-pair if
it is 1, and so on until the chain accounts for each of the leftmost 𝑛 bits of 𝑖 .

For the remaining 𝑘 bits, let 𝑥 ′ = 𝑥 mod 2𝑘 and let 𝑦·®𝑒𝑥 ′ be the scaled selection
vector of length 2𝑘 in which the 𝑥 ′th entry is the ℓ-bit value 𝑦 and all other entries
are ℓ-bit zero values. Suppose (𝐿0, 𝑅0) and (𝐿1, 𝑅1) are output by the last 1-pair in
the chain. If that last pair is an 𝐿-pair, then output leaf B 𝐿0 ⊕ 𝐿1 ⊕ 𝑦·®𝑒𝑥 ′ ; otherwise,
if it is an 𝑅-pair, then output leaf B 𝑅0 ⊕ 𝑅1 ⊕ 𝑦·®𝑒𝑥 ′ .

Since the outputs (𝐿0, 𝑅0) and (𝐿1, 𝑅1) are produced as the output of a PRG with
security parameter 𝜆, the size of a leaf node is 𝜆. In case the final output needs to be
larger, a final PRG can be used before the leaf correction is applied. In this case, the
leaf layer correction is leaf B 𝑆 (𝑉0) ⊕ 𝑆 (𝑉1) ⊕ 𝑦·®𝑒𝑥 ′ , where 𝑉0 and 𝑉1 are the shares
of the leaf 1-pair in the DPF tree and 𝑆 : Z𝜆 → Z2ℓ is a PRG which produces outputs
of the necessary length.

Each DPF share J(𝑥,𝑦)K𝑏 then consists of (i) the 𝑏th share of the 1-pair chain
(i.e., (𝑠𝑏, advice𝑏) and the array of 𝑛 correction terms) alongside (ii) the final leaf
value.

From 1-pair chains to BGI tree shares

Owing to the pseudorandomness of G𝜆, it is computationally infeasible for a share-
holder knowing only one of J(𝑥,𝑦)K0 or J(𝑥,𝑦)K1 to deduce the sequence of 𝐿- versus
𝑅-ward traversals (i.e., the leftmost bits of 𝑥 ) reflected in the 1-pair chain. Neverthe-
less, such a shareholder can “evaluate” the chain for any of the 2𝑛 distinct length-𝑛
traversal sequences. Consequently, we can think of the 1-pair chain as implicitly
defining a (componentwise-)XOR-shared full binary tree of height 𝑛, which we refer
to as the BGI tree induced by J(𝑥,𝑦)K. For a binary DPF this is referred to as the BGI
tree induced by J®𝑒𝑥K.

If ever the traversal sequence diverges from the binary representation of the
distinguished input 𝑥 , then, by definition, it transits (one share of) a 0-pair. Conse-
quently, if both shareholders evaluate their respective shares on that same sequence,
then the pseudorandom values they produce must coincide from that 0-pair onward—up
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to and including the leaf node. In particular, we have just argued that (i) correspond-
ing leaves not at the end of the 1-pair chain hold XOR-shares of 0𝜆; furthermore, due
to the way the value leaf was constructed, (ii) corresponding leaves that are at the
end of the 1-pair chain hold XOR-shares of 𝑦·®𝑒𝑥 ′ , with 𝑥 ′ = 𝑥 mod 2𝑘 capturing the
𝑘 rightmost bits of the distinguished input 𝑥 .

Observation 3. Let (L𝐷M0, L𝐷M1) be the BGI tree shares induced by J(𝑥,𝑦)K. If corre-
sponding nodes in L𝐷M0 and L𝐷M1 form a 0-pair, then their reconstructed counterpart

in 𝐷 is a 0-node (or a 0-leaf); likewise, if they form a 1-pair, then their reconstructed

counterpart in 𝐷 is a 1-node (or a 1-leaf).

The shareholders can, therefore, “evaluate” their respective DPF shares at any
input 𝑗 ∈ [0 . . 2𝑛+𝑘) to obtain an XOR-sharing LP𝑥,𝑦 ( 𝑗)M by applying G̃𝜆 repeatedly
(with appropriate handedness) until arriving at the leaf, and then extracting the
desired ℓ bits from that leaf.

Figure 3.2 illustrates the BGI tree shares induced by J®𝑒27K over Z23+3. The single
bit set off in a box to the right of each node is that node’s advice bit; edges are
doublestruck (i.e., ‘ ’) if the advice bit of the parent is 1 (a perturbation by cw is
applied) and singlestruck (i.e., ‘’) otherwise (no perturbation by cw is applied). The 1-
pair chain is set off in red . In between the two tree shares, we draw the reconstructed
leaf nodes including the 1-byte substring of ®𝑒𝑥 that each leaf holds.

We conclude this section by asserting that the BGI construction constitutes a
(2, 2)-DPF with 1-bit outputs (cf. Definition 4).

Theorem 2 ([13; Theorem 3.3]). If {G𝜆}𝜆∈N is a length-doubling PRG family, then

the BGI construction is a (2, 2)-DPFs with ℓ-bit outputs. Each DPF share comprises just

𝑛(𝜆 + 2) + log2 |G| ∈ O(lg𝑁 ), where G is the output group. Assuming outputs are ℓ-bit

values, |G| = 2ℓ , so keys are of size (𝑛 + 𝑘)·(𝜆 + 2) + ℓ ∈ O(lg𝑁 ) ∈ O(lg𝑁 ).
In the special case outputs are one bit in length (i.e. ℓ = 1), the key size is reduced

to approximately 𝑛·𝜆 by packing 𝜆 = 2𝑘 DPF outputs into each leaf of the DPF tree [13].

Interested readers can find proof of Theorem 2 and additional details about the
BGI construction in Boyle et al.’s manuscript [13; §3.2.2].
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Chapter 4

Parity-segment trees and DPFs

In this chapter, we introduce the parity-segment tree data structure, and we explore
its relation to the Boyle-Gilboa-Ishai DPF construction.

4.1 Parity-segment trees

A parity-segment tree is a data structure for answering parity queries over the
substrings of a binary string, with a worst-case complexity logarithmic in the bit-
string’s length. That is, given the parity-segment tree 𝑇 (𝑥) for a length-𝑁 bitstring
𝑥 = 𝑥0𝑥1 · · · 𝑥𝑁−1, a parity query for the substring 𝑥 [𝑎 . . 𝑏) of 𝑥 , 0 ≤ 𝑎 < 𝑏 ≤ 𝑁 ,
returns the parity

parity(𝑥 [𝑎 . . 𝑏)) B
⊕

𝑏−1
𝑖=𝑎

𝑥𝑖

with a running time in O(lg𝑁 ).
Constructing the parity-segment tree 𝑇 (𝑥) for a given bitstring 𝑥 is straightfor-

ward, if tedious. For ease of exposition, suppose that 𝑥 has length 𝑁 = 2𝑛+𝑘 for some
nonnegative integers 𝑛 and 𝑘 and that each leaf node represents 𝜆 = 2𝑘 consecutive
bits of 𝑥 . Notice that 𝜆 | 𝑁 by construction.

Given 𝑥 , we construct the tree 𝑇 (𝑥) from the bottom up: To form the base of the
tree, split 𝑥 into 𝑁 / 𝜆 = 2𝑛 many 𝜆-bit substrings and then insert one leaf node for
each of these substrings, storing its parity inside the node. Next, for each successive
pair of leaf nodes, insert a parent and store within it the combined parity of its two
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children. Now repeat this process on each successive pair of parents, and so on, until
a single root emerges (after 𝑛 − 1 recursions). Notice that the parity bit held by any
given node equals the parity of a concatenation over all substrings of 𝑥 associated
with leaves descendant from that node.

It follows easily by inspection that constructing the parity-segment tree 𝑇 (𝑥)
from 𝑥 requires the computation of (𝑁 / 𝜆)-many 𝜆-bit parities (for the leaf nodes)
plus 2𝑛 −1 single-bit XORs (for the interior nodes), giving a total complexity of O(𝑁 )
bit operations; the tree itself occupies 2𝑛+1 − 1 ∈ O(𝑁 / 𝜆) bits.

0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0𝑥 =

001010�001110� 100000� 110111�
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101___ 11
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111___

Figure 4.1: The parity-segment tree for a 64-bit string with 8-bit leaf nodes (i.e.,
𝑁 = 23+3 and 𝜆 = 23).

4.1.1 Computing segment parities

Figure 4.1 shows the parity-segment tree for an arbitrary 64-bit string 𝑥 , which is
written immediately below the tree. In this toy example, each leaf node is associated
with a 1-byte (8-bit) substring—yielding 64/ 8 = 8 leaf nodes in total—and holds the
parity of that substring internally. Likewise, each non-leaf node holds 1 bit indicating
the parity of its immediate descendants. We use light shading (e.g., ) to indicate a
node holds even parity (the bit is 0) and dark shading (e.g., ) to indicate it holds
odd parity (the bit is 1).

Beneath the bitstring, we draw several half-open segments that collectively
partition the bitstring into four contiguous (up to cyclic rotation) substrings, totally
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ordered by their rightmost endpoints. With 0-based indexing, the first (green )
segment ends after bit 10; the second (blue ) segment after bit 14; the third (red )
segment after bit 32; and the fourth (orange ) segment after bit 55.

The diagram also contains several pictorial annotations conveying information
about how the prefix-parity algorithm helps to find the parity of each segment. As
its name suggests, the prefix-parity algorithm computes the parity of each substring
using the parities of prefixes of 𝑥 sharing the same rightmost endpoints as the desired
segments. In this example, it finds each of the prefix parities parity(𝑥 [0 . . 11)),
parity(𝑥 [0 . . 15)), parity(𝑥 [0 . . 33)), and parity(𝑥 [0 . . 56)). A subsequent post-proc-
essing phase exploits the nilpotency of XOR to compute the desired segment parities
from these prefix parities via

parity(green ) = parity(𝑥 [56 . . 64))⊕ parity(𝑥 [0 . . 11))
=
(
parity(𝑥)⊕ parity(𝑥 [0 . . 56)))
⊕ parity(𝑥 [0 . . 11)) ;

parity(blue ) = parity(𝑥 [11 . . 15))
= parity(𝑥 [0 . . 15))⊕ parity(𝑥 [0 . . 11)) ;

parity( red ) = parity(𝑥 [15 . . 33))
= parity(𝑥 [0 . . 33))⊕ parity(𝑥 [0 . . 15)) ; and

parity(orange ) = parity(𝑥 [33 . . 56))
= parity(𝑥 [0 . . 56))⊕ parity(𝑥 [0 . . 33)) .

In the diagram, a node is drawn with a thick coloured outline (e.g., ) if the
prefix-parity algorithm visits that node during the computation of one or more prefix
parities. We employ a memoization (and backtracking) strategy that ensures each
node is visited at most once throughout the computation of all prefix parities; the
outline’s colour indicates which prefix the algorithm is computing when it first visits
that node. The dashed-and-dotted path emanating from the root likewise shows
the traversal order through the tree; we decorate the path with coloured-arrow
dashes (e.g., ) when the traversal is visiting new nodes and with faint gray dots
(e.g., ) when “backtracking” to a previously visited (memoized) node. We place
a thick coloured dot (e.g., ) within a node if the 1-bit parity stored at that node
appears as an operand when computing the prefix parity for the correspondingly
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coloured segment; moreover, we highlight a prefix of the 𝜆-bit substring associated
with a leaf if the parity of that prefix also appears as an operand in the prefix-parity
computation.

The prefix-parity algorithm performs a binary search-like traversal through
𝑇 (𝑥), employing a simple inclusion-exclusion strategy to compute a sequence of
parities of prefixes that alternately over- and undershoot the desired prefix. By
adopting the convention that one always “traverses left” both (i) to arrive at the root
and (ii) to access the substring associated with a leaf node, we obtain the following
procedure:

1. initialize a “running parity” to 0;

2. starting from the root, traverse to the leaf node associated with the rightmost
bit in the prefix;

3. wherever the root-to-leaf path changes directions, update the running parity
by XORing in the parity stored at the node where the change-of-direction
occurs; and

4. finally, XOR in any bits of the prefix that reside in the substring associated
with the leaf node.

As a modest optimization, one can terminate the traversal early if ever the rightmost
endpoint is one bit past the end of the rightmost descendant of the left child of
the node presently being traversed (as in such cases, the running parity is already
guaranteed to be correct).

Annotated C-like pseudocode for the prefix-parity algorithm—incorporating
both the above early-termination optimization as well as the bookkeeping needed for
effective memoization—is shown in Figure 4.2.

Illustrated walkthroughs for Figure 4.1

We strategically chose the segments in Figure 4.1 to illustrate some notable sub-cases,
namely (i) cyclically wrapping segments (green ), (ii) two segments terminating
at the same leaf node (green and blue ), (iii) segments terminating immediately
following a leaf node (orange ), and (iv) the “typical” case where a segment is alone
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1 // Computes the prefix parities for each of the given endpoints
2 //
3 // Parameters:
4 // bound - a sorted list of segment endpoints
5 // T - a parity-segment tree
6 // n,k - depth of tree, lg(bits per leaf)
7 //
8 vector prefix_parities(vector bound, tree T, int n, int k)
9 {
10 vector res = {} // to be populated with prefix parities
11 vector path = {T.root} // memoized current path from the root
12 vector direction = {0} // traversal directions along path
13 // 0 is to the left; 1 is to the right
14 vector parity = {0} // cumulative prefix parity along path
15 vector left = {2**(n-1)} // leftmost-beneath-right-child along path
16 int prev = ~bound[0] // *complement* of first shifted bound;
17 // ensures from=0 in first loop iteration
18

19 for (int i = 0; i < bound.length; i++)
20 {
21 int from = clz(bound[i] ^ prev) // common prefix length
22 int to = n // by default, traverse entire depth
23

24 for (int j = from; j < to; j++) // iterate only over (non-common) suffix
25 {
26 int next_dir = (left[j] <= bound[i]) ? 1 : 0 // going right or left?
27 int next_path = T.traverse(path[j], next_dir) // go that direction
28 int next_parity = (next_dir == direction[j]) // update running parity
29 ? parity[j] // no change
30 : path[j].parity ^ parity[j] // include/exclude
31 int next_left = (next_dir == 1) // update leftmost bit
32 ? left[j] + 2**(64-2-j) // advance right
33 : left[j] - 2**(64-2-j) // unadvance left
34 //^^^^^^^^^^^ <- #bits beneath each child
35

36 path[j+1] = next_path // memoize node along path
37 direction[j+1] = next_dir // memoize direction of traversal
38 left[j+1] = next_left // memoize leftmost-beneath-right-child
39 parity[j+1] = next_parity // memoize cumulative parities
40

41 if (next_left == bound[i]) // early-termination optimization
42 to = j // -> halt traversal at current level
43 } // inner for loop ends
44

45 res[i] = parity[to] // record running prefix-parity
46 if (to == n) // conditionally add partial-leaf parity
47 {
48 string substr = path[n].substr // substring associated with leaf
49 int prefix_len = bound[i] % 2**k // length of prefix to compute
50 res[i] ^= prefix_parity_str(substr, prefix_len)
51 }
52 prev = bound[i] // for computing common prefix length
53 } // outer for loop ends
54 return res // n.b.: *prefix* (not segment) parities!
55 } // prefix_parities

vector path memoizes each node along the path from the root to the
leaf node whose substring contains the bound[i] th bit, sidestepping
the need to revisit any node in the common prefix between bound[i]
and bound[i+1] (and, likewise, between bound[i-1] and bound[i]).
If vector bound is lexicographically sorted, then this is sufficient to
ensure that no edge in the tree is traversed more than once.
Similarly, vector parity memoizes running parities along this
path. Since the “inclusion-exclusion” decisions used to update run-
ning parities depend on traversal direction changes, we also use
vector direction to memoize traversal directions along this path.
Meanwhile, vector left exists to assist in deciding which direction
to go.

int from is the index of the first bit after the common prefix; i.e.,
the point starting from which memoized values reflect prev but not
bound[i] . In the first loop iteration, prev == ~bound[i] , which
ensures that from=0 . On the subsequent iterations, from is set to
clz(bound[i] ^ prev) , the number of leading zeros in the binary rep-
resentation of bound[i] ^ prev (i.e., the number of prefix bits common
to the current and previous bound). int to=n at the start of each loop
iteration, but it may be reduced by the early-terminate optimization on
Lines 41-42.

int next_dir indicates whether to traverse to the right (1) or left
(0), depending on whether parity[j] currently over- or undershoots
path[j] . After traversing in that direction on Line 27, Lines 28-33
compute the next_parity and the next_left . The ternary operator
on lines 28-30 carries forward parity[j] if there was no change in
traversal direction; otherwise, it first “updates” that parity by XORing
in the parity of the node just traversed. All four values are memoized on
Lines 36-39.

If, by serendipity, path[j+1] neither overshoots nor undershoots
bound[i] at this point, then parity[j+1] already equals the desired
parity andwe can break from the inner loop now—even if we haven’t yet
reached a leaf. We break by setting to=j so that Lines 45-51 can easily
determine whether or not we manually broke from the inner loop.

If we did notmanually break from the inner loop, thenwemust complete
the parity computation by XORing in some prefix of the substring in the
leaf node currently stored in path[n] .

Figure 4.2: C-like pseudocode listing for the prefix-parity algorithm (left) with
running commentary (right).

in terminating partway through some leaf (red ). We remark on the implications of
these cases in the algorithm walkthroughs below.

Prefix 1 (green): The first segment ends 3 bits into the second leaf node. Our
algorithm traverses leftward twice to arrive at the parent of that node. Since
the next traversal goes right (a change of direction), it reads the parity bit
(odd) within that parent. After traversing right to the second leaf node, it must
traverse left to access the associated substring; thus, it XORs in that leaf node’s
parity bit (also odd). Finally, it inspects the substring beneath that leaf node,
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Table 4.1: The sequences of prefixes (and associated parities) of 𝑥 considered (account-
ing for memoization) while computing the four prefix parities arising in Figure 4.1.

level green blue red orange

0 𝑥 [0 . . 0) 𝑥 [0 . . 0) 𝑥 [0 . . 64) 𝑥 [0 . . 64)
1 𝑥 [0 . . 0) 𝑥 [0 . . 0) 𝑥 [0 . . 32) 𝑥 [0 . . 64)
2 𝑥 [0 . . 16) 𝑥 [0 . . 16) 𝑥 [0 . . 32) 𝑥 [0 . . 48)
3 𝑥 [0 . . 8) 𝑥 [0 . . 8) 𝑥 [0 . . 32) 𝑥 [0 . . 56)
4 𝑥 [0 . . 11) 𝑥 [0 . . 15) 𝑥 [0 . . 33) —

root

leaf

substring

XORing in the parity of its 3-bit prefix (odd yet again). The resulting parity is
therefore

parity(𝑥 [0 . . 11)) = parity(01001011 10001010) 1

⊕parity(00000000 10001010) ⊕1
⊕parity(00000000 10000000) ⊕1
= parity(01001011 10000000) =1 .

In total, the algorithm visits four nodes (and examines one 𝜆-bit substring) to
compute this prefix parity.

Prefix 2 (blue): The second segment also ends part of the way through the second
leaf; consequently, the algorithm reuses almost the entire first parity com-
putation, merely substituting in a longer substring prefix in the last step. In
total, the algorithm visits zero new nodes (and examines one 𝜆-bit substring)
to compute this prefix parity.

Prefix 3 (red): The third segment extends one bit into the right subtree of the root
(a direction change at the outset). Hence, the algorithm XORs the parity stored
in the root (which captures the parity of the entire string 𝑥 ) together with the
parity stored within the root’s right child (which captures the parity of the
second half of 𝑥), after which it holds the parity of the first half of 𝑥 . For the
remaining bit, it traverses to the leftmost leaf beneath the right child of the
root (which involves no direction changes), and examines the single bit of the
associated substring that is part of the segment. In total, the algorithm visits
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three new nodes (and examines one 𝜆-bit substring) to compute this prefix
parity.

Prefix 4 (orange): The fourth prefix terminates immediately after the substring
in the second-last leaf node. It XORs the memoized 1-bit parity from the root
together with the parity stored within the second-last leaf node and its parent,
after which it holds the desired parity. In total, the algorithm visits two new
nodes (and does not examine any substring) to compute this prefix parity.

All told, the prefix-parity algorithm in this example visited 4 + 0 + 3 + 2 = 9 (out
of 15) nodes and examined 1 + 0 + 1 + 0 = 2 (out of 8) distinct 𝜆-bit substrings of 𝑥
(computing 1 + 1 + 1 + 0 = 3 substring-prefix parities).

Table 4.1 lists the sequence of prefixes of 𝑥 whose parities are computed (and
memoized) as the prefix-parity algorithm computes the above four prefix parities. In
the table, segment parities are coloured gray wherever a memoized value is in use;
the arrows indicate where each memoized value was most recently used.

4.1.2 Analysis

Our primary concern in the sequel will be how many distinct edges the prefix-parity
algorithm must traverse—and, to a lesser extent, how many 𝜆-bit substrings it must
examine—for a given partitioning of 𝑥 into segments. The next theorem characterizes
the worst-case cost for the number of edges (assuming optimal memoization).

Theorem 3. Given a parity-segment tree 𝑇 (𝑥) of height 𝑛 and a lexicographically

sorted list 𝐸 of 𝑆 distinct prefix endpoints, the prefix-parity algorithm traverses at most

𝑆 𝑛 −∑𝑆
𝑖=2

⌊
lg(𝑖 − 1)⌋ edges to compute all 𝑆 prefix parities.

Before proving Theorem 3, we state and prove the following lemma based on
the intuition that a “worst-case” instance for the prefix-parity algorithm is one
that minimizes the lengths of common prefixes in (the binary representations of)
successive endpoints in 𝐸.

Lemma 1. If 𝑃 is a set of 𝑆 distinct bitstrings, then∑
𝑥∈𝑃 |𝑥 | ≥

∑
𝑆−1
𝑖=1

⌈
lg(𝑖 + 1)⌉ , (4.1)
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where |𝑥 | denotes the length (in bits) of 𝑥 .

Proof (Sketch). We first note that equality holds in Equation (4.1) when 𝑃 consists
of the empty string together with the binary representations of all non-negative
integers less than 𝑆 − 1 [58]. Moreover, substituting one or more bitstrings from 𝑃

with the binary representations of integers greater than or equal to 𝑆 − 1 results in a
set whose aggregate length is likewise greater than or equal to that of 𝑃 . □

Proof of Theorem 3. The result follows by induction on 𝑆 .

Base case (𝑺 = 1): This case is immediate by inspection.

Inductive step: Assume the prefix-parity algorithm traverses at least (𝑆 − 1)𝑛 −∑𝑆−1
𝑖=2

⌊
lg(𝑖 − 1)⌋ edges for 𝑆 − 1 endpoints and let 𝐸 be some length-(𝑆 − 1) sequence

of endpoints inducing this worst-case cost. We will construct a worst-case length-𝑆
sequence 𝐸′ by inserting one additional endpoint at an appropriate (sorted) position
within 𝐸. Specifically, to ensure that the resulting sequence is also a worst-case
sequence, it suffices to choose a position among existing endpoints that (glob-
ally) minimizes the length of its common prefix with its immediate neighbours in
the resulting ordered sequence (thereby maximizing the number of new edges to
traverse).

Thus, we construct 𝐸′ by inserting an arbitrary endpoint whose prefix is one of the
(not necessarily unique) shortest prefixes not yet reflected in 𝐸. Now, consider the
sets 𝑃 and 𝑃 ′ of shortest unique prefixes for 𝐸 and 𝐸′, respectively. From Lemma 1,
we have ∑

𝑥∈𝑃 ′ |𝑥 | −
∑

𝑥∈𝑃 |𝑥 | ≥
∑

𝑆−1
𝑖=1

⌈
lg(𝑖 + 1)⌉ −∑𝑆−2

𝑖=1
⌈
lg(𝑖 + 1)⌉

=
⌈
lg(𝑆 − 1 + 1)⌉

≥ ⌊
lg 𝑆

⌋
.

As all but the last bit of the shortest unique prefix corresponds to an already-
traversed edge, this newly added endpoint necessitates traversing at most

𝑛 − (⌈lg 𝑆⌉ − 1) ≥ 𝑛 − ⌊
lg(𝑆 − 1)⌋
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additional edges, for a total number of edges traversed of at most((𝑆 − 1)𝑛 −∑𝑆−1
𝑖=2

⌊
lg(𝑖 − 1)⌋ ) + (𝑛 − ⌊

lg(𝑆 − 1)⌋ )
= 𝑆 𝑛 −

∑
𝑆

𝑖=2

⌊
lg(𝑖 − 1)⌋ .

□

Theorem 3 implies that the prefix-parity algorithm visits o
(
𝑆 𝑛

)
edges to compute

𝑆 prefix parities (of a given 2𝑛+𝑘-bit string). We also note that tree 𝑇 (𝑥) has just
2𝑛+1 − 2 edges in total, which yields another upper bound on the number of edges
traversed. Notably, as 𝑆 approaches the length 𝑁 = 2𝑛+𝑘 of 𝑥 , the amortized number
of edges traversed per prefix tends to 2−𝑘+1 as each of the 2𝑛+1 − 2 edges is traversed
exactly once (owing to memoization).1

The theorem deals with worst-case costs. The expected number of edges traversed
depends on the distribution of the prefixes. Generally speaking, more densely packed
prefix endpoints (i.e., shorter segments) imply greater amortization savings.

Expected savings from early termination

Notice that the “early-termination” optimization saves exactly 𝑖 + 1 traversals (this
includes the “traversal” from a leaf node to its associated substring) if and only if the
endpoint is a multiple of 2𝑖 ·𝜆 but not of 2𝑖+1·𝜆. The next theorem follows easily from
this observation.

Theorem 4. For a uniform random endpoint 𝑋 ∈ [0 . . 𝑁 ), the early-termination

optimization saves (2 − 2−𝑛)/ 𝜆 traversals in expectation.

Proof. For 𝑖 = 1, . . . , 𝑛 − 1, the probability that uniform 𝑋 is a multiple of 𝜆·2𝑖 but
not 𝜆·2𝑖+1 is given by 1

𝜆 ·2𝑖 − 1
𝜆 ·2𝑖+1 =

1
𝜆 ·2𝑖+1 ; for 𝑖 = 𝑛, it is just

1
𝜆 ·2𝑛 . Hence, in expectation,

we save

𝑛 + 1
𝜆·2𝑛 +

𝑛−1∑
𝑖=0

𝑖 + 1
𝜆·2𝑖+1 =

2 − 2−𝑛
𝜆

traversals (counting “traversals” from leaf nodes to substrings). □

1Indeed, it is easy to check that 𝑆 𝑛 −∑𝑆

𝑖=2
⌊
lg(𝑖 − 1)⌋ = 2𝑛+1 − 1 in this case.

51



4. Parity-segment trees and DPFs

4.2 Selection vector rotation

While selection vectors, and, by extension, DPFs, have many useful properties,
existing protocols for producing a secret shared selection vector [®𝑒𝑖] when the value
𝑖 is itself additively secret shared require O(𝑁 ) computation and communication
costs. To address this, we propose a method for using precomputation to more
efficiently generate selection vectors in the online phase of an MPC protocol using
only one round of communication. Since DPFs are simply secret shared, “functional”
representations of a selection vector, the techniques we discuss for preprocessing
and modifying selection vectors can be adapted for use with DPFs.

We begin with the following observation.

Observation 4. All selection vectors of a given length are equivalent up to cyclic

rotation. Specifically, for any 𝑖, 𝑗 ∈ [0 . . 𝑁 ), if ®𝑒𝑖 is the 𝑖th selection vector of length 𝑁 ,

then ®𝑒 𝑗 = ®𝑒𝑖 ≫ ( 𝑗 − 𝑖) is the 𝑗 th selection vector of length 𝑁 .

Observation 4 is especially relevant when the selection vector is secret shared: If
P0 and P1 hold additive sharings [𝑖] and [ 𝑗] of two numbers from the ring of integers
modulo 𝑁 alongside a sharing of the 𝑖th selection vector of length 𝑁 , then they can
arrive at a sharing of the 𝑗 th selection vector of length 𝑁 as follows. First, they
leverage linearity to learn

( 𝑗 − 𝑖) mod 𝑁 =
(( [ 𝑗]0 + [ 𝑗]1) − ([𝑖]0 + [𝑖]1)) mod 𝑁

=
(( [ 𝑗]0 − [𝑖]0)

P0 shares

+ ([ 𝑗]1 − [𝑖]1)
P1 shares

)
mod 𝑁 (4.2)

without revealing 𝑖 or 𝑗 individually, after which each party cyclically rotates its
own share of ®𝑒𝑖 to the right by this quantity.2 Notice that if 𝑖 is uniform, then
( 𝑗 − 𝑖) mod 𝑁 perfectly hides 𝑗 , making this transformation from the 𝑖th into the
𝑗 th selection vector perfectly oblivious.

2This approach is mathematically sound for additive sharings because cyclic rotation is a linear
operation, namely multiplication by a cyclic permutation matrix (i.e., a cyclic rotation of the identity
matrix).
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P2

[𝑖], [®𝑒𝑖]

P0

[®𝑒 𝑗 ]0 B [®𝑒𝑖]0 ≫ ( 𝑗 − 𝑖)
= [®𝑒𝑖 ≫ ( 𝑗 − 𝑖)]0

[ 𝑗]0

P1

[®𝑒 𝑗 ]1 B [®𝑒𝑖]1 ≫ ( 𝑗 − 𝑖)
= [®𝑒𝑖 ≫ ( 𝑗 − 𝑖)]1

[ 𝑗]1[𝑖] 0, [®𝑒 𝑖] 0
[𝑖]1 , [®𝑒𝑖 ]1

[ 𝑗]0 − [𝑖]0
[ 𝑗]1 − [𝑖]1

Figure 4.3: A (2 + 1)-party protocol for converting an additive sharing [ 𝑗] of a scalar
𝑗 ∈ [0 . . 𝑁 ) into an additive sharing of the 𝑗 th selection vector ®𝑒 𝑗 of length 𝑁 .

4.2.1 Scalar-to-selection vector share conversion

Observation 4 suggests the following (2+1)-party protocol for converting an additive
sharing of 𝑗 into additive shares of the 𝑗 th selection vector. Let 𝑁 be given. In a
preprocessing phase, a semi-trusted third party P2 chooses 𝑖 ∈ [0 . . 𝑁 ) uniformly
and provides additive sharings [𝑖] and [®𝑒𝑖] to the first parties P0 and P1, where ®𝑒𝑖
is the 𝑖th selection vector of length 𝑁 . Upon learning the sharing [ 𝑗] in the online
phase, P0 and P1 interactively reconstruct ( 𝑗 − 𝑖) mod 𝑁 using Equation (4.2) and
then they compute shares of ®𝑒 𝑗 via [®𝑒 𝑗 ] B [®𝑒𝑖] ≫ ( 𝑗 − 𝑖) mod 𝑁 . A diagrammatic
view of this (2 + 1)-party protocol is included as Figure 4.3.

Share conversion in PIR

One case where producing a secret shared selection vector from a secret shared
scalar, as described in Section 4.2.1, is useful is in the context of PIR. Now, in a
standard selection vector-based PIR scheme, the client performing the read already
knows the index 𝑖 to read from and can produce [®𝑒𝑖] accordingly. However, when
multiple parties in an MPC protocol want to perform a PIR query using selection
vectors, it requires O(𝑁 ) communication and computation to directly produce [®𝑒𝑖]
from shares of 𝑖 . Instead, [ 𝑗] and [®𝑒 𝑗 ] can be precomputed ahead of time, and the
vector can then be rotated by 𝑖 − 𝑗 to produce [®𝑒𝑖]. This requires only a single round
of communication.

In this case, there exists an alternative to producing [®𝑒𝑖] by rotating [®𝑒 𝑗 ] to the
right by 𝑖 − 𝑗 . Instead the parties in the MPC protocol can rotate ®𝑃 to the left by

53



4. Parity-segment trees and DPFs

⇐
rotate

selection
vector ⇐

rotate
lookup
table

®𝑒6 ≫ (3 − 6) mod 8

®𝑃 ≪ (3 − 6) mod 8

Figure 4.4: Equivalence between rotating selection vectors rightward versus
databases leftward. In the diagram, the selection vector is ®𝑒6 and the desired record is
𝑃3 (the red element). The left subdiagram shows the outcome of rotating ®𝑒6 rightward
to get ®𝑒3; the right subdiagram shows the outcome rotating ®𝑃 leftward to move the
red element into position 6.

the same distance. Taking inner products as before, this alternative is guaranteed
to produce the same result because (i) commutativity implies inner products are
invariant under cyclic reordering of summands, and (ii) left and right cyclic rotations
are mutually inverse operations, so that

⟨®𝑒 𝑗 , ®𝑃⟩ = ⟨®𝑒𝑖 ≫ ( 𝑗 − 𝑖), ®𝑃⟩
= ⟨(®𝑒𝑖 ≫ ( 𝑗 − 𝑖)) ≪ ( 𝑗 − 𝑖), ®𝑃 ≪ ( 𝑗 − 𝑖)⟩ via ( i )

= ⟨®𝑒𝑖, ®𝑃 ≪ ( 𝑗 − 𝑖)⟩ . via (ii)

Figure 4.4 illustrates the equivalence between these two options. This equivalence
is important for DPF-based PIR, because it is easier to rotate the database ®𝑃 rather
than a DPF output.

4.3 DPFs as parity-segment trees

The following observation about segment parities over point functions is obvious,
yet it is sufficiently central to Grotto as to warrant explication.

Observation 5. Fix 𝑖 ∈ [0 . . 𝑁 ) and let ®𝑒𝑖 be the 𝑖th selection vector of length 𝑁 . Then

parity(®𝑒𝑖 [𝑎 . . 𝑏)) = 1 if and only if 𝑖 ∈ [𝑎 . . 𝑏).

The following observation about the leaves in point functions is immediate.
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Observation 6. In a binary point function, the parity of the 𝜆-bit vector held in the

1-leaf is 1 while the parity of the 𝜆-bit vector held in each 0-leaf is 0.

Composing Observation 5 and Observation 6 yields the following (relatively
obvious) theorem, which serves as one of two lynchpins of the Grotto construction
presented in Chapter 5.

Theorem 5. Fix 𝑏 ∈ {0, 1}. If P𝑥,𝑦 is a point function on Z𝑁 and 𝐵
(
P𝑥,𝑦

)
is its binary-

tree representation, then an interior node 𝑋 of 𝐵
(
P𝑥,𝑦

)
is a 𝑏-node if and only if the

joint parity of the vectors stored in leaves descendant from 𝑋 is 𝑏.

When combined with Theorem 5, Observation 5 leads to the following implica-
tion.

Corollary 1 (Point-function tree → parity-segment tree). Let P𝑖 be the 𝑖th point

function of length 2𝑛+𝑘 and let 𝐵(P𝑖) be its binary-tree representation. Affixing to

each node of 𝐵(P𝑖) the value 1 if it is a 1-node or a 1-leaf and 0 otherwise produces a
parity-segment tree for ®𝑒𝑖 .

Meanwhile, from Observation 2 we know that the joint parity of advice bits for
0-pairs is even (0) while for 1-pairs it is odd (1). In conjunction with Observation 3,
we get the following analogue of Corollary 1.

Corollary 2 (DPF tree → point-function tree). Let J®𝑒𝑖K = (J®𝑒𝑖K0, J®𝑒𝑖K1) be a binary
DPF sharing of the 𝑖th point function of length 2𝑛+𝑘 and let 𝐵(J®𝑒𝑖K0) and 𝐵(J®𝑒𝑖K1) be
the corresponding BGI tree shares. Equating the value of each node of 𝐵(J®𝑒𝑖K0) and
𝐵(J®𝑒𝑖K1) with the advice bit stored within produces an XOR sharing of the binary-tree

representation of ®𝑒𝑖 .

Finally, we note that all arithmetic operations in the prefix-parity algorithm are
linear over Z2. The confluence of this fact with a transitive application of Corollary 2
followed by Corollary 1 makes the following “Fundamental Theorem of Grotto”
inescapable.
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Theorem 6 (Fundamental Theorem of Grotto). BGI shareholders can run the prefix-

parity algorithm directly on their respective DPF shares to obtain XOR-sharings of

arbitrary segment parities, at a cost of one half-PRG3 evaluation per edge traversed.

Theorem 6 forms the basis of the Grotto MPC system which is introduced in
the following chapter.

3A half-PRG evaluation is an evaluation of G𝜆 in which only half of the output is required. For
many PRGs, it is possible to compute only the required half at half the cost of a full, length-doubling
evaluation.
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Chapter 5

Grotto: MPC via (2, 2)-DPFs

This chapter introduces Grotto, a system for efficient DPF-based MPC evaluation of
non-linear functions. The method used by Grotto fuses spline based approximation
techniques from existing works on DPF- and DCF-based MPC [35, 60] with the
efficient prefix-parity computation described in Chapter 4. One example where
this system is valuable is when constructing private neural networks, where non-
linear activation functions intersperse between linear layers. Early systems like
SecureML [51] resorted to using “MPC-friendly” knockoffs of the activation functions
used in non-MPC domains. In stark contrast, Grotto enables efficient evaluation
of non-linear functions where the accuracy is only limited by the precision of the
fixed-point arithmetic being used.

This chapter introduces Grotto, a framework and C++ library for space- and
time-efficient (2 + 1)-party piecewise polynomial (i.e., spline) evaluation on secrets
additively shared over Z2𝑛. Grotto improves on the state-of-the-art approaches
based on DCFs [35] and on DPFs [60, 62] in almost every metric, offering asymptoti-
cally superior communication and computation costs with the same or lower round
complexity. At the heart of Grotto is the novel observation about the relationship be-
tween the structure of Boyle-Gilboa-Ishai DPF trees and parity-segment trees, which
we presented in Theorem 6. This allows Grotto to do with a single lightweight
DPF what state-of-the-art approaches require comparatively heavyweight DCFs to
do. Our open-source Grotto implementation supports evaluating dozens of useful
functions out of the box, including trigonometric and hyperbolic functions (and their
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inverses); various logarithms; roots, reciprocals, and reciprocal roots; sign testing
and bit counting; and over two dozen of the most common (univariate) activation
functions from the deep-learning literature.

5.0.1 The shoulders Grotto stands upon

Our methods follow a line of research [11, 35, 41, 56, 60, 62] that uses piecewise-
polynomial functions (or splines) to approximate and evaluate non-linear univariate
functions on input additively shared secrets. The key innovation that Grotto brings
to this space is the introduction of a novel data structure called a parity-segment

tree (and an associated prefix-parity algorithm), together with the observation that
certain DPFs from the literature implicitly embed parity-segment trees within their
internal structure. By leveraging this connection, we devise a space-, time-, and
round-efficient way to obliviously “select” the correct polynomial from a given
piecewise representation.

Prior efforts in this space employ one of two competing strategies for this oblivi-
ous polynomial selection. The first strategy, introduced by Vadapalli, Bayatbabol-
ghani, and Henry [60] for their Pirsona scheme, uses linear-sized DPFs with an
exponential-cost full-domain evaluation procedure to evaluate reciprocal square
roots and integer comparison. The follow-up scheme Pika [62] generalizes Pirsona’s
approach to arbitrary functions and also adds machinery to thwart malicious dealers.
This DPF-plus-full-domain-evaluation approach has low communication cost and
concretely efficient running times for “short” inputs (say, 16-24 bits), but its exponen-
tial computation cost quickly grows untenable as inputs get longer; indeed, Wagh
writes that “typical sizes for which [this approach] provides performance comparable
to general purpose (sic) MPC are around 20-25 bits” [62; §3]. The recently proposed
Orca scheme of Jawalkar, Gupta, Basu, Chandran, Gupta, and Sharma [41] uses
massive parallelism afforded by GPUs to partially reign in the exponential cost of
full-domain evaluation.

The second strategy, exemplified by Gupta, Kumaraswamy, Gupta, and Chan-
dran’s Llama scheme [35], uses distributed comparison functions (DCFs)—a DPF-
adjacent primitive for efficient integer comparison—to avoid the need for costly
full-domain evaluations. Swapping out DPFs in favour of DCFs dramatically im-
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proves computational scaling at the expense of substantially higher communication
costs (that increase rapidly as approximations become more granular).

Compared with its progenitors, Grotto’s parity-segment approach offers con-
cretely lower costs for “simple” functions and superior asymptotics as inputs get
longer and approximations more elaborate. The upshot is that, while the respectively
high computation and communication costs of the Pirsona and Llama frameworks
severely curtail those schemes’ practically achievable approximation accuracy, the
fidelity of Grotto approximations is practically limited only by the difficulty of
building good piecewise-polynomial approximations—indeed, as seen in Table 5.2,
Grotto “approximations” are often errorless when viewed as fixed-point computa-
tions.

5.0.2 Threat model

The Grotto protocols operate in the (2 + 1)-party computation setting described
in Section 2.5. As a result of working in this setting, the Grotto protocols assume
three pairwise non-colluding and semi-honest parties.

The research literature describes approaches based on linear sketching [14,21,62]
or secret-shared non-interactive proofs, such as those used in Express [25] and in the
Sabre system presented in Chapter 7, that (combined with other standard techniques)
could be used to relax the assumption that parties are semi-honest. Moreover, in
contrast with general 3-party computation, the restricted role of the “server” makes
(2 + 1)-party computation protocols particularly amenable to conversion into purely
2-party protocols: P0 and P1, the two non-server parties, employ 2-party techniques
to emulate the preprocessing steps of the third “server” party. We stress that this
strategy works seamlessly because the online phase of a (2 + 1)-party protocol
inherently (i) involves only the two non-server parties and (ii) is agnostic to the
provenance of any correlated randomness those parties consume. Leveraging these
ideas to port Grotto to the maliciously secure 2-party setting is beyond the scope
of this work; however, it remains an imperative and palpable direction for future
work.
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5.0.3 Roadmap

The remainder of the chapter proceeds as follows. Section 5.1 revisits the Pirsona
and Llama designs and elaborates on the innovations Grotto brings to the table.
Section 5.3 synthesizes the ideas from preceding sections to create Grotto, our
framework and open-source software implementation of the new techniques, and
then Section 5.4 follows with a performance evaluation of Grotto and a head-to-
head comparison with prior art (namely, Llama [35]). Section 5.5 wraps up the
chapter with some concluding remarks.

5.1 Technical Overview

Before delving deeper into how Grotto implements oblivious piecewise-polynomial
evaluation, we take a step back and examine how the Grotto approach relates to and
differs from those taken by prior works. In particular, the relationship between the
techniques used in Grotto and those used in Pirsona [60], Pika [62], and Llama [35]
at a “block-level” granularity. To a first approximation, all four schemes consist of
two basic steps, namely (i) mapping the secret-shared input 𝑗 to the appropriate
polynomial and then subsequently (ii) obliviously evaluating that polynomial on
input 𝑥 = 𝑗 .

The full-domain evaluation approach employed by Pirsona and Pika expands
(linear-sized) DPF shares J®𝑒 𝑗K into (exponential-sized) additive shares [®𝑒 𝑗 ] and then it
proceeds to select the appropriate coefficient vector using inner products, precisely
as described in Section 2.8.2. (We stress that, despite its exponential cost, before
Grotto, full-domain evaluation was the most efficient way to complete this step
with a single DPF.) For the second step, Pirsona and Pika each assume polynomials of
degree 𝑑 ≤ 1, making polynomial evaluation a cookie-cutter application of standard
techniques. The dealer distributes additive shares of the sign (which it learns while
creating the DPF) so that sign correction, introduced in Section 5.2, reduces to one
additional application of plain-old Du-Atallah scalar multiplication.

Llama replaces DPFs encoding random selection vectors with DCFs encoding
the entire LUT of the piecewise approximation. This approach bypasses the need
for exponential-cost full-domain evaluation; instead, Llama shareholders need only
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perform linear work for each “part” of the piecewise approximation. The tradeoff
for this reduced workload is substantially larger communication cost,1 with Llama
DCFs often being several orders of magnitude larger than a DPF. Llama generally
uses quadratic polynomials, which it then evaluates in the “obvious” way using
multiple rounds of Du-Atallah. The way Llama encodes entire LUTs into the DCF
shares obviates the need for sign correction.

In contrast, Grotto leverages parity-segment trees and ABY2.0-like multiplica-
tion to effectively marry aspects of both designs, achieving Llama-like computation
costs alongside Pirsona-like communication costs. We emphasize that this best-
of-both-worlds design has practical implications that extend beyond shaving clock
cycles and conserving bandwidth: It allows Grotto to use piecewise approximations
featuring more parts and higher-degree polynomials, paving the way for approxima-
tions with superior accuracy.

5.2 Function evaluation via PIR

If 𝑓 : Z𝑁 → Z𝑁 is some function and ®𝑃 its truth table (that is, 𝑃 𝑗 B 𝑓 ( 𝑗) for all
𝑗 ∈ Z𝑁 ), then using the DPF-based PIR scheme described in Section 2.8.2 instantiates
(2+ 1)-party oblivious evaluation of 𝑓 ( 𝑗) at the secret input 𝑗 . When 𝑁 is small (and
𝑓 nonlinear), this procedure can perform well relative to evaluating 𝑓 ( 𝑗) directly
using arithmetic (or Boolean) circuits [35,60,62]. We stress that the Z𝑁 elements may
represent fixed-point numbers so that this is not limited to the oblivious evaluation
of integer-valued functions.

As a potentially significant optimization, wherever 𝑓 is constant within some
interval, P0 and P1 can apply the distributive law to save some work in the inner
product calculation. As an extreme example of this in action, suppose that 𝑓 : Z𝑁 →
Z𝑁 is the step function defined by

𝑓 ( 𝑗) B
{
𝐴 if 𝑗 ∈ [0 . . 5), and
𝐵 otherwise,

1Specifically, the size of a Llama share scales as the product of the input size, the number of parts,
and the degree of the constituent polynomials.
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so that ®𝑃 = (𝐴,𝐴,𝐴,𝐴,𝐴, 𝐵, . . . , 𝐵). Then, the inner product of [®𝑒 𝑗 ]𝑏 = ( [𝑒 𝑗0]𝑏, [𝑒 𝑗1]𝑏,
. . . , [𝑒 𝑗𝑁 ]𝑏) and ®𝑃 has the very simple form

⟨[®𝑒 𝑗 ]𝑏, ®𝑃⟩ = 𝐴·( [𝑒 𝑗0]𝑏 + [𝑒 𝑗1]𝑏 + [𝑒 𝑗2]𝑏 + [𝑒 𝑗3]𝑏 + [𝑒 𝑗4]𝑏)
+ 𝐵·( [𝑒 𝑗5]𝑏 + . . . + [𝑒 𝑗𝑁 ]𝑏) ,

which can be evaluated using 𝑁 − 1 additions and just two scalar multiplications.
For comparison, a naïve evaluation would require 𝑁 − 1 additions and 𝑁 scalar
multiplications. (Furthermore, if, e.g., 𝐵 = 0, then the cost further shrinks to just 4
additions and a single scalar multiplication.)

Function evaluation via binary selection vectors

So far, we have assumed that length-𝑁 selection vectors ®𝑒 𝑗 are shared additively over
Z𝑁 ; however, this is not a formal requirement. Indeed, because selection vectors
consist solely of elements from {0, 1}, they can be shared more compactly as length-
𝑁 bitstrings (i.e., as length-𝑁 vectors over Z2). This shaves a factor ⌈lg𝑁 ⌉ from the
size of L®𝑒 𝑗M relative to that of [®𝑒 𝑗 ], but not without introducing a minor technicality:
Before they can evaluate the inner product between L®𝑒 𝑗M and ®𝑃 , the shareholders P0

and P1 must first lift each bit of L®𝑒 𝑗M into an additive sharing over Z𝑁 . In general,
such lifting is costly, requiring a round of interaction between P0 and P1 to ensure
the resulting additive shares all have the correct signs in Z𝑁 (indeed, it is impossible
to differentiate between ±1 in Z2).

Fortunately, the special form of selection vectors makes it possible for the share-
holders to defer the latter interaction needed for sign correction to a post-processing
step, to be performed only after evaluating the inner product.2 In particular, for each
of 𝑏 = 0, 1, shareholder P𝑏 lifts the 𝑖th bit L𝑒 𝑗𝑖M𝑏 of L®𝑒 𝑗M𝑏 into an additive share over
Z𝑁 via

[±𝑒 𝑗𝑖]𝑏 B
{

0 if L𝑒 𝑗𝑖M𝑏 = 0, and
(−1)𝑏 otherwise,

(5.1)

2Specifically, since ®𝑒 𝑗 consists entirely of 0s save for the 1 in position 𝑗 , the initial lifting of L®𝑒 𝑗M
into Z𝑁 yields [±®𝑒 𝑗 ]; that is, the requisite sign correction can occur at the granularity of the entire
vector. For vectors with two or more non-zero entries, this would not be true.
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so that [±𝑒 𝑗𝑖]0 + [±𝑒 𝑗𝑖]1 ∈ {−1, 0, 1}. Now, the inner product ⟨[±®𝑒 𝑗 ], ®𝑃⟩ yields ±𝑃 𝑗 ,
a scalar that is correct up to sign. From here, there are a few options for how
to implement the sign correction; we defer our discussion of those techniques to
Section 5.3.1.

The earlier optimization for when ®𝑃 is constant over some interval ports nicely
to the case where ®𝑒 𝑗 is shared bitwise as L®𝑒 𝑗M: The shareholders simply perform
the required summation over Z2 and then convert the resulting sums (i.e., not the
individual addends) into additive shares over Z𝑁 using Equation (5.1). Notice that
computing such sums of segments of L®𝑒 𝑗M is equivalent to computing the parities of
the bitstrings corresponding to those segments.

As a concrete example, let us consider the evaluation of the step function 𝑓 from
the earlier example with vector length 𝑁 = 8 and input 𝑗 = 4. Supposing ®𝑒4 is shared
as L®𝑒4M = (11011010, 11010010), shareholder P0 computes(

1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1, 0 ⊕ 1 ⊕ 0) = (
parity(11011), parity(010))

= (0, 1) ,

while shareholder P1 computes(
1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0, 0 ⊕ 1 ⊕ 0) = (

parity(11010), parity(010))
= (1, 1) .

Upon lifting these values to Z𝑁 , the shareholders respectively hold vectors [−®𝑒4]0 B
(0, 1) and [−®𝑒4]1 B (−1,−1), from which they evaluate

⟨[−®𝑒4]0, ®𝑃⟩ = 0 · 𝑎 + 1 · 𝑏
= 𝑏

and

⟨[−®𝑒4]1, ®𝑃⟩ = (−1) · 𝑎 + (−1) · 𝑏
= (−𝑎) + (−𝑏) ,

and we find that 𝑏 + ((−𝑎) + (−𝑏)) = −𝑎, the negation of 𝑓 (4). A sign correction
completes the process.
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Spline evaluation via selection vectors

Up until now, we have considered LUTs only for scalar-valued functions, yet the
technique generalizes seamlessly to vector- or matrix-valued functions. As one useful
application of this, we can evaluate functions F : Z𝑁 → (Z𝑁 )1×𝑑 that output (vectors
of coefficients defining) polynomials, including piecewise-linear functions and general
splines. As a bonus, in light of the optimizations already discussed, such piecewise
functions typically result in comparatively inexpensive inner product computations
(i.e., requiring far fewer than 𝑁 multiplications, since each “part” covers a non-trivial
subinterval of the domain).

To see why this is useful, suppose we wish to approximate some highly nonlinear
function 𝑓 (𝑥) that is prohibitively costly to evaluate exactly using arithmetic circuits.
We can do so by constructing a piecewise-polynomial function F such that, for all
𝑗 ∈ Z𝑁 , the coefficients vector ⟨𝑎𝑑 , . . . , 𝑎1, 𝑎0⟩ ← F ( 𝑗) defines a good low-degree-
polynomial approximation 𝑓 ′(𝑥) = 𝑎𝑑𝑥𝑑 + · · · + 𝑎1𝑥 + 𝑎0 to 𝑓 (𝑥) in the vicinity of
𝑥 = 𝑗 . Given additive sharings of such a coefficient vector [F ( 𝑗)] = [𝑓 ′(·)] and of the
input [ 𝑗], several well-known techniques can obliviously compute [𝑓 ′( 𝑗)], thereby
obtaining shares of a good approximation to 𝑓 ( 𝑗). We describe two such techniques
in Section 5.3.1, one based on Horner’s method [37] together with Du-Atallah
multiplication [24] and the other on ABY2.0-style 𝐷-ary multiplication [54].

5.2.1 Fractional-bit reduction for shared secrets

When evaluating polynomials, such as those in the previously discussed spline
approximations, using fixed-point numbers, it quickly becomes necessary to reduce
the fractional precision of the numbers being computed. In MPC settings, like
Grotto, reducing the fractional precision of a (2, 2)-additively shared fixed-point
number [𝑧] is similar to—albeit somewhat more tedious than—directly reducing
that of 𝑧. Recall that in a two’s-complement encoding, the most-significant bit of
𝑧 is a sign bit with msb(𝑧) = 1 if 𝑧 is negative and msb(𝑧) = 0 if it is non-negative.
Consequently, the most significant 𝑝 bits of 𝑧 ≫ 𝑝 are each “redundant” copies of
the original sign bit (which is now the (𝑝 + 1)th-most-significant bit).

To reduce the number of fractional bits in [𝑧] = ( [𝑧]0, [𝑧]1), each shareholder 𝑏
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computes

[𝑧]𝑏 B
([𝑧]𝑏 ≫ 𝑝

)
.

From here, there are two potential sources of errors, respectivelymanifesting in (i) the
redundant sign bits and (ii) the least-significant bit of the resulting secret.

Redundant sign bit errors

For errors in the redundant sign bits (i.e., the highest-order bits that were “shifted
in”), there are three cases to consider:

Case 1 (msb(𝒛) = 0;msb([𝒛]0) = msb([𝒛]1) = 1): Here [𝑧]0 + [𝑧]1 overflows (car-
ries out from the most-significant bit) so that reconstructing 𝑧 entails an
implicit reduction modulo 264. Furthermore, each of the 𝑝 most-significant
bits of [𝑧]𝑏 are set; hence, in the sum [𝑧]0 + [𝑧]1, the carry-out from the
(𝑝 + 1)th-most-significant bit induces a carry chain that leaves the 𝑝 leftmost
bits errantly set. Consequently,

[𝑧]0 + [𝑧]1 + 264−𝑝 ≡ 𝑧 (mod 264) .

Case 2 (msb(𝒛) = 1;msb([𝒛]0) =msb([𝒛]1) = 0): This is similar to the first case,
except now signs are flipped so that

[𝑧]0 + [𝑧]1 − 264−𝑝 ≡ 𝑧 (mod 264) .

Case 3 (msb(𝒛) =msb([𝒛]0) ormsb(𝒛) =msb([𝒛]1)): It is easy to check that

[𝑧]0 + [𝑧]1 ≡ 𝑧 (mod 264)

always holds in this case.

The first two cases require an additional correction, wherein the shareholders
conditionally (and obliviously) add [±264−𝑝] to [𝑧] to get [𝑧 ≫ 𝑝]. There exist a
multitude of options for how to implement this conditional correction; however,
they all require one or more rounds of interaction. Computationally, the “best” case
occurs when msb(𝑧) is known (say, because application logic allows its deduction)
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so that what correction to apply depends solely on either msb( [𝑧]0) ∧msb( [𝑧]1) or
¬msb( [𝑧]0) ∧ ¬msb( [𝑧]1). For the general case with 𝐵-bit integers where msb(𝑧) is
not known, we can always use

[𝐶] B 2𝐵−𝑝 · (𝑍0·𝑍1+ (𝑍0+𝑍1−2·𝑍0·𝑍1−1)·[𝑍 ]
)
, (5.2)

where 𝐶 is the necessary correction value, 𝑍𝑏 = msb( [𝑧]𝑏) for 𝑏 = 0, 1, and 𝑍 =

msb(𝑧).

Proof. To prove the correctness of Equation (5.2), we consider the three possible
cases discussed previously.

Case 1 (msb(𝒛) = 0;msb([𝒛]0) = msb([𝒛]1) = 1): Inserting the given values into
Equation (5.2) produces

[𝐶] B 2𝐵−𝑝 · ([1]·[1] + (1+1−2·1·1−1)·[0])
= 2𝐵−𝑝 · ([1] − [0])
= [2𝐵−𝑝]

As discussed previously, when reducing [𝑧] by 𝑝 bits, this case results in the 𝑝
leftmost bits being set incorrectly. Adding [2𝐵−𝑝] to [𝑧] corrects this, so that
the result is [𝑧 ≫ 𝑝].

Case 2 (msb(𝒛) = 1;msb([𝒛]0) =msb([𝒛]1) = 0): Inserting the given values into
Equation (5.2) produces

[𝐶] B 2𝐵−𝑝 · (0·0+ (0+0−2·0·0−1)·[1])
= 2𝐵−𝑝 ·[−1]
= [−2𝐵−𝑝]

As previously observed, in this case, [𝑧] has 𝑝 leading bits which are errantly
cleared. 𝐶 = −2𝐵−𝑝 is a number in which the 𝑝 leading bits are all set and all
other bits are cleared. Therefore, adding [𝐶] to [𝑧] sets the 𝑝 leading bits to
produce [𝑧 ≫ 𝑝].
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Case 3 (msb(𝒛) =msb([𝒛]0) ormsb(𝒛) =msb([𝒛]1)): Since 𝑍0 and 𝑍1 are used
symmetrically in Equation (5.2), we can assume, without loss of generality,
that msb(𝑧) =msb( [𝑧]0). This leads to the following result

[𝐶] B 2𝐵−𝑝 · (𝑍 ·𝑍1+ (𝑍 +𝑍1−2·𝑍 ·𝑍1−1)·[𝑍 ]
)

Clearly, if 𝑍 = 𝑍0 = 0, then [𝐶] = [0]. Similarly, if 𝑍 = 𝑍0 = 1, then the result
is

[𝐶] B 2𝐵−𝑝 · (1·𝑍1+ (1+𝑍1−2·1·𝑍1−1)·[1]
)

= 2𝐵−𝑝 · (𝑍1+ (1−𝑍1−1)·[1]
)

= 2𝐵−𝑝 · (𝑍1− [𝑍1]
)

= [0]

For both values of 𝑍 = 𝑍0, the result is [𝐶] = [0]. Since [𝑧]0 + [𝑧]1 ≡ 𝑧

(mod 264) in this case, adding [𝐶] = [0] to [𝑧] will produce shares of 𝑧 ≫ 𝑝

with correct leading bits.

□

Mohassel and Zhang prove [51; Appendix B] that each of Cases 1 and 2 only occur
with probability negligible in the number of “extra” integer bits; thus, if program
logic suffices to prove that integer parts are sufficiently small, P0 and P1 can forgo
explicit corrections and still get the correct result with very high probability.

Redundant sign bit example To illustrate why such “corrections” are needed,
we consider the problem of resetting the number of fractional bits in the area of a
circle. Let 𝐴 = 0x0004e8a270000000, as computed in Section 2.2, and consider the
(2, 2)-additive sharing of 𝐴 via

[𝐴]0 = 0x80014bf69ed29a6b

and

[𝐴]1 = 0x80039cabd12d6595 .
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Notice that msb( [𝐴]0) = msb( [𝐴]1) = 1 whereas msb(𝐴) = 0, yet [𝐴]0 + [𝐴]1 = 𝐴
over Z264. Then (

𝐴 ≫ 32
)
= 0x

redundant sign bits

000000000004
original sign bit + integer part

fractional part

e8a2 ,

while

[𝐴̃]0 =
([𝐴]0 ≫ 32

)
= 0x ffffffff

redundant sign bits

shifted share

80014bf6

and

[𝐴̃]1 =
([𝐴]1 ≫ 32

)
= 0x ffffffff

redundant sign bits

shifted share

80039cab ,

so that ([𝐴̃]0 + [𝐴̃]1) + 264−32 ≡ (
0xffffffff80014bf6

+ 0xffffffff80039cab
)

+ 0x0000000100000000

≡ 0xffffffff0004e8a1

+ 0x0000000100000000

≡ 0x000000000004e8a1 (mod 264) .

Now, we can observe that
([𝐴̃]0 + [𝐴̃]1) + 264−32 = (

𝐴 ≫ 32
) − 1. In order to get the

exact result 𝐴 ≫ 32, we must correct the least-significant bit error in this precision
reduction.

Least-significant bit errors

The second source of error occurs when the 𝑝 low-order bits that get shifted out of [𝑧]
would have induced a carry-in to new least-significant bit—an event that occurs with
probability 0.5. When this event occurs, we find that [±264−𝑝] + [𝑧] = [(𝑧 ≫ 𝑝) − 1]
is the next smallest representable number from the one we desire; that is, our answer
undershoots the correct answer by 2−(𝑞+1) in expectation (and up to 2−𝑞 in the
worst case), where 𝑞 is the number of bits of fractional precision after the precision
reduction.
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To correct this error, it suffices to compute and add shares of the carry-in that
would have resulted from the 𝑝 shifted-out bits. We can compute this carry-out either
using Grotto (with a fresh DPF) or using a DCF. As the sole fractional-precision
reduction in a Grotto invocation occurs only after the sign-corrected polynomial
evaluation, both options require at least one additional round of communication;
thus, in order to minimize the impact on round complexity, our implementation use
a DCF that adds only a single round.3 We stress, however, that the general efficiency
of Grotto permits evaluations that use highly granular LUTs and fixed-points with
many fractional bits, allowing even uncorrected Grotto evaluations to provide very
good approximations. Our experiments in Section 5.4 indicate the cost and accuracy
of Grotto evaluations both with and without this correction.

Least-significant bit example To demonstrate a least-significant bit error and
how it is corrected, we continue with the problem of resetting the number of frac-
tional bits in the area of a circle, which we began in Section 5.2.1. In this example, the
value 𝐴 = 0x0004e8a270000000 is divided into the (2, 2)-additive sharing

[𝐴]0 = 0x80014bf69ed29a6b

and

[𝐴]1 = 0x80039cabd12d6595 .

Section 5.2.1 showed how the redundant sign-bit errors that appear in the preci-
sion reduction can be corrected. Let [𝐴]0 and [𝐴]1 denote the reduced shares after
the correction for the most significant bits has been applied. However, even after
these corrections are applied, [𝐴]0 + [𝐴]1 =

(
𝐴 ≫ 32

) − 1, not 𝐴 ≫ 32. This is due
to a least-significant bit error.

Let the low-order 32 bits of [𝐴]0 and [𝐴]1 be denoted as [𝐿]0 = 0x9ed29a6b and
[𝐿]1 = 0xd12d6595 respectively. We can take the sum of these two values to see
that

[𝐿]0 + [𝐿]1 = 0x9ed29a6b + 0xd12d6595
= 0x170000000

3Note that the DCF shares for a single 64-bit comparison is only about 𝜆 lg 𝜆 + 642 bits larger than
the corresponding Grotto DPF; the tradeoff for this extra size relative to using a DPF is one fewer
communication round.
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0x9ed29a6b + 0xd12d6595 = 0x170000000.

This shows that there is a carry out from the low-order 32 bits of the shares of 𝐴.
The least-significant bit error results because these low-order bits are omitted in [𝐴̃]
and [𝐴].

To correct for this error, we consider [𝐿]0 and [𝐿]1. We then append a zero bit
as the most significant bit of both shares, so that they can be interpreted as 33-bit
shares. Now, determining whether [𝐿]0+ [𝐿]1 has a carry out bit over 32-bit numbers
is equivalent to determining if the MSB of [𝐿]0 + [𝐿]1 is set over 33-bit numbers. As
stated previously, this is a problem that can be easily answered using Grotto or a
DCF. The resulting shares of the carry out bit [𝐿 ≫ 32] can then be added to [𝐴],
correcting the LSB value. This produces an exact precision reduction of [𝐴].

5.3 The Grotto framework

We now have all the fundamental building blocks in place. This section describes
howwe integrated these building blocks to arrive at Grotto, our framework and C++
library for space- and time-efficient (2+1)-party evaluation of piecewise-polynomial
functions (or splines) on (2, 2)-additively shared inputs.

The premise

P0 and P1 wish to obliviously evaluate some non-linear function 𝑓 : R → R on
input some (2, 2)-additively shared fixed-point value [𝑥]; that is, they wish to com-
pute [𝑓 (𝑥)] from [𝑥]. We assume that 𝑓 is well-approximated by the piecewise-
polynomial function described in F B ( ®𝐵, ®𝑃) and that P0 and P1 each hold F in
plaintext. Here ®𝐵 is the ordered list of endpoints for the “pieces” of the approxima-
tion and ®𝑃 is the correspondingly ordered list of (vectors of coefficients defining)
polynomials for approximating within those pieces.

Preprocessing phase

In a preprocessing phase, some benevolent third-party (P2) samples an ( [𝑖], J®𝑒𝑖K)
pair alongside “Beaver triple-like” values in support of the eventual sign-corrected
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polynomial evaluation (see Section 5.3.1), and then it distributes the shares and
Beaver triple-like values to P0 and P1 and exits the scene.4

Online phase

Upon learning [𝑥] in the online phase, P0 and P1 use a reconstructed 𝑥−𝑖 to cyclically
shift each endpoint in ®𝐵 to the left. Here they are running the DPF-based PIR protocol
introduced in Section 2.8.2 along with the technique of rotating ®𝐵 discussed in Sec-
tion 4.2. We emphasize that shifting ®𝐵 instead of ®𝑒𝑖 obviates the need for P0 and
P1 to evaluate the DPF at every 𝑖 ∈ [0 . . 𝑁 ), a procedure that may be prohibitively
costly—or perhaps even computationally infeasible—when 𝑁 is large [62].

Both parties then run the prefix-parity algorithm on their respective shares
of J®𝑒𝑖K to find XOR-shared prefix parities for each of the above-rotated endpoints,
and then they use these XOR-shared prefix parities to construct XOR-shares of the
vector of segment parities corresponding to pieces in F . Specifically, the resulting
shares reconstruct to the selection vector indicating which polynomial reflected
in ®𝑃 provides a good approximation to 𝑓 on input 𝑥 . From here, the two parties
use this vector of parities to obliviously fetch additive shares of (plus-or-minus)
the appropriate coefficients vector from ®𝑃 , using the PIR-like process from Sec-
tion 2.8.1.

Finally, the parties use the aforementioned Beaver triple-like values to compute
sign-corrected evaluations on input [𝑥] of whatever polynomial 𝑓 ′ they obliviously
fetched in the preceding step, yielding additive shares of (a good approximation to)
the desired evaluation 𝑓 (𝑥).5

5.3.1 Sign-corrected polynomial evaluation

Grotto could use any of a number of known techniques for oblivious polyno-
mial evaluation. Our implementation supports two such techniques, namely either
(i) Horner’s method together with Du-Atallah multiplication or (ii) ABY2.0-style
𝐷-ary multiplication.

4Depending on the method being used to evaluate the polynomial and correct the output sign,
this preprocessed value will differ as discussed in Section 5.3.1.

5The details the evaluation are intentionally left vague here, because these particulars are dependent
on the evaluation and sign-correction method employed.
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Horner’s method

Horner’s method is a technique for evaluating polynomials efficiently. To evaluate
the degree-𝑑 polynomial 𝑎(𝑥) B 𝑎𝑑 ·𝑥𝑑 + 𝑎𝑑−1·𝑥𝑑−1 + · · · + 𝑎1·𝑥 + 𝑎0, Horner’s method
simply expresses it in the form

𝑎0 + 𝑥 ·
(
𝑎1 + 𝑥 ·

(
𝑎2 + 𝑥 ·

(
𝑎3 + · · · + 𝑥 ·(𝑎𝑑−1 + 𝑥 ·𝑎𝑑) · · ·

) ) )
,

thereby allowing its evaluation via an interleaved sequence of 𝑛 additions and 𝑛
multiplications.

For example, to evaluate the quadratic 𝑓 (𝑥) = 𝑎2·𝑥 2 + 𝑎1·𝑥 + 𝑎0, in which the
coefficients 𝑎𝑖 and indeterminate 𝑥 are each fixed-point numbers with 𝑝 fractional
bits, on input 𝑥 = 𝑗 , Horner’s method evaluates the expression

𝑓 ( 𝑗) = ( ( ( ((𝑎2 · 𝑗) ≫ 𝑝
) + 𝑎1) · 𝑗 ) ≫ 𝑝

) + 𝑎0 .
The arithmetic right-shifts following every multiplication ensure the operands to
each addition and the final output all have 𝑝 fractional bits. In practice, the arithmetic
right-shift to reduce the fractional precision does not need to be performed after
every multiplication. The results will still be correct, within the constraints of the
available bits for the integer and the fractional part of the number, as long as all
additions are performed between fixed-point number with the same precision.

When this approach is instantiated using Du-Atallah multiplication, evaluating a
degree-𝑑 polynomial requires a minimum of 𝑑 + 1 rounds of interaction—specifically,
𝑑 rounds for the 𝑑 multiplications plus one final round that merely sign-corrects the
penultimate answer. Interleaved within these rounds of multiplication will be some
number of precision reduction steps. A precision reduction is inserted when the next
multiplication would result in the intermediate value having too few integer bits.
Each of these precision reductions adds a minimum of one round of communication
if the sign of the intermediate value is known. If the sign is not already known, secret
shares of the sign bit needs to be extracted and then two rounds of communication
are required to complete the sign reduction. Algorithm 1 shows pseudocode for
Horner’s method-based evaluation in which the precision is reduced whenever the
intermediate value’s precision exceeds a given 𝑝max. The details of this precision
reduction are omitted as the method used is dependent on context.
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Algorithm 1 Du-Atallah Horner’s Method
Require: Input precision 𝑝𝑥
Require: Coefficient precision 𝑝𝑐
Require: Maximum precision 𝑝max
Require: Fixed-point input 𝑥
Require: Fixed-point coefficients 𝑐0, 𝑐1, . . . , 𝑐𝑑 (𝑑 ∈ N) for polynomial 𝑓 (𝑥) = 𝑐𝑑 ·𝑥𝑑 +
𝑐𝑑−1·𝑥𝑑−1 + . . . + 𝑐1·𝑥 + 𝑐0
[𝑡] = [𝑐𝑑]
𝑝current = 𝑝𝑐
for 𝑖 = 𝑑, 𝑑 − 1, . . . , 1 do
From P2 receive Beaver Triple 𝐵𝑖
Compute [𝑡] = [𝑡]·[𝑥] using 𝐵𝑖
𝑝current = 𝑝current + 𝑝𝑥
if 𝑝current ≥ 𝑝max then

Reduce [𝑡] to precision 𝑝𝑐
end if

[𝑡] = [𝑡] + ([𝑐𝑖−1] ≪ (𝑝current − 𝑝𝑐))
end for

Output [𝑡]

Sign-correcting the answer

Implementing the sign-correction is pleasantly easy: Let L𝑒M = (L𝑒M0, L𝑒M1) be the
XOR-shared vector of segment parities, let 𝑈0 and𝑈1 respectively denote the sum
over Z𝑁 of all parities in L𝑒M0 and L𝑒M1, and set 𝑢 B 𝑈0 − 𝑈1. By construction, we
have 𝑢 = ±1 and, moreover, if 𝑓 ′ is the (uncorrected) polynomial that L𝑒M selects
from ®𝑃 , then 𝑢 has the “matching” sign. It, therefore, follows that

𝑓 ( 𝑗) ≈ 𝑢·𝑓 ′( 𝑗) ,

which P0 and P1 can easily compute a sharing of using one final Du-Atallah multi-
plication between the sharings [±𝑓 ′( 𝑗)] and [𝑢] = (𝑈0,−𝑈1).

For example, consider the example from Section 5.2, in which the selection
vector parity shares L®𝑒4M0 B (0, 1) and L®𝑒4M1 B (1, 1) are lifted to the Z𝑁 selection
vector shares [−®𝑒4]0 B (0, 1) and [−®𝑒4]1 B (−1,−1). As a result, the inner products
to retrieve values from ®𝑃 yields, [𝑟 ]0 = ⟨[−®𝑒4]0, ®𝑃⟩ = 𝑏 and [𝑟 ]1 = ⟨[−®𝑒4]1, ®𝑃⟩ =
(−𝑎) + (−𝑏). Thus, 𝑟 = −𝑎, which is the negation of the desired result 𝑓 (4). We can
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then perform the sign correction. First, we use the same selection vector parity shares
to retrieve a value from a table in which all entries have the value 1. Simplified, this
produces sign correction shares [𝑠]0 = 0 + 1 = 1 and [𝑠]1 = (−1) + (−1) = −2. Thus,
𝑠 = −1, which is the negative because 𝑟 = −𝑎 is the negation of the proper result.
Then, shares of the correct answer 𝑓 (4) = 𝑎 = 𝑠 ·𝑟 can be computed in MPC, either as
a standalone Du-Atallah multiplication or as part of the ABY2.0-style multiplication
discussed next.

ABY2.0-style multiplication

The approach based on Horner’s method incurs low precomputation costs in ex-
change for a relatively large (degree-dependent) round complexity. As an alternative
that avoids this blowup in round complexity, Grotto also supports polynomial evalu-
ation based on the single-round 𝐷-ary multiplication technique used by ABY2.0 [54],
which is described in Section 2.5.3. This technique has a noticeably higher pre-
processing cost, but it can be substantially more performant in instances where each
round of communication incurs Internet round-trip latency.

Our use of ABY2.0-style multiplication follows the original expositions of Patra,
Schneider, Suresh, and Yalame [54; §3.1.4] rather faithfully, save for two important
optimizations that we introduce specifically to facilitate efficient fixed-point poly-
nomial evaluation. First, because we desire only the final output of a polynomial
evaluation (i.e., we are not interested in evaluating the individual monomials), we
are able to merge several P2 terms to noticeably reduce overall precomputation size
relative to a naïve application of ABY2.0-style multiplication to the individual mono-
mials. Second, to prevent integer overflows and the need to reduce the fractional bits
in intermediate values, we “lift” the coefficients 𝑎𝑖 and indeterminate 𝑥 to a larger
ring (namely, to Z2𝑛+𝑘+𝑚 for some𝑚 ∈ N). Once the polynomial has been evaluated in
this larger ring, we project the result back into Z2𝑛+𝑘 . While it would be possible to
support arbitrarily large integer parts with this approach, our implementation in
Grotto seeks only to support evaluations that would also succeed using Horner’s
method (see Section 5.3.1); for instance, if 𝑥 is a 64-bit integer with 16 fractional bits,
then each intermediate value in the Horner evaluation has 32 fractional bits and, thus,
integer parts comprising at most 31 = 64 − 32 − 1 bits. Therefore, for polynomials of
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degree𝑑 , we desire a ring large enough to encode 16(𝑑+3) bits—31 integer bits, 1 sign
bit, and 16(𝑑 +1) fractional bits—such as Z2𝑛+𝑘+𝑚 for any𝑚 ≥ max(16(𝑑 +3) −𝑛−𝑘, 0).
For optimal performance on 64-bit CPUs, our implementation uses the smallest such
𝑚 for which 𝑛 + 𝑘 +𝑚 is a multiple of 64.

Lifting the coefficients

Lifting the 𝑎𝑖 is trivial: Since P0 and P1 hold the LUT ®𝑃 in plaintext, they can lift
each coefficient “for free” ahead of the PIR step. At the same time, they adjust the
number of fractional bits in each coefficient (by left-shifting in zeros) so that every
monomial 𝑎𝑖 ·𝑥 𝑖 will use exactly (𝑑 + 1)·𝑝 fractional bits; that is, they replace each 𝑎𝑖
by 𝑎𝑖 B (𝑎𝑖 ≪ (𝑑 − 𝑖)·𝑝) | |0𝑖 ·𝑝 ∈ Z2𝑛+𝑘+𝑚. The latter fractional-precision adjustments
ensure that the decimal points in intermediate values of the polynomial evaluation
“line up”, allowing them to be added or subtracted non-interactively.

Lifting the indeterminate

Lifting the indeterminate is more cumbersome, as P0 and P1 hold only a sharing [ 𝑗]
of the input. The main observation behind our approach is that lifting [ 𝑗] is actually
trivial—provided we are not fussy about the number of fractional bits in the lifted result.
Specifically, to lift [ 𝑗] from Z2𝑛+𝑘 into Z2𝑛+𝑘+𝑚, P0 and P1 each simply append 0𝑚 to the
binary representations of their respective shares (and switch from reducing modulo
2𝑛+𝑘 to reducing modulo 2𝑛+𝑘+𝑚) so that

[ 𝑗]0 | |0𝑚 + [ 𝑗]1 | |0𝑚 = 𝑗 | |0𝑚 ∈ Z2𝑛+𝑘+𝑚 ,

which is the correct 𝑗 , only with 𝑝 +𝑚 instead of 𝑝 fractional bits. From here, an
interactive fractional precision reduction (see Section 5.2.1) suffices to “reset” the
number of fractional bits back to the desired 𝑝 .

Only one question remains unanswered: How do P0 and P1 determine [msb( 𝑗)],
which is needed in Equation (5.2), from [ 𝑗]? For this, we look inward, noting that
the msb function is just a piecewise-constant (indeed, piecewise-Boolean) function
comprising two parts; thus, the parties can calculate [±msb( 𝑗)] using the same DPF

shares as they are using to fetch 𝑓 ′ from ®𝑃 . Because the “polynomials” for the msb

function are constant integers, there is no reason to lift them to the larger ring (i.e.,
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there is no “chicken and egg” situation). Then, when subsequently computing the
correction term via Equation (5.2), we use the fact thatmsb( 𝑗) ∈ {0, 1} so that(±msb( 𝑗))2 = (−msb( 𝑗))2 = msb( 𝑗)2 = msb( 𝑗)

holds for all 𝑗 .

Putting it all together

Instantiating Grotto with ABY2.0-style multiplication yields a three-round protocol
for approximations via polynomials of any degree:

Round 1: P0 and P1 reconstruct 𝑗 − 𝑖 mod 2𝑛+𝑘 and use a Du-Atallah multiplication
to compute the sharing [𝑍0·𝑍1] with 𝑍𝑏 B msb( [ 𝑗]𝑏) for 𝑏 = 0, 1 (cf. Equation (5.2)).
Note that P0 and P1 respectively know𝑍0 and𝑍1 in plaintext, so the plaintext variant
of Du-Atallah multiplication can be used.

Before proceeding to the next round, each party lifts (and precision-adjusts) the
coefficients comprising ®𝑃 into Z2𝑛+𝑘+𝑚 and then runs the prefix-parity algorithm to
fetch its shares of [±𝑎𝑖] and [±𝑍 ] for 𝑍 B msb( 𝑗).

Round 2: P0 and P1 use a ternary ABY2.0-style multiplication to compute the shar-
ing [(𝑍0·𝑍1)·(±𝑍 )2] from [𝑍0·𝑍1] and [±𝑍 ], and then they use it to (from this point
on, non-interactively) compute [±2𝑛+𝑘] using Equation (5.2).

Before proceeding to the next round, the parties use [±2𝑛+𝑘] as the correction term
to lift the shares of the indeterminate 𝑥 ∈ Z2𝑛+𝑘 into shares of 𝑥 ∈ Z2𝑛+𝑘+𝑚.

Round 3: P0 and P1 use a (𝑑 + 2)-ary ABY2.0-style multiplication over sharings
[𝑎0], . . . , [𝑎𝑑], [𝑥], and [𝑢] (which they compute the same way as they would in
Horner’s method) to evaluate [𝑓 ′(𝑥)] = [𝑢·(𝑎𝑑 ·𝑥𝑑 + · · · + 𝑎1·𝑥 + 𝑎0)].

Round 4: P0 and P1 use a DCF to obliviously compute—and add to their respective
shares—the carry-in to the least-significant bit of [𝑓 ′(𝑥)].

In cases where the coefficients and 𝑥 need not be lifted to avoid overflow, we
can skip Round 2 above, resulting in a somewhat simpler two-round protocol. We
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include our precise formulae for ABY2.0-style sign-corrected polynomial evaluation
and detailed derivations thereof as Appendix B.

In cases where the coefficients and 𝑥 need not be lifted to avoid overflow, we
can skip Round 2 above, resulting in a somewhat simpler protocol with one less
round. Likewise, when either the sign-corrected polynomial evaluation does not
include a precision reduction or the result small bias is palatable, the last round
can be omitted. We include our precise formulae for ABY2.0-style sign-corrected
polynomial evaluation and detailed derivations thereof as Appendix B.6

5.4 Implementation & evaluation

To empirically evaluate the performance of our approach, we implemented Grotto
as a C++ library. Our implementation uses dpf++ [36] for (2, 2)-DPFs, the GNU

multiprecision arithmetic library (GMP) v6.2.1 [34] for multi-limb arithmetic in our
ABY2.0-style multiplication, and the C++ version of ALGLIB 3.19.0 [10] for curve
fitting in our LUT-generation code.

In addition to implementing the prefix-parity algorithm and associated (2 +
1)-party protocols, our implementation comes equipped with scores of “gadgets”
(i.e., LUTs and associated machinery) for evaluating common functions, including
trigonometric and hyperbolic functions (and their inverses); various logarithms;
roots, reciprocals, and reciprocal roots; sign testing and bit counting; and over two
dozen of the most common (univariate) activation functions from the deep-learning
literature. We also include utilities for generating additional LUTs from arbitrary
functions 𝑓 : R→ R given as a blackbox.7

6In fact, Appendix B includes derivations for both one- and two-round sign-corrected evaluations
(for constant, linear, quadratic, and cubic polynomials). The two-round variants are similar to their
one-round counterparts, as described above, except they apply the sign correction as a post-processing
step (similar to with Horner’s method). This reduces the number of Beaver-like terms that P2 must
send at the expense of one additional communication round; crucially, though, it still decouples the
round complexity of polynomial evaluation from the degree of the polynomial under consideration.

7Simultaneously efficient, accurate, and fully-automated LUT generation is impossible given only
blackbox access to 𝑓 ; to work around this, our LUT-generation utility allows the user to provide some
“hints” that effectively transform the problem into that of “graybox” LUT generation.
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Table 5.1: Summary of selected gadgets with out-of-the-box support in Grotto,
assuming 64-bit fixed-point arithmetic with 16 fractional bits.

Gadget Descriptive name Formula Degree # parts
†

Max error
†

RMSE
†

Expected half-PRGs
†

cos cosine¶ cos(𝑥 ) 3 64 3.0e−8 1.6e−8 586 ± 3
sin sine¶ sin(𝑥 ) 3 63 3.0e−8 1.7e−8 580 ± 2
tan tangent¶ sin(𝑥 )/ cos(𝑥 ) 3 608 4.6e−4‡ 5.8e−5‡ 489 ± 3
csc cosecant¶ 1/ sin(𝑥 ) 3 595 4.6e−4‡ 5.8e−5‡ 492 ± 3
sec secant¶ 1/ cos(𝑥 ) 3 358 4.6e−4‡ 5.5e−5‡ 496 ± 3
cot cotangent¶ 1/ tan(𝑥 ) 3 366 2.9e−4‡ 3.4e−5‡ 486 ± 3
arccos arc cosine cos−1 (𝑥 ) 3 31 6.8e−5 1.1e−5 245 ± 2
arcsin arc sine sin−1 (𝑥 ) 3 31 7.9e−5 1.3e−5 244 ± 2
arctan arc tangent tan−1 (𝑥 ) 3 179 1.6e−7 2.4e−8 2333 ± 4
arccsc arc cosecant csc−1 (𝑥 ) 3 55 4.4e−4‡ 3.9e−5‡ 744 ± 3
arcsec arc secant sec−1 (𝑥 ) 3 58 4.4e−4‡ 3.5e−5‡ 755 ± 4
arccot arc cotangent cot−1 (𝑥 ) 3 41 1.5e−5‡ 7.2e−6‡ 684 ± 3
arcosh area hyperbolic cosine ln(𝑥 +

√
𝑥 2 − 1 ) 3 439 2.4e−7 8.7e−8 11 129 ± 4

arsinh area hyperbolic sine ln(𝑥 +
√
𝑥 2 + 1 ) 3 753 2.4e−7 8.9e−8 22 166 ± 4

t
r
i
g
o
n
o
m
e
t
r
i
c
f
u
n
c
t
i
o
n
s

artanh area hyperbolic tangent 1
2 ln( (1 + 𝑥 )/ (1 − 𝑥 ) ) 3 54 1.5e−7 9.0e−8 299 ± 2

ln natural logarithm ln(𝑥 ) 3 507 3.0e−7 7.5e−8 11 382 ± 5
log10 common logarithm log10 (𝑥 ) 3 550 1.7e−7 4.8e−8 10 343 ± 5
log2 binary logarithm lg(𝑥 ) 3 193 3.9e−5 6.5e−6 4402 ± 5
ilogb integer binary log ⌊lg(𝑥 ) ⌋ 0 128 0 0 3306 ± 1

l
o
g
a
r
i
t
h
m
s

ilog10 integer base-10 log ⌊log10 (𝑥 ) ⌋ 0 40 0 0 1158 ± 5
sqrt square root √

𝑥 3 999 1.2e−4 2.6e−5 34 911 ± 4
cbrt cube root 3√

𝑥 3 765 1.7e−5 2.1e−6 24 326 ± 4
qtrt quartic root 4√

𝑥 3 379 1.6e−5 6.3e−6 9344 ± 5
isqrt reciprocal square root 1/√𝑥 3 330 3.5e−6 1.6e−7 4174 ± 3
icbrt reciprocal cube root 1/ 3√

𝑥 3 192 2.0e−5 3.7e−6 1082 ± 4
iqtrt reciprocal quartic root 1/ 4√

𝑥 3 367 3.5e−6 1.6e−7 5862 ± 4

r
o
o
t
s
/
r
e
c
i
p
r
o
c
a
l
s

reciprocal reciprocal 1/𝑥 3 561 4.6e−5 4.6e−6 1051 ± 3
erf Gaussian error function (2/√𝜋 )

∫ 𝑥

0 𝑒−𝑡 2 dt 3 70 3.0e−8 1.7e−8 626 ± 2

e
r
f

erfc complementary erf 1 − erf (𝑥 ) 3 92 4.2e−8 1.6e−8 772 ± 2
abs absolute value |𝑥 | 1 2 0 0 114 ± 0
signum sign number sgn(𝑥 ) 0 3 0 0 114 ± 0
positive test strictly positive [𝑥 > 0] 0 2 0 0 114 ± 0
negative test strictly negative [𝑥 < 0] 0 2 0 0 114 ± 0
nonneg test non-negative [𝑥 ≥ 0] 0 2 0 0 114 ± 0
nonpos test non-positive [𝑥 ≤ 0] 0 2 0 0 114 ± 0
zero test exactly zero [𝑥 ?

= 0] 0 2 0 0 57 ± 0

s
i
g
n
t
e
s
t
i
n
g

nonzero test non-zero [𝑥 ≠ 0] 0 2 0 0 57 ± 0
clz count leading zeros clz(𝑥 ) 0 49 0 0 1665 ± 1

b
i
t
s

clrsb count redundant sign bits clrsb(𝑥 ) 0 95 0 0 3207 ± 1
ReLU rectified linear unit max(0, 𝑥 ) 1 2 0 0 114 ± 0
ReLU6 clipped ReLU min(max(0, 𝑥 ), 6) 1 3 0 0 128 ± 2
LeakyReLU leaky ReLU max(0, 𝑥 ) +min(0, 𝑥/ 100) 1 2 0 0 114 ± 0
ReLU2 squared ReLU max(0, 𝑥 2 ) 2 2 0 0 114 ± 0
GELU Gaussian error linear unit 𝑥 (1 + erf (𝑥/√2 ) )/ 2 3 81 6.0e−6 2.5e−7 712 ± 2
HardELiSH “hard” ELiSH min(𝑒𝑥 − 1, |𝑥 | ) max(0,min(1, 𝑥+12 ) ) 3 38 4.2e−8 1.2e−8 351 ± 2
Hardshrink “hard” shrink | ( |𝑥 ) < 1 ? 0 : 𝑥 1 3 0 0 182 ± 1
Hardsigmoid “hard” logistic sigmoid 𝑥 < −3 ? 0 : (𝑥 > 3 ? 1 : (𝑥 + 3)/6) 1 3 0 0 128 ± 2
Hardswish “hard” swish 𝑥 < −3 ? 0 : (𝑥 > 3 ? 1 : 𝑥 · (𝑥 + 3)/6) 2 3 0 0 128 ± 1
Hardtanh “hard” hyperbolic tangent 𝑥 < −1 ? −1 : (𝑥 > 1 ? 1 : 𝑥 ) 1 3 0 0 126 ± 2
Softplus “soft” plus ln(1 + 𝑒𝑥 ) 3 94 1.2e−7 2.2e−8 960 ± 2
Softminus “soft” minus 𝑥 − Softplus(𝑥 ) 3 93 1.2e−7 2.2e−8 946 ± 2
Softsign “soft” sign 𝑥/ (1 + |𝑥 | ) 3 182 6.2e−7 3.9e−8 2247 ± 3
Softshrink “soft” shrink sgn(𝑥 ) ·max( | ( |𝑥 ) − 1, 0) 1 3 0 0 125 ± 1
ELU exponential linear unit max(𝛼 𝑒𝑥 − 1, 𝑥 ) 3 46 3.0e−8 1.7e−8 496 ± 3
sigmoid logistic sigmoid 1/ (1 + 𝑒−𝑥 ) 3 98 1.1e−7 1.4e−8 991 ± 2
SiLU sigmoid linear unit 𝑥 sigmoid(𝑥 ) 3 108 1.2e−7 2.6e−8 1046 ± 2
CELU continuously differentiable

ELU
max(0, 𝑥 ) +min(0, 𝑒𝑥 − 1) 3 47 3.0e−8 1.7e−8 507 ± 2

ELiSH exponential-linear squash-
ing

𝑥 < 0 ? 𝑥

1+𝑒−𝑥 : 𝑒
𝑥 −1

1+𝑒−𝑥 3 115 1.2e−7 2.4e−8 1093 ± 3

Mish Misra’s swish 𝑥 tanh(Softplus(𝑥 ) ) 3 106 1.2e−7 1.8e−8 1005 ± 3
LeCunTanh LeCun’s hyperbolic tangent 1.7159 tanh( 23𝑥 ) 3 89 4.2e−8 2.3e−8 860 ± 2
TanhExp tanh-exponential 𝑥 tanh(𝑒𝑥 ) 3 100 6.0e−8 1.1e−8 931 ± 3
TanhShrink tanh shrink 𝑥 − tanh(𝑥 ) 3 99 8.4e−8 5.9e−8 852 ± 2
Serf log-softplus error 𝑥 erf (Softplus(𝑥 ) ) 3 102 5.9e−8 1.5e−8 943 ± 2
logsigmoid natural ogarithm of sigmoid ln sigmoid(𝑥 ) 3 67 4.1e−5 7.2e−6 682 ± 2

a
c
t
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v
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tanh hyperbolic tangent (𝑒𝑥 − 𝑒−𝑥 )/ (𝑒𝑥 + 𝑒−𝑥 ) 3 84 3.0e−8 1.7e−8 770 ± 3
†Assuming 64-bit fixed-point arithmetic using 16-bits to represent the fractional part.
‡This function has one or more poles; error measurements exclude points with a distance less than 1.5e−3 from a pole.
¶This is a periodic function for which only the principle domain is included in the LUT
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5. Grotto: MPC via (2, 2)-DPFs

Table 5.1 summarizes selected gadgets (65 in all) supported out-of-the-box by
Grotto, including efficiency metrics (polynomial degree, number of parts in ®𝑃 ,
and expected number of half-PRG invocations used by the prefix-parity algorithm)
alongside fidelity metrics (maximum error and root-mean-squared approximation
error) for each gadget. This table also shows polynomial degrees and lookup table
sizes for each gadget when using 64-bit fixed-point arithmetic with 16 fractional
bits.

Performance benchmarks

The remainder of this section reports our findings from a series of experiments we
ran on a workstation equipped with 128GiB of RAM and an Intel Core i9-12900KS
processor running Ubuntu 22.04. We ran all experiments for 100 trials and report
the sample mean alongside the sample standard deviation over those 100 trials. (We
express this as mean ± stdev.) All numbers are reported to one significant figure in
the sample standard deviation.

We compare Grotto against the recent work closest to it, namely Llama [35].
Table 5.2 presents the communication cost and running times for various gadgets
and network conditions. In each experiment, the peers perform 10,000 evaluations in
parallel. For each experiment, we measured Grotto with and without the carry-in
correction to demonstrate the cost of this (often optional) step.

The first three gadgets—reciprocal square root (isqrt), hyperbolic tangent (tanh),
and the logistic sigmoid function (sigmoid)—are also provided by the reference
implementation of Llama, albeit only with 16-bit words. In addition to the three
above-mentioned functions, we also benchmark Grotto on the square root (sqrt)
and base-10 logarithm (log10) functions. We note that sqrt is the costliest function
among those listed in Table 5.1 regarding expected half-PRG calls.

Our experiments highlight the practical benefits of the simple DPFs of Grotto
over the heavier DCFs used by Llama, with the gap between Grotto and Llama’s
preprocessing phases growing rapidly as network conditions deteriorate. Indeed,
in all instances, Grotto’s preprocessing time and communication costs are but a
fraction of what Llama uses; online computation times are consistently lower as
well, with even Grotto on 64-bit words competing against Llama on 16-bit words
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5. Grotto: MPC via (2, 2)-DPFs

Table 5.2: Cost comparison for 10,000 runs of selected Grotto- versus Llama-based
function evaluations

Func-

tion

Scheme Bits Parts Degree Preprocessing Online Rounds

1000mbit/0ms 100mbit/50ms 10mbit/100ms bandwidth 1000mbit/0ms 100mbit/50ms 10mbit/100ms bandwidth

sigmoid

Llama 17 000 ± 1000ms 31 500 ± 600 ms 281 800 ± 600 ms 157.39MiB 4700 ± 400 ms 5600 ± 200 ms 7300 ± 300 ms 351.57KiB 3
Grotto 16=7.9 34 2 103 ± 2 ms 500 ± 10 ms 1060 ± 30 ms 2.91MiB 105 ± 5 ms 515 ± 5 ms 1062 ± 6 ms 625 KiB 3
Grotto+ 145 ± 4 ms 630 ± 20 ms 1410 ± 70 ms 6.17MiB 144 ± 2 ms 640 ± 40 ms 1405 ± 3 ms 703.13KiB 4

Llama 18 000 ± 1000ms 31 600 ± 700 ms 282 600 ± 500 ms 157.39MiB 4800 ± 400 ms 5700 ± 200 ms 8800 ± 300 ms 351.57KiB 3
Grotto 16=5.11 34 2 110 ± 10 ms 508 ± 9 ms 1070 ± 40 ms 2.91MiB 112 ± 6 ms 515 ± 4 ms 1063 ± 8 ms 625 KiB 3
Grotto+ 148 ± 7 ms 635 ± 9 ms 1410 ± 60 ms 6.17MiB 148 ± 7 ms 640 ± 30 ms 1406 ± 6 ms 703.13KiB 4

Llama 6900 ± 400 ms 16 800 ± 900 ms 136 100 ± 600 ms 157.39MiB 3600 ± 300 ms 4200 ± 100 ms 5200 ± 300 ms 351.57KiB 3
Grotto 16=3.13 15 2 129 ± 3 ms 500 ± 10 ms 1070 ± 10 ms 2.91MiB 103 ± 4 ms 511 ± 2 ms 1063 ± 7 ms 625 KiB 3
Grotto+ 139 ± 6 ms 640 ± 10 ms 1410 ± 20 ms 6.86MiB 144 ± 8 ms 640 ± 30 ms 1390 ± 30 ms 703.13KiB 4

Llama — — — — — — — — -
Grotto 64=48.16 98 3 179 ± 6 ms 960 ± 60 ms 7447 ± 3 ms 13.73MiB 720 ± 80 ms 3500 ± 300 ms 7400 ± 700 ms 1875 KiB 3
Grotto+ 337 ± 7 ms 1870 ± 70 ms 15 200 ± 700 ms 28.99MiB 920 ± 30 ms 5100 ± 600 ms 9500 ± 500 ms 1953.13KiB 4

invsqrt

Llama 750 ± 60 ms 742 ± 40 ms 750 ± 50 ms 110.40MiB 900 ± 60 ms 1500 ± 100 ms 2360 ± 20 ms 351.57KiB 3
Grotto 16=6.10 10 2 102 ± 1 ms 610 ± 10 ms 1080 ± 70 ms 2.91MiB 103 ± 5 ms 520 ± 20 ms 1064 ± 6 ms 625 KiB 3
Grotto+ 148 ± 2 ms 620 ± 7 ms 1400 ± 50 ms 6.83MiB 141 ± 8 ms 620 ± 20 ms 1400 ± 20 ms 703.13KiB 4

Llama 5900 ± 300 ms 11 800 ± 300 ms 95 500 ± 600 ms 111.08MiB 1150 ± 70 ms 1710 ± 60 ms 7800 ± 300 ms 351.57KiB 3
Grotto 16=4.12 10 2 105 ± 3 ms 625 ± 8 ms 1060 ± 20 ms 2.91MiB 102 ± 3 ms 510 ± 30 ms 1061 ± 8 ms 625 KiB 3
Grotto+ 141 ± 2 ms 620 ± 20 ms 1400 ± 100 ms 7.20MiB 142 ± 9 ms 620 ± 30 ms 1400 ± 20 ms 703.13KiB 4

Llama — — — — — — — — -
Grotto 64=48.16 330 3 178 ± 6 ms 940 ± 50 ms 7448 ± 1 ms 13.73MiB 980 ± 60 ms 3500 ± 500 ms 7800 ± 600 ms 1875 KiB 3
Grotto+ 338 ± 8 ms 1880 ± 70 ms 15 000 ± 900 ms 28.99MiB 1200 ± 90 ms 4100 ± 60 ms 9900 ± 700 ms 1953.13KiB 4

tanh

Llama 6500 ± 300 ms 13 500 ± 500 ms 111 800 ± 600 ms 129.13MiB 1260 ± 80 ms 1830 ± 70 ms 8300 ± 300 ms 351.57KiB 3
Grotto 16=7.9 12 2 100 ± 3 ms 500 ± 10 ms 1060 ± 20 ms 2.91MiB 103 ± 4 ms 512 ± 5 ms 1064 ± 6 ms 625 KiB 3
Grotto+ 150 ± 10 ms 630 ± 50 ms 1410 ± 60 ms 6.17MiB 139 ± 6 ms 610 ± 40 ms 1404 ± 4 ms 703.13KiB 4

Llama 10 500 ± 600 ms 21 000 ± 1100ms 174 300 ± 600 ms 200.64MiB 2500 ± 200 ms 3300 ± 0 ms 9000 ± 400 ms 351.57KiB 3
Grotto 16=5.11 20 2 108 ± 7 ms 505 ± 5 ms 1000 ± 90 ms 2.91MiB 103 ± 5 ms 512 ± 3 ms 1060 ± 8 ms 625 KiB 3
Grotto+ 150 ± 1 ms 640 ± 10 ms 1410 ± 90 ms 6.86MiB 143 ± 8 ms 630 ± 20 ms 1390 ± 30 ms 703.13KiB 4

Llama — — — — — — — — -
Grotto 64=48.16 84 3 178 ± 6 ms 950 ± 60 ms 7447 ± 2 ms 13.73MiB 710 ± 80 ms 3500 ± 500 ms 7200 ± 700 ms 1875 KiB 3
Grotto+ 337 ± 7 ms 1860 ± 70 ms 14 900 ± 900 ms 28.99MiB 840 ± 30 ms 4600 ± 500 ms 9500 ± 1100 ms 1953.13KiB 4

log10
Grotto 64=48.16 84 3 178 ± 6 ms 950 ± 60 ms 7447 ± 2 ms 13.73MiB 2000 ± 100 ms 3600 ± 400 ms 7300 ± 900 ms 1875 KiB 3
Grotto+ 2200 ± 200 ms 4500 ± 500 ms 14 900 ± 900 ms 28.99MiB 2200 ± 200 ms 4500 ± 500 ms 8800 ± 600 ms 1953.13KiB 4

sqrt
Grotto 64=48.16 84 3 176 ± 5 ms 940 ± 60 ms 7446 ± 2 ms 13.73MiB 5700 ± 500 ms 6400 ± 400 ms 8090 ± 60 ms 1875 KiB 3
Grotto+ 337 ± 7 ms 1860 ± 70 ms 14 900 ± 900 ms 28.99MiB 6100 ± 600 ms 7900 ± 700 ms 10 500 ± 1000 ms 1953.13KiB 4

for all of the common gadgets.

Analysis

The experimental results summarized in Table 5.2 demonstrate that DPFs with the
parity-segment approach can handily outperform DCFs in terms of both communi-
cation and computation costs.

In particular, consider the approximation of 𝑓 : R→ R via a piece-wise polyno-
mial function comprising 𝑃 parts and polynomials of degree 𝑑 . Whereas the DCFs
that Llama uses to map inputs to parts each occupy about

𝜆·(lg𝑁 + 1) + 𝑃 ·(lg𝑁 )2·(𝑑 + 1) + 2𝑃 ·(𝑑 + 1) lg𝑁
∈ O(𝑃 · lg𝑁 2 · 𝑑) ,
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5. Grotto: MPC via (2, 2)-DPFs

the corresponding DPF only uses about 𝜆·(lg𝑁 − lg 𝜆) ∈ O(𝜆· lg𝑁 ) bits. For com-
putation, the required number of half-PRG evaluations shrinks from O(𝑃 · lg𝑁 ) to
o(𝑃 · lg𝑁 ) alongside a corresponding shrinking of the hidden constants.

More generally, one can view DPFs with the parity-segment segment technique
á la Grotto as being functionally equivalent to—albeit much more compact and
computationally efficient than—the DCFs employed by Llama, save for two subtle
differences:

1. First, on the positive side, whereas the entire LUT (i.e., both the 𝑥- and 𝑦-
coordinates of each “point”) are hardcoded by the DCF dealer at generation
time, DPFs with Grotto’s parity-segment approach allows dynamically choos-
ing those points at evaluation time. This results in a functionality-independent
preprocessing step that should be much easier to emulate in 2-party settings.

2. Second, on the negative side, using DPFs with 1-bit outputs necessitates an
extra round of interaction (for sign correction) relative to a DCF. For polyno-
mials of degree 𝑑 ≥ 1, Grotto can “hide” this round by piggybacking on the
rounded need for polynomial evaluation; however, this extra round appears
unavoidable when the 𝑦-coordinates are scalars.

As a general rule of thumb, replacing a DCF with a DPF results in a net perfor-
mance gain if (and essentially only if) the additional communication round is not
a bottleneck, such as when it can happen in parallel with some other, preexisting
message flow.

In terms of round complexity and online communication, Grotto is also com-
petitive with Llama but cannot compete with DCFs’ non-interactive evaluation. In
particular, Grotto incurs the same round complexity as Llama, but has a noticeably
higher online communication cost, owing to our use of cubic (rather than quadratic)
polynomials and our strategy of lifting shares to a larger ring. The upshot of this
higher online communication is the capacity for faster and more accurate approxima-
tions: Grotto’s approximations for all three functions exhibit a maximum error less
than the fixed-point numbers can represent, whereas Llama tolerates deviations of
up to 4 units in the last place (ULPs) of error.
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5. Grotto: MPC via (2, 2)-DPFs

We stress that all of the times we present explicitly ignore the network commu-
nication time. This is done for consistency with the available implementation of
Llama and to remove the communication overhead that dominates the running time
of both Llama and Grotto alike. Besides, typical Internet latency is easily four to
five orders of magnitude higher than Grotto’s running time, making the overhead
of Grotto impossible to separate from the variance in the network latency.

5.5 Conclusion

In this chapter, we introduced Grotto, a framework and C++ library for space- and
time-efficient (2 + 1)-party piecewise polynomial evaluation on secrets additively
shared over Z2𝑛+𝑘 . Grotto improves on the state-of-the-art approaches based on
DCFs in almost every metric, offering asymptotically superior communication and
computation costs with comparable round complexity. At the heart of Grotto is a
novel observation about the structure of the most compact DPFs from the literature
and our prefix-parity algorithm, which leverages this structure to do with a single
DPF what others require DCFs to do.
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Chapter 6

Beyond Grotto: DPFs for bit

decomposition in MPC

As described in Chapter 5, Grotto enables fast computation of non-linear func-
tionalities in MPC. However, this only scratches the surface of what Grotto can
be used for. This chapter shows how Grotto can be used to simultaneously evalu-
ate multiple functionalities in parallel on a single input at a much lower cost than
employing separate Grotto instances in parallel for each functionality. We then
proceed to show how this parallel composition technique can be applied to produce
a highly optimized bit decomposition algorithm which dramatically outperforms
the techniques for arithmetic to XOR share conversions used in all existing sys-
tems [22, 50, 54]. A natural application of this protocol is a new ABY-like framework
which integrates DPFs for share conversion and function computation. This ap-
proach gains a significant performance advantage over ABY framework variants
through its superior bit decomposition protocol and by using Grotto to evaluate
non-linear functionalities.

6.1 Function composition

Recall the basic flow of Grotto’s segment-parity-finding algorithm on an ordered
sequence 𝐸 of endpoints partitioning the bitstring 𝑆 into 𝑃 segments (up to cyclic
rotation) and a shift 𝑠:
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6. Beyond Grotto: DPFs for bit decomposition in MPC

1. invoke the prefix-parity algorithm to compute the parity 𝑝𝑖 of every prefix
ending at an endpoint 𝑒𝑖 + 𝑠 with 𝑒𝑖 from 𝐸, and then

2. for each successive pair (𝑝𝑖, 𝑝𝑖+1) of prefix parities, output the segment parity

parity
(
𝑆 [𝑒𝑖 . . 𝑒𝑖+1)

)
=

{
𝑝𝑖 ⊕ 𝑝𝑖+1 if 𝑝𝑖 < 𝑝𝑖+1, and
𝑝𝑖 ⊕ 𝑝𝑖+1 ⊕ 1 otherwise.

(6.1)

The “otherwise” clause in Equation (6.1) handles the case where a segment wraps
cyclically, which can happen for at most one of the 𝑃 segments induced by 𝐸.

Our first observation concerns the simultaneous evaluation of several functions
at the same 𝑥 . It follows from the fact that the above-sketched prefix-parity-finding
procedure merely takes arbitrary (sorted) endpoint sequences as input; the DPFs are
in no way tailored toward implementing any specific function, apart from having
the appropriate depth.

Observation 7. If 𝑓1, . . . , 𝑓𝑐 is a collection of 𝑐 univariate functions all sharing a

common domain and [𝑥] is an additively shared input, then we can securely evaluate

the sequence of secret-shared images [𝑓1(𝑥)], . . . , [𝑓𝑐 (𝑥)] using a single DPF.

We refer to such simultaneous evaluations using a single DPF as a composition

of the functions 𝑓1, . . . , 𝑓𝑘 .

Parallel versus sequential composition The most obvious way to compose 𝑘
functions in Grotto is to individually shift the segment endpoints for each func-
tion and then to run the entire segment-parity-finding algorithm 𝑘 times in a row
(i.e., once for each function). Such a sequential composition of functions maximally
amortizes the (both communication and computation) cost associated with DPF
generation and distribution—but not the cost of segment-parity finding.1

Specifically, recall that the prefix-parity algorithm incurs an amortized cost per
prefix that decreases as the number of prefix parities to compute increases, with the
rate of this decrease depending on the distribution of prefix lengths. Roughly speak-
ing, segment endpoints that are more densely packed imply greater amortization as

1We stress that the prefix-parity step is non-interactive, so our use of “sequential” here does not
imply sequential message passing between shareholders.
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6. Beyond Grotto: DPFs for bit decomposition in MPC

is shown in Appendix A. Indeed, in the extreme case where two or more consecu-
tive prefixes terminate within a common leaf node, only the lexicographically first
among them incurs any non-trivial computation cost. This suggests that a superior
approach to sequential composition is parallel composition, wherein the prefix-parity
algorithm is run just once on a merged (and deduplicated) sequence comprising the
shifted endpoints for all of the 𝑘 functions.

Figure 6.1 illustrates the two styles of composition for a pair of functions (namely,
the principle domains of sin(𝑥) and cos(𝑥)). In this example, both functions are
approximated by simple piecewise-linear functions respectively comprising 13 and
14 parts (or, equivalently, 14 and 15 endpoints, indicated in Figure 6.1a by the markers
along each curve).

-𝜋 - 8𝜋9 - 7𝜋9 - 2𝜋3 - 5𝜋9 - 4𝜋9 - 𝜋3 - 2𝜋9 - 𝜋9 0 𝜋

9
2𝜋
9

𝜋

3
4𝜋
9

5𝜋
9

2𝜋
3

7𝜋
9

8𝜋
9 𝜋

𝑥

𝑦sin(𝑥)
cos(𝑥)

(a) Piecewise-linear approximations to be composed

sin(𝑥 )

cos(𝑥 )

(b) Sequential composition

sin(𝑥 )
∪ cos(𝑥 )

sin(𝑥 )
cos(𝑥 )

(c) Parallel composition

Figure 6.1: Sequential versus parallel composition of piecewise-linear approximations
to cos(𝑥) and sin(𝑥) on their principle domain (namely [−𝜋 . . 𝜋]).

The sequential composition depicted in Figure 6.1b invokes the prefix-parity
algorithm twice, on endpoint sequences of length 14 and 15, before computing 13
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and 14 one-bit XORs to compute the desired segment parities. Using Theorem 3, we
can compute a worst-case bound for the cost of this approach as(

13𝑛 −∑13
𝑖=2⌊lg(𝑖 − 1)⌋

) + (14𝑛 −∑14
𝑖=2⌊lg(𝑖 − 1)⌋

)
= 27𝑛 − 53

half-PRG evaluations, plus a handful of XORs. Meanwhile, the parallel composition
depicted in Figure 6.1c invokes the prefix-parity algorithm just once on an endpoint
sequence of length 19, before computing 13 and 14 one-bit XORs analogous to those
in the sequential composition;2 thus, the worst-case bound for the cost of parallel
composition is just (

19𝑛 −∑19
𝑖=2⌊lg(𝑖 − 1)⌋

)
= 19𝑛 − 46

half-PRG evaluations, plus a handful of XORs. For 𝑛 = 57 (i.e., 64-bit shares and 128-
bit leaves), this works out to a reduction of theworst-case bound by 1− 19·57−46

27·57−53 ≈ 30.2%
half-PRG evaluations relative to sequential composition.

6.2 Bit extraction

0 0 00 =

0 0 11 =

0 1 02 =

0 1 13 =

1 0 04 =

1 0 15 =

1 1 06 =

1 1 17 =

bit1bit2bit3

Figure 6.2: Bucket layout for bit extraction in Grotto

Before trying to perform bit decomposition, consider the problem of extracting
XOR shares of the MSB of an 𝑛-bit arithmetic secret shared value. Recall that the
first 2𝑛−1 unsigned 𝑛-bit numbers will have the MSB cleared and the other 2𝑛−1 such
values will have the MSB set. This can be easily represented exactly as a Grotto
functionality in which the spline for the functionality is simply the constant 0 for

2In fact, the two approximations have four segments in common, so that only 13 + 14 − 4 = 23
such one-bit XORs are strictly required.
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all inputs less than 2𝑛−1 and the constant 1 for all inputs greater than or equal to
2𝑛−1. This same concept easily extends to the 𝑖th most significant bit (where the MSB
is the case 𝑖 = 1) which will divide the range into 2𝑖 equal size pieces with values
alternating between 0 and 1 as is shown in Figure 6.2. We will denote the function
which extracts the 𝑖th MSB of 𝑥 as bit𝑖 (𝑥).

While this technique will correctly extract any bit in the input number, the
number of buckets in the basic bit extraction Grotto functionality grows expo-
nentially as the bit being extracted is further away from the MSB. In order to im-
prove the efficiency of bit extraction, we can reduce the number of buckets in the
functionality while simultaneously using smaller DPFs by removing excess lead-
ing bits from the input number. To show that it is possible to remove leading bits
from a secret shared value using a completely offline computation, consider 𝑛-bit
secret shares of [𝑥], we know that 𝑥 ≡ [𝑥]0 + [𝑥]1 mod 2𝑛 . Which means that
𝑥 + 𝑞·2𝑛 = [𝑥]0 + [𝑥]1 for some 𝑞 ∈ Z. Then, for any non-negative integer𝑚 < 𝑛,
we have 𝑥 + (𝑞·2𝑛−𝑚)·2𝑚 = [𝑥]0 + [𝑥]1, so 𝑥 ≡ [𝑥]0 + [𝑥]1 mod 2𝑚 . As a result,
reducing the shares [𝑥]0 and [𝑥]1 to be𝑚-bit values produces correct𝑚-bit shares
of 𝑥 modulo 2𝑚 . This means that the secret shares representing the 𝑛-bit input value
to a Grotto function can be reduced to𝑚-bit shares for any 0 < 𝑚 ≤ 𝑛. The𝑚-bit
shares can then be used with an𝑚-bit DPF to evaluate Grotto functions exactly as
described in Chapter 5. In the case of extracting the 𝑖th MSB of 𝑥 , the input can be
reduced to have 𝑛 − 𝑖 + 1 bits. With the DPF only representing the least significant
𝑛 − 𝑖 + 1 bits, the 𝑖th MSB of the original input 𝑥 becomes the most significant bit
of the DPF’s distinguished point, 𝑥 mod 2𝑛−𝑖+1. Furthermore, when we remove the
most significant 𝑏 bits from the input and use only the low order 𝑛 − 𝑏 bits for the
DPF, this reduces the number of segments for bit𝑖 (𝑥) from 2𝑖 to 2𝑖−𝑏 .

6.3 Bit decomposition

In order to perform a bit decomposition, we want to compose multiple bit extraction
functionalities together to retrieve all bits of the input number. More generally, given
a set of bits 𝐵 ⊆ {1, 2, . . . , 𝑛} such that we want to compute bit𝑏 (𝑥) for all 𝑏 ∈ 𝐵, we
can reduce the DPF size to 𝑛 − 𝑐 + 1-bits long where 𝑐 = min(𝐵). This means that
the most significant bit to be extracted will always be the MSB of the reduced bit
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length input. This reduces the number of segments used to extract bit 𝑖 ∈ 𝐵 from
2𝑖 to 2𝑖−𝑐+1 as explained in Section 6.2. Now, we want to determine the number of
prefix parities that we need to compute when extracting all bits listed in 𝐵.

Theorem 7. Given bit𝑖 and bit𝑗 where 𝑖 < 𝑗 , the sets of endpoints for these function-

alities on an 𝑛-bit DPF are 𝐸𝑖 and 𝐸 𝑗 respectively where 𝐸𝑖 ⊆ 𝐸 𝑗 .

Proof. To extract bit𝑖 there are 2𝑖 segments equally distributed to cover the entire
domain, of size 2𝑛 . Therefore, the segments used are of length 2𝑛−𝑖 . This means
that 𝐸𝑖 = {𝑎·2𝑛−𝑖 | 0 ≤ 𝑎 ≤ 2𝑖}. By an analogous argument, 𝐸𝑖+1 = {𝑎·2𝑛−𝑖−1 | 0 ≤
𝑎 ≤ 2𝑖+1}. Suppose, 𝑏 = 𝑎·2𝑛−𝑖 ∈ 𝐸𝑖 , so 0 ≤ 𝑎 ≤ 2𝑖 . Then, 𝑏 = (2𝑎)·2𝑛−𝑖−1 and
0 ≤ 2·𝑎 ≤ 2· ≤ 2𝑖 = 2𝑖+1. Therefore, 𝑏 ∈ 𝐸𝑖+1.

By repeated application of this fact, we have that 𝐸𝑖 ⊆ 𝐸𝑖+1 ⊆ . . . ⊆ 𝐸 𝑗 . □

Corollary 3. Given a set of bits 𝐵 with 𝑏 = 𝑚𝑎𝑥 (𝐵), the set of endpoints for bit𝑏 ,
denoted 𝐸𝑏 , is the set of all endpoints for all Grotto functions bit𝑖 where 𝑖 ∈ 𝐵.

In Corollary 3, we see that the number of prefix endpoints, and thus the compu-
tation cost, for extracting multiple bits from a single DPF of a given size is entirely
dependent on the number of endpoints being used for the least significant bit that is
being extracted. Now, if a single DPF is used to extract all bits from an 𝑛-bit value,
then the number of endpoints will be the number of endpoints required to extract the
least significant bit, bit𝑛 (𝑥). Thus, the total number of segments will be 2𝑛 which is
infeasible for common bit lengths such as 𝑛 = 64.

To avoid the high cost of extracting all bits from a single DPF, we can use
multiple DPFs to extract different bits. Since the computational cost of prefix-parity
does not depend on the number of bits being extracted between the most and the
least significant bits that are being extracted, each DPF will be used to extract a
contiguous range of bits going from a specified most significant bit to a specified least
significant bit. Each DPF then has its input size set such that the most significant
bit to be extracted from that DPF is the most significant bit of the distinguished
point. Therefore, each range is extracted with as few prefix parity computations
as possible. This reduces the overall number of segments required for the prefix-
parity computation at the cost of using multiple DPFs. To tune the cost of the bit
decomposition, the number of DPFs can be increased or decreased based on the
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importance of computational cost versus the number of precomputed DPFs in the
specified scenario.

Formally, in order to perform bit decomposition on an 𝑛-bit additive secret
shared number [𝑥], we choose the number of DPFs 𝛾 and 𝛾 dividing points 1 =𝑚1 <

𝑚2 < . . . < 𝑚𝛾 = 𝑛. We will then generate 𝛾 DPFs for the bit extraction, denoted
𝑑1, 𝑑2, . . . , 𝑑𝛾 . DPF 𝑑𝑖 will be used to extract the𝑚𝑖 to𝑚𝑖+1 − 1 most-significant bits.
Since the most significant bit being extracted is the𝑚𝑖 most significant bit, the input
can be reduced to 𝑛 −𝑚𝑖 + 1 bits. Using the most recent version of the Boyle-Gilboa
-Ishai DPF construction, this results in a DPF key of size (𝑛 −𝑚𝑖 + 1)·(𝜆 + 2) + 1
bits [14]. Now, the least significant bit being extracted is the𝑚𝑖+1−1 most-significant
bit of the original 𝑥 , which is the𝑚𝑖+1 −𝑚𝑖 most-significant bit of the 𝑛 −𝑚𝑖 + 1-bit
[𝑥]. Therefore, the resulting bit extraction functionality will have 2𝑚𝑖+1−𝑚𝑖 parities to
compute.

The use of multiple DPFs of different bit lengths for bit decomposition leads
to the observation that each bit decomposition DPF can be chosen with the same
random distinguished point 𝛼 truncated to the number of bits in the DPF. As a result,
the shift 𝑥 − 𝛼 computed over 𝑛-bit values can be used to shift all of the DPFs to get
the correct values. This removes the need for separate shifts to be computed for every
DPF being used. As a result, using multiple DPFs will increase the precomputation
required in the protocol, but it will not change the online communication cost of the
bit decomposition protocol, as it would if each DPF needed a different shift.

6.4 Performance evaluation

As stated in the previous section, in order to decompose an 𝑛-bit additive secret
sharing using 𝛾 DPFs, the DPF for bits𝑚𝑖 to𝑚𝑖+1 − 1 will have a key of size (𝑛 −
𝑚𝑖 + 1)·(𝜆 + 2) + 1 = (𝑛 + 1)𝜆 + 2𝑛 + 3 − (𝜆 + 2)𝑚𝑖 bits. The total size of the DPFs is
then

∑𝛾
1 ((𝑛 + 1)𝜆 + 2𝑛 + 3 − (𝜆 + 2)𝑚𝑖) = 𝛾 ((𝑛 + 1)𝜆 + 2𝑛 + 3) − (𝜆 + 2)

∑𝛾
1𝑚𝑖 bits.

Generally, the endpoints will be equally distributed, with𝑚𝑖 = 𝑖 ·𝑛𝛾 . Thus, the total
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size (in bits) of the precomputed DPFs for each party becomes

𝛾 ((𝑛 + 1)𝜆 + 2𝑛 + 3) − (𝜆 + 2)
𝛾∑︁
1

𝑖 ·𝑛
𝛾
= 𝛾 ((𝑛 + 1)𝜆 + 2𝑛 + 3) − (𝜆 + 2)𝑛

𝛾

𝛾∑︁
1

𝑖

= 𝛾 ((𝑛 + 1)𝜆 + 2𝑛 + 3) − (𝜆 + 2)·𝑛
𝛾
·𝛾 (𝛾 + 1)2

= 𝛾 ((𝑛 + 1)𝜆 + 2𝑛 + 3) − (𝜆 + 2)·𝑛(𝛾 + 1)2

= 𝛾

(
𝜆𝑛

2 + 𝜆 + 𝑛 + 3
)
− 𝑛

(
𝜆

2 + 1
)

In addition to the precomputed DPFs, each party receives an 𝑛-bit share of
the distinguished point [𝛼]. Only one such distinguished point share is required,
as specified earlier, because each DPF uses the same random distinguished point
reduced to the appropriate bitlength. Therefore, the total number of precomputed
bits received by each party is 𝑛 + 𝛾 (

𝜆𝑛
2 + 𝜆 + 𝑛 + 3

) − 𝑛 (
𝜆
2 + 1

)
.

During the online phase, only one round of communication is required. This
round computes the shift value 𝑥 − 𝛼 . No polynomial evaluation or sign correction
is required because the Grotto functionality uses constant outputs rather than
polynomials and those outputs are XOR shares. As previously discussed, only one
shift needs to be computed. Thus, the only online cost is having party 𝑖 send 𝑛-bit
share [𝑥 − 𝛼]𝑖 .

System Precomputation Communication Rounds
ABY 4𝑛𝜆 2𝑛𝜆 + 𝑛 2

ABY2.0 4𝑛𝜆 + 𝑛 𝑛𝜆 + 𝑛 2
ABY3 0 𝑛 + 𝑛log𝑛 1 + log𝑛

Grotto 𝑛 + 𝛾 (
𝜆𝑛
2 + 𝜆 + 𝑛 + 3

) − 𝑛 (
𝜆
2 + 1

)
𝑛 1

Table 6.1: Arithmetic to Boolean Secret Share Conversion Performance Comparison

Table 6.1 shows how Grotto-based bit decomposition has a lower communica-
tion cost and round complexity than existing ABY-style frameworks. All solutions
prior to Grotto work by XOR secret sharing the individual arithmetic shares [𝑥]𝑖
of the secret value 𝑥 being converted. These shares can then be used to obliviously
evaluate an addition circuit which produces XOR shares L𝑥M𝑖 of the original secret
shared value. In order to optimize the round complexity, ABY and ABY2.0 perform
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this addition circuit evaluation as a garbled circuit to produce Yao shares of the
secret value. These Yao shares can then be trivially converted into the corresponding
Boolean shares. In ABY3, the conversion is performed directly to XOR shares. As
a result, the high computation cost of using garbled circuits is avoided, but the
resulting round complexity is no longer constant. Instead, the number of rounds is
logarithmic in input bitlength 𝑛, because ABY3 uses a circuit depth optimized parallel
prefix adder circuit rather than the standard linear depth adder circuit [50].

6.5 Conclusion

This chapter demonstrates how Grotto can be used to implement a (2 + 1)-party
MPC protocol for performing bit decomposition in an ABY-style framework. By using
DPFs rather than standard MPC techniques based upon Boolean circuit evaluation,
this technique gains a significant performance advantage over prior works in this
area. While this technique, as a (2+1)-party protocol, relies upon having a third party
to provide the precomputed DPFs and shares of the distinguished point 𝛼 , the entire
protocol can be converted into a standard 2-party protocol by performing the DPF
generation as a 2-party protocol. Such a protocol is outlined in Section 7.4.
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Chapter 7

MPC for DPF verification and

generation

In this chapter, we introduce a novel technique for verifying the correctness of DPF
keys in MPC protocols. We then show how this protocol can be converted into a Zero
knowledge proof of knowledge (ZKPoK) using the MPC-in-the-head paradigm and
into an MPC protocol for generating DPF keys. DPF key verification is a critical tool
for enabling secure sender-anonymous messaging (SAM) protocols built around DPF
PIR-writing. When combined with additional optimizations, these MPC and ZKPoK
techniques produce the Sabre family of sender-anonymous messaging protocols,
which outperform existing sender anonymous bulletin board and mailbox model
protocols.

7.1 Sender-anonymous messaging preliminaries

A key application described in this chapter is the Sabre family of SAM protocols.
SAM protocols are a valuable tool being used to counter the rampant online violation
of privacy. State of the art works in this area include Riposte [21] and Express [25].
Such protocols can form the backend for, among other things, whistleblower drop
boxes, anonymous email systems, or Twitter-like broadcast media with strong and
provable privacy guarantees.

Prior work in this space has considered one of two primary settings for SAM
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protocols: (i) the sender-anonymous bulletin board model and (ii) the sender-anony-
mous mailbox model. Protocols that operate in this first model—exemplified by Ri-

poste [21]—support Twitter-like broadcast messagingwhile severing the link between
authors and their messages. Protocols that operate in the second model—exemplified
by Express [25]—support Secure Drop-like mailboxes into which whistleblowers
can leak documents and tips anonymously to journalists, law enforcement, and
watchdogs.

7.1.1 PIR-writing for SAM protocols

In Section 2.8.3 we introduced the concept of PIR writing using DPFs. This technique
is used for writing messages to sender anonymous messaging systems. In particular,
Riposte uses a secret shared database to store the messages submitted to it within a
given epoch [21]. A similar technique is used in Express to write messages to sender
anonymous mailboxes [25]. In both cases, the writer does not perform a read to
check if any prior messages have been written to the mailbox or location where it is
writing. Instead, the large domain of inputs to the DPF is used to make it statistically
infeasible for an attacker to corrupt a given message or mailbox by performing a
write targeting to the same location, unless the attacker is told the user’s private
index for the message or mailbox. Riposte is able to reduce the domain size by
including error correction information in messages being written to the system.
Despite the protection that the large domain size offers from targeted message
corruption, the basic PIR writing technique presented by Gilboa and Ishai does not
provide a mechanism to ensure the correctness of the DPFs received by the servers.
As a result, an attacker can send a malformed DPF key to the servers which will
result in the entire database being corrupted when the malformed DPF’s output is
integrated into the database. To prevent this, systems using DPFs for private writing
employ an additional DPF key correctness verification protocol when the writer may
be malicious.

7.1.2 DPF key correctness verification

In Riposte, two different methods for DPF verification can be employed. The first
method is a lightweight three party protocol based on probabilistic batch testing
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performed by the two database servers and an additional auditing server. This
method is designed for a specific DPF construction with 𝑂 (√𝑁 ) size keys, rather
than the 𝑂 (log(𝑁 )) size Boyle-Gilboa-Ishai DPFs. In this DPF construction, a key
pair is values 𝑘𝐴 = (𝑏𝐴, 𝑠𝐴, 𝑣) and 𝑘𝐵 = (𝑏𝐵, 𝑠𝐵, 𝑣) where 𝑏𝐴 and 𝑏𝐵 differ at exactly
one index and 𝑠𝐴 differs from 𝑠𝐵 at the same index. The vector 𝑣 is derived from
the desired output value and the results produced by applying a pseudorandom
generator to the differing values of 𝑠𝐴 and 𝑠𝐵 . The verification works by applying a
simple MPC protocol to check whether two pairs of specially constructed test vectors
each differ at exactly one index. This verifies the correctness of the DPF key.

Riposte also proposes an alternate verification using 𝑠-party DPFs with 𝑠 servers.
This DPF construction also produces𝑂 (√𝑁 ) size DPF keys, but it requires the use of
a seed-homomorphic pseudorandom generator based upon public-key cryptographic
assumptions, which significantly increases the computational cost. A relatively
expensive non-interactive zero-knowledge proof of knowledge is then used to verify
that the keys are well formed. Much like the two-server DPF verification, this
technique is not applicable to the smaller and more efficient Boyle-Gilboa-Ishai
construction DPFs.

Express detects malformed messages using a secret-shared non-interactive proof
(SNIP) for a linear sketching DPF verification protocol. This linear sketching protocol
was first proposed by Boyle et al. as a method for semi-honest servers to verify the
correctness of DPF keys which they received [14]. The use of a SNIP makes the
verification secure against malicious servers. This method is compatible with the
logarithmic size Boyle-Gilboa-Ishai construction DPFs, but it has computation cost
𝑂 (𝑛𝜆) where 𝑛 is the number of registered mailboxes and 𝜆 is the security parameter
specifying the number of bits in a mailbox address.

7.1.3 Sender-anonymous bulletin boards

In the bulletin board model, two or more semi-honest and non-colluding servers
jointly host a shared, sparse database (the “bulletin board”) comprising a large
number of write locations called buckets. Senders can write messages into arbitrary
buckets without disclosing to the servers (or the subsequent readers) which particular
messages they penned and which were penned by others. For this to work, senders
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must always write their messages to uniform random buckets—potentially clobbering
messages previously written to those buckets by other senders. Therefore, the
number of buckets must be large enough that the probability of accidental collisions
is low, implying that the bulletin board requires Ω(𝑚2) buckets to accommodate𝑚
written messages sans any expected collisions. Readers obtain messages of interest
from the bulletin board either “in the clear” (an undeniably leaky proposition) or via
some oblivious means such as PIR [19].

7.1.4 Sender-anonymous mailboxes

In the mailbox model, two or more semi-honest and non-colluding servers jointly
host a collection of registered “mailboxes”. Senders can deposit documents into
specific mailboxes if and only if they know the corresponding mailbox addresses—
cryptographically long, unpredictable bit strings—without disclosing to the servers
or mailbox owners which particular documents they deposit into which particular
mailboxes. The use of registered mailboxes obviates the need both for PIR and for
collision-avoidance and -recovery strategies of the sort required in the bulletin board
model, potentially enabling constructions that are significantly more performant and
scalable. However, it comes at the cost of limiting the use cases to single-recipient
applications like email and secure drop boxes.

7.1.5 Relationship with onion routing and mix networks

SAM protocols solve a problem that is related to, yet distinct from those solved
by onion routers and mix networks. Onion routing systems like Tor [23] support
session-based, bidirectional anonymous links to facilitate low-latency interactive
communications such as instant messaging or web browsing; mix networks like
MCMix [2] likewise support bidirectional anonymity, but target communications
that can tolerate relatively high latency such as email. In both cases, the emphasis is
on mitigating the threat of traffic analysis. By contrast, SAM protocols seek only
to hide the association between senders and the messages they send—a much less
ambitious goal. The upshot of this narrow focus is that it enables SAM protocols
to provide very concrete anonymity guarantees (in contrast to the comparatively
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“fragile” guarantees of onion routing) while imposing onlymodest latency (in contrast
to the high latency imposed by mix networks).

7.2 MPC DPF key verification

The audit protocol verifies the well-formedness of DPF keys submitted by writers
in both the bulletin board and mailbox model variants of Sabre. It is instantiable
in three distinct ways: as (i) a secure (2 + 1)-party computation, (ii) a 3-verifier
MPC-in-the-head SNIP, or (iii) a 2-verifier MPC-in-the-head SNIP. The latter two
instantiations build on the first to provide progressively stronger security guar-
antees. Specifically, (i) by recasting the (2 + 1)-party computation as a 3-verifier
MPC-in-the-head SNIP, the second instantiation maintains the efficiency of the first
while removing the threat of a malicious server deviating from the MPC in a bid to
violate sender-anonymity, and (ii) by eliminating one of the verifiers, the 2-verifier
SNIP makes sender anonymity contingent on a strictly weaker non-collusion assump-
tion (at the expense of some nontrivial communication and computation overhead).
We stress that—similar to Riposte and Express—all three instantiations still require
semi-honest (and non-colluding) servers to guarantee protocol correctness.

7.2.1 Secure (2 + 1)-party auditing

Following Corollary 1 (in Section 2.7.1), the (2+1)-party audit protocol demonstrates
the existence of a 1-path from the root of the binary-tree representation of a DPF
to the leaf corresponding to its distinguished input. It does so via an alternating
sequence of two simple functionalities: (i) oblivious length-doubling PRG evaluation
and (ii) conditional swapping on the components of an ordered pair.

Oblivious length-doubling PRG

The oblivious PRG evaluation functionality ( [𝑥], [𝑦]) ← 𝐹𝑃𝑅𝐺 ( [𝑧]) uses the Matyas
-Meyer-Oseas (MMO) one-way compression function [49]: Given a block cipher
Enc with 𝜆-bit blocks, define G2×

𝜆 : {0, 1}𝜆 → {0, 1}𝜆 × {0, 1}𝜆 via

G2×
𝜆 (𝑧) B

(
Enc𝐾 (𝑧) ⊕ 𝑧, Enc𝐾 (𝑧⊕1) ⊕ (𝑧⊕1)

)
, (7.1)
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server 0

( [𝑥]0, [𝑦]0), [𝐵]0
[𝑧]0 B [𝑥]0 + [𝐵]0

([𝑥]0 − [𝑦]0 + ([𝑥]1 − [𝑦]1 + 𝑟1))
−𝑟0( [𝐵]1 + 𝑠1) + 𝑟0𝑠1 + 𝑡

Output: (𝑥0, 𝑦0) B ( [𝑧]0, [𝑥]0 + [𝑦]0 − [𝑧]0)

 
server 1

( [𝑥]1, [𝑦]1), [𝐵]1
[𝑧]1 B [𝑥]1 + [𝐵]1

([𝑥]1 − [𝑦]1 + ([𝑥]0 − [𝑦]0 + 𝑟0))
−𝑟1( [𝐵]0 + 𝑠0) + 𝑟1𝑠0 − 𝑡

Output: ( [𝑥]1, [𝑦]1) B ( [𝑧]1, [𝑥]1 + [𝑦]1 − [𝑧]1)

 
server 2(𝑟 0, 𝑠0, 𝑟 0𝑠1 +

𝑡) (𝑟1, 𝑠1, 𝑟1𝑠0 − 𝑡)
( [𝑥]0 − [𝑦]0 + 𝑟0, [𝐵]0 + 𝑠0)

( [𝑥]1 − [𝑦]1 + 𝑟1, [𝐵]1 + 𝑠1)

Figure 7.1: (2 + 1)-party realization of the conditional swap functionality
( [𝑥], [𝑦]) ← 𝐹𝑆𝑊𝐴𝑃

(( [𝑥], [𝑦]), [𝐵]) .
where 𝐾 is a fixed (publicly known) key. Sabre uses fixed-key LowMC as the block
cipher in Equation (7.1). We remark that using a fixed, publicly known key in LowMC

eliminates all non-linear operations outside of the S-boxes, and it provides new
opportunities for preprocessing-based optimizations involving round-key matrices.
The S-boxes operate on ordered triples of bits, and each S-box in a round can be
evaluated (in parallel) using just three 1-bit multiplications a piece, leveraging their
representation in algebraic normal form [1; Appendix C]:

(𝑎, 𝑏, 𝑐) ↦→ (𝑎 ⊕ 𝑏𝑐, 𝑎 ⊕ 𝑏 ⊕ 𝑎𝑐, 𝑎 ⊕ 𝑏 ⊕ 𝑐 ⊕ 𝑎𝑏) .

Conditional swapping

The conditional swap functionality ( [𝑥], [𝑦]) ← 𝐹𝑆𝑊𝐴𝑃

(( [𝑥], [𝑦]), [𝐵]) uses the
standard trick for conditional branching in MPC. Servers 0 and 1 respectively hold
(2, 2)-additive shares of (i) an ordered pair (𝑥,𝑦) and (ii) a selection bit 𝐵 on which to
condition the swap. They compute a sharing [𝑧] of 𝑧 = 𝑥 +𝐵(𝑦 −𝑥), and then output
( [𝑥], [𝑦]) = ( [𝑧], [𝑥] + [𝑦] − [𝑧]). An easy calculation verifies that (𝑥,𝑦) = (𝑥,𝑦)
if 𝐵 = 0 and (𝑥,𝑦) = (𝑦, 𝑥) if 𝐵 = 1. Figure 7.1 illustrates the conditional swap
protocol.

Non-private DPF traversal

Recall from Section 3.2 that Boyle-Gilboa-Ishai DPF keys have the form

dpf [𝑏] B (𝑣 (𝜀 )𝑏 , cw [1], . . . , cw [ℎ]) ∈ (F2𝜆 )ℎ × F2𝐿 ,
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where ℎ is the tree height. In any honestly generated DPF key pair, the sequence
of CWs cw [1], . . . , cw [ℎ] is common to both keys while the 𝑣 (𝜀 )𝑏 are sampled indepen-
dently at random (subject to having opposite least-significant bits). We therefore
refer to key pairs having identical CW sequences as plausible key pairs, reflecting the
fact that adjudicating their validity is more involved than simple plaintext matching
among values held in common by the two shareholders.

For a given bit string 𝑖 ∈ {0, 1}∗ of length 𝑗 < ℎ, we write 𝑣 (𝑖 | |0)𝑏 and 𝑣 (𝑖 | |1)𝑏 to denote
respectively the left and right children of node 𝑣 (𝑖 )𝑏 in the tree share induced by dpf [𝑏],
so that the parenthesized superscript on any given node indicates the sequence of
left and right traversals needed to arrive at that node starting from 𝑣 (𝜀 )𝑏 . In the audit
protocol, the servers will relate corresponding pairs (𝑣 (𝑖 )0 , 𝑣 (𝑖 )1 ) with nodes 𝑣 (𝑖 ) = 𝑣 (𝑖 )0 +𝑣 (𝑖 )1
on a “reconstructed” tree. Definitionally, a given key pair is well-formed if and only
if this reconstructed tree represents a generalized point function; the servers can
appeal to Bullet 3 of Corollary 1 (in Section 2.7.1) to check this.

To see how this works, we first look at (non-private) node traversal in Boyle
-Gilboa-Ishai DPFs. To traverse from 𝑣 (𝑖 )𝑏 (with |𝑖 | = 𝑗 ) to its 𝐵th child, 𝑣 (𝑖 | |𝐵)𝑏 , first
parse 𝑣 (𝑖 )𝑏 as (𝑠 (𝑖 )𝑏 , ·, flag(𝑖 )𝑏 ) ∈ F2𝜆−2 × F2 × F2. From here:

1. compute (child(𝑖 | |0)𝑏 , child(𝑖 | |1)𝑏 ) ← G2×
𝜆 (𝑠 (𝑖 )𝑏 | |00);

2. parse child(𝑖 | |𝐵)𝑏 as (𝑠 (𝑖 | |𝐵)𝑏 , ·,𝑇 (𝑖 | |𝐵)𝑏 ) ∈ F2𝜆−2 × F2 × F2 and cw [𝑗] as (cw
( 𝑗 )
, 𝑡 ( 𝑗 )1 , 𝑡

( 𝑗 )
0 ) ∈

F2𝜆−2 × F2 × F2;

3. compute 𝑠 (𝑖 | |𝐵)𝑏 ← 𝑠 (𝑖 | |𝐵)𝑏 + (cw ( 𝑗 ) · (1 + flag(𝑖 )𝑏 )
)
and flag(𝑖 | |𝐵)𝑏 ← 𝑇 (𝑖 | |𝐵)𝑏 + (𝑡 ( 𝑗 )𝐵 · flag(𝑖 )𝑏 );

and then

4. output 𝑣 (𝑖 | |𝐵)𝑏 B (𝑠 (𝑖 | |𝐵)𝑏 , ·, flag(𝑖 | |𝐵)𝑏 ) ∈ F2𝜆 × F2 × F2 as the child.1

Notice that whether or not to apply cw [ 𝑗] depends entirely on flag(𝑖 ) ; conse-
quently, if corresponding nodes induced by a plausible key pair ever collide, then so
too must all of their descendants. Recall from Section 3.2 that we call such colliding-
node pairs 0-pairs; we likewise call non-colliding pairs 1-pairs if either (i) they are
at the leaf layer, or (ii) their children comprise both a 0-pair and a 1-pair. The next
theorem is a direct consequence of these definitions

1For a comprehensive treatment of this construction, we defer to the original paper by Boyle
et al. [14; §3.2.2].
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Theorem 8. Suppose (dpf [0], dpf [1]) is a plausible key pair inducing (𝑣 (𝑖 )0 , 𝑣 (𝑖 )1 ) and
consider the node 𝑣 (𝑖 ) B 𝑣 (𝑖 )0 + 𝑣 (𝑖 )1 in the reconstructed tree. The following both hold:

1. 𝑣 (𝑖 ) is a 0-node if and only if (𝑣 (𝑖 )0 , 𝑣 (𝑖 )1 ) is a 0-pair; and
2. 𝑣 (𝑖 ) is a 1-node if and only if (𝑣 (𝑖 )0 , 𝑣 (𝑖 )1 ) is a 1-pair.

Our (2 + 1)-party audit protocol combines Theorem 8 with Corollary 1 to check
the well-formedness of a given (plausible) key pair: Given their respective keys
together with a bitwise sharing of the (purported) distinguished input 𝑖 , the servers
(i) traverse to both children of the root using the above procedure, (ii) reconstruct the
(1 − 𝐵 (1))th child to ensure it is a 0-node, and then (iii) recurse on the height-(ℎ − 1)
tree rooted at the (𝐵 (1))th child.

If any (1 − 𝐵 (𝑗 ))th child along the path from the root to the leaf layer is not of
type 0, then 𝑖 does not define a 1-path in the reconstructed tree and the servers reject
the key pair; otherwise, as per Bullet 3 of Corollary 1, the servers conclude that
(dpf [0], dpf [1]) constitutes a well-formed DPF with distinguished input 𝑖 .

MPC-based auditing

The (2+1)-party audit protocol implements the strategy just described via alternating
applications of the oblivious PRG (§7.2.1) and conditional swap (§7.2.1) functionalities,
woven together with some additional Du-Atallah multiplications (§2.5).

For each 𝑏 = 0, 1, server 𝑏 receives as input its DPF key dpf [𝑏] B (𝑣 (𝜀 )𝑏 , cw [1],
. . . , cw [ℎ]) and a (2, 2)-additive share [𝑖]𝑏 B ( [𝐵 (1)]𝑏, . . . , [𝐵 (ℎ)]𝑏) of the (purported)
distinguished input 𝑖 . Server 2 assists with the computation but receives no input
and produces no output.

To begin, servers 0 and 1 compare CW sequences to ensure they are auditing a
plausible key pair; if so, server 𝑏 uses its inputs and G2×

𝜆 to non-obliviously traverse
to both children of the root; i.e., it computes

(𝑣 (0)𝑏 , 𝑣 (1)𝑏 ) B
((𝑠 (0)𝑏 , ·, flag(0)𝑏 ), (𝑠 (1)𝑏 , ·, flag(1)𝑏 ))

via Steps (1)–(4) from Section 7.2.1, and then it secret shares both halves of the output
with server (1 − 𝑏).

Define 𝑖0 = 𝜀 and, for each 𝑗 = 1, . . . , ℎ, define 𝑖 𝑗 = 𝑖 𝑗−1 | |𝐵 ( 𝑗 ) and 𝑖 𝑗 = 𝑖 𝑗−1 | | (1−𝐵 ( 𝑗 )).
(Thus, 𝑖 𝑗 is the length- 𝑗 prefix of 𝑖 and 𝑖 𝑗 is the length-( 𝑗 − 1) prefix of 𝑖 followed
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by an incorrect 𝑗 th bit.) Upon receiving its shares from server (1 − 𝑏), server 𝑏 now
holds both ( [𝑣 (𝑖0 | |0)0 ]𝑏, [𝑣 (𝑖0 | |1)0 ]𝑏) and ( [𝑣 (𝑖0 | |0)1 ]𝑏, [𝑣 (𝑖0 | |1)1 ]𝑏).

Enlisting the help of server 2, for each 𝑗 = 1, . . . , ℎ, servers 0 and 1 then:
1. invoke 𝐹𝑆𝑊𝐴𝑃 for each 𝑏 = 0, 1 to produce

- ( [𝑣 (𝑖 𝑗 )𝑏 ], [𝑣
(𝑖 𝑗 )
𝑏 ]) ← 𝐹𝑆𝑊𝐴𝑃

(( [𝑣 (𝑖 𝑗−1 | |0)𝑏 ], [𝑣 (𝑖 𝑗−1 | |1)𝑏 ]), [𝐵 ( 𝑗 )]) ;
2. reconstruct 𝑣 (𝑖 𝑗 )B 𝑣

(𝑖 𝑗 )
0 + 𝑣 (𝑖 𝑗 )1 and reject if 𝑣 (𝑖 𝑗 )≠ 0;

3. for each 𝑏 = 0, 1, parse

- [𝑣 (𝑖 𝑗 )𝑏 ] as ( [𝑠
(𝑖 𝑗 )
𝑏 ], ·, [flag

(𝑖 𝑗 )
𝑏 ]);

4. invoke G𝜆 for each 𝑏 = 0, 1 to produce

- ( [child(𝑖 𝑗 | |0)𝑏 ], [child(𝑖 𝑗 | |1)𝑏 ]) ← G𝜆 ( [𝑠 (𝑖 𝑗 )𝑏 ] | |00);

5. for each 𝑏 = 0, 1 and 𝐵 = 0, 1, parse

- [child(𝑖 𝑗 | |𝐵)𝑏 ] as ( [𝑠 (𝑖 𝑗 | |𝐵)𝑏 ], ·, [𝑇 (𝑖 𝑗 | |𝐵)𝑏 ]);

6. parse cw [ 𝑗 + 1] as (cw ( 𝑗+1)
, 𝑡 ( 𝑗+1)1 , 𝑡 ( 𝑗+1)0 );

7. for each 𝑏 = 0, 1 and 𝐵 = 0, 1, compute

- [𝑠 (𝑖 𝑗 | |𝐵)𝑏 ] ← [𝑠 (𝑖 𝑗 | |𝐵)𝑏 ] + (cw ( 𝑗+1) · (𝑏 + [flag(𝑖 𝑗 )𝑏 ])
)
,

- [flag(𝑗 | |𝐵)𝑏 ] ← [𝑇
(𝑖 𝑗 | |𝐵)
𝑏 ] + (𝑡 ( 𝑗+1)𝐵 · [flag(𝑖 𝑗 )𝑏 ]); and,

8. finally, for each 𝑏 = 0, 1 and 𝐵 = 0, 1, set

- 𝑣 (𝑖 𝑗 | |𝐵)𝑏 ← ([𝑠 (𝑖 𝑗 | |𝐵)𝑏 ], ·, [flag(𝑖 𝑗 | |𝐵)𝑏 ]).
They accept if they did not reject in Step 2 for any 𝑗 .

We note that both functionalities 𝐹𝑃𝑅𝐺 and 𝐹𝑆𝑊𝐴𝑃 consist exclusively of (perfectly
simulatable) Du-Atallah multiplications and non-interactive linear operations (and
are, therefore, trivial to simulate); moreover, with the sole exceptions of comparing
CWs and reconstructing the 𝑣 (𝑖 𝑗 ) in Step 2, all remaining steps likewise consist
exclusively of Du-Atallah multiplications and linear operations. The reconstruction
in Step 2 yields no information unless 𝑣 (𝑖 𝑗 ) ≠ 0, in which case the servers learn that
the 𝑗 th node along the purported 1-path is incorrect. It is easy to verify that if the
key pair is indeed well-formed with distinguished input 𝑖 , then the servers always
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accept; conversely, if the key pair is not a DPF with distinguished input 𝑖 , then the
existence of some prefix 𝑖 𝑗 of 𝑖 such that 𝑣 (𝑖 𝑗 ) is not a 0-node follows contrapositively
from Corollary 1. In this case, the servers will reject in Step 2 when traversing from
𝑣 (𝑖 𝑗−1 ) to 𝑣 (𝑖 𝑗 ) . We have thus proved the following theorem.

Theorem 9. The (2 + 1)-party auditing protocol is complete and perfectly sound.

Moreover, the view of any semi-honest party in an accepting run of the (2 + 1)-party
auditing protocol is perfectly simulatable.

7.3 MPC-in-the-head ZKPok verification

The preceding section described a (2 + 1)-party computation using which servers 0
and 1 can (with assistance from a semi-honest server 2) efficiently check the well-
formedness of their respective Boyle-Gilboa-Ishai DPF keys. We now explain the
conversion of this (2 + 1)-party computation into a zero-knowledge argument based
on MPC-in-the-head.

The high-level idea is for the prover, who holds dpf [0] and dpf [1] and the
distinguished input 𝑖 , to simulate the (2 + 1)-party audit and then commit to the
(unidirectional) communication channels over which the servers exchange messages
in the simulation. From here, the verifiers challenge the prover to open subsets of
these commitments for inspection.

MPC-in-the-head with multiple verifiers

A critical difference between our arguments and other zero-knowledge arguments
constructed in the MPC-in-the-head paradigm stems from (i) our use of a (2+1)-party
computation secure against a single passive corruption, combined with the fact that
(ii) the private inputs to servers 0 and 1 in the underlying MPC include the private
inputs to servers 0 and 1 in Sabre (i.e., dpf [0] and dpf [1], respectively). Conse-
quently, server 𝑏 can scrutinize the view of either server 𝑏 or server 2 from a given
simulation, but never both—and it can never scrutinize the view of server (1−𝑏). This
fact all but rules out sound “single-verifier” arguments, as a cheating prover could
always, e.g., confine inconsistencies to transcripts that the verifier is not allowed to
scrutinize.
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We circumvent this issue by leveraging two or more verifiers that each exam-
ine a different subset of transcripts. The argument is accepted if and only if all
verifiers (i) receive identical channel commitments from the prover, and (ii) find
no inconsistencies in the views they scrutinize. Definitionally, such “multi-verifier”
MPC-in-the-head arguments are equivalent to secret-shared non-interative proofs

(SNIPs) with a (modestly) generalized zero-knowledge property: whereas Corrigan-
Gibbs and Boneh’s SNIP definition [20; §4.1] insists that the view of any proper

subset of verifiers be simulatable, “multi-verifier MPC-in-the-head” SNIPs inherit
their simulatability requirements from the access structures governing privacy in
the underlying MPC. In the case of Sabre’s (2 + 1)-party auditing, the requirement is
that the view of any given verifier be simulatable. When there are just two verifiers,
this requirement coincides with the one originally proposed by Corrigan-Gibbs and
Boneh.

3-verifier SNIP auditing

The 3-verifier SNIP audit protocol employs (2 + 1)-party auditing while eliminating
the need for (almost all) interaction among the servers. Specifically, upon sampling its
DPF keys, the prover simulates a single run of the (2+1)-party audit protocol from Sec-
tion 7.2.1, committing to the ordered sequence of messages on each (unidirectional)
simulated communication link among the three parties. Let𝑀𝑎�𝑏 denote the ordered
sequence of messages sent from party 𝑎 to party 𝑏 in the simulation, and let 𝐻𝑎�𝑏 B

Hash(𝑀𝑎�𝑏) for some cryptographic hash function Hash : {0, 1}∗ → {0, 1}𝜇 (our
implementation uses SHA256 truncated to 𝜇 = 128 bits).

Notice that (dpf [0], 𝑀1�0, 𝑀2�0) suffices to reconstruct the view of server 0, while
(dpf [1], 𝑀0�1, 𝑀2�1) suffices to reconstruct the view of server 1 and (𝑀2�0, 𝑀2�1)
constitutes the entire view of server 2. The prover constructs a 4-ary Merkle-tree
(with height 1) having root H B Hash(cw [0] | | · · · | |cw [ℎ] | |𝐻 0�1 | |𝐻 1�0 | |𝐻 2�0 | |𝐻 2�1),
and then it sends

1. Π (0) B (𝑀1�0, 𝑀2�0, 𝐻 2�1) to server 0,

2. Π (1) B (𝑀0�1, 𝑀2�1, 𝐻 2�0) to server 1, and

3. Π (2) B (𝐻 0�1, 𝐻 1�0, 𝑀2�0, 𝑀2�1) to server 2.
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To verify its portion of the SNIP, server 0 uses (dpf [0], 𝑀1�0, 𝑀2�0) to recreate
𝑀0�1; it rejects if (𝑀0�1, 𝑀1�0, 𝑀2�0, 𝐻 2�1) is not consistent with the Merkle root H.
Servers 1 and 2 verify their portions analogously. The 3-verifier SNIP is accepting if
and only if (i) each of the three servers received the same Merkle rootH, and (ii) none
of the servers rejects its portion of the SNIP. Since the three verifiers collectively
scrutinize all views from the simulation, inconsistencies in the simulation cannot

escape notice by at least one verifier (discounting the negligible probability of hash
collisions when constructing the Merkle tree). In particular, we have just argued
that—except with probability negligible in the hash-length 𝜇—a prover can produce
an accepting 3-verifier SNIP for (dpf [0], dpf [1]) and [𝑖] only if these same values
would have passed (2 + 1)-party auditing—which has perfect soundness. Moreover,
because each verifier merely inspects one view from the (2 + 1)-party audit protocol,
the view of any given verifier remains trivially simulatable; we have thus proved the
following theorem.

Theorem10. The 3-verifier SNIP auditing protocol with hash functionHash : {0, 1}∗ →
{0, 1}𝜇 is perfectly simulatable and has perfect completeness and soundness overwhelm-

ing in 𝜇.

A more detailed proof sketch for Theorem 10 is included as Appendix C.

2-verifier SNIP auditing

The 2-verifier SNIP audit protocol employs cut-and-choose to eliminate the need for
a third verifier while maintaining soundness error negligible in 𝜇. Specifically, upon
sampling its DPF keys, the prover now runs 𝜇 parallel simulations of the (2+1)-party
audit protocol, committing to each unidirectional communication link among the
three parties in each simulation. For each 𝑖 = 1, . . . , 𝜇, let𝑀𝑎�𝑏

𝑖 denote the ordered
sequence of messages sent from party 𝑎 to party 𝑏 in the 𝑖th parallel simulation and
let 𝐻𝑎�𝑏

𝑖 B Hash(𝑀𝑎�𝑏
𝑖 ).

As in the 3-verifier SNIPs, the prover constructs a Merkle tree committing to
all unidirectional channel commitments. In particular, for each 𝑖 = 1, . . . , 𝜇, it
computes the digest H𝑖 B Hash(cw [0] | | · · · | |cw [ℎ] | |𝐻 0�1

𝑖 | |𝐻 1�0
𝑖 | |𝐻 2�0

𝑖 | |𝐻 2�1
𝑖 ), and

then it constructs theMerkle root asHash(H1 | | · · · | |H𝜇). RegardingHash as a random
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oracle, each of the 𝜇 bits of the Merkle root constitutes a distinct “challenge” (à la
Fiat-Shamir [26]): when the bit is 0, each verifier will inspect “its own” view; when
the bit is 1, both verifiers will inspect server 2’s view. Such a tree is depicted in
Figure 7.2.

0 0 1 0 · · · 1 0 1 1

𝑐1 𝑐2 𝑐3 𝑐4 𝑐𝜇-3 𝑐𝜇-2 𝑐𝜇-1 𝑐𝜇

· · ·

· · ·

· · ·

H1

𝐻 1�0
1 𝐻 0�1

1 𝐻 2�0
1 𝐻 2�1

1

𝑀1�0
1 𝑀0�1

1 𝑀2�0
1 𝑀2�1

1

H𝜇

𝐻 1�0
𝜇 𝐻 0�1

𝜇 𝐻 2�0
𝜇 𝐻 2�1

𝜇

𝑀1�0
𝜇 𝑀0�1

𝜇 𝑀2�0
𝜇 𝑀2�1

𝜇

Figure 7.2: Merkle-tree commitment for 2-verifier SNIPs

Let 𝑐𝑖 denote the 𝑖th bit of the Merkle root. For each 𝑖 = 1, . . . , 𝜇, the prover
discloses the tuple

Π (0)
𝑖 B


(𝑀1�0

𝑖 , 𝑀2�0
𝑖 , 𝐻 2�1

𝑖 ) if 𝑐𝑖 = 0, and

(𝑀2�0
𝑖 , 𝑀2�1

𝑖 ) otherwise,

to server 0, and symmetrically for server 1.
To verify its portion of the SNIP, server 𝑏 uses dpf [𝑏] and the Π (𝑏 )

𝑖 to reconstruct
the missing leaf hashes, and then it checks their consistency with the Merkle root.
The 2-verifier SNIP is accepting if and only if (i) both servers received the same
Merkle root H, (ii) the tuple disclosed in each Π (𝑏 )

𝑖 is consistent with the challenge
bit 𝑐𝑖 from this root, and (iii) neither server rejects its portion of the SNIP.

As per Theorem 10, even a single inconsistency-free simulation suffices to estab-
lish well-formedness of the DPF with probability overwhelming in 𝜇; moreover, if a
given simulation does have an inconsistency, then this inconsistency must be evident
in the view of either server 2 or at least one of servers 0 or 1 and will, therefore, be
detected with probability at least 1

2 . Furthermore, as with 3-verifier SNIP auditing,
the view of any given verifier remains trivially simulatable. Hence, we obtain the
following theorem.
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Table 7.1: Communication cost of auditing (in bytes) for a client in a Sabre
instance with 𝑛 = 2ℎ buckets/mailboxes. In the table, ℎ = lg𝑛 denotes the height
of the DPF tree, while r and s respectively denote the number of rounds and
S-boxes in LowMC with 128-bit blocks. The 2-verifier SNIP employs cut-and-
choose with soundness error ≈ 2−128.

Audit type client→server 𝒃 client→server 2

(2+1)-party — —

3-verifier SNIP 112+ ⌈(64.25+3sr) (ℎ−1)⌉ 64
2-verifier SNIP 37 888+ (4 112+192sr) (ℎ−1) —

Table 7.2: Communication cost of auditing (in bytes) for the servers in a Sabre
instance with 𝑛 = 2ℎ buckets/mailboxes. As in Table 7.1, ℎ = lg𝑛 denotes
the height of the DPF tree, while r and s respectively denote the number of
rounds and S-boxes in LowMC with 128-bit blocks. Similarly, the 2-verifier SNIP
employs cut-and-choose with soundness error ≈ 2−128 just as in Table 7.2.

Audit type server 𝒃↔server (1 − 𝒃) server 𝒃→server 2 server 2→server 𝒃

(2+1)-party 16+ (16 1
8 + 3

2 sr) (ℎ−1) 16+ (16 1
8 + 3

2 sr) (ℎ−1) 16+ (32 1
8 + 3

2 sr) (ℎ−1)
3-verifier SNIP 16 16 16
2-verifier SNIP 16 — —

Theorem11. The 2-verifier SNIP auditing protocol with hash functionHash : {0, 1}∗ →
{0, 1}𝜇 is perfectly simulatable and has perfect completeness and soundness overwhelm-

ing in 𝜇.

A more detailed proof sketch for Theorem 11 is included as Appendix D.

7.4 DPF key generation in MPC

The MPC protocol outlined in Section 7.2.1 works by traversing down the 1-path of
a DPF tree. We can observe that this traversal is also a central step when generating
keys for a Boyle-Gilboa-Ishai DPF which suggests that this protocol can be modified
to generate new DPF keys rather than just verifying existing keys. Just like the
verification protocol, the key generation protocol relies upon alternating applications
of the oblivious PRG and conditional swap functionalities from Section 7.2.1. The
protocol to generate DPF keys is shown in Algorithm 2.
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Algorithm 2MPC DPF Key Generation
Require: Party 𝑏 ∈ {0, 1}
Require: L𝑥M𝑏
𝑠 (ı0 )𝑏 ∈𝑅 Z2𝜆
[𝑡 (0)0 ]𝑏 ∈𝑅 {0, 1}
[𝑡 (0)1 ]𝑏 = [𝑡 (ı0 )0 ]𝑏 ⊕ 𝑏
for all 𝑗 = 1 to 𝑛 do

if 𝑗 = 1 then
Locally compute: ( [child(ı𝑗−1 | |0)𝑏 ]𝑏, [child(ı𝑗−1 | |1)𝑏 ]𝑏) = G𝜆 ( [𝑠 ( 𝑗−1)𝑏 ] | |00)
( [child(ı𝑗−1 | |0)

𝑏
]𝑏, [child(ı𝑗−1 | |1)𝑏

]𝑏) =
(
0𝜆, 0𝜆

)
else

MPC compute: ( [child(ı𝑗−1 | |0)𝑐 ]𝑏, [child(ı𝑗−1 | |1)𝑐 ]𝑏) = G𝜆 ( [𝑠 ( 𝑗−1)𝑐 ] | |00) for 𝑐 ∈ {0, 1}
end if

( [child(𝑖 𝑗 )𝑐 ], [child(𝑖 𝑗 )𝑐 ]) ← 𝐹𝑆𝑊𝐴𝑃

(( [child(ı𝑗−1 | |0)𝑐 ]𝑏, [child(ı𝑗−1 | |1)𝑐 ]𝑏, [𝑥 ( 𝑗 )]
)
for 𝑐 ∈ {0, 1}

Parse [child(𝑖 𝑗 )𝑐 ] as ( [𝑠 (𝑖 𝑗 )𝑐 ], ·, [𝑇 (𝑖 𝑗 )𝑐 ]) for 𝑐 ∈ {0, 1}
Parse [child(𝑖 𝑗 )𝑐 ] as ( [𝑠 (𝑖 𝑗 )𝑐 ], ·, [𝑇 (𝑖 𝑗 )𝑐 ]) for 𝑐 ∈ {0, 1}
[cw]𝑏 = [𝑠 (𝑖 𝑗 )0 ] ⊕ [𝑠 (𝑖 𝑗 )1 ]
[𝑡 ( 𝑗 )0 ]𝑏 = [𝑇 (ı𝑗−1 | |0)0 ]𝑏 ⊕ [𝑇 (ı𝑗−1 | |0)1 ]𝑏 ⊕ [𝑥 ( 𝑗 )]𝑏 ⊕ 1
[𝑡 ( 𝑗 )1 ]𝑏 = [𝑇 (ı𝑗−1 | |1)0 ]𝑏 ⊕ [𝑇 (ı𝑗−1 | |1)1 ]𝑏 ⊕ [𝑥 ( 𝑗 )]𝑏
[cw ( 𝑗 )]𝑏 =

(
[cw]𝑏, [𝑡 ( 𝑗 )0 ]𝑏, [𝑡 ( 𝑗 )1 ]𝑏

)
[𝑠 ( 𝑗 )0 ] = [𝑠 (𝑖 𝑗 )0 ] ⊕ [cw]0 · [𝑡 ( 𝑗−1)0 ]
[𝑡 ( 𝑗 )0 ] = [𝑇 (𝑖 𝑗 )0 ] ⊕ ([𝑇 (𝑖 𝑗 )0 ] ⊕ [𝑇 (𝑖 𝑗 )0 ] ⊕ 1) · [𝑡 ( 𝑗−1)0 ]
[𝑠 ( 𝑗 )1 ] = [𝑠 (𝑖 𝑗 )1 ] ⊕ [cw]1 · [𝑡 ( 𝑗−1)1 ]
[𝑡 ( 𝑗 )1 ] = [𝑇 ( 𝑗 )1 ] ⊕ ([𝑇 (𝑖 𝑗 )1 ] ⊕ [𝑇 (𝑖 𝑗 )1 ] ⊕ 1) · [𝑡 ( 𝑗−1)1 ]

end for

[cw (𝑛+1)]𝑏 = 𝑦 ⊕ 𝐻 (𝑠 (𝑛)0 ) ⊕ 𝐻 (𝑠 (𝑛)1 )
[𝑘 ′𝑐]𝑏 = ( [𝑡 (0)𝑐 ]𝑏, [cw (1)]𝑏, . . . , [cw (𝑛+1)]𝑏) for 𝑐 ∈ {0, 1}
Send [𝑘 ′

𝑏
]𝑏 to party P𝑏

Receive [𝑘 ′𝑏]𝑏 from party P𝑏
Reconstruct 𝑘𝑏 = 𝑠 (ı0 )𝑏 | |

([𝑘 ′𝑏]𝑏 ⊕ [𝑘 ′𝑏]𝑏 ) = (
𝑠 (ı0 )𝑏 , 𝑡

(0)
𝑐 , cw

(1), . . . , cw (𝑛+1) )
Return 𝑘𝑏
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In this protocol, 𝐻 denotes a PRG, which produces DPF tree leaves from the
desired output group G.

The precomputed values for this computation can come from either the server
in a (2 + 1)-party protocol or can be precomputed in a pure 2-party protocol. In
practice, (2 + 1)-party protocols will generally favour the technique of DPF rotation
explained for selection vectors in Section 2.6 as this requires only a single round of
communication between the two client parties rather than O(lg𝑛) rounds. However,
in a 2-party setting there is no server party to provide a pre-generated DPF with a
randomly chosen distinguished point. As a result, the logarithmic protocol for MPC
generation of DPF keys allows Grotto to be used, relatively efficiently, in a 2-party
setting.

7.5 Sabre sender-anonymous messaging

We present Sabre, a family of SAM protocols with instances operating in both the
bulletin board and mailbox models. Sabre protocols inherit much of their basic
structure from Riposte and Express, but incorporate key innovations that improve
not only concrete performance and scalability under normal operations, but also
resilience to resource exhaustion-style DoS attacks in the mailbox model.

From a technical perspective, the primary difference is how Sabre implements
auditing to identify malformed write requests: the senders construct compact (2-
or 3-verifier) SNIPs that “directly” attest to the well-formedness of the DPFs they
submit. We construct the SNIPs in a novel paradigm we call multi-verifier MPC-in-

the-head, which, as discussed in Section 7.3, generalizes the (single-verifier) MPC-in-
the-head paradigm of Ishai, Kushilevitz, Ostrovsky, and Sahai [39] to achieve good
soundness at low cost in scenarios where two or more distinct verifiers can check
two or more distinct subsets of simulated interaction transcripts. In the sender-
anonymous mailbox model, Sabre also uses an additional trick to decouple the cost
of DPF evaluation from the bit length of the mailbox addresses. Together, these
modifications yield speedups that exceed an order of magnitude relative to Express

when all the write requests are “well-formed” and increase significantly—with the
performance gap growing exponentially in the number of mailboxes—in the presence
of resource-exhaustion DoS attacks.
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𝑣 (𝜀 )

𝑣 (0)

𝑣 (00)

0 0

𝑣 (01)

0 0

𝑣 (1)

𝑣 (10)

0 𝒚

𝑣 (11)

0 0

Figure 7.3: Binary-tree representation of the generalized point function with
point (𝑥5, 𝑦) ∈ 𝐷 × 𝑅, |𝐷 | = 23.

As with both Riposte and Express, the correctness of Sabre requires that all
servers faithfully audit all incoming DPFs—that is, none of these protocols can
operate in the presence of Byzantine servers. However, like Express, Sabre’s reliance
on non-interactive (SNIP-based) auditing deprives would-be malicious servers of the
opportunity to deviate from the protocol in ways that might leak information about
the mapping between writers and the messages they have penned.

7.5.1 System Design

This section presents the system design of Sabre in both the sender-anonymous bul-
letin board model (Sabre-BB) and the sender-anonymous mailbox model (Sabre-M).
Appendix E describes four distinct variants of Sabre-M: One that closely mimics the
design of Express; a second that adaptively modifies the mapping between DPFs
and mailbox addresses to improve efficiency; and a third and fourth that push the
optimization in the second variant to its logical extreme. The first three variants
serve as “stepping stones” toward Sabre-M (which is what we describe in the main
text).

Each of Sabre-BB and Sabre-M is instantiable in three ways (deriving from
three ways to instantiate the audit protocol); namely, as (i) a 2-server version using
“2-verifier MPC-in-the-head”, (ii) a 3-server version using “3-verifier MPC-in-the–
head”, or (iii) a 3-server version directly using secure (2 + 1)-party computation.
Except where otherwise specified, all comparisons of Sabre’s performance to those
of Riposte and Express refer to a 2-server instantiation—which provides the strongest
security guarantees but the poorest performance of the three options. That said, we
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begin with a high-level description that treats auditing as an inscrutable black box,
abstracting away the details described in Section 7.2. The reader should bear in
mind that Sabre auditing requires just O(𝜆 lg𝑛) work to the Ω(𝜆𝑛) work required
by Riposte and Express auditing, and that Sabre auditing renders judgement before
the servers ever “evaluate” their DPF keys (a linear-cost operation). Indeed, Sabre’s
improved DoS resistance stems from Sabre servers’ ability to rapidly audit incoming
DPF keys.

Sabre for sender-anonymous bulletin boards

Consider a (2- or 3-server) Sabre-BB instance with security parameter 𝜆 ∈ N (say,
𝜆 = 128) and a bulletin board comprising 𝑛 = 19.5𝑚 buckets each capable of holding
a single 𝐿-bit message. Thus, we have domain 𝐷 = [0 . . 𝑛 − 1] and range 𝑅 = F2𝐿 .
The design of Sabre-BB tightly parallels that of Riposte, save for the adoption of
Boyle et al.’s more compact DPFs and the new audit protocol: A sender who wishes
to post a message𝑀 ∈ F2𝐿 to the bulletin board

1. samples a random bucket index 𝑖 ∈R 𝐷 ;

2. samples (dpf [0], dpf [1]) ← Gen(1𝜆, 𝐷, 𝑅; 𝑖, 𝑀); and then

3. sends dpf [𝑏] to server 𝑏 for 𝑏 = 0, 1.

Upon receiving and auditing dpf [𝑏], server𝑏 constructs the vector𝑀𝑏 ∈ (F2𝐿 )1×𝑛
in which the 𝑗 th component equals Eval(dpf [𝑏], 𝑗) for 𝑗 = 0, . . . , 𝑛 − 1; server 𝑏
adds 𝑀𝑏 to its bulletin board database to effectuate the write.2 We remark that
𝑀𝑏 is efficiently computable (with a cost dominated by 𝑛 − 1 length-doubling PRG
evaluations and 𝑛 evaluations of the leaf-stretching PRG) using the so-called full-

domain evaluation procedure described by Boyle et al. [14; §3.2.3].
As per Definition 4, 𝑀0 + 𝑀1 ∈ (F2𝐿 )1×𝑛 has message 𝑀 in its 𝑖th column and

zero elsewhere—provided the sender generated (dpf [0], dpf [1]) honestly, which the
servers confirm via any of the three audit protocol instantiations.

2As in Riposte, Sabre-BBwriters can employ Newton sums, writing pairs (𝑀,𝑀2) to hedge against
inevitable 2-way collisions.
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Sabre for sender-anonymous mailboxes

We now describe Sabre-M, the most performant variant of Sabre in the mailbox
model. (Recall that we describe three additional “stepping-stone” variants in Appen-
dix E.) Consider a (2- or 3-server) Sabre-M instance with security parameter 𝜆 ∈ N
(say, 𝜆 = 128) and 𝑛 mailboxes each capable of holding a single 𝐿-bit message. (Thus,
we have domain 𝐷 = [0 . . 𝑛 − 1] and range 𝑅 = F2𝐿 ). The design of Sabre-M closely
follows that of Express.

Mailbox registration: As with Express, prospective recipients must pre-register a
mailbox with the servers. In Sabre-M, the servers assign mailbox addresses determin-
istically using a pseudorandom function (PRF) 𝐹 : {0, 1}𝜆 × 𝐷 → {0, 1}𝜆; specifically,
to register the 𝑖th mailbox, the servers compute 𝑎𝑑𝑑𝑟 𝑖 ← 𝐹 (𝑘̃, 𝑖) using a long-lived
secret key 𝑘̃ ∈ {0, 1}𝜆 held by the servers, and then they return (𝑖, 𝑎𝑑𝑑𝑟 𝑖) to the
registrant.

Writing: To write a message𝑀 ∈ F2𝐿 to the 𝑖th mailbox, the sender must know
(𝑖, 𝑎𝑑𝑑𝑟 𝑖). Armed with this pair, it

1. samples (dpf [0], dpf [1]) ← Gen(1𝜆, 𝐷, 𝑅; 𝑖, 𝑀);

2. samples additive shares [𝑖] and [𝑎𝑑𝑑𝑟 𝑖] of the distinguished input 𝑖 andmailbox
address 𝑎𝑑𝑑𝑟 𝑖 ; and then

3. sends (dpf [𝑏], [𝑖]𝑏, [𝑎𝑑𝑑𝑟 𝑖]𝑏) to server 𝑏 for 𝑏 = 0, 1.

Notice that the distinguished input to the DPF is 𝑖 ∈ [1 . . 𝑛], in contrast to 𝑎𝑑𝑑𝑟 𝑖 ∈
{0, 1}𝜆 as used in Express. The discussion and experiments in Appendix E highlight
the performance benefits of this difference.

Upon receiving and auditing (dpf [𝑏], [𝑖]𝑏, [𝑎𝑑𝑑𝑟 𝑖]𝑏), server 𝑏 expands dpf [𝑏]
to the vector𝑀𝑏 ∈ (F2𝐿 )1×𝑛 using the full-domain evaluation procedure [14; §3.2.3],
and then it adds𝑀𝑏 to its mailbox database to effectuate the write.

Auditing: Auditing in Sabre-M comprises two distinct steps, namely (i) checking
that (dpf [0], dpf [1]) is a well-formed DPF key pair (having distinguished input 𝑖),
and (ii) verifying that [𝑎𝑑𝑑𝑟 𝑖] correctly shares the 𝑖th mailbox address.

For the former step (i.e., auditing the DPFs), Sabre-M uses any one of the three
versions described in Section 7.2; for the latter step (i.e., verifying the mailbox
address) it uses a constant-complexity protocol described in Section 7.5.2. Thus,
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the entire auditing procedure has complexity logarithmic in 𝑛, allowing the servers
to rapidly reject bogus write requests from a would-be resource-exhaustion DoS
attacker. The benefits of rapid auditing are evident in our experimental evaluation
in Section 7.6.

7.5.2 Verifying Mailbox Addresses

This section describes how Sabre-M servers verify that incoming requests target
valid mailbox addresses. The idea is quite simple: Recall that, along with dpf [𝑏],
the sender submits shares [𝑖]𝑏 and [𝑎𝑑𝑑𝑟 𝑖]𝑏 of the distinguished input 𝑖 and the
associated mailbox address 𝑎𝑑𝑑𝑟 𝑖 . Also recall that the servers hold in common a
secret key 𝑘̃ ∈ {0, 1}𝜆 for a PRF 𝐹 : {0, 1}𝜆 × 𝐷 → {0, 1}𝜆 . Intuitively, 𝐹 defines a
deterministic mapping from the distinguished inputs 𝑖 ∈ 𝐷 to pseudorandommailbox
addresses 𝑎𝑑𝑑𝑟 𝑖 B 𝐹 (𝑘̃ ; 𝑖); thus, the servers can use [𝑖] and their knowledge of 𝑘̃ to
verify that [𝑎𝑑𝑑𝑟 𝑖] shares the “correct” mailbox address.

To this end, the servers input [𝑖] to 𝐹 to compute a fresh sharing [𝑎𝑑𝑑𝑟 ′𝑖 ], after
which they hold two independent sharings: one, [𝑎𝑑𝑑𝑟 𝑖], of the sender-claimed

address and another, [𝑎𝑑𝑑𝑟 ′𝑖 ], of the server-computed address. Server 𝑏 computes
[𝐴]𝑏 B [𝑎𝑑𝑑𝑟 𝑖]𝑏 + [𝑎𝑑𝑑𝑟 ′𝑖 ]𝑏 for 𝑏 = 0, 1, and then the pair check if

𝐴 = [𝐴]0 + [𝐴]1
= ( [𝑎𝑑𝑑𝑟 𝑖]0 + [𝑎𝑑𝑑𝑟 ′𝑖 ]0) + ([𝑎𝑑𝑑𝑟 𝑖]1 + [𝑎𝑑𝑑𝑟 ′𝑖 ]1)
= ( [𝑎𝑑𝑑𝑟 𝑖]0 + [𝑎𝑑𝑑𝑟 𝑖]1) + ([𝑎𝑑𝑑𝑟 ′𝑖 ]0 + [𝑎𝑑𝑑𝑟 ′𝑖 ]1)
= 𝑎𝑑𝑑𝑟 𝑖 + 𝑎𝑑𝑑𝑟 ′𝑖
= 0 ,

where (because arithmetic is in F2𝜆 ) the last equality holds if and only if 𝑎𝑑𝑑𝑟 𝑖 = 𝑎𝑑𝑑𝑟
′
𝑖 .

In particular, the check succeeds if and only if𝐴0 = 𝐴1, which the servers can confirm
alongside the DPF-verification portion of the audit protocol. Performing address
checking early—before incurring the O(lg𝑛) cost of DPF verification—ensures that
Sabre-M servers can always reject malicious write requests faster than a would be
DoS attacker can produce them (see Section 7.6.3).
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7.5.3 Security Guarantees

We define security for Sabre in the ideal-world/real-world simulation paradigm. In
the ideal world, Sabre users hand their read and write requests directly to some
ideal functionality, who faithfully executes the requested actions while leaking no
superfluous information to external observers. In the real world, one of the 2- or
3-server Sabre-BB or Sabre-M instantiations replaces the ideal functionality. We
then consider an attackerA who controls an arbitrary number of readers and writers
in addition to (at most) one server.

Informally, we wish to show that A cannot exploit its privileged position as a
Sabre server to compromise sender anonymity. We do this by exhibiting an efficient
simulator that interacts with the ideal functionality to sample “simulated” views
from a distribution close to the one describing A’s view in the real world. We
then ask whether A can adaptively conjure up sequences of events allowing it to
distinguish between real and simulated views; if not, we conclude that the real
Sabre protocols leak essentially nothing beyond what is leaked by their ideal-world
counterparts.

Due to space constraints, we defer a detailed security definition and analysis to
Appendix F.

7.6 Implementation and Evaluation

To assess the practicality of Sabre, we wrote a proof-of-concept reference imple-
mentation in C++. Our implementation uses Boost.Asio v1.18.1 for asynchronous
communication, OpenSSL 1.1.1i for hashing and TLS support, and dpf++ [36] for
(2, 2)-DPFs; we wrote all other non-STL functionality by hand.3

Experimental setup We ran a series of experiments on Amazon EC2, with the
servers running in geographically distant locations to mimic realistic Internet latency.
The servers are allm5.4xlarge instances equipped with 64 GiB of RAM and 16 vCPUs,
running the standard Ubuntu 18.04 AMI. For each of the experiments reported in

3Our source code is available under the GNU General Public License (version 3) via https:
//pr.iva.cy/sabre.
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this section, we configured LowMC to use 128-bit blocks (and 128-bit keys) with
r = 19 rounds consisting of s = 32 S-boxes apiece. Appendix G presents experimental
results to justify these parameter choices. (As a spoiler, this setting turns out to
be pessimal with respect to (2 + 1)-party auditing and SNIPs, but optimal for the
full-domain evaluation, which dominates the execution time.) We ran all experiments
for 100 trials and report in our plots the sample mean over those 100 runs. (The plots
also show error bars, but in most cases they are too small to see.)

In order to sustain high throughput, Sabre uses a custom bitsliced implementation
of LowMC that operates on either 128 or 256 ciphertexts in parallel using SIMD
operations; thus, several of our plots report the wall-clock time to process batches
of size 128 where the reader might naturally expect to find the cost for “singleton”
batches.

7.6.1 Communication Cost

We first present an (analytically determined) accounting of communication costs
for all three variants of Sabre auditing. The costs are summarized in Table 7.1 and
Table 7.2, with the derivations of these numbers included as Appendix H. (Note that
these costs account for auditing only; they do not include the DPF itself.) Observe
that the client-to-server communication cost in both 2- and 3-verifier SNIP-based
auditing scales with the product r s of LowMC parameters. (To a first approximation,
r ≈ lg s so that proof-size scaling is more or less softly linear in r.) Also notice
that 3-verifier SNIPs reduce communication about (𝜆/ 2)-fold relative to 2-verifier
SNIPs; however, this reduction comes at the cost of an additional server and a
correspondingly stronger non-collusion assumption.

7.6.2 Auditing

Our first set of experiments measure the cost of Sabre auditing and compare it
with that of Riposte and Express auditing. Figure 7.4 shows the relative cost of
(2 + 1)-party, 3-verifier SNIP, and 2-verifier SNIP auditing in Sabre.
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Figure 7.4: Time to audit a batch of 128 requests in Sabre

Owing to its reliance on cut-and-choose with 𝜆 = 128 parallel instances, the
2-verifier SNIP auditing is by far the slowest of the pack, taking two orders of
magnitude longer than both (2 + 1)-party and 3-verifier SNIP auditing. Nevertheless,
the amortized cost per audit still barely exceeds 10ms for Sabre instances even with
𝑛 = 220 registered mailboxes—indeed, even with up to 𝑛 = 240 mailboxes it never
exceeds 23ms. Although 2-verifier SNIP auditing is dramatically less performant than
the alternatives, it offers superior security guarantees and the most apt comparison
with Express; thus, we restrict our remaining experimental results to this variant. It
is worth noting, however, that either 3-server variant would provide (significantly)
better auditing performance wherever an additional party (and the resulting stronger
trust assumption) is palatable. The 3-server variants also provide a more direct
comparison with Riposte.

Figures 7.5a and 7.5b compare the auditing costs of Sabre with 2-verifier SNIP
auditing versus those of Riposte and Express. These plots clearly illustrate the
benefits of Sabre’s logarithmic auditing relative to Riposte’s and Express’ linear
auditing. While the latter perform better for very small DPFs, the former becomes
significantly faster as DPFs begin to exceed around a hundred thousand mailboxes
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(a) Client-side auditing time
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(b) Server-side auditing time
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Figure 7.5: Sabre 2-verifier SNIP auditing versus Riposte and Express auditing.
Observe that the 𝑦-axis in 7.5a and 7.5b are linear, while 𝑦-axis in 7.5c is log-
scaled. Note that 7.5c reports mailbox-checking times for a batch of 128
requests.

(or buckets).
Figure 7.5c shows the cost of verifying a batch of 128 mailbox addresses in

Sabre-M. As expected, the running time of the mailbox address check is constant
(i.e., independent of the number mailboxes).

7.6.3 Resistance to denial-of-service attack

The next set of experiments characterizes Sabre’s resistance to resource-exhaustion
DoS attacks by comparing how long it takes a simulated attacker to produce plausible-
looking, yet malformed write requests with how long it takes Sabre auditing to
reject them. The attacker in these experiments produces its malformed requests
by sampling a sufficient quantity of pseudorandom bits from /dev/urandom. We
consider two kinds of auditing failures, namely (i) when the address check fails and
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(ii) when the address check passes but the DPF audit subsequently fails. (For the
latter, we also consider at which tree depth the auditing aborts.)

Figure 7.6a plots our findings for the first kind of failure, comparing the time
required to sample a single malformed request against the time required to check a

batch of 128 addresses using the PRF-based address check. For Sabre instances with
as few as 𝑛 = 210 mailboxes, sampling a malformed request takes nearly 1.75× as
long as address checking; by 220 mailboxes the difference approaches 4.6×.

Figure 7.6b plots our findings for the second kind of failure, comparing the time
required to construct a request that verifies up to but not including the 𝑑th level of
the DPF (after which the attack samples the rest of the request from /dev/urandom)
against the time required for the auditors to reject the request. Owing to SNIP
verification’s probabilistic nature, the auditors can reject a malformed DPF upon
inspecting only a fraction of the bits that the attacker must sample. As a result,
sampling a malformed request takes about 1.5× as long as rejecting it via auditing,
for all 𝑑 .

In contrast to Riposte and Express auditing—where auditors run asymptotically
slower than writers—Sabre auditors consistently reject malformed requests faster
than the simulated attackers can produce them. We thus conclude that Sabre is
inherently resistant to DoS attacks in the following sense: An attacker seeking to

overwhelm Sabre servers must expend strictly more resources than the servers.

7.6.4 Head-to-head with Riposte and Express

The next set of experiments provide a head-to-head comparison between Sabre with
2-verifier SNIPs and both Riposte and Express, the respective state-of-the-art systems
in the bulletin board and mailbox models. We plot the results in Figures 7.7 and 7.8.
(Note that we measured the reference implementations of Riposte4 and Express5 on
the same servers we used to run Sabre. The 𝑥-axes on all plots stop at 𝑛 = 218 due to
limitations of the Riposte and Express implementations.)

Figure 7.7a compares the throughput of Sabre-M against that of Express for
messages of size 1 KiB and 32 KiB. In both cases, Sabre-M comfortably outperforms

4https://bitbucket.org/henrycg/riposte/
5https://github.com/SabaEskandarian/Express
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Figure 7.6: Sabre 2-verifier SNIP auditing versus malformed request sampling.
7.6a compares the cost of checking a batch of 128 mailbox addresses with that
of sampling a (single) malformed request; 7.6b compares the cost of verifying a
proof up to level 𝑑 with that of sampling a malformed proof that verifies up to
level 𝑑 .

Express; indeed, Sabre-Mwith 32 KiB messages even outperforms Expresswith 1 KiB
messages.

Figure 7.7b compares the throughput of Sabre-BB against that of Riposte. For a
meaningful comparison, we provide separate plots for Sabre-BB with each of the
three audit protocol instantiations. Again, the results confirm our expectations:
Throughput for the (2 + 1)-party and 3-verifier SNIP variants consistently exceeds
20× that of Riposte, while the overhead of cut-and-choose in the 2-verifier SNIP
variant eliminates much of this gain when the number of buckets is small. As the
number of buckets grows large, the costs of all three Sabre instances converge to
that of the full-domain evaluation of the DPF and subsequent writing.

Figure E.1 in Appendix E compares the performance of the “stepping-stones” to
Sabre-M. Comparing those plots with the plot for Express (from Figure 7.7a) with
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Figure 7.7: Comparison among Sabre variants, Riposte, and Express when all
requests are valid.

1 KiB messages reveals comparable throughput when all DPFs pass auditing. This is
unsurprising, as the bottleneck in both protocols is the DPF evaluation and subse-
quent writing. We stress that our use of bitsliced LowMC is crucial here: Express
benefits from the fast AES-NI instruction set on modern x86-64 CPUs; without bitslic-
ing, the throughput of LowMC could not compete. The algorithmic improvements
of Sabre become apparent as we progress through the “stepping-stones” toward
Sabre-M, whose smaller DPFs and ability to use full-domain evaluation greatly
reduces the cost of DPF evaluation; moreover, the use of full-domain evaluation pro-
vides superior pipe-lining and cache utilization, resulting in notable speedups for the
subsequent writing. Our next experiments reveal further algorithmic improvements
that arise only when some DPFs fail auditing.
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Figure 7.8: Varying the percentage of malformed queries for DPFs of size 216 and
message size of 10 KiB. Notice the log-scaling on the 𝑦-axis.

Head-to-head under DoS attacks

The final set of experiments compares the throughput of Sabre-Mwith that of Express
in the presence of a resource-exhaustion DoS attack. Recall that write requests in
the mailbox model can be malformed in two distinct ways; namely, (i) the mailbox
address is incorrect or (ii) the DPF is not well-formed. Figure 7.8 presents five plots
that each show the effect of varying the proportion of incoming requests that are
well-formed versus malformed. In the leftmost plot, all bad requests have valid
addresses but malformed DPFs; in the next plot, one in four have invalid addresses;
and so on until the rightmost plot where all bad requests have invalid addresses. The
𝑦-axis tracks how many incoming queries (whether “good” or “bad”) each protocol
was able to process per second.

Notice that, in all cases, throughput actually increases with the proportion of
malformed DPFs, since the servers can stop processing immediately if auditing fails.
(The effect is more pronounced for Sabre because of its faster auditing.) When the
proportion of requests with invalid addresses increases, the throughput for Express
plummets, while the throughput for Sabre-M skyrockets. This results from the
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extremely low cost of the PRF-based address check that Sabre-M employs. These
findings confirm that Sabre-M performs significantly better than Express in the
presence of a DoS attack.

7.7 Conclusion

We presented Sabre, a family of SAM protocols with instances operating in both the
sender-anonymous mailbox model (Sabre-M) and the sender-anonymous bulletin
board model (Sabre-BB). Sabre improves on the state-of-the-art systems in both
models via several innovations that improve not only its concrete performance and
scalability under “ideal” circumstances but also its resilience to resource exhaustion-
style DoS attacks in the sender-anonymous mailbox model. Our implementation
and experimental analysis indicate that Sabre can feasibly scale to anonymity sets in
the tens of millions and beyond.
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Chapter 8

Conclusion

This thesis examines the intersection of MPC and DPFs in the context of PETs. This
has been focused on using DPFs in MPC protocols to enable fast computation of non-
linear functions and efficient secret share conversion and on using MPC to generate
DPF key pairs and assert the correctness of untrusted DPF key pairs. The overarching
goal of this work is to demonstrate to readers howMPC protocols interacting with the
internal structure of Boyle-Gilboa-Ishai DPFs can achieve significant performance
improvements for components which are critical in a wide variety of PETs. Notable
examples include DPF key generating for sender-anonymous messaging protocols
and using MPC to compute activation functions for privacy preserving machine
learning systems.

8.1 Grotto related work

Grotto is the latest in a line of works that [11, 35, 41, 56, 60, 62] that use piecewise-
polynomial functions (or splines) for approximating non-linear univariate functions
on input additively shared secrets.

Prior works in this area have generally taken one of two possible approaches.
The first strategy, introduced by Vadapalli, Bayatbabolghani, and Henry [60] for
their Pirsona scheme, uses linear-sized DPFs with an exponential-cost full-domain

evaluation procedure to evaluate reciprocal square roots and integer comparison.
The follow-up scheme Pika [62] generalizes Pirsona’s approach to arbitrary functions
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and also adds machinery to thwart malicious dealers. This DPF-plus-full-domain-
evaluation approach has low communication cost and concretely efficient running
times for “short” inputs (say, 16-24 bits), but its exponential computation cost quickly
grows untenable as inputs get longer; indeed, Wagh writes that “typical sizes for
which [this approach] provides performance comparable to general purpose (sic)
MPC are around 20-25 bits” [62; §3]. The recently proposedOrca scheme of Jawalkar,
Gupta, Basu, Chandran, Gupta, and Sharma [41] uses massive parallelism afforded
by GPUs to partially reign in the exponential cost of full-domain evaluation.

The second strategy, exemplified by Gupta, Kumaraswamy, Gupta, and Chan-
dran’s Llama scheme [35], uses distributed comparison functions (DCFs)—a DPF-
adjacent primitive for efficient integer comparison—to avoid the need for costly
full-domain evaluations. Swapping out DPFs in favour of DCFs dramatically im-
proves computational scaling at the expense of substantially higher communication
costs (that increase rapidly as approximations become more granular).

Compared with its progenitors, Grotto’s parity-segment approach offers con-
cretely lower costs for “simple” functions and superior asymptotics as inputs get
longer and approximations more elaborate. The upshot is that, while the respectively
high computation and communication costs of the Pirsona and Llama frameworks
severely curtail those schemes’ practically achievable approximation accuracy, the
fidelity of Grotto approximations is practically limited only by the difficulty of
building good piecewise-polynomial approximations—indeed, as seen in Table 5.2,
Grotto “approximations” are often errorless when viewed as fixed-point computa-
tions.

8.2 Sabre related work

Before concluding, we summarize some relevant works on anonymous messaging.
We focus on systems that provide privacy guarantees comparable to those of Sabre,
as opposed to schemes like Vuvuzela [61], Stadium [59], or Karaoke [47], which
tackle similar problems while providing only differential privacy-like anonymity
guarantees.

As described in Chapter 7, the two primary works that relate to Sabre are Riposte
and Express. Both of these systems are based upon using two or more servers, each
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of which hold a secret shared database of messages. Writes are then performed using
DPFs. In Express the DPF’s distinguished point corresponds to the address of the
mailbox address being written to.

There are also several related works that take different approaches to SAM
protocols. These systems are based upon different assumptions and cryptographic
primitives.

Pung: Angel and Setty present Pung [3], a single-server messaging protocol built
from computationally private information retrieval (CPIR). Pung is notable for its
low writing costs (though its reliance on CPIR renders reading expensive) and
absence of multiple servers, and resulting non-collusion assumptions.

Atom: Kwon, Corrigan-Gibbs, Devadas, and Ford present Atom [45], an anonymous
microblogging service in the sender-anonymous bulletin board model. Atom is
notable for its use of sharding and public-key techniques to support anonymous
broadcasting of “short” (Tweet-sized) messages in the presence of actively malicious
servers.

XRD: Kwon, Lu, and Devadas present XRD [46], a scalable end-to-end messaging
system. XRD is notable for its use of parallel mixes and so-called aggregate hybrid
shuffles to achieve high throughput relative to Pung and Atom.

Talek: Cheng, Scott, Masserova, Zhang, Goyal, Anderson, Krishnamurthy, and Parno
present Talek [17], a group messaging system in the anonymous mailbox model.
Talek is notable for its use of information-theoretic PIR techniques to achieve access
sequence indistinguishability under weak non-collusion assumptions.

Compared to prior SAM protocols, Sabre achieves significantly better perfor-
mance than prior works, as we demonstrate in Section 7.6. In particular, when
targeted by a DoS attack, Sabre’s auditing protocol significantly outperforms the
auditing protocols from Riposte and Express.

8.3 Future Work

There are several paths for future works in this area to explore. Some of these areas
expand upon Sabre and others expand upon Grotto.
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Combining Sabre with other auditing protocols. In Chapter 7, we demonstrate
how Sabre’s auditing protocol significantly outperforms prior auditing proto-
cols. This is especially notable in the case of a DoS attack that sends a large
number of invalid write requests. In Express, a large part of this difference
is that Express’s audit protocol requires evaluating the DPF on all registered
mailbox addresses. When the DPF is used for a valid write after the audit, the
results from the evaluation step can be reused for the write. This makes overall
cost of the entire writing process more efficient for Express when there are
extremely few invalid write requests, but it makes Express much less efficient
than Sabre when the percentage of invalid requests rises. Combining these
two techniques into one system could allow for dynamic switching between
the two auditing methods in order to optimize the writing process depending
on the proportion of invalid requests being received.

Applications of Grotto. There are a variety of applications for Grotto in MPC.
One application of particular interest is privacy-preserving machine learning
based upon MPC. Grotto is highly applicable because neural network-based
machine learning makes heavy use of non-linear activation functions, which,
as shown in Section 5.4, Grotto can evaluate extremely efficiently.

Extension of Grotto to periodic functions. Chapter 6 shows how Grotto can
be used to enable efficient bit extraction and bit decomposition. The techniques
used to make bit decomposition efficient rely upon the fact that bit extraction
is a periodic function whose period is a power of two. This makes it easy to
reduce the bitlength of inputs to the Grotto bit extraction function in order
to improve efficiency. If this technique can be generalized to other periodic
functions, where the period is not a power of two, it would vastly improve
upon existing techniques for evaluating periodic functions.

Enable malicious security in Grotto. As described in Section 5.0.2, Grotto’s
threat model assumes semi-honest adversaries. However, through the use
of techniques based upon linear sketching [14, 21, 62] or secret-shared non-

interactive proofs [25], this assumption can be relaxed to allow for security
against malicious actively adversaries. The DPF verification protocol from
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Chapter 7 is another example of the available methods based upon secret-
shared non-interactive proofs.

8.4 Conclusion

This work has shown how DPFs and MPC can be used in combination to great effect
in the Sabre and Grotto systems. The author hopes that the results presented in
this thesis will encourage further research into efficient protocols for integrating
DPFs into MPC protocols with the goal of making privacy available to everyone
through more scalable and efficient PET systems.
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Appendix A

Prefix-parity amortization via

memoization

This appendix presents empirically measured total costs for the prefix-parity
algorithm with many endpoints, such as when evaluating several complex functions
at once. The costs depend heavily on the distribution of the points, with higher
endpoint density implying greater per-endpoint savings. We choose three kinds of
distributions, namely uniform, Gaussian, and Zipfian.

As expected, the greater the variance of the distribution, the lower the amorti-
zation savings that the prefix-parity algorithm enjoys, with the “worst” case occurring
when endpoints are sampled uniformly. By contrast, the amortization savings for
Zipfian distributions with small parameters are very extreme.
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Figure A.1: Empirical amortized costs for prefix-parity over points sampled from
selected probability distributions.
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Appendix B

Formulae for (2+1)-PC

sign-corrected polynomial

evaluation

Table B.1: Comparing round complexity and communication cost to evaluate poly-
nomials using (2 + 1)-party protocols. The communication cost is expressed as the
number of values exchanged as part of the Beaver triple-like from P2 (in the prepro-
cessing phase) and between P0 and P1 (in the online phase). The bitlength of each
term depends on the polynomial degree and fractional precision; see Section 5.3.1
for details on how to calculate them.

Protocol

Polynomial Round Communication

degree complexity Preprocessing Online

One-round ABY2.0-like
1 1 8 4
2 1 13 5
3 1 18 6

Two-round ABY2.0-like
1 2 6 4
2 2 9 5
3 2 13 6

Horner’s method
1 2 6 4
2 3 8 5
3 4 10 6
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B.1 One-round ABY2.0-like evaluation

B.1.1 For constant polynomials

Precomputation: P2 samples 𝑈 and 𝐴0, computes [𝑢], [𝐴0], [𝑢·𝐴0], and shares all
five them among P0 and P1.

Round 1: P𝑏 sends [𝑢]𝑏 = [𝑢]𝑏 + [𝑈 ]𝑏 and [𝑎0]𝑏 = [𝑎0]𝑏 + [𝐴0]𝑏 to P1−𝑏 , and vice
versa.

Output: P𝑏 outputs [𝑦]𝑏 = 𝑢·𝑎0·𝑏 − 𝑢·[𝐴0]0 − 𝑎0·[𝑢]0 + [𝑢·𝐴0]0

The result is [𝑦] = 𝑢·𝑎0 − 𝑢·[𝐴0] − 𝑎0·[𝑢] + [𝑢·𝐴0]
This is derived by:

[𝑦] = [𝑦]0 + [𝑦]1
= 𝑢·𝑎0 − 𝑢·[𝐴0] − 𝑎0·[𝑢] + [𝑢·𝐴0]
= (𝑢 − [𝑢])·(𝑎0 − [𝐴0])
= 𝑢·𝑎0

B.1.2 For linear polynomials

Precomputation: P2 samples𝐴0,𝐴1,𝑈 , and𝑋 , computes [𝑢·𝑋 ], [𝑢·𝐴1], [𝐴1·𝑋−𝐴0],
[𝑈 ·(𝐴1·𝑋 −𝐴0)], and shares all eight among P0 and P1.

Round 1: P𝑏 sends [𝑢]𝑏 = [𝑢]𝑏 + [𝑈 ]𝑏 , [𝑎0]𝑏 = [𝑎0]𝑏 + [𝐴0]𝑏 , [𝑎1]𝑏 = [𝑎1]𝑏 + [𝐴1]𝑏 ,
and [𝑥]𝑏 = [𝑥]𝑏 + [𝑋 ]𝑏 to P1−𝑏 , and vice versa.

Output: P𝑏 outputs [𝑦]𝑏 = 𝑢·(𝑏·(𝑎1·𝑥 + 𝑎0) − 𝑎1·[𝑋 ]𝑏 − 𝑥 ·[𝐴1]𝑏 + [𝐴1·𝑋 − 𝐴0]𝑏) −
(𝑎1·𝑥 + 𝑎0)·[𝑢]𝑏 + 𝑎1·[𝑢·𝑋 ]𝑏 + 𝑥 ·[𝑢·𝐴1]𝑏 − [𝑈 ·(𝐴1·𝑋 −𝐴0)]𝑏

The result is [𝑦] = 𝑢·((𝑎1·𝑥 + 𝑎0) − 𝑎1·[𝑋 ] − 𝑥 ·[𝐴1] + [𝐴1·𝑋 − 𝐴0]) − (𝑎1·𝑥 +
𝑎0)·[𝑢] + 𝑎1·[𝑢·𝑋 ] + 𝑥 ·[𝑢·𝐴1] − [𝑈 ·(𝐴1·𝑋 −𝐴0)]
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This is derived by:

[𝑦] = [𝑦]0 + [𝑦]1
= 𝑢·(𝑎1·𝑥 + 𝑎0 − 𝑎1·[𝑋 ] − 𝑥 ·[𝐴1] + [𝐴1·𝑋 −𝐴0])
− (𝑎1·𝑥 + 𝑎0)·[𝑢] + 𝑎1·[𝑢·𝑋 ] + 𝑥 ·[𝑢·𝐴1]
− [𝑈 ·(𝐴1·𝑋 −𝐴0)]

= 𝑢·𝑎1·𝑥 − 𝑢·𝑎1·[𝑋 ] − 𝑢·𝑥 ·[𝐴1] − 𝑎1·𝑥 ·[𝑢]
+ 𝑢·[𝐴1·𝑋 ] + 𝑎1·[𝑢·𝑋 ] + 𝑥 ·[𝑢·𝐴1] − [𝑢·𝐴1·𝑋 ]
+ 𝑢·𝑎0 − 𝑢·[𝐴0] − 𝑎0·[𝑢] + [𝑢·𝐴0]

= 𝑢·𝑎1·𝑥 − 𝑢·𝑎1·[𝑋 ] − 𝑢·𝑥 ·[𝐴1] − 𝑎1·𝑥 ·[𝑢]
+ 𝑢·[𝐴1·𝑋 ] + 𝑎1·[𝑢·𝑋 ] + 𝑥 ·[𝑢·𝐴1] − [𝑢·𝐴1·𝑋 ]
+ 𝑢·𝑎0·2𝑝

= (𝑢 − [𝑢])·(𝑎1 − [𝐴1])·(𝑥 − [𝑋 ]) + 𝑢·𝑎0·2𝑝

= 𝑢·𝑎1·𝑥 + 𝑢·𝑎0·2𝑝

= 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝)

B.1.3 For quadratic polynomials

Precomputation: P2 samples 𝐴0, 𝐴1, 𝐴2, 𝑈 , and 𝑋 , computes [𝑋 2], [𝑢·𝐴2], [𝑢·𝑋 ],
[𝑈 ·𝑋 2], [2·𝐴2·𝑋 −𝐴1], [𝐴2·𝑋 2 −𝐴1·𝑋 +𝐴0], [𝑢·(2·𝐴2·𝑋 −𝐴1)], [𝑢·(𝐴2·𝑋 2 −𝐴1·𝑋 +
𝐴0)], and shares all thirteen among P0 and P1.

Round 1: P𝑏 sends [𝑢]𝑏 = [𝑢]𝑏 + [𝑈 ]𝑏 , [𝑎0]𝑏 = [𝑎0]𝑏 + [𝐴0]𝑏 , [𝑎1]𝑏 = [𝑎1]𝑏 + [𝐴1]𝑏 ,
[𝑎2]𝑏 = [𝑎2]𝑏 + [𝐴2]𝑏 , and [𝑥]𝑏 = [𝑥]𝑏 + [𝑋 ]𝑏 to P1−𝑏 , and vice versa.

Output: P𝑏 outputs [𝑦]𝑏 = 𝑢·(𝑏·(𝑎2·𝑥 2+𝑎1·𝑥+𝑎0)−𝑥 2·[𝐴2]𝑏+𝑥 ·[2·𝐴2·𝑋−𝐴1]𝑏−(𝑎1+
2·𝑎2·𝑥)·[𝑋 ]𝑏+𝑎2·[𝑋 2]𝑏−[𝐴2·𝑋 2−𝐴1·𝑋+𝐴0]𝑏)−[𝑢]𝑏 ·(𝑎2·𝑥 2+𝑎1·𝑥+𝑎0)+𝑥 2·[𝑢·𝐴2]𝑏−
𝑥 ·[𝑢·(2·𝐴2·𝑋 −𝐴1)]𝑏 + (𝑎1 +2·𝑎2·𝑥)·[𝑢·𝑋 ]𝑏 −𝑎2·[𝑈 ·𝑋 2]𝑏 + [𝑢·(𝐴2·𝑋 2−𝐴1·𝑋 +𝐴0)]𝑏

The result is [𝑦] = 𝑢·((𝑎2·𝑥 2 + 𝑎1·𝑥 + 𝑎0) − 𝑥 2·[𝐴2] + 𝑥 ·[2·𝐴2·𝑋 − 𝐴1] − (𝑎1 +
2·𝑎2·𝑥)·[𝑋 ] + 𝑎2·[𝑋 2] − [𝐴2·𝑋 2 −𝐴1·𝑋 +𝐴0]) − [𝑢]·(𝑎2·𝑥 2 + 𝑎1·𝑥 + 𝑎0) + 𝑥 2·[𝑢·𝐴2] −
𝑥 ·[𝑢·(2·𝐴2·𝑋 −𝐴1)] + (𝑎1+2·𝑎2·𝑥)·[𝑢·𝑋 ] −𝑎2·[𝑈 ·𝑋 2] + [𝑢·(𝐴2·𝑋 2−𝐴1·𝑋 +𝐴0)]
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This is derived by:

[𝑦] = [𝑦]0 + [𝑦]1
= 𝑢·((𝑎2·𝑥 2 + 𝑎1·𝑥 + 𝑎0) − (2·𝑥 ·𝑎2 + 𝑎1)·[𝑋 ]
+ 𝑎2·[𝑋 2] − 𝑥 2·[𝐴2] + 𝑥 ·[2·𝐴2·𝑋 −𝐴1]
− [𝐴2·𝑋 2 −𝐴1·𝑋 +𝐴0])
− (𝑎2 + 𝑎1·𝑥 + 𝑎0)·𝑥 2 [𝑢]
+ (2·𝑥 ·𝑎2 + 𝑎1)·[𝑢·𝑋 ] − 𝑎2·[𝑈 ·𝑋 2]
+ 𝑥 2·[𝑢·𝐴2] − 𝑥 ·[𝑢·(2·𝐴2·𝑋 −𝐴1)]
+ [𝑈 ·(𝐴2·𝑋 2 −𝐴1·𝑋 +𝐴0)]

= 𝑢·(𝑎2·𝑥 2 − 2·𝑥 ·𝑎2·[𝑋 ] + 𝑎2·[𝑋 2]
− 𝑥 2·[𝐴2] + 2·𝑥 ·[𝐴2·𝑋 ] − [𝐴2·𝑋 2])
− 𝑎2·𝑥 2 [𝑢] + 2·𝑥 ·𝑎2·[𝑢·𝑋 ]
− 𝑎2·[𝑈 ·𝑋 2] + 𝑥 2·[𝑢·𝐴2] − 2·𝑥 ·[𝑢·𝐴2·𝑋 ]
+ [𝑈 ·𝐴2·𝑋 2] + 𝑢·((𝑎1·𝑥 + 𝑎0) − 𝑎1·[𝑋 ]
− 𝑥 ·[𝐴1] + [𝐴1·𝑋 −𝐴0]) − (𝑎1·𝑥 + 𝑎0)·[𝑢]
+ 𝑎1·[𝑢·𝑋 ] + 𝑥 ·[𝑢·𝐴1] − [𝑈 ·(𝐴1·𝑋 −𝐴0)]

= 𝑢·(𝑎2·𝑥 2 − 2·𝑥 ·𝑎2·[𝑋 ] + 𝑎2·[𝑋 2]
− 𝑥 2·[𝐴2] + 2·𝑥 ·[𝐴2·𝑋 ] − [𝐴2·𝑋 2])
− 𝑎2·𝑥 2 [𝑢] + 2·𝑥 ·𝑎2·[𝑢·𝑋 ] − 𝑎2·[𝑈 ·𝑋 2]
+ 𝑥 2·[𝑢·𝐴2] − 2·𝑥 ·[𝑢·𝐴2·𝑋 ] + [𝑈 ·𝐴2·𝑋 2]
+ 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝)·2𝑝

= (𝑢·𝑎2·𝑥 2 − 2·𝑢·𝑥 ·𝑎2·[𝑋 ] + 𝑢·𝑎2·[𝑋 2]
− 𝑢·𝑥 2·[𝐴2] + 2·𝑢·𝑥 ·[𝐴2·𝑋 ] − 𝑢·[𝐴2·𝑋 2])
− 𝑎2·𝑥 2 [𝑢] + 2·𝑥 ·𝑎2·[𝑢·𝑋 ] − 𝑎2·[𝑈 ·𝑋 2]
+ 𝑥 2·[𝑢·𝐴2] − 2·𝑥 ·[𝑢·𝐴2·𝑋 ] + [𝑈 ·𝐴2·𝑋 2]
+ 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝)·2𝑝

= (𝑢 − [𝑢])·(𝑎2 − [𝐴2])·(𝑥 − [𝑋 ])2

+ 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝)·2𝑝
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= 𝑢·𝑎2·𝑥 2 + 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝)·2𝑝

= 𝑢· (𝑎2·𝑥 2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝
)

B.1.4 For cubic polynomials

Precomputation: P2 samples 𝐴0, 𝐴1, 𝐴2, 𝐴3,𝑈 , and 𝑋 , computes [𝑋 2], [𝑋 3], [3·𝐴3·
𝑋 −𝐴2], [3·𝐴3·𝑋 2−2·𝐴2·𝑋 +𝐴1], [𝐴3·𝑋 3−𝐴2·𝑋 2+𝐴1·𝑋 −𝐴0], [𝑢·𝑋 ], [𝑢·𝑋 2], [𝑢·𝑋 3],
[𝑢·𝐴3], [𝑢·(3·𝐴3·𝑋 −𝐴2)], [𝑈 ·(3·𝐴3·𝑋 2−2·𝐴2·𝑋 +𝐴1)], [𝑈 ·(𝐴3·𝑋 3−𝐴2·𝑋 2+𝐴1·𝑋 −
𝐴0)], and shares all eighteen among P0 and P1.

Round 1: P𝑏 sends [𝑢]𝑏 = [𝑢]𝑏 + [𝑈 ]𝑏 , [𝑎0]𝑏 = [𝑎0]𝑏 + [𝐴0]𝑏 , [𝑎1]𝑏 = [𝑎1]𝑏 + [𝐴1]𝑏 ,
[𝑎2]𝑏 = [𝑎2]𝑏 + [𝐴2]𝑏 , [𝑎3]𝑏 = [𝑎3]𝑏 + [𝐴3]𝑏 , and [𝑥]𝑏 = [𝑥]𝑏 + [𝑋 ]𝑏 to P1−𝑏 , and
vice versa.

Output: P𝑏 outputs [𝑦]𝑏 = 𝑢·
(
𝑏·(𝑎3·𝑥 3+𝑎2·𝑥 2+𝑎1·𝑥+𝑎0)−(3·𝑎3·𝑥 2+2·𝑎2·𝑥+𝑎1)·[𝑋 ]𝑏+

(3·𝑎3·𝑥 +𝑎2)·[𝑋 2]𝑏−𝑎3·[𝑋 3]𝑏−𝑥 3·[𝐴3]𝑏 +𝑥 2·[3·𝐴3·𝑋 −𝐴2]𝑏−𝑥 ·[3·𝐴3·𝑋 2−2·𝐴2·𝑋 +
𝐴1]𝑏 + [𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 −𝐴0]𝑏

) − [𝑢]𝑏 ·(𝑎3·𝑥 3 + 𝑎2·𝑥 2 + 𝑎1·𝑥 + 𝑎0) + (3·𝑎3·𝑥 2 +
2·𝑎2·𝑥+𝑎1)·[𝑢·𝑋 ]𝑏−(3·𝑎3·𝑥+𝑎2)·[𝑈 ·𝑋 2]𝑏+𝑎3·[𝑈 ·𝑋 3]𝑏+𝑥 3·[𝑢·𝐴3]𝑏−𝑥 2·[𝑢·(3·𝐴3·𝑋−
𝐴2)]𝑏 + 𝑥 ·[𝑈 ·(3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 +𝐴1)]𝑏 − [𝑈 ·(𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 −𝐴0)]𝑏

The result is [𝑦] = 𝑢· ((𝑎3·𝑥 3 + 𝑎2·𝑥 2 + 𝑎1·𝑥 + 𝑎0) − (3·𝑎3·𝑥 2 + 2·𝑎2·𝑥 + 𝑎1)·[𝑋 ] +
(3·𝑎3·𝑥 +𝑎2)·[𝑋 2] −𝑎3·[𝑋 3] −𝑥 3·[𝐴3] +𝑥 2·[3·𝐴3·𝑋 −𝐴2] −𝑥 ·[3·𝐴3·𝑋 2−2·𝐴2·𝑋 +𝐴1] +
[𝐴3·𝑋 3 − 𝐴2·𝑋 2 + 𝐴1·𝑋 − 𝐴0]

) − [𝑢]·(𝑎3·𝑥 3 + 𝑎2·𝑥 2 + 𝑎1·𝑥 + 𝑎0) + (3·𝑎3·𝑥 2 + 2·𝑎2·𝑥 +
𝑎1)·[𝑢·𝑋 ] − (3·𝑎3·𝑥 + 𝑎2)·[𝑈 ·𝑋 2] + 𝑎3·[𝑈 ·𝑋 3] + 𝑥 3·[𝑢·𝐴3] − 𝑥 2·[𝑢·(3·𝐴3·𝑋 − 𝐴2)] +
𝑥 ·[𝑈 ·(3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 +𝐴1)] − [𝑈 ·(𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 −𝐴0)]

This is derived by:

[𝑦] = [𝑦]0 + [𝑦]1
= 𝑢·((𝑎3·𝑥 3 + 𝑎2·𝑥 2 + 𝑎1·𝑥 + 𝑎0)
− (3·𝑎3·𝑥 2 + 2·𝑎2·𝑥 + 𝑎1)·[𝑋 ] + (3·𝑎3·𝑥 + 𝑎2)·[𝑋 2]
− 𝑎3·[𝑋 3] − 𝑥 3·[𝐴3] + 𝑥 2·[3·𝐴3·𝑋 −𝐴2]
− 𝑥 ·[3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 +𝐴1]
+ [𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 −𝐴0])
− (𝑎3·𝑥 3 + 𝑎2𝑥 2 + 𝑎1·𝑥 + 𝑎0)·[𝑢]
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+ (3·𝑎3·𝑥 2 + 2·𝑎2·𝑥 + 𝑎1)·[𝑢·𝑋 ] + 𝑥 3·[𝑢·𝐴3]
− 𝑥 2·[𝑈 ·(3·𝐴3·𝑋 −𝐴2)]
+ 𝑥 ·[𝑢·(3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 +𝐴1)]
− [𝑢·(𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 −𝐴0)]

= 𝑢·(𝑎3·𝑥 3 − 3·𝑎3·𝑥 2·[𝑋 ] + 3·𝑎3·𝑥 ·[𝑋 2] − 𝑎3·[𝑋 3] − 𝑥 3·[𝐴3]
+ 3·𝑥 2·[𝐴3·𝑋 ] − 3·𝑥 ·[𝐴3·𝑋 2] + [𝐴3·𝑋 3]) − 𝑎3·𝑥 3·[𝑢]
+ 3·𝑎3·𝑥 2·[𝑢·𝑋 ] − 3·𝑎3·𝑥 ·[𝑈 ·𝑋 2] + 𝑎3·[𝑈 ·𝑋 3]
+ 𝑥 3·[𝑢·𝐴3] − 3·𝑥 2·[𝑢·𝐴3·𝑋 ] + 3·𝑥 ·[𝑈 ·𝐴3·𝑋 2]
− [𝑈 ·𝐴3·𝑋 3] + 𝑢·((𝑎2·𝑥 2 + 𝑎1·𝑥 + 𝑎0)
− (2·𝑥 ·𝑎2 + 𝑎1)·[𝑋 ] + 𝑎2·[𝑋 2]
− 𝑥 2·[𝐴2] + 𝑥 ·[2·𝐴2·𝑋 −𝐴1] − [𝐴2·𝑋 2 −𝐴1·𝑋 +𝐴0])
− (𝑎2 + 𝑎1·𝑥 + 𝑎0) ·𝑥 2 [𝑢] + (2·𝑥 ·𝑎2 + 𝑎1)·[𝑢·𝑋 ]
− 𝑎2·[𝑈 ·𝑋 2] + 𝑥 2·[𝑢·𝐴2] − 𝑥 ·[𝑢·(2·𝐴2·𝑋 −𝐴1)]
+ [𝑈 ·(𝐴2·𝑋 2 −𝐴1·𝑋 +𝐴0)]

= 𝑢·(𝑎3·𝑥 3 − 3·𝑎3·𝑥 2·[𝑋 ] + 3·𝑎3·𝑥 ·[𝑋 2] − 𝑎3·[𝑋 3] − 𝑥 3·[𝐴3]
+ 3·𝑥 2·[𝐴3·𝑋 ] − 3·𝑥 ·[𝐴3·𝑋 2] + [𝐴3·𝑋 3])
− 𝑎3·𝑥 3·[𝑢] + 3·𝑎3·𝑥 2·[𝑢·𝑋 ] − 3·𝑎3·𝑥 ·[𝑈 ·𝑋 2]
+ 𝑎3·[𝑈 ·𝑋 3] + 𝑥 3·[𝑢·𝐴3] − 3·𝑥 2·[𝑢·𝐴3·𝑋 ]
+ 3·𝑥 ·[𝑈 ·𝐴3·𝑋 2] − [𝑈 ·𝐴3·𝑋 3]
+ 𝑢· (𝑎2·𝑥 2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝

) ·2𝑝
= (𝑢 − [𝑢])·(𝑎3·𝑥 3 − 3·𝑎3·𝑥 2·[𝑋 ] + 3·𝑎3·𝑥 ·[𝑋 2] − 𝑎3·[𝑋 3]
− 𝑥 3·[𝐴3] + 3·𝑥 2·[𝐴3·𝑋 ] − 3·𝑥 ·[𝐴3·𝑋 2] + [𝐴3·𝑋 3])
+ 𝑢· (𝑎2·𝑥 2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝

) ·2𝑝
= (𝑢 − [𝑢])·(𝑎3 − [𝐴3])·(𝑥 − [𝑋 ])3

+ 𝑢· (𝑎2·𝑥 2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝
) ·2𝑝

= 𝑢·𝑎3·𝑥 3 + 𝑢· (𝑎2·𝑥 2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝
) ·2𝑝

= 𝑢· (𝑎3·𝑥 3 + 𝑎2·𝑥 2·2𝑝 + 𝑎1·𝑥 ·22𝑝 + 𝑎0·23𝑝
)
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B.2 Two-round ABY2.0-like evaluation

B.2.1 For constant polynomials

Since sign-correcting a constant polynomial only requires a single multiplication as
described in section B.1.1, a two-round ABY2.0-like evaluation is not required.

B.2.2 For linear polynomials

Precomputation: P2 samples 𝐴1, 𝑈 , 𝑋 , and 𝑌 , computes [𝐴1·𝑋 ], [𝑢·𝑌 ], and shares
all six among P0 and P1.

Round 1: P𝑏 sends [𝑎1]𝑏 = [𝑎1]𝑏 + [𝐴1]𝑏 and [𝑥]𝑏 = [𝑥]𝑏 + [𝑋 ]𝑏 to P1−𝑏 , and vice
versa.

Round 2: P𝑏 sends [𝑦]𝑏 = [𝑦]𝑏 + [𝑌 ]𝑏 and [𝑢]𝑏 = [𝑢]𝑏 + [𝑢]𝑏 to P1−𝑏 , and vice versa.
Here [𝑦]𝑏 = 𝑏· (𝑎1·𝑥) − 𝑎1·[𝑋 ]𝑏 − 𝑥 ·[𝐴1]𝑏 + [𝐴1·𝑋 ]𝑏 + [𝑎0]·2𝑝 .

Output: P𝑏 outputs [𝑢·𝑦]𝑏 = 𝑏·𝑥 ·𝑦 − 𝑥 ·[𝑋 ]𝑏 − 𝑦·[𝑌 ]𝑏 + [𝑋 ·𝑌 ]𝑏

The result of the first round of online communication is [𝑦] = (𝑎1·𝑥) − 𝑎1·[𝑋 ] −
𝑥 ·[𝐴1] + [𝐴1·𝑋 ] + [𝑎0]·2𝑝

This is derived by:

[𝑦] = [𝑦]0 + [𝑦]1
= 𝑎1·𝑥 − 𝑥 ·[𝐴1] − 𝑎1·[𝑋 ] + [𝐴1·𝑋 ] + [𝑎0]·2𝑝

= (𝑎1 − [𝐴1])·(𝑥 − [𝑋 ]) + [𝑎0]·2𝑝

= 𝑎1·𝑥 + 𝑎0·2𝑝

The final Du-Atallah multiplication produces, 𝑢·[𝑦] = 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝), the sign
corrected result.

B.2.3 For quadratic polynomials

Precomputation: P2 samples 𝐴1, 𝐴2, 𝑈 , 𝑋 , and 𝑌 , computes [𝑋 2], [2·𝐴2·𝑋 − 𝐴1],
[𝐴2·𝑋 2 −𝐴1·𝑋 ], [𝑢·𝑌 ], and shares all nine among P0 and P1.
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Round 1: P𝑏 sends [𝑎1]𝑏 = [𝑎1]𝑏+[𝐴1]𝑏 , [𝑎2]𝑏 = [𝑎2]𝑏+[𝐴2]𝑏 , and [𝑥]𝑏 = [𝑥]𝑏+[𝑋 ]𝑏
to P1−𝑏 , and vice versa.

Round 2: P𝑏 sends [𝑦]𝑏 = [𝑦]𝑏 + [𝑌 ]𝑏 and [𝑢]𝑏 = [𝑢]𝑏 + [𝑢]𝑏 to P1−𝑏 , and vice versa.
Here [𝑦]𝑏 = 𝑏·(𝑎2·𝑥 2 + 𝑎1·𝑥) − 𝑥 2·[𝐴2]𝑏 + 𝑥 ·[2·𝐴2·𝑋 −𝐴1]𝑏 − (𝑎1 + 2·𝑎2·𝑥)·[𝑋 ]𝑏 +
𝑎2·[𝑋 2]𝑏 − [𝐴2·𝑋 2 −𝐴1·𝑋 ]𝑏 + [𝑎0]𝑏 ·22𝑝 .

Output: P𝑏 outputs [𝑢·𝑦]𝑏 = 𝑏·𝑥 ·𝑦 − 𝑥 ·[𝑋 ]𝑏 − 𝑦·[𝑌 ]𝑏 + [𝑋 ·𝑌 ]𝑏

The result of the first round of online communication is [𝑦] = (𝑎2·𝑥 2 + 𝑎1·𝑥) −
𝑥 2·[𝐴2]+𝑥 ·[2·𝐴2·𝑋−𝐴1]−(𝑎1+2·𝑎2·𝑥)·[𝑋 ]+𝑎2·[𝑋 2]−[𝐴2·𝑋 2−𝐴1·𝑋 ]+[𝑎0]·22𝑝

This value is derived by:

[𝑦] = [𝑦]0 + [𝑦]1
= (𝑎2·𝑥 2 + 𝑎1·𝑥) − (2·𝑎2·𝑥 + 𝑎1)·[𝑋 ] + 𝑎2·[𝑋 2] − 𝑥 2·[𝐴2]
+ 𝑥 ·[2·𝐴2·𝑋 −𝐴1] − [𝐴2·𝑋 2 −𝐴1·𝑋 ] + [𝑎0]·22𝑝

= (𝑎2·𝑥 2 − 2·𝑎2·𝑥 ·[𝑋 ] + 𝑎2·[𝑋 2] − 𝑥 2·[𝐴2] + 2·𝑥 ·[𝐴2·𝑋 ]
− [𝐴2·𝑋 2]) + 𝑎1·𝑥 − 𝑥 ·[𝐴1] − 𝑎1·[𝑋 ] + [𝐴1·𝑋 ]
+ [𝑎0]·22𝑝

= (𝑎2·𝑥 2 − 2·𝑎2·𝑥 ·[𝑋 ] + 𝑎2·[𝑋 2] − 𝑥 2·[𝐴2] + 2·𝑥 ·[𝐴2·𝑋 ]
− [𝐴2·𝑋 2]) + (𝑎1·𝑥 + 𝑎0·2𝑝)·2𝑝

= (𝑎2 − [𝐴2])·(𝑥 − [𝑋 ])2 + (𝑎1·𝑥 + 𝑎0·2𝑝)·2𝑝

= 𝑎2·𝑥 2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝

The final Du-Atallah multiplication produces the sign-corrected result 𝑢·𝑦 =

𝑢·(𝑎2·𝑥 2 + 𝑎1·𝑥 ·22𝑝 + 𝑎0·2𝑝)

B.2.4 For cubic polynomials

Precomputation: P2 samples𝐴1,𝐴2,𝐴3,𝑈 ,𝑋 , and𝑌 , computes [𝑋 2], [𝑋 3], [3·𝐴3·𝑋−
𝐴2], [3·𝐴3·𝑋 2−2·𝐴2·𝑋 +𝐴1], [𝐴3·𝑋 3−𝐴2·𝑋 2 +𝐴1·𝑋 ], [𝑢·𝑌 ], and shares all thirteen
among P0 and P1.

Round 1: P𝑏 sends [𝑎1]𝑏 = [𝑎1]𝑏 + [𝐴1]𝑏 , [𝑎2]𝑏 = [𝑎2]𝑏 + [𝐴2]𝑏 , [𝑎3]𝑏 = [𝑎3]𝑏 + [𝐴3]𝑏 ,
and [𝑥]𝑏 = [𝑥]𝑏 + [𝑋 ]𝑏 to P1−𝑏 , and vice versa.
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Round 2: P𝑏 sends [𝑦]𝑏 = [𝑦]𝑏 + [𝑌 ]𝑏 and [𝑢]𝑏 = [𝑢]𝑏 + [𝑢]𝑏 to P1−𝑏 , and vice
versa. Here [𝑦]𝑏 = 𝑏·(𝑎3·𝑥 3 +𝑎2·𝑥 2 +𝑎1·𝑥) − (3·𝑎3·𝑥 2 + 2·𝑎2·𝑥 +𝑎1)·[𝑋 ]𝑏 + (3·𝑎3·𝑥 +
𝑎2)·[𝑋 2]𝑏 −𝑎3·[𝑋 3]𝑏 −𝑥 3·[𝐴3]𝑏 +𝑥 2·[3·𝐴3·𝑋 −𝐴2]𝑏 −𝑥 ·[3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 +𝐴1]𝑏 +
[𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 ]𝑏 + [𝑎0]𝑏 ·23𝑝 .

Output: P𝑏 outputs [𝑢·𝑦]𝑏 = 𝑏·𝑥 ·𝑦 − 𝑥 ·[𝑋 ]𝑏 − 𝑦·[𝑌 ]𝑏 + [𝑋 ·𝑌 ]𝑏

The result of the first round of online communication is [𝑦] = (𝑎3·𝑥 3 + 𝑎2·𝑥 2 +
𝑎1·𝑥) − (3·𝑎3·𝑥 2 + 2·𝑎2·𝑥 +𝑎1)·[𝑋 ] + (3·𝑎3·𝑥 +𝑎2)·[𝑋 2] −𝑎3·[𝑋 2] + 𝑥 2·[3·𝐴3·𝑋 −𝐴2] −
𝑥 ·[3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 +𝐴1] + [𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 ] + [𝑎0]·23𝑝 .

This value is derived by:

[𝑦] = [𝑦]0 + [𝑦]1
= (𝑎3·𝑥 3 + 𝑎2·𝑥 2 + 𝑎1·𝑥) − (3·𝑎3·𝑥 2 + 2·𝑎2·𝑥 + 𝑎1)·[𝑋 ]
+ (3·𝑎3·𝑥 + 𝑎2)·[𝑋 2] − 𝑎3·[𝑋 3] − 𝑥 3·[𝐴3]
+ 𝑥 2·[3·𝐴3·𝑋 −𝐴2] − 𝑥 ·[3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 +𝐴1]
+ [𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 ] + [𝑎0]·23𝑝

= (𝑎3·𝑥 3 − 3·𝑎3·𝑥 2·[𝑋 ] + 3·𝑎3·𝑥 ·[𝑋 2] − 𝑎3·[𝑋 3]
− 𝑥 3·[𝐴3] + 3·𝑥 2·[𝐴3·𝑋 ] − 3·𝑥 ·[𝐴3·𝑋 2] + [𝐴3·𝑋 3])
+ (𝑎2·𝑥 2 + 𝑎1·𝑥) − (2·𝑎2·𝑥 + 𝑎1)·[𝑋 ] + 𝑎2·[𝑋 2]
− 𝑥 2·[𝐴2] + 𝑥 ·[2·𝐴2·𝑋 −𝐴1] − [𝐴2·𝑋 2 −𝐴1·𝑋 ]
+ [𝑎0]·23𝑝

= (𝑎3·𝑥 3 − 3·𝑎3·𝑥 2·[𝑋 ] + 3·𝑎3·𝑥 ·[𝑋 2] − 𝑎3·[𝑋 3]
− 𝑥 3·[𝐴3] + 3·𝑥 2·[𝐴3·𝑋 ] − 3·𝑥 ·[𝐴3·𝑋 2] + [𝐴3·𝑋 3])
+ (𝑎2·𝑥 2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝)·2𝑝

= (𝑎3 − [𝐴3])·(𝑥 − [𝑋 ])3 + (𝑎2·𝑥 2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝)·2𝑝

= 𝑎3·𝑥 3 + 𝑎2·𝑥 2·2𝑝 + 𝑎1·𝑥 ·22𝑝 + 𝑎0·23𝑝

The final Du-Atallah multiplication produces the sign-corrected result 𝑢·𝑦 =

𝑢·(𝑎3·𝑥 3 + 𝑎2·𝑥 2·2𝑝 + 𝑎1·𝑥 ·22𝑝 + 𝑎0·23𝑝)
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B.3 Horner’s Method evaluation

B.3.1 For linear polynomials

Identical to the two-round ABY2.0-like linear evaluation.

Precomputation: P2 samples 𝐴1,𝑈 , 𝑋 , and 𝑌 , computes [𝐴1 · 𝑋 ] and [𝑢 · 𝑌 ], and
shares all six among P0 and P1.

Round 1: Du-Atallah multiply 𝑎1 · 𝑥 . To do this, P𝑏 sends 𝑎1 = [𝑎1] + [𝐴1] and
𝑥 = [𝑥] + [𝑋 ] to P1−𝑏 , and vice versa.

Round 2: Du-Atallah multiply 𝑢 · 𝑦1 where 𝑦1 = 𝑎1 · 𝑥 + 𝑎0·2𝑝 . To do this, P𝑏 sends
[𝑢]𝑏 = [𝑢]𝑏 + [𝑢]𝑏 and [𝑦]𝑏 = [𝑦]𝑏 + [𝑌 ]𝑏 to P1−𝑏 , and vice versa.

Output: P𝑏 outputs 𝑢 · 𝑦1 = 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝)

Total:

• 6 precomputed values

• 2 rounds

• 4 values sent online by each of 𝑃0 and 𝑃1

B.3.2 For quadratic polynomials

Precomputation: P2 samples 𝐴2,𝑈 , 𝑋 , 𝑌1, and 𝑌2, computes [𝐴2 · 𝑋 ], [𝑌1 · 𝑋 ], and
[𝑢 · 𝑌2], and shares all eight among P0 and P1.

Round 1: Du-Atallah multiply 𝑎2 · 𝑥 . To do this, P𝑏 sends 𝑎2 = [𝑎2] + [𝐴2] and
𝑥 = [𝑥] + [𝑋 ] to P1−𝑏 , and vice versa.

Round 2: Du-Atallah multiply [𝑦1] · [𝑥] where 𝑦1 = 𝑎2 · 𝑥 + 𝑎1·2𝑝 . To do this, P𝑏
sends [𝑦1] = [𝑦1] + [𝑌1] to P1−𝑏 , and vice versa.

Round 3: Du-Atallahmultiply𝑢 ·𝑦2 where𝑦2 = 𝑦1·𝑥+𝑎0·22𝑝 = (𝑎2·𝑥+𝑎1·2𝑝)·𝑥+𝑎0·22𝑝 .
To do this, P𝑏 sends [𝑢]𝑏: = [𝑢]𝑏: + [𝑢]𝑏 and [𝑦]𝑏 = [𝑦]𝑏 + [𝑌 ]𝑏 to P1−𝑏 , and vice
versa.
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Output: P𝑏 outputs 𝑢·𝑦 = 𝑢·(𝑎2·𝑥 2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝)

Result: 𝑢 · ((𝑎2 · 𝑥 + 𝑎1) · 𝑥 + 𝑎0)
Total:

• 8 precomputed values

• 3 rounds

• 5 values sent online by each of 𝑃0 and 𝑃1

B.3.3 For cubic polynomials

Precomputation: P2 samples 𝐴3, 𝑈 , 𝑋 , 𝑌1, 𝑌2, and 𝑌3, computes [𝐴3 · 𝑋 ], [𝑌1 · 𝑋 ],
[𝑌2 · 𝑋 ], and [𝑢 · 𝑌3], and shares all ten among P0 and P1.

Round 1: Du-Atallah multiply 𝑎3 · 𝑥 . To do this, P𝑏 sends 𝑎3 = [𝑎3] + [𝐴3] and
𝑥 = [𝑥] + [𝑋 ] to P1−𝑏 , and vice versa.

Round 2: Du-Atallah multiply [𝑦1] · [𝑥] where 𝑦1 = 𝑎3 · 𝑥 + 𝑎2·2𝑝 . To do this, P𝑏
sends [𝑦1] = [𝑦1] + [𝑌1] to P1−𝑏 , and vice versa.

Round 3: Du-Atallah multiply [𝑦2] · [𝑥] where 𝑦2 = (𝑎3 · 𝑥 + 𝑎2·2𝑝) · 𝑥 + 𝑎1·22𝑝 . To
do this, P𝑏 sends [𝑦2] = [𝑦2] + [𝑌2] to P1−𝑏 , and vice versa.

Round 4: Du-Atallah multiply 𝑢 · 𝑦3 where 𝑦2 = 𝑦2 · 𝑥 + 𝑎0·23𝑝 =
( (
𝑎3 · 𝑥 + 𝑎2·2𝑝

) · 𝑥
+𝑎1·22𝑝

) · 𝑥 +𝑎0·23𝑝 . To do this, P𝑏 sends [𝑢]𝑏 = [𝑢]𝑏 + [𝑢]𝑏 and [𝑦]𝑏 = [𝑦]𝑏 + [𝑌 ]𝑏
to P1−𝑏 , and vice versa.

Output: P𝑏 outputs 𝑢·𝑦 = 𝑢·(𝑎3·𝑥 3 + 𝑎2·𝑥 2·2𝑝 + 𝑎1·𝑥 ·22𝑝 + 𝑎0·23𝑝).

Result: 𝑢 · (𝑦2 · 𝑥 + 𝑎0 = ((𝑎3 · 𝑥 + 𝑎2) · 𝑥 + 𝑎1) · 𝑥 + 𝑎0)
Total:

• 10 precomputed values

• 4 rounds

• 6 values sent online by each of 𝑃0 and 𝑃1
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Appendix C

Proof of Theorem 10 (from

Section 7.3)

Theorem 10 (Restatement). The 3-verifier SNIP auditing protocol with hash function
Hash : {0, 1}∗ → {0, 1}𝜇 is perfectly simulatable and has perfect completeness and

soundness overwhelming in 𝜇.

Proof (sketch). Perfect simulatability and completeness are immediate consequences
of the perfect simulatability and completeness of (2 + 1)-party auditing. To see
that soundness is indeed overwhelming in 𝜇, it suffices to note that since the three
verifiers collectively scrutinize all three parties’ views from a simulated (2 + 1)-party
audit, inconsistencies in the simulation will never escape notice by at least one
verifier—except, perhaps, in the event of a hash collision when constructing the
Merkle tree. In other words, in the absence of hash collisions, soundness is perfect
and, consequently, the overall soundness error is negligible in 𝜇. □
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Appendix D

Proof of Theorem 11 (from

Section 7.3)

Theorem 11 (Restatement). The 2-verifier SNIP auditing protocol with hash function
Hash : {0, 1}∗ → {0, 1}𝜇 is perfectly simulatable and has perfect completeness and

soundness overwhelming in 𝜇.

Proof (sketch). Perfect simulatability and completeness are immediate consequences
of the perfect simulatability and completeness of the 2-verifier SNIPs (which, in
turn, are an immediate consequence of the perfect simulatability and completeness
of (2 + 1)-party auditing). To prove that soundness is overwhelming in 𝜇, we note
that even a single inconsistency-free simulation among the 𝜆 parallel simulations is
sufficient to establish well-formedness of the DPF with probability overwhelming in
𝜇; thus, we can assume without loss of generality that all simulations are inconsistent
to get an upper bound on soundness error. For a given inconsistent simulation, there
are two possibilities:

1. inconsistencies are confined to the view of server 2; or

2. inconsistencies exist in the view of server 0 or server 1 (or both).

In either case, at least one verifier will observe any inconsistencies in the 𝑖th parallel
simulation with probability at least 1

2 (i.e., conditioned on the 𝑖th challenge bit, 𝑐𝑖 ),
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D. Proof of Theorem 3

yielding an overall soundness loss of at most 1/2𝜆 relative to the 3-verifier SNIP,
which has soundness error negligible in 𝜇. □
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Appendix E

Stepping stones to Sabre-M

This appendix describes the “stepping stones” that led to the development Sabre-M.

Sabre-M0: Express with improved auditing

Consider a Sabre-M0 instance with security parameter 𝜆 ∈ N (say, 𝜆 = 128). The de-
sign of Sabre-M0 tightly parallels that of Express, save for the new audit protocol. In a
registration phase, the recipient contacts the servers to create amailbox and receives a
uniform random, 𝜆-bit address in exchange. Suppose there are 𝑛 registered mailboxes
with addresses 𝑎𝑑𝑑𝑟 1, . . . , 𝑎𝑑𝑑𝑟𝑛 . To deposit a message𝑀 ∈ F2𝐿 into the mailbox ad-
dressed by 𝑎𝑑𝑑𝑟 𝑖 , the sender samples (dpf [0], dpf [1]) ← Gen(1𝜆, F2𝜆 , F2𝐿 ; 𝑎𝑑𝑑𝑟 𝑖, 𝑀)
and then it sends dpf [𝑏] to server 𝑏 for 𝑏 = 0, 1.

Upon receiving dpf [𝑏], server 𝑏 constructs the vector𝑀𝑏 ∈ (F2𝐿 )1×𝑛 in which the
𝑗 th component equals Eval(dpf [𝑏], 𝑎𝑑𝑑𝑟 𝑗 ); server 𝑏 adds𝑀𝑏 to its mailbox database
to effectuate the write. We stress that (as in Express—owing to the sparsity of the set
of mailbox addresses within {0, 1}𝜆) Boyle et al.’s full-domain evaluation procedure
does not apply when computing 𝑀𝑏 . Instead, each column requires O(𝜆) length-
doubling PRG evaluations (for a total of O(𝜆𝑛) evaluations), plus one evaluation of
the leaf-stretching PRG.

As per Definition 4, 𝑀0 + 𝑀1 ∈ (F2𝐿 )1×𝑛 has message 𝑀 in its 𝑖th column and
zero elsewhere—provided the sender generated (dpf [0], dpf [1]) honestly, which the
servers confirm via any of the three audit protocol instantiations. Sabre-M0 very
quickly rejects malformed DPFs outright, whereas (like in Express) otherwise well-
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E. Stepping stones to Sabre-M

formed DPFs whose distinguished points do not correspond to registered mailbox
addresses will pass auditing, ultimately resulting in a (comparatively expensive)
no-operation “update” to the mailbox database. In particular, such well-formed, yet
bogus writes incur the same decidedly non-trivial cost as “true” writes.

Sabre-M1: Sabre-M0 with shorter DPFs

Sabre-M1 provides a modest improvement over Sabre-M0 by dynamically “truncat-
ing” mailbox addresses to a prefix just long enough to avoid collisions with high
probability, thereby reducing both (i) the size of (and cost of auditing) the keys
dpf [0] and dpf [1] and (ii) the cost of computing𝑀0 and𝑀1 from them.

Upon registering a mailbox, the recipient still receives a uniform random, 𝜆-bit
mailbox address that senders must know (in its entirety) to deposit messages into the
mailbox. The difference is that now only a prefix of this address (whose length grows
with the number of registered mailboxes) is used when sampling and evaluating
DPFs. The intuition here is that—for purposes of correctness—it suffices merely to
guarantee that no two mailboxes map to the same prefix; thus, one can compute the
required prefix length for a given number of registered mailboxes using a standard
birthday bound calculation. (In our experiments in Section 7.6.4, we chose the length
to ensure that the probability of one or more prefix collisions is strictly less than
0.001.)

This optimization improves efficiency relative to Sabre-M0. However, it comes
at the cost of increasing the probability of an attacker “guessing” a distinguished
point corresponding to a valid mailbox—that is, random guesses potentially clobber
a registered mailbox with a probability that is now polynomial in 𝑛. To mitigate,
Sabre-M1 requires the sender to transmit an additive share [𝑎𝑑𝑑𝑟 ] of the full mailbox

address alongside dpf [𝑏], after which the servers use a simple PIR-based protocol to
verify that the address shares reconstruct to the full address of whatever mailbox
the DPF keys reference.

Specifically, servers 0 and 1 hold in common an associative array (key-value
store) mapping each distinguished input to its corresponding mailbox addresses. Let
𝐷 denote the set of distinguished inputs reflected in the associative array and, for
each 𝑖 ∈ 𝐷 , let flag(𝑖 )𝑏 denote the advice bit for the 𝑖th leaf of dpf [𝑏] (see Section 7.2.1).
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E. Stepping stones to Sabre-M

By construction, if (dpf [0], dpf [1]) is a valid DPF key pair, then flag(𝑖 )0 = flag(𝑖 )1 if
and only if the distinguished point is 𝑖; thus, server 𝑏 outputs

[𝑎𝑑𝑑𝑟 ′]𝑏 B
∑
𝑖∈𝐷, 𝑡 (𝑏 )

𝑖
=1 𝑎𝑑𝑑𝑟 𝑖

so that [𝑎𝑑𝑑𝑟 ′]0 + [𝑎𝑑𝑑𝑟 ′]1 = 𝑎𝑑𝑑𝑟 𝑖 over F2𝜆 . The servers verify that this com-

puted address [𝑎𝑑𝑑𝑟 ′] matches the client’s claimed address [𝑎𝑑𝑑𝑟 ] by checking that
[𝑎𝑑𝑑𝑟 ]0 + [𝑎𝑑𝑑𝑟 ′]0 = [𝑎𝑑𝑑𝑟 ]1 + [𝑎𝑑𝑑𝑟 ′]1.

The full-domain evaluation procedure still does not apply when computing𝑀𝑏

in Sabre-M1; however, now the cost of computing each column reduces from O(𝜆)
to just O(poly(lg𝑛)) length-doubling PRG evaluations (reducing the total cost of
computing𝑀𝑏 from O(𝑛𝜆) to just O(𝑛poly(lg𝑛)) evaluations), plus 𝑛 evaluations of
the leaf-stretching PRG. Furthermore, the servers can now detect and reject DPFs
from senders who do not know a registered mailbox address without incurring a

costly no-operation to “update” the database.

Sabre-M2: Sabre-M1 with decoupled address checking

Sabre-M2 improves on Sabre-M1 by eliminating the association between DPF leaves
and mailbox addresses: Instead of sampling DPFs whose distinguished points cor-
respond to mailbox addresses, senders sample DPFs whose distinguished points
correspond to the chronological order in which those mailboxes were registered. In
other words, to deposit a message 𝑀 ∈ F2𝐿 into the mailbox with address 𝑎𝑑𝑑𝑟 𝑖 ,
a sender samples keys for a DPF with point (𝑖, 𝑀) ∈ [0 . . 𝑛 − 1] × F2𝐿 rather than
(𝑎𝑑𝑑𝑟 𝑖, 𝑀) ∈ F2𝜆 × F2𝐿 . With this optimization, (i) the domain of DPFs has size equal
to the number of registered mailboxes, and (ii) the full-domain evaluation procedure
applies when computing the 𝑀𝑏 . This reduces the total cost of computing 𝑀𝑏 to
just 𝑛 − 1 length-doubling PRG evaluations plus 𝑛 evaluations of the leaf-stretching
PRG. To ensure that senders know the correct mailbox address, Sabre-M2 inherits
the PIR-based address checking of Sabre-M1.

Sabre-M: Sabre-M2 with O(1)-time address checking

Sabre-M improves on Sabre-M2 by replacing the linear-complexity PIR-based ad-
dress check with a constant-complexity PRF-based one described in Section 7.5.2.
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Figure E.1: Throughtput of Sabre-M variants (1 KiB messages)

With this modification in place, the entire auditing procedure—that is, both checking
the well-formedness of the DPF and checking the validity of the mailbox address—
has complexity logarithmic in 𝑛, allowing the servers to rapidly reject bogus write
requests from a would-be resource-exhaustion DoS attacker. The benefits of rapid
auditing are shown in our experimental evaluation in Section 7.6.

Figure E.1 plots the throughput of each Sabre-M variant. Notice that the plots
for Sabre-M2 and Sabre-M overlap almost perfectly; we stress that this neck-to-neck
performance is an artifact of all writes being valid.

153



Appendix F

Sabre Security Analysis

This appendix provides a formal definition and proof sketch for Sabre in the ideal-
world/real-world simulation paradigm. In the ideal world, all Sabre clients interact
through some benevolent trusted party T (the “ideal functionality”), who faithfully
executes the requested actions while remaining impervious to cryptographic attacks.
In the real world, we replace T with one of the 2- or 3-server Sabre protocols
described in the main text. We then consider a semi-honest attackerA who controls
an arbitrary number of readers and writers in addition to (at most) one of the Sabre
servers.

Informally, we wish to show that A cannot exploit its privileged position as a
Sabre server to compromise sender anonymity. We do this by exhibiting an efficient
simulator that interacts with the ideal functionality and then attempts to sample
“simulated” views from a distribution close to the one describing A’s view in the
real world. We then ask whether A can adaptively conjure up sequences of events
allowing it to distinguish between real and simulated views; if not, we conclude
that the real Sabre protocols leak essentially nothing beyond what is leaked by their
ideal-world counterparts.

Sabre in the ideal world

The ideal world trusted party T exposes six public interfaces. In addition to servicing
requests to these interfaces, T curates persistent variables that capture both the state
of the system and any side information that Sabre servers can infer in the real world
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F. Sabre Security Analysis

(without T revealing this side information to the simulator, faithful simulations
would not be possible):

- 𝑚,𝑤 ∈ N respectively track the numbers of readers and writers in the system
(both values are initially 0);

- 𝑎𝑑𝑑𝑟 𝑗 denotes the mailbox address/bucket index at which reader 𝑗 will check
for messages

- known denotes the sets of readers whose mailbox addresses/bucket indexes
have been disclosed to A (it is initially ∅);

- evil denotes the set of “corrupted” readers whose mailboxes are readable byA
(it is initially ∅);

- log is an append-only log of metadata associated with all requests received by
T to date (it is initially an empty list); and

- 𝐷 is the actual database of mailboxes/buckets (it is initially an empty list).

The RegisterWriter interface onboards a new writer to the system. This in-
terface has no immediate counterpart in real world; rather, it captures the fact that
real-world Sabre servers may be able to distinguish certain writers from one another
(e.g., by their IP addresses).

Algorithm 3 RegisterWriter()
1: 𝑤 ← 𝑤 + 1 // increment writer count

2: return𝑤 // w is the writer’s “identity”

The RegisterReader interface onboards new readers to the system. In the
bulletin-board model, this interface has no immediate counterpart in the real world;
rather, it captures the fact that readers and writers need to agree on a bucket through
which to pass messages. In the mailbox model, this interface corresponds to mailbox
registration.
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Algorithm 4 RegisterReader()
1: 𝑚 ←𝑚 + 1 // increment reader count

2: if Sabre-BB then

𝑎𝑑𝑑𝑟𝑚
?← {0, 1}𝑛 // random address

evil ← evil ∪ {𝑚} // buckets are world-readable

3: else if Sabre-M then

𝑎𝑑𝑑𝑟𝑚 B 𝐹 (𝑘̃,𝑚) // PRF-computed address

known← known∪ {𝑚} // server-computable addresses

4: end if

5: log ← log | |“r:𝑚”
6: return𝑚 // m is the reader’s identity

The GetAddress interface allows A to request the mailbox address (or bucket
index) of a given reader. Note that we differentiate between A controlling a reader
versus merely knowing its mailbox address: To write messages to a mailbox, A need
only know its address; to read from the mailbox, A must control the reader.

Algorithm 5 GetAddress( 𝑗 )
1: if (𝒋 > 𝒎) then

return ⊥ // no such reader!

2: known← known ∪ { 𝑗} // add j to known addresses

3: return 𝒂𝒅𝒅𝒓 𝒋 // then disclose j’s address

The CorruptReader interface allows A to take control of an arbitrary reader
(whose address A already knows).

Algorithm 6 CorruptReader( 𝑗 )
1: if (𝒋 ∉ known) then

return ⊥ // must get address first!

2: evil ← evil ∪ { 𝑗} // add j to corrupt list

The Write interface allows A to write a message for a given reader, provided it
knows that reader’s address. This interface also allows A to initiate write requests
that fail address verification or auditing (by setting 𝑑 < ℎ).
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Algorithm 7 Write(𝑖, 𝑗, 𝑎𝑑𝑑𝑟,𝑀,𝑑 [= ℎ])
1: if (𝒊 > 𝒘) then

return ⊥ // no such writer

2: if (𝒋 > 𝒎 ∨ 𝒂𝒅𝒅𝒓 ≠ 𝒂𝒅𝒅𝒓 𝒋) then
log ← log | |“w:(𝑖,⊥)” // address check failed

return ⊥ // abort without writing

3: if (𝒅 ≠ 𝒉) then
log ← log | |“w:(𝑖, 𝑑)” // audit failed at level d

return ⊥ // abort without writing

4: log ← log | |“w:(𝑖,⊤)” // this is a valid write

5: 𝐷 𝑗 ← 𝐷 𝑗 +𝑀 // effectuate the write

The EndEpoch interface ends the current epoch, writing all corrupted readers’
mailbox/bucket contents to the log.

Algorithm 8 EndEpoch()
1: msgs← {( 𝑗, 𝐷 𝑗 ) | 𝑗 ∈ evil} // corrupted mailbox contents

2: 𝐷 ← ⟨0, 0, . . . , 0⟩ // re-initialize the database

3: log ← log | |“e:msgs” // new epoch after this point

Security theorem

We now present and sketch a proof for Sabre-M’s main security theorem (the theo-
rems and proofs for Sabre-BB and Sabre-M0 through Sabre-M2 are similar). Intu-
itively, the theorem asserts that there exists a PPT simulator that, given only the
append-only log and PRF key 𝑘̃ as input, can convincingly simulate the view of an
arbitrary semi-honest Sabre server.

Theorem 12 (somewhat informal). Sabre is a secure SAM scheme; that is, there

exists a PPT simulator that, given the PRF key 𝑘̃ and side information reflected in log,

simulates the view of a (semi-honest, PPT) real-world attacker A controlling at most

one Sabre server and an arbitrary subset of writers and readers.

Proof (sketch). There are 5 distinct types of entries that can appear on log; we briefly
describe how the simulator deals with each of these five message types in turn.

1. “r:𝒎”: This entry appears in the log when the𝑚th reader registers her mailbox.
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In Sabre-M, mailbox registration consists of a server evaluating 𝐹 (𝑘̃,𝑚) and
then sending the result to the registrant; hence, the simulator (who is privy to 𝑘̃)
need only invoke 𝑎𝑑𝑑𝑟𝑚 ← 𝐹 (𝑘̃,𝑚) and record the resulting mailbox address in
its simulation transcripts.

2. “w:(𝒊,⊥)”: This entry appears in the log when reader 𝑖 submits a write request
that fails the mailbox address check.

In Sabre-M, the servers verify addresses by computing [𝑎𝑑𝑑𝑟 ′] ← 𝐹 (𝑘̃, [𝑖]) and
then comparing it against [𝑎𝑑𝑑𝑟 ]; hence, the simulator (who is privy to 𝑘̃) first
invokes the simulator for the DPFs to sample a valid-looking DPF key, and then
it samples uniform random values for [𝑖]𝑏 and [𝑎𝑑𝑑𝑟 ]𝑏 , and then it simulates the
computation of [𝑎𝑑𝑑𝑟 ] ← 𝐹 (𝑘̃, [𝑖]). Finally, it computes 𝐴𝑏 = [𝑎𝑑𝑑𝑟 ]𝑏 + [𝑎𝑑𝑑𝑟 ′]𝑏 ,
samples a uniform random 𝐴1−𝑏 ≠ 𝐴𝑏 , and then records all of these values in its
simulation transcript.

3. “w:(𝒊, 𝒅)”: This entry appears in the log when reader 𝑖 submits a write request
that passes the mailbox check but fails auditing at level 𝑑 .
The simulator invokes the simulator for the DPF to produce a valid-looking DPF

key, and then it repeatedly invokes the simulator for Du-Atallah multiplication
to construct an accepting proof up to level 𝑑 − 1. In Step 2 of level 𝑑 , it samples
uniform random 𝑣 (𝑖𝑑 )0 and 𝑣 (𝑖𝑑 )1 with 𝑣 (𝑖𝑑 )0 ≠ 𝑣 (𝑖𝑑 )1 (causing the servers to reject), and
then it records these values in its simulation transcript.

4. “w:(𝒊,⊤)”: This entry appears in the log when reader 𝑖 successfully writes a
message to some reader.
The simulator proceeds exactly as in the case of “w:(𝑖, 𝑑)”, except it does not re-

ject along the way and instead accepts after levelℎ. It then invokes the full-domain
evaluation on its (simulated) DPF key and adds the resulting vector component-
wise into its mailbox database.

5. “e:msgs”: This entry appears in the log when the epoch ends (at which point
all readers receive any messages that were written into their mailboxes).
The simulator uses the messages in msgs together with its simulated mailbox

database to solve for the matching shares from server 𝑏 − 1 and then it records
these values in its simulation transcripts for each corrupted reader.
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□
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Appendix G

LowMC parameter selection

LowMC contains several tuning knobs allowing tradeoffs among the total number
of multiplications (i.e., s-boxes per round), multiplicative depth (number of rounds),
and wall-clock running time. Roughly speaking, optimizing for total number of
multiplications minimizes overall communication cost (for MPC-based auditing) and
proof size (for SNIP-based auditing), whereas optimizing for multiplicative depth
minimizes round complexity (for MPC-based auditing) or proof verification time
(for SNIP-based auditing). For our Sabre implementation, we chose to optimize for
multiplicative depth by maximizing the number of s-boxes per round. Figure G.1
presents empirical evidence to justify this choice; specifically, Figures G.1a-G.1c
respectively plot the wall-clock time for 2-verifier SNIP auditing, the wall-clock
running time for full-domain DPF evaluation, and the expected size of 2-verifier
SNIPs for various settings of the “s-boxes per round” tuning knob and numbers of
buckets/mailboxes. The graphs show that optimizing for multiplicative depth is
essentially pessimal for auditing but optimal for full-domain evaluation, which is
the bottleneck operation in all Sabre variants.
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Figure G.1: 2-verifier SNIP auditing time, full-domain evaluation time, and proof
size versus number of LowMC s-boxes.
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Appendix H

Sabre Communication Cost

In this section, we will present the calculations that lead to the communication cost
described in Table 7.1 and Table 7.2.

We first calculate the size of 𝑀𝑏�(1−𝑏 )
𝑖 . The transcript from server 0 to server 1

include the following (the transcript of server 1 to server 0 is the same).
(i) shares of the children of the root = 16 bytes, (ii) oblivious encryption, 𝐹𝑃𝑅𝐺

= (4 · 3 · s · r/8) (ℎ − 1) bytes, (iii) conditional swap, 𝐹𝑆𝑊𝐴𝑃 = 16 · ℎ bytes, (iv) ap-
plying the correction word = 16 · (ℎ − 1) bytes, and (v) computing the next flag
bit (1/8 + 1/8) · (ℎ − 1) bytes. size of 𝑀𝑏�(1−𝑏 )

𝑖 = 16+ (16 1
8 + 3

2 sr) (ℎ− 1) Next, we
calculate the size𝑀2�𝑏

𝑖 for 𝑏 ∈ {0, 1}. (i) seed to generate the randomness = 16 bytes,
(ii) oblivious encryption, 𝐹𝑃𝑅𝐺 = (4 · 3 · s · r/8) (ℎ − 1), (iii) applying the correction
word = 16 · (ℎ−1) bytes, (iv) conditional swap, 𝐹𝑆𝑊𝐴𝑃 = 16 ·ℎ bytes, and (v) computing
the next flag bit (1/8) · (ℎ − 1) bytes. Size of𝑀𝑏�(1−𝑏 )

𝑖 = 16+(32 1
8 + 3

2 s r) (ℎ−1).
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