
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2023-08

A Compact ADI Finite Difference

Method for 2D Reaction-Diffusion

Equations with Variable Diffusion Coefficients

He, Mingyu

He, M. (2023). A compact ADI finite difference method for 2D reaction-diffusion equations with

variable diffusion coefficients (Master's thesis, University of Calgary, Calgary, Canada).

Retrieved from https://prism.ucalgary.ca.

https://hdl.handle.net/1880/116856

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

A Compact ADI Finite Difference Method for 2D Reaction-Diffusion

Equations with Variable Diffusion Coefficients

by

Mingyu He

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

AUGUST, 2023

© Mingyu He 2023

Abstract

Reaction-diffusion systems on a spatially heterogeneous domain have been widely used to

model various biological applications. However, it is rarely possible to solve such par-

tial differential equations (PDEs) analytically. Therefore, efficient and accurate numerical

methods for solving such PDEs are desired. In this paper, we apply the well-known Padé

approximation-based operator splitting (ADI) scheme. The new scheme is compact and

fourth-order accurate in space. Combined with the Richardson extrapolation, the method

can be improved to fourth-order accurate in time. Stability analysis shows that the method

is unconditionally stable; thus, a large time step can be used to improve the overall com-

putational efficiency further, Numerical examples have also demonstrated the new scheme’s

high efficiency and high-order accuracy.

ii

Preface

The research conducted for this thesis is the joint work by the author and Dr. Wenyuan

Liao. Part of the material has been presented at the the 2nd International Conference on

Computational Method and Applications in Engineering (May 7-8, 2022, Starkville, Mis-

sissippi) and Western Canada Math Biology Spring Workshop (May 13-15, 2022, Kelowna,

British Columbia).

iii

Acknowledgements

This thesis would not be possible without the help and guidance from Prof. Wenyuan Liao,

to whom I am especially grateful.

I am also deeply indebted to all my family members, who have been generously supporting

me in numerous ways and encouraging me to pursue my dreams.

I have met lots of amazing people during my studies at the University of Calgary. I sin-

cerely thank them for their help, kindness, friendship, as well as the imperishable memories,

and wish them happiness and success in the future.

iv

To Garfield

v

Table of Contents

Abstract ii

Preface iii

Acknowledgements iv

Dedication v

Table of Contents vi

List of Figures and Illustrations viii

List of Tables ix

List of Symbols, Abbreviations and Nomenclature x

1 Introduction 1

2 Method 7
2.1 u-independent Source Term . 10
2.2 u-dependent Linear Source Term . 15
2.3 Nonlinear Source Term . 16
2.4 System of Equations . 18
2.5 Time-dependent Diffusion Coefficients . 19

3 Stability Analysis 22

4 Numerical Examples 28
4.1 Linear u-independent source term . 28
4.2 Linear u-dependent source term . 31
4.3 Nonlinear source term . 32
4.4 System of equations . 34
4.5 Time-dependent diffusion coefficients . 36
4.6 Numerically solving an equation . 37
4.7 Application to Biological Model . 40

5 Conclusion 44

vi

Bibliography 46

A Review of ADI Method 51

B Code 55

vii

List of Figures and Illustrations

2.1 Discretization of the time and space . 8

4.1 Evolution of u, v . 39
4.2 Evolution of average population density over time for different r 41
4.3 Evolution of population density (r = 2, k = 0.2) 42
4.4 Evolution of average population density over time for different r 43

viii

List of Tables

4.1 Numerical results of Example 1 at T = 1 with h = π
N

, τ = 0.0001 29
4.2 Numerical results of Example 1 at T = 1 with τ = 1

M
, h = π

500
. 30

4.3 Numerical results of Example 1 at T = 1 based on Richardson Extrapolation
with τ = 1

M
and h = π

500
. 30

4.4 Numerical results of Example 2 at T = 1 with h = π
N

, τ = 0.0001 32
4.5 Numerical results of Example 2 at T = 1 with τ = 1

M
, h = π

500
. 32

4.6 Numerical results of Example 3 at T = 1 with h = π
N

, τ = 0.0001 33
4.7 Numerical results of Example 3 at T = 10 with τ = 10

M
, h = π

500
. 33

4.8 Numerical results of Example 4 at T = 1 with h = π
N

, τ = 0.0001 35
4.9 Numerical results of Example 4 at T = 1 with τ = 1

M
, h = π

300
. 35

4.10 Numerical results of Example 5 at T = 1 with h = π
N

, τ = 0.0001 37
4.11 Numerical results of Example 5 at T = 1 with τ = 1

M
, h = π

500
. 37

ix

List of Symbols, Abbreviations and
Nomenclature

Symbol or abbreviation Definition
d dimension of the spatial domain
δ2
x the central difference operator
h distance between two neighbour nodes in spatial grid
K(x, y) carrying capacity at (x, y)
k(x, y) critical population density at (x, y)
M number of time steps
N number of nodes in each spatial direction

(excluding the origin)
Ω the spatial domain
p number of equations in an equation system
r intrinsic growth rate of a population
R the set of all real numbers
sni,j evaluation of the source term at spatial grid point

(i, j) and n-th time step
T the time point for which the equation is solved
τ distance between each temporal step
tol error tolerance during iteration
Un
i,j evaluation of the real solution at spatial grid point

(i, j) and n-th time step
sni,j numerical solution at spatial grid point

(i, j) and n-th time step

x

Chapter 1

Introduction

In this thesis, we consider the following reaction-diffusion equation system in 2D space:

ut = D1(x, y)uxx +D2(x, y)uyy + s(u, x, y, t), (x, y) ∈ Ω, t > 0 (1.1)

where D1(x, y) and D2(x, y) are diagonal matrices of dimensions p× p with positive entries,

which describes the diffusion properties of the system, while the source term s(u, x, y, t) ∈ Rp

is a vector function with describes the reaction part of the system. The function u : Rp → Rp

is the unknown vector function to be solved. Ω is a rectangle in d-dimensional domain. In

this thesis, we focus on the cases where d = 2 and p = 1, 2. However, our algorithm can

effortlessly be generated to cases of higher p.

The reaction-diffusion system defined in Eq(1.1) is a crucial type of partial differential

equations (PDEs) that arise frequently in science and engineering. Illustrations of applica-

tions of reaction-diffusion equations in physics, chemistry, pollution modelling, population

biology and related fields can be found in various research work [4, 5, 21, 27, 29].

For example, researchers studying population biology are particularly interested in reaction-

diffusion equations, for they are able to capture the reproduction, competition, and migration

of population, as well as interaction between species if we consider systems of reaction-

diffusion equations. Both mathematical properties and its biological implications of such

1

models have been thoroughly studied by researchers. See [27] and the references therein.

Using different forms of reaction-diffusion equations enables ecologists to describe different

models based on real ecological conditions, subsequently helping them make informed de-

cisions on real-world problems, such as pest control or biodiversity preservation. Eq(1.2)

is an example of reaction-diffusion equation that depicts the dynamics of population on a

hypothetical square habitat [0, 1]2

ut = a(x, y)uxx + b(x, y)uyy + ru(u− k(x, y))(K(x, y)− u) (1.2)

In this equation, a(x, y) > a > 0, b(x, y) > b > 0 for some constants a, b > 0, r > 0.

K(x, y) > k(x, y) > 0. We note that the diffusion coefficient functions a(x, y) and b(x, y) are

both strictly positive, meaning that the individuals in the population tend to migrate from

more populated area to area that is less so, a wise strategy to reduce intra-competition inside

the species in order to enlarge the population as a whole. Note that the speed of diffusion of

the population in each direction might not be identical due to potential terrain, climate, or

resource constraints, so a(x, y) and b(x, y) might not be constant functions. Mathematically

speaking, the values of a(x, y) and b(x, y) are larger in places that are less agreeable and

individuals are more motivated to diffuse. K(x, y) is the carrying capacity of the population

at the place (x, y), and k(x, y) is the critical point for sustainable reproduction. A population

at (x, y) greater than K(x, y) means an over-concentration of population at (x, y), leading

to a decline in population because of the scarcity of resources and intra-competition within

species. On the other hand, a population of u at (x, y) lower than k(x, y) will lead the species

to go extinct as the population is smaller than the threshold for sustainable reproduction.

It worths noting that this does not imply the population will cease exiting at (x, y) in the

long run, as the diffusion terms always try to refill the spots where the population density

is low. This equation exhibits strong Allee effect, a phenomenon that has been observed in

numerous real-world population dynamics. One can readily add more terms to Eq(1.2) in

2

order to capture more detailed and realistic features in a real-world population, but one will

quickly reach a state where an analytical solution ceases to exist. Fortunately, as long as

such modifications are only made to the source term, the algorithm presented in this thesis

is able to efficiently provide a 4th order accurate numerical solution to the modified model.

Mathematicians have long been working on solving reaction-diffusion equations both ana-

lytically and numerically. It is universally known that analytic solution to a reaction-diffusion

equation can be challenging to obtain when the source term becomes sophisticated. There-

fore, efficient and accurate numerical algorithms to solving reaction-diffusion equations are

often desired by researchers, and there has already been a considerable amount of literature

on such algorithms.

Among these numerical algorithms, the finite difference method is a popular choice for

solving the reaction-diffusion equation, due to its easy implementation and high efficiency and

accuracy. It discretizes both the spatial and temporal domain and transforms the problem

of solving for a continuous solution on the domain into a problem of successively solving

linear systems of finite dimension. In general, explicit and implicit finite difference methods

can be employed to solve the time time-dependent PDEs. The explicit method is efficient in

each temporal step but prone to stability issues. Hence, only a small time step can be used

for time marching, which greatly reduces the overall computational efficiency. The implicit

method, on the other hand, is less efficient during each temporal step as a large-size algebraic

system needs to be solved in each time step. More specifically, for a d-dimensional problem

that has N + 1 grid points in each direction, the linear system we need to solve at each

temporal step is (N − 1)d-dimensional. Note that the computational workload of solving a

linear system depends heavily on the dimension of the system and such relationship can be

cubic at worst, which makes the regular implicit finite difference method unbearably slow

in high-dimensional cases. The computational cost is even higher if the algebraic system is

nonlinear (when the source term s(u, x, y, t) in Eq(1.1) is nonlinear in u). However, implicit

methods may still outperform explicit methods in terms of overall computational cost, as it

3

is more stable and permits a larger time step.

In the application of numerical algorithms to scientific and engineering problems, accu-

racy is usually the most fundamental concern. To improve the order of accuracy of a finite

difference method, more grid points are generally required for spatial derivatives approxima-

tion, which normally will result in a larger stencil [17]. This will significantly increase the

computational workload and cause difficulty in handling boundary conditions. One possible

solution is to use compact finite difference algorithms. The first method is the so-called com-

bined compact scheme, in which the spatial derivatives are computed through the solution

of a linear system relating the unknown function u to its spatial derivatives [7, 29]. The

shortcoming of this method is that some extra boundary conditions for the spatial deriva-

tives are needed, which, unfortunately, are not available in general. The second method is to

use Padé approximations to improve the conventional second-order central finite difference

operator to a compact fourth-order finite difference operator [1, 19, 25]. The advantage of

this method is that no extra boundary conditions are required for the spatial derivatives.

Compact finite difference algorithms have accrued increasing popularity due to their

higher accuracy and efficiency in solving various PDEs. In the past decades, many researchers

were devoted to developing compact finite difference methods for solving wave equations

[9, 26], reaction-diffusion equations [2, 18, 34, 35, 36], delayed reaction-diffusion equations

[10, 40, 37], parabolic or heat equations [6, 8, 28, 23, 33, 39], convection-diffusion equations

[16], Burger’s equation [38] and stochastic PDE [13], only to name a few. Being implicit

schemes and normally involving the solution of large-scale linear systems, compact finite

difference schemes provide high-order accuracy and efficiency at the cost of computational

workload. To resolve this issue, some novel technique is needed.

Alternating Directional Implicit (ADI) scheme, first introduced by Peaceman and Rach-

ford [30], can be applied to address this issue. In particular, an operator-splitting type

method is used to decompose the original coupled algebraic system into two separate sets

of equations, with one along each of x and y directions, so that each decoupled system can

4

be solved separately with high efficiency [11, 12, 31]. In Eq(1.1), this means solving the

algebraic system on a d-dimensional domain can be reduced to solving a sequence of one-

dimensional problems. This widely-celebrated technique greatly expedites our algorithm by

reducing the workload from O(N3d) to O(Nd), and is very useful when N or d is large. A

review of relevant math background of ADI schemes has been included in Appendix A.

Recently, a lot of efforts have been made to reduce computational complexity by using

the ADI technique to solve a variety of time-dependent PDEs. One early work was done by

Fairweather and Mitchell [14], who employed the ADI technique to solve wave equations. In

[25], the authors developed an efficient fourth-order algorithm based on Padé approximation

and ADI technique. The algorithm is compact and fourth-order accurate in both temporal

and spatial dimensions and only requires a compact stencil as used by the standard Crank-

Nicolson algorithm. Later, this method was extended to 3D reaction-diffusion equations with

Dirichlet boundary conditions when diffusion coefficients are constant [18]. In recent years,

the demand for a fast algorithm with high-order accuracy for equations of more general

forms arose rapidly. Thus, there has emerged some work on the combination of higher

order derivative approximation (e.g. Padé approximation), variable coefficients, and ADI

technique: Sun [32] studied a high-order algorithm for 1D reaction-diffusion equation, which

was 4th-order in space and 2nd-order in time. Deng [10] proposed a 4th-order ADI scheme to

solve nonlinear delay reaction-diffusion equations. Liao [24] developed a 4th-order compact

ADI scheme for acoustic equation. Li et al. [22] extended Liao’s work and generalized the

algorithm to accommodate variable coefficients through a novel algebraic manipulation of the

resulting linear system. It is worth mentioning that the compact ADI scheme for acoustic

wave equation os a three-level method, in which the so-called combined compact scheme

explicitly calculates the approximation of spatial derivatives. Such treatment is efficient,

but cannot be directly applied to the reaction-diffusion equation.

Therefore, in this thesis, we will modify the method and combine it with the Padé

approximation-based compact ADI method in [25] to present a new algorithm that is fourth-

5

order accurate in space and second-order accurate in time and that solves a reaction-diffusion

equation with variable diffusion coefficients. This work not only inherits from, but also makes

an important improvement to, [25], as non-constant diffusion coefficients frequently appear

in scientific research.

In this thesis, I intend to present a FDTD-ADI algorithm for reaction-diffusion equations

with variable coefficients. The rest of the paper is organized as follows. The algorithms

will be presented in Chapter 2. Chapter 3 will be devoted to stability analysis. Chapter 4

features 5 numerical examples to test the accuracy of our algorithm and 1 numerical example

to demonstrate how the algorithm can be applied to an equation picked from the real world.

Chapter 5 includes the conclusion of this paper and some final remarks made by the author.

6

Chapter 2

Method

Consider the following IVP on [0, T]× [x0, x1]× [y0, y1]:

ut = a(x, y)uxx + b(x, y)uyy + s(u, x, y, t)

a(x, y) > a0 > 0 b(x, y) > b0 > 0

u(0, x, y) = f(x, y)

u(t, x, y0) = g1(t, x) u(t, x0, y) = h1(t, y)

u(t, x, y1) = g2(t, x) u(t, x1, y) = h2(t, y)

(2.1)

where s(u, t, x, y) represents a source term.

The domain is uniformly divided into an (N1 + 1) × (N2 + 1) grid in space and M + 1

discrete time steps. Hence, hx = x1−x0
N1

, hy = y1−y0
N2

, τ = T
M

. Fig 2.1 is an illustrative diagram

for the discretization. We denote uni,j the numerical solution at the space grid point with

coordinate (i, j) and at the n-th time step.

7

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ

hyhx

τ
Un−1

Un

Un+1

uni,j
(i, j)

Figure 2.1: Discretization of the time and space

For simplicity, we assume that hx = hy = h thereafter. We use the following Taylor’s

approximation:

ui−1,j = ui,j − (ux)i,j · h+
(uxx)i,j

2
· h2 − (uxxx)i,j

6
· h3 +

(uxxxx)i,j
24

· h4

− (uxxxxx)i,j
120

· h5 +O(h6) (2.2a)

ui+1,j = ui,j + (ux)i,j · h+
(uxx)i,j

2
· h2 +

(uxxx)i,j
6

· h3 +
(uxxxx)i,j

24
· h4

+
(uxxxxx)i,j

120
· h5 +O(h6) (2.2b)

ui,j−1 = ui,j − (uy)i,j · h+
(uyy)i,j

2
· h2 − (uyyy)i,j

6
· h3 +

(uyyyy)i,j
24

· h4

− (uyyyyy)i,j
120

· h5 +O(h6) (2.2c)

ui,j+1 = ui,j + (uy)i,j · h+
(uyy)i,j

2
· h2 +

(uyyy)i,j
6

· h3 +
(uyyyy)i,j

24
· h4

+
(uyyyyy)i,j

120
· h5 +O(h6) (2.2d)

By combining Eq(2.2a) and Eq(2.2b), one can get

δ2
x

h2
ui,j =

ui+1,j + ui−1,j − 2ui,j
h2

= (uxx)i,j +O(h2) (2.3a)

8

Similarly, combining Eq(2.2c) and Eq(2.2d) will yield that

δ2
y

h2
ui,j =

ui,j+1 + ui,j−1 − 2ui,j
h2

= (uyy)i,j +O(h2) (2.3b)

In fact, Eq(2.3a) and Eq(2.3b) are known as the central difference scheme and are widely

used in numerical analysis. Clearly, the central difference scheme provides a second-order

approximation to spatial derivatives uxx and uyy. In order to upgrade the approximation to

4th order, the Padé approximation need to be used instead:

1

h2

δ2
x

1 + 1
12
δ2
x

ui,j = uxx +O(h4)
1

h2

δ2
y

1 + 1
12
δ2
y

ui,j = uyy +O(h4) (2.4)

Eq(2.4) can also be derived from Taylor’s approximation. To wit, consider Taylor’s approx-

imation at 2 additional points:

ui−2,j = ui,j − (ux)i,j · 2h+
(uxx)i,j

2
· (2h)2 − (uxxx)i,j

6
· (2h)3

+
(uxxxx)i,j

24
· (2h)4 − (uxxxxx)i,j

120
· (2h)5 +O(h6) (2.2e)

ui+2,j = ui,j + (ux)i,j · 2h+
(uxx)i,j

2
· (2h)2 +

(uxxx)i,j
6

· (2h)3

+
(uxxxx)i,j

24
· (2h)4 +

(uxxxxx)i,j
120

· (2h)5 +O(h6) (2.2f)

By combining Eq(2.2a), Eq(2.2b), Eq(2.2e) and Eq(2.2f), we obtain the following result:

(uxx)i,j +O(h4) =
1

h2

[
− 1

12
ui−2,j +

4

3
ui−1,j −

5

2
ui,j +

4

3
ui+1,j −

1

12
ui+2,j

]
=

1

h2

[
ui−1,j + ui+1,j − 2ui,j −

1

12
(ui−2,j + ui,j − 2ui−1,j)

− 1

12
(ui,j + ui+2,j − 2ui+1,j) +

2

12
(ui−1,j + ui+1,j − 2ui,j)

]
=

1

h2

(
δ2
x −

1

12
δ4
x

)
ui,j (δ4

x = δ2
xδ

2
x) (2.5)

9

We use the geometric series:

1

h2

δ2
x

1 + 1
12
δ2
x

ui,j =
1

h2

(
δ2
x −

1

12
δ4
x +

1

144
δ6
x + ...

)
ui,j

=
1

h2

(
δ2
x −

1

12
δ4
x

)
ui,j +

1

h2

(
1

144
δ6
x + ...

)
ui,j (2.6)

By Eq(2.3a), we can compute that

δ6
xui,j = δ2

xδ
2
x(δ

2
xui,j) = δ2

xδ
2
x[h

2(uxx)i,j+O(h4)] = δ2
x[h

4(uxxxx)i,j+O(h6)] = h6(uxxxxxx)i,j+O(h8)

Therefore, due to the result above and Eq(2.5), Eq(2.6) reduces to

1

h2

δ2
x

1 + 1
12
δ2
x

ui,j = (uxx)i,j +O(h4),

which proves the first equation of Eq(2.4). The second equation can be proved in the same

way but using the Taylor’s approximation in y-direction. So, in addition, we have

1

h2

δ2
y

1 + 1
12
δ2
y

ui,j = (uyy)i,j +O(h4).

Now, using Eq(2.4) and applying Crank-Nicolson algorithm to the reaction-diffusion equation

Eq(1.1), we get the algorithm presented in subsection 2.1, which will be further explored for

each type of source terms.

2.1 u-independent Source Term

Consider a reaction-diffusion equation that has a source term independent of u:

ut = a(x, y)uxx + b(x, y)uyy + s(x, y, t) (2.7)

10

Using the Crank-Nicolson Algorithm and the approximation in Eq(2.4) above, we have:

un+1
i,j − uni,j

τ
=
ai,j
2h2

(
δ2
x

1 + 1
12
δ2
x

uni,j +
δ2
x

1 + 1
12
δ2
x

un+1
i,j

)
+
bi,j
2h2

(
δ2
y

1 + 1
12
δ2
y

uni,j +
δ2
y

1 + 1
12
δ2
y

un+1
i,j

)
+

1

2
(sni,j + sn+1

i,j)

In particular, the Crank-Nicolson Algorithm ensures the second-order accuracy in time and

Eq(2.4) is a fourth-order accurate approximation for spatial derivatives. For notational

simplicity, let αi,j = ai,j
τ

2h2
, βi,j = bi,j

τ
2h2

, then the equation above reduces to:

un+1
i,j − uni,j = αi,j

(
δ2
x

1 + 1
12
δ2
x

uni,j +
δ2
x

1 + 1
12
δ2
x

un+1
i,j

)
+ βi,j

(
δ2
y

1 + 1
12
δ2
y

uni,j +
δ2
y

1 + 1
12
δ2
y

un+1
i,j

)
+
τ

2
(sni,j + sn+1

i,j)

We rearrange the equation above so that it has the form:

un+1
i,j − αi,j

δ2
x

1 + 1
12
δ2
x

un+1
i,j − βi,j

δ2
y

1 + 1
12
δ2
y

un+1
i,j

= uni,j + αi,j
δ2
x

1 + 1
12
δ2
x

uni,j + βi,j
δ2
y

1 + 1
12
δ2
y

uni,j +
τ

2
(sni,j + sn+1

i,j) (2.8)

We note that the right-hand side of Eq(2.8) only consists of numerical solution to the IVP

Eq(2.1) at time t = nτ , which we have already known. The left-hand side of Eq(2.8) consists

of the numerical solution at time t = (n+ 1) ∗ τ , which are the values that we need to solve

at this stage. In order to apply ADI to Eq(2.8), a cross term is needed, namely,

un+1
i,j − αi,j

δ2
x

1 + 1
12
δ2
x

un+1
i,j − βi,j

δ2
y

1 + 1
12
δ2
y

un+1
i,j + αi,j

δ2
x

1 + 1
12
δ2
x

(
βi,j

δ2
y

1 + 1
12
δ2
y

un+1
i,j

)

=uni,j + αi,j
δ2
x

1 + 1
12
δ2
x

uni,j + βi,j
δ2
y

1 + 1
12
δ2
y

uni,j + αi,j
δ2
x

1 + 1
12
δ2
x

(
βi,j

δ2
y

1 + 1
12
δ2
y

uni,j

)

+
τ

2
(sni,j + sn+1

i,j) +O(h4) (2.9)

11

The benefit of introducing cross terms is that Eq(2.9) can be now written in a neat form.

That is,

(
1− αi,j

δ2
x

1 + 1
12
δ2
x

)(
1− βi,j

δ2
y

1 + 1
12
δ2
y

)
un+1
i,j

=

(
1 + αi,j

δ2
x

1 + 1
12
δ2
x

)(
1 + βi,j

δ2
y

1 + 1
12
δ2
y

)
uni,j +

τ

2
(sni,j + sn+1

i,j) (2.10)

Eq(2.10) can be solved by ADI technique. More specifically, the equation can be solved at

2 steps and at each step we only need to solve in 1 direction. Mathematically, the following

two equations will be solved

(
1− αi,j

δ2
x

1 + 1
12
δ2
x

)
u?i,j =

(
1 + αi,j

δ2
x

1 + 1
12
δ2
x

)(
1 + βi,j

δ2
y

1 + 1
12
δ2
y

)
uni,j

+
τ

2
(sni,j + sn+1

i,j)(
1− βi,j

δ2
y

1 + 1
12
δ2
y

)
un+1
i,j = u?i,j

(2.11)

It is obvious that Eq(2.10) and Eq(2.11) are actually equivalent. Practically, the second

equation of Eq(2.11) is easier to solve. To solve it, we firstly divide both sides by βi,j, and

then multiply both sides by 1 + 1
12
δ2
y , which gives us

(
1 +

δ2
y

12

)
un+1
i,j

βi,j
− δ2

yu
n+1
i,j =

(
1 +

δ2
y

12

)
u?i,j

or, equivalently,

(
1

12βi,j−1

− 1

)
un+1
i,j−1 +

(
10

12βi,j
+ 2

)
un+1
i,j +

(
1

12βi,j+1

− 1

)
un+1
i,j+1

=
u?i,j−1

12
+

10u?i,j
12

+
u?i,j+1

12
(2.12)

Each u∗i,j comes from solving the first equation of System (2.11), the solving process of which

will be discussed later. Therefore, the right-hand side of Eq(2.12) can be easily computed.

12

Combining the Eq(2.12) for each j will result in a tridiagonal linear system for un+1
i,j ’s, and

such system can be efficiently solved by the Thomas algorithm. Next, we observe that un+1
i,0

and un+1
i,N are on the boundary y = x0 and y = x1, thus the values of these points can be

directly obtained from the boundary conditions in the IVP(2.1). Namely,

un+1
i,0 = g1((n+ 1) · τ, i · h) un+1

i,N+1 = g2((n+ 1) · τ, i · h)

As a result, we only need to solve for un+1
i,j for 1 6 j 6 N − 1.

To solve for all values of un+1
i,j , 1 6 j 6 N − 1, we need the u∗i,j for all 0 6 j 6 N ,

which come from solving the first equation in the System(2.11). Moreover, the values of

u0,j and uN,j can be obtained from the boundary conditions, so we do not need to solve the

second equation in System(2.11) for i = 0, N . Hence, we only need u∗i,j for 1 6 i 6 N − 1,

0 6 j 6 N .

We solve the first equation in System(2.11) using the same method as what we did for

the second equation. After firstly dividing both sides by αi,j and then multiplying both sides

by 1 + 1
12
δ2
y , we have:

(
1 +

δ2
x

12

)
un+1
i,j

αi,j
− δ2

xu
n+1
i,j =

[(
1 +

δ2
x

12

)
1

αi,j
− δ2

x

](
1− βi,j

δ2
y

1 + 1
12
δ2
y

)
uni,j

+
τ

2

(
1 +

δ2
x

12

)(
sni,j
αi,j

+
sn+1
i,j

αi,j

)
(2.13)

To get rid of the δ2
y operator in the denominator on the right-hand side, we use the fact that

δ2
y

1 + 1
12
δ2
y

uni,j ≈ δ2
y

(
1−

δ2
y

12

)
uni,j +O(h4) (2.14)

13

Note that Eq(2.14) is the y-direction version of Eq(2.6), hence it has been proved before.

Plugging Eq(2.14) into Eq(2.13) yields that

(
1 +

δ2
x

12

)
un+1
i,j

αi,j
− δ2

xu
n+1
i,j

=

[(
1 +

δ2
x

12

)
1

αi,j
− δ2

x

](
1− βi,jδ2

y

(
1−

δ2
y

12

))
uni,j

+
τ

2

(
1 +

δ2
x

12

)(
sni,j
αi,j

+
sn+1
i,j

αi,j

)

=

(
1 +

δ2
x

12

)
uni,j
αi,j
− δ2

xu
n
i,j −

(
1 +

δ2
x

12

)
βi,j
αi,j

[
δ2
y

(
1−

δ2
y

12

)
uni,j

]
+ δ2

x

[
βi,jδ

2
y

(
1−

δ2
y

12

)
uni,j

]
+
τ

2

(
1 +

δ2
x

12

)(
sni,j
αi,j

+
sn+1
i,j

αi,j

)

The cross term δ2
xδ

2
yδ

2
yu

n
i,j that will appear after expanding the right-hand side of the last

equation requires a 3 ∗ 5 stencil. Let U∗ be a matrix formed by u∗i,j. From our previous

discussion, we can easily conclude that U∗ is an (N − 1) ∗ (N + 1) matrix. Since the

computation of each u∗i,j requires the values of uni,j on a 3 ∗ 5 stencil centred at uni,j, the

computation of U∗ requires a (N + 1) ∗ (N + 5) matrix for Un. In particular, in addition

to the uni,j values in the domain, it also requires uni,j for j = −2,−1, N + 1, N + 2. These

values are not available as they are outside the domain, but can be approximated using the

extrapolation method. To ensure the 4th order accuracy of our method, the approximation

needs to be at least 4th order accurate. For a satisfactory performance, we assume that

N > 5 and take 5 points as the base of extrapolation. That is, we do:

uni,0, uni,1, uni,2, uni,3, uni,4
Extrapolation−−−−−−−→ ûni,−1, ûni,−2

uni,N−4, u
n
i,N−3, u

n
i,N−2, u

n
i,N−1, u

n
i,N

Extrapolation−−−−−−−→ ûni,N+1, û
n
i,N+2

14

and we use ûni,j in place of uni,j for j = −2,−1, N + 1, N + 2. Since the grid is uniform, the

error analysis of extrapolation gives that

∣∣uni,−1 − ûni,−1

∣∣ = O(h5)
∣∣uni,−2 − ûni,−2

∣∣ = O(32h5) (2.15)

One thing to take caution here is that our algorithm is fourth-order accurate in space (O(h4))

and, if N is small and h is large, the second error term in Eq(2.15) could practically become

the dominant error and sabotage the overall performance of the algorithm. Therefore, it is

desirable that

N > 32 · (y1 − y0)

In practice, for better performance, large N should be chosen so that the extrapolation here

will not have destructive effect on the accuracy of our algorithm.

In short, the algorithm for solving IVP from time step n to n+ 1 can be summarized as

follows:

Step 1. Using extrapolation on Un to approximate ui,j, j = −2,−1, N + 1, N + 2

Step 2. Solving for U∗ using Un and the first equation in System 2.11

Step 3. Solving for Un+1 using U∗ and the second equation in System 2.11

2.2 u-dependent Linear Source Term

Consider the following equation whose source term is linear in u:

ut = a(x, y)uxx + b(x, y)uyy + cu+ s(x, y, t) c ∈ R∗ (2.16)

In this subsection, we will show that one can transform Eq(2.16) into a new reaction-diffusion

equation for which the preceding subsection can be applied. Firstly, one can move cu to the

15

left-hand side and multiply an integration factor on both sides. Specifically,

ut − cu = a(x, y)uxx + b(x, y)uyy + s(x, y, t)

e−ctut − e−ctcu = a(x, y)e−ctuxx + b(x, y)e−ctuyy + e−cts(x, y, t)

(e−ctu)t = a(x, y)(e−ctu)xx + b(x, y)(e−ctu)yy + e−cts(x, y, t) (2.17)

Note that in Eq(2.17), e−ctuxx = (e−ctu)xx because e−ct is independent of x. We let w(x, t) =

e−ctu(x, t), s̃(x, y, t) = e−cts(x, y, t), then Eq(2.17) can be rewritten as

wt = a(x, y)wxx + b(x, y)wyy + s̃(x, y, t) (2.18)

Note that our new source term is independent of w, so Eq(2.18) can be solved using the

method discussed in subsection 2.1. Also note that the initial conditions and boundary

conditions can be easily taken care of in this transformation. In particular,

w(0, x, y) = (e−ctu(t, x, y))
∣∣
t=0

= u(0, x, y)

w(t, x, 0) = e−ctu(t, x, 0) = e−ctg1(t, x)

All boundary conditions in Problem(2.1) can be dealt in the same way. Eventually, we may

use u(t, x, y) = ectw(t, x, y) to recover the solution of u.

2.3 Nonlinear Source Term

With a few modifications, the algorithm presented before can also accommodate equations

with nonlinear source terms. Consider the IVP Eq(2.1) with the following Reaction-Diffusion

Equation:

ut = a(x, y)uxx + b(x, y)uyy + s(u, x, y, t) (2.19)

16

After applying the ADI algorithm, we get the following system of equations:

(
1− αi,j

δ2
x

1 + 1
12
δ2
x

)
u?i,j =

(
1 + αi,j

δ2
x

1 + 1
12
δ2
x

)(
1 + βi,j

δ2
y

1 + 1
12
δ2
y

)
uni,j

+
τ

2
(sni,j(u

n
i,j) + sn+1

i,j (un+1
i,j))(

1− βi,j
δ2
y

1 + 1
12
δ2
y

)
un+1
i,j = u?i,j

(2.20)

The difference between System(2.11) and System(2.20) only lies in the first equation. Namely,

to compute the source term in System(2.20), we also need to know un+1
i,j , which is not known

and is exactly what we are solving for. However, we can approximate un+1
i,j and plug the

approximation value into the left-hand side.

One way to approximate un+1
i,j is to use the extrapolation method. At this time, un−1

i,j and

uni,j are already known. Hence, we do

un−1
i,j , uni,j

Extrapolation−−−−−−−→ un+1
i,j

We use un+1
i,j instead of the exact value un+1

i,j on the left-hand side of the first equation in

System(2.20), then we can proceed as before to solve for un+1
i,j . It is known that

|un+1
i,j − un+1

i,j | = O(τ 2)

Since our algorithm is intended to be 2nd order in time, this extrapolation will not result in

a deduction in the order of accuracy.

Another way to approximate the problem is to use the Prediction-Correction Method.

To be specific, we use u
(0)
i,j = uni,j as an initial guess for un+1

i,j , solve for un+1
i,j based on u

(0)
i,j ,

and denote the solution u
(1)
i,j . Now, we use u

(1)
i,j as the new guess for un+1

i,j , and solve for the

solution, which will be iteratively used as a new guess. The sequence {u(k)
i,j }∞k=0 will converge

17

to un+1
i,j . This process can be summarized by the following algorithm:

0<tol�1

U = Ū = Un

while(‖Ū − U‖ < tol or the first time){

Ū = U

Solve for Un+1 using Ū , store the solution in U

}

Un+1 = U

2.4 System of Equations

With the two approximation techniques introduced above, we can solve for a system of

equations. Consider the following IVP Eq(2.1) with two coupled equations:

ut = a(x, y)uxx + b(x, y)uyy + s1(u, v, x, y, t)

vt = c(x, y)vxx + d(x, y)vyy + s2(u, v, x, y, t)

Using the ADI method we discussed before, this system decomposes into two system of

equations:

(
1− αi,j

δ2
x

1 + 1
12
δ2
x

)
u?i,j =

(
1 + αi,j

δ2
x

1 + 1
12
δ2
x

)(
1 + βi,j

δ2
y

1 + 1
12
δ2
y

)
uni,j

+
τ

2
(s1

n
i,j(u

n
i,j, v

n
i,j) + s1

n+1
i,j (un+1

i,j , vn+1
i,j))(

1− βi,j
δ2
y

1 + 1
12
δ2
y

)
un+1
i,j = u?i,j

(2.21)

18

(
1− αi,j

δ2
x

1 + 1
12
δ2
x

)
v?i,j =

(
1 + αi,j

δ2
x

1 + 1
12
δ2
x

)(
1 + βi,j

δ2
y

1 + 1
12
δ2
y

)
vni,j

+
τ

2
(s2

n
i,j(u

n
i,j, v

n
i,j) + s2

n+1
i,j (un+1

i,j , vn+1
i,j))(

1− βi,j
δ2
y

1 + 1
12
δ2
y

)
vn+1
i,j = v?i,j

(2.22)

Both un+1
i,j and vn+1

i,j on the right-hand side of the first equations of System(2.21) and Sys-

tem(2.22) can be approximated by extrapolation based on the values at time step n − 1

and n. On the other hand, we can also use the Prediction-Correction method with uni,j

and vni,j as initial guesses for un+1
i,j and vn+1

i,j , and then iteratively and alternatively solve the

System(2.21) and System(2.22) until the the predicted solutions converge to the real values.

2.5 Time-dependent Diffusion Coefficients

We can further generalize the algorithm so that the diffusion coefficients also vary temporally.

Namely, consider the following equation:

ut = a(x, y, t)uxx + b(x, y, t)uyy + s(u, x, y, t) (2.23)

A standard discretization to Eq(2.23) at time t = n · τ is

un+1
i,j − uni,j =

τ

2h2

(
ani,j

δ2
x

1 + 1
12
δ2
x

uni,j + an+1
i,j

δ2
x

1 + 1
12
δ2
x

un+1
i,j

+ bni,j
δ2
y

1 + 1
12
δ2
y

uni,j + bn+1
i,j

δ2
y

1 + 1
12
δ2
y

un+1
i,j

)
+
τ

2
(sni,j + sn+1

i,j), (2.24)

where ani,j and bni,j are diffusion coefficients evaluated at time t = n · τ . Assuming diffusion

coefficients a(x, y, t) and b(x, y, t) are twice continuously differentiable, then we have the

19

following approximation:

ani,j = a
n+ 1

2
i,j − (a′)

n+ 1
2

i,j +O(τ 2) an+1
i,j = a

n+ 1
2

i,j + (a′)
n+ 1

2
i,j +O(τ 2)

bni,j = b
n+ 1

2
i,j − (b′)

n+ 1
2

i,j +O(τ 2) bn+1
i,j = b

n+ 1
2

i,j + (b′)
n+ 1

2
i,j +O(τ 2)

Here, (a′)
n+ 1

2
i,j and (b′)

n+ 1
2

i,j are first-order time derivative of a(x, y, t) and b(x, y, t) evaluated

at x = i · h, y = j · h and t = (n + 1
2
) · τ . Plugging the approximate above into Eq(2.24)

yields

un+1
i,j − uni,j =

τ

2h2

(
a
n+ 1

2
i,j

δ2
x

1 + 1
12
δ2
x

uni,j + a
n+ 1

2
i,j

δ2
x

1 + 1
12
δ2
x

un+1
i,j

+ b
n+ 1

2
i,j

δ2
y

1 + 1
12
δ2
y

uni,j + b
n+ 1

2
i,j

δ2
y

1 + 1
12
δ2
y

un+1
i,j

)
+
τ

2
(sni,j + sn+1

i,j)

+
τ

2h2

[
(a′)

n+ 1
2

i,j

(
δ2
x

1 + 1
12
δ2
x

un+1
i,j −

δ2
x

1 + 1
12
δ2
x

uni,j

)
+ (b′)

n+ 1
2

i,j

(
δ2
y

1 + 1
12
δ2
y

un+1
i,j −

δ2
y

1 + 1
12
δ2
y

uni,j

)]
+O(τ 2) (2.25)

Assuming that the solution u is smooth and all of its third-order derivatives are bounded,

by Eq(2.4), we have

δ2
x

1 + 1
12
δ2
x

un+1
i,j −

δ2
x

1 + 1
12
δ2
x

uni,j = (uxx)
n+1
i,j − (uxx)

n
i,j +O(h4) = (utxx)

n
i,j · τ +O(h4) (2.26)

δ2
y

1 + 1
12
δ2
y

un+1
i,j −

δ2
y

1 + 1
12
δ2
y

uni,j = (uyy)
n+1
i,j − (uyy)

n
i,j +O(h4) = (utyy)

n
i,j · τ +O(h4) (2.27)

By Eq(2.26) and Eq(2.27), Eq(2.25) simplifies to

un+1
i,j − uni,j =

τ

2h2

(
a
n+ 1

2
i,j

δ2
x

1 + 1
12
δ2
x

uni,j + a
n+ 1

2
i,j

δ2
x

1 + 1
12
δ2
x

un+1
i,j + b

n+ 1
2

i,j

δ2
y

1 + 1
12
δ2
y

uni,j

+ b
n+ 1

2
i,j

δ2
y

1 + 1
12
δ2
y

un+1
i,j

)
+
τ

2
(sni,j + sn+1

i,j) +O(h4) +O(τ 2) (2.28)

20

Since our original algorithm is fourth-order accurate in space and second-order accurate in

time, the error term in Eq(2.28) can be strategically neglected without affecting the order

of accuracy, which has been shown by a numerical example in Section 4.5. Eq(2.28) can be

solved using the ADI technique previously proposed in Section 2.1 and the two equations to

be solved are

(
1− αn+ 1

2
i,j

δ2
x

1 + 1
12
δ2
x

)
u?i,j =

(
1 + α

n+ 1
2

i,j

δ2
x

1 + 1
12
δ2
x

)(
1 + β

n+ 1
2

i,j

δ2
y

1 + 1
12
δ2
y

)
uni,j

+
τ

2
(sni,j(u

n
i,j) + sn+1

i,j (un+1
i,j))(

1− βn+ 1
2

i,j

δ2
y

1 + 1
12
δ2
y

)
un+1
i,j = u?i,j

21

Chapter 3

Stability Analysis

It is essential that a numerical method is stable when it is applied to solve a time-dependent

problem. The new scheme in this paper was developed based on the Crank-Nicolson algo-

rithm, which is supposed to be unconditionally stable and can be proved by Von Neumann’s

analysis. However, the popular Von Neumann analysis is not applicable here due to the usage

of the Padé approximation-based splitting algorithm and the spatially varying coefficients.

Therefore, we adopted the energy method in [3] to analyze and prove the stability of the

new method.

For the sake of simplicity, assume zero source and zero Dirichlet boundary conditions

for the linear reaction-diffusion equation. We justify here why it suffices to only consider

reaction-diffusion equations without source term. Consider the reaction-diffusion equation

in Eq(2.1). Firstly, if the source term s(u, x, y, t) is non-linear in u, the equation will be

solved using linearization, resulting in a linear source term in u. Hence, stability analysis

will always be conducted for linear reaction cases, for which we can write the linear reaction

term as s(u, x, y, t) = cu + s̃(x, y, t), with c being a constant. According to the discussion

in Section 2.2, we may further use the function transformation w(x, y, t) = e−ctu(x, y, t)

to eliminate the linear term cu. Thus, without loss of generality, we can assume that the

reaction term is independent of u and perform the stability analysis to Eq(2.7).

22

Let uni,j represent the numerical solution obtained by out algorithm Eq(2.11) and Un
i,j =

u(i · hx, j · hy, n · τ) be the exact solution at the spatial grid point (i, j) and time t = n · τ ,

we have

(
1− αi,j

δ2
x

1 + 1
12
δ2
x

)(
1− βi,j

δ2
y

1 + 1
12
δ2
y

)
un+1
i,j =

(
1 + αi,j

δ2
x

1 + 1
12
δ2
x

)(
1 + βi,j

δ2
y

1 + 1
12
δ2
y

)
uni,j +

τ

2
(sni,j + sn+1

i,j) (3.1)

and

(
1− αi,j

δ2
x

1 + 1
12
δ2
x

)(
1− βi,j

δ2
y

1 + 1
12
δ2
y

)
Un+1
i,j =

(
1 + αi,j

δ2
x

1 + 1
12
δ2
x

)(
1 + βi,j

δ2
y

1 + 1
12
δ2
y

)
Un
i,j +

τ

2
(sni,j + sn+1

i,j) +O(τ 2 + h4) (3.2)

The error term O(τ 2 + h4) in Eq(3.2) is the truncation errors from Crank-Nicolson scheme

and Padè approximation. The numerical error is defined by eni,j = uni,j − Un
i,j. Subtracting

Eq(3.2) from Eq(3.1), we obtain

(
1− αi,j

δ2
x

1 + 1
12
δ2
x

)(
1− βi,j

δ2
y

1 + 1
12
δ2
y

)
en+1
i,j =

(
1 + αi,j

δ2
x

1 + 1
12
δ2
x

)(
1 + βi,j

δ2
y

1 + 1
12
δ2
y

)
eni,j +O(τ 2 + h4) (3.3)

The numerical stability analysis is concerned with the growth of error during time marching.

We note that Eq(3.3) is independent of the source term s, which indicates that the behaviour

of error growth is independent of the source term. Therefore, it suffices to prove the stability

result only for equations with zero source term.

Now we return from digression and continue to prove the stability of the algorithm.

Assume the uniform step h is used in both x and y directions. (h = hx = hy). Consider the

23

Padé approximation based fourth-order finite difference scheme

un+1
i,j − uni,j

τ
=

[
ai,j
2h2

δ2
x

1 + 1
12
δ2
x

+
bi,j
2h2

δ2
y

1 + 1
12
δ2
y

]
(un+1

i,j + uni,j) (3.4)

If we let

L =
τ · ai,j

2h2

δ2
x

1 + 1
12
δ2
x

+
τ · bi,j
2h2

δ2
y

1 + 1
12
δ2
y

=
τ

2h2
· Tx +

τ

2h2
· Ty (3.5)

the scheme can be written as

un+1 − un = L(un+1 + un) (3.6)

where un is the numerical solution at time level tn:

un = (uni,j)N×N

Here we assume that N1 = N2 = N .

To prove the stability result, we first state the following lemma, which is part (c) of

Proposition 2 in [20].

Lemma 3.1. For any non-zero real matrix w ∈ RN×N , if ai,j > a0 > 0, bi,j > b0 > 0, then

〈w,Lw〉 < 0

where L is a linear operator defined in Eq.(3.5)

Proof. Since L = τ
2h2
· Tx + τ

2h2
· Ty. 〈w,Lw〉 = τ

2h2
〈w, Txw〉+ τ

2h2
〈w, Tyw〉. Let’s first prove

that 〈w, Txw〉 < 0 for any non-zero w.

We firstly consider the inner product 〈w, Txw〉, which is defined as

〈w, Txw〉 =
N∑
j=1

〈wj, ai,j
δ2
x

1 + 1
12
δ2
x

wj〉

24

where wj = [w1,j, w2,j, . . . , wN,j] ∈ RN is a vector for a fixed j.

It is known that the spectrum of δ2
x with the homogeneous Dirichlet coundary condition

is given by

σ(δ2
x) =

{
−4 sin2

(
jπ

2(N + 1)

)}
⊂ (−4, 0),

where N is the number of grid points in the x-direction, j = 1, . . . , N .

Then the spectrum of the operator δ2x
1+ 1

12
δ2x

is given by

σ

(
δ2
x

1 + 1
12
δ2
x

)
⊂ (−6, 0).

Let Aj = Diag(a1,j, a2,j, . . . , aN,j) be a diagonal matrix corresponding to the coefficients ai,j

for a fixed j. Since all diagonal entries are positive, Aj is a symmetric and positive definite

matrix. By proposition 2 in [20], all eigenvalues of Aj
δ2x

1+ 1
12
δ2x

are real and bounded. In fact,

for any eigenvalue µi, we have

−6 · max
16i6N

ai,j 6 µi < 0.

Nevertheless, we can see that the eigenvalues of Aj
δ2x

1+ 1
12
δ2x

are real and negative. Therefore,

for any fixed j, and non-zero vector wj, we have

〈wj, ai,j
δ2
x

1 + 1
12
δ2
x

wj〉 < 0.

Subsequently, we have

〈w, Txw〉 =
N∑
j=1

〈wj, ai,j
δ2
x

1 + 1
12
δ2
x

wj〉 < 0. (3.7)

Similarly, we can also prove that

〈w, Tyw〉 =
N∑
i=1

〈wi, bi,j
δ2
x

1 + 1
12
δ2
x

wi〉 < 0. (3.8)

25

Combining Eq.(3.7) and Eq.(3.8), we have

〈w,Lx〉 =
τ

2h2
(〈w, Txw〉+ 〈w, Tyw〉) (3.9)

Now we state the main result on the stability of the new method in the following theorem.

Theorem 3.2. Assume that the solution of the reaction-diffusion equation Eq.(2.1) is suffi-

ciently smooth, the new scheme given in Eq.(2.8) is unconditionally stable.

Proof. First, let’s denote the L2 norm by ‖·‖, the inner product on L2 by 〈·, ·〉. In particular,

for u = (ui,j)N×N and v = (vi,j)N×N , the inner product is defined by

〈u, v〉 =
N∑
i=1

N∑
j=1

ui,jvi,j.

Note that even if u, v ∈ RN×N , they are viewed as vectors and the norm is the L2 vector

norm. Taking inner product with un+1 − u2 on both sides of Eq.(3.4),

〈un+1 − un, un+1 + un〉 = 〈un+1 + un,L(un+1 + un)〉 (3.10)

Expanding the left-hand side of Eq.(3.10) gives

〈un+1, un+1〉 − 〈un, un〉 = 〈un+1 + un,L(un+1 + un)〉 (3.11)

Since

〈un+1, un+1〉 = ‖un+1‖2, 〈un, un〉 = ‖un‖2,

by Lemma 3.1, Eq.(3.11) indicates

‖un+1‖2 − ‖un‖2 = 〈un+1 + un,L(un+1 + un)〉 < 0, n = 0, 1, 2, . . .

26

which is equivalent to

‖un+1‖2 < ‖un‖2, n = 0, 1, 2, . . .

for any grid size h and time step τ . Therefore, the fourth-order compact scheme is uncondi-

tionally stable. �

Although, in each time step, a sequence of tridiagonal linear systems needs to be solved

to march the numerical solution, the high-order ADI methods outperforms other existing

methods in terms of overall efficiency because the unconditional stability allows the use of

larger time step hence reducing the overall computational cost. In the next section, several

numerical examples have been rovided to show that the new method is convergent for large

τ , and the overall computational efficiency has been improved significantly.

27

Chapter 4

Numerical Examples

In this section, we will perform and discuss 6 numerical examples to verify the order of

accuracy of our algorithms and, when applicable, study the efficiency of our algorithm.

4.1 Linear u-independent source term

We start from the simplest case and gradually build up on this case by adding increasingly

more complicated source terms. Firstly, consider the following Reaction-Diffusion equation:

ut =
x+ y + 1

2
uxx +

2√
x2 + y2 + 1

uyy + s(t, x, y) (4.1)

We are interested in solving this equation on the domain [0, 1]× [0, π]2 subject to Dirichlet

boundary condtions:

u(0, x, y) = sin

(
x+ π

4

)
cos(2y)

u(t, 0, y) =
√

2
2
e−t cos(2y) u(t, x, 0) = e−t sin

(
x+ π

4

)
u(t, π, y) =

√
2

2
e−t cos(2y) u(t, x, π) = e−t sin

(
x+ π

4

) (4.2)

28

The source term s(t, x, y) is purposely chosen such that the analytic solution is given by:

u(t, x, y) = e−t sin
(
x+

π

4

)
cos(2y)

To verify the order of convergence, we also compute the empirical order of convergence from

the numerical results. The empirical convergence order in space is calculated as

Order =
log[Error(N1)/Error(N2)]

log(N2/N1)
,

while, in time, the formula takes the form:

Order =
log[Error(M1)/Error(M2)]

log(M2/M1)
.

The table below demonstrates the numerical result:

Table 4.1: Numerical results of Example 1 at T = 1 with h = π
N

, τ = 0.0001

N Error

(L∞ norm)

Order (L∞

norm)

Error

(L2 norm)

cputime(s)

20 2.274× 10−5 – 8.952× 10−6 59.63

25 9.423× 10−6 3.95 3.681× 10−6 85.15

32 3.532× 10−6 3.97 1.372× 10−6 127.57

40 1.455× 10−6 3.97 5.618× 10−7 189.91

50 5.989× 10−7 3.98 2.299× 10−7 274.88

We discretize the spatial domain [0, π]2 into a (N + 1) × (N + 1) grid and the temporal

direction into M steps, then h = π
N

and τ = 1
M

. We notice from the last column in Table 4.1

that our algorithm is empirically 4th order accurate in space, as desired. This implies that if

we reduce the the space between two neighbouring nodes in the grid by half, the numerical

error will decrease to about 1
16

of its original size.

29

The following table demonstrates the order of accuracy in time:

Table 4.2: Numerical results of Example 1 at T = 1 with τ = 1
M

, h = π
500

M Error (L∞ norm) Order (L∞) CPU time (s)

5 4.425× 10−3 – 23.02

10 1.094× 10−3 2.02 39.42

20 2.729× 10−4 2.00 80.16

40 6.818× 10−5 2.00 159.33

80 1.704× 10−5 2.00 292.15

We notice from the last column in Table 4.2 that our method is indeed 2nd order accurate

in time.

We may also apply the Richardson Extrapolation method to this problem to improve the

accuracy in time to 4th order. Table 4.3 shows the result:

Table 4.3: Numerical results of Example 1 at T = 1 based on Richardson Extrapolation
with τ = 1

M
and h = π

500

M Error (L∞ norm) Order CPU time (s)

5 1.642× 10−5 – 54.18

10 1.057× 10−6 3.96 103.62

20 6.676× 10−8 3.98 213.56

40 4.115× 10−9 4.02 404.49

We observe that, after using the Richardson extrapolation method, our algorithm is 4-th

order in time. The numerical error decays significantly more faster to 0 that the results we

presented in 4.2, where Richardson extrapolation was not used. By comparing Table 4.2 and

Table 4.3, to reach a certain desired level of computational accuracy (comparable L∞ error),

the algorithm takes significantly less time when supplemented by Richardson extrapolation

30

method, indicating the method has introduced a favourable improvement to the efficiency

of the algorithm.

4.2 Linear u-dependent source term

Next, we add a linear source term of u to the right-hand side of the Eq(4.1):

ut =
x+ y + 1

2
uxx +

2√
x2 + y2 + 1

uyy + u+ s(t, x, y)

We continue to solve this equation on [0, 1] × [0, π]2 and impose the boundary condition

Eq(4.2). We deliberately choose s(t, x, y) such that the analytic solution is given by

u(t, x, y) = e−t sin
(
x+

π

4

)
cos(2y)

Using the same discretization method as before, we obtain the following numerical results:

31

Table 4.4: Numerical results of Example 2 at T = 1 with h = π
N

, τ = 0.0001

N Error

(L∞ norm)

Order (L∞

norm)

Error

(L2 norm)

cputime(s)

20 3.050× 10−5 – 1.255× 10−5 58.79

25 1.271× 10−5 3.92 5.178× 10−6 85.20

32 4.764× 10−6 3.97 1.936× 10−6 131.24

40 1.966× 10−6 3.97 7.936× 10−7 193.60

50 8.092× 10−7 3.98 3.252× 10−7 292.64

Table 4.5: Numerical results of Example 2 at T = 1 with τ = 1
M

, h = π
500

M Error (L∞ norm) Order

5 4.425× 10−3 –

10 1.094× 10−3 2.02

20 2.729× 10−4 2.00

40 6.818× 10−5 2.00

Based on the numerical result presented in Table 4.4 and Table 4.5, we conclude that our

algorithm is 4th order accurate in space and 2nd order accurate in time. Note that the

linear source term +u does not introduce extra amount of work into computation compared

to solving Eq(4.1) in section 4.1, due to our exclusive way of coping with linear source terms.

4.3 Nonlinear source term

Next, we add a nonlinear source term to the problem Eq(4.1):

ut =
x+ y + 1

2
uxx +

2√
x2 + y2 + 1

uyy + u2 + s(t, x, y)

32

We solve this equation on [0, 1] × [0, π]2 subject to boundary conditions Eq(4.2), and we

choose appropriate s(t, x, y) such that the analytic solution to the IVP problem is given by

u(t, x, y) = e−t sin
(
x+

π

4

)
cos(2y)

In this example, we employ the extrapolation method to deal with the source term. The

numerical results are summarized in following tables:

Table 4.6: Numerical results of Example 3 at T = 1 with h = π
N

, τ = 0.0001

N Error

(L∞ norm)

Order (L∞

norm)

Error

(L2 norm)

cputime(s)

20 1.929× 10−5 – 7.557× 10−6 64.31

25 7.992× 10−6 3.95 3.106× 10−6 91.52

32 3.001× 10−6 3.97 1.158× 10−7 138.19

40 1.236× 10−6 3.97 4.741× 10−7 207.67

50 5.098× 10−7 3.97 1.942× 10−7 309.37

Table 4.7: Numerical results of Example 3 at T = 10 with τ = 10
M

, h = π
500

M Error (L∞ norm) Order

5 6.729× 10−3 –

10 1.646× 10−3 2.03

20 4.064× 10−4 2.02

40 1.010× 10−4 2.01

The Table 4.6 and Table 4.7 collectively illustrate that our methods are 4th order ac-

curate in space and 2nd order accurate in time. Since we used extrapolation method to

accommodate the nonlinear source term, there are extra workload from extrapolation at

each time step. More specifically, extrapolations need to be performed on (N + 1)2 nodes at

33

each time step. However, since the temporal grid is uniform, the extrapolation has a closed

form, which can be coded into the program beforehand and only takes up a small portion of

the total workload. Since the extra workload at each time step is O(N2) and the complexity

of our algorithm is also O(N2), which is the size of the spatial grid, the overall complexity

of the algorithm still meets the requirement for ADI method.

4.4 System of equations

Consider the following system of equations:

ut =
x+ y + 1

2
uxx +

2√
x2 + y2 + 1

uyy − v + s1(t, x, y)

vt =
1

y2 + 1
vxx +

x2 + 1

3
vyy + u+ s2(t, x, y)

We solve the system on [0, 1]× [0, π]2 with the boundary conditions:

u(0, x, y) = cos(x) sin(2y)

u(t, 0, y) = e−t sin(2y) u(t, x, 0) = 0

u(t, π, y) = −e−t sin(2y) u(t, x, π) = 0
v(0, x, y) = cos(x) cos(y)

v(t, 0, y) = e−t cos(y) v(t, x, 0) = e−t cos(x)

v(t, π, y) = −e−t cos(y) v(t, x, π) = −e−t cos(x)

We choose s1(t, x, y) and s2(t, x, y) carefully such that the analytic solutions of u, v are given

by:

u(t, x, y) = e−t cos(x) sin(2y) v(t, x, y) = e−t cos(x) cos(y)

34

In this example, we use the Prediction-Correction method (Error tolerance= 10−8) to solve

this system of equations. The tables below summarize the numerical result:

Table 4.8: Numerical results of Example 4 at T = 1 with h = π
N

, τ = 0.0001

N Error

(L∞ norm)

Order (L∞

norm)

Error

(L2 norm)

cputime(s) Ave. Iter.

#

20 1.295× 10−5 – 2.833× 10−6 65.39 3

25 5.423× 10−6 3.90 1.195× 10−6 88.50 3

32 2.098× 10−6 3.85 4.578× 10−7 139.91 3

40 8.857× 10−7 3.86 1.928× 10−7 189.78 3

50 3.809× 10−7 3.78 8.404× 10−8 300.97 3

Table 4.9: Numerical results of Example 4 at T = 1 with τ = 1
M

, h = π
300

M Error (L∞ norm) Order Ave. Iter. #

5 4.402× 10−3 – 5

10 1.088× 10−3 2.02 4

20 2.711× 10−4 2.00 4

40 6.773× 10−5 2.00 4

The Table 4.8 and Table 4.9 clearly show that our method is 4th order accurate in space

and 2nd order accurate in time, as expected. In Prediction-Correction Method, we have

to do the entire process of ADI using guess value to find out the next guess value in each

iteration and there are about 4 iterations (for a given problem, this number depends on

the error tolerance) required before the guesses converge close enough to the real value, the

computation workload in this case is about 3 times more than the case where extrapolation

method is used. Hence, Prediction-Correction method is relatively expensive in workload.

However, the workload remains to be a multiple of the workload in previous sections, so the

complexity of our algorithm is still proportional to N2, namely the size of our 2D spatial

35

grid.

4.5 Time-dependent diffusion coefficients

Next, we consider the reaction-diffusion equation:

ut =
x+ y + t+ 1

2
uxx +

2√
x2 + y2 + (t+ 1)2

uyy + s(x, y, t) (4.3)

The diffusion process governed by Eq(4.3) takes place in a time-heterogeneous medium,

meaning that the diffusion speed varies with time. We once again solve this on [0, 1]× [0, π]2

subject to boundary condition Eq(4.2) and choose the source term s(x, y, t) carefully such

that the solution is given by:

u(t, x, y) = e−t sin
(
x+

π

4

)
cos(2y)

The numerical results are presented below:

36

Table 4.10: Numerical results of Example 5 at T = 1 with h = π
N

, τ = 0.0001

N Error

(L∞ norm)

Order (L∞

norm)

Error

(L2 norm)

cputime(s)

20 1.833× 10−5 – 7.197× 10−6 57.74

25 7.593× 10−6 3.95 2.952× 10−6 85.58

32 2.843× 10−6 3.98 1.098× 10−7 131.55

40 1.169× 10−6 3.98 4.491× 10−7 194.66

50 4.815× 10−7 3.98 1.837× 10−7 297.23

Table 4.11: Numerical results of Example 5 at T = 1 with τ = 1
M

, h = π
500

M Error (L∞ norm) Order

5 4.616× 10−3 –

10 1.142× 10−3 2.02

20 2.847× 10−4 2.00

40 7.112× 10−4 2.00

Table 4.10 and Table 4.11 have demonstrated that our algorithm is 4th order accurate

in space and 2nd order accurate in time. We remark that Richardson extrapolation is still

applicable in this example, hence 4th order accuracy in time is practically attainable.

4.6 Numerically solving an equation

Consider the following system of equations on Γ = [0,∞)× [0, π]2:

ut =
uxx

50 + 10x2 + 10y2
+
uyy
300
− u4v vt =

vxx
150

+
vyy

150 + 50(x2 + y2)
+ u4v − 0.5v (4.4)

37

with initial and boundary conditions

Initial Conditions: u(0, x, y) = 1 v(0, x, y) = e−1600[(x−π
2

)2+(y−π
2

)2]

Boundary Conditions: u
∣∣
∂Γ

= 1 v
∣∣
∂Γ

= 0

We take N = 50 and ∆t = 1
120

, where ∆t is the step length in time. The plot of u, v at

T = 0, 4, 8, 12 can be found in Fig. 4.1. We can clearly observe the diffusion behaviour of the

system from subplots Fig. 4.1 (b)(d)(f)(h). Note that in the second equation of Eq(4.4), the

source term −0.5v serves as a sink. Since the mass of v concentrates at the centre, the effect

of source term is also most detectable at the centre. In particular, we can observe a saddle-

shaped peak formed in the centre of the domain from Fig.4.1(h) due to the existence of the

sink. Besides, we can observe from Fig. 4.1 (e)(g) that the mass of u diffuses more quickly

in x direction than in y direction, which can be explained by a larger diffusion coefficient in

x-direction (1
50+10x2+10y2

v.s. 1
300

).

38

(a) Plot of u at T = 0 (b) Plot of v at T = 0

(c) Plot of u at T = 4 (d) Plot of v at T = 4

(e) Plot of u at T = 8 (f) Plot of v at T = 8

(g) Plot of u at T = 12 (h) Plot of v at T = 12

Figure 4.1: Evolution of u, v

39

4.7 Application to Biological Model

Finally, we solve the following Fisher-KPP equation subject to zero Dirichlet boundary

condition to demonstrate the application of our algorithm to real ecological model on [0, π]2:

ut =
1 + x2 + sin(y)2

10
uxx +

1 + y2 + sin(x)2

10
uyy + ru(1− u)(u− k),

where the population carrying capacity is normalized to 1 throughout the domain, and k is

the minimum subsistence level for the population. For simplicity, we assume the minimum

subsistence level for the population is constant over the domain, but it worths noting that

our algorithm is able to deal with more complicated case where k varies both spatially and

temporally. In order to conform to the boundary condition, we carefully choose the initial

condition:

u(0, x, y) =
x(π − x)y(π − y)

5

Firstly, we fix k = 0.2 and vary the scaled population growth rate r to study the effect of

different growth rates on population growth. We solve the model until T = 30 to observe the

long-term behaviour of the population density. The plot of evolution of average population

density over time is presented below:

40

Figure 4.2: Evolution of average population density over time for different r

We observe that, given the same initial condition, the population goes extinct for small

r (r = 1, 1.5). Also, the smaller the r, the faster the population density diminishes. For

large r (r = 2, 3, 5), the species can eventually survive due to high reproduction rate and

the average population density quickly converges to its equilibrium level, indicating that

the population reaches a steady state. Furthermore, higher growth rate results in a higher

equilibrium level of population density, meaning a more populous steady state. To better

illustrate the evolution of population over time, we particularly look into the case when r = 2

and plot the population density at 4 time points.

41

(a) T = 0 (b) T = 1

(c) T = 5 (d) T = 15

Figure 4.3: Evolution of population density (r = 2, k = 0.2)

We can tell that from T = 0 to T = 1 that the population density in the middle

of the domain is decreasing. This is primarily due to over-crowdedness, where the highest

population density point is over the carrying capacity (u(0, π
2
, π

2
) = (π

2
)4 > 1). From T = 1 to

T = 5, the population density keeps decreasing, as the diffusion effect drives the population

from the populous interior to the unpopulated boundary and the Allee’s effect removes the

population near the boundary since the population density is below the minimum subsistence

level (u < k = 0.2). Lower population density in the interior leads to higher reproduction

rate and more population are being produced. Finally, when the reproduction is strong

enough in the middle to balance with the absorption effect at the boundary, the population

42

distribution arrives at a steady state. This can be observed from the fact that the population

distributions at T = 5 and T = 15 are very close.

Next, we fix r = 2 and study how different levels of minimum subsistence level (k) affect

the evolution of population over time. The plot of average population density over time for

different k is presented below:

Figure 4.4: Evolution of average population density over time for different r

We note from the diagram that lower minimum subsistence level leads to a higher equilib-

rium population density. Since the population can only grow at a point when the population

density is above k, a smaller k means the species requires easier conditions to grow and

survive, hence the absorption effect at the boundary due to Allee’s effect is weaker and the

species can afford a lower reproduction rate in the middle of the domain, thus the equilib-

rium population density can be higher than the case when k is large. Moreover, when k

is large enough (k = 0.3, 0.4), the survival condition for the species is so demanding and

absorption effect at the boundary is so strong that no attainable reproduction rate in the

interior can balance out the absorption effect, the population will eventually go extinct and

the population density converge to 0.

43

Chapter 5

Conclusion

An efficient and highly accurate numerical algorithm has been developed in this thesis. The

new scheme is fourth-order accurate in spatial dimension due to the use of Padé approxima-

tion on the second-order standard finite difference operator, while the fourth-order accuracy

in temporal dimension can be obtained through Richardson extrapolation. One important

feature of the new method is that it can deal with the case when the diffusion coefficients

are spatially and temporally varying and different in x, y and t dimensions (a(x, y) 6= b(x, y)

in Eq.(2.1)).

A rigid theoretical proof based on the energy method and spectrum theory has been

provided to show that the new numerical method is unconditionally stable. The stability of

the new method was also validated by several numerical examples in which the computational

process is convergent even when the time step is large. This feature is particularly important

for applications that need to be simulated for a long time.

Extensive numerical examples have been solved to verify the order of convergence in

both time and space. The new scheme is highly accurate in space and time, which makes

it suitable for numerical simulation of computationally intensive tasks involving reaction-

diffusion models. As indicated in Table 4.3, the new scheme becomes even more efficient

when the Richardson extrapolation is implemented.

44

As of now, we considered the 2D problem with the Dirichlet boundary condition. In

the future, we plan to extend the new scheme to 3D problems with other types of bound-

ary conditions, and apply the new scheme to more realistic applications, in particular, the

mathematical models from biology and global infectious disease models.

45

Bibliography

[1] Adams, Y. (1977). Highly accurate compact implicit methods and boundary conditions,

Journal of Computational Physics, 24, 10-22

[2] Bhatt, H. P., & Khaliq, A.Q.M. (2016). A compact fourth-order L-stable scheme for

reaction-diffusion systems with nonsmooth data, Journal of Computational and Applied

Mathematics, 299, 176-193

[3] Britt, S., Turkel, E., & Tsynkov, S. (2018). A high-order compact time/space finite

difference scheme for the wave equation with variable speed of sound, Journal of Scienfic

Computing, 76(2), 777-811

[4] Britton, N. F. (1986). Reaction-diffusion equations with their applications in biology.

Academic Press.

[5] Cantrell, R. S., & Cosner, C. (2004). Spatial ecology via reaction-diffusion equations.

John Wiley & Sons.

[6] Chen, J., & Ge, Y. (2018). High order locally one-dimensional methods for solving two-

dimensional parabolic equations, Advances in Difference Equations, 2018(1), 1-17.

[7] Chu, P., & Fan, C. (1998). A three-point combined compact difference scheme, Journal

of Computational Physics, 140, 370–399.

46

[8] Dai, W., & Nassar, R. (2000). A compact finite difference scheme for solving a three-

dimensional heat transport equation in a thin film, Numerical Methods for Partial Dif-

ferential Equations: An International Journal, 16(5), 441-458.

[9] Das, S., Liao, W., & Gupta, A. (2014). An efficient fourth-order low dispersive finite

difference scheme for a 2-D acoustic wave equation, Journal of Computational and Applied

Mathematics, 258, 151-167.

[10] Deng, D. (2015). The study of a fourth-order multistep ADI method applied to nonlinear

delay reaction–diffusion equations, Applied Numerical Mathematics, 96, 118-133.

[11] Douglas, J. Jr. (1955). On the numerical integration of ∂2u/∂x2 + ∂2u/∂y2 = ∂u/∂t by

implicit methods, Journal of Society for Industrial and Applied Mathematics, 3, 42-65.

[12] Douglas, J. Jr., & Gunn, J. (1966). A general formulation of alternating direction meth-

ods part I. Parabolic and hyperbolic problems, Numerische Mathematik, 6, 428-453.

[13] Düring, B., & Fournié, M. (2012). High-order compact finite difference scheme for option

pricing in stochastic volatility models, Journal of Computational and Applied mathemat-

ics, 236(17), 4462–4473.

[14] Fairweather, G., & Mitchell, A.R. (1965). A high accuracy alternating direction method

for the wave equation, Journal of the Institute of Mathematics and its Applications, 1,

309-316.

[15] Fisher, R.A. (1937). The wave of advance of advantageous genes, Annals of Eugenics,

7.4, 355-369.

[16] Ge, Y., Zhao, F., & Wei, J. (2018). A high order compact ADI method for solving 3D

unsteady convection-diffusion problems, Applied and Computational Mathematics, 7(1),

1-10.

47

[17] Gustafson, B., Kreiss, H., & Oliger, J. (1995). Time Dependent Problems and Difference

Methods, John Wiley & Sons, New York.

[18] Gu, Y., Liao, W., & Zhu, J. (2003). An efficient high order algorithm for solving systems

of 3D reaction-diffusion equations, Journal of Computational and Applied Mathematics,

155, 1-17.

[19] Hirsch, R.S. (1975). Higher order accurate difference solutions of fluid mechanics prob-

lems by a compact differencing technique, Journal Of Computational Physics, 19, 90-109.

[20] Hladnik, M., & Omladic̆, M. (1988). Spectrum of the product of operators, Proceedings

of the American Mathematical Society, 102(2), 300-302.

[21] Kondo, S., & Miura, T. (2010). Reaction-diffusion model as a framework for under-

standing biological pattern formation, Science, 329(5999), 1616-1620.

[22] Li, K., Liao, W., & Lin, Y. (2019). A compact high order alternating direction implicit

method for three-dimensional acoustic wave equation with variable coefficient, Journal

of Computational and Applied Mathematics, 361, 113-129.

[23] Liao, H. L., & Sun, Z. Z. (2010). Maximum norm error bounds of ADI and compact

ADI methods for solving parabolic equations, Numerical Methods for Partial Differential

Equations: An International Journal, 26(1), 37-60.

[24] Liao, W. (2014). On the dispersion, stability and accuracy of a compact higher-order

finite difference scheme for 3D acoustic wave equation, Journal of Computational and

Applied Mathematics, 270, 571–583.

[25] Liao, W., Zhu, J., & Kahliq, A.Q.M. (2002). An efficient high-order algorithm for solv-

ing systems of reaction-diffusion equations, Numerical Methods for Partial Differential

Equations, 18(3), 340–354

48

[26] Liao, W., Yong, P., Dastour, H., & Huang, J. (2018). Efficient and accurate numerical

simulation of acoustic wave propagation in a 2D heterogeneous media, Applied Mathe-

matics and Computation, 321, 385-400.

[27] Korobenko, L., Kamrujjaman, Md., & Braverman, E. (2013). Persistence and extinction

in spatial models with a carrying capacity driven diffusion and harvesting, Journal of

Mathematical Analysis and Applications, 399(1), 352–368

[28] Ju, L., Liu, X., & Leng, W. (2014). Compact implicit integration factor methods for a

family of semilinear fourth-order parabolic equations, Discrete & Continuous Dynamical

Systems-B, 19(6), 1667.

[29] Lele, S.K. (1992). Compact finite difference schemes with spectral-like resolution, Jour-

nal of Computational Physics, 103, 16-42.

[30] Peaceman, G.W., & Rachford, H.H. (1955). The numerical solution of parabolic and

elliptic differential equations, Journal of the Society for Industrial and Applied Mathe-

matics 3(1), 28–41.

[31] Ramos, J.I. (1998). Implicit, compact, linearized θ-methods with factorization for mul-

tidimensional reaction-diffusion equations, Applied Mathematics and Computation, 94,

17-43.

[32] Sun, Z. Z. (2001), An unconditionally stable and O(τ 2+h4) order L∞ convergenct differ-

ence scheme for linear parabolic equations with variable coefficients, Numerical Methods

for Partial Differential Equations, 17(6), 619–631.

[33] Sun, Z. Z. (2009). Compact difference schemes for heat equation with Neumann bound-

ary conditions, Numerical Methods for Partial Differential Equations: An International

Journal, 25(6), 1320-1341.

49

[34] Wang, Y., & Guo, B. (2008). A monotone compact implicit scheme for nonlinear

reaction-diffusion equations, Journal of Computational Mathematics, 26(2), 123-148.

[35] Wang, Y., & Zhang, H. (2009). Higher-order compact finite difference method for sys-

tems of reaction-diffusion equations, Journal of Computational and Applied Mathematics,

233(2), 502-518.

[36] Wu, Y., Ge, Y., & Zhang, L. (2022). A high-order compact LOD difference method

for solving the two-dimensional diffusion reaction equation with nonlinear source term,

Journal of Computational Science, 62, 101748.

[37] Xie, J., & Zhang, Z. (2018). The high-order multistep ADI solver for two-dimensional

nonlinear delayed reaction-diffusion equations with variable coefficients, Computer &

Mathematics with Applications, 75(10), 3558–3570.

[38] Yang, X., Ge, Y., & Zhang, L. (2019). A class of high-order compact difference schemes

for solving the Burgers’ equations, Applied Mathematics and Computation, 358, 394-417.

[39] Zhao, J., Dai, W., & Niu, T. (2007). Fourth-order compact schemes of a heat conduction

problem with Neumann boundary conditions, Numerical Methods for Partial Differential

Equations: An International Journal, 23(5), 949-959.

[40] Zhang, Q., Zhang, C., & Wang, L. (2016). The ADI methods for two-dimensional nonlin-

ear multidelay parabolic equations, Journal of Computational and Applied Mathematics,

306, 217–230.

50

Appendix A

Review of ADI Method

While in this paper we present a 4th order compact ADI scheme for reaction-diffusion equa-

tions with variable coefficients, such scheme for equations with constant coefficients has been

well-established by researchers long before. See [25] for two-dimensional case and [18] for

three-dimensional case. As our work primarily builds on their work, it might be helpful to

provide a review for the previous work.

Consider a two-dimensional reaction-diffusion equation with constant coefficients

ut = auxx + buyy + f(t, x, y, u) a > 0, b > 0 (A.1)

We equip this equation with appropriate Dirichlet boundary conditions and initial condition

to obtain an Initial Value Problem(IVP).

The finite difference method requires a discretization of Eq(A.1) in time. A commonly-

used discretization is the Crank-Nicolson scheme, which is 2nd-order accurate temporally:

un+1
i,j − uni,j

∆t
=
a

2
((uxx)

n+1
i,j + (uxx)

n
i,j) +

b

2
((uyy)

n+1
i,j + (uyy)

n
i,j) +

1

2
(fn+1
i,j + fni,j) (A.2)

where n
i,j denotes the numerical value of relevant function evaluated at the spatial grid point

with indices i, j and at the nth time step. Note that Eq(A.2) involves the value of the

51

second-order derivatives, which cannot be obtained directly. One way to overcome this issue

is to approximate the second-order derivatives by function values of u in a neighbourhood.

For example, a well-known 2nd order approximation is the central difference scheme, namely

(uxx)
n
i,j =

1

h2
x

(uni−1,j − 2uni,j + uni+1,j) +O(h2
x)

(uyy)
n
i,j =

1

h2
y

(uni,j−1 − 2uni,j + uni,j+1) +O(h2
y)

hx and hy denote the distance between two neighbouring grid points in x and y direction.

However, to obtain a higher order accuracy, higher-order approximation must be used. A

popular 4th order approximation, known as Padé approximation, is

(uxx)
n
i,j =

1

h2
x

δ2
x

1 + 1
12
δ2
x

uni,j +O(h4
x) (A.3)

(uyy)
n
i,j =

1

h2
y

δ2
y

1 + 1
12
δ2
y

uni,j +O(h4
y) (A.4)

Plugging Eq(A.3) and Eq(A.4) into Eq(A.2) yields a discretization of Eq(A.1) that is 4th

order in space and 2nd order in time. The discretization reads

un+1
i,j − uni,j

∆t
=

a

2h2
x

(
δ2
x

1 + 1
12
δ2
x

un+1
i,j +

δ2
x

1 + 1
12
δ2
x

uni,j

)
+

b

2h2
y

(
δ2
y

1 + 1
12
δ2
y

un+1
i,j +

δ2
y

1 + 1
12
δ2
y

uni,j

)
+

1

2
(fn+1
i,j + fni,j) (A.5)

For simplicity, we assume that hx = hy = h. One may multiply both sides by ∆t and

rearrange Eq(A.5) to get an equation with all un+1
i,j on the left-hand side and uni,j terms on

the right hand side. Namely,

(
1− rx

δ2
x

1 + 1
12
δ2
x

− ry
δ2
y

1 + 1
12
δ2
y

)
un+1
i,j

=

(
1 + rx

δ2
x

1 + 1
12
δ2
x

+ ry
δ2
y

1 + 1
12
δ2
y

)
uni,j +

∆t

2
(fn+1
i,j + fni,j) (A.6)

52

Here, rx = a∆t
2h2

, ry = b∆t
2h2

. We notice that we can introduce cross terms so that the operators

in Eq(A.6) split as follows:

(
1− rx

δ2
x

1 + 1
12
δ2
x

− ry
δ2
y

1 + 1
12
δ2
y

+ rxry
δ2
x

1 + 1
12
δ2
x

δ2
y

1 + 1
12
δ2
y

)
un+1
i,j

=

(
1− rx

δ2
x

1 + 1
12
δ2
x

)(
1− ry

δ2
y

1 + 1
12
δ2
y

)
un+1
i,j (A.7)(

1 + rx
δ2
x

1 + 1
12
δ2
x

+ ry
δ2
y

1 + 1
12
δ2
y

+ rxry
δ2
x

1 + 1
12
δ2
x

δ2
y

1 + 1
12
δ2
y

)
uni,j

=

(
1 + rx

δ2
x

1 + 1
12
δ2
x

)(
1 + ry

δ2
y

1 + 1
12
δ2
y

)
uni,j (A.8)

In [25], it has been computed that the difference between two cross terms is

rxry
δ2
x

1 + 1
12
δ2
x

δ2
y

1 + 1
12
δ2
y

(un+1
i,j − uni,j) ≈

ab∆t3

4
(utxxyy +O(h4))

Since the error term above isO(∆t3) and that of the algorithm isO(∆t2+h4), the discrepancy

between the two error terms does not downgrade the level of accuracy of our algorithm.

Introducing the cross terms into Eq(A.6) and using Eq(A.7) and Eq(A.8), we have

(
1− rx

δ2
x

1 + 1
12
δ2
x

)(
1− ry

δ2
y

1 + 1
12
δ2
y

)
un+1
i,j =

(
1 + rx

δ2
x

1 + 1
12
δ2
x

)(
1 + ry

δ2
y

1 + 1
12
δ2
y

)
uni,j

+
∆t

2
(fn+1
i,j + fni,j) (A.9)

Multiplying
(
1 + 1

12
δ2
x

) (
1 + 1

12
δ2
y

)
on both sides of Eq(A.9) results in

(
1 +

1

12
δ2
x − rxδ2

x

)(
1 +

1

12
δ2
y − ryδ2

y

)
un+1
i,j =

(
1 +

1

12
δ2
x + rxδ

2
x

)(
1 +

1

12
δ2
y + ryδ

2
y

)
uni,j

+
∆t

2

(
1 +

1

12
δ2
x

)(
1 +

1

12
δ2
y

)
(fn+1
i,j + fni,j) (A.10)

53

We may solve Eq(A.10) in two steps:

(
1 +

1

12
δ2
x − rxδ2

x

)
u∗i,j =

(
1 +

1

12
δ2
x + rxδ

2
x

)(
1 +

1

12
δ2
y + ryδ

2
y

)
uni,j

+
∆t

2

(
1 +

1

12
δ2
x

)(
1 +

1

12
δ2
y

)
(fn+1
i,j + fni,j) (A.11)(

1 +
1

12
δ2
y − ryδ2

y

)
un+1
i,j = u∗i,j (A.12)

Note that the right hand side of Eq(A.11) only involves u at time step n, which is known as

the solution from previous time iteration. fn+1
i,j can be approximated efficiently by Prediction-

Correction method [31]. Therefore, the right-hand side of Eq(A.11) can be easily computed.

Additionally, both operators on the left-hand side of Eq(A.11) and Eq(A.12) give rise to a

tridiagonal linear system, hence can be solved using the Thomas algorithm. Solving Eq(A.11)

and Eq(A.12) will give us the desired numerical solution un+1
i,j at time step n+ 1.

54

Appendix B

Code

For Example 1 (Table 4.1, 4.2)

%% Fourth -order ADI

%% General diffusion coefficients

%% u_t = alpha(x,y)*u_xx+beta(x,y)*u_yy+s(x,y,t) on [0 ,1]*[0 ,pi]*[0,pi]

% N>=5

N = 50; h = pi/N;

T = 1; M = 10000; tau = T/M;

% Save numerical solution at each step here

U = {};

%% Coeffcients

% alpha = x+y+1/2; beta = 2/sqrt(x^2+y^2+1)

% Consume the (x,y) and produces the coefficient value at that point

gamma = @(x,y) tau /(2*h^2)*(x+y+1)/2;

epsilon = @(x,y) tau /(2*h^2) *2/ sqrt(x^2+y^2+1);

% Initial conditions and Boundary Conditions

% u(0,x,y) = f(x,y)

% u(t,x,0) = g1(t,x)

% u(t,x,pi) = g2(t,x)

% u(t,0,y) = h1(t,y)

% u(t,pi,y) = h2(t,y)

f = @(x,y) sin(x+pi/4)*cos(2*y);

g1 = @(t,x) exp(-t)*sin(x+pi/4);

g2 = @(t,x) exp(-t)*sin(x+pi/4);

h1 = @(t,y) sqrt (2) /2* exp(-t)*cos (2*y);

h2 = @(t,y) -sqrt (2) /2* exp(-t)*cos (2*y);

% Analytic solution

u = @(t,x,y) exp(-t)*sin(x+pi/4)*cos(2*y);

% Source term

s = @(t,x,y) -u(t,x,y)+(x+y+1)/2*u(t,x,y)+8/ sqrt(x^2+y^2+1)*u(t,x,y);

tStart = cputime;

55

for i = 1:M

% Implement the initial condition

if i == 1

% u_now is a (N+1)*(N+1) matrix

u_now = zeros(N+1,N+1);

for j = 1:N+1 % y coordinate

for k = 1:N+1 % x coordinate

u_now(j,k) = f((k-1)*h, (j-1)*h);

end

end

U{end+1} = u_now;

end

% Add four extra rows on u_now by interpolation

u_modified = [zeros(2,N+1);u_now;zeros(2,N+1)];

for j = 1:N+1

p1 = polyfit (0:h:4*h,u_now (1:5,j) ,4);

u_modified (1,j) = polyval(p1 ,-2*h);

u_modified (2,j) = polyval(p1,-h);

p2 = polyfit ((N-4)*h:h:N*h,u_now(N-3:N+1,j) ,4);

u_modified(N+4,j) = polyval(p2 ,(N+1)*h);

u_modified(N+5,j) = polyval(p2 ,(N+2)*h);

end

% Calculate the inner part (x neq 0, pi) of u_prime

u_prime = zeros(N+1, N+1);

for j = 1:N+1 % y coordinate

for k = 2:N % x coordinate

u_prime(j,k) = 1/12* u_modified(j+2,k-1)/gamma((k-2)*h,(j-1)*h)

+10/12* u_modified(j+2,k)/gamma((k-1)*h,(j-1)*h)+...

1/12* u_modified(j+2,k+1)/gamma(k*h,(j-1)*h)+(u_modified(j

+2,k-1) -2* u_modified(j+2,k)+u_modified(j+2,k+1))...

+1/12*(-1/12* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*

h)*u_modified(j,k-1) +...

4/3* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*h)*

u_modified(j+1,k-1) -...

5/2* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*h)*

u_modified(j+2,k-1) +...

4/3* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*h)*

u_modified(j+3,k-1) -...

1/12* epsilon ((k-2)*h,(j-1)*h)/gamma ((k-2)*h,(j-1)*h)*

u_modified(j+4,k-1))...

+10/12*(-1/12* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)

*h)*u_modified(j,k)+...

4/3* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)*

u_modified(j+1,k) -...

5/2* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)*

u_modified(j+2,k)+...

4/3* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)*

u_modified(j+3,k) -...

1/12* epsilon ((k-1)*h,(j-1)*h)/gamma ((k-1)*h,(j-1)*h)*

u_modified(j+4,k))...

+1/12*(-1/12* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*

u_modified(j,k+1) +...

56

4/3* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*u_modified(j

+1,k+1) -...

5/2* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*u_modified(j

+2,k+1) +...

4/3* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*u_modified(j

+3,k+1) -...

1/12* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*u_modified(j

+4,k+1))...

+(-1/12* u_modified(j,k-1)*epsilon ((k-2)*h,(j-1)*h)+4/3*

u_modified(j+1,k-1)*epsilon ((k-2)*h,(j-1)*h) -...

5/2* u_modified(j+2,k-1)*epsilon ((k-2)*h,(j-1)*h)+4/3*

u_modified(j+3,k-1)*epsilon ((k-2)*h,(j-1)*h) -...

1/12* u_modified(j+4,k-1)*epsilon ((k-2)*h,(j-1)*h))...

-2*(-1/12* u_modified(j,k)*epsilon ((k-1)*h,(j-1)*h)+4/3*

u_modified(j+1,k)*epsilon ((k-1)*h,(j-1)*h) -...

5/2* u_modified(j+2,k)*epsilon ((k-1)*h,(j-1)*h)+4/3*

u_modified(j+3,k)*epsilon ((k-1)*h,(j-1)*h) -...

1/12* u_modified(j+4,k)*epsilon ((k-1)*h,(j-1)*h))...

+(-1/12* u_modified(j,k+1)*epsilon(k*h,(j-1)*h)+4/3*

u_modified(j+1,k+1)*epsilon(k*h,(j-1)*h) -...

5/2* u_modified(j+2,k+1)*epsilon(k*h,(j-1)*h)+4/3*

u_modified(j+3,k+1)*epsilon(k*h,(j-1)*h) -...

1/12* u_modified(j+4,k+1)*epsilon(k*h,(j-1)*h))...

+tau /2*(1/12*s((i-1)*tau ,(k-2)*h,(j-1)*h)/gamma ((k-2)*h,(j

-1)*h)+...

10/12*s((i-1)*tau ,(k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)

+...

1/12*s((i-1)*tau ,k*h,(j-1)*h)/gamma(k*h,(j-1)*h))...

+tau /2*(1/12*s(i*tau ,(k-2)*h,(j-1)*h)/gamma ((k-2)*h,(j-1)*

h)+...

10/12*s(i*tau ,(k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)+...

1/12*s(i*tau ,k*h,(j-1)*h)/gamma(k*h,(j-1)*h));

end

end

% u_prime at boundary

% x = 0

b_0 = zeros(N+5,1);

for j = 1:N+1

b_0(j+2) = h1(i*tau ,(j-1)*h);

end

p1 = polyfit (0:h:4*h,b_0 (3:7) ,4);

b_0(1) = polyval(p1 ,-2*h);

b_0(2) = polyval(p1 ,-h);

p2 = polyfit ((N-4)*h:h:N*h,b_0(N-1:N+3) ,4);

b_0(N+4) = polyval(p2 ,(N+1)*h);

b_0(N+5) = polyval(p2 ,(N+2)*h);

for j = 1:N+1

u_prime(j,1)= b_0(j+2)-epsilon (0,(j-1)*h)*(-1/12* b_0(j)+4/3* b_0(j

+1) -...

5/2* b_0(j+2) +4/3* b_0(j+3) -1/12* b_0(j+4));

end

% x = pi

b_pi = zeros(N+5,1);

57

for j = 1:N+1

b_pi(j+2) = h2(i*tau ,(j-1)*h);

end

p1 = polyfit (0:h:4*h,b_pi (3:7) ,4);

b_pi (1) = polyval(p1 ,-2*h);

b_pi (2) = polyval(p1 ,-h);

p2 = polyfit ((N-4)*h:h:N*h,b_pi(N-1:N+3) ,4);

b_pi(N+4) = polyval(p2 ,(N+1)*h);

b_pi(N+5) = polyval(p2 ,(N+2)*h);

for j = 1:N+1

u_prime(j,N+1)= b_pi(j+2)-epsilon(pi ,(j-1)*h)*(-1/12* b_pi(j)+4/3*

b_pi(j+1) -...

5/2* b_pi(j+2) +4/3* b_pi(j+3) -1/12* b_pi(j+4));

end

% Solve in x direction

u_star = [];

for j = 1:N+1

b = u_prime(j,:) ’;

% Construct the matrix A

A = eye(N+1);

for k = 2:N

A(k,k-1) = 1/(12* gamma ((k-2)*h,(j-1)*h)) -1;

A(k,k) = 10/(12* gamma ((k-1)*h,(j-1)*h))+2;

A(k,k+1) = 1/(12* gamma(k*h,(j-1)*h)) -1;

end

% Solve

u_star = [u_star ;(A\b) ’];

end

u_star = u_star (:,2:end -1);

u_str = zeros(N+1,N-1);

for k = 1:N-1

for j = 2:N

u_str(j,k) = 1/12* u_star(j-1,k)/epsilon(k*h,(j-2)*h)+10/12*

u_star(j,k)/epsilon(k*h,(j-1)*h)...

+1/12* u_star(j+1,k)/epsilon(k*h,j*h);

end

u_str(1,k) = g1(i*tau ,k*h);

u_str(N+1,k) = g2(i*tau ,k*h);

end

% Solve in y direction

u_final = [];

for k = 1:N-1

c = u_str(:,k);

% Construct the big matrix A

A = eye(N+1);

for j = 2:N

A(j,j-1) = 1/(12* epsilon(k*h,(j-2)*h)) -1;

A(j,j) = 10/(12* epsilon(k*h,(j-1)*h))+2;

A(j,j+1) = 1/(12* epsilon(k*h,j*h)) -1;

end

58

% solve

u_final = [u_final A\c];

end

% Our final solution

u_now = [b_0(3:end -2) u_final b_pi (3:end -2)];

% store the solution

U{end+1} = u_now;

end

tEnd = cputime - tStart;

%% Real solution

u_real = zeros(N+1,N+1);

for j = 1:N+1 % y coordinate

for k = 1:N+1 % x coordinate

u_real(j,k) = u(T,(k-1)*h, (j-1)*h);

end

end

Er(end +1) = max(max(abs(u_real -U{end})));

Er(end +1) = norm(reshape(abs(u_real -U{end}) ,1,[]))/(N-1);

Time(end +1) = tEnd;

59

For Example 2 (Table 4.4, 4.5)

%% Fourth -order ADI

%% General diffusion coefficients

%% u_t = alpha(x,y)*u_xx+beta(x,y)*u_yy+C*u+s(x,y,t) on [0 ,1]*[0 ,pi]*[0,pi

]

% N>=5

N = 50; h = pi/N;

T = 1; M = 10000; tau = T/M;

C = 1;

% Save numerical solution at each step here

U = {};

%% Coeffcients

% alpha = x+y+1/2; beta = 2/sqrt(x^2+y^2+1)

% Consume the (x,y) and produces the coefficient value at that point

gamma = @(x,y) tau /(2*h^2)*(x+y+1)/2/(1 -tau*C/2);

epsilon = @(x,y) tau /(2*h^2) *2/ sqrt(x^2+y^2+1)/(1-tau*C/2);

% Initial conditions and Boundary Conditions

% u(0,x,y) = f(x,y)

% u(t,x,0) = g1(t,x)

% u(t,x,pi) = g2(t,x)

% u(t,0,y) = h1(t,y)

% u(t,pi,y) = h2(t,y)

f = @(x,y) sin(x+pi/4)*cos(2*y);

g1 = @(t,x) exp(-t)*sin(x+pi/4);

g2 = @(t,x) exp(-t)*sin(x+pi/4);

h1 = @(t,y) sqrt (2) /2* exp(-t)*cos (2*y);

h2 = @(t,y) -sqrt (2) /2* exp(-t)*cos (2*y);

% Analytic solution

u = @(t,x,y) exp(-t)*sin(x+pi/4)*cos(2*y);

% Source term

s = @(t,x,y) -(1+C)*u(t,x,y)+(x+y+1)/2*u(t,x,y)+8/ sqrt(x^2+y^2+1)*u(t,x,y)

;

tStart = cputime;

for i = 1:M

% Implement the initial condition

if i == 1

% u_now is a (N+1)*(N+1) matrix

u_now = zeros(N+1,N+1);

for j = 1:N+1 % y coordinate

for k = 1:N+1 % x coordinate

u_now(j,k) = f((k-1)*h, (j-1)*h);

end

end

U{end+1} = u_now;

end

% Add four extra rows on u_now by interpolation

u_modified = [zeros(2,N+1);u_now;zeros(2,N+1)];

for j = 1:N+1

p1 = polyfit (0:h:4*h,u_now (1:5,j) ,4);

60

u_modified (1,j) = polyval(p1 ,-2*h);

u_modified (2,j) = polyval(p1,-h);

p2 = polyfit ((N-4)*h:h:N*h,u_now(N-3:N+1,j) ,4);

u_modified(N+4,j) = polyval(p2 ,(N+1)*h);

u_modified(N+5,j) = polyval(p2 ,(N+2)*h);

end

% Calculate the inner part (x neq 0, pi) of u_prime

u_prime = zeros(N+1, N+1);

for j = 1:N+1 % y coordinate

for k = 2:N % x coordinate

u_prime(j,k) = 1/12* u_modified(j+2,k-1)/gamma((k-2)*h,(j-1)*h)

+10/12* u_modified(j+2,k)/gamma((k-1)*h,(j-1)*h)+...

1/12* u_modified(j+2,k+1)/gamma(k*h,(j-1)*h)+(u_modified(j

+2,k-1) -2* u_modified(j+2,k)+u_modified(j+2,k+1))...

+1/12*(-1/12* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*

h)*u_modified(j,k-1) +...

4/3* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*h)*

u_modified(j+1,k-1) -...

5/2* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*h)*

u_modified(j+2,k-1) +...

4/3* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*h)*

u_modified(j+3,k-1) -...

1/12* epsilon ((k-2)*h,(j-1)*h)/gamma ((k-2)*h,(j-1)*h)*

u_modified(j+4,k-1))...

+10/12*(-1/12* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)

*h)*u_modified(j,k)+...

4/3* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)*

u_modified(j+1,k) -...

5/2* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)*

u_modified(j+2,k)+...

4/3* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)*

u_modified(j+3,k) -...

1/12* epsilon ((k-1)*h,(j-1)*h)/gamma ((k-1)*h,(j-1)*h)*

u_modified(j+4,k))...

+1/12*(-1/12* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*

u_modified(j,k+1) +...

4/3* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*u_modified(j

+1,k+1) -...

5/2* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*u_modified(j

+2,k+1) +...

4/3* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*u_modified(j

+3,k+1) -...

1/12* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*u_modified(j

+4,k+1))...

+(-1/12* u_modified(j,k-1)*epsilon ((k-2)*h,(j-1)*h)+4/3*

u_modified(j+1,k-1)*epsilon ((k-2)*h,(j-1)*h) -...

5/2* u_modified(j+2,k-1)*epsilon ((k-2)*h,(j-1)*h)+4/3*

u_modified(j+3,k-1)*epsilon ((k-2)*h,(j-1)*h) -...

1/12* u_modified(j+4,k-1)*epsilon ((k-2)*h,(j-1)*h))...

-2*(-1/12* u_modified(j,k)*epsilon ((k-1)*h,(j-1)*h)+4/3*

u_modified(j+1,k)*epsilon ((k-1)*h,(j-1)*h) -...

5/2* u_modified(j+2,k)*epsilon ((k-1)*h,(j-1)*h)+4/3*

u_modified(j+3,k)*epsilon ((k-1)*h,(j-1)*h) -...

61

1/12* u_modified(j+4,k)*epsilon ((k-1)*h,(j-1)*h))...

+(-1/12* u_modified(j,k+1)*epsilon(k*h,(j-1)*h)+4/3*

u_modified(j+1,k+1)*epsilon(k*h,(j-1)*h) -...

5/2* u_modified(j+2,k+1)*epsilon(k*h,(j-1)*h)+4/3*

u_modified(j+3,k+1)*epsilon(k*h,(j-1)*h) -...

1/12* u_modified(j+4,k+1)*epsilon(k*h,(j-1)*h))...

+tau/(2-tau*C)*(1/12*s((i-1)*tau ,(k-2)*h,(j-1)*h)/gamma ((k

-2)*h,(j-1)*h)+...

10/12*s((i-1)*tau ,(k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)

+...

1/12*s((i-1)*tau ,k*h,(j-1)*h)/gamma(k*h,(j-1)*h))...

+tau/(2-tau*C)*(1/12*s(i*tau ,(k-2)*h,(j-1)*h)/gamma ((k-2)*

h,(j-1)*h)+...

10/12*s(i*tau ,(k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)+...

1/12*s(i*tau ,k*h,(j-1)*h)/gamma(k*h,(j-1)*h))+...

tau*C/(1-tau*C/2) *(1/12* u_modified(j+2,k-1)/gamma((k-2)*h

,(j-1)*h)+...

10/12* u_modified(j+2,k)/gamma((k-1)*h,(j-1)*h)+1/12*

u_modified(j+2,k+1)/gamma(k*h,(j-1)*h));

end

end

% u_prime at boundary

% x = 0

b_0 = zeros(N+5,1);

for j = 1:N+1

b_0(j+2) = h1(i*tau ,(j-1)*h);

end

p1 = polyfit (0:h:4*h,b_0 (3:7) ,4);

b_0(1) = polyval(p1 ,-2*h);

b_0(2) = polyval(p1 ,-h);

p2 = polyfit ((N-4)*h:h:N*h,b_0(N-1:N+3) ,4);

b_0(N+4) = polyval(p2 ,(N+1)*h);

b_0(N+5) = polyval(p2 ,(N+2)*h);

for j = 1:N+1

u_prime(j,1)= b_0(j+2)-epsilon (0,(j-1)*h)*(-1/12* b_0(j)+4/3* b_0(j

+1) -...

5/2* b_0(j+2) +4/3* b_0(j+3) -1/12* b_0(j+4));

end

% x = pi

b_pi = zeros(N+5,1);

for j = 1:N+1

b_pi(j+2) = h2(i*tau ,(j-1)*h);

end

p1 = polyfit (0:h:4*h,b_pi (3:7) ,4);

b_pi (1) = polyval(p1 ,-2*h);

b_pi (2) = polyval(p1 ,-h);

p2 = polyfit ((N-4)*h:h:N*h,b_pi(N-1:N+3) ,4);

b_pi(N+4) = polyval(p2 ,(N+1)*h);

b_pi(N+5) = polyval(p2 ,(N+2)*h);

for j = 1:N+1

u_prime(j,N+1)= b_pi(j+2)-epsilon(pi ,(j-1)*h)*(-1/12* b_pi(j)+4/3*

b_pi(j+1) -...

5/2* b_pi(j+2) +4/3* b_pi(j+3) -1/12* b_pi(j+4));

62

end

% Solve in x direction

u_star = [];

for j = 1:N+1

b = u_prime(j,:) ’;

% Construct the matrix A

A = eye(N+1);

for k = 2:N

A(k,k-1) = 1/(12* gamma ((k-2)*h,(j-1)*h)) -1;

A(k,k) = 10/(12* gamma ((k-1)*h,(j-1)*h))+2;

A(k,k+1) = 1/(12* gamma(k*h,(j-1)*h)) -1;

end

% Solve

u_star = [u_star ;(A\b) ’];

end

u_star = u_star (:,2:end -1);

u_str = zeros(N+1,N-1);

for k = 1:N-1

for j = 2:N

u_str(j,k) = 1/12* u_star(j-1,k)/epsilon(k*h,(j-2)*h)+10/12*

u_star(j,k)/epsilon(k*h,(j-1)*h)...

+1/12* u_star(j+1,k)/epsilon(k*h,j*h);

end

u_str(1,k) = g1(i*tau ,k*h);

u_str(N+1,k) = g2(i*tau ,k*h);

end

% Solve in y direction

u_final = [];

for k = 1:N-1

c = u_str(:,k);

% Construct the big matrix A

A = eye(N+1);

for j = 2:N

A(j,j-1) = 1/(12* epsilon(k*h,(j-2)*h)) -1;

A(j,j) = 10/(12* epsilon(k*h,(j-1)*h))+2;

A(j,j+1) = 1/(12* epsilon(k*h,j*h)) -1;

end

% solve

u_final = [u_final A\c];

end

% Our final solution

u_now = [b_0(3:end -2) u_final b_pi (3:end -2)];

% store the solution

U{end+1} = u_now;

end

tEnd = cputime - tStart;

%% Real solution

u_real = zeros(N+1,N+1);

for j = 1:N+1 % y coordinate

63

for k = 1:N+1 % x coordinate

u_real(j,k) = u(T,(k-1)*h, (j-1)*h);

end

end

Er(end +1) = max(max(abs(u_real -U{end})));

Time(end +1) = tEnd;

Er(end +1) = norm(reshape(abs(u_real -U{end}) ,1,[]))/(N-1);

64

For Example 3 (Table 4.6, 4.7). The numerical example in Section 4.7 used the same algo-

rithm, however with different coefficients and source function, initial condition and boundary

conditions.

%% Fourth -order ADI

%% General diffusion coefficients

%% u_t = alpha(x,y)*u_xx+beta(x,y)*u_yy+fu+s(x,y,t) on [0 ,1]*[0 ,pi]*[0,pi]

% N>=5

N = 50; h = pi/N;

T = 1; M = 10000; tau = T/M;

% Save numerical solution at each step here

U = {};

% Collection of all source term

F = {};

%% Coeffcients

% alpha = x+y+1/2; beta = 2/sqrt(x^2+y^2+1)

% Consume the (x,y) and produces the coefficient value at that point

gamma = @(x,y) tau /(2*h^2)*(x+y+1)/2;

epsilon = @(x,y) tau /(2*h^2) *2/ sqrt(x^2+y^2+1);

% Initial conditions and Boundary Conditions

% u(0,x,y) = f(x,y)

% u(t,x,0) = g1(t,x)

% u(t,x,pi) = g2(t,x)

% u(t,0,y) = h1(t,y)

% u(t,pi,y) = h2(t,y)

f = @(x,y) sin(x+pi/4)*cos(2*y);

g1 = @(t,x) exp(-t)*sin(x+pi/4);

g2 = @(t,x) exp(-t)*sin(x+pi/4);

h1 = @(t,y) sqrt (2) /2* exp(-t)*cos (2*y);

h2 = @(t,y) -sqrt (2) /2* exp(-t)*cos (2*y);

% Analytic solution

u = @(t,x,y) exp(-t)*sin(x+pi/4)*cos(2*y);

% Source term

fu = @(x) x.^2;

s = @(t,x,y) -u(t,x,y)+(x+y+1)/2*u(t,x,y)+8/ sqrt(x^2+y^2+1)*u(t,x,y)-fu(u(

t,x,y));

%% Constructing the first few matrices

for p = 0:1

u_now = zeros(N+1,N+1);

f_now = zeros(N+1,N+1);

for j = 1:N+1 % y coordinate

for k = 1:N+1 % x coordinate

u_now(j,k) = exp(-p*tau)*f((k-1)*h, (j-1)*h);

f_now(j,k) = fu(u_now(j,k));

end

end

U{end+1} = u_now;

F{end+1} = f_now;

end

65

tStart = cputime;

for i = 2:M

u_now = U{end};

% Use extrapolation to get f^{n+1}

f_next = 2*F{end}-F{end -1};

% Add four extra rows on u_now by interpolation

u_modified = [zeros(2,N+1);u_now;zeros(2,N+1)];

for j = 1:N+1

p1 = polyfit (0:h:4*h,u_now (1:5,j) ,4);

u_modified (1,j) = polyval(p1 ,-2*h);

u_modified (2,j) = polyval(p1,-h);

p2 = polyfit ((N-4)*h:h:N*h,u_now(N-3:N+1,j) ,4);

u_modified(N+4,j) = polyval(p2 ,(N+1)*h);

u_modified(N+5,j) = polyval(p2 ,(N+2)*h);

end

% Calculate the inner part (x neq 0, pi) of u_prime

u_prime = zeros(N+1, N+1);

for j = 1:N+1 % y coordinate

for k = 2:N % x coordinate

u_prime(j,k) = 1/12* u_modified(j+2,k-1)/gamma((k-2)*h,(j-1)*h)

+10/12* u_modified(j+2,k)/gamma((k-1)*h,(j-1)*h)+...

1/12* u_modified(j+2,k+1)/gamma(k*h,(j-1)*h)+(u_modified(j

+2,k-1) -2* u_modified(j+2,k)+u_modified(j+2,k+1))...

+1/12*(-1/12* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*

h)*u_modified(j,k-1) +...

4/3* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*h)*

u_modified(j+1,k-1) -...

5/2* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*h)*

u_modified(j+2,k-1) +...

4/3* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*h)*

u_modified(j+3,k-1) -...

1/12* epsilon ((k-2)*h,(j-1)*h)/gamma ((k-2)*h,(j-1)*h)*

u_modified(j+4,k-1))...

+10/12*(-1/12* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)

*h)*u_modified(j,k)+...

4/3* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)*

u_modified(j+1,k) -...

5/2* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)*

u_modified(j+2,k)+...

4/3* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)*

u_modified(j+3,k) -...

1/12* epsilon ((k-1)*h,(j-1)*h)/gamma ((k-1)*h,(j-1)*h)*

u_modified(j+4,k))...

+1/12*(-1/12* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*

u_modified(j,k+1) +...

4/3* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*u_modified(j

+1,k+1) -...

5/2* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*u_modified(j

+2,k+1) +...

4/3* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*u_modified(j

66

+3,k+1) -...

1/12* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*u_modified(j

+4,k+1))...

+(-1/12* u_modified(j,k-1)*epsilon ((k-2)*h,(j-1)*h)+4/3*

u_modified(j+1,k-1)*epsilon ((k-2)*h,(j-1)*h) -...

5/2* u_modified(j+2,k-1)*epsilon ((k-2)*h,(j-1)*h)+4/3*

u_modified(j+3,k-1)*epsilon ((k-2)*h,(j-1)*h) -...

1/12* u_modified(j+4,k-1)*epsilon ((k-2)*h,(j-1)*h))...

-2*(-1/12* u_modified(j,k)*epsilon ((k-1)*h,(j-1)*h)+4/3*

u_modified(j+1,k)*epsilon ((k-1)*h,(j-1)*h) -...

5/2* u_modified(j+2,k)*epsilon ((k-1)*h,(j-1)*h)+4/3*

u_modified(j+3,k)*epsilon ((k-1)*h,(j-1)*h) -...

1/12* u_modified(j+4,k)*epsilon ((k-1)*h,(j-1)*h))...

+(-1/12* u_modified(j,k+1)*epsilon(k*h,(j-1)*h)+4/3*

u_modified(j+1,k+1)*epsilon(k*h,(j-1)*h) -...

5/2* u_modified(j+2,k+1)*epsilon(k*h,(j-1)*h)+4/3*

u_modified(j+3,k+1)*epsilon(k*h,(j-1)*h) -...

1/12* u_modified(j+4,k+1)*epsilon(k*h,(j-1)*h))...

+tau /2*(1/12*(s((i-1)*tau ,(k-2)*h,(j-1)*h)+fu(u_now(j,k-1)

))/gamma ((k-2)*h,(j-1)*h)+...

10/12*(s((i-1)*tau ,(k-1)*h,(j-1)*h)+fu(u_now(j,k)))/gamma

((k-1)*h,(j-1)*h)+...

1/12*(s((i-1)*tau ,k*h,(j-1)*h)+fu(u_now(j,k+1)))/gamma(k*h

,(j-1)*h))...

+tau /2*(1/12*(s(i*tau ,(k-2)*h,(j-1)*h)+f_next(j,k-1))/

gamma ((k-2)*h,(j-1)*h)+...

10/12*(s(i*tau ,(k-1)*h,(j-1)*h)+f_next(j,k))/gamma((k-1)*h

,(j-1)*h)+...

1/12*(s(i*tau ,k*h,(j-1)*h)+f_next(j,k+1))/gamma(k*h,(j-1)*

h));

end

end

% u_prime at boundary

% x = 0

b_0 = zeros(N+5,1);

for j = 1:N+1

b_0(j+2) = h1(i*tau ,(j-1)*h);

end

p1 = polyfit (0:h:4*h,b_0 (3:7) ,4);

b_0(1) = polyval(p1 ,-2*h);

b_0(2) = polyval(p1 ,-h);

p2 = polyfit ((N-4)*h:h:N*h,b_0(N-1:N+3) ,4);

b_0(N+4) = polyval(p2 ,(N+1)*h);

b_0(N+5) = polyval(p2 ,(N+2)*h);

for j = 1:N+1

u_prime(j,1)= b_0(j+2)-epsilon (0,(j-1)*h)*(-1/12* b_0(j)+4/3* b_0(j

+1) -...

5/2* b_0(j+2) +4/3* b_0(j+3) -1/12* b_0(j+4));

end

% x = pi

b_pi = zeros(N+5,1);

for j = 1:N+1

b_pi(j+2) = h2(i*tau ,(j-1)*h);

67

end

p1 = polyfit (0:h:4*h,b_pi (3:7) ,4);

b_pi (1) = polyval(p1 ,-2*h);

b_pi (2) = polyval(p1 ,-h);

p2 = polyfit ((N-4)*h:h:N*h,b_pi(N-1:N+3) ,4);

b_pi(N+4) = polyval(p2 ,(N+1)*h);

b_pi(N+5) = polyval(p2 ,(N+2)*h);

for j = 1:N+1

u_prime(j,N+1)= b_pi(j+2)-epsilon(pi ,(j-1)*h)*(-1/12* b_pi(j)+4/3*

b_pi(j+1) -...

5/2* b_pi(j+2) +4/3* b_pi(j+3) -1/12* b_pi(j+4));

end

% Solve in x direction

u_star = [];

for j = 1:N+1

b = u_prime(j,:) ’;

% Construct the matrix A

A = eye(N+1);

for k = 2:N

A(k,k-1) = 1/(12* gamma ((k-2)*h,(j-1)*h)) -1;

A(k,k) = 10/(12* gamma ((k-1)*h,(j-1)*h))+2;

A(k,k+1) = 1/(12* gamma(k*h,(j-1)*h)) -1;

end

% Solve

u_star = [u_star ;(A\b) ’];

end

u_star = u_star (:,2:end -1);

u_str = zeros(N+1,N-1);

for k = 1:N-1

for j = 2:N

u_str(j,k) = 1/12* u_star(j-1,k)/epsilon(k*h,(j-2)*h)+10/12*

u_star(j,k)/epsilon(k*h,(j-1)*h)...

+1/12* u_star(j+1,k)/epsilon(k*h,j*h);

end

u_str(1,k) = g1(i*tau ,k*h);

u_str(N+1,k) = g2(i*tau ,k*h);

end

% Solve in y direction

u_final = [];

for k = 1:N-1

c = u_str(:,k);

% Construct the big matrix A

A = eye(N+1);

for j = 2:N

A(j,j-1) = 1/(12* epsilon(k*h,(j-2)*h)) -1;

A(j,j) = 10/(12* epsilon(k*h,(j-1)*h))+2;

A(j,j+1) = 1/(12* epsilon(k*h,j*h)) -1;

end

% solve

u_final = [u_final A\c];

68

end

% Our final solution

u_now = [b_0(3:end -2) u_final b_pi (3:end -2)];

% store the solution

U{end+1} = u_now;

F{end+1} = fu(u_now);

end

tEnd = cputime - tStart;

%% Real solution

u_real = zeros(N+1,N+1);

for j = 1:N+1 % y coordinate

for k = 1:N+1 % x coordinate

u_real(j,k) = u(T,(k-1)*h, (j-1)*h);

end

end

Er(end +1) = max(max(abs(u_real -U{end})));

Er(end +1) = norm(reshape(abs(u_real -U{end}) ,1,[]))/(N-1);

Time(end +1) = tEnd;

69

For Example 4 (Table 4.8, 4.9). The numerical example in Section 4.6 used the same algo-

rithm, however with different coefficients, source function, initial conditions and boundary

conditions.

%% Coupled Equations

%% Fourth -order ADI

%% General diffusion coefficients

%% u_t = a(x,y)*u_xx+b(x,y)*u_yy -v+s(x,y,t) on [0 ,1]*[0 ,pi]*[0,pi]

%% v_t = c(x,y)*u_xx+d(x,y)*u_yy+u+s(x,y,t) on [0 ,1]*[0 ,pi]*[0,pi]

% N>=5

global N h tau alpha beta gamma epsilon u v;

N = 50; h = pi/N;

T = 1; M = 1000; tau = T/M;

% Save numerical solution at each step here

U = {}; V = {};

% Error Tolerance

tol = 10^(-8); total_Itr = 0;

%% Coeffcients

% alpha = x+y+1/2; beta = 2/sqrt(x^2+y^2+1)

% gamma = 1/(y^2+1); epsilon = (x^2+1) /3

% Consume the (x,y) and produces the coefficient value at that point

alpha = @(x,y) tau /(2*h^2)*(x+y+1)/2;

beta = @(x,y) tau /(2*h^2) *2/ sqrt(x^2+y^2+1);

gamma = @(x,y) tau /(2*h^2) *1/(y^2+1);

epsilon = @(x,y) tau /(2*h^2)*(x^2+1) /3;

%% Initial Conditions and contructing the first matrix

% u(0,x,y) = f1(x,y)

f1 = @(x,y) cos(x)*sin (2*y);

% v(0,x,y) = f2(x,y)

f2 = @(x,y) cos(x)*cos(y);

u_now = zeros(N+1,N+1);

v_now = zeros(N+1,N+1);

for j = 1:N+1 % y coordinate

for k = 1:N+1 % x coordinate

u_now(j,k) = f1((k-1)*h, (j-1)*h);

end

end

for j = 1:N+1 % y coordinate

for k = 1:N+1 % x coordinate

v_now(j,k) = f2((k-1)*h, (j-1)*h);

end

end

U{end+1} = u_now;

V{end+1} = v_now;

% Analytic solution

u = @(t,x,y) exp(-t)*cos(x)*sin(2*y);

v = @(t,x,y) exp(-t)*cos(x)*cos(y);

tStart = cputime;

70

% Solve for u and v iteratively

for i = 1:M

u_present = U{end};

u_last = U{end};

v_present = V{end};

v_last = V{end};

% Max Iterations allowed

k = 15;

% Iteratively solve the system

while k == 15 || (max(max(max(abs(u_present -u_last))),max(max(abs(

v_present -v_last))))>tol && k>=1)

total_Itr = total_Itr + 1;

k = k-1;

u_last = u_present;

v_last = v_present;

u_present = solve_u(U{end},i,V{end},v_present);

v_present = solve_v(V{end},i,U{end},u_present);

end

% Store the solution

U{end+1} = u_present;

V{end+1} = v_present;

end

tEnd = cputime - tStart;

%% Real solution

u_real = zeros(N+1,N+1);

for j = 1:N+1 % y coordinate

for k = 1:N+1 % x coordinate

u_real(j,k) = u(T,(k-1)*h, (j-1)*h);

end

end

%Er(end+1) = max(max(abs(u_real -U{end})));

Er(end +1) = norm(reshape(abs(u_real -U{end}) ,1,[]))/(N-1);

%Time(end+1) = tEnd;

% Solve u Function

% U list so far , i-th step , latest v -> new U list

function u_output = solve_u(u_now , i, v_now , v_present)

global N h tau alpha beta u v;

%Boundary Conditions

% u(t,x,0) = g1(t,x)

% u(t,x,pi) = g2(t,x)

% u(t,0,y) = h1(t,y)

% u(t,pi ,y) = h2(t,y)

g1 = @(t,x) 0;

g2 = @(t,x) 0;

h1 = @(t,y) exp(-t)*sin (2*y);

h2 = @(t,y) -exp(-t)*sin (2*y);

% Source term

s = @(t,x,y) -u(t,x,y)+(x+y+1)/2*u(t,x,y)+8/ sqrt(x^2+y^2+1)*u(t,x,y)+v

(t,x,y);

% Add four extra rows on u_now by interpolation

71

u_modified = [zeros(2,N+1);u_now;zeros(2,N+1)];

for j = 1:N+1

p1 = polyfit (0:h:4*h,u_now (1:5,j) ,4);

u_modified (1,j) = polyval(p1 ,-2*h);

u_modified (2,j) = polyval(p1,-h);

p2 = polyfit ((N-4)*h:h:N*h,u_now(N-3:N+1,j) ,4);

u_modified(N+4,j) = polyval(p2 ,(N+1)*h);

u_modified(N+5,j) = polyval(p2 ,(N+2)*h);

end

% Calculate the inner part (x neq 0, pi) of u_prime

u_prime = zeros(N+1, N+1);

for j = 1:N+1 % y coordinate

for k = 2:N % x coordinate

u_prime(j,k) = 1/12* u_modified(j+2,k-1)/alpha((k-2)*h,(j-1)*h)

+10/12* u_modified(j+2,k)/alpha((k-1)*h,(j-1)*h)+...

1/12* u_modified(j+2,k+1)/alpha(k*h,(j-1)*h)+(u_modified(j

+2,k-1) -2* u_modified(j+2,k)+u_modified(j+2,k+1))...

+1/12*(-1/12* beta((k-2)*h,(j-1)*h)/alpha((k-2)*h,(j-1)*h)*

u_modified(j,k-1) +...

4/3* beta((k-2)*h,(j-1)*h)/alpha((k-2)*h,(j-1)*h)*

u_modified(j+1,k-1) -...

5/2* beta((k-2)*h,(j-1)*h)/alpha((k-2)*h,(j-1)*h)*

u_modified(j+2,k-1) +...

4/3* beta((k-2)*h,(j-1)*h)/alpha((k-2)*h,(j-1)*h)*

u_modified(j+3,k-1) -...

1/12* beta((k-2)*h,(j-1)*h)/alpha ((k-2)*h,(j-1)*h)*

u_modified(j+4,k-1))...

+10/12*(-1/12* beta((k-1)*h,(j-1)*h)/alpha((k-1)*h,(j-1)*h)

*u_modified(j,k)+...

4/3* beta((k-1)*h,(j-1)*h)/alpha((k-1)*h,(j-1)*h)*

u_modified(j+1,k) -...

5/2* beta((k-1)*h,(j-1)*h)/alpha((k-1)*h,(j-1)*h)*

u_modified(j+2,k)+...

4/3* beta((k-1)*h,(j-1)*h)/alpha((k-1)*h,(j-1)*h)*

u_modified(j+3,k) -...

1/12* beta((k-1)*h,(j-1)*h)/alpha ((k-1)*h,(j-1)*h)*

u_modified(j+4,k))...

+1/12*(-1/12* beta(k*h,(j-1)*h)/alpha(k*h,(j-1)*h)*

u_modified(j,k+1) +...

4/3* beta(k*h,(j-1)*h)/alpha(k*h,(j-1)*h)*u_modified(j+1,k

+1) -...

5/2* beta(k*h,(j-1)*h)/alpha(k*h,(j-1)*h)*u_modified(j+2,k

+1) +...

4/3* beta(k*h,(j-1)*h)/alpha(k*h,(j-1)*h)*u_modified(j+3,k

+1) -...

1/12* beta(k*h,(j-1)*h)/alpha(k*h,(j-1)*h)*u_modified(j+4,k

+1))...

+(-1/12* u_modified(j,k-1)*beta((k-2)*h,(j-1)*h)+4/3*

u_modified(j+1,k-1)*beta((k-2)*h,(j-1)*h) -...

5/2* u_modified(j+2,k-1)*beta((k-2)*h,(j-1)*h)+4/3*

u_modified(j+3,k-1)*beta((k-2)*h,(j-1)*h) -...

1/12* u_modified(j+4,k-1)*beta((k-2)*h,(j-1)*h))...

-2*(-1/12* u_modified(j,k)*beta((k-1)*h,(j-1)*h)+4/3*

72

u_modified(j+1,k)*beta((k-1)*h,(j-1)*h) -...

5/2* u_modified(j+2,k)*beta((k-1)*h,(j-1)*h)+4/3* u_modified

(j+3,k)*beta((k-1)*h,(j-1)*h) -...

1/12* u_modified(j+4,k)*beta((k-1)*h,(j-1)*h))...

+(-1/12* u_modified(j,k+1)*beta(k*h,(j-1)*h)+4/3* u_modified

(j+1,k+1)*beta(k*h,(j-1)*h) -...

5/2* u_modified(j+2,k+1)*beta(k*h,(j-1)*h)+4/3* u_modified(j

+3,k+1)*beta(k*h,(j-1)*h) -...

1/12* u_modified(j+4,k+1)*beta(k*h,(j-1)*h))...

+tau /2*(1/12*(s((i-1)*tau ,(k-2)*h,(j-1)*h)-v_now(j,k-1))/

alpha ((k-2)*h,(j-1)*h)+...

10/12*(s((i-1)*tau ,(k-1)*h,(j-1)*h)-v_now(j,k))/alpha((k

-1)*h,(j-1)*h)+...

1/12*(s((i-1)*tau ,k*h,(j-1)*h)-v_now(j,k+1))/alpha(k*h,(j

-1)*h))...

+tau /2*(1/12*(s(i*tau ,(k-2)*h,(j-1)*h)-v_present(j,k-1))/

alpha ((k-2)*h,(j-1)*h)+...

10/12*(s(i*tau ,(k-1)*h,(j-1)*h)-v_present(j,k))/alpha((k

-1)*h,(j-1)*h)+...

1/12*(s(i*tau ,k*h,(j-1)*h)-v_present(j,k+1))/alpha(k*h,(j

-1)*h));

end

end

% u_prime at boundary

% x = 0

b_0 = zeros(N+5,1);

for j = 1:N+1

b_0(j+2) = h1(i*tau ,(j-1)*h);

end

p1 = polyfit (0:h:4*h,b_0 (3:7) ,4);

b_0(1) = polyval(p1 ,-2*h);

b_0(2) = polyval(p1 ,-h);

p2 = polyfit ((N-4)*h:h:N*h,b_0(N-1:N+3) ,4);

b_0(N+4) = polyval(p2 ,(N+1)*h);

b_0(N+5) = polyval(p2 ,(N+2)*h);

for j = 1:N+1

u_prime(j,1)= b_0(j+2)-beta(0,(j-1)*h)*(-1/12* b_0(j)+4/3* b_0(j+1)

-...

5/2* b_0(j+2) +4/3* b_0(j+3) -1/12* b_0(j+4));

end

% x = pi

b_pi = zeros(N+5,1);

for j = 1:N+1

b_pi(j+2) = h2(i*tau ,(j-1)*h);

end

p1 = polyfit (0:h:4*h,b_pi (3:7) ,4);

b_pi (1) = polyval(p1 ,-2*h);

b_pi (2) = polyval(p1 ,-h);

p2 = polyfit ((N-4)*h:h:N*h,b_pi(N-1:N+3) ,4);

b_pi(N+4) = polyval(p2 ,(N+1)*h);

b_pi(N+5) = polyval(p2 ,(N+2)*h);

for j = 1:N+1

u_prime(j,N+1)= b_pi(j+2)-beta(pi ,(j-1)*h)*(-1/12* b_pi(j)+4/3* b_pi

73

(j+1) -...

5/2* b_pi(j+2) +4/3* b_pi(j+3) -1/12* b_pi(j+4));

end

% Solve in x direction

u_star = [];

for j = 1:N+1

b = u_prime(j,:) ’;

% Construct the matrix A

A = eye(N+1);

for k = 2:N

A(k,k-1) = 1/(12* alpha ((k-2)*h,(j-1)*h)) -1;

A(k,k) = 10/(12* alpha ((k-1)*h,(j-1)*h))+2;

A(k,k+1) = 1/(12* alpha(k*h,(j-1)*h)) -1;

end

% Solve

u_star = [u_star ;(A\b) ’];

end

u_star = u_star (:,2:end -1);

u_str = zeros(N+1,N-1);

for k = 1:N-1

for j = 2:N

u_str(j,k) = 1/12* u_star(j-1,k)/beta(k*h,(j-2)*h)+10/12* u_star

(j,k)/beta(k*h,(j-1)*h)...

+1/12* u_star(j+1,k)/beta(k*h,j*h);

end

u_str(1,k) = g1(i*tau ,k*h);

u_str(N+1,k) = g2(i*tau ,k*h);

end

% Solve in y direction

u_final = [];

for k = 1:N-1

c = u_str(:,k);

% Construct the big matrix A

A = eye(N+1);

for j = 2:N

A(j,j-1) = 1/(12* beta(k*h,(j-2)*h)) -1;

A(j,j) = 10/(12* beta(k*h,(j-1)*h))+2;

A(j,j+1) = 1/(12* beta(k*h,j*h)) -1;

end

% solve

u_final = [u_final A\c];

end

% Our final solution

u_output = [b_0(3:end -2) u_final b_pi (3:end -2)];

end

% Solve v Function

% V list so far , i-th step , latest u -> new V list

function v_output = solve_v(v_now , i, u_now , u_present)

global N h tau gamma epsilon u v;

74

%Boundary Conditions

% v(t,x,0) = g1(t,x)

% v(t,x,pi) = g2(t,x)

% v(t,0,y) = h1(t,y)

% v(t,pi ,y) = h2(t,y)

g1 = @(t,x) exp(-t)*cos(x);

g2 = @(t,x) -exp(-t)*cos(x);

h1 = @(t,y) exp(-t)*cos(y);

h2 = @(t,y) -exp(-t)*cos(y);

% Source term

s = @(t,x,y) -v(t,x,y)+v(t,x,y)/(y^2+1) +(x^2+1) /3*v(t,x,y)-u(t,x,y);

% Add four extra rows on v_now by interpolation

v_modified = [zeros(2,N+1);v_now;zeros(2,N+1)];

for j = 1:N+1

p1 = polyfit (0:h:4*h,v_now (1:5,j) ,4);

v_modified (1,j) = polyval(p1 ,-2*h);

v_modified (2,j) = polyval(p1,-h);

p2 = polyfit ((N-4)*h:h:N*h,v_now(N-3:N+1,j) ,4);

v_modified(N+4,j) = polyval(p2 ,(N+1)*h);

v_modified(N+5,j) = polyval(p2 ,(N+2)*h);

end

% Calculate the inner part (x neq 0, pi) of v_prime

v_prime = zeros(N+1, N+1);

for j = 1:N+1 % y coordinate

for k = 2:N % x coordinate

v_prime(j,k) = 1/12* v_modified(j+2,k-1)/gamma((k-2)*h,(j-1)*h)

+10/12* v_modified(j+2,k)/gamma((k-1)*h,(j-1)*h)+...

1/12* v_modified(j+2,k+1)/gamma(k*h,(j-1)*h)+(v_modified(j

+2,k-1) -2* v_modified(j+2,k)+v_modified(j+2,k+1))...

+1/12*(-1/12* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*

h)*v_modified(j,k-1) +...

4/3* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*h)*

v_modified(j+1,k-1) -...

5/2* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*h)*

v_modified(j+2,k-1) +...

4/3* epsilon ((k-2)*h,(j-1)*h)/gamma((k-2)*h,(j-1)*h)*

v_modified(j+3,k-1) -...

1/12* epsilon ((k-2)*h,(j-1)*h)/gamma ((k-2)*h,(j-1)*h)*

v_modified(j+4,k-1))...

+10/12*(-1/12* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)

*h)*v_modified(j,k)+...

4/3* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)*

v_modified(j+1,k) -...

5/2* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)*

v_modified(j+2,k)+...

4/3* epsilon ((k-1)*h,(j-1)*h)/gamma((k-1)*h,(j-1)*h)*

v_modified(j+3,k) -...

1/12* epsilon ((k-1)*h,(j-1)*h)/gamma ((k-1)*h,(j-1)*h)*

v_modified(j+4,k))...

+1/12*(-1/12* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*

v_modified(j,k+1) +...

75

4/3* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*v_modified(j

+1,k+1) -...

5/2* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*v_modified(j

+2,k+1) +...

4/3* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*v_modified(j

+3,k+1) -...

1/12* epsilon(k*h,(j-1)*h)/gamma(k*h,(j-1)*h)*v_modified(j

+4,k+1))...

+(-1/12* v_modified(j,k-1)*epsilon ((k-2)*h,(j-1)*h)+4/3*

v_modified(j+1,k-1)*epsilon ((k-2)*h,(j-1)*h) -...

5/2* v_modified(j+2,k-1)*epsilon ((k-2)*h,(j-1)*h)+4/3*

v_modified(j+3,k-1)*epsilon ((k-2)*h,(j-1)*h) -...

1/12* v_modified(j+4,k-1)*epsilon ((k-2)*h,(j-1)*h))...

-2*(-1/12* v_modified(j,k)*epsilon ((k-1)*h,(j-1)*h)+4/3*

v_modified(j+1,k)*epsilon ((k-1)*h,(j-1)*h) -...

5/2* v_modified(j+2,k)*epsilon ((k-1)*h,(j-1)*h)+4/3*

v_modified(j+3,k)*epsilon ((k-1)*h,(j-1)*h) -...

1/12* v_modified(j+4,k)*epsilon ((k-1)*h,(j-1)*h))...

+(-1/12* v_modified(j,k+1)*epsilon(k*h,(j-1)*h)+4/3*

v_modified(j+1,k+1)*epsilon(k*h,(j-1)*h) -...

5/2* v_modified(j+2,k+1)*epsilon(k*h,(j-1)*h)+4/3*

v_modified(j+3,k+1)*epsilon(k*h,(j-1)*h) -...

1/12* v_modified(j+4,k+1)*epsilon(k*h,(j-1)*h))...

+tau /2*(1/12*(s((i-1)*tau ,(k-2)*h,(j-1)*h)+u_now(j,k-1))/

gamma ((k-2)*h,(j-1)*h)+...

10/12*(s((i-1)*tau ,(k-1)*h,(j-1)*h)+u_now(j,k))/gamma((k

-1)*h,(j-1)*h)+...

1/12*(s((i-1)*tau ,k*h,(j-1)*h)+u_now(j,k+1))/gamma(k*h,(j

-1)*h))...

+tau /2*(1/12*(s(i*tau ,(k-2)*h,(j-1)*h)+u_present(j,k-1))/

gamma ((k-2)*h,(j-1)*h)+...

10/12*(s(i*tau ,(k-1)*h,(j-1)*h)+u_present(j,k))/gamma((k

-1)*h,(j-1)*h)+...

1/12*(s(i*tau ,k*h,(j-1)*h)+u_present(j,k+1))/gamma(k*h,(j

-1)*h));

end

end

% v_prime at boundary

% x = 0

b_0 = zeros(N+5,1);

for j = 1:N+1

b_0(j+2) = h1(i*tau ,(j-1)*h);

end

p1 = polyfit (0:h:4*h,b_0 (3:7) ,4);

b_0(1) = polyval(p1 ,-2*h);

b_0(2) = polyval(p1 ,-h);

p2 = polyfit ((N-4)*h:h:N*h,b_0(N-1:N+3) ,4);

b_0(N+4) = polyval(p2 ,(N+1)*h);

b_0(N+5) = polyval(p2 ,(N+2)*h);

for j = 1:N+1

v_prime(j,1)= b_0(j+2)-epsilon (0,(j-1)*h)*(-1/12* b_0(j)+4/3* b_0(j

+1) -...

5/2* b_0(j+2) +4/3* b_0(j+3) -1/12* b_0(j+4));

end

76

% x = pi

b_pi = zeros(N+5,1);

for j = 1:N+1

b_pi(j+2) = h2(i*tau ,(j-1)*h);

end

p1 = polyfit (0:h:4*h,b_pi (3:7) ,4);

b_pi (1) = polyval(p1 ,-2*h);

b_pi (2) = polyval(p1 ,-h);

p2 = polyfit ((N-4)*h:h:N*h,b_pi(N-1:N+3) ,4);

b_pi(N+4) = polyval(p2 ,(N+1)*h);

b_pi(N+5) = polyval(p2 ,(N+2)*h);

for j = 1:N+1

v_prime(j,N+1)= b_pi(j+2)-epsilon(pi ,(j-1)*h)*(-1/12* b_pi(j)+4/3*

b_pi(j+1) -...

5/2* b_pi(j+2) +4/3* b_pi(j+3) -1/12* b_pi(j+4));

end

% Solve in x direction

v_star = [];

for j = 1:N+1

b = v_prime(j,:) ’;

% Construct the matrix A

A = eye(N+1);

for k = 2:N

A(k,k-1) = 1/(12* gamma ((k-2)*h,(j-1)*h)) -1;

A(k,k) = 10/(12* gamma ((k-1)*h,(j-1)*h))+2;

A(k,k+1) = 1/(12* gamma(k*h,(j-1)*h)) -1;

end

% Solve

v_star = [v_star ;(A\b) ’];

end

v_star = v_star (:,2:end -1);

v_str = zeros(N+1,N-1);

for k = 1:N-1

for j = 2:N

v_str(j,k) = 1/12* v_star(j-1,k)/epsilon(k*h,(j-2)*h)+10/12*

v_star(j,k)/epsilon(k*h,(j-1)*h)...

+1/12* v_star(j+1,k)/epsilon(k*h,j*h);

end

v_str(1,k) = g1(i*tau ,k*h);

v_str(N+1,k) = g2(i*tau ,k*h);

end

% Solve in y direction

v_final = [];

for k = 1:N-1

c = v_str(:,k);

% Construct the big matrix A

A = eye(N+1);

for j = 2:N

A(j,j-1) = 1/(12* epsilon(k*h,(j-2)*h)) -1;

77

A(j,j) = 10/(12* epsilon(k*h,(j-1)*h))+2;

A(j,j+1) = 1/(12* epsilon(k*h,j*h)) -1;

end

% solve

v_final = [v_final A\c];

end

% Our final solution

v_output = [b_0(3:end -2) v_final b_pi (3:end -2)];

end

78

For Example 5 (Table 4.10, 4.11)

%% Fourth -order ADI

%% General diffusion coefficients

%% u_t = alpha(x,y)*u_xx+beta(x,y)*u_yy+s(x,y,t) on [0 ,1]*[0 ,pi]*[0,pi]

% N>=5

N = 500; h = pi/N;

T = 1; M = 40; tau = T/M;

% Save numerical solution at each step here

U = {};

%% Coeffcients

% alpha = x+y+t+1/2; beta = 2/sqrt(x^2+y^2+(t+1)^2)

% Consume the (x,y) and produces the coefficient value at that point

gamma = @(t,x,y) tau /(2*h^2)*(x+y+t+1)/2;

epsilon = @(t,x,y) tau /(2*h^2) *2/ sqrt(x^2+y^2+(t+1)^2);

% Initial conditions and Boundary Conditions

% u(0,x,y) = f(x,y)

% u(t,x,0) = g1(t,x)

% u(t,x,pi) = g2(t,x)

% u(t,0,y) = h1(t,y)

% u(t,pi,y) = h2(t,y)

f = @(x,y) sin(x+pi/4)*cos(2*y);

g1 = @(t,x) exp(-t)*sin(x+pi/4);

g2 = @(t,x) exp(-t)*sin(x+pi/4);

h1 = @(t,y) sqrt (2) /2* exp(-t)*cos (2*y);

h2 = @(t,y) -sqrt (2) /2* exp(-t)*cos (2*y);

% Analytic solution

u = @(t,x,y) exp(-t)*sin(x+pi/4)*cos(2*y);

% Source term

s = @(t,x,y) -u(t,x,y)+(x+y+t+1)/2*u(t,x,y)+8/ sqrt(x^2+y^2+(t+1)^2)*u(t,x,

y);

tStart = cputime;

for i = 1:M

% Implement the initial condition

if i == 1

% u_now is a (N+1)*(N+1) matrix

u_now = zeros(N+1,N+1);

for j = 1:N+1 % y coordinate

for k = 1:N+1 % x coordinate

u_now(j,k) = f((k-1)*h, (j-1)*h);

end

end

U{end+1} = u_now;

end

% Add four extra rows on u_now by interpolation

u_modified = [zeros(2,N+1);u_now;zeros(2,N+1)];

for j = 1:N+1

p1 = polyfit (0:h:4*h,u_now (1:5,j) ,4);

u_modified (1,j) = polyval(p1 ,-2*h);

u_modified (2,j) = polyval(p1,-h);

79

p2 = polyfit ((N-4)*h:h:N*h,u_now(N-3:N+1,j) ,4);

u_modified(N+4,j) = polyval(p2 ,(N+1)*h);

u_modified(N+5,j) = polyval(p2 ,(N+2)*h);

end

% Calculate the inner part (x neq 0, pi) of u_prime

u_prime = zeros(N+1, N+1);

for j = 1:N+1 % y coordinate

for k = 2:N % x coordinate

u_prime(j,k) = 1/12* u_modified(j+2,k-1)/gamma((i -1/2)*tau ,(k

-2)*h,(j-1)*h)+10/12* u_modified(j+2,k)/gamma((i -1/2)*tau ,(k-1)*h,(j-1)*

h)+...

1/12* u_modified(j+2,k+1)/gamma ((i-1/2)*tau ,k*h,(j-1)*h)+(

u_modified(j+2,k-1) -2* u_modified(j+2,k)+u_modified(j+2,k+1))...

+1/12*(-1/12* epsilon ((i -1/2)*tau ,(k-2)*h,(j-1)*h)/gamma((i

-1/2)*tau ,(k-2)*h,(j-1)*h)*u_modified(j,k-1) +...

4/3* epsilon ((i -1/2)*tau ,(k-2)*h,(j-1)*h)/gamma((i -1/2)*tau

,(k-2)*h,(j-1)*h)*u_modified(j+1,k-1) -...

5/2* epsilon ((i -1/2)*tau ,(k-2)*h,(j-1)*h)/gamma((i -1/2)*tau

,(k-2)*h,(j-1)*h)*u_modified(j+2,k-1) +...

4/3* epsilon ((i -1/2)*tau ,(k-2)*h,(j-1)*h)/gamma((i -1/2)*tau

,(k-2)*h,(j-1)*h)*u_modified(j+3,k-1) -...

1/12* epsilon ((i-1/2)*tau ,(k-2)*h,(j-1)*h)/gamma ((i-1/2)*

tau ,(k-2)*h,(j-1)*h)*u_modified(j+4,k-1))...

+10/12*(-1/12* epsilon ((i -1/2)*tau ,(k-1)*h,(j-1)*h)/gamma((

i -1/2)*tau ,(k-1)*h,(j-1)*h)*u_modified(j,k)+...

4/3* epsilon ((i -1/2)*tau ,(k-1)*h,(j-1)*h)/gamma((i -1/2)*tau

,(k-1)*h,(j-1)*h)*u_modified(j+1,k) -...

5/2* epsilon ((i -1/2)*tau ,(k-1)*h,(j-1)*h)/gamma((i -1/2)*tau

,(k-1)*h,(j-1)*h)*u_modified(j+2,k)+...

4/3* epsilon ((i -1/2)*tau ,(k-1)*h,(j-1)*h)/gamma((i -1/2)*tau

,(k-1)*h,(j-1)*h)*u_modified(j+3,k) -...

1/12* epsilon ((i-1/2)*tau ,(k-1)*h,(j-1)*h)/gamma ((i-1/2)*

tau ,(k-1)*h,(j-1)*h)*u_modified(j+4,k))...

+1/12*(-1/12* epsilon ((i -1/2)*tau ,k*h,(j-1)*h)/gamma((i

-1/2)*tau ,k*h,(j-1)*h)*u_modified(j,k+1) +...

4/3* epsilon ((i -1/2)*tau ,k*h,(j-1)*h)/gamma((i -1/2)*tau ,k*h

,(j-1)*h)*u_modified(j+1,k+1) -...

5/2* epsilon ((i -1/2)*tau ,k*h,(j-1)*h)/gamma((i -1/2)*tau ,k*h

,(j-1)*h)*u_modified(j+2,k+1) +...

4/3* epsilon ((i -1/2)*tau ,k*h,(j-1)*h)/gamma((i -1/2)*tau ,k*h

,(j-1)*h)*u_modified(j+3,k+1) -...

1/12* epsilon ((i-1/2)*tau ,k*h,(j-1)*h)/gamma ((i-1/2)*tau ,k*

h,(j-1)*h)*u_modified(j+4,k+1))...

+(-1/12* u_modified(j,k-1)*epsilon ((i -1/2)*tau ,(k-2)*h,(j

-1)*h)+4/3* u_modified(j+1,k-1)*epsilon ((i -1/2)*tau ,(k-2)*h,(j-1)*h) -...

5/2* u_modified(j+2,k-1)*epsilon ((i -1/2)*tau ,(k-2)*h,(j-1)*

h)+4/3* u_modified(j+3,k-1)*epsilon ((i-1/2)*tau ,(k-2)*h,(j-1)*h) -...

1/12* u_modified(j+4,k-1)*epsilon ((i-1/2)*tau ,(k-2)*h,(j-1)

*h))...

-2*(-1/12* u_modified(j,k)*epsilon ((i-1/2)*tau ,(k-1)*h,(j

-1)*h)+4/3* u_modified(j+1,k)*epsilon ((i -1/2)*tau ,(k-1)*h,(j-1)*h) -...

5/2* u_modified(j+2,k)*epsilon ((i -1/2)*tau ,(k-1)*h,(j-1)*h)

+4/3* u_modified(j+3,k)*epsilon ((i-1/2)*tau ,(k-1)*h,(j-1)*h) -...

80

1/12* u_modified(j+4,k)*epsilon ((i-1/2)*tau ,(k-1)*h,(j-1)*h

))...

+(-1/12* u_modified(j,k+1)*epsilon ((i -1/2)*tau ,k*h,(j-1)*h)

+4/3* u_modified(j+1,k+1)*epsilon ((i-1/2)*tau ,k*h,(j-1)*h) -...

5/2* u_modified(j+2,k+1)*epsilon ((i -1/2)*tau ,k*h,(j-1)*h)

+4/3* u_modified(j+3,k+1)*epsilon ((i-1/2)*tau ,k*h,(j-1)*h) -...

1/12* u_modified(j+4,k+1)*epsilon ((i-1/2)*tau ,k*h,(j-1)*h))

...

+tau /2*(1/12*s((i-1)*tau ,(k-2)*h,(j-1)*h)/gamma ((i-1/2)*

tau ,(k-2)*h,(j-1)*h)+...

10/12*s((i-1)*tau ,(k-1)*h,(j-1)*h)/gamma((i -1/2)*tau ,(k-1)

*h,(j-1)*h)+...

1/12*s((i-1)*tau ,k*h,(j-1)*h)/gamma ((i-1/2)*tau ,k*h,(j-1)*

h))...

+tau /2*(1/12*s(i*tau ,(k-2)*h,(j-1)*h)/gamma ((i-1/2)*tau ,(k

-2)*h,(j-1)*h)+...

10/12*s(i*tau ,(k-1)*h,(j-1)*h)/gamma((i -1/2)*tau ,(k-1)*h,(

j-1)*h)+...

1/12*s(i*tau ,k*h,(j-1)*h)/gamma ((i-1/2)*tau ,k*h,(j-1)*h));

end

end

% u_prime at boundary

% x = 0

b_0 = zeros(N+5,1);

for j = 1:N+1

b_0(j+2) = h1(i*tau ,(j-1)*h);

end

p1 = polyfit (0:h:4*h,b_0 (3:7) ,4);

b_0(1) = polyval(p1 ,-2*h);

b_0(2) = polyval(p1 ,-h);

p2 = polyfit ((N-4)*h:h:N*h,b_0(N-1:N+3) ,4);

b_0(N+4) = polyval(p2 ,(N+1)*h);

b_0(N+5) = polyval(p2 ,(N+2)*h);

for j = 1:N+1

u_prime(j,1)= b_0(j+2)-epsilon ((i -1/2)*tau ,0,(j-1)*h)*(-1/12* b_0(j

)+4/3* b_0(j+1) -...

5/2* b_0(j+2) +4/3* b_0(j+3) -1/12* b_0(j+4));

end

% x = pi

b_pi = zeros(N+5,1);

for j = 1:N+1

b_pi(j+2) = h2(i*tau ,(j-1)*h);

end

p1 = polyfit (0:h:4*h,b_pi (3:7) ,4);

b_pi (1) = polyval(p1 ,-2*h);

b_pi (2) = polyval(p1 ,-h);

p2 = polyfit ((N-4)*h:h:N*h,b_pi(N-1:N+3) ,4);

b_pi(N+4) = polyval(p2 ,(N+1)*h);

b_pi(N+5) = polyval(p2 ,(N+2)*h);

for j = 1:N+1

u_prime(j,N+1)= b_pi(j+2)-epsilon ((i -1/2)*tau ,pi ,(j-1)*h)*(-1/12*

b_pi(j)+4/3* b_pi(j+1) -...

5/2* b_pi(j+2) +4/3* b_pi(j+3) -1/12* b_pi(j+4));

81

end

% Solve in x direction

u_star = [];

for j = 1:N+1

b = u_prime(j,:) ’;

% Construct the matrix A

A = eye(N+1);

for k = 2:N

A(k,k-1) = 1/(12* gamma ((i-1/2)*tau ,(k-2)*h,(j-1)*h)) -1;

A(k,k) = 10/(12* gamma ((i-1/2)*tau ,(k-1)*h,(j-1)*h))+2;

A(k,k+1) = 1/(12* gamma ((i-1/2)*tau ,k*h,(j-1)*h)) -1;

end

% Solve

u_star = [u_star ;(A\b) ’];

end

u_star = u_star (:,2:end -1);

u_str = zeros(N+1,N-1);

for k = 1:N-1

for j = 2:N

u_str(j,k) = 1/12* u_star(j-1,k)/epsilon ((i-1/2)*tau ,k*h,(j-2)*

h)+10/12* u_star(j,k)/epsilon ((i-1/2)*tau ,k*h,(j-1)*h)...

+1/12* u_star(j+1,k)/epsilon ((i -1/2)*tau ,k*h,j*h);

end

u_str(1,k) = g1(i*tau ,k*h);

u_str(N+1,k) = g2(i*tau ,k*h);

end

% Solve in y direction

u_final = [];

for k = 1:N-1

c = u_str(:,k);

% Construct the big matrix A

A = eye(N+1);

for j = 2:N

A(j,j-1) = 1/(12* epsilon ((i-1/2)*tau ,k*h,(j-2)*h)) -1;

A(j,j) = 10/(12* epsilon ((i-1/2)*tau ,k*h,(j-1)*h))+2;

A(j,j+1) = 1/(12* epsilon ((i-1/2)*tau ,k*h,j*h)) -1;

end

% solve

u_final = [u_final A\c];

end

% Our final solution

u_now = [b_0(3:end -2) u_final b_pi (3:end -2)];

% store the solution

U{end+1} = u_now;

end

tEnd = cputime;

%% Real solution

u_real = zeros(N+1,N+1);

for j = 1:N+1 % y coordinate

82

for k = 1:N+1 % x coordinate

u_real(j,k) = u(T,(k-1)*h, (j-1)*h);

end

end

Er(end +1) = max(max(abs(u_real -U{end})));

Er1(end +1) = norm(reshape(abs(u_real -U{end}) ,1,[]))/(N-1);

Time(end +1) = tEnd - tStart;

83

