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Abstract

The broadcast nature of wireless communications presents security and privacy challenges.

Covert communication is a wireless security practice that focuses on intentionally hiding

transmitted information. Recently, wireless systems have experienced significant growth,

including the emergence of autoencoder-based models. These models, like other DNN

architectures, are vulnerable to adversarial attacks, highlighting the need to study their

susceptibility to covert communication. While there is ample research on covert communication

in traditional wireless systems, the investigation of autoencoder wireless systems remains

scarce. Furthermore, many existing covert methods are either detectable analytically or

difficult to adapt to diverse wireless systems.

The first part of this thesis provides a comprehensive examination of autoencoder-based

communication systems in various scenarios and channel conditions. It begins with an

introduction to autoencoder communication systems, followed by a detailed discussion of

our own implementation and evaluation results. This serves as a solid foundation for

the subsequent part of the thesis, where we propose a GAN-based covert communication

model. By treating the covert sender, covert receiver, and observer as generator, decoder,

and discriminator neural networks, respectively, we conduct joint training in an adversarial

setting to develop a covert communication scheme that can be integrated into any normal

autoencoder. Our proposal minimizes the impact on ongoing normal communication, addressing

previous works shortcomings. We also introduce a training algorithm that allows for the

desired tradeoff between covertness and reliability. Numerical results demonstrate the establishment

of a reliable and undetectable channel between covert users, regardless of the cover signal or

channel condition, with minimal disruption to the normal system operation.
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Chapter 1

Introduction

1.1 Thesis Motivation

In recent years, information and communication technology have witnessed major improvements

in many different aspects. The developing need of staying connected and accessing information

and resources without being physically tethered to a device or network made wireless communication

systems to be at the center of focus among all the communication means. The emergence

of novel services and applications such as smart cities, autonomous vehicles, remote medical

surgeries, cloud-computing, artificial intelligence, and internet-of-things (IOT) are leading

to proliferation of wireless technologies, including cellular networks, Wi-Fi, and Bluetooth.

Due to the broadcast nature of wireless channels, considerable attention has been given to

the security and privacy aspects of wireless communications. While the content of messages

(i.e., the information transmitted over the channel) can be protected against unauthorized

access using cryptography or physical-layer security techniques [65], there are occasions

when hiding the very existence of the communication channel is as vital as securing the

1



communicated messages themselves. Examples of such situations include military operations,

cyber espionage, social unrest, or privacy concerns of communication parties. All of the

aforementioned use cases have motivated the study of hidden communication channels, which

are referred to as “covert communication” [29, 7] in the literature.

The preliminary attempt to obtain covertness started with the study of spread spectrum

almost a century ago, with the main purpose of hiding military communications [48]. The

idea was to transmit the signal over a wide frequency band, which would make it harder to

locate and identify the original signal amidst the background noise. Many works continued to

further examine different aspects of this idea [44, 61]. However, the fundamental performance

limits of such work were unknown until recently when Bash et al. [5, 6] established a square

root limit on the number of covert bits that can be reliably sent over an additive white

Gaussian noise (AWGN) channel. Following this work, there has been a surge of interest in

examining covert channels [52, 54, 50, 10].

Numerous works have studied the theoretical limits of covert communication over wireless

systems in different scenarios [5, 54, 50, 30], but only a few works have focused on the

practical implementation of covert communication [13, 10, 31, 36]. Many of these works

involve an external factor that covert users rely on to build their covert communication, such

as hardware impairments [36], the presence of a cooperative jammer [52], or the cooperation

of a relay node [31, 25]. Additionally, the majority of works make some favorable assumptions

for covert users, the accessibility of covert users to cover signals and modulation type

[17], uncertainty in the knowledge of noise power at the detector’s receiver [20], neglecting

the impact of the covert system on normal communication [36], and limiting the channel

model to AWGN [36]. Imposing such restricted assumptions and dependencies eliminates

2



Figure 1.1: A military example of wireless covert communication. An unmanned aerial
vehicle (UAV) transmitting highly sensitive data to a covert receiver while trying to evade
detection by a vigilant Warden.

the generality of these covert models and makes it difficult for them to adapt to different

system deployments with distinct conditions. Moreover, recent studies show that covert

communication that causes noticeable divergence in the statistical properties of signals can be

easily detected using analytical and steganalysis methods [2, 24]. In our work, we leverage the

inherent channel noise present in common wireless communication systems. More specifically,

our covert communication relies on an established implicit shared secret key between Alice

and Bob, unbeknownst to Willie. This shared secret key is carefully formed through the

joint training of Alice and Bob as encoder and decoder networks.

There is a large body of work that focuses on different schemes for covert communication

based on traditional design approaches. However, wireless systems research has greatly

expanded in recent years to consider the potential impact of machine learning (ML) approaches

for a variety of problems [58]. In fact, various network optimization problems, which were
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traditionally handled using statistical models, now leverage machine learning techniques

[66]. Deep neural networks (DNNs) in particular, the major force in machine learning,

have helped address several wireless problems, such as signal classification [38, 39, 59, 32],

channel estimation [53], transmitter identification [45, 18], jamming, and anti-jamming [1, 2].

In a recent study, an end-to-end communication model based on deep learning emerged

as a replacement for conventional modular-based designs [39]. In this new paradigm, the

transmitter and receiver are designed based on DNNs that are jointly trained as the encoder

and decoder of an autoencoder network [39]. The autoencoder network can be trained to

learn the characteristics of the signal, such as its statistical properties, to develop modulation

and coding techniques through a self-learning process. This eliminates the need for hand-

crafted methods, giving the system the ability to determine the most effective way to

modulate and encode data. Compared to traditional communication systems, this approach

offers greater flexibility and robustness, as the autoencoder can adapt to varying channel

conditions and noise levels without manual tuning [67]. Despite these benefits, Autoencoder

wireless systems, similar to many other deep learning models, are highly susceptible to

adversarial attacks [11], such as jamming [2], spoofing attacks [51], signal misclassification

[46]. This motivates us to study the vulnerabilities that ML-based wireless communication

systems might have against covert communications.

1.2 Thesis Objective

In this thesis, our primary objective is to design a novel covert communication model that

overcomes many of the limitations and assumptions of existing approaches. To this end, we

4



aim to minimize the risk of detection by system monitors and ensure our covert model has

a minimal disturbance to existing communication between entities of the system. However,

before delving into the design of our covert communication model, it is crucial to gain

a thorough understanding of the underlying communication system used by the existing

entities, namely normal users. This understanding will serve as a foundation for effectively

integrating our covert model into the system. In particular, our focus is on seamlessly

integrating our covert model into autoencoder-based communication models. Our objective

is twofold: to provide a comprehensive review of these communication models and to present

our own implementation, showcasing the key findings that we have made in this area. Our

covert scheme leverages the inherent noise effect of the communication channel and operates

independently of external factors, eliminating the need for knowledge of cover signals or

modulation types. Notably, in scenarios involving a single normal user, our scheme can

operate without prior knowledge of the communication channel type. By training our covert

models in an adversarial manner against the observer and carefully minimizing the impact on

ongoing normal communication, we ensure that our covert signals blend seamlessly with the

statistical properties of normal signals, making them difficult to detect using conventional

analytical tools. It is important to highlight that while our method is specifically designed for

autoencoder-based wireless communication systems, there are no limitations on integrating

our model into conventional wireless communication systems.

5



1.2.1 Autoencoder Wireless Communication Models

The existing body of literature on autoencoder-based communication systems provides some

insights into their functioning, but a comprehensive study that thoroughly investigates the

implementation and evaluation of these systems across various channel models and system

configurations is noticeably absent. Consequently, it becomes imperative for us to bridge

this gap by designing, implementing, and rigorously evaluating our own versions of these

systems.

The main rationale behind conducting a thorough study of autoencoder communication

systems lies in the necessity to ensure the correct behavior and optimal performance of the

autoencoder models when our covert model is integrated with them. By gaining a deep

understanding of these systems, fine-tune the autoencoder models to ensure their optimal

and standard performance.

In the initial phase of our thesis, we thoroughly explore the intricacies of autoencoder

communication systems by conducting an in-depth review of existing literature. We draw

inspiration from mainstream publications to gain insights into the implementation of these

models. This enables us to effectively implement and evaluate our covert mechanism within

communication systems that encompass diverse channel models and user configurations. By

doing so, we ensure that our findings and conclusions are not limited to specific types of

channels or system settings, but are applicable to a wide range of real-world scenarios.

By undertaking this comprehensive approach, we aim to contribute to the advancement

of autoencoder-based communication systems. More importantly, we aim to provide a solid

foundation for the integration of our covert model, which in turn ensures our covert model

6



is compatible and effective across various communication environments.

1.2.2 Covert Communication Model

The primary objective of this thesis is to develop a machine-learning based covert communication

model by leveraging neural networks in an adversarial framework. Our approach surpasses

previously introduced methods in terms of sophistication, rendering it highly resilient against

detection.

In the literature, we can find several theoretical and empirical studies that have explored

the fundamental limits of covert communication models, however, there is a lack of practical

design and implementation guidance for real-world covert communication methods. Moreover,

traditional approaches often rely on impractical assumptions that render them inapplicable

in realistic settings. This has motivated us to seek covert mechanisms that can be feasibly

implemented in real-life scenarios and minimize the reliance on improbable assumptions.

Furthermore, many existing works rely on manually-engineered features for covert communication,

which, if exposed, could lead to the termination of the covert channel by the observer. Even in

recent approaches that utilize machine learning techniques for designing more sophisticated

covert signals, the probability of detection by a careful observer remains relatively high. Even

though these methods generate covert signals that closely resemble the system’s noise, it was

shown that the observer can employ complex techniques to measure the divergence in signal

distributions and identify the covert channel [2, 24]. Once the observer obtains an estimate

of the transmitted covert signals, they can deactivate the entire channel by averaging out

the covert signals.

7



In this thesis, we propose a novel covert communication technique where the covert users

themselves learn to embed their messages into the transmitted signals as a noise vector,

without explicit guidance on how to do so. Specifically, covert users learn to establish an

implicit shared secret key between themselves, unbeknownst to the observer. The learning

process takes place within an adversarial setting to ensure that the generated signals are

indistinguishable from the expected noise in the system. Moreover, our covert communication

design is independent of any prior knowledge of cover signals or the channel model, making

it versatile and adaptable to various communication setups. By adopting this innovative

approach, we aim to advance the field of covert communication and pave the way for more

robust and secure communication systems.

1.3 Thesis Contributions

In this section, we offer a brief overview of the accomplishments made in this thesis. This

includes a comprehensive examination of autoencoder wireless communication systems and

our distinctive approach to their implementation. Our contributions are organized into three

main subsections, which are outlined as follows:

1.3.1 Comprehensive Evaluation of Autoencoder-based Wireless

Models

To ensure a solid foundation for our work, we undertake a comprehensive review of autoencoder-

based communication systems, which is a recent advancement in wireless communication.

To achieve this, we extended and refined the design and implementation of these models,
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ensuring their robustness and proper functionality. Subsequently, we conducted a comprehensive

evaluation across diverse communication scenarios, including various channel models as well

as single and multi-user communication scenarios. This rigorous evaluation allowed us to

fine-tune the models and verify their correct behavior under different communication setups

and channel configurations. It also facilitated a comprehensive analysis and performance

evaluation of our covert communication scheme, providing valuable insights into its effectiveness

and suitability in real-world scenarios.

1.3.2 Input and Channel Independent GAN-based Covert Model

We propose a novel covert communication approach using generative adversarial networks

(GANs) that utilizes an input-agnostic generator and discriminator network to represent

the covert sender and detector, respectively. These networks are trained in an adversarial

manner, similar to the training process of GANs, allowing our scheme to operate independently

of specific cover signals, waveforms, and modulation types used in wireless systems. This

flexibility enables our approach to be applied across a wide range of communication scenarios

without being limited by the specifics of the underlying wireless technology.

To evaluate the effectiveness and versatility of our scheme, we conducted extensive

experiments involving three different channel models: Additive White Gaussian Noise (AWGN),

Rayleigh Fading, and Rician Fading. By training our model on these diverse channel models,

we demonstrated its adaptability to varying channel conditions and its ability to maintain

robust performance even in the presence of different noise levels. Importantly, our approach

does not require prior knowledge of the specific channel model or the characteristics of the
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noise, making it highly practical and flexible in real-world scenarios where such information

may not be readily available.

1.3.3 Achieving a Controllable Trade-off between Covertness and

Performance through the Training Algorithm

We developed a training procedure that enables us to attain any desired trade-off between

the level of covertness and the system’s performance (i.e., communication rate) regardless of

the number of normal users in the system. This is accomplished by utilizing a regularized loss

function for covert users, enabling them to prioritize their objectives based on the specific

communication scenario. This dynamic training procedure allows us to tailor the covert

communication scheme to meet the specific needs of different scenarios. In situations where

covertness is of utmost importance, the system can be configured to prioritize concealing the

covert communication channel at the expense of a slightly reduced communication rate and

reliability. On the other hand, in scenarios where maximizing the communication rate and

accuracy is critical, the system can be optimized to achieve higher performance while still

maintaining an acceptable level of covertness.

By offering this level of flexibility in training, our approach empowers covert users to

adapt their communication strategy based on the specific requirements of the system, thereby

ensuring optimal performance and covertness in a wide range of real-world scenarios.
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1.3.4 Comprehensive Experimental Results

We conducted multiple experiments to demonstrate that our scheme can be integrated into

communication systems with both single and multiple normal users under various channel

conditions. Notably, in all cases, including single and multi-user scenarios for the three

channel models, our (8,1) covert model is demonstrated to have a negligible impact on the

normal users’ BLER, while establishing a reliable covert communication link and consistently

deceiving the detector at various SNRs. Furthermore, our experiments highlighted that there

is a degree-of-freedom effect in our scheme, where increasing the number of users affects the

performance of the covert and normal communication systems in the fading channels.

1.4 Thesis Organization

This thesis has been divided into 5 chapters. The following is a summary of each chapter’s

content:

� Chapter 1 presents the primary objectives and motivations of our study, and provides

a brief summary of contributions made throughout this research.

� Chapter 2 provides the necessary background information required to understand the

concepts discussed and implemented in the thesis. It covers key topics such as artificial

neural networks, autoencoder networks, GAN networks, and covert communication.

Additionally, this chapter presents a review of pertinent literature that is relevant

to this thesis. In the end, it provides a concise overview of the tools, libraries, and

infrastructures employed during the implementation of this thesis.
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� Chapter 3 serves as an introduction to autoencoder wireless systems, presenting

an overview of the fundamental concepts, neural network architecture, and training

procedure associated with these systems. The chapter then delves into the various

communication scenarios explored, encompassing both single and multi-user setups.

The neural network design of the implemented autoencoders is described in detail,

outlining the functionality of each component. The chapter concludes with an extensive

evaluation of the system’s performance across different communication setups and

channel configurations, emphasizing key findings derived from the analysis.

� Chapter 4 introduces our proposed GAN-based covert communication model in the

context of autoencoder-based communication systems. The chapter begins by discussing

the integration of our covert model into these existing systems and outlining the

objectives and roles of the involved entities. Detailed insights into the design of

our covert model are then presented, including the formulation of objectives as loss

functions and the functioning of the neural network components. Finally, the chapter

evaluates the performance of our model against the essential criteria for covert communication,

providing an assessment of its effectiveness.

� Chapter 5 concludes our work and discusses potential avenues for future research.
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Chapter 2

Background and Related Works

This chapter aims to provide readers with the necessary background knowledge to understand

the proposed solutions presented in this thesis. Section 2.1 offer an overview of artificial

neural networks and relevant deep learning architectures utilized in this thesis, including

generative adversarial networks and autoencoder networks. Section 2.2 gives an introduction

to covert communication and their taxonomies. Finally, in section 2.3, we review some of

the most relevant studies related to our research.

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are computer programs that are inspired by how the

human brain biologically processes information [28]. Rather than being programmed explicitly,

ANNs are designed to identify patterns and correlations in data through a process that is

commonly referred to as training. These networks are made up of individual processing

elements (PEs) or artificial neurons, which are connected by weights to form structured
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layers. The weighted inputs of each neuron are summed and passed through a transfer

function to produce a single output, and the behavior of the network is determined by the

transfer functions of its neurons, its learning rule, and its architecture. ANNs are highly

capable of extracting nonlinear relationships within data, making them useful in various

applications, including but not limited to image recognition, prediction, and classification.

A collection of weighted inputs, a transfer function, and a bias term are used to mathematically

define ANNs. To get an activation value, the weighted inputs are summed together with the

bias term. The activation value is then fed into the transfer function, which generates an

output. This procedure is repeated for each neuron in the network, with one neuron’s output

acting as the input for the next. During training, the weights and biases are adjusted to

minimize the difference between the predicted and actual output. Fig. 2.1 and the equation

below outlines how the output of each neuron is computed.

yk = φ(

p∑
j=1

(xj ∗ wkj)). (2.1)

where yk is the neuron’s output, φ is the transfer or activation function, x0, x1, ..., xp are

Figure 2.1: Mathematical model of an artificial neuron [28].
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the input signals, and w0, w1, ..., wp are the weights associated with the inputs. The input

signal at index 0, also known as the bias parameter, has a constant value and it allows a

neuron to offset its output independently of its inputs. To capture more complex and non-

linear patterns in the input data, activation or transfer functions are employed. Additionally,

activation function keeps the output within a certain scale to ensure that it is normalized and

bounded. The most common utilized activation functions are: Sigmoid, Hyperbolic Tangent

(Tanh), Rectified Linear Unit (ReLU), Leaky ReLU, Softmax.

The goal of training a neural network is to identify the optimal set of parameters that

can accurately map inputs to outputs. During the training phase, data is fed to the network

through the input layer and passed to the subsequent layers, known as the hidden layers. The

number of hidden layers in a neural network depends on the complexity of the representation

it needs to learn and can range from one to many. In the end, the output layer yields the result

for a give input and the output error is measured. This error is calculated by a mathematical

function called Loss Function that measures the difference between the predicted output and

the expected output. The most common loss functions can be listed as:

Mean Squared Error (MSE) =
1

n

n∑
i=1

(yi − ŷi)
2. (2.2)

Binary Cross-Entropy (BCE) = −[y log(ŷ) + (1− y) log(1− ŷ)]. (2.3)

Kullback-Leibler (KL) Divergence =
m∑
c=1

ŷc log
ŷc
yc
. (2.4)

where y and ŷ, respectively, are the expected and predicted outputs, and n and m are

the number of samples and number of classes.
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2.1.1 Autoencoder Networks

Autoencoders are a type of neural network that has become increasingly popular in recent

years. they have a long history in the field of neural networks, dating back to the 1980s. The

concept of autoencoders was first introduced as a type of neural network for dimensionality

reduction by Rumelhart, Hinton, andWilliams in their 1986 paper titled ”Learning representations

by back-propagating errors”. Since then, autoencoders have been widely studied and improved

upon. In the early 1990s, they were used for unsupervised learning and feature extraction.

In the early 2000s, they were applied to speech recognition and image classification tasks.

Today, they are commonly used for data compression, dimensionality reduction, feature

learning, and anomaly detection. Autoencoders work by learning to encode input data into

a lower-dimensional representation, which can then be used to reconstruct the original data.

This process is similar to how humans learn to recognize patterns and simplify complex

information. Autoencoders have a wide range of applications in different fields, including

computer vision, natural language processing, and finance. They have the potential to

transform how we process and analyze large datasets, and their versatility makes them an

exciting area of research in the field of machine learning.

2.1.1.1 Network Architecture

The architecture is composed of two main parts: an encoder and a decoder. Fig. 2.2

shows an overview of this architecture. The encoder maps the high-dimensional input data

into a lower-dimensional space, which is called the latent space. Inversely, the decoder

reconstructs the original data from the compressed representation. The primary objective
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Figure 2.2: Neural network architecture of an Autoencoder model.

of an autoencoder network is to minimize the difference between the original input and

the output reconstruction. Autoencoders have demonstrated their effectiveness in various

applications, including data compression, feature learning, dimensionality reduction, and

anomaly detection.

2.1.1.2 Training and Loss Function

Autoencoders are trained via unsupervised learning, which implies that they don’t need

labeled data. The primary objective of training an autoencoder is to reduce the difference

between the input data and the reconstructed output. To measure this difference, a loss

function such as Mean Squared Error (MSE) is commonly used. The formula for MSE can

be found in Equation 2.5. The MSE computes the average difference between the input and

output over all the examples in the training set.

L(θ, φ) =
1

n

n∑
i=1

(xi − fθ(gφ(xi)))
2, (2.5)
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Where xi is the input data, g(·) is the encoder function, θ are its parameters, f(·) is the

decoder function that reconstruct the original data, φ are its parameters, n is the number of

training samples. During training, the input data is passed through the encoder to obtain the

compressed representation, which is then fed into the decoder to generate the reconstructed

output. This process is repeated for multiple epochs until the network learns to extract the

most important features of the input data and encode them in the compressed representation.

2.1.1.3 Layers Composition

Autoencoder networks can be constructed using different types of layers, each of which serves

a specific purpose depending on the input data and desired output. The most common types

of layers used in autoencoders are fully connected layers, convolutional layers, and recurrent

layers such as Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU).

Fully connected layers are the simplest type of layer and are used in vanilla autoencoders,

whereas convolutional layers are commonly used in autoencoders for image data, where

they can learn spatial features efficiently. Recurrent layers, on the other hand, are used in

autoencoders for sequential data like time series or text, where they can capture long-term

dependencies in the data. Additionally, other types of layers such as pooling or activation

layers can be added to customize the network’s architecture. The versatility of autoencoders

allows them to be tailored to various input data types and output tasks, and the choice

of layer type can be adjusted to optimize performance. You can find a convolutional-based

autoencoder in Fig. 2.3 that has been trained on the Modified National Institute of Standards

and Technology (MNIST) dataset [12].
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Figure 2.3: A convolutional autoencoder example trained on MNIST. The input image is
encoded to a compressed representation and then decoded [4].

2.1.1.4 Variations

Two common variants of autoencoders are the variational autoencoder, which models the

latent space as a probability distribution, and the denoising autoencoder, which removes

noise from corrupted input data. In the following section, we will explore some important

variants of autoencoders and discuss their distinct features and applications. We have also

summarized this information in Table 2.1.

� Vanilla Autoencoder: Vanilla autoencoders are a basic type of autoencoder networks

that are composed of fully connected layers. The structure of vanilla autoencoders is

often symmetrical, with the number of neurons in each layer gradually decreasing

towards the bottleneck or latent space where the compressed representation is learned.

The decoder architecture mirrors that of the encoder, gradually increasing the number

of neurons until the output layer, which generates the reconstructed data. The middle

layers of the autoencoder, also known as bottleneck or code layer, where the data is

compressed, is a critical component of the network and is often much smaller than the

input and output layers. This forces the network to learn an efficient representation of

the input data that captures the most important features. Vanilla autoencoders can

be utilized for unsupervised learning, where the network is trained on unlabeled data,
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Type Structure Objective Applications

Vanilla Reconstruction
Data compression

Dimensionality reduction
Anomaly detection

Denoising Noise reduction
Image denoising
Speech denoising
Anomaly detection

Sparse Sparse representation
Feature extraction
Image compression
Anomaly detection

Variational Data generation/manipulation
Image and text generation

Data imputation
Anomaly detection

Table 2.1: Comparison of different variants of Autoencoder Networks.

or for supervised learning tasks like classification or regression after being pre-trained

on unlabeled data.

Vanilla autoencoders have numerous applications such as data compression, dimensionality

reduction, feature learning, and anomaly detection. They can compress large datasets

into a lower-dimensional representation, extract informative features, and remove redundant

information, which aids in the visualization of high-dimensional data. Additionally,
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they can identify outliers or unusual patterns in the data.

� Sparse Autoencoders: One of the key challenges in autoencoders, and many other

machine learning models, is finding the optimal tradeoff between network’s ability to fit

the training data well (low bias) and its ability to generalize to new data (low variance).

A high-bias autoencoder may not fit the training data well, while a high-variance one

may overfit the training data and perform poorly on new data. One of the methods to

tackle this tradeoff is to use Sparse Autoencoders.

Sparse autoencoders incorporate a sparsity constraint during training to encourage

the network to learn a compact representation of the input data, reducing overfitting

and improving generalization performance. By constraining the network’s capacity, the

bias-variance tradeoff is balanced, while still allowing the network to capture important

features of the data.

Enforcing sparsity regularization in autoencoders can be achieved through introducing

L1 regularization, which is effective in inducing sparsity. This leads to the autoencoder

optimization objective being modified as:

L(θ, φ) =
1

n

n∑
i=1

(xi − fθ(gφ(xi)))
2 + λ

∑
j=1

|aj|, (2.6)

where aj represents the activation value of the j-th hidden layer, and the subscript j

iterates over all the hidden layers’ activations.

Sparse autoencoders have several applications in different fields such as computer

vision, speech recognition, recommendation system, and natural language processing.
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� Denoising Autoencoders: Denoising autoencoders are a type of autoencoder designed

to remove noise from input data. Unlike regular autoencoders, they work by constructing

a compressed representation of the input data, which is then used to recover the

original, noise-free data. Denoising autoencoders offer several advantages, including

enhanced resistance to noisy or distorted data, and the ability to learn more discriminative

input data characteristics. They have been successfully used for tasks such as image

denoising, speech denoising, and anomaly detection. Overall, denoising autoencoders

are a powerful tool for improving the quality and utility of data in real-world scenarios.

By corrupting input data with noise, a denoising autoencoder (DAE) is trained to

reconstruct uncorrupted data. This is accomplished by utilising a loss function to

minimise the reconstruction error between the input and output data. The loss function

can be written as follows:

L(θ, φ) =
1

n

n∑
i=1

(xi − fθ(gφ(x̂i)))
2. (2.7)

Where x̂i = xi + ϵ; ϵ ∼ N (0, σ2) is the corrupted input.

� Variational Autoencoders: The Variational Autoencoders (VAE) model [27] has

significantly enhanced the representation capabilities of autoencoders. VAEs are a

type of generative models that integrate deep learning and Bayesian inference to learn

a compact and interpretable latent representation of input data. They have attracted

considerable attention in recent years due to their capacity to generate novel and high-

quality samples, as well as their applicability to various tasks, such as image and text
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generation, data imputation, and anomaly detection. Unlike traditional autoencoders,

VAEs learn a distribution over the latent space, which enables the generation of diverse

and meaningful samples by sampling from the learned distribution. VAEs also offer a

principled framework for data generation and manipulation, enabling controllable and

meaningful variations in the generated samples.

VAE assumes that the input data is generated by sampling from a latent distribution

p(z), which is then passed through a conditional probability distribution pθ(x|z),

where θ represents the decoder network parameters. The goal is to learn the latent

distribution p(z|x) that maximizes the log-likelihood of the input data x. However,

computing this true posterior distribution p(z|x) is difficult, so instead VAE uses a

variational lower bound to approximate it. This bound is formulated as the Evidence

Lower Bound (ELBO) that decomposes the data log-likelihood into two components:

the Kullback-Leibler (KL) divergence between the approximated posterior distribution

qϕ(z|x) and the prior distribution p(z), and the expected log-likelihood of the data given

the latent variable z. The ELBO is mathematically expressed as:

LELBO(x; θ, ϕ) = −DKL(qϕ(z|x)||p(z)) + Eqϕ(z|x)[log pθ(x|z)] (2.8)

where ϕ represents the parameters of the encoder network that approximates the

posterior distribution, andDKL(qϕ(z|x)||p(z)) is the KL divergence between the approximate

posterior and the prior. During training, the encoder network computes the mean µ

and standard deviation σ of the approximate posterior distribution qϕ(z|x). The latent

variable z is then sampled from the reparameterized Gaussian distribution. The loss
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function used to optimize the VAE is the negative ELBO. By minimizing this loss, the

VAE learns to generate samples that are close to the training set distribution while

also forming an interpretable latent space.

2.1.2 Generative Adversarial Networks (GANs)

The introduction of generative adversarial networks (GANs) by Ian Goodfellow and colleagues

in 2014 was motivated by the desire to develop a generative model capable of generating

realistic samples of complex data, such as images, audio, and video. Prior to the development

of GANs, autoregressive model variations and variational autoencoders were popular approaches

to generative modeling. However, these methods had limitations in capturing complex data

distributions and generating high-quality samples. GANs were a significant breakthrough

in deep learning as they introduced a new way of generative modeling through adversarial

training.

GANs have a wide range of applications including image and video synthesis, data

augmentation, style transfer, super-resolution, and anomaly detection. They have been used

to generate realistic images of faces, landscapes, and objects, as well as to create convincing

deepfake videos. GANs have also been applied to medical imaging, such as generating

synthetic MRI images, and to text and audio data. Additionally, GANs have been used

for data augmentation in classification tasks and for enhancing low-resolution images. The

ability of GANs to generate new data that follows the same distribution as the training data

has made them a powerful tool for various creative and practical applications.
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Figure 2.4: GAN training procedure.

2.1.2.1 Network Architecture

Two major components of GANs are Generator and Discriminator networks. The role

of generator network is to deceive the discriminator network with its generated samples to

accept fake data as real. In contrast, the discriminator objective is to detect any irregularities

or anomalies in the generated samples and accurately classify them as either real or fake. In

short, here is the intuition behind each of these networks:

Discriminator: The discriminator network is a supervised approach used as a classifier

that distinguishes between real and fake data. It is trained on real data and provides feedback

to the generator network.

Generator: It is an unsupervised learning approach that generates fake data based on

the discriminator feedback. It is a neural network with hidden layers, activation, and loss

function, aimed at fooling the discriminator by making it to classify a fake data as real.

The internal architecture of GANs can be modified in several ways to improve its performance,

such as adding additional layers, modifying the loss functions, or incorporating additional

25



constraints on the generated samples. Some common modifications include the use of

convolutional layers for image generation tasks, the addition of regularization terms to

prevent mode collapse, and the incorporation of attention mechanisms to focus on important

features in the input data. Despite their simple architecture, GANs have shown remarkable

success in generating high-quality samples and have become a popular tool for various

applications in computer vision, natural language processing, and audio synthesis.

2.1.2.2 Training and Loss Function

The key idea behind GANs is to train two neural networks, a generator and a discriminator,

that compete against each other in a zero-sum game. The generator takes random noise

as input and produces fake data samples, while the discriminator is trained to distinguish

between real and fake samples. At every iteration of training, the generator is optimized to

create more realistic samples that can deceive the discriminator, which, in turn, is optimized

to distinguish better between real and fake samples. This cycle continues iteratively, with

both networks improving until the generator can produce samples that are nearly indistinguishable

from the real data.

The loss function consists of two parts: the generator loss and the discriminator loss.

The generator loss minimizes the error for generate data samples to be classified as real

samples by the discriminator network. Meanwhile, the discriminator loss minizes the error

for correctly classifying the fake samples generated by the generator and the real samples.

The loss function can be expressed as:

L = Ex∼pd(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (2.9)
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Here, x is a real data sample, z is a random noise vector, D is the discriminator function, G is

the generator function, and pd(x) and pz(z) represent the real data distribution and the noise

distribution, respectively. The first term Ex∼pd(x)[logD(x)] calculates the probability that

the discriminator correctly classifies real samples as real. The second term Ez∼pz(z)[log(1 −

D(G(z)))] calculates the probability that the discriminator correctly classifies fake samples

generated by the generator as fake. The GANs model is trained by minimizing the loss

function with respect to the generator and discriminator parameters.

2.1.2.3 Conditional GANs

Conditional Generative Adversarial Networks (cGANs) are an extension of the original

GANs framework that condition the generator on extra information such as class labels,

text descriptions, or input images. This added information enables the generator to produce

more specific and targeted outputs, resulting in improved performance in tasks like image

synthesis, image-to-image translation, and text-to-image synthesis.

Both the generator and the discriminator in a cGAN receive additional conditioning

information, which is commonly concatenated with the input noise or image tensor. Conditioning

the generator on specific inputs allows it to learn to generate samples that meet certain

constraints or qualities, such as a given class name or style. Furthermore, conditioning the

discriminator on the same information can improve its ability to distinguish between real

and fake samples that belong to a specific class or have specific characteristics.

cGANs feature a more complicated design and loss function that incorporates conditioning

information than ordinary GANs. Conditioning information is often provided in the form

of one-hot vectors or embedding vectors, and the loss function is altered to incorporate
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Figure 2.5: Comparing the original GAN method to cGAN, the generator (G) and
discriminator (D) neural networks are trained on real and fake samples in both methods
[34].

a term that quantifies the difference between the generated samples and the conditioning

information. Because of their complexity and versatility, cGANs are a strong tool for a wide

range of generating tasks.

The loss function for a cGAN can be expressed as:

L = Ex∼pd(x),y[logD(x, y)] + Ez∼pz(z),y[log(1−D(G(z, y), y))]. (2.10)

where y is the conditioning information and is usually provided to both the generator

and discriminator as an additional input.

2.2 Covert Communication

In this section, we provide an overview of covert communication and discuss important

methods used in this field. We begin with a brief introduction to covert communication in
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Section 2.2.1. We then outline common taxonomies for covert communication in Section

2.2.2 and examine covert communication at the physical layer in Section 2.2.3. Finally, in

Section 2.2.4, we discuss both traditional and ML-based methods and techniques for covert

communication.

2.2.1 Introduction to Covert Communication

It was in 1973, when Lampson [29] coined the term covert communication (covert channels)

in the context of monolithic systems as a mechanism by which a high-security process leaks

information to a low-security process that would otherwise not have access to it. Although

it was first found as a threat to single host systems, the potential of such channels in

computer networks was shown to be significantly higher [62]. Today, we refer to as covert

communication as a type of communication that is intentionally concealed from individuals

or organizations that may wish to intercept or monitor it. This type of communication is

often used in situations where the sender and receiver wish to protect the confidentiality

and/or integrity of the information being transmitted. Some of these situations are military

operations, cyber-espionage, business and law enforcement, social unrest, and private communication.

The use of covert communication can be beneficial in these situations by protecting the

confidentiality and integrity of sensitive information, allowing for the safe sharing of classified

or private information and maintaining secrecy.

In a covert communication scenario, there are typically three parties involved: Alice,

Bob, and Willie. Alice, acting as the covert sender, aims to transmit a secret message to

Bob, the covert receiver, without being detected by Willie, who serves as the observer. The
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Figure 2.6: A typical covert communication scenario that involves Alice communicating with
Bob in secret, while Willie attempts to detect if there is any communication between them.

primary objective of covert communication is to establish a concealed channel that hides

both the existence and content of the communication from Willie, who represents potential

adversaries or unauthorized individuals. Various techniques, such as steganography, spread

spectrum modulation, or frequency hopping, are employed to embed the secret information

within the regular communication channel. To ensure that the covert communications

cannot be distinguished from background noise or genuine communication while maintaining

a trustworthy and effective method of communication, Alice and Bob must use advanced

encoding and decoding techniques.

Covert channels and steganography are often used interchangeably, but it is important

to distinguish between these two methods of concealing information. Covert communication

focuses on disguising the existence of the communication itself, while steganography involves

hiding information within other content to avoid detection. In this thesis, we use “covert

communication” to refer to sending information secretly, and “steganography” to describe

the technique of embedding information within other data.
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2.2.2 Taxonomy of Covert Communication Techniques

One of the earliest taxonomies for covert communication channels was proposed by [35]. This

taxonomy divides covert channels into two categories based on their underlying mechanism:

storage-based and timing-based covert communication. Storage-based covert communication

channels utilize changes in computer storage or processing power to convey hidden information,

whereas timing-based covert communication channels exploit variations in the timing of

events to transfer information. This categorization provides a clearer understanding of the

diverse covert communication techniques and their distinctive characteristics. Below we

provide a detailed description of each of these categories:

� Timing-based covert communication: It is a method of transmitting secret information

through the timing of network packets or other events. For instance, an attacker can

take advantage of the time differences between Internet Control Message Protocol

(ICMP) packets to send a message to a compromised host. Another form of timing-

based covert communication is a covert channel that sends information by altering the

timing of keystrokes.

� Storage-based covert communication: Covert communication can also be achieved

through storage-based methods, which involve utilizing fluctuations in storage or computer

capacity to send secret data. For example, an attacker can send a hidden message by

varying the amount of disk space consumed or the size of a file. Another example is a

covert channel that uses fluctuations in memory allocation or Central Processing Unit

(CPU) cycles to transmit information.

Covert communication techniques can also be categorized based on the network layer
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they operate [62]. Below are some examples of covert communication techniques classified

according to their network layer:

� Physical Layer: Covert communication techniques that operate at the physical layer

of the network exploit the physical medium of transmission’s features, such as sound,

light, or electromagnetic waves, to secretly communicate information. Some common

techniques for this layer are spread spectrum techniques, modulation techniques, and

electromagnetic emanations. In spread spectrum techniques, covert users use a wide

range of frequencies to spread the signal over a larger bandwidth, making it harder to

detect. Modulation techniques modifies a carrier wave to encode the information to be

transmitted. In electromagnetic emanationselectro, magnetic radiation emitted from

electronic devices are used to transmit data.

� Data Link Layer: At the Data Link layer, covert communication techniques involve

the use of network protocols and hardware to create concealed communication channels.

One such technique is leveraging the Address Resolution Protocol (ARP) to transmit

data between two hosts, making it invisible to network monitors. Another technique

involves using the Media Access Control (MAC) layer to transmit data within unused

network frames.

� Network Layer: Techniques at this layer focus on exploiting features of network

protocols to establish hidden communication channels. For example, attackers can

leverage the fragmentation and reassembly process of IP packets to hide data in the

packet payload. Also, using the Internet Protocol (IP) options or fields in the packet

header, covert users can transfer their secret information.
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� Transport Layer: Covert communication techniques can be employed at the transport

layer hide information within the regular flow of network traffic. For instance, covert

user can use the User Datagram Protocol (UDP) to transmit secret messages within

standard packet payloads. Another technique that they can use is to manipulate the

timing and sequence of packets to transmit concealed data using the Transmission

Control Protocol (TCP). These techniques can be hard to detect because they do

not introduce any extra packets into the network, making it challenging for network

security measures to identify them.

� Application Layer: Covert communication at the application layer is commonly

achieved through steganography techniques, which involve hiding data within seemingly

innocuous files or media. For instance, an attacker may conceal data inside an image

or audio file and then transfer it over the network. Attackers can also embed hidden

messages within HTTP protocols, such as hiding messages within Hypertext Transfer

Protocol (HTTP) requests and responses. Another method is Domain Name System

(DNS) tunneling, whereby attackers encode and send data by modifying the DNS query

and response packets to include the hidden data.

2.2.3 Covert Communication At Physical Layer

Compared to other layers in the network stack, covert communication at the physical layer

presents distinct advantages and challenges. The primary reason for its need for further

research is that it involves manipulating physical signals, which can be difficult to detect using

standard network security approaches. Additionally, physical layer covert communication
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techniques can bypass security measures implemented in higher layers, making them an

attractive choice for attackers.

The complexity of the physical layer itself is one of the major challenges to comprehending

covert communication at this layer. Physical layer techniques often require specialized

knowledge of hardware and electrical engineering, making them difficult to study and comprehend

for network security researchers who specialize in other areas.

Although the complexity of the physical layer presents a challenge in studying covert

communication techniques, there are benefits to understanding these strategies. For instance,

it can aid in enhancing network security by creating more effective defense mechanisms

against physical layer attacks. Additionally, as attackers may increasingly use physical layer

tactics to evade detection, researchers must have a thorough understanding of this area of

covert communication to improve network security measures.

2.2.4 Traditional and Deep Learning Based Techniques

Traditional covert communication techniques at the physical layer typically involve modifying

physical properties of the communication medium, such as signal amplitude, frequency,

phase, and timing. These techniques can be broadly categorized into two categories: spread

spectrum techniques and modulation-based techniques. Below, we will delve into each

category in more detail.

� Spread spectrum: Spread spectrum techniques involve spreading a signal across a

wide frequency range, making it harder for a Warden to detect and intercept. One

method of achieving this is frequency hopping, where the signal changes its frequency
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quickly within a predetermined frequency range. This makes it difficult to intercept

the signal. Another method is direct sequence spreading, in which the original signal

is combined with a pseudorandom sequence to spread it across a larger bandwidth.

� Modulation-based: Modulation-based techniques involve modifying signal parameters

such as phase or amplitude to transfer information covertly. For instance, phase shift

keying (PSK) changes the phase of the signal to encode data, while amplitude shift

keying (ASK) modifies the signal’s amplitude to represent data.

In recent years, deep learning techniques have been utilized to enhance the effectiveness

and resilience of modulation-based wireless covert communication. In particular, autoencoder

algorithms have been employed to learn the correlation between the transmitted signal and

the concealed message. By training the autoencoder networks on a dataset of known signals

and their corresponding hidden messages, the network can understand how to encode and

decode concealed messages in signals that have been modified to resemble legitimate signals.

Consequently, such covert communication can be more challenging to detect by wardens or

other security measures that attempt to detect abnormalities in the signal.

The use of Generative Adversarial Networks (GANs) has also been advantageous in

wireless covert communication techniques, where they can be trained to generate hard-

to-detect covert signals. GANs comprise a generator network that produces covert signals,

and a discriminator network that recognizes the difference between legitimate and covert

signals. After the training process, the generator network can create new covert signals that

can be transmitted while the discriminator network can identify and classify them. This

technique shows promise in enhancing the durability of covert communication techniques
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against detection by wardens.

2.3 Related Works

Since the main idea of our work stems from steganography techniques, we first briefly go

over the history and current state of this field of research. We then continue this section by

reviewing some of the traditional and deep-learning-based approaches to establishing covert

communication at the physical layer of wireless networks.

2.3.1 Image Steganography

Deep learning algorithms have proven their efficiency in many aspects. Steganography is one

of these areas that has benefited tremendously from deep learning advancements in recent

years. Convolutional neural networks (CNNs), for instance, which are generally used in

computer vision tasks, have shown outstanding results in image steganalysis [55, 42, 60],

replacing traditional statistical methods. One of the earliest works of image steganography

using deep neural networks is by Baluja [3]. In this work, Baluja proposes a hiding scheme in

Figure 2.7: The neural network architecture of an example GAN-based Image Steganography
[43].
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which the three networks of preparation, hiding, and reveal sort out the secret encoding and

decoding task. The preparation network transforms the hidden message into features that are

commonly used for compressing images. Then, the hiding network embeds it into the cover

image and sends it to the reveal network, where the secret message gets extracted from the

container image. Following this work, it was discovered that the existence of the preparation

network is not necessary, and the framework can be expressed in a simpler form by excluding

this network [64]. The disadvantage of these schemes is that the encoding process is reliant

on the cover image. To address this, Zhang et al. [63] propose a new architecture in which

the secret message can be encoded independently of the cover image. Besides having more

flexibility in hiding the information, this approach has also become an effective method

for image watermarking. To manifest robustness against steganalysis practices, researchers

started to adopt generative adversarial network (GAN) architectures [15]. Volkhonskiy et

al. [56] propose one of the first steganography techniques based on GAN networks. The

main idea of their work is to use a generative network to produce a new set of cover images

that, when carrying the secret message using any of the available steganography techniques,

will be less exposed to be detected by a discriminator network (i.e., a steganalysis network).

Similarly, Hayes et al. [19] introduce a GAN-based steganography technique with a different

objective for the generator network. Instead of generating cover images, the generator learns

to embed secret messages into the cover images so that the discriminator cannot distinguish

cover images from steganographic images. Although this adversarial scenario was initially

introduced for hiding data in images, researchers found it so versatile that it has been applied

to other forms of data such as video, audio, and text [33]. This has inspired us to investigate

the applicability of such techniques in the wireless communication domain.
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Figure 2.8: The dirty constellation consists of a cover QPSK constellation and a covert
constellation. [10].

2.3.2 Traditional Covert Communication Techniques

Covert communication techniques have been applied to various network layers and protocols,

including IP [9], MAC [49], and DNS [37]. However, covert communication at the physical

layer has only recently gained attention. Dutta et al. [13] are one of the first researchers who

developed a covert communication technique for the physical layer of wireless communication

systems. They leveraged communication noise, which is caused by either the channel or

hardware imperfections, to establish a covert channel. In their method, messages were

covertly encoded in the constellation error of normal cover signals. Cao et al. [10] further

improved this method to reduce the probability of detection. In order to achieve this, they

moved the covert points closer to the ideal cover constellation points and added randomness

to the I/Q vectors of the covert constellation by using a Gaussian distribution. Hou et al.

[22] proposed an amplitude-based covert channel over LoRa PHY, where covert information

is embedded with a modulation scheme orthogonal to chirp spread spectrum (CSS). Bonati

et al. [8] introduced SteaLTE, a full-stack wireless steganography method on softwarized

cellular networks. To covertly modulate symbols, they employed three different approaches:
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dirty QPSK modulation, hierarchical amplitude shift keying (ASK) manipulation, and phase

offset of the primary symbols modification. However, the distortions that these methods

cause in the statistical properties of the system were later found not to be so difficult to

detect using steganalysis methods [24], which in turn compromises the covert channel. This

has been one of the main reasons that researchers have turned to machine learning techniques

to develop more sophisticated covert methods.

2.3.3 Deep-Learning-Based Covert Communication Techniques

More recent works have explored the viability of deep neural networks in the covert communication

problem. We can categorize these techniques into two types based on the neural network

architecture they use.

2.3.3.1 CNN-Based Techniques

Sankhe et al. [47] propose a method called Impairment Shift Keying that produces subtle

variations in normal signals in a controlled way such that a CNN model can be trained

to classify them as zeros or ones. Although the impact of their covert method on the

system’s communication error rate is as small as 1%, authors in [23] showed that even

tiny modifications to the signals’ constellation points can be detected using a CNN model

trained on the amplitude and phase characteristics of the error vector magnitude (EVM)

and constellation points. Besides, their scheme relies on existing hardware impairments in

the system, which is not the case in many deployments.

Hegarty et al. [21] introduce a short-range covert communication through Radio Frequency

(RF) emanations. In their method, hidden data is encoded in the RF emanations generated
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by a microcontroller due to different programs running on it. The microcontroller generates

frequency shift keying (FSK) modulated signals by changing the center frequency of a specific

part of the spectrum based on the program running. By isolating that part of the spectrum,

a signal that acts like an FSK is obtained. These signals are then received and demodulated

by a software-defined radio (SDR) at a range of up to 4 feet using a CNN model. The

limitation of this approach is that the covert receiver needs to be in close proximity to the

covert sender.

2.3.3.2 GAN-Based Techniques

To find an optimal solution for the highest covert rate and minimum probability of detection,

Liao et al. [31] employed a GAN model that can adaptively adjust the signal power at a relay

station for establishing covert communication. This requires the covert users to have access to

a cooperative relay node, which is not applicable in many communication scenarios. Another

example of adversarial training for covert communication can be found in [25]. Their setup

contains a transmitter communicating with a receiver through a Reconfigurable Intelligent

Surface (RIS), and their goal is to keep this communication covert from a prospective

eavesdropper. Both the intended receiver and the eavesdropper use CNN classifiers to detect

the signals. This scenario raises the same concern as the previous work, which is the necessity

of the existence of a relay node in the deployment. Moreover, perturbations added to the

signals to deceive the eavesdropper are crafted using the fast gradient method (FGM) [16],

which in [2] was shown to be easy to counter using existing countermeasure techniques. Our

work differs from these two works in two key aspects. First, our proposed method does not

rely on any external entities or external factors, such as relay nodes or hardware impairments,
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which helps with the generality of our model. Second, we have specifically designed our covert

model to have as little impact on normal communication as possible, ensuring that the error

rate of normal communication does not suspiciously rise. This objective is critical and often

overlooked in previous works, which could easily expose any covert communication to the

system’s observer.

One of the most related works to ours is the covert scheme proposed by Mohammed et

al. [36]. They formulate covert communication as a three-player game in which networks

compete in an adversarial setting to obtain the optimal solution. In their setup, the encoder

and decoder networks learn to covertly communicate through a form of noise while simultaneously

trying to confuse a detector network that tries to determine whether the users are covertly

communicating or if it is just normal transmissions going through. While our proposed

method shares some ideas with this work, there are several critical limitations in this work

that ours aims to address. First, our model does not rely on any hardware impairment

noise and instead embeds the covert signals into the existing channel’s noise. Second, in the

previous work, the impact of added covert signals on the normal communication is unknown,

but our model is optimized to preserve the performance of normal communication. Finally,

the previous work assumes the channel between users to be AWGN, which is not an accurate

model for simulating channel effects in wireless communications due to fading. Our work

addresses this by proposing a scheme that is robust against fading channel models, including

Rayleigh and Rician fading channels.
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2.4 Implementation and Libraries

2.4.1 PyTorch

PyTorch [41] is a widely used open-source deep learning framework that is implemented in

Python programming language. It provides a flexible and efficient platform for building,

training, and deploying neural network models. PyTorch leverages the computational power

of Graphics Processing Units (GPUs) to accelerate training and inference processes, making

it suitable for large-scale and complex deep learning tasks. In our thesis, we utilized PyTorch

as the framework of choice for implementing our autoencoder wireless systems and GAN-

based covert models.

2.4.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a popular dimensionality reduction approach that

is implemented in Python as a library called scikit-learn (sklearn). The goal of PCA is

to convert high-dimensional data into a lower-dimensional representation while keeping the

most relevant patterns and variations in the data. This is accomplished by determining the

principal components, which are linear combinations of the original features that capture

the most variance in the data.

PCA is primarily utilized for preparing data and exploratory data analysis. It is beneficial

for reducing the dimensionality of a dataset, which offers several advantages. These include

decreasing computational complexity, facilitating visualization of data in lower-dimensional

spaces, and eliminating noise or unnecessary features. PCA can simplify data analysis,

increase model performance, and provide insights into the underlying structure of the data
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by lowering the number of dimensions.

In this thesis, we utilized PCA to reduce the dimensionality of our constellation diagrams.

This approach enabled us to visualize high-dimensional signal points on a two-dimensional

diagram, providing a more accessible representation of the data. Fig. 3.11, for example,

demonstrates the use of PCA for visualization purposes.

2.4.3 Matplotlib

All the diagrams presented in the evaluation chapter of this thesis were created using

Matplotlib. Matplotlib is a popular Python toolkit for creating high-quality visualisations and

plots. It has a wide range of tools and functions for creating different types of charts, graphs,

and plots, such as line plots, scatter plots, bar plots, histograms, and more. Matplotlib offers

plenty of customization options, allowing users to fine-tune the appearance and style of their

plots to meet their specific requirements. It is widely used in data analysis, scientific research,

and data visualisation tasks.

2.4.4 Training Hardware Setup

Our GAN-based covert model and autoencoder wireless models were trained on a high-

performance desktop computer with an RTX 3080Ti graphics card, which provided superior

GPU acceleration for computations, particularly for models that contain convolutional layers.

The desktop configuration included an Intel Core i7 10700KF 3.80GHz CPU, 16GB of DDR4

3200MHz RAM, and 12GB of GPU memory.
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Chapter 3

Autoencoder Wireless Systems

In this chapter, we provide the necessary information about the autoencoder wireless systems

that are utilized in our covert communication model. We begin with a comprehensive

background on autoencoder-based wireless systems, including their concept and their significance

in wireless communication. Then, we delve into the internal neural network architecture

employed by these systems and elaborate on the training process. Finally, we present the

evaluation results and provide detailed discussions regarding their implications.

3.1 An Overview of Autoencoder Wireless Systems

Traditional wireless communication systems are designed to reliably transmit data through

channels that may impair the signals being sent. These systems consist of several components,

including channel coding, modulation, equalization, and synchronization, which are individually

optimized using mathematical models that simplify the problem and provide closed-form

expressions.
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Figure 3.1: An end-to-end autoencoder-based communication system. The system receives a
message s as input and generates a probability distribution over all possible messages. The
most probable message is then selected as the output ŝ [39].

Autoencoders wireless systems, on the other hand, are a relatively new development in

wireless communications and have numerous advantages over traditional systems. Their

ability to learn from data and adapt to changing conditions in the wireless environment

makes them ideal for dynamic wireless environments. They can also be trained to handle

noise and errors in the transmitted data, not only for linear, but also for nonlinear channel

effects. Autoencoder-based wireless communication systems were introduced as an end-to-

end learning paradigm that abstracts the coding and modulation components of traditional

modular communication systems by replacing the transmitter and receiver with DNNs.

3.1.1 Internal Neural Network Architecture

The internal neural network architecture of a wireless system that uses an autoencoder can

be seen in Fig. 3.1. It consists of an encoder and a decoder network, which work together

to compress and reconstruct the input data.

� Encoder: The encoder network, also known as the transmitter, learns the underlying

statistical properties of the wireless channel and modulates the input data to ensure

reliable transmission over the channel. The encoder network compresses the input data
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into a lower-dimensional representation, which is then transmitted over the wireless

channel.

� Channel: Depending on the wireless channel being modelled, the channel effect is

simulated by introducing noise or distortion to the signal, such as Gaussian noise,

fading, interference, or non-linear distortions. Gaussian noise is one of the most

common ones and can be controlled by adjusting its variance.

� Decoder: The receiver, or decoder network, receives the degraded signal and attempts

to reconstruct the original message. To obtain the encoded representation, the decoder

network first demodulates the received signal. This encoded representation is then

passed into the decoder network, which learns to transform it back into the original

data.

3.1.2 Training Procedure and Evaluation Metrics

Training: To train the autoencoder network, a set of training data is prepared to optimize

the weights and biases of the encoder and decoder networks in order to train the autoencoder

network. This data is usually randomly created depending on the parameters of the autoencoder

model, which are data and coding rates. Since neural networks are designed for continuous

data, the encoder uses an embedding or one-hot encoding to convert the categorical/discrete

data into continuous vectors. As we also mentioned in Section 2.1.1.2, the objective of the

encoder network is to learn to compress the input data into a lower-dimensional representation,

while the decoder network learns to recover the input data from the encoded form. This

process is regulated by a loss function that quantifies the reconstruction error and tries to
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minimize it. Algorithm 1 summarizes this process:

Algorithm 1 Training Autoencoder Wireless System

Time Complexity: O(n), where n is the number of epochs
X ← training dataset (input signals)
ΘF ,ΘG ← encoder and decoder neural networks
T ← embedding or one-hot encoding transformation
C ← channel noise and distortion model
L← network loss
H ← cross entropy function
for epoch ep ∈ {1 . . . nepochs} do

Xt = T (X)← embedded or one-hot encoded data
Y = F (Xt)← encoder output
Ŷ = C(Y )← distorted signal
L = H(G(Ŷ ), Xt)
Update ΘF , ΘG parameters to minimize L

end for

Evaluation: During testing, the network’s performance is evaluated by checking the

accuracy of the reconstructed data and other metrics like bit error rate (BER) or signal-to-

noise ratio (SNR). Researchers can analyze the network’s performance under different channel

conditions to gain insights into how the network performs in real-world wireless situations.

This analysis can help identify opportunities to enhance the network architecture or training

process.

3.2 Single/Multi-User Autoencoder Wireless Systems

Autoencoder wireless systems can be trained for both single-user and multi-user scenarios.

Many concepts that we have discussed thus far have been based on single-user systems.

However, it is relatively straightforward to extend these concepts to multi-user systems.

Single-user systems are generally simpler to design and analyze due to the absence of
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interference. On the other hand, multi-user systems come with an extra layer of complexity,

which is the detrimental impact of interfering signals on the communication. We describe in

greater detail how each of these systems works.

Single-User Autonencoder Systems: In this type of communication system, the

encoder transforms k bits of data into a message s where s ∈ {1, ...,M} and M = 2k. The

encoder then takes this transformed message as an input and generates a signal X = E(s) ∈

R2n, which is a real-valued vector. This 2× n-dimensional real-valued vector can be treated

as an n-dimensional complex vector, where n is the number of channel uses required for signal

transmission. The term “channel use” refers to the utilization of communication resources,

such as time, frequency, or codes, within the communication channel for transmitting or

receiving data. To account for channel noise, usually additive white Gaussian noise (AWGN),

the noise effect is added to the signal vector, denoted as N , which is a n-dimensional

independent and identically distributed (i.i.d.) vector with each element coming from a

complex normal distribution with 0 mean and σ2 variance Ni ∼ CN (0, σ2). A fading

coefficient H is introduced to account for the varying channel conditions. If there is no

fading, H is equal to the identity matrix In. However, in the presence of fading, H is

a diagonal matrix with each element following a fading distribution, such as Rayleigh or

Rician. Ultimately, the received signal at the receiver, carrying the channel’s noise, can

be expressed as Y = H · X + N . Once the signals pass through the channel, the decoder

receives these distorted signals and applies the transformation D : R2n → M to output the

reconstructed version of the message s, which is denoted as ŝ = D(Y ).

Multi-User Autonencoder Systems: A multi-user autoencoder communication system

is an extended version of a single-user system with either multiple transmitters and receivers
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or multiple transmitters and a central receiver. In this work, we consider the latter case. In

this system, each encoder sends a separate message si where si ∈ s, and i is the index of the

transmitter. Each transmitter generates a modulated signal accordingly: Xi = Ei(si) ∈ R2n.

We consider a multiple-access system, where all transmitters send their signals at the same

time. Consequently, the signals experience channel interference in addition to the channel

effects. When passing through the channel, signals are simultaneously faded and interfere

with each other. The resulting vector of signals for each transmitter can be expressed as

Yi =
∑ntx

i=1Hi ·Xi · ejθi +Ni, where Hi is the channel coefficient and ejθi is the phase offset

for the ith transmitter, Xi is the corresponding encoded signal, and ntx is the number of

transmitters. Finally, the signals are received at the decoder, where it uses its decoding

function D(·) along with the channel matrix H with the size of ntx×nrx, where nrx is either

the number of receivers in the multiple receiver case or the number of antennas at the receiver

in the central receiver case, to reconstructed the message ŝ = D(Y,H).

3.3 System Models

We will start by describing our system model in the single-user case, which simplifies the

system by eliminating the complexity of interference between entities. This scenario applies

to systems that already handle user interference at higher levels or by using common multiple

access techniques, such as Orthogonal Frequency Division Multiple Access (OFDMA), Code

Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA) [57]. Fig.

3.2 gives an overview of this case. We then continue with a more complex scenario in the

subsequent subsection, the multi-user case, where we have interfering signal transmissions.
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Figure 3.2: An overview of the single-user communication model with a detailed view of the
UserRX decoder network.

Fig. 3.3 illustrates the multi-user model.

3.3.1 Single-User Communication Model

Transmitter: In the single-user case, the encoder or the transmitter is referred to as

UserTX, and the decoder or the receiver is referred to as UserRX. These two entities together

form our autoencoder-based wireless communication system. The communication between

these two entities begins with UserTX encoding a binary message to a vector of signals using

its encoder network. This vector of signals is then transmitted to UserRX and gets distorted

while passing through the channel.

Channel: We consider three channel models of AWGN, Rayleigh fading, and Rician

fading. To set the Signal to Noise Ratio (SNR) in the AWGNmodel, we keep the transmitter’s

average power at unit power and adjust the noise power accordingly. For the fading channels,

we consider a flat-frequency block-fading channel model, where each signal vector (codeword)

is assumed to be faded independently.

Receiver: A noisy version of the transmitted signal is received at the receiver side,
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where UserRX extracts the message by decoding the signals. In the case of fading channels,

receiver equalizes the signals before passing them to the decoder network.

Equalization: The channel matrix is estimated by UserRX using a blind channel

estimation technique, by feeding the received signals to a preliminary network to predict

the fading coefficients. Using the estimated channel matrix, UserRX equalizes the signals

prior to feeding them to the decoder network. In Fig. 3.2 under the expanded view of BaseRX

decoder, you can see the two layers of “Paramter Estimation Layer” and “Transformation

Layer” working together to equalize the signals before getting passed to the decoder network.

3.3.2 Multi-User Communication Model

Transmitters: In the multi-user case, multiple transmitters (UserTXs) communicate with

a single base station (BaseRX), which serves as the central receiver. Each UserTX uses its

own encoder network to encode a binary message to a vector of signals. The transmitters

have no knowledge of each other’s messages and share no parameters in their networks. Each

UserTX and BaseRX pair forms an autoencoder model, with UserTX serving as the encoder

and BaseRX as the decoder. After encoding their messages into signals, the transmitters

simultaneously send their signals over the channel.

Channel: The multi-user case has the same channel models as described in the single-

user case, with the exception that signals experience interference due to simultaneous transmission.

The interference effect has been incorporated in the channel function.

Receiver: BaseRX receives the signals from all the transmitters using multiple antennas

after they pass through the channel. It decodes the messages in the same way as the UserRX
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Figure 3.3: An overview of the multi-user communication model with a detailed view of the
BaseRX decoder network.

in the single-user case, but it handles the decoding process for the transmitters’ signals all

at once.

Equalization: Similar to the single-user case, BaseRX equalizes the signals before

passing them to the decoder networks. However, unlike the single-user receiver, we assume

that BaseRX has access to the channel matrix. In practice, BaseRX can use a pilot-based

channel estimation technique, which results in a much more accurate estimation of the

channel matrix compared to the blind channel estimation used in the single-user case.

3.4 Neural Network Design

In this section, we break down each component of our autoencoder neural network into

individual subsection and discuss their architecture and operation in detail.

3.4.1 Embedding Layer

As inputs to our transmitter are categorical data, we cannot directly pass it to the encoder’s

neural network. Therefore, transmitter uses a one-hot embedding layer to convert binary
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messages s of size k into continuous vectors, which will be understandable by the encoder

network.

3.4.2 Encoder Network

The encoder network maps these one-hot encoded messages to vector of signals, which will

be of size 2 × n, where n is the number of channel uses. In multi-user case, as there are

multiple encoders involved, all vector of signals put together will have a size of ntx× (2×n).

The encoder network comprises several Dense layers at the initial stages, followed by

multiple 1-Dimensional Convolutional (1D Conv) layers. The purpose of the Dense layers

is to expand the dimensionality of the input data, enabling the network to capture more

complex patterns and representations. In fact, this expansion of capacity empowers the

model to learn complex relationships within the data. Subsequently, the 1D Conv layers

assist the encoder to learn more complex coding schemes that typically require convolutional

operations.

The output data from the encoder network X is then passed to the channel model layer

to apply the channel effects to the signals.

3.4.3 Channel Model Layer

In order to have a differentiable loss function, channel models are mathematically formulated

as a layer in the middle of the network. This is important because differentiability allows

for the use of gradient-based optimization algorithms, such as backpropagation, to train the

neural network effectively. Depending on the channel model, various channel functions C(·)
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are utilized to apply the desired channel effect to the signals at this layer. For example, in

an AWGN channel, the channel model layer adds a noise vector, sampled from a Gaussian

distribution with a specific variance based on the set SNR value, to the signals. For Rayleigh

and Rician channels, signals are multiplied by a complex Gaussian random variable and then

added with Gaussian noise.

3.4.4 Equalization Layers

We use two types of equalization layers in our models based on whether the system is single-

user or multi-user. When the system is single-user and there is fading in the channel model,

the receiver side utilizes the two layers of “Parameter Estimation” and “Transformation” to

equalize the signals. We apply a basic transformation function that simply divides signals by

the channel fading coefficients estimated via the parameter estimation layer. Note that more

complex transformation functions can be used, as described in [39]; however, optimizing

the performance of the autoencoder model is beyond the scope of this thesis and can be

considered in future research. In the multi-user case, the decoder is provided with channel

coefficients as input. This enables BaseRX to use the zero-forcing technique [14] to equalize

the received signals.

3.4.5 Decoder Network

The decoder network receives the distorted signals Y passed from the Channel Model Layer or

the equalized signals from the Equalization Layer and reconstructs the transmitted message

ŝ. Similar to the encoder network, decoder network also comprises of multiple Dense initially,
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followed by multiple 1D Conv layers. The purpose of the Dense layers is to increase the

decoder network learning capacity and 1D Conv layers are to learn the convolutional coding

that transmitter has developed to encode the messages.

In the case of a single-user system, UserRX utilizes its decoder network to reconstruct

the message. However, in the multi-user case, BaseRX simultaneously decodes signals from

all transmitters. This is achieved by first passing the signals to a pre-decoder network and

then using separate decoders at the final layers.

Table 3.1: Autoencoder’s detailed network architecture in the single-user and multi-user
case.

UserTX Encoder UserRX Parameter Estimation UserRX Decoder BaseRX Pre-Decoder BaseRX Decoders
input size 16 2 × 8 2 × 8 ntx× 2 × 8 ntx× 4 × 8

dense layers sizes 2 × 8, 2 × 8 2 × 16, 2 × 32, 2 × 4 2 × 8, 2 × 8 ntx× 2 × 8, ntx× 4 × 8 ntx× 2 × 8
dense layers activations 2 × ELU ELU, 2 × Tanh 2 × Tanh, Softmax 3 × Tanh Tanh, Softmax

conv filters 1, 8, 8, 8 - 1, 8, 8, 8 1, 8, 8, 8 -
conv kernel sizes 2, 4, 2, 2 - 2, 4, 2, 2 2, 4, 2, 2 -

conv strides 1, 2, 1, 1 - 1, 2, 1, 1 1, 2, 1, 1 -
conv activations 4 × Tanh - 4 × Tanh 4 × Tanh -

output size 2 × 8 2 × 1 16 ntx× 4 × 8 16

3.5 Evaluation

In the subsequent subsections, we outline the configuration details used for evaluation

and present the evaluation results for the performance of our trained autoencoder wireless

networks. It is important to note that these experiments do not involve covert communication.

The primary objective of these experiments is to fine-tune the parameters of the autoencoder

models and verify their accurate performance and behavior in fading environments, in

addition to the AWGN channel that is considered in the literature. We measure the models’

performances using BLER. We calculated this by dividing the number of received symbols

with errors by the total number of transmitted symbols, expressed as a percentage.
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3.5.1 Single-User Autoencoder’s Performance

3.5.1.1 Methodology

We implemented an autoencoder communication network for normal communication between

UserRX and UserTX. An Autoencoder(n, k) is a neural network communication model that

sends k bits of data in n channel uses.

Data Rate and Channel Uses: To make our results comparable with [39], we chose

our default parameters to be 8 and 4 for the number of channel uses and binary message size,

respectively. However, we also evaluated our models for two other sets of parameters with

the same data rate but different numbers of channel uses. This allowed us to examine how

increasing the number of channel uses, or signal dimensionality, would affect communication

performance.

Dataset Size: To train our autoencoder model, we generated two datasets for training

and testing by randomly generating binary messages s of size k. This gives us 2k unique

messages, which are uniformly distributed. More specifically, we used 8192 random binary

messages in the training set and 51200 random binary messages in the test set. We created

a much larger dataset for testing to ensure that each signal X undergoes various channel

distortions, providing a more accurate evaluation of the model’s performance.

Optimization Parameters: We set the learning rate to 0.001 and optimized the model

using the Adam optimizer [26]. We used a batch size of 1024 and trained the model for 100

epochs.

Channel Configuration: For the channel configuration, we fixed the SNR value

during training but evaluated the model’s performance over a range of SNRs.
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(a) BPSK constellation (b) QPSK constellation

Figure 3.4: Theoretical BPSK and QPSK constellation diagrams.

The SNR value for the AWGN channel was set to 8dB, while the values for the Rayleigh and

Rician fading channels were 16dB. We chose these SNR values experimentally by training

the models on different SNR values and identifying the value on which the model performed

best.

We have used these parameters in all experiments below, unless stated otherwise.

3.5.1.2 Results

Constellation Diagrams: A constellation diagram is a graphical representation of complex

symbols that provides a visual depiction of the signal space and the mapping of symbols onto

this space. In this diagram, each point corresponds to a specific symbol or combination of

bits transmitted through the communication channel. Typically plotted in the complex

plane, the x-axis represents the real (in-phase) component of the symbol, while the y-axis

represents the imaginary (quadrature) component. Plotting constellation diagrams can help

us understand how autoencoder wireless networks work by revealing insights into the learned

signal representations and their transmission characteristics.

For this particular experiment, two autoencoder networks were trained: one transmitting

one bit and the other transmitting two bits of data per channel use. These parameter
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(a) Autoencoder BPSK (b) Autoencoder QPSK

Figure 3.5: Autoencoder BPSK and QPSK equivalent constellation diagrams.

selections allow for a comparison to be made between the first network and a theoretical

Binary Phase Shift Keying (BPSK) system, while the second network is comparable to a

Quadrature Phase Shift Keying (QPSK) system. In order to have a better visualization of

the learned constellations, the models were trained and evaluated on an AWGN channel,

which minimally affects the positioning of the points. The SNR was set to 10dB for both

the autoencoder and theoretical systems.

Figs. 3.4 and 3.5 present a comparison of constellation diagrams between the theoretical

and autoencoder models. The diagrams demonstrate that autoencoder wireless networks

exhibit similar characteristics to their theoretical counterparts. In the case of QPSK, both

systems generate identical constellation patterns. For the Autoencoder BPSK equivalent,

model has learned a phase shifted constellation version of the theoretical system. Despite

this shift, however, the performance remains the same as the points are still positioned 180◦

apart. This learned orthogonalization allows for reliable demodulation and decoding of the

transmitted symbols even in the presence of noise or channel impairments.

Training SNR Value Impact: During the training of an autoencoder wireless communication
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Figure 3.6: Heatmap displaying the autoencoder model’s performance in terms of BLER,
with Eb/N0 values used for training on one axis and Eb/N0 values used for evaluation on the
other axis.

model, the SNR value used significantly impacts its performance. As discussed in Section

3.5.1.1, we conducted experiments to determine the optimal SNR value for training the

model. Various SNR values were tested, and the overall performance of the model was

measured. To visualize this process, we generated a heatmap (Figure 3.6) that depicts the

model’s performance on the AWGN channel.

The x-axis of the plot represents the evaluated Eb/N0 values, while the y-axis represents

the Eb/N0 values used for training the model. The heatmap reveals that as the SNR increases,

the model’s performance steadily improves within the evaluated range. However, beyond a

certain threshold, the model’s performance starts to deteriorate again. In the provided

example, the optimal SNR value for training the model is determined to be 8dB.

Equalization Impact: Autoencoder wireless models aim to learn and generalize from

the training data to effectively handle unseen communication scenarios. In that regard,

one of the interesting research directions is to investigate the impact of equalization on the

performance of autoencoder wireless models in fading channels. By studying this area, we
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can gain insights into the robustness, adaptability of these models, and identify potential

approaches for improving their performances.

To this end, we experimented our autoencoder models with three different equalization

techniques:

� a) Model without equalization: This approach involves demodulating the signals without

applying any equalization. The model architecture, is similar to what we have illustrated

in Fig. 3.2, excluding the ”Parameter Estimation” and ”Transformation” layers, with

the data directly passing to the decoder network.

� b) Model with blind equalization: In this method, the model estimates the fading

coefficients from the signals and performs equalization using a simple division transformation

function. This architecture, shown in Fig. 3.2, was also the default choice in our other

experiments.

� c) Model with zero-forcing equalization: Similar to the blind equalization model, this

approach uses the same architecture as Option b. However, it omitted the ”Parameter

Estimation” layer and instead received the fading coefficients as input.

These experiments employed our default parameters (sending 4 bits of data over 8 channel

uses) and utilized the Rayleigh fading channel model.

Fig. 3.7 compares the performance of our trained autoencoder using the discussed

equalization techniques. One interesting observation from this plot is the close performance

similarity between the model without equalization and the other two models that incorporate

equalization techniques. This confirms that indeed autoencoder models are well capable to
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Figure 3.7: Comparing the BLER performance of autoencoder models in the single-user
case with three different equalizations: a) without equalization b) blind equalization c) zero-
forcing equalization.

effectively effectively adapt to various channel conditions. Additionally, as anticipated, we

observe an improvement in the model’s performance when using more complex equalization

techniques.

Overall Performance: Fig. 3.8 shows the block error rate (BLER) performance of our

trained autoencoder communication models for various sets of parameters across a range of

SNR values. The models were trained individually on AWGN, Rayleigh, and Rician fading

channels and tested on the same channel they were trained on. The plot reveals that despite

having the same data and coding rate, increasing the signal dimension slightly enhances

the performance of the autoencoder models. This phenomenon was first identified in [39],

which demonstrated that autoencoders trained over an AWGN channel can achieve a coding

gain by learning a joint coding and modulation scheme. Our results support this finding

and suggest that this behavior holds true for autoencoders trained on other channel models

as well. However, it should be noted that a comprehensive study of the performance of

autoencoder wireless systems for multiple channel types and parameters (n, k) goes beyond

the scope of this work and is not the primary focus of this research.
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(a) AWGN channel
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(b) Rician fading channel
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(c) Rayleigh fading channel

Figure 3.8: Autoencoders’ performance in terms of BLER over a range of SNR values is
evaluated in our single-user case. The models are trained over AWGN, Rayleigh, and Rician
fading channels for a set of parameters that have the same data rate.

3.5.2 Multi-User Autoencoders’ Performance

3.5.2.1 Methodology

Data Rate and Channel Uses: In the multi-user case, we have chosen the number of

channel uses and the binary message size to be 8 and 4, respectively, as these are our

default parameters. There are two reasons for selecting these parameters in this way. First,

it allows us to compare our results with those obtained in [39]. Second, by having each

user communicate at half the rate of BPSK, the results of our 2-user system are roughly

comparable to a single-user system at the BPSK rate, while the 4-user system is comparable

to a single-user system at the QPSK rate.

Dataset Size: To generate training and testing sets, we followed the same procedure

outlined in the single-user section and generated a dataset for every user in the system by

repeating this process.

Optimization Parameters: Parameters such as learning rate, number of epochs, batch

size, and optimization algorithm, are kept the same as in the single-user system.

Channel Configuration: For the channel configuration, we have chosen SNR values of
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8dB for the AWGN channel, 16dB for the Rayleigh channel, and 14dB for the Rician channel

during training. However, we evaluate our models over a range of SNR values.

3.5.2.2 Results

Orthogonalization In Section 3.3, we discussed that common wireless systems employ

techniques such as TDMA, CDMA, or OFDMA to mitigate interference in multi-user communications.

However, these techniques are designed at levels higher than the autoencoder model operates.

Thus, the autoencoder model has to learn how to mitigate interfernce at the modulation level

and the impact of this interference avoidance can be observed in constellation diagrams. An

effective interference avoidance techniques would manifest itself on the constellation diagram

by forming distinct clusters or sets of symbols that correspond to each user’s signals, with

appropriate separation and arrangement. In these experiments, we aimed to gain insight

into how autoencoder models handle interference by analyzing their constellation diagrams.

To begin our experiments, we initially set up a simplified configuration to gain an overall

understanding of the system’s behaviour. At first, we utilized two autoencoders with a

low signal dimensionality. Specifically, we employed two QPSK equivalent autoencoder

models, which each transmits 2 bits of data over a single channel use. This low signal

dimensionality would enable us to achieve a clear visualization of how signals are distributed

across the signal space when we plot their constellation diagrams. Moreover, we paired the

messages of the autoencoders so that the same pair was transmitted during transmission.

This eliminates the need for orthogonalization across all messages for the autoencoders,

reducing the communication’s complexity.

In Fig. 3.9, the constellation diagrams of the two trained autoencoder models are
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(a) s0 (b) s1

Figure 3.9: Constellation diagrams of QPSK equivalent autoencoders for two messages: a)
s1 and b) s2. Autoencoder1 and Autoencoder2 represent separate transmitters that are
simultaneously transmitting their signals over the channel. The red and blue circles denote
the constellation points of Autoencoder1 and Autoencoder2, respectively.

presented. The diagrams depict the constellation points for two randomly selected example

messages, s1 and s2. Notably, both models exhibit a BPSK-like constellation pattern,

indicating that they have successfully minimized overlap and correlation between the constellation

points. This orthogonality of the constellations aids in mitigating interference between

users, as each signal occupies a distinct region in the signal space. The observed spatial

separation within the constellation diagram is instrumental in reducing the likelihood of

symbol collisions and enhancing the receiver’s ability to accurately separate and recover

individual signals from multiple users.

The previous experiment provided a basic understanding of how orthogonalization works

in a simple multi-user setup. However, it is crucial to determine if the same behavior persists

as we increase the signal dimensionality (i.e., the number of channel uses for transmitting the

message). To explore this, we conducted a similar experiment as above but with an increased

number of channel uses. In this case, we trained two autoencoder models that each transmits

4 bits of data over 8 channel uses. Also, we did not pair messages of autoencoder this time

to observe how the models learn to orthogonalize their transmissions across all possible
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Figure 3.10: Constellation diagrams of the autoencoder models for all messages. On the left
side, constellation points of all four users projected onto a 2D plane is shown. On the right
side, each channel use is represented as a distinct time slot.

combinations of messages.

In Fig. 3.10, we present the constellation diagrams of these models. On the left side of

the figure, you can observe the constellation points of both users projected onto a 2D plane.

On the right side, we have decomposed the constellations as if each channel use represented

a different time slot. Therefore, with 8 channel uses, we obtained 8 constellation diagrams,

each corresponding to a different time slot. This helps us determine whether autoencoder

models would learn to avoid interference by achieving orthogonal constellations for every

channel use. However, upon examining the figure, it is evident that in the majority of time

slots, there is significant signal overlap. This contradicts the aforementioned assumption and

suggests that the autoencoder models do not exhibit a per-channel orthogonalization.

Therefore, we sought to investigate whether the orthogonalization occur at higher dimensions.

Since our signals have a 16D dimensionality, it is not possible to plot them on a 2D

diagram without losing important characteristics, such as spatial distances. To address

this, we employed Principal Component Analysis (PCA) to reduce the dimensionality while
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Figure 3.11: Constellation diagrams of the autoencoder models after applying PCA to reduce
dimensionality.

preserving the distances between points at higher dimensions (Fig. 3.11). Upon plotting

the constellation diagram, we made an interseting discovery: the constellation points were

distributed along two orthogonal major axes, confirming that in autoencoders with high

signal dimensionality, orthogonalization occurs at higher dimensions.

Equalization Layer Impact: Similar to the single-user scenario, we conducted experiments

to assess the impact of equalization on the performance of autoencoder models when there

are multiple-users in the system. For this purpose, we tested three different equalization

techniques: a) Without equalization, b) blind equalization, and c) zero-forcing equalization.

Fig. 3.12 depicts the performance comparison of our trained autoencoders using these
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Figure 3.12: Comparing the BLER performance of autoencoder models in the multi-user
case with three different equalizations: a) without equalization b) blind equalization c) zero-
forcing equalization.
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(a) AWGN channel
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(b) Rician fading channel
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(c) Rayleigh fading channel

Figure 3.13: The block error rates (BLERs) of our trained autoencoders compared with
simulated results for different numbers of users over a range of SNR values in our multi-user
case.

equalization techniques. In contrast to the single-user experiment, we observed that the

models employing zero-forcing equalization achieved significantly higher performance than

the other two techniques. This outcome was expected, considering that equalization becomes

more challenging and crucial in the presence of interference. These results also indicate that

in multi-user scenarios, autoencoders cannot achieve satisfactory performance without an

effective equalization technique.

Overall Performance: The performance of our trained autoencoder-based communication

models in terms of block error rate (BLER) for a range of SNR values for different numbers of

users is shown in Fig. 3.13. In all charts, the 2-user and 4-user performances are depicted with

blue and red colors, respectively, and the results are compared with simulated traditional

BPSK and QPSK systems with hard decision decoding. The results indicate that multi-

user autoencoder models can achieve almost similar performance to their counterparts in

the single-user cases when compared data rate-wise. However, we have also observed that

while the AWGN and Rician autoencoders outperform their peers, the Rayleigh fading

autoencoders do not. We attribute this to the more complex equalization task that the
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receiver in multi-user cases needs to undertake. This becomes more evident when we compare

the results of our trained single-user autoencoders with BPSK and QPSK data rates, which

were able to outperform all other results.

Having fine-tuned our autoencoder models and confirmed their accurate performance

and behavior, we are now ready to proceed to the next phase of our thesis, which involves

implementing our covert communication model on top of these autoencoder models.
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Chapter 4

GAN-Based Covert Communication

This chapter presents the covert communication model that we have implemented for autoencoder

wireless systems. Our aim is to create a hidden communication channel that operates

seamlessly alongside the existing wireless infrastructure without causing any disruption to

its normal communication activities. To achieve this, we employ a GAN training setup

where different roles of the covert communication model are represented as DNNs. We then

train them in an adversarial manner to develop a sophisticated and difficult-to-detect covert

communication method. In the subsequent sections, we provide an overview of our system

model, delve into the workings of our covert model, and conduct a thorough performance

analysis of our covert model under various communication settings and channel models.

4.1 System Model

Our system consists of two types of users: normal users who communicate with each other via

autoencoder wireless systems and covert users who aim to establish hidden communication
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Figure 4.1: Overall architecture of our system model in the single-user scenario. The UserTX
uses an encoder network to encode a binary message s into a vector of signals X. Alice
generates a covert signal vector Z for a covert message m. Willie receives both normal Y and
covert Ŷ signals during training, but at the time of operation, performs covert detection on
either signal based on covert user activity. Similarly, UserRX extracts the normal messages
from either Y or Ŷ . Bob decodes the covert message from Ŷ . The colored components are
accessible to covert users, while the gray components are inaccessible.

in the system without arousing suspicion from the observer. The communication between

normal users can be either single-user, i.e., between a transmitter and a receiver, or multi-

user, i.e., between multiple transmitters and a base station receiver. In Section 3.3, we have

already discussed the communication models for our normal users. Hence, in this section, our

focus will be on outlining how our proposed covert communication model can be seamlessly

integrated into these existing models. Figs. 4.1 and 4.2 provide an overview of the integration

of our covert model into both single-user and multi-user systems. In the following sections,

we will delve into each component and provide a more comprehensive explanation.

In our covert communication model, we have a covert sender (Alice) who wants to

communicate secretly with her intended receiver (Bob). Bob’s existence is no secret to

the other entities in the system and anyone, including the observer (Willie), can see his

transmissions. However, whenWillie suspects that a covert sender like Alice is communicating
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with Bob, he becomes alerted. Therefore, the primary goal of our covert users is to maintain

Alice’s communications covert.

Alice: The covert communication starts with Alice using her generative model to embed

a confidential message into a covert signal vector. You can find an overview of Alice’s network

in Figs. 4.1 and 4.2 under the TRANSMITTERS sections. As illustrated in the plots, in

non-fading channels, Alice merely needs a covert message and a random trigger to produce

a covert signal. However, in fading channels, she requires the channel state information of

her channel to Bob in the single-user case, and also the channel state information from other

normal users to Bob in the multi-user case. This information will be provided by Bob, which

we will explain below. After Alice produces the covert signals, she transmits them into the

shared channel irrespective of other users’ transmissions. This means that her covert signals

should be agnostic to the signals of the normal users.

Bob: Unlike the normal receiver or Willie, Bob only uses a single antenna at his

receiver. He receives the covert signals that have undergone channel effects and interference

from normal users’ transmissions. Without any equalization operation, he uses his decoder

network to extract Alice’s message from the covert signals. Additionally, he provides Alice

with his and other users’ channel information. He does first by sending pilot signals to

Alice, and second by measuring channel information using the pilot signals sent from normal

transmitters to BaseRX and then broadcasting it to Alice. As we mentioned earlier, Bob’s

existence need not be hidden and him broadcasting this information or pilot signals poses

no risk to Alice’s secrecy, who is supposed to remain covert.

Willie: Willie listens to all ongoing transmissions on the channel and uses a binary

classifier network to determine the likelihood of each signal being covert or normal. Any
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Figure 4.2: The overall architecture of our system model in the multi-user scenario. Each
UserTX separately encodes binary messages si into individual signal vectors denoted as Xi

(X is a vector of these vectors). Alice generates a covert signal vector Z for a covert message
m. Willie receives both normal Y and covert Ŷ signals during training, but at the time of
operation, performs covert detection on either signal based on covert user activity. Similarly,
UserRX extracts the normal messages from either Y or Ŷ . Bob decodes the covert message
from Ŷ . The colored components are accessible to covert users, while the gray components
are inaccessible.

distortion in the normal signals can alert Willie to the presence of a covert transmission, so

Alice must carefully select her covert signals. This means she should not make noticeable

changes to the statistical properties of the channel noise or other normal signals. The covert

signals should also not increase the system’s error rate, as an unexpected increase in the

error rate can raise suspicion. We consider Willie to be an integrated module at the receiver

of the normal communication system, i.e., UserRX in the single-user and BaseRX in the

multi-user case. This way, he can not only detect incoming covert signals but also measure

the communication’s error rate.

We represent the roles of Alice, Bob, and Willie with DNNs in a training setup similar to

GANs. In this adversarial training setting, each of the three roles is encouraged to maximize

its performance until they all reach a state of equilibrium at the end of training.
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4.2 GAN-Based Covert Design

The details of Alice’s transmitter model can be seen in Figs. 4.1 and 4.2. For a given binary

secret message m, Alice first applies a one-hot encoding technique, and then utilizes her

generator model to produce a covert signal Z. With this stochastic generative model, each

time a different covert signal is generated for the same message. Alice then sends this covert

signal to the shared channel, which is accessible to all entities within the system. To simplify

notations, we use X̂ to denote the covert signal prior to propagation through the channel.

X̂ = X + Z. (4.1)

As previously mentioned, we consider three channel models: AWGN, Rayleigh fading,

and Rician fading. Therefore, there will be three different channel outputs for these three

channel models. We use a mapping function C(·) to express each of these channels’ outputs.

This is illustrated in Figs. 4.1 and 4.2 under the CHANNEL & INTERFERENCE section.

Since signals in the multi-user case also experience interference, we express single-user and

multi-user channel’s outputs separately.

AWGN Channel Output : For the AWGN channel model, the signal received at the

receiver carries the channel’s noise effect N ∼ N (0, σ2). Consequently, the channel function

C(·) and the final covert signal Ŷ in the single-user case can be represented as:

Ŷ = C(X̂) = X + Z +N. (4.2)
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For the multi-user case the covert signal can be denoted as:

Ŷ = C(X̂) =
∑
i∈U

Xi + Z +N. (4.3)

where U is the set that contains all transmitters.

Rayleigh and Rician Fading Channel Outputs : In Rayleigh and Rician fading channels,

transmitted signals are multiplied by a complex Gaussian random variable with zero mean

and a certain variance, which represents the fading effect caused by multipath propagation.

Let HU be the complex fading coefficient(s) for the normal signal vector(s), and HA be the

complex fading coefficient for Alice’s signal. The channel function C(·) and the resulting

covert signal Ŷ in the single-user case are given by:

Ŷ = C(X̂) = (HU ·X) + (HA · Z) +N. (4.4)

In the multi-user case, the received covert signal including the channel interference can

be written as:

Ŷ = C(X̂) =
∑
i∈U

(HUi
·Xi) + (HA · Z) +N. (4.5)

You can find the inputs and outputs of Bob and Willie’s networks under RECEIVERS

section in Figs. 4.1 and 4.2.

At the receiving end, Bob is responsible for processing the covert signal Ŷ that carries

the covert message sent by Alice. Using his decoder network, Bob performs classification on

the received signal to reconstruct the covert message m̂. Notably, Bob’s network does not

require any equalization process for decoding the covert signals.
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Willie’s network is designed to classify sequences of normal signals Y and covert signals

Ŷ . In order to ensure that the covert signals remain indistinguishable, Alice must generate

them in such a way that Willie’s network classifies them as normal signals. To achieve this,

Alice requires access to the classifier used by Willie’s network. However, this is not feasible in

a real-world scenario. Therefore, Alice and Bob perform a black-box attack against Willie’s

network using a substitute binary classifier. Previous studies have shown that adversarial

attacks against one model can be effective on another model, even if the two models have

different training sets and architectures [40]. Henceforth, we employ Willie’s substitute

network to provide feedback to Alice during training. This feedback assists her in adjusting

the covert signals to ensure they are indistinguishable from normally transmitted signals.

Additionaly, it ensures that when the model is deployed in a real communication setup, it is

highly unlikely that any observer will detect the covert transmissions.

4.2.1 General Formulation

4.2.1.1 Reliability

The first objective of our covert model is to enable reliable covert communication. In order

to achieve this, Bob needs to be able to accurately decode the covert messages sent by

Alice. As mentioned earlier, Alice employs a generative model to produce covert signals

that correspond to the covert message. Let ΘA(·) be the underlying function of Alice’s

generative model that takes a random trigger t ∼ N (0, 1), a covert message m, the channel

coefficients from Alice to Bob HA, and in the multi-user case, the channel matrix HU and

1Parameter is needed only for fading channel.
2Parameter is needed only for multi-user fading channel.
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produces a covert signal Z. The corresponding covert signal can be denoted as Zm,t =

ΘA(m, t,HA
1, HU

2). Let ΘB(·) be the underlying function of the decoder network that Bob

uses to reconstruct the covert message m̂. Then the reliability of communication between

Alice and Bob is achieved using the following loss function:

LB = Em[H(m̂,m)]

= Em[H(ΘB(Ŷ ),m)]

= Em[H(ΘB(C(X̂)),m)]

= Em[H(ΘB(C(ΘA(m, t,HA) +X)),m)].

(4.6)

For the multi-user case, this equation is written as:

LB = Em[H(m̂,m)]

= Em[H(ΘB(C(ΘA(m, t,HA, HU) +X)),m)].

(4.7)

The equation above uses the cross-entropy function H(·) to measure the difference between

the probability distribution of the reconstructed covert message m̂ and that of the actual

covert message m. This equation can be used to optimize the networks of both Alice and

Bob by freezing one or the other’s network parameters iteratively.

4.2.1.2 Low Interference

While (4.6) ensures communication accuracy, we also need to ensure that the generated

perturbations do not negatively impact normal communication between UserTX and UserRX.

Otherwise, this could alert Willie to abnormal activity. To address this, we add a constraint
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that minimizes UserRX’s loss function during Alice’s training. In a single-user system, we

can express this constraint as follows:

LU = Em[H(ŝ, s)]

= Em[H(ΘU(Ŷ ), s)]

= Em[H(ΘU(C(X̂)), s)]

= Em[H(ΘU(C(ΘA(m, t,HA) +X)), s)].

(4.8)

where ΘU(·) refers to UserRX’s decoder network function. It is important to note that

during this training, UserRX’s decoder network is frozen and only Alice’s parameters will be

updated.

For the multi-user case, since we have multiple transmitters sending signals, we need

to minimize BaseRX’s loss function over all individual transmitters’ signals. Thus, (4.8) is

rewritten as follows:

LU =
∑
i∈U

Em[H(ŝi, si)]

=
∑
i∈U

Em[H(ΘU(C(ΘA(m, t,HA, HU) +X), HU), si)].

(4.9)

4.2.1.3 Undetectability

In our model, Willie acts as a critic network, similar to what is known as a discriminator

in GAN models [15]. The so-called real and fake samples in a GANs’ discriminator training

process here are mapped to normal and covert signals, respectively. For the single-user case,

we use the following loss function to optimize Willie’s network that classifies covert and
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Algorithm 2 Covert Model Training

Time Complexity: O(n), where n is the number of epochs
X ← normal signals data
S,M ← normal and covert messages sets
ΘA,ΘB,ΘW ← Alice, Bob, and Willie networks
ΘU ← UserRX decoder network
H ← cross entropy
C ← channel mapping function
for epoch ep ∈ {1 . . . nepochs} do

t ∼ N (0, 1)
LW = H(ΘW(C(ΘA(M, t,HA, HU ) +X)),ΘW(C(X))
Update ΘW to minimize LW
LB = H(ΘB(C(ΘA(M, t,HA, HU ) +X)),M)
Update ΘB to minimize LB
LU ← H(ΘU (C(ΘA(M, t,HA, HU ) +X)), S)
LA = λBLB + λULU − λWLW
Update ΘA to minimize LA

end for

normal signals:

LW = Em[H(Ŷ , Y )]

= Em[H(ΘW(C(X̂)),ΘW(C(X))]

= Em[H(ΘW(C(ΘA(m, t,HA) +X)),ΘW(C(X))].

(4.10)

where H(·) is the binary cross entropy between the predicted outputs for the covert signals

Ŷ or the normal signals Y and their actual outputs. For the multi-user case, we need to

optimize Willie’s network over all the transmitters’ outputs.

LW =
∑
i∈U

Em[H(Ŷ , Y )]

=
∑
i∈U

Em[H(ΘW(C(ΘA(m, t,HA, HU) +X)),ΘW(C(X))].

(4.11)

This white-box adversarial training against Alice’s network ensures that Willie’s network
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will be adequately trained to distinguish between covert and normal signals. On the other

hand, we do not want the covert signals produced by Alice to deviate from the statistical

properties of the normal signals on the channel, as this would increase the likelihood of the

observer detecting and mitigating the covert communication. To achieve this undetectability

property, we use Willie’s network to act as a discriminator network in Alice’s optimization

function. In other words, Alice’s training against this network aims to maximize Willie’s

uncertainty about his predictions. This regularizer helps Alice form their covert communication

in a way that is indistinguishable from the actual channel’s noise, yet understandable by Bob.

Overall, Alice’s loss function can be expressed as a weighted sum of these three objectives:

LA = λBLB + λULU − λWLW . (4.12)

where λB, λU , and λW are hyperparameters that determine the relative importance of the

different objectives in Alice’s loss function. The algorithmic steps involved in training our

covert models are summarized in Algorithm 2.

4.2.2 Neural Network Architecture

4.2.2.1 Generator (Alice)

Alice first transforms a covert messagem to its corresponding one-hot encoding representation,

where each message belongs to a unique class. She then uses a random trigger t to randomize

the process by which the covert noise signal Z is produced, along with the channel coefficients

HA and HU . For Alice’s generator model, we use multiple dense layers with ReLU and

Tanh activation functions. The first layer acts as an embedding layer, enlarging the input’s
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domain space. The subsequent fully connected layers extract useful features and perform

the encoding process. Finally, the last layer performs a dimension transformation, ensuring

that the generated covert signal Z complies with the dimension of the normal signal X on

the channel.

4.2.2.2 Decoder (Bob)

Bob receives the covert signal Ŷ that has been affected by the channel, and he feeds it through

his decoder network to extract the secret message. Bob’s network is more sophisticated than

Alice’s, as decoding such a distorted signal is a much more complex task. The received

message first goes through a wide dense layer with a Tanh activation function, which

increases the input’s feature space. The data then passes through multiple 1-Dimensional

Convolutional (1D Conv) layers, which learn the coding that Alice has developed to encode

the covert messages. We have found that using 1D Conv layers helps Bob and Alice achieve

better consistency in the accuracy of their communication, especially when the channel

model is more complicated (i.e., when there is also fading in the channel). The rest of

Bob’s decoder network consists of two dense layers that remap the learned feature space to

the covert message domain space. As with UserRX’s and BaseRX’s decoder networks, Bob

eventually predicts the covert message by performing a classification on the received signal.

4.2.2.3 Discriminator (Willie)

Willie’s task is to distinguish between the normal signal Y and the covert signal Ŷ . To

achieve this, he uses a neural network with the same architecture as Bob’s, except for the

last layer, which has a Sigmoid activation function instead of Softmax. The network takes
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Table 4.1: Alice, Bob, and Willie’s detailed network architecture in the single-user and
multi-user case.

Alice (Single-User) Alice (Multi-User) AWGN Alice (Multi-User) Rayleigh/Rician Bob Willie
input size 16 + 2m 16 + 2m 16 + 2m + (ntx × 2 + 2) 16 16

dense layers sizes
32 + 2m+1,
32 + 2m+1,
8 ×2m

32 + 2m+1,
32 + 2m+1,
8 ×2m

32 + 2m+1 + (ntx × 2 + 2),
32 + 2m+1,
32 + 2m+1,
8 ×2m

2 × 8, 16 2 × 8, 2 × 8

dense layers activations 3 × ReLU, Tanh 3 × ReLU, Tanh 4 × ReLU, Tanh 2 × Tanh, Softmax 2 × Tanh, Sigmoid
conv filters - - - 1, 8, 8, 8, 8 1, 8, 8, 8, 8

conv kernel sizes - - - 1, 2, 4, 2, 2 1, 2, 4, 2, 2
conv strides - - - 1, 1, 2, 1, 1 1, 1, 2, 1, 1

conv activations - - - 5 × LeakyReLU 5 × LeakyReLU
output size 2 × 8 2 × 8 2 × 8 2k 1

an input signal, either normal or covert, and produces a confidence probability P indicating

the likelihood of the signal being normal. Using the same network architecture for both

Bob and Willie ensures a fair competition between them, as they have the same capacity for

learning.

4.3 Evaluation

We evaluated the performance of our covert communication models on three different channel

models: AWGN, Rayleigh fading, and Rician fading. We used the same training procedure

for all settings, but the network architecture of our covert and autoencoder models in the

multi-user case differed slightly from that in the single-user setting. Table 4.1 shows these

differences.

4.3.1 Methodology

Dataset: Since each covert message m has to be paired with a normal message s, we

created the covert model’s training and testing sets to have the same number of samples as

the autoencoder’s. Similar to what we describe in 3.5.1.1, this would give us 2|m| number of

unique message, where |m| is the length of the covert messages.
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Optimization Parameters: All models were trained for 5000 epochs using the Adam

optimizer in an adversarial training setting. The entire dataset was fed to the network at

each epoch rather than feeding batches of data. In both the single-user and multi-user cases,

we started the training with a learning rate of 0.001 for the first 2500 epochs and then made

the learning rate ten times smaller for the remaining 2500 epochs.

Hyper Parameters: We adjusted the importance of each of Alice’s objectives by setting

λW = 2λB = 4λU for the single-user case, and λW = 3λB = 6λU for the multi-user case in

(4.12). We arrived at these numbers by running a grid search on these parameters. However,

our solution is not limited to these parameters, and one can use a different set of parameters

to emphasize one specific objective more than the others.

In each epoch, we first updated the parameters of Willie’s network using (4.10), then

trained Alice’s network for one step using (4.12), and finally optimized Bob’s network based

on (4.6).

Although we trained our autoencoder network on a fixed SNR value, we found that our

covert scheme performed better when trained on a range of SNR values. We achieved this

by randomly switching the SNR value within a predetermined range after each epoch of

training. Training our models this way not only helped Alice better preserve the normal

communication’s accuracy but also enabled Bob to decode covert messages more accurately

on lower SNR values. Accordingly, we started by setting the training SNR to the value that

the autoencoder was trained on and incrementally expanded the SNR range from both ends

until no further improvement was observed. Algorithm 3 shows the steps of this process.

As a result, in the single-user case, we settled on the range of -2dB to 8dB for the AWGN

channel and 10dB to 30dB for both the Rayleigh and Rician fading channels. In the multi-
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Algorithm 3 Optimal SNR Range Search

Time Complexity: O(m2), where m is the maximum number of iterations for the search
accU ,B,W ← User, Bob, and Willie final training accuracies
p, c← Previous and current average training accuracies
snrL,U ← Optimal lower and upper bounds of the SNR range
snrT ← SNR value that the autoencoder was trained on
t← L Tracking the SNR bound that is expanding
m← Maximum number of iterations
snrL,U ← snrT
for iteration it ∈ {1 . . .m} do

accU , accB, accW ← Train(snrL, snrU )
c← Avg(accU , accB, accW)
if c > p then

p← c
snrt ← snrt ± 1

else
if t is equal L then

t← U
else

return snrL,U
end if

end if
end for

user system, the optimal range was found within the 0dB to 10dB range for the AWGN

channel, 0dB to 20dB for the Rician channel, and 10dB to 30dB for the Rayleigh channel.

4.3.2 Training Procedure

Fig. 4.3 shows the progress of each covert actor’s accuracy on the test set during the training

process for both single-user and multi-user cases. As the training progresses, Bob gradually

learns to decode covert messages m and establishes reliable communication with Alice. After

a few epochs as the covert communication begins to take form and stabilize, the signals start

to deviate from their original distribution, which helps Willie to better detect covert signals.

When Willie’s accuracy increases, the term LW dominates the other two objectives of Alice’s

loss function in (4.12). As a result, Alice gradually sacrifices accuracy for undetectability.
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(a) Single-user case
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(b) Multi-user case

Figure 4.3: Evaluation results of our covert and autoencoder models during the training
process show the system reaches a stable point after successful training.

Soon after, the training process reaches a stable point where neither of the covert models

sees any significant improvement in accuracy as the training progresses. At the end of the

training, the Users’ accuracy remains intact, Bob achieves reliable covert communication

accuracy, and Willie stabilizes at around 50∼60% accuracy, which, for a binary classifier, is

very close to random guessing accuracy.

4.3.3 Single-User Experiments

We started our experiments with the single-user case. First, we evaluated our covert models

by sending 1 bit of covert data over 8 channel uses and then gradually increased the number of

covert bits to see how increasing the covert data rate affected each component of our covert

scheme. We used the notations Alice(n, k), Bob(n, k), and Willlie(n, k) to differentiate

models with different covert data rates, and their interpretation was the same as that of the

autoencoder model.

Figs. 4.4, 4.5, and 4.6 illustrate the performance of our scheme for different covert data

rates and how reliable our covert models are at different covert data rates. As we expected,

with increasing covert data rates, covert communication becomes more unreliable, its impact
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(c) Willie’s accuracy

Figure 4.4: Single-user covert models’ performance over AWGN channel for different covert
data rates on a range of SNRs.
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(b) Bob’s BLER

��� ��	 	�� ��	 ���� ���	 �	�� ���	 ����
Eb/N0�����

��	

��


���

���

��

���

�
��
��
��
�

������������
������������
������������

(c) Willie’s accuracy

Figure 4.5: Single-user covert models’ performance over Rayleigh fading channel for different
covert data rates on a range of SNRs.

��� 	�� ��� �� ���� �	�� ���� ��� 	���
Eb/N0�����

���


���	

����

��
��

��
��

��
���

��
�

����������
������������������������
����������������������	�
������������������������

(a) User’s BLER

��� ��
 
�� ��
 ���� ���
 �
�� ���
 ����
Eb/N0����

����

�
��

��
��

��
���

��
�

��������
��������
������	�

(b) Bob’s BLER

��� ��	 	�� ��	 ���� ���	 �	�� ���	 ����
Eb/N0�����

��	�

��		

��
�

��
	

����

���	

����

���	


��
��
��
�

������������
������������
������������

(c) Willie’s accuracy

Figure 4.6: Single-user covert models’ performance over Rician fading channel for different
covert data rates on a range of SNRs.

on the normal communication increases, and detection becomes easier for Willie. Overall,

these plots indicate that sending covert data at high rates makes covert communication

unreliable.
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The plots also reveal how the communication channel affects the performance of each

actor. In the AWGN channel, higher covert rates have a relatively smaller impact on

the User’s BLER, while in the fading channels, their impact is more significant. On the

other hand, increasing the covert rate in the fading channels has less effect on the covert

communication accuracy compared to the AWGN channel. For Willie, all channels exhibit

a similar trend, where higher covert rates are more susceptible to detection.

Through these experiments, we have concluded that the most reliable covert data rate

is achieved by sending 1 bit of data over 8 channel uses. Therefore, we will be using these

parameters as the default when evaluating our models in the multi-user scenario.

4.3.4 Multi-User Experiments

After evaluating the reliability of our covert models for different covert data rates, we now

aim to measure the robustness of our covert scheme against the number of users in the

multi-user scenario. To do this, we evaluate our covert models in systems comprising of 2

and 4 users. This will help us understand how adding users, i.e., increasing interference,

affects the performance of our covert models, and whether it has a more significant impact

on communication than increasing the covert data rate.

Figs. 4.7, 4.8, and 4.9 present our results for 2-user and 4-user systems, demonstrating

how the number of users in the system affects our model’s performance. For the AWGN

channel, we observe that adding more users does not change the model’s overall performance.

Furthermore, as the number of users increases, there is almost no impact on the normal

receivers from the covert transmissions, and Bob and Willie’s performances remain almost
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(c) Willie’s accuracy

Figure 4.7: Multi-user covert models’ performances over AWGN channel for systems with
different numbers of users over a range of SNRs.
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(b) Bob’s BLER

��� ��
 
�� ��
 ���� ���
 �
�� ���
 ����
Eb/N0�����

��
��

��
�


��

�

��
�


�����

����


���
�

����


�
��

��
��

�

������������������
������������	�����

(c) Willie’s accuracy

Figure 4.8: Multi-user covert models’ performances over Rayleigh channel for systems with
different number of users over a range of SNRs.
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(c) Willie’s accuracy

Figure 4.9: Multi-user covert models’ performances over Rician channel for systems with
different number of users over a range of SNRs.

the same.

However, for the Rayleigh and Rician channels, a degree of freedom effect can be noticed,

where increasing number of users makes it more challenging for the covert users to avoid
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interfering with the ongoing normal communication. As a result, the impact of covert

communication on normal users becomes more detrimental with a higher number of users.

Unlike in the AWGN channel, adding more users in these cases significantly affects Bob’s

performance, rendering covert communication practically ineffective. Looking at Figs. 4.8

and 4.9, we can observe a distinct cross-over pattern for the fading channels. Specifically,

Figs. 4.8a and 4.9a reveal that there is a certain SNR at which the covert communication

in the 4-user systems begins to have a greater impact on normal communication compared

to the 2-user systems. These SNRs are 10dB and 5db in the Rayleigh and Rician channels,

respectively. These points indicate that covert users can no longer communicate reliably

without causing interference to normal users. This behavior is even more apparent in Figs.

4.8b and 4.9b, which show that Bob’s BLER begins to degrade at the same SNR values

and eventually plateaus, deviating from the performance of the 2-user system. Likewise, we

can see the same pattern in Willie’s detection accuracy. Since covert communication has

no specific pattern from these points further, Willie is unable to detect it accurately and

thereby his detection accuracy remains constant.

4.3.5 Undetectability

Willie’s detection accuracy can be found in figs. 4.4c, 4.5c, and 4.6c for the single-user case,

and in Figs. 4.7c, 4.8c, 4.9c for the multi-user case. His detection performance is evaluated

over a range of SNR values for detecting signals as covert and normal. In the single-user

experiments, we observe that as the covert data rate increases, the covert communication

becomes more easily detectable. In the multi-user case, we cannot directly compare Willie’s
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accuracy for different numbers of users because covert users are unable to establish their

covert communication in the fading channels in systems with 4 users. However, the results

from the AWGN channel indicate that Willie’s accuracy remains roughly the same as we

increase the number of users.

4.3.6 Constellation Diagrams

Fig. 4.10 compares the constellation clouds of covert and normal signals for AWGN, Rayleigh,

and Rician fading channels in the single-user system. We marked each symbol of the

encoder’s output signal as black circle points on the constellation diagrams. The red constellation

cloud shows how covert signals scatter after passing through the channel, and the green cloud

shows this for normal signals. Since data is sent over 8 channel uses, there are 8 black points

on the chart. To maintain consistency with Willie’s accuracy and Bob’s error rate for all

channel models, we set the SNR value to 6dB for the AWGN, 15dB for the Rayleigh fading

channel, and 16dB for the Rician fading channel. This ensured that, in all channel models,

the probability of detection remained relatively the same, and the covert communication

BLER stayed below 10−1. This area of operation provided Alice and Bob relative reliability

in their covert communication while maintaining their covertness. Looking at these figures,
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(b) Rayleigh fading channel

�� �� �� �� � � � � �
����	��

��

��

��

��

�

�

�

�

�

�
�	


�
	�
��
�

�� �� �� �� � � � � �
����	��

��

��

��

��

�

�

�

�

�

�
�	


�
	�
��
�

(c) Rician fading channel

Figure 4.10: Comparing AWGN, Rayleigh and Rician fading channels constellation clouds of
a sample signal. The green clouds show the constellation before the covert communication
and the red clouds show it after.
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the signal constellation diagrams before and after applying our covert model are very similar,

showing that to a first-order, Alice has perfectly learned to cloak the covert signals into the

distribution of the channel’s noise.

4.3.7 Results Validation

To validate the credibility and accuracy of the outcomes derived from our developed autoencoder

wireless models, we undertake a comprehensive validation strategy comprising two primary

approaches. Firstly, we compare our achieved results with those presented in the original

autoencoder wireless model paper. This rigorous comparison serves to establish a strong

alignment with established benchmarks and confirms the reliability of our findings within

the context of prior research.

Secondly, our validation process extends to the integration of theoretical insights, where

theoretical predictions are provided for various experiments. These theoretical benchmarks

serve as a crucial reference point, allowing us to evaluate the empirical outcomes against

expected trends and behaviors.
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Chapter 5

Conclusion and Future Work

In this thesis, we conducted an extensive review of autoencoder wireless systems, exploring

their performance in single and multi-user communication scenarios under various channel

conditions. Our experiments aimed to understand the factors that influence the performance

of autoencoder models in wireless communications. These experiments provided us with a

deeper understanding of the concepts and behaviors associated with autoencoder wireless

communications. Additionally, we prepared a solid foundation for our covert communication

model by fine-tuning the autoencoder models and thoroughly validating their behaviors and

performance.

Next, we introduced a novel deep learning-based covert communication approach that

seamlessly integrates with autoencoder wireless systems. Our covert model successfully

demonstrated its ability to embed secret messages into covert signals without relying on

handcrafted features. Through the utilization of the generative adversarial training framework,

we significantly reduced the detection probability of the covert signals produced. Furthermore,

we proposed a training procedure that allows us to adjust the trade-off between the conflicting
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objectives of covert communication, which are reliability of communication and the probability

of detection. This adjustment is achieved by introducing regularizers into the model’s loss

function, independent of channel conditions or user messages. Our findings demonstrate

that our covert model is channel-agnostic and insensitive to cover signals. To evaluate the

performance of our model, we conducted assessments across three channel models: AWGN,

Rayleigh, and Rician fading. We varied covert rates and the number of system users to

analyze the model’s robustness. Additionally, we investigated the impact of our covert

signals on the ongoing normal system and confirmed that our covert scheme causes minimal

disruption to the system.

5.1 Thesis Summary

In Chapter 1, we discuss the motivations for our research in this thesis, specifically addressing

the need to safeguard wireless network security against covert communication threats. We

emphasize the significance of understanding covert communication methods and the vulnerability

of autoencoder-based wireless systems to such threats. Additionally, we outline the main

objectives of our work and highlight our contributions in this field.

In Chapter 2, we provide an overview of the fundamental concepts and solutions that

form the basis of this thesis. We begin by reviewing artificial neural networks, including

autoencoder networks and generative adversarial networks, which are key components used

in our research. We then introduce covert communication, discussing its taxonomies and

its application at the physical layer, as well as traditional and machine learning wireless

communication techniques. Additionally, we provide a brief summary of the most relevant
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research in the field, categorized into image steganography (the field that inspired our idea),

traditional covert communication techniques, and deep learning-based covert communication

techniques. In the end of the chapter, we discuss the software and hardware tools utilized

during the implementation phase of this research. This encompasses PyTorch, Principal

Component Analysis (PCA), Matplotlib, as well as our hardware configuration employed for

model training.

In Chapter 3, we begin with an overview of autoencoder wireless systems, covering their

neural network architecture, training process, and evaluation. We then delve into the specifics

of single-user and multi-user scenarios within these systems and present the system models

that we have considered. In this chapter, we also provide our neural network design for these

system, and thoroughly examine each component of it. Lastly, we assess the performance of

our trained models in both single-user and multi-user scenarios.

In Chapter 4, we introduce our novel GAN-based covert communication model: a self-

learn covert model that requires no hand-crafted features and can be integrated into autoencoder-

based communication systems. We begin this chapter by explaining our system models,

outlining the objectives and functionalities of each entity. The two system models that have

been considered are illustrated in this chapter: single-user and multi-user communication

scenarios. Next, we presented our design for our GAN-based covert model and explained

how we formulated our objectives. Furthermore, we detailed the neural network architecture

employed for our generator model (Alice), decoder (Bob), and discriminator (Willie). In

the concluding section of the chapter, we assessed the effectiveness of our covert model in

both system models mentioned earlier, assessing its reliability, covertness, and impact on the

ongoing communication.
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5.2 Future Work

This thesis offers several potential avenues for further exploration, some of which are outlined

below:

� Black-box Systems: The covert communication model presented in this thesis assumes

covert users have white-box access to the normal communication system. In other

words, covert sender can minimize the impact of their covert transmissions on the

normal communication by utilizing the normal receiver’s decoder network loss as a

regularizer. Future research could investigate the feasibility and effectiveness of our

covert scheme in black-box systems, where covert users do not have access to the

communication networks of normal users. This would entail training our scheme

against a substitute normal receiver and studying its performance in such scenarios.

� Active Observer: In this thesis, our assumption was that the system observer is

passive, solely detecting the presence or absence of covert communication. However, it

would be valuable to investigate the effects of an active observer on the performance of

our covert communication model. An active observer can deliberately perturb signals

within a threshold that minimally affects normal communication quality but interferes

with the covert communication link. For instance, a straightforward example would

involve adding Gaussian noise with a specific variance to the signals.

� Real-world Implementation: All the results and evaluations presented in this

thesis are obtained through simulation. In the simulation, we treat autoencoder

wireless communication systems as a cohesive unit, with the channel represented as a
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mathematical layer between the encoder and decoder. This give us a computationally

tractable model that can be optimized using algorithms like gradient descent. However,

in real-world scenarios, the encoder, channel, and decoder, as well as the covert sender

and covert receiver of our model, are physically separated components. Therefore,

further investigation is needed to explore solutions for systems with unknown or non-

mathematically representable channel models.
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