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Abstract

A scientific pricing assessment is essential for maintaining viable customer relationship management solutions

(CRM) for various stakeholders including consumers, insurance intermediaries, and insurers. The thesis aims

to examine research problems neighboring the ratemaking process, including relaxing the conventional loss

model assumption of homogeneity and independence. The thesis identified three major research scopes

within multiperil insurance settings: heterogeneity in consumer behaviour on pricing decisions, loss trending

under non-linearity and temporal dependencies, and loss modelling in presence of inflationary pressure.

Heterogeneous consumers on pricing decisions were examined using demand and loyalty-based strategy. A

hybrid decision tree classification framework is implemented, that includes semi-supervised learning model,

variable selection technique, and partitioning approach with different treatment effects in order to achieve

adequate risk profiling. Also, the thesis explored a supervised tree learning mechanism under highly

imbalanced overlap classes and having a non-linear response-predictors relationship. The two-phase

classification framework is applied to an owner’s occupied property portfolio from a personal insurance

brokerage powered by a digital platform within the Canadian market. The hybrid three-phase tree

algorithm, which includes conditional inference trees, random forest wrapped by the Boruta algorithm, and

model-based recursive partitioning under a multinomial generalized linear model, is proposed to study the

price sensitivity ranking of digital consumers. The empirical results suggest a well-defined segmentation of

digital consumers with differential price sensitivity. Further, with highly imbalanced and overlapped

classes, the resampling technique was modelled together with the decision tree algorithm, providing a more

scientific approach to overcome classification problems than the traditional multinomial regression. The

resulting segmentation was able to identify the high-sensitivity consumers group, where premium rate

reductions are recommended to reduce the churn rate. Consumers are classified as an insensitive group for

which the price strategy to increase the premium rate is expected to have a slight impact on the closing

ratio and retention rate.

Insurance loss incurred greatly exhibits abnormal characteristics such as temporal dependence, nonlinear

relationship between dependent and independent variables, seasonal variation, and mixture distribution

resulting from the implicit claim inflation component. With such abnormal variable characteristics, the

severity and frequency components may exhibit an altered trending pattern, that changes over time and

never repeats. This could have a profound impact on the experience rating model, where the estimates of

the pure premium and the rate relativity of tariff class are likely to be under or over-estimated. A discussion

of the pros and cons of the conventional loss trending approach leads to an alternative framework for the
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loss cost structure. The conventional pure premium is further split into base severity and severity deflator

random variables using a do(·) operator within causal inference. The components are separately modelled

based on different time basis predictors using the semiparametric generalized additive model (GAM) with

a spline curve. To maximize the claim inflation calendar year effect and improve the efficiency of severity

trending, this thesis refines the claim inflation estimation by adapting Taylor’s [86] separation method that

estimates the inflation index from a loss development triangle. In the second phase of developing the severity

trend model, we integrated both the base severity and severity deflator under a new generalized mechanism

known as Discount, Model, and Trend (DMT). The two-phase modelling was built to overcome the mixture

distribution effect on final trend estimates. A simulation study constructed using the claims paid development

triangle from a Canadian Insurtech broker’s houseowners/householders portfolio was used in a severity trend

movement prediction analysis. We discovered that the conventional framework understated the severity

trends more than the separation cum DMT framework.

GAM provides a flexible and effective mechanism for modelling nonlinear time series in studies of the

frequency loss trend. However, GAM assumes that residuals are independent and identically distributed

(iid), while frequency loss time series can be correlated in adjacent time points. This thesis introduces a

new model called Generalized Additive Model with Seasonal Autoregressive term (GAMSAR) that

accounts for temporal dependency and seasonal variation in order to improve prediction confidence

intervals. Parameters of the GAMSAR model are estimated by maximum partial likelihood using a

modified Newton’s method developed by Yang et al. [97], and the goodness-of-fit between GAM, and

GAMSAR is demonstrated using a simulation study. Simulation results show that the bias of the mean

estimates from GAM differs greatly from their true value. The proposed GAMSAR model shows to be

superior, especially in the presence of seasonal variation. Further, a comparison study is conducted

between GAMSAR and Generalized Additive Model with Autoregressive term (GAMAR) developed by

Yang et al. [97], and the coverage rate of 95% confidence interval confirms that the GAMSAR model has

the ability to incorporate the nonlinear trend effects as well as capture the serial correlation between the

observations. In the empirical analysis, a claim dataset of personal property insurance obtained from

digital brokers in Canada is used to show that the GAMSAR(1)12 captures the periodic dependence

structure of the data precisely compared to standard regression models. The proposed frequency-severity

trend models support the thesis’s goal of establishing a scientific approach to pricing that is robust under

different trending processes.

Keywords: Conditional inference trees; Random forest wrapped by Boruta algorithm; Model-based

recursive partitioning under multinomial GLM; Resampling; Taylor’s separation method; DMT; GAMSAR.
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Chapter 1

Introduction

In a capitalist economic system, a manufacturing entity shall set a price at which the entity is able to recover

the cost of supplying the product and make allowance for the customers’ willingness to purchase at a pre-fix

price. Likewise, in the insurance market, prospects buy a protection service up-front against a possible

eventuality, where the risk is transferred from the insured to the insurer. At a later date, the insurer may

indemnify for the losses on some specific risk over a certain exposure period and it is subjective to the policy

wording. In return, the insured has to pay a price known as premium, which is calculated based on rate

relativity from pure premium modelling. In the non-insurance goods and services industry, the production

cost is known before the product is marketed. On the contrary, in insurance services the product marketed

is the contractual agreement between the insured and insurer, which introduces complexity to the workflow

of setting price for a carrier. There are some core technical processes involved prior to establishing a sound

scientific rating, and that are:

(i) Building loss model. This is to model how losses are generated. The carriers are in effect striving to

find solutions to two questions when building the loss model:

• How many claims count an insurer shall indemnify in a specific time frame?

• On average, what will the severity of these counts be?

(ii) Determine claims inflation. As the loss experience will not repeat itself identically in the long run, for

which the experience must be made relevant to the current condition matching the claim payouts.
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(iii) Identify the product by type of consumers and their loss profiling. This is to group prospects that have

similar homogeneous characteristics, in an attempt to protect the insurer to remain financially sound

and provide fairness to consumers.

(iv) Discover an apt functional form to derive risk premium (a.k.a, pure premium, PP). The search for a

functional form that defines the risk of loss random variable in terms of a monetary quantifier.

Thus, the above four points are essential for maintaining a sustainable insurance program in the long

run. From an actuarial point of view, the above consideration can be transformed into statistical modelling

by considering the historical loss experience as a random variable, denoted as: Y ∈ Rm×t,

Y =



Y11 Y12 . . . Y1t

Y21 Y22 . . . Y2t

...
...

. . .
...

Ym1 Ym2 . . . Ymt


, where

Yit is a random loss with historical realization information of t years from m policies.

Consideration of modelling,Y under the assumption of independent and identical distribution

considerably simplifies the underlying problem. This assumption can be translated in two ways:

(i) The loss is known as homogeneous with no contagion in the mass of policies and their underwritten

risks if Y1j , Y2j , . . . , Ymj are independent and identically distributed for all fixed time j .

(ii) The loss is known as homogeneous with no contagion in time if Yk1, Yk2, . . . , Ykt are independent

and identically distributed for all fixed policy/risk k . This signifies policy/risk underwritten has no

temporal dependency or seasonal variation, to how the losses arrive.

Relaxing the above classical assumptions introduces challenges and complexity to loss modelling.

However, this makes the resulting actuarial technical premium more appropriate and resembles industry

scenarios. By dropping independence and homogeneity of time, it introduces a serial correlation,

non-linearity trend1 and mixture loss distribution, which adds challenges to construct and estimate loss

models. Meanwhile, ignoring the independent and homogeneous assumption among policy or risk

introduces geographical dependence or inter-portfolio correlations, as such consumers with similar coverage

potentially vary in terms of their loss experience. Thus, by dropping the homogeneity assumption among

1Nonlinear trend are changes of losses over time and does not repeat. It is a pattern of gradual change in a loss nature
due to external factors, changes to claim payout, or process from claims operation that causes the tendency of a series of
loss experiences to move in a certain direction over time.
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consumers and their underwritten risks, actuaries will need to construct a risk profiling mechanism to

achieve improved risk management that maintains the portfolio loss ratio within a profitable threshold.

The main objective of this thesis is to drop both points (i) and (ii) conventional assumptions and

construct a loss model in the presence of an inflation variable as well as a loyalty-based risk classification

mechanism for a personal property insurance program. Additionally, a property insurance portfolio is more

of a heterogeneous nature with multilevel perils. Rarely the loss occurrences are independent and linear with

respect to time. A pool of multi-peril contracts possibly provokes multiple dependencies either within the

peril class (e.g., fire and smoke) or between coverages, or both. So, employing a univariate loss functional

form fails to fully encapsulate the dependencies of multivariate loss for a multi-peril insurance policy of

non-fleet exposure. Thus, this thesis sets a foundation for investigating solutions for the rating framework

mimicking practical industry scenarios.

1.1 Risk Profile Classification Mechanism

Risk profile modelling lies at the heart of Property and Casualty (P&C) insurance ratemaking development.

As insurers increase their ability to differentiate between prospects with a high likelihood of incurring a

greater loss ratio than those less likely to incur losses, it is essential to match premium rates to risk levels. In

this sense, differentiating consumers by profile mechanism impacts either the tariff class frequency or severity

(or both), which directly influences the loss distributions. Thus, the objectives of a profitable portfolio

could be achieved with a more thoughtful risk profile mechanism. Consumer segmentation by demand and

loyalty-based strategy is an appealing approach for making concurrent decisions related to micro-marketing

and underwriting plans. In this thesis, the risk classification mechanism is achieved by employing a new

technique using consumer differential decisions against price sensitivity traits. Through this research scope,

we were able to establish the following projects as research contributions:

(i) Determinant of Pre- and Post-Purchase Price Sensitivity

• Project 1: Assessment of differential price sensitivity (PS) behaviour of a digital

consumer using semi-supervised learning

We proposed condition inference tree (CTree) learning together with propensity score matching to

establish non-overlapping differential PS groups. The CTree algorithm was trained using labeled

data which then produces a partitioning rule based on premium rate, total exposure, and product

type. We then employ the propensity score matching technique to define price groups that have
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significant differences in the purchasing/renewal decisions. The semi-supervised learning approach

attempts to control for confounding by modelling the consumer churn and inforce rates in terms

of the premium rate offer.

• Project 2: Integrated decision tree learning with resampling technique

The empirical data set deals with highly imbalanced and overlapped class distribution. Imbalanced

and overlapped classes are the major causes of misclassification and lower predictive performance

for the minority class(es). The thesis addresses this issue by combining the oversampling technique

with the CTree algorithm.

• Project 3: Two-phase classification mechanism using hybrid decision tree-based

model

The proposed mechanism combines CTree for price group finding, a Random Forest-based

Boruta algorithm to produce variable selection, and model-based recursive partitioning (MOB)

using multinomial regression to establish well-defined PS groups. The hybrid decision tree

learning has greater flexibility to classify consumers following their differential PS pattern,

described by property risk profile, online shopping behaviour and portal engagement, prior

insurance experience, and socio-demographic attributes.

1.2 Loss Cost Trend Modelling

Traditionally, loss cost modelling has been involved in developing prediction models for trend movement and

establishing loss development factors. The scope of this thesis focuses on the predictive value of the loss

trend process around ratemaking. As a result, this chapter’s research contributions are primarily concerned

with trend modelling of pure premium components. The ability of insurance companies to estimate loss costs

so that adequate premium rates can be established is critical to their profitability. The historical experience

of loss is a good guideline for forecasting future loss exposure of an insurance portfolio. By relaxing the iid

assumptions, the loss cost modelling needs to be refined to account for dependency, non-linearity relationship,

and mixture distribution due to the influence of the claims inflation factor.

(i) Extended Loss Cost Model Structure

• Project 4: Pure premium modelling with inflation random variable

To address the mixture distribution under claim inflationary conditions, this thesis proposes an

extended loss cost structure, where the conventional pure premium structure is redefined as

4



three separate random variables of frequency, severity, and severity deflator (a.k.a, claim

inflation). The rationale for not considering regression mixture models for severity modelling,

but instead having the claim inflation modelled separately is that in real application claim

inflation has different trending movements, and could potentially be influenced by external

economic factors. In addition, the claim inflation was predominantly modelled in terms of the

calendar year, while base severity could be modelled by policy year or accident year. Due to

different time basis definitions, we proposed to have the severity be further split as base severity

and severity deflator. Using the structural causal model (SCM), the backdoor criterion with a

causal intervention via do(·) is utilized to remove spurious correlations caused by the

confounder. These interventions were treated as variables in an augmented probability space,

which permitted us to redefine the classical severity component as a function of base severity

and severity deflator random variables.

(ii) Semiparametric Generalized Additive Model (GAM)

• Project 5: Semiparametric GAM with seasonal autoregressive term (GAMSAR)

Property insurance losses are greatly influenced by external risk factors, including natural

disaster events, and inflationary pressure in replacement, and reconstruction costs. Under such

circumstances, the conventional approach to model frequency consisting of standard linear

model (LM), exponential, or Poisson generalized linear model (GLM) is inefficient in estimating

the true trend effects. This is because the loss random variables could have a combination of

linear, categorical, and nonlinear predictors. Also, the decreasing downward trend shift of loss

count likely results in negative frequency estimates using the conventional method and this

contradicts actual industry scenarios. In addition to the nonlinearity relationship and trend

shift, the loss count exhibits a seasonality effect and/or temporal dependency due to yearly

natural disaster events such as wildfire, hail, or flooding. The GAM models have been a popular

alternative to consider for nonlinear response-predictor relationships. To accommodate an

extensive form of predictors type and improve the trend modelling, this thesis proposes using a

semiparametric GAM regression framework to estimate the trend factor of the claims frequency.

An extended semiparametric GAM with seasonal autoregressive term is proposed to model both

the nonlinear relationship and temporal dependency. This proposed approach focuses on

modelling future trends of a time series as a non-linear function of current and past trends.

Parameters of the trend model are estimated using maximum penalized likelihood and we

employed a numerical approach of modified Newton Raphson for determining the estimated
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values. The simulation results show that the GAMSAR regression model has a better model fit

compared to GLM and GAM.

(iii) Separation cum Discount, Model, and Trend (DMT) Framework

• Project 6: Severity trend modelling with claim inflation

Whether the severity defined by the collective risk model, St =
Nt∑
i=1

Yi or individual risk model,

S̃t =
∑
j∈P

Ij Ỹj , where Ij is an indicator random variable takes 1 if there is a loss on policy j

during the time interval (0 , t ] and 0 otherwise. A key problem with the defined models is that

they do not take into consideration the risk development over time. Hence this raised a concern

if it is appropriate to pool severity from the year, n with severity from the year, n-5 and then

estimate the mean, especially when severity random variables of typical P&C insurance products

are greatly exposed to inflationary pressure. In this thesis, we proposed a new framework known

as the discount, model, and trend. The DMT framework for handling inflation is a generalized

form that can be utilized for any form of severity trend modelling. In addition, the severity

deflator is estimated through a loss development triangle using Taylor’s [86] separation

technique. The separation technique has the flexibility to examine loss development in different

time dimensions. Our simulation analysis suggests that compared to modelling severity trends

directly, the separation cum DMT framework demonstrates superiority in terms of average

directional accuracy of predictions, as well as producing a lower average relative error in both

silo and combined modelling strategies.
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1.3 Organization of Thesis

The first goal of this thesis is to develop risk profiling mechanisms that can be used when conventional risk

theory’s assumption of risk homogeneity is relaxed. The second goal is to relax the linearity and temporal

independence assumptions and build a loss model that includes claim inflation, as well as a framework for

loss trends that takes seasonality and temporal correlation into consideration.

Chapter 2 shows the theoretical proof using utility curves as to why an individual consumer or more than

one consumer in a single group exhibits heterogeneous purchasing behaviour although a similar premium rate

is offered. We developed demand and loyalty-based risk profiling using a two-phase classification mechanism

that combines three different decision tree algorithms of CTree + Random Forest-based Boruta + MOB.

This chapter also proposes semi-supervised learning in the first phase of the classification mechanism, with

special attention to the propensity score matching approach that is used to define price groups having

significant differences in the purchase decision. Furthermore, due to highly imbalanced overlapped class

distributions, in the first phase of classification, we explored numerous sampling techniques with CTree

learning to achieve a better area under the curve (AUC) results for each class distribution as well as for

the overall test dataset. The model is empirically validated by analyzing and benchmarking the available

digital consumer dataset to different combinations of sampling technique options. In the second phase of

classification, a new selection feature method was employed to define each price grouping trait. The results

show that Random Forest-based Boruta has lower out-of-bag error than the standalone Random Forest

ensemble algorithm. Finally, a MOB based on multinomial logistic regression was proposed to obtain the

differential PS group. A simulation study was performed to compare the predictability performance of MOB

and standard multinomial logistic regression to identify subgroups with differential treatment effects. A

comprehensive digital consumer data set representing Canadian Insurtech brokerages portfolio is used as

an empirical example. The hybrid modelling technique was used to perform PS assessment for a total of 6

groups for 2 distinct owners’ occupied insurance coverage.

Chapter 3 proposes a new loss cost trend modelling technique under an extended loss cost structure.

Motivated by the idea that frequency-severity trend modelling can be developed from a semiparametric

generalized additive model, this chapter presents a general framework for a loss-cost model system under

claim inflation conditions. The extended loss cost structure with explicit severity deflator as a random

variable is developed using a causal inference framework. The proposed model was compared against

conventional pure premium structure via a simulation study using semiparametric GAM fitted to severity

and frequency variables under multiperil insurance settings. On the contrary, frequency trend modelling is
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performed under the presence of overdispersion, temporal dependence, and seasonal variation using Poisson

GAMSAR. Different autoregressive (AR) order terms are fitted to Poisson GAMSAR and compared. We

employed a penalized likelihood estimation process using a modified Newton-Raphson numerical method

for estimating parametric, nonparametric, and temporal dependence parameters of GAMSAR model.

Simulation results were in favour of explicitly modelling the temporal dependence. Closed-form severity

trend modelling under claim inflation conditions is designed using the separation technique under the DMT

framework. The severity trend modelling approach is examined by analyzing synthetic data from a

Canadian Insurtech broker’s portfolio of houseowners/householders. The findings demonstrate the

proposed severity trend modelling has better forecasting capabilities.

The contribution of this thesis lies in relaxing the homogeneity and temporal independence assumptions

of risk theory in the arena of actuarial pricing framework with advanced machine learning modelling solutions.

This thesis proposes scientific methodologies to integrate a variety of auxiliary information, such as the

weather impacts, economic conditions, and loss experiences based on risk attributes, to improve personal

property insurance pricing and decision-making. Loss modelling in the presence of inflation variables, a

temporal dependency frequency loss trending approach, and the application and extension of risk profiling

to demand and loyalty-based mechanisms are among the methodologies covered.
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Chapter 2

Determinants of Pre- and

Post-Purchase Price Sensitivity

2.1 Introduction

Pricing has been much conversed subject over the past few decades for two reasons:

(i) Premium rates are directly proportional to an underwriting profit margin of an insurance enterprise

and any cumulative events that distress profitability may increase the likelihood of insolvency.

(ii) With the increased competitive pressure, policyholders tend to have a transient relationship with their

insurer, and an upsurge in premium rates is likely to provoke the insured to consider a price-competitive

alternative. According to Leadbetter and Dibra [67], this may jeopardize the insurer’s market position.

Along this line, it is vital for insurance companies to offer their product at competitive yet profitable prices.

Every year insurer encounters recurring difficulties in regulating premium rates to recoup their prior

year’s loss ratios. However, the insurers’ ratings and the customers’ responses to pricing are mostly subject to

risk appetite borne by the underwriter. Thus, it remains challenging to establish the trade-off between rising

premiums to favor projected underwriting profit margins and reducing premiums to achieve a greater market

share. There is a need to strike a compromise between these contradictory objectives. This crisis is closely

aligned with the concept of break-even analysis, that largely viewed from a causal effect of policyholders’
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reaction to rate change. A change or no change in the premium does influence the purchasing and churning

behaviour indirectly through policyholders’ demand. Insurers are aware of the situation and have, therefore

been shifting their pricing strategies towards a demand-based approach.

A key objective of demand-based pricing strategies is to account for the price sensitivity of both prospects

and existing policyholders. On a portfolio level, price sensitivity is often used as synonymous with the

elasticity of demand, and it signifies the quantitative value of responsiveness of quantity demanded of a

good/service to a price variation. For the case of an infinitesimal change in demand and price, the price

sensitivity is mathematically expressed as a normed derivative at a specific point in time (see, Section III

Marshall [71] for related discussions):

εik(p) =
dqik(p)

dpik
× pik

qik(p)
, where (2.1.1)

qik(p) denotes drop off or lapse rate as a function of premium, p.

The term qik(p) varies based on the point at which price sensitivity is being measured. At the quote

application phase, qik(p) corresponds to purchase intensity as a function of premium. Meanwhile, in the

policy binding phase, qik(p) represents the renewal intensity as a function of premium.

Equation (2.1.1) measures the price elasticity of ith insurer’s quantity demand of a quote or renewal

offer for kth insurance product type. It is important to recognize that the expression (2.1.1) is an aggregate

measure at a portfolio layer and does not inform how an individual insured or cluster of prospects with similar

coverage reacts to premium rate change. Although the aggregate price sensitivity measure is straightforward

to estimate and represent population-level response, it may not be closely associated with the underlying

behaviour of a specific individual consumer. Therefore, the use of aggregate-level price sensitivity assessment

precludes performing targeting and micro-marketing decisions. On the contrary, considering at policyholder

level of price sensitivity, it explicitly incorporates the heterogeneity of customers’ attributes based on rate

change. Crucial to this is the response of customers to the premium rate change. To determine what

premium, the insurer can best offer a prospect (or insured), we would need to have some expectation of

how this consumer would respond to unobserved, counterfactual rating offers. As such, the premium rate

optimization and consumer attribute on the Insurtech platform can be seen as a causal inference problem.

The theoretical proof as to why policyholders are heterogeneous in their decisions despite policies being

priced at an actuarially fair premium is discussed in Section 2.8.

Counterfactual responses are easy to infer in a randomized controlled experiment since the treatment
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groups are formed randomly. However, the premium rate in P&C insurance is derived from a risk-based

pricing approach. Thus, it introduces confounding in both the treatment (premium) allocation and risk

exposure amount per product type. A standard empirical approach attempts to control for this confounding

by modelling the customer drop (or churn) rate in terms of premium rate offer and risk attributes. In practice,

an insurer tends to hike the premium for the high-exposure risk class and lower the premium for the less

risky class, since we expect the latter consumer group to have a smaller loss ratio and be more sensitive

to premium increase than the former group. As a result, the confounders typically be imbalanced across

treatments, and will be problematic to extrapolate causal effects from the standard empirical approach.

A solution to this problem is to employ a propensity score matching algorithm that involves forming

pair-matched consumers based on their conditional treatment allocation probability instead of their risk

characteristics. This is established in an effort to infer the potential response to any counterfactual rate

change. The propensity scoring method typically employs logistic regression to measure the change in the

likelihood of a specific dependent variable given a set of independent variables. The estimated propensity

score provides one score for each subject and summarizes the information about all the variables of interest.

Observations with similar propensity scores are treated as comparable samples.

With the advancements in machine learning, several studies have reported alternative data mining

algorithms to estimate propensity scores. See Han and Kwak [41] for discussions and comparisons to the

property score design between statistical learning and mining approach. Also, the data mining technique is

considered adequate when the treatment is assumed to affect responses non-linearly or non-additively. This

method automatically detects interactions by including the cluster indicator as a covariate, allowing for the

evaluation of subgroups and thus improving treatment assignment prediction. In this thesis, propensity score

matching is carried out in accordance with consumer decisions. Since premium changes are continuous, we

adopt a decision tree algorithm as a function of the treatment for score estimation. The propensity scores

are estimated by computing the proportions of trees that classified each observation as churn or non-churn

subjects.

In a nutshell, propensity score estimates attempt to reduce the bias created by confounding variables by

constructing exchangeable comparison groups. The approach refers to a composite variable that summarizes

important group differences. Subjects (i.e., policyholders or prospects) with similar propensity scores were

deemed to resemble each other. In a price sensitivity context, propensity scoring helps identify potential

dissatisfied-loyal consumers and minimize business risk. For example, if a prospect has a propensity score

similar to that of an existing insured, there is a high likelihood that the prospect will exhibit the same
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churning behaviour as the existing insured. Using the propensity score matching approach, an insurer could

identify prospect populations who are likely to make a purchase given the correct stimulus.

Once a proper understanding of consumers has been gained, it is vital to determine their most relevant

features. Measuring the underlying determinants affecting price sensitivity based on consumers’ purchasing

behaviour is a part of empirical investigation to develop an optimal risk classification scheme that supports

constructing an average risk class experience pricing algorithm. Hence, the present chapter sought to extend

conventional priori risk classification by allowing behavioural effect of both pre- and post-purchase decisions

to form homogeneous risk categorization, thereby laying a foundation to construct a multivariate structural

rate-making model. The ability to harvest information on risk retention, defecting insured, drop-off rates,

and closing ratios through differential price sensitivity patterns, provides a wealth of additional information

beyond the priori classification schemes to account for observed experience under the posteriori system.

The work of Barone and Bella [7] served as an inspiration for the current research problem. Through

estimating price elasticity by modelling the switching rate probability, the authors established consumer

segmentation based on objective and behavioural factors. In contrast to an earlier study by Barone and

Bella [7], we considered the possibility of a customer being price-sensitive over the course of their life-cycle

with an insurance carrier, rather than just focusing on the post-purchase activity of switching rate given

renewal premiums. The proposed classification approach was developed utilizing propensity score modelling

within a decision tree framework based on the differential price sensitivity of the customers. The procedure

considers both pre- and post-purchase premium rate and insured value as inputs and purchase (or renewal)

decision as an outcome. In this chapter, we develop a three-step hybrid supervised learning algorithm that

uses conditional inference trees (CTree), random forest (RF), and model-based recursive partitioning (MOB)

builds on the generalized linear model (GLM).

First, we employ propensity score matching in combination with the oversampling technique within

the CTree algorithm to uncover differential price sensitivity groups based on customers’ pre- and

post-purchase decisions. Second, a cohesive framework of the Boruta algorithm around the random forest

is applied to achieve feature selection for each group identified in step one. Finally, we suggest the use of

the MOB algorithm to partition the feature space and classify consumers in accordance with their

differential price-sensitive patterns. The novelty of our proposed method lies in the hybrid supervised

machine learning algorithm that aims to integrate priori and posteriori variables. A multi-attribute scale of

purchasing and renewal decisions are being utilized for extracting distinct segments from a heterogeneous

digital consumer population. Apart from the development of risk classification procedure, this study also
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explores new segmentation mechanisms that are by benchmarking price differential patterns to broaden the

empirical undertakings.

Our approach explicitly addresses both behavioural and risk-related variables to establish a price

sensitivity structure. Consideration of judiciary factors and attributes pertaining protection of social

discrimination are beyond the scope of this chapter. Building on the idea of price dispersion to assess

differential price sensitivity patterns, this study aims to advance the current practice of behavior-based

classification in the insurance pricing mechanism.

2.2 Problem Statement and Research Questions

Transitioning from brick-and-mortar business to web aggregators’ model has spurred an era of e-insurance.

This has resulted in a greater commoditization effect on insurance products as well as shifted the behavior

pattern of the conventional way consumers shop for services. With digital platforms empowering inexpensive

access to information and facilities, the coverage comparison between carriers and customer decision-making

criteria has revolved around product pricing. Therefore, the key technical challenges addressed in the virtual

marketplace are centered on price dispersion and its differential purchasing behavior against price disparity.

In addressing the importance of price sensitivity to customer purchasing and/or renewal decisions, this

study investigates three main research questions that are critical to the development of the pricing model:

RQ1: Do homogeneous consumers differ in their decision-making process? If any, under which

circumstance do consumers with a similar coverage structure at an equivalent technical premium rate differ

in their purchasing and/or renewal decision?

RQ2: What are the determinants associated with differential price sensitivity patterns?

RQ3: Which data mining algorithm can improvise customer segmentation problems in the presence of

class imbalance?

Answers to the above research questions are intertwined with customer value based on price sensitivity

measures and classification problems, which shall be addressed from a data-driven approach.
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2.3 Aim, Objectives, and Hypothesis

This chapter aims to investigate the extent to which risk profiling is achievable via a hybrid segmentation

strategy of priori and posteriori schemes. The focus is to determine the impact of price sensitivity based

on differences in purchasing (or churning) behaviour among digital consumers, as well as to assess the

relationship between individuals’ utility insuring similar coverage and their differential purchase (or renewal)

responses. Furthermore, the proposed method employed propensity score matching to balance covariates

between comparison groups, in order to obtain reliable estimates of the price sensitivity effect in a non-

randomized study.

The current study seeks to establish three primary objectives:

(i) Seek to enrich the existing literature on hybrid segmentation by defining and describing risk

classification based on customer relationship management (CRM) strategy. To discover the attributes

of digital consumers through purchasing (or churning) decisions based on the offered premium rate.

(ii) To use a supervised machine learning algorithm to classify digital consumers based on their perceived

price elasticity.

(iii) To identify risk factors based on price-sensitive segmentation. These identified risk factors are then

featured as rating factors to facilitate pure premium modelling.

The purchasing and churning composition rate of an insurance portfolio varies in response to premium

rate movement, as such it became a challenge in terms of finding common attributes that can relatively

classify for a group of homogeneous consumers. Thus, the following research hypotheses are set to dictate

the stated problem:

RH1: Variations in the decision-making process do exist within a homogeneous risk group, charged with

actuarially fair technical premium.

RH2: Price sensitivity can be significantly explained by consumers’ socio-demographic traits, marketing

variables, coverage offers, and risk attributes.

RH3: The e-commerce insurance consumers can be purposefully segmented based on the perceived price

sensitivity trait.
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2.4 Main Contributions

This thesis extends an alternative perspective on the risk classification model by connecting priori and

posteriori consumer traits to achieve homogeneous digital consumer segmentation. The key insight of hybrid

priori classification over standalone priori classification is that it accounts for any unobserved heterogeneity at

the segment level. The proposed approach differs from previous classification methods in that it recalibrates

the previously labelled classifier determined on an a priori basis and uses the up-to-date observed data

patterns of the policyholder’s risk profile from their purchase (or renewal) responses to refine the risk classes

accordingly. Furthermore, unlike other classification methods that rely on historical claim information,

the proposed model integrates consumer differential price sensitivity information exclusively from a local

subgroup to identify classified classes, while all other insignificant explanatory variables were ignored. The

proposed supervised machine learning focuses on dealing with a multi-class imbalanced problem, which has

hardly been investigated in the insurance customer profiling arena. This data-driven approach provides

transparency in measuring the degree of variation within risk classes.

Second, the proposed semi-supervised classification method can be explicitly interpreted within the

framework of causal inference by conditioning the direct causal effect of the rate change on the differential

purchase (or renewal) responses without confounding by other characteristics such as average total

exposure. This enables assessing the impact of changes in the values of chosen variables (i.e., consumer

purchasing/renewal rate, average premium rate) while stripping out confounding effects (i.e., plan type).

The proposed framework establishes non-overlapping differential PS groups, allowing us to transition from

conventional cost-based pricing mechanisms to customer value-based pricing strategies. Also, these findings

contribute to a growing stream of research by shifting the scope from organizational or portfolio

ratemaking strategies to customer-centric foundations, which take advantage of consumer behaviour in

setting premium rates. By identifying heterogeneous customer demand curves and behaviour, insurers can

vary the prices of coverage offered according to the inverse elasticity rule, which provides quantitative

precision to the practice of price discrimination at the firm level.

Third, this study highlights some of the significant gaps in non-life insurance marketing literature, which

is not all consumers with similar risk exposure makes identical purchase or renewal decision in real practice,

even though the premium is quoted at an actuarial rate. The key to our current approach is we established

a micro-foundation to price sensitivity measure based on individual-level utility. While prior research on

risk classification schemes was driven by underwriting principles, the proposed model takes into account two

aspects:
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(i) Customer decision-making behaviours.

(ii) Risk-related attributes.

The micro-foundation consumer segmentation with respect to differential price patterns provides a fertile KPI

metric for insurers to develop customized risk profiling based on the decision tree rule criterion. Furthermore,

the identified price sensitivity groups can be utilized to uncover customers’ lifetime value, which provides an

allocation benchmarking guide for credibility weight in experience rating computation:

R̂ = ZP̂ + (1− Z)M, where (2.4.1)

R̂: credibility weighted risk rate.

Z: credibility weight, Z ∈ [0 , 1].

P̂ : estimated pure premium.

M : rate for the classification group known as manual rate.
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2.5 Structure

The rest of this chapter is organized as follows. Section 2.6 reviews scholarly articles with a focus centered

on the following research problem:

(i) Risk classification models.

(ii) Hybrid (nested) segmentation approach.

(iii) Consumer profiling using price sensitivity metric.

Section 2.7 provides theoretical proof as to why consumers are heterogeneous in their purchasing

decisions even though the premium is offered at an actuarial rate. Section 2.8 describes the proposed

hybrid decision tree classification algorithm framework for customer profiling based on price sensitivity

strategy. Through the simulation study in Section 2.9, we present the comparison between the proposed

MOB algorithm and the binary logistic regression model. While we describe the owner-occupied property

insurance portfolio of an Insurtech brokerage and provide details on the explanatory data analysis of the

sample gathered in Section 2.10, Section 2.11 applies the proposed methodology and elaborates its findings.

Section 2.12 concludes and suggests directions for future research extensions.

Unless otherwise specified, all numerical applications are implemented using R statistical software, and

the workflow of the proposed decision-tree model is shown in Figure 2.5.1 below:
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Figure 2.5.1: Methodology workflow of customer profiling based on perceived price sensitivity trait.
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2.6 Literature Review

Insurance is simply a contractual promise to indemnify when a specific loss event occurs. It is the variation of

an individual’s actual losses from his expected losses that motivates his choices for coverage while making the

purchase (or renewal) decision. Meanwhile, the variation in expected losses among groups of policyholders

prompts an insurer to price consumers differently. Given these variations and asymmetric information,

customer segmentation in insurance services has spawned its own strand of academic research.

2.6.1 Risk Classification Models

Risk classification is a technique commonly used by insurers to group and profile customers based on

estimated risk exposure in an effort to mitigate adverse selection and moral hazard issues. A theoretical

analysis of risk classification under adverse selection can be found in Crocker and Snow [24]. Smith et al.

[83] use an empirical study to demonstrate the potential of the data mining approach to risk classification,

which alleviates the dispersion pitfall. To achieve an optimal premium price for an automobile insurance

portfolio, the authors use data analysis techniques based on statistical application. They disclose the

advances in data mining methodology via the knowledge discovery process from two standpoints:

(i) Abandoning pre-defined data structure in favor of a data-driven algorithm that automatically recognizes

unknown correlations and learns the relationships between variables, and

(ii) Competence of the algorithm to systematically uncover hidden patterns and behaviours within datasets.

A similar data mining approach is further elaborated by Yeo et al. [98], where the authors propose a

hierarchical clustering algorithm to classify policyholders according to their risk levels, followed by a

regression procedure to model the expected claim costs within a risk group. A key contribution Yeo’s et al.

[98] study reveals that the data-driven k-means clustering approach to risk classification can yield

better-quality predictions of expected claim costs. To advocate the superiority of the k-mean clustering

approach over the conventional heuristic approach, Yeo et al. [98] considered the approach of Samson and

Thomas [82], and created 53 = 125 different groups of policyholders using only 3 predictors among 13

predictors with 5 levels of each predictor. Yeo et al. [98] reported their approach yielded higher prediction

accuracy with a weighted absolute deviation of 8.3% than the conventional one with 13.3%.

In recent years, risk classification research has been streamlined to customer relationship management

functionalities using an artificial intelligence (AI) solution. Table 1 highlights some of the AI techniques

applied in CRM applications, with an emphasis on risk assessment problems in service sectors.
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Table 2.6.1: Application of CRM using AI technique.

References Scope AI technique Case study Data collection Major findings

Hanafizadeh [42]. Risk Assessment

& Customer

Segmentation.

The proposed model

of self-organizing

map (SOM) was

benchmarked to K-

mean clustering.

Policyholders

with automobile

comprehensive coverage

from Mellat Insurance

Company.

Sample size of 34,726

was collected from

the underwriting year

2009. A total of 11

risk factors were pre-

defined as predictors.

The cluster label

identity was based on

the average loss ratio.

SOM model is robust to

display linear & non-

linear relationships

among variables. It

automatically detects

the number of clusters.

SOM treats all variables

as equally important.

Meanwhile, the K-

means technique focuses

on some variables &

distinguishes the data

from each other based

on selective variables.



Table 2.6.1 – Continued from previous page

References Scope AI technique Case study Data collection Major findings

Mehrbod et al. [72]. Customer Service &

Support

Proposed valuation

models of support

vector machine (SVM),

multilayer perceptron

neural network (MLP),

logistic regression, &

random forests (RF).

Intelligence routing &

pairing customer-to-

agent for an insurance

company call center.

The study involves 6

months interactions

of inbound call

centers. Consists of

the imbalanced dataset

with dependent binary

variables of 98.5% good

review & 1.5% bad

review.

Imbalanced data are

best handled using

the synthetic minority

oversampling technique

(SMOTE) that creates

synthetic samples from

minor classes. The

confusion matrices show

that RF performed

better in predicting

the minor class of

imbalanced data

compared to SVM.

Classification accuracy

of imbalanced data

reveals RF has the best

prediction of call result

(92.4%), followed by

MLP (92.1%), SVM

(91.6%) & logistic

(91.6%).



Table 2.6.1 – Continued from previous page

References Scope AI technique Case study Data collection Major findings

Pal & Mukhopadhyay

[76].

Security threats in

information systems.

Proposed valuation

models of classification

& regression tree

(CART), Näıve Bayes

(NB), & bagging tree.

Cyber risk threat

types in a healthcare

& estimated financial

loss per attack type.

Public dataset from

identity threat resource

center & America’s

health rankings for the

year 2017. A total of 7

predictors comprising

of socioeconomic &

cyber-attack factors.

The exposure rate is

assigned as a dependent

variable. The sample

size consists of 373

instances.

NB shows the best

prediction accuracy

with 91.1%, followed

by Bagger at 86%

& CART at 85%.

Insider attack detected

mostly for non-profit &

teaching hospitals with

$53.31Mill estimated

loss. A risk mitigation

solution is to have

stringent security

technology. Unintended

disclosure attack poses

the least threat with

$2.82Mill estimate loss.

Physical attack ranked

the second greatest

exposure with $7.21Mill

estimated loss.



The conventional customer profiling AI solutions such as decision tree, artificial neural network, logistic

regression, and support vector machine typically assume the class distribution of an empirical dataset is

balanced. In this scenario, the number of samples in each class is roughly the same. However, in the big

data era, many real-world application domains have an imbalanced data distribution, with at least one

class outnumbering the others. This is usually caused by the rarity of events or limitations of the data

collection process due to high costs or privacy issues. In such instances, the standard classifier machine

learning algorithm may cause unfavourable performance, and the classifier outcome could be biased towards

the majority class as it tries to minimize the overall error rate to optimize overall accuracy. Such a critical

setback has drawn a lot of attention from researchers and practitioners to address the problem within the

context of business analytics. In particular, Kerwin and Bastian [57] produced in-depth research discovering

how to ensure the best machine learning model selection for fraud detection, Yan and Ni [89] assessed various

resampling techniques for an imbalanced business risk modelling, and Khemakhem et al. [58] presented the

performance gains of introducing resampling strategies into AI methods for accurately assessing credit risk

scoring, and Xiaolong et al. [96] aimed at finding solutions to imbalanced qualitative dataset domains such

as text categorization, spam filtering, and network intrusion detection. These types of research domains are

referred to as learning from imbalanced data.

Xiaolong et al. [96] discussed three distinct strategies to handle the class imbalance problem:

(i) Data-level,

(ii) Algorithmic level, and

(iii) Hybrid method.

A data-level approach modifies the distribution of trained imbalance sets by either decreasing instances from

the majority class (under-sampling), increasing instances from the minority class (over-sampling), or using

an advanced synthetic sampling method that attempts to combine the over-sampling and under-sampling

processes. As a result, the training sample’s class distribution is transformed into a balanced form. Although

the resampling technique is relatively simple to implement, there are a few drawbacks. The loss of information

is an unavoidable result of the under-sampling application. According to Sahin et al. [81], the over-sampling

algorithm generates specific rules from a trained dataset and is prone to overfitting.

The algorithmic strategy for dealing with imbalance can be either algorithm-dependent or application-

dependent, with the goal of modifying an existing algorithm or introducing a new learning algorithm to

reduce bias towards the majority class. The most well-known technique is the cost-sensitive approach, in
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which the given learner imposes various penalties for each type of misclassification. As a result, the loss

function is modified by introducing a higher misclassification cost to the minority class than to the majority

class. According to Sahin et al. [81], cost-sensitive classifiers have been shown to be effective in addressing

the class imbalance problem.

Although the algorithmic level allows a flexible solution to class imbalance, recent studies have shown

that the hybrid strategy of resampling and algorithm produces improvised classifier performance as it delivers

new learner information or eliminates redundant information for the learning algorithm. Since both data- and

algorithmic-level strategies are independent of each other, combining both methods enhances each other’s

performance. Akbani et al. [1] propose a hybrid solution, in which they integrated a cost-sensitive SVM

with the SMOTE. By using different costs in the SVM formulation, the learned boundary is pushed away

from positive instances by penalizing errors in other classes differently. The results obtained from the hybrid

approach reveal SVMs exhibit an advantage in resolving the skewed vector space problem without introducing

noise.

Many scholars’ solution for learning imbalanced data is helpful, but it is insufficient. The best technique

for addressing the problem of class imbalance distribution is highly dependent on the nature of the data

used in a case study. Comprehensive research developments concerning the practical application of CRM

using machine learning are illustrated in Chagas et al. [16]. In addition, literature from different fields of

study has presented numerous combinations of solutions to combat imbalanced classes for either binary or

multi-class classification. Fern’andez et al. [33] offers a comprehensive review of imbalanced learning and

the common techniques used to reduce the instability of imbalanced problems.

2.6.2 Hybrid Segmentation Approach

Classification variables are a set of predictors that help differentiate customers into homogeneous risk classes

based on a functional relationship between the predictors and the dependent variable. The selection approach

for these predictors is determined by an analytical procedure and can be categorized into three major streams

of a-priori, post-hoc (or a-posteriori), and hybrid (or nested).

In a-priori risk classification, the predictor variables are predetermined prior to data collection. The

predictors’ selection procedure is independent of any experience, and the relationship between a dependent

variable and explanatory variables is overlooked during the selection process. The disadvantage is that the a-

priori approach may not produce a completely homogeneous class. As a result, there is a need to continually

assess the efficiency of the a-priori scheme, and as such, any additional information attained from historical
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data as it emerges must be taken into consideration.

A posterior classification scheme is devised based on the empirical experience of a research study for

the specific purpose of segmenting a market or portfolio. The continuous evaluation of whether the targeted

segments should be retained or tweaked to ensure homogeneity within classes is one advantage of posteriori

segmentation. Antonio and Valdez [3] provide a comprehensive reference on several aspects of a priori and

a posteriori risk classification, with an emphasis on the classification scheme in the rating framework.

The hybrid segmentation approach is a two-step process where a-priori segmentation based on more

generic predictor variables is shortlisted in the first step. The pre-determined segments from step one are

then further refined in the second phase using other predictor variables identified from data experience. The

hybrid approach preserves the combined strengths of a-priori and post-hoc, but typically its effectiveness

depends on the post-hoc procedure applied in the second step. To cite an example, Kazbare et al. [56]

conducted a comparison study between a-priori and post-hoc segmentation techniques, which were applied to

a particular case of promoting healthier eating. See Wedel and Kamakura [90] for discussions and references

to the complex segmentation, profiling, and targeting strategies.

2.6.3 Consumer Profiling using Price Sensitivity Metric

A change in premium rate is the only covariate over which an insurer has direct control, as the formation of

a classification model facilitates the insurer’s understanding of how price elasticity varies across consumers

and helps it achieve a finer balance between customer satisfaction and profitability. Most researchers agree

that pricing has an impact on consumers’ decision-making processes, but quantifying this impact has

proven difficult. Kamakura and Russell [53] established a multinomial logit-mixture model for market

segmentation. Their proposed strategy is to simultaneously identify consumer segments based on brand

switching preferences and price sensitivities measured across household shoppers. The authors’ version of

the latent class logit model is constructed on the assumptions of:

(i) Constant probability of priori classes across households and it is estimated by observing a sequence of

purchases over time.

(ii) Finite and predetermined number of segments.

There are only two studies in the insurance literature that address customer segmentation in terms

of price sensitivity. The article by Barone and Bella [7] centered on the segmentation procedures based

on estimated price elasticities. Barone and Bella [7] considered the use of logistic regression to achieve
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behaviouristics segmentation through car damage insurance premium variables and their associated switching

probabilities. Barone and Bella [7] demonstrated that customer demand curves and related price elasticity

are quite heterogeneous in the Italian compulsory automotive insurance market.

This chapter was inspired by the recent work of Arevalillo [4], which proposed a hybrid decision tree

algorithm to define price-sensitive based customer segmentation for an automobile loan portfolio of an Indian

retail bank. In his empirical study, the product to be purchased is the borrower’s acceptance decision on an

automobile loan offer, whereas the concept of price corresponds to the interest rate offered by the banker.

The author combines conditional inference trees, random forests, and a model-based recursive partitioning

algorithm to achieve three objectives:

(i) Distinguish homogeneous price group based on loan disbursement purchase decisions,

(ii) Variable selection on each price group, and

(iii) Price-sensitive segmentation of loan applicants.

Arevalillo [4] determined price-sensitive classification using 2 homogeneous price groups and established

4 price sensitivity classifier classes, which are high, medium-high, medium-low, and low. Our proposed

framework differs significantly from earlier work by Arevalillo [4] in the following ways:

(i) In contrast to earlier literature, which focused on binary classification issues, the proposed framework

investigates the architecture for multi-class classification problems. Methods for solving multiple classes

become much more involved, and binary class solutions are inapplicable to our empirical study. In

particular, we address the problem of mixed variable data types, which have both continuous and

discrete forms, and propose a discretization technique as an initial procedure.

(ii) Our research problem has been expanded to investigate and handle skewed and imbalanced multi-class

distributions, in which we combined a resampling technique with the CTREE algorithm to achieve

reasonable classification performance results.

(iii) We developed a multivariate multi-class classification problem by treating each plan type feature within

an owner-occupied property portfolio as a single metaclassifier and then combining the individual

classifier outputs for price sensitivity ranking.
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2.7 Heterogeneity in Insurance Purchasing Behaviour

Prior to applying classification analysis based on differential price sensitivity, it is critical to have a better

theoretical understanding of why not all individuals offered similar insurance coverage make a unanimous

purchase (or renewal) decision. Hao et al. [43] made a delicate connection between the criterion of loss

coverage and the utilitarian concept of social welfare on the risk classification scheme. In relation to the first

hypothesis statement RH1, we contrast the classical case built by Hao et al. [43] with real-world situations

to account for the potential loss modelled as a discrete-time compound binomial process, and the insurer

levies risk loading, λ in addition to the premium. We also explain why, at any given technical premium rate,

only a portion of consumers in each risk group purchase personal insurance.

2.7.1 Decision-Making of Single Individual

Case 1: Expected Utility under Classical Bernoulli Principle

Consider an individual with initial wealth, W0, who is exposed to a potential random loss amount, L (with

L ≤W0), resulting from either a single or series of loss events having a Bernoulli distribution with probability

p ∈ (0 , 1). Suppose the wealth preference of the individual is governed by von Neumann-Morgenstern utility

function, u(W ) 1, and that individual deemed to be non-satiation, where more wealth is always preferable to

less wealth (u′(W ) > 0). The individual is assumed to be risk-averse, as such an increase in wealth is valued

less highly than not having a decrease in wealth. The latter assumption results in a concave utility function,

(u′′(W ) < 0). According to the above-mentioned utilitarian setting, Hao et al.’s [43] notion of insurance

purchasing decisions is as follows:

(i) An individual makes the decision between two alternatives to either purchase insurance protection with

full coverage 2 end up with utility u(W0 − πL), or self-insure with a potential loss amount, L, and end

up with utility u(W0 − L).

(ii) The expected utility of the individual with insurance protection, E[u(W ) | insured] = u(W0 − πL)

diminishes immediately by the premium amount πL, but there is no further uncertainty since the risk

exposure is fully insured.

(iii) The decision an individual makes to purchase (or renew) an insurance contract depends on whether the

premium rate π is low enough to satisfy the condition that an individual’s expected utility is greater

1u(W ) measures the individual preference between the risk of loss in wealth.
2Full insurance coverage implies an insurer agrees to fully indemnify, I amount if a loss occurs, where I = L at the
premium rate, π per unit rate of loss.
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with insurance protection than without it:

E[u(W ) | insured] > E[u(W ) | uninsured]

u(W0 − πL) > (1− p)u(W0) + pu(W0 − L). (2.7.1)

In particular, a risk-averse individual will purchase insurance at an actuarially fair premium rate, π = p

as such the individual’s expected wealth, E[W | insured] = W0 −E[L] regardless of the occurrence of

the loss.

(iv) An individual is willing to purchase (or renew) an insurance contract up to the premium rate, πe
3

provided that the certainty-equivalence principle 4 is satisfied:

U(CE) = u(W0 − πeL) = (1− p)u(W0) + pu(W0 − L) = Ew/o[U(W )]. (2.7.2)

Case 2: Expected Utility under Compound Binomial Process

In reality, however, the situation is more complicated because the loss amounts incurred at the end of a

fixed period are based on conditional random variables that are dependent on a loss occurrence indicator

variable. With this in mind, rather than describing the potential risk in a binary state, we consider the

random loss to follow a compound binomial process 5. This discrete-time risk model was first proposed by

Gerber [38] and further studied in a number of papers, see Cheng et al. [19], Tan and Yang [85], Jin and Ou

[52] and references therein. More explicitly, let the aggregate loss amounts per period, L =
∑N

i=1 Xi, where

random variable N is the number of claims in each time period and Xi represents positive integer-valued

individual claim amount. The {Xi}Ni=1 is a sequence of independent identically distributed random variables,

independent of the claim number process, N . It is assumed that this is a binomial process in which a claim

occurs with probability p ∈ (0 , 1) in each period or no loss occurs with probability 1−p, and loss occurrence

in different time periods is assumed to be independent events.

Consider an individual with initial wealth, W0 is exposed to a random aggregate loss L as such L ∈

3πe known as the risk premium, and it measures the willingness-to-pay to compensate the expected value of random loss
with certainty rather than face the risk. In other words, the risk premium is defined as the difference between the
actuarially fair rate and the certainty equivalent rate.

4If an individual is indifferent between his risk exposure and having insurance protection at offered premium amount,
then this certain amount is the certainty equivalent to the risk.

5Let random variable Z be independent of the random variable Xi, i = 1, 2, . . . . Suppose Z has a binomial distribution
with parameters n ∈ N and θ ∈ (0, 1). The random variable S =

∑Z
i=1 Xi has a compound binomial distribution with

compounding random variable X.
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(l − τ , l + τ), where l + τ ≤ W0 is the maximum potential loss. We denote the cumulative distribution

function of L by FL(l) and the expected by E[L]. A policyholder is offered insurance against the full amount

of loss at a premium rate of π per unit of loss. Moreover, the insurance provider adds a risk loading, λ to

the policyholder’s premium payment to cover additional expenses.

According to the aforementioned scenario, the expected wealth of a self-insured individual at the end of the

period will be:

E[W |uninsured] = p [

∫ l+τ

l−τ

(W0 − l)dFL(l)] + (1− p)(W0)

= p[W0 − (

∫ l+τ

l−τ

l dFL(l)] + (1− p)(W0)

= p(W0 − E[L]) + (1− p)(W0)

(2.7.3)

So, the expected utility of an individual without insurance is given by:

Ew/o[Ũ(W )] = p [U(

∫ l+τ

l−τ

(W0 − l)dFL(l))] + (1− p)U(W0) (2.7.4)

The maximum loss, L = l+τ produces more disutility than the utility created by minimum loss, L = l−τ , and

because of the concavity of the utility function, the expected utility with a compound binomial loss declines

as depicted in Figure 2.7.1. If full insurance is purchased, the total premium charged for the contract is

proportional to the expected indemnity:

Π = π[

∫ l+τ

l−τ

l dFL(l)] + λ

= πE[L] + λ

(2.7.5)

To hedge the risk, an individual has the option to purchase insurance for full coverage, and his expected

wealth at the end of the period will be:

E[W |insured] = p [W0 − E[L] + E[L]− πE[L]− λ] + (1− p)[W0 − πE[L]− λ]

= W0 − πE[L]− λ

(2.7.6)

The maximum risk premium above the expected loss that an individual would be willing to pay is established

by solving for φ using the certainty equivalent principle:

U(C̃E) = U(W0 − pE[L]− φ) = Ew/o[Ũ(W )], where (2.7.7)
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in agreement with the notion of an actuarially fair premium rate, we assume π = p and as long as λ < φ,

the individual will choose to opt for insurance protection.

Using the roots of a compound binomial process, Figure 2.7.1 shows that when losses are unpredictable,

willingness to pay for insurance increases compared to the Bernoulli utilitarian model conveyed by Hao et

al. [43].

Figure 2.7.1: Differences in consumer purchasing decisions for full insurance protection priced at an
actuarially fair rate under two different random loss scenarios.

The key takeaway from the above proof is that an individual makes a decision based on two alternatives:

(i) Self-insured with potential losses range between l − τ and l + τ and end up with utility
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pU(
∫
(W0 − L) dFL) + (1− p)U(W0), or

(ii) Opt for insurance protection and end up with utility U(W0 − πE[L]− λ).

The decision to opt for insurance protection does not depend on the origins and scales of utility

functions; however, preferences change through an individual’s impact on the risk premium,φ, particularly

an individual is willing to purchase at a higher loading in excess of the expected loss when the uncertainty

of loss exposure becomes greater. Therefore, a crucial factor in deciding whether to opt for insurance

protection is highly influenced by an individual’s degree of risk aversion toward the magnitude and

likelihood of random loss, which is explicitly driven by the premium charged. Even if individuals are

homogeneous in terms of underlying risk, they can still be diverse in terms of risk aversion over future

losses. As shown in Figure 2.7.1, the uncertainty about the loss exposures increases insurance demand,

potentially leading to heterogeneous distribution within a group of individuals, making demand assessment

a good proxy for modelling consumer classification. The heterogeneity of differential purchase responses

under risk pooling can be analyzed using the same utilitarian framework developed in Subsection 2.7.2.
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2.7.2 Decision-Making of Individuals in a Single Risk Group

Under Subsection 2.7.1, we uncover that an individual with a random loss that follows a compound binomial

process decides to purchase (or renew) an insurance contract if the premium plus risk loading charged,

πE[L] + λ does not exceed πE[L] + φ. However, in the real insurance market, we observe that not all

consumers with an identical probability of loss make similar purchasing (or renewal) decisions when offered

insurance protection at an actuarially fair premium 6. How can this heterogeneity in purchasing (or renewal)

decisions be explained?

Theoretical proof in this subsection is built on the consideration of a single risk group comprised of

individuals with a similar probability of loss but differing risk preferences 7 when the insurance offer changes

from full to partial coverage. To formulate this variability, let us assume a population of individuals, all

with the same likelihood of loss
∫
dFL(l), but who may have different utility functions. Also, assume an

insurer first offers full coverage for a premium rate, π per unit rate of loss plus a flat risk loading λ, and

then introduces an alternative partial coverage option 8 for a discounted premium of (1− α)π per unit rate

of loss, with α ∈ (0, 1), plus a flat risk loading λ.

Consider a cluster of individuals within a single risk group, all with similar initial wealth, W0 having

alike risk exposure to a potential random loss amount, L range between l − τ and l + τ , as well as with

the same probability that a loss event will occur, p ∈ (0 , 1). Each individual in the risk group is aware

of his utility function; however, from the perspective of an insurer, their utilities are regarded as random

variables. For simplicity, assume the utility functions belong to a family parameterized by a positive real

number, γ ∈ R+. Further, suppose within the risk group, an individual’s utility function parameter γ is

sampled randomly from an underlying random variable, Γ with distribution function FΓ(γ). The subscript

Γ distinguishes between individual preferences and risk group behaviour, inferring that an insurer cannot

observe any specific individual’s risk preference, γ. Therefore, an individual’s utility function denoted by

Uγ(W ) is a random quantity, and the randomness is inherited from a distribution function, FΓ(γ).

Based on the aforementioned formulation, a single individual from the risk group will choose to purchase

(or renew) full coverage, if and only if Equation (2.7.7) is satisfied for the combination of the offered premium

6Actuarially fair premium reflects premium amount is equal to the expected value of the loss: P = E[L] ⇒ π = p.

7Risk preference links to the purchasing decision of an individual and it is driven by an individual’s loss averse attribute.

8An individual who chooses to buy (or renew) partial coverage accepts to retain β% of loss himself in the case of an
occurrence.
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rate, π plus risk loading, λ, and their particular utility function Uγ(W ):

Uγ(W0 − πE[L]− λ) > (1− p)Uγ(W0) + pUγ(

∫
(W0 − L) dFL) (2.7.8)

Equation (2.7.8) indicates a deterministic purchasing (or renewal) behaviour of a single consumer, assuming

the individual is mindful of his preferences.

Although each individual’s utility function may differ in terms of origin and scale, the certainty equivalent

decision of each individual is independent of this origin and scale choice. Without loss of generality, a group

of individuals is presumed to have the same utility at the endpoint, (
∫
(W0 − L) dFL) and W0, in which the

subscript γ being suppressed and the utilities are redefined at endpoint as U(
∫
(W0 − L) dFL) and U(W0)

respectively. So, Equation (2.7.8) reformed as:

Uγ(W0 − πE[L]− λ) > (1− p)U(W0) + pU(

∫
(W0 − L) dFL), where (2.7.9)

RHS expression, Ue = (1− p)U(W0) + pU(
∫
(W0 − L) dFL) is a constant. The term Ue is identical to all

individuals within the risk group, who are exposed to a similar probability of loss. Equation (2.7.9) implies

that an individual will opt for full insurance protection if the utility exceeds a critical value Ue.

Now suppose that the insurer offers partial insurance coverage in the form of a proportional deductible

policy. This indemnifies an individual for 1− β% of losses, with β ∈ (0, 1). The insurer charges a premium

for partial coverage that is proportional to the expected indemnity:

ΠD = (1− α)× π ×
∫ l+τ

l−τ

l dFL(l) + λ

= (1− α)πE[L] + λ

(2.7.10)

The partial coverage strategy is developed in the same way as the real-world system, with the constraint

that the discounted premium percentage, α%, is greater than the deductible percentage, β%. This inequality

constraint ensures that an individual could derive an economic benefit when the level of deductible is lower

than the discounted premium percentage. The final expected wealth of an individual who opts for partial

coverage is given in Equation (2.7.11) and the adjusted expected utility condition satisfying the decision to
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purchase is expressed in Equation (2.7.12):

E[W |insured] = p[W0 − (1− α)πE[L]− λ− βE[L]] + (1− p)[W0 − (1− α)πE[L]− λ]

= W0 − [(1− α)π + βp]E[L]− λ

(2.7.11)

Uγ(W0 − [(1− α)π + βp]E[L]− λ) > (1− p)U(W0) + pU(

∫
(W0 − L) dFL) (2.7.12)

When an individual is given the option of partial coverage protection instead of full coverage, the expected

final wealth becomes uncertain, and the wealth level shifts to the right of its original point. Figure 2.7.2

illustrates a generic example of heterogeneity in decision preference of four individuals (X1, X2, X3, X4) in a

single risk group having a similar probability of loss occurrence, p.

Figure 2.7.2: Heterogeneous decision preference of individuals in a single risk group based on Neumann-
Morgenstern utility function.

The concave utility curve of individuals X1, X2 and X3 signifies risk-averse behaviour, as such steeper

concavity reflects a higher degree of risk aversion. Individual X4 with a convex utility curve reflects a risk-

loving attitude. The following is a comparison of each individual’s purchasing (or renewal) decision when
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the insurer changes the offer from full to partial insurance coverage:

(i) Individual X1 and X2 :

If X1 and X2 have the option to insure against the risk at a full cover, their utility is defined as

UγX1
(W0 − πE[L] − λ) and UγX2

(W0 − πE[L] − λ) respectively. The {γXi
}2i=1 is the individual’s

utility function parameter. Because both the X1 and X2 utility functions exceed the critical value,

UγXi
(W0 − πE[L] − λ) > Ue, for i = {1, 2}, the individual is willing to purchase (or renew) full

coverage protection at the offered actuarially fair premium rate, π.

If the insurer alters to offer partial coverage protection, then the modified utility of {Xi}2i=1 is

UγXi
(W0 − [(1 − α)π + βp]E[L] − λ), for i = {1, 2}. Both the individual X1 and X2 are agreeable to

purchase (or renew) the partial coverage protection since the modified utility

UγXi
(W0 − [(1− α)π + βp]E[L]− λ) > Ue, for i = {1, 2}.

(ii) Individual X3:

The utility function of the individual is equal to the critical value, UγX3
(W0 − πE[L] − λ) = Ue for

the full coverage option, and as a result, the individual is indifferent between purchasing (or renewing)

insurance protection or being self-insured.

However, the alternative partial insurance coverage made available by the insurer at a discounted

premium rate has altered the purchase (or renewal) preference, increasing the likelihood of individual

X3 opting for insurance protection since the UγX3
(W0 − [(1− α)π + βp]E[L]− λ) > Ue.

(iii) Individual X4:

Regardless of whether it is a full or partial coverage option because both of the individual’s utility

functions are less than the critical value, UγX4
(W0 − πE[L] − λ) < Ue and UγX4

(W0 − [(1 − α)π +

βp]E[L]− λ) < Ue, the individual is unlikely to opt for insurance protection.

The utility functions of individuals are unobservable from the perspective of an insurer. Then, for a

given premium, π, an insurer gauges an individual’s purchasing preferences using the closing and cancellation

proportion metrics. This introduces the notion of the proportional demand function, d(π), which is the

probability that an individual with a loss likelihood of,
∫
dFL(l) will purchase one unit of insurance if a

premium rate, π per unit rate of loss is offered. Given FΓ(γ) the distribution function of random variable
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Uγ , the demand function, d(π), for each coverage option offered by the insurer is defined as follows:

d(π) =


d(1)(π) = P [UΓ(W0 − πE[L]− λ > Ue ] = 1− FΓ(Ue), for full coverage.

d(2)(π) = P [UΓ(W0 − [(1− α)π + βp]E[L]− λ > Ue ] = 1− FΓ(Ue), for partial coverage.

(2.7.13)

For each coverage option, the corresponding density function, fΓ(γ) of the utilities at the fixed wealth of

a single risk group is shown on RHS as a vertical plot of Figure 2.7.2. The shaded area, d(π) signifies the

likelihood that individuals within a risk group will opt for insurance protection based on the type of coverage

and the premium rate, π.

Thus, from an insurer’s perspective, a particular individual purchases (or renews) his contract with

probability d(π) and drop off (or churn) with probability (1 − d(π)). In other words, an insurer observes

the stochastic decision-making behaviour of consumers. For any individual chosen randomly, the

conditional function Y |type of coverage define to be:

Y |type of coverage =


1, if the individual opt for insurance protection.

0, if the individual is self-insured (or uninsured).

Thus, Y |type of coverage is deterministic in consumers’ viewpoint and conditional Bernoulli random

variable with parameter d(π) in the standpoint of the insurer.

The preceding theoretical proof confirms that consumers with similar risk exposure do exhibit variation

in their decision-making, regardless of whether the insurer offers similar or different coverage options at

the actuarially fair premium rate, reaffirming hypothesis statement RH1. The micro-foundations of the

differential consumer behaviour against price change described in Subsections 2.7.1 and 2.7.2 suggest a

possible price sensitivity classification mechanism in which observable demand for insurance generated by

unobservable utility functions of consumers can be empirically modelled using demand function d(π) under

the assumption that the utility function follows a probabilistic law. We propose working directly with the

proportional demand function, d(π) in order to set up the price sensitivity segmentation framework.
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2.8 Classification-based Price Sensitivity Model for Digital

Consumer

Utility theory established in Section 2.7 reveals consumers’ behaviour in the choice of insurance is indeed

being influenced by premium rate, where the maximum willingness to pay for coverage sways the demand

for insurance. The theory of random utility is a workhorse to proxy consumer behavior with price sensitivity

assessment to model the heterogeneity within risk groups. In regard to hypotheses statements RH2 and

RH3, we seek to explore a hybrid decision tree classifier algorithm to achieve digital consumer segmentation

based on their differential price-sensitive pattern.

While the two-class classification problem is well known, multi-class classification is relatively less

researched in actuarial studies. We define a novel data-dependent digital consumer segmentation

framework in this chapter, building upon previous scholarly work on the multi-class classification problem

(see, Mohri et al. [74]). In a fully general setting, the classification-based price sensitivity model for digital

consumers is defined as:

Let S be a dataset of N observations, S = {(xi , yi)}Ni=1 ⊆ RM × C, where the vector xi ∈ X ⊆ RM

represents a digital consumer, each of which is characterized by M predictor variables such as

socio-demographic traits, property risk attributes, credit ratings, and purchase histories. The dependent

variable, yi represents ith consumer behaviour, where it contemplates the purchase or renewal intention of

owner-occupied personal insurance protection. In this classification setting, the dependent variable is of

categorical form with a nominal data type. The empirical study considers a multi-class classifier,

yi ∈ Y = {1, 2, . . . , k}, since the decision responses encompass both pre- and post-purchase Insurtech

consumers’ lifecycle. The task of the classification algorithm is to learn a function, f that maps the input

vector, xi on an instance space X to a predefined class label, yi of label space, Y .

f(xi) : RM → yi, where xi ∈ X ⊆ RM and yi ∈ Y ⊆ C (2.8.1)

The nature of the functional relationship, f , however, is unknown and must be assessed from past observation,

S in an inductive reasoning manner. The function, f is called a classifier.

Given the training dataset, Dn = {(xi , yi)}ni=1, the goal of learning is to determine the functional

relationship f : X → Y based on Dn so that the predictor, f(X) is a good approximation of true output,

Y such that y ≈ f(x) for all (x , y) ∈ X × Y . The learning algorithm achieved from a trained dataset

is called the hypothesis function, where the configuration of the algorithm involves searching over a space

37



of function, H which is referred to as hypothesis space. A hypothesis function could be linear, nonlinear,

convex, expressible as an equation or algorithm. The prediction function (a.k.a, classifier), f is determined

by attempting to minimize a risk measure, R(f) over the selected hypothesis space, H as follows:

f∗ = arg inf
f∈H

R(f), where f∗ is the best predictor among H. (2.8.2)

Under the risk minimization framework, the objective to learn a classifier, f is subject to a global

minimizer of R(f) for a given real-valued loss function, ℓ(f(x) , y). In a machine learning setup, the training

and testing samples are independent and identically distributed (iid) samples drawn from an unknown

distribution, Y such that the risk of a classifier is defined in terms of expected loss over joint distribution,

ΥX,Y :

R(f) = E(X,Y )∼Υ[ℓ(f(x), y)] =
∑

(x,y)∈X×Y

ℓ(f(x), y) ΥX,Y (x, y) (2.8.3)

The risk informs how well on average, the classifier, f performs with respect to the chosen loss function, ℓ.

So, the goal is to predict for x the output class label y with least risk-value:

f∗ = arg inf
f∈H

R(f) = arg inf
f∈H

(E(X,Y )∼Υ[ℓ(f(x), y)]), where (2.8.4)

ℓ(f(x), y) measures the loss of margins f(x) when the true label of x is y. The choice of loss function,

ℓ : R→ [0 , ∞) depends upon the type of learning algorithm and prediction task.

However, in the real world, the R(f) is not computable as the underlying joint distribution, ΥX,Y is

unknown. One may replace ΥX,Y by its empirical distribution of a training dataset, Dn, as such the optimal

predictor is learned by minimizing an empirical loss function:

R̂(f) =
1

n

n∑
i=1

ℓ(f(xi), yi) (2.8.5)

By the law of large numbers, the average loss of the prediction function, f over the set of training samples,

converges to the true risk R(f), as such:

R̂(f)
p−→ R(f) as n→∞ ⇔ ∀ ε > 0 : Pr(|R̂(f)−R(f)| > ε) −−−−→

n → ∞
0 (2.8.6)

Equation (2.8.6) implies the larger the sample size, n gets, the closer the empirical risk classifier f̂ approach to
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the best predictor, f∗ in space H. This theory lends support to the idea of finding a classifier by minimizing

the empirical risk:

f̂ = arg inf
f∈H

R̂(f)

= arg inf
f∈H

[
1

n

n∑
i=1

ℓ(f(xi), yi) ]

(2.8.7)

The selected classifier, f̂ depends on given training samples and so, the learning algorithm itself is a random

quantity. A critical aspect of the frequentist approach to learning a classifier is that good classifiers are tough

to construct when the dataset distribution has complex characteristics. One such intricate case confronted in

the current empirical study is the presence of overlapping class distribution with a combination of imbalanced

classes. The class overlap occurs when there is an ambiguous region in the data, as such the prior probability

of two or more classes is approximately equal. Thus, this causes uncertainty when determining the class

boundaries, which negatively affects classification performance. In the next subsection, resampling techniques

to combat imbalanced classes within the classification system are considered.

2.8.1 Resampling Techniques

To combat imbalanced learning, researchers have advocated a number of data-level techniques, which aim

at balancing the rare (minority) and normal (majority) classes, to reduce the data skewness. The data-level

solutions are more versatile, as their use is independent of the classifier selected. One possible data-level

approach is the resampling scheme, which produces a näıve technique by modifying the priors in the training

set to either increase sample points from the minority classes or decrease sample points from the majority

classes. Resampling methods can further be categorized into oversampling, undersampling, and hybrid (a

combination of oversampling and undersampling). Oversampling and/or undersampling mechanisms act as

a pre-processing phase and in the current empirical study, we will be leveraging the random oversampling

strategy. Specifically, the random oversampling of 75% training set was proposed in this thesis.

The goal of random oversampling is to over-sample the minority classes by selecting samples at random

with replacement and supplementing the training data with multiple copies of these instances. To illustrate

the oversampling technique, consider a training dataset S with m samples (|S| = m):

S = {(xi , yi)}, i = 1, . . . ,m, where

xi ∈ X is an instance in n-dimensional feature space X = {f1, f2, . . . , fn} , and

yi ∈ Y = {1, . . . , C} is a class identity label associated with instance xi.

In addition, we define subsets Smin ⊂ S and Smaj ⊂ S, where
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Smin is the set of minority class examples in S, and

Smaj is the set of majority class examples in S, where

Smin ∩ Smaj = {} and Smin ∪ Smaj = {S}.

Any sets generated from sampling procedures of S are labeled E.

The procedure of random oversampling follows by adding a set of E sampled from the minority class,

whereby for a set of randomly selected minority examples in Smin, augment the original set S by replicating

the selected examples and adding them to S. Hence, the number of total examples in Smin increased by |E|

and the class distribution of S is adjusted accordingly.

Our empirical study focuses on imbalanced learning with multi-classes, where there are four classes,

with pre-purchase prospects’ decision of drop off category having a higher number of examples. Whilst

post-purchase has a lower number of examples, specifically the cancelled and in-force classes. The

pseudocode below illustrates the most viable oversampling technique experimented with in this case study:

Table 2.8.1: Random Oversampling (ROS) Algorithm.

Algorithm 1: ROS with 75% of the trained dataset

Input:

Training samples, Strain = {(x1,y1), . . . , (xn,yn)}

test samples, Stest = {(x1,y1), . . . , (xm,ym)}

Strain ∩ Stest = ∅ , i.e., they are disjoint set.

Parameters:

Initial composition between training and test data: 60:40.

YStrain is the response variable from the train dataset stored as a factor data type.

C is the number of classes in the response variable.

N is the total number of samples in the new train dataset, Strain new.

nc is a total number of samples per class in the new train dataset, Strain new.

Output:

Oversampled matrix of observations, T′ = Strainori ∪ Sup

Algorithm:

1: Randomly select 75
100
× Strain examples to form a new trained dataset, Strain new

Strainori = Strain − Strain new
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2: do {

add randomize samples to the minority classes with replacement,

Sup = upsample(Strain new , YStrain new)

all the original data are left intact and additional samples are added to minority classes with replacement.

} while ((nc
N
) < 1

C
)

3: Merge upsample dataset, Sup and remaining 25% of the original trained dataset, Strainori to obtain a new train

(oversampled) dataset, T′.

4: Validate the resulting oversampling method by fitting a classification tree model on both, the oversampled train

dataset T′ and the test dataset, Stest. Assess the accuracy/kappa metric between the trained model and the test

model.

The primary idea of the above mechanism is to leverage the frequency distribution of the response

variable as a criterion to automatically determine the number of random samples that need to be generated

for each minority example. This is achieved by adaptively adjusting the class distribution of different minority

examples to compensate for the skewed distributions.

However, the random oversampling mechanism introduces its own set of challenges, which can potentially

hinder classifier learning. a setback of the oversampling technique is a little opaque, where the mechanism re-

creates some existing data to the original dataset, and with multiple instances of certain examples becoming

tied, it produced an overfitting issue. Overfitting in oversampling occurs when the classifier produces multiple

clauses in a rule for multiple copies of the same examples, which causes the classifier rule to be too specific.

In this case, although the accuracy of the training sample is high, however, the classification performance

on the unseen testing data is generally poor (at times worse).

2.8.2 Hybrid Decision Tree Classifier

A decision tree classifier is defined as a functional mapping from input variable to output variable, φ : X → Y

represented by a rooted tree, where any node, t signifies a subspace of input space, Xt ⊆ X . Internal nodes t

are labeled with split st determined by a learning set of decision rules, R inferred from the training dataset.

It partitions the space Xt, where the node t constitute disjoint subspaces respectively corresponding to each

of its child. Terminal nodes are labeled with the best estimate of the output variable, ŷt ∈ Y. Given a

classifier function, φ, the ŷt ∈ {1, . . . , k}, as such the predicted output value φ(x) is the label of leaf reached

by the instance x when it is propagated through the tree by following the splits st.
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For a classifier tree φ of fixed structure minimizing the global generalization error is equivalent to

minimizing the local generalization error of each model in the terminal nodes:

Err(φ) = εφ = E(X,Y )[ ℓ( φ(X ) , Y) ] (2.8.8)

A model that minimizes εφ is a model that minimizes the inner expectation leaf. So, learning the best

decision tree simply amounts to finding the best ŷt at each terminal node. Since the aim of this chapter

centered on a classification problem, ℓ is of zero-one loss form, and the inner expectation in Equation (2.8.8)

is minimized:

ŷt = argmin
k∈Y

EX,Y |t [ I (Y , k) ]

= argmin
k∈Y

P [ Y ̸= k | X ∈ Xt ]

= argmax
k∈Y

P [ Y = k | X ∈ Xt ]

(2.8.9)

The generalization error of node t is minimized by predicting the class with a high likelihood for the samples

in the subspace of t. Equation (2.8.9) can only be solved if the joint probability P (Y,X) is known. An

alternative solution is to approximate them using estimates of the local generalization error. Let nt denote

the number of objects in the subset of training data, Lt belongs to node t, and nkt denotes the number of

objects of class k in Lt. The proportion nkt

nt
as the estimate of probability P [ Y = k | X ∈ Xt ]. Similarly,

the proportion of nt

n as the estimate of probability P [ X ∈ Xt ].

ŷt = argmin
k∈Y

( 1− p[ Y = k | X ∈ Xt ] )

= argmin
k∈Y

( 1− nkt

nt
)

(2.8.10)

42



Thus,

ε̂φ =
∑
t

p[ X ∈ Xt ]( 1− p[ŷt | X ∈ Xt] )

=
∑
t

nt

n
(1 − nŷtt

nt
)

=
1

n

∑
t

nt − nŷtt

=
1

n

∑
t

∑
x,y∈Lt

I( y ̸= ŷt)

=
1

n

∑
x,y∈L

I( y ̸= φ(x))

ε̂φ = ε̂trainingφ

(2.8.11)

A key takeaway from Equation (2.8.11) is that the more terminal node splits in any way, the smaller the

estimate ε̂trainingφ becomes.

Conditional Inference Trees (CTree)

Conditional inference trees take one step further from the standard decision tree algorithm, where it

applies a unified framework for handling both selection bias and overfitting. CTree framework uses the

infrastructure of recursive partitioning of dependent variables, conditional upon the global null hypothesis

of independence between the response and any of the m covariates at a pre-specified nominal level α. The

algorithm below layout the main CTree procedure:

Table 2.8.2: Conditional Inference Tree Algorithm.

Algorithm 2: CTree

Input:

Training dataset, Strain described by covariates/features, X1, . . . ,Xm and response Y;

Parameters:

Bonferroni adjustment pruning test with minimum criterion, 1–α, where α is the significant level.

Output:

Node split.

Algorithm:
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1: Variable selection procedure

do {

Test the global null hypothesis, H0 of independence of between Y and all X with:

H0 =
⋂m

j=1 H
j
0 and Hj

0 : D(Y | Xj) = D(Y), where

(i) D(Y|Xj) is the distribution of Y|X, which is equal to the marginal distribution, D(Y) under H0.

(ii) The global hypothesis is divided into m partial hypotheses. Each partial hypothesis separately tests one

variable Xj for association with the response variable Y .

If H0 fail to reject at the pre-specified level α

then node be closed into a leaf with no further recursion

Else If H0 reject at pre-specified level α

then measure the association between Y and each of the covariates Xj, j = 1, . . . ,m. Select variable

Xj∗ with the strongest association having the smallest p− value as the best feature for node split.

End If

}while (splitting process continues until the global H0 & all the partial hypotheses can no longer be rejected)

1.1: Test Statistics using permutation testing

(i) Calculate a test statistic under the null hypothesis, T0.

(ii) Calculate a test statistic T for all permutation of pairs Xj,Y.

(iii) Count the number of T which are more extreme than T0 denoted as n′.

(iv) Calculate the p− value, p = n′

npermutation

(v) Reject H0 if p < ααα.

Test statistic mentioned in the five steps developed by Strasser and Weber [48] shown below:

Tj(λλλn , w) = vec(
∑n

i=1 wi gj(Xji) h(Yi , (Y1, . . . ,Yn))
T) 9, where

vec is the vectorization of the matrix.

λλλn is the learning sample.

wi is a binary case weight of either 0 or 1 subject to a node containing the observation.

gj transformation of the explanatory variable Xj.

h is the influence function that depends on the response.

2: Search of split procedure

Once a covariate is selected from step 1, the split is achieved through a permutation test framework as described

above, in order to obtain optimal binary split in one selected covariate, Xj∗ .
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Two-sample linear statistics, a special case of linear statistics Tj(λλλn , w), is used to assess the goodness of split.

For more details see Hothorn et al. [48].

Unlike other standard decision tree algorithms such as CART, CTree does not make use of a pruning

strategy, instead, it uses a stopping rules criterion based on Bonferroni-adjusted p− values to determine the

tree size.

Boruta-Random Forest Algorithm

The ensemble learning framework combines a set of base classifiers with the aim of achieving a better

performance than each individual classifier. Ensemble learning can be implemented either in parallel or

sequential form. Sequential ensemble such as Boosting generates base classifiers in a sequential manner,

while parallel ensembles such as Bagging and Random Forests generate base classifiers in a lateral format.

The prime aim of the parallel ensemble technique is to exploit independence between the base learners so

that the error can be reduced significantly by averaging. In our empirical study, we exploit the homogeneous

parallel version of random forests.

RF forms a family of methods that consists in building an ensemble (or forest) of decision trees grown

from randomized variants of the tree induction algorithm. It consists of several unpruned decision trees with

each tree being trained based on a bootstrap dataset. At each node, the tree is built by determining the

feature (independent variable) from a subset of randomly selected features to partition. In the RF algorithm

there are two sources of randomization:

(i) Bootstrap resampling of the dataset to construct the trees of the forest.

(ii) Random selection of the candidate set of features for partitioning the nodes.

The RF mechanism can concisely be summarized as:

(i) Step 1, a total of n bootstrap tree samples drawn from the dataset to generate a forest with n unpruned

trees.

(ii) Step 2, the partitioning variable at each node of the tree is determined using a randomized strategy,

which searches for the best cut-off value among the subset of variables randomly sampled.

9It gives a general formulation covering all possible cases with the use of the transformation and influence function. In
the current study, we shall not dwell on the theoretical aspect of the permutation test
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For the RF model to be efficient, the trees must be diverse and weakly correlated with one another.

The diversity is achieved by randomly opting instances to train each tree (these are in-bag instances) along

with randomly selecting features at each node per tree, followed by using non-selected instances (these are

out-of-bag instances) to assess the performance of the tree. The contribution from each variable to the final

RF model is quantified as a ranked measure of variable importance.

The automatic selection of important features from the RF can be achieved through the Boruta system.

Kursa et al. [64] proposed the Boruta algorithm as a wrapper 10 feature selection technique that is called

into the RF model to filter out irrelevant or redundant features from the dataset. The objective was to

reduce the complexity of the fitted model and accomplish higher accuracy if the right subset was chosen.

Boruta system was formed based on extending the original dataset by adding ’shadow features’, whose values

are randomly permuted among the training samples to eliminate their associations with a decision variable.

Boruta is very alike to permutation, but it differs in that it does not shuffle one feature at a time, but rather

shuffles each feature in a single run followed by the construction of shadow features.

Boruta system adapts all relevant feature selection approaches, where it captures all features that are

associated with the outcome variable. The importance of each real predictor variable is compared with a

maximum value of all shadow variables using the Z score test, which was derived from the loss accuracy

metric achieved through multiple executions of RF on the extended dataset. Only variables whose importance

is significantly higher than that of the randomized shadow variables are deemed important and confirmed,

whilst predictor variables with smaller importance values are classified as rejected or tentative. The rejected

variables are removed, and the iterative process continues till all variables are classified or the algorithm

itself reaches a pre-specified number of runs. Hence, the set of shadow attributes is used as a reference

for deciding, which attributes are truly important. The pseudocode for the Boruta system shown below is

implemented in our empirical study using the Boruta package in R [65]:

Table 2.8.3: Boruta Algorithm.

Algorithm 3: Boruta Algorithm

Input:

Original dataset, S = {(x1,y1), (x2,y2), . . . , (xn,yn)} ;

confirmedSet = ∅

rejectedSet = ∅

10Wrapper function is a function that wraps another function. The main purpose of the wrapper function is to call an
internal function for some alteration or additional computation. However, this is sufficiently minor, and the original
function constitutes the bulk of the computation.
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tentativeSet = ∅

Parameters:

maxRuns is the number of random forest runs.

Confidence level, α

Output:

Returns the set of confirmed, tentative, and rejected features

Algorithm:

1: For each maxRuns do

2: originalPredictors ← original dataset (predictors)

3: shadowFeatures ← permute (originalPredictors)

4: extendedFeatures ← cbind (originalPredictors, shadowFeatures)

5: extendedData ← cbind (extendedFeatures, originalData(decisions))

6: Zscore set ← randomForest (extendedData)

Zscore = ave (loss accuracy)
std dev(loss accuracy)

7: MZS ← max(Zscore set(shadowFeatures))

8: For each t ∈ originalPredictors do

9: If Zscore set(t) > MZS then

10: hit(t) + +11

11: end

12: end

13: end

14: For each t ∈ originalPredictors do

15: significance(t) ← twoSidedEqualityTest(t)

16: If significance(t)≫MZS then

17: confirmedSet ← confirmedSet ∪ t

18: else If significance(t)≪MZS then

19: rejectedSet ← rejectedSet ∪ t

20: else tentativeSet ← tentativeSet ∪ t

21: end

22: end

23: return (confirmedSet, rejectedSet, tentativeSet)
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The RF procedure was constructed based on an extended dataset and the following pseudocode comes

from Hastie et al. [45].

Table 2.8.4: Random Forests Algorithm.

Algorithm 4: Random Forests

Input:

Extended dataset, L of dimensions N∗ × p, number of randomly selected variables for each split mtry ≤ p.

Parameters:

The number of bootstrap samples, B ∈ N.

Output:

{TTT (X;ΘΘΘb) , b = 1, . . . ,B}

{ΘΘΘb} are the independent and identically distributed random vectors.

Algorithm:

1: For b = 1, . . . ,B (ntree) do {

2: Draw a bootstrap sample BBBb of size N∗ from the extended data L;

3: Grow a full tree TTT (X;ΘΘΘb) on the bootstrap sample, BBBb by recursively partitioning as long as the number of

observations is above threshold nmin;

4: For each internal node III in tree do

5: If node size is below threshold value nmin then

6: stop

7: else

8: Select mtry ≤ p variables at random

9: Find the best [attribute , value] split point, [xj , s
∗]

10: Split III into two child nodes on xj with respective to s∗

11: end

12: end

13: end

14: return

15: The ensemble of trees {TTT (X;ΘΘΘb) , b = 1, . . . ,B} ;

16: Average of all CART trees, fB(X|ΘΘΘ) = 1
B

∑B
b=1 TTT (X;ΘΘΘb)

11A hit is assigned to every feature that scored better than MZS.
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Fitting a standalone RF model eliminates features that did not perform well in each iteration recursively.

It is using a procedure called recursive feature elimination. The model relies on a minimal optimal approach,

where it depends on a small subset of features that yields a minimal error on a chosen classifier. The selection

process occurs by choosing an over-pruned version of the input dataset and during its initial iteration process,

the algorithm may have ignored some of the lower signal relevant features. The RF-based Boruta algorithm,

on the other hand, identifies all features that are either strongly or weakly relevant to the decision variable,

thereby contributing to a thorough variable selection approach.

Boruta system uses a similar foundation to the RF classifier, by adding randomness to the system

and gathering results from an ensemble of randomized samples to reduce the misleading impact of random

fluctuations and correlations. Boruta’s addition of the shadow attribute adds extra randomness, producing

a clearer view of which features are truly important.

Model-based Recursive Partition Algorithm (MOB)

Zeileis et al. [101] proposed model-based recursive partitioning, a tree-based model designed to partition

data into groups with different model parameters. The idea of MOB is to simultaneously partition a database

recursively and fit a parametric model to a sub-setting dataset generated by the partitioning mechanism.

Similar to RF the MOB method is able to deal with a large number of predictor variables even in the

presence of complex interactions. Building on these ideas, we employ an integration of parametric models

within non-parametric tree-structured learning, which provides accessibility for the researcher to determine,

a priori, not only the dependent variable and predictor(s) but also the partitioning variable(s). It combines

the purely statistical model with data-driven learning, allowing control over the model parameters, as well

as address variable selection bias by separating variable and split point decisions.

Technically MOB is similar to other conventional tree-structure systems such as CART and CTree.

However, instead of splitting for different patterns of the response variable, now the search is for different

patterns of the association between the response variable and other predictors, which have been pre-specified

in the parametric model. So, the goal of MOB is to partition the feature space to capture groups with

similar association patterns. The end terminal nodes in the model-based tree represent the parametric

model estimated from observations of the node and do not rely merely on the values of the response variable.

To describe the general framework of MOB, let P(Y, ϑ) be a generic GLM parametric model with

samples, Y ∈ Y and a m-dimensional vector of parameters ϑ ∈ Θ. Given n observations Yi, i = 1, . . . , n,

the fitted model is achieved by minimizing some objective function Ψ(Y, ϑ) that yields parameter estimate
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ϑ̂:

ϑ̂ = argmin
ϑ∈Θ

n∑
i=1

Ψ(Yi , ϑ) (2.8.12)

In many scenarios, a single global model may unlikely fit all the n observations well. However, it might

be possible to partition the observations with respect to some covariates, where a well-fitting model may be

discovered locally in each cell of the partition. MOB framework is constructed with the pre-assumption that

the global model does not fit well for the entire dataset and additional ℓ partitioning variables Zj ∈ Z, j =

1, . . . , ℓ are used to recursively partition n observations. We assume that partition {Rr}r = 1,...,R of the space

Z = Z1 × · · · × Zl exists with R segments, such that in each partition cell Rr a model P(Y,ϑϑϑr) with a

cell-specific parameter ϑϑϑr holds. Each of the segments is modelled by PR(Y, {ϑϑϑr}), where {ϑϑϑr}r = 1,...,R is

the combined parameter. All these local models have similar structural forms and only differ in terms of ϑϑϑr.

The algorithm starts with the fit of P for all the observations located in a root node. Prior to the

splitting process, a generalized M-fluctuation test is performed to assess the parameter instability in each

node and determine which variable should be used for partitioning. According to the null hypothesis, partial

score functions are independent of partitioning variables, implying that global estimation of an independent

variable is appropriate:

Hϑk,j
0 : Ψϑk

( (Y , X), ϑ̂ϑϑ ) ⊥ Zj , j = 1, . . . , ℓ and k = 1, . . .K, where (2.8.13)

Zj is the partitioning variable,

ℓ being the number of partitioning covariates,

K the number of model parameters,

Ψϑk
is the partial derivative of the objective function with respect to the model parameter ϑk.

Detailed discussion about the instability tests can be found in references by Zeilies et al. [100, 101].

If the overall null hypothesis fails to reject at pre-specified significant level α, then there are no further

subgroups. Meanwhile, if the outcome of the hypothesis results in significant instability with respect to

any of the partitioning variables, Zj , j = 1, . . . , ℓ, the node is split into two child nodes. The variable

corresponding to the smallest p− value is chosen as the partition variable. The subgroups are formed based

on this partition variable using a binary partition. If there are multiple possible splits over the variable,

the partition with minimal objective function in the resulting segment group is chosen. The latter search

approach is known as greedy forward search, where the objective function Ψ can at least be optimized
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locally in each step. The new models are estimated in each of the child nodes, and the parameters of each

model are again tested for instability. New subgroups are recursively formed until the overall null hypothesis

can no longer be rejected or the iterative stop criterion is met. Thus, algorithm 5 below summarises the

reverse-engineered pseudocode from the partykit package in R [49]:

Table 2.8.5: MOB based on GLM.

Algorithm 5: MOB Algorithm

Input:

(yi)
n
i=1 : vector with responses

(xik)
n
i=1 : predictor variables

(zij)
l
j=1 : partitioning variables

Parameters:

Pre-specified significant level, α.

GLM family (e.g., binomial).

Output:

ϑ̂ϑϑkr estimated parameters, k = 1, . . . ,K for each partition cell r = 1, . . . ,R.

Algorithm:

1: Fit the GLM model yi ∼ xi1 + · · ·+ xik | zi1 + · · ·+ zij , i = 1, . . . ,n ,k = 1, . . .K and j = 1, . . . , l (parent/root

node).

2: Estimate ϑ̂ϑϑ via minimizing objective function ΨΨΨ.

3: For each partitioning variable j do

4: For each predictor variable k do

5: Assess coefficient stability of the partitional variables using the M-fluctuation test.

Null hypothesis, H
ϑϑϑk, j
0 : ΨΨΨϑϑϑk

((Y,X), ϑ̂ϑϑ) ⊥ Zj, where

(Y,X) =


y1 x11 . . . x1k

...
...

. . .
...

yn xn1 . . . xnk


6: end

7: If H
ϑϑϑk, j
0 fail to reject at α for all k covariates then

8: stop

9: Else if H
ϑϑϑk, j
0 reject at α for at least one or more k covariates then

10: Zj∗ associated with highest parameter instability is chosen

11: For each partition cell r do
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12: Compute the split point(s), sjr along the Zj∗ , where two models PRPRPR(Y, {[ϑrϑrϑr]
K
k=1}) are fitted in the two

possible sub nodes. The split point sjr associate with minimal value of the local objective function ΨΨΨ(•) is

chosen

13: Parameter is estimated in each child node [ϑ̂ϑϑkr]
K
k=1.

14: end

15: end

16: end

17: return

18: [ϑ̂ϑϑkr]
K
k=1 estimated parameter based on segment model by PRPRPR

19: Partitioned parametric model, PRPRPR(Y, {ϑrϑrϑr}) along with its partitioning variable Zj∗ .

By recursively partitioning the sample, MOB seeks to account for parameter heterogeneity, by means

of main effects and interactions of subject predictors.

In total, ℓ×K null hypotheses are tested at each data partition. If at least one of the null hypotheses

is rejected on the pre-specified significance level, it is likely that parameter instability exists. The final node

with no coefficient instability is regarded as the terminal node. The associated GLM model of the terminal

node can then be applied to forecast the response decision of that sample.

2.8.3 Price Sensitivity Assessment Metric

In this subsection, we present the interconnectedness of three algorithms defined in Section 2.8.2 with the aim

of assessing price sensitivity. To measure prospects’ and policyholders’ purchasing behaviour with respect to

price variations of a digital insurance platform, we introduce a ranked premium rate variable index metric:

Table 2.8.6: Price sensitivity assessment

Algorithm 6: PS assessment

1: Derive a percentile ranked variable, in accordance with premium rate percentiles by dividing the range of

the premium rate in CCC on non-overlapping intervals. Empirical studies in the current chapter consider quartiles

ranking, CCC = 4.

2: Then the corresponding purchase rates 12, pt and inforce rate 13 , it are computed on each premium rate

interval, 1 ≤ t ≤ CCC.

3: Price-sensitive index is defined by the highest decay of the KPIs’, purchase rate, and inforce rate measured over

successive premium rate ranks, as defined in the equation below:
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Table 2.8.6 – Continued from previous page

PSC =


max

1≤t≤C−1C−1C−1
(pt − pt+1),

max
1≤t≤C−1C−1C−1

(it − it+1)

4: Price-sensitive threshold is defined by the percentile at which the highest decay in point (2) is observed:

PSTC =


arg max

1≤t≤C−1C−1C−1
(pt − pt+1),

arg max
1≤t≤C−1C−1C−1

(it − it+1)

Our proposed differential price sensitivity customer behaviour is quantified based on the equation in

steps (3) and (4) of algorithm 6.

12pt = quote purchase count
quote purchase count + quote drop off count

13it = policy inforce count
policy inforce count + policy cancellation count
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2.9 Simulation Study

We perform a simulation study to testify that the MOB algorithm is more desirable in detecting subgroups

in the presence of global effects and random noises. A comparative study to assess the predictability of

subgroups is performed between the GLM-based recursive partitioning and the classical logistic regression

model. The study aims to assess the MOB framework against the logistic model on two grounds:

(i) Parameter estimation accuracy in the imbalance dataset between comparison models.

(ii) Feasibility to identify subgroups with differential treatment effects in the presence of noise variables

that have no association with the decision response variable.

Points (i) and (ii) are interconnected by a common objective of tracing correct subgroups based on partition

variables. Simulated results are then used to substantiate that the MOB algorithm produces a credible

segmented model to identify different subgroups of consumers who are sensitive to price disparities in digital

insurance.

We ran 1000 iterations, each with 5000 sample sizes made up of subgroups of consumers with opposing

personal property insurance purchasing decisions. For each iteration, we partition the sample into training

and testing datasets with 60 : 40 and the trained model is tuned based on the 5-fold cross-validation method.

We assumed that property insurance would only cover exposures at a single-risk location per contract.

Since we are interested in how the performance is influenced by certain data characteristics, we consider

an unbalanced design to mimic the practical scenario, with an average of 2% of the subgroup consisting of

consumers quoted premium rates less than $0.4. The simulated data takes the following equation form:

zi = 2× PremiumRatei − 3×ReferralCodei +

2× I(PremiumRatei ≥ 0.4)×ReferralCodei × Provincei −

2× I(PremiumRatei < 0.4)×ReferralCodei × Provincei, where

(2.9.1)

zi is a continuous outcome, that is transformed into a binary decision variable, yi ∈ {purchase , drop off}.

The binary variable is subject to logit transformation that establishes a linear link with covariates.

I() denotes the indicator function, which returns 1 if the logistic function is true and 0 otherwise.

PremiumRatei and ReferralCodei are correlated covariates with the decision variable, yi.

Agei and Y earsClaimFreei are nuisance variables that are fully uncorrelated with the response variable,

yi.
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RiskProvincei represents a binary treatment variable:

RiskProvincei =


1, risk property located in Alberta.

2, risk property located in Ontario.

It follows from this model that the true partitioning cut-off value for both subgroups with differing

premium rates is equal to $0.4. RiskProvincei defined as the treatment variable for the ith consumer.

Note that the PremiumRatei and ReferralCodei are associated with the response variable directly as the

main effects and via the covariate interaction term. Therefore, PremiumRatei and ReferralCodei carry

both prognostic and predictive effects. The true subgroup is defined as:

S = S1 ∪ S2 ∪ S3 ∪ S4, where (2.9.2)

S1 = PremiumRate < $0.4 and ReferralCode = 1 with only the treatment effect (risk province) changes

between the subgroup.

S2 = PremiumRate < $0.4 and ReferralCode = 0 with only the treatment effect (risk province) changes

between the subgroup.

S3 = PremiumRate ≥ $0.4 and ReferralCode = 1 with only the treatment effect (risk province) changes

between the subgroup.

S4 = PremiumRate ≥ $0.4 and ReferralCode = 0 with only the treatment effect (risk province) changes

between the subgroup.

Appendix Section A.2 contains the R code snippet for data generation. Figure A.2.1 presents the

distribution of simulated datasets resulting in different purchasing decisions by subgroups of consumers

based on property risk province.

2.9.1 Performance of the Logistic Regression Approach

To assess the performance of the univariate logistic model approach to subgroup identification, we consider

fitting the trained samples to six different scenarios:

Table 2.9.1: Identification of the subgroup-specific predictor effect based on univariate logistic models.

Label Fitted model

Model 1a Model with a single covariate

Model 2a Model with a restricted subgroup of consumers with PremiumRate ≥ 0.4 and ReferralCode = 1

(subgroup consumer that has been offered with promotion code).
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Model 3a Model with a restricted subgroup of consumers with PremiumRate ≥ 0.4 and ReferralCode = 0

(subgroup consumer without promotion code).

Model 4a Model with a restricted subgroup of consumers with PremiumRate < 0.4 and ReferralCode = 1

(subgroup consumer that has been offered with promotion code).

Model 5a Model with a restricted subgroup of consumers with PremiumRate < 0.4 and ReferralCode = 0

(subgroup consumer without promotion code).

Model 6a Model with a complete set of covariates.

We draw the following results from all six fitted logistic models:

(i) Model 1a: logit(P (YDecision = 1)) = β0 + β1XRiskProvince

• The objective of model 1a is to examine whether there is any statistical difference in purchasing

decisions between risk provinces.

• Coefficient Estimates:

Covariates Average Estimates Average SE Proportion (%) of 1p−value<0.05

(Intercept) 0.3228 0.0523 100
riskprovinceON 0.5164 0.0768 100
in-sample mean AIC = 3881.64

Figure 2.9.1: In sample bias measure of purchase probability based on risk location.

• Looking at the in-sample bias 14 assessment over 1000 iterations reveals underpredicting

streamflow by the fitted model. The estimated coefficient is found 100% of the time with a

14Bias = pe − po, where pe: estimated mean of purchase probability determined from the final trained logistic model, po:
actual mean of purchase probability from the simulated dataset.
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p-value less than 0.05, implying that the risk location predictor is a statistically significant

predictor of outcome y.

(ii) Model 2a: logit(P (YDecision = 1)) = β0 + β1XRiskProvince| Premium ≥ 0.4 &With Promo Code

• The objective of model 2a is to examine if there is a statistical difference between risk province

and purchasing decisions among the subgroup of consumers with PremiumRate ≥ 0.4 & have a

promotional code.

• Coefficient Estimates:

Covariates Average Estimates Average SE Proportion (%) of 1p−value<0.05

(Intercept) -1.7874 0.1364 100
riskprovinceON 1.9933 0.1669 100
in-sample mean AIC = 970.72

Figure 2.9.2: Estimated coefficient and standard error distribution over 1000 iterations within a subgroup
sample.

• The findings within the subgroup sample are similar to Model 1a, in that there is a significant

relationship between risk location and purchasing decisions. Customers who fall under the
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subgroup that offered a premium rate of $0.4 or more with a promotion code and have property

risk in Ontario are more likely to purchase insurance policies than consumers with risk in

Alberta.

(iii) Model 3a: logit(P (YDecision = 1)) = β0 + β1XRiskProvince| Premium ≥ 0.4 &Without Promo Code

• The objective of model 3a is to examine if there is a statistical difference between risk province

and purchasing decisions among the subgroup of consumers with PremiumRate ≥ 0.4 & without

a promotional code.

• Coefficient Estimates:

Covariates Average Estimates Average SE Proportion (%) of 1p−value<0.05

(Intercept) 1.2056 0.0741 100
riskprovinceON -0.0041 0.1049 6
in-sample mean AIC = 2221.9

Figure 2.9.3: Comparison of true and estimated purchase probability within a subgroup sample over 1000
iterations.
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• The results demonstrate the fitted model’s ability to capture the overall log odds of purchase for

a risk located in Alberta. With the exception of the correct model, the trained model did not

detect the predictive effect of the treatment indicator of risk province. Looking at the unified

trained results of models 2a and 3a reveals that the combination of factors (referral code and risk

province predictors) included in the interaction terms is what has been identified as important

in defining the subgroup (PremiumRate ≥ 0.4) of treatment effect. The outcomes demonstrate

that the univariate logistic model may underperform and fail to uncover the predictive effects of

candidate predictors. This is because, with one variable examined at a time, a subgroup defined

by multi-variable predictors is likely to be missed.

(iv) Model 4a: logit(P (YDecision = 1)) = β0 + β1Xriskprovince| Premium < 0.4 &With Promo Code

• The objective of model 4a is to examine if there is a statistical difference between risk province

and purchasing decisions among the subgroup of consumers with PremiumRate < 0.4 & have a

promotional code.

• Coefficient Estimates:

Covariates Average Estimates Average SE Proportion (%) of 1p−value<0.05

(Intercept) -10.7563 24567.28 34
riskprovinceON -8.9111 36955.65 0
in-sample mean AIC = 10.08

• When fitted to a minority imbalanced subgroup, the logistic model fails to converge, resulting in

an extremely large standard error of the estimates and zero mean Kappa value. As a result, we

cannot draw any conclusions from this trained model, demonstrating that the univariate logistic

model is sensitive to skewed datasets (see, Figure 2.9.4).

(v) Model 5a: logit(P (YDecision = 1)) = β0 + β1Xriskprovince| Premium < 0.4 &Without Promo Code

• The objective of model 5a is to examine if there is a statistical difference between risk province

and purchasing decisions among the subgroup of consumers with PremiumRate < 0.4 & without

a promotional code.

• Coefficient Estimates:
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Covariates Average Estimates Average SE Proportion (%) of 1p−value<0.05

(Intercept) 0.7481 0.4619 35
riskprovinceON 0.0446 3.2632 3
in-sample mean AIC = 62.08

• Because the training instances in this subgroup are significantly smaller than those in the subgroup

with PremiumRate ≥ 0.4, the fitted model is inefficient in learning the relationship between the

predictor and the target variable based on the data pattern. Based on the combined results of

trained models 4a and 5a, it is clear that the logistic model requires sufficiently large samples to

identify interactions and for similar reasons, we can expect a balanced distribution of sample size

is necessary to find and confirm the existence of subgroups and accurately define them.

Figure 2.9.4: In-sample evaluation metrics between four subgroup models over 1000 iterations.
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(vi) Model 6a: logit(P (YDecision = 1)) = β0 + β1XRiskProvince + β2XPremiumRate + β3XReferralCode +

β4XAge + β5XY earsClaimFree

• The objective of model 6a is to establish a benchmarking model for MOB and examine if the

standard logistic model can identify irrelevant covariates.

• Coefficient Estimates:

Covariates Average Estimates Average SE Proportion (%) of 1p−value<0.05

(Intercept) -0.3433 0.4021 13
premiumrate 2.1008 0.4265 100
referralcode1 -1.9130 0.0898 100

riskprovinceON 0.6300 0.0855 100
age -0.0001 0.0085 4

yrsclaimfree 0.0002 0.0244 5
in-sample mean AIC = 3364.58

Figure 2.9.5: Variable importance plot over 1000 iterations.

• The results show that the age and years claim free predictors are far from being statistically

significant (see, Figure 2.9.5), which is consistent with the data generation process.

To summarise, the above analysis demonstrates the logistic model’s ability to identify and differentiate

subgroup(s) based on the response variable as long as it has sufficiently large trained instances. Furthermore,

the fitted model was capable of distinguishing predictors that had no significant influence on the response

variable. However, in order to arrive at the following conclusion, we had to conduct multiple model fit trials

on various subgroups of samples, which required a manual modelling-based intervention.
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2.9.2 Performance of the GLM-based Recursive Partitioning Approach

MOB takes an alternative approach to subgroup identification. We consider fitting model-based recursive

partitioning to two distinct scenarios, allowing us to compare the estimated outcomes of MOB and logistic

models:

Table 2.9.2: Identification of the subgroup-specific predictor effect based on MOB algorithm.

Label Fitted model

Model 2b GLM tree-based model with risk province as a covariate and the rest of predictors as partition variables.

Model 4b GLM tree-based model with intercept as a covariate and all five predictors as partition variables.

The number of estimated subgroups corresponds to the number of terminal nodes. The accuracy of the

MOB algorithm is determined based on the number of identified subgroups, the splitting criterion chosen,

and the selected cut-off value. The comparative findings from two fitted GLM tree-based models are as

follows:

(i) Model 2b: YDecision ∼ XRiskProvince| XPremiumRate + XReferralCode + XAge + XRiskProvince +

XY earsClaimFree

• For each iteration, the optimal tree model is determined using the in-sample maximum

normalized Gini coefficients 15 from 5-fold cross-validation. In comparison to the classical

logistic regression, which showed a score of 17.2%, the GLM Tree model produces a higher

average maximum normalized Gini score of 52.5%. Meanwhile, the variance of the maximum

normalized Gini score in both models remains the same at 0.1%, indicating that the predictive

features do not vary over cross-validation runs (see, Figure 2.9.6).

15Normalized Gini score is computed by the Gini index divided by the best possible Gini index. Instead of sorting holdout
data by model prediction, the best possible Gini sorts holdout data by the actual responses. This aids in putting
different tree structure models into similar scale.
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Figure 2.9.6: Comparison of maximum normalized Gini coefficients between classical logistic regression
and GLM Tree model across 1000 iterations.

• The identification of subgroups based on in-sample average deviance and maximum normalized

Gini score revealed multiple candidates, which were determined by parameter stability test at

each node using α = 0.05. Table 2.9.3 summarizes the in-sample estimated subgroup-specific

coefficients using the tree model with the risk province as the treatment effect:

Table 2.9.3: Performance of tree-based regression over 1000 iterations for subgroup
identification.

Estimated

Subgroups

Candidate

Label

Frequency

of Subgroup

Candidates

Terminal Model

(equation for each terminal model stated in terms of average

coefficient estimates)

2 Model 2b-1 321

node 2, ReferralCode = 0:

logit(P (YDecision = 1)) = 1.1848− 0.0022Xriskprovince

node 3, ReferralCode = 1:

logit(P (YDecision = 1)) = −1.7539 + 1.9283Xriskprovince

In-sample average deviance: 1.0945

In-sample average max normalized Gini: 0.5341
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Table 2.9.3 – continued from previous page

Estimated

Subgroups

Candidate

Label

Frequency

of Subgroup

Candidates

Terminal Model

(equation for each terminal model stated in terms of average

coefficient estimates)

3

Model 2b-2 184

node 2, ReferralCode = 0:

logit(P (YDecision = 1)) = 1.1788 + 0.0101Xriskprovince

node 4, ReferralCode = 1 & PremiumRate ≤ 0.5316:

logit(P (YDecision = 1)) = −5.1340 + 0.0415Xriskprovince

node 5, ReferralCode = 1 & PremiumRate > 0.5316:

logit(P (YDecision = 1)) = −1.5430 + 2.1163Xriskprovince

In-sample average deviance: 1.0854

In-sample average max normalized Gini: 0.5418

Model 2b-3 253

node 3, ReferralCode = 0 & PremiumRate ≤ 0.583:

logit(P (YDecision = 1)) = 0.9248− 0.0747Xriskprovince

node 4, ReferralCode = 0 & PremiumRate > 0.583:

logit(P (YDecision = 1)) = 1.4816− 0.0149Xriskprovince

node 5, ReferralCode = 1:

logit(P (YDecision = 1)) = −1.7398 + 1.9134Xriskprovince

In-sample average deviance: 1.0897

In-sample average max normalized Gini: 0.5106

4 Model 2b-4 139

node 3, ReferralCode = 0 & PremiumRate ≤ 0.5879:

logit(P (YDecision = 1)) = 0.8555 + 0.0302Xriskprovince

node 4, ReferralCode = 0 & PremiumRate > 0.5879:

logit(P (YDecision = 1)) = 1.5076− 0.0095Xriskprovince

node 6, ReferralCode = 1 & PremiumRate ≤ 0.5197:

logit(P (YDecision = 1)) = −7.1523 + 0.2559Xriskprovince

node 7, ReferralCode = 1 & PremiumRate > 0.5197:

logit(P (YDecision = 1)) = −1.5479 + 2.0182Xriskprovince

In-sample average deviance: 1.0774

In-sample average max normalized Gini: 0.5119
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Table 2.9.3 – continued from previous page

Estimated

Subgroups

Candidate

Label

Frequency

of Subgroup

Candidates

Terminal Model

(equation for each terminal model stated in terms of average

coefficient estimates)

4 Model 2b-5 10

node 2, ReferralCode = 0:

logit(P (YDecision = 1)) = 1.1639 + 0.0207Xriskprovince

node 4, ReferralCode = 1 & PremiumRate ≤ 0.4317:

logit(P (YDecision = 1)) = −12.8373− 3.8751Xriskprovince

node 6, ReferralCode = 1 & PremiumRate ∈ (0.4317 , 0.6983]:

logit(P (YDecision = 1)) = −3.9889 + 4.2795Xriskprovince

node 7, ReferralCode = 1 & PremiumRate > 0.6983:

logit(P (YDecision = 1)) = −0.9059 + 1.9411Xriskprovince

In-sample average deviance: 1.0756

In-sample average max normalized Gini: 0.5564

• Model 2b does not take into account the global effects of premium rate and referral code, which

were defined in the data generation technique. Since these main effects are quite pronounced, the

MOB model has no other possibility except to capture these by further splits. As a result, the

fitted MOB produces many possible candidate models, as illustrated in Table 2.9.3.

• Based on 1000 runs with an average sample size of 2400 in each iteration, the optimal trained

models in Table 2.9.3 unanimously show that the referral code dominated the root node split,

which coincides with the variable importance score (see, Figure 2.9.5). The algorithm recovers

the interaction effect between the referral code and the risk province of the data generation

process quite well. The simulation output shows that 32.1% of the time the groups with and

without promotional codes can be identified, indicating that the algorithm is able to discover that

consumer decisions vary depending on referral codes for a particular risk province, as anticipated.

• Regardless of the sample size, tree-based methods are more capable of identifying partition

variables determining subgroup regions than logit-based methods. Approximately 18.4% and

25.3% of simulation runs are able to identify one of the partition variables that determine

subregion, ReferralCode ∈ {0, 1}. However, only 13.9% of simulation runs are able to identify

both partition variables, which define subgroup regions, ReferralCode ∈ {0, 1} and

PremiumRate ≶ c. MOB attempts to detect if the treatment effect is significantly different
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between subgroups. This is certainly the case for referral code, but conditional on the split in

referral code, the treatment subgroup interaction for premium rate is rather small (see, Figure

2.9.7). Therefore, in a search over premium rate variables and splits, this becomes insignificant.

Figure 2.9.7: P-value of the interaction term between premium rate and risk province across 1000
iterations.

• Based on the variable importance score, the tree-based method determines the correct order for

splitting the top two levels, referral code followed by premium rate.

• All estimates determined based on a 5-fold cross-validation approach mostly coincide between

models 2a and 2b, particularly for the referralcode = 1 subgroup. Furthermore, both the logistic

model and the GLM tree-based model cover the data-generation process of the inverse correlation

of risk location on purchase decision response between subgroups with and without promotional

code.

• The 95% confidence interval coverage of the split point at the premium node is unable to accurately

capture the true partitioning cut-off value of $0.4 (see, Table 2.9.4). This is due to the presence of

noise variables in the partition variable and the model equation being defined based on covariates

specific to subgroups that exclude the main effects.
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Table 2.9.4: 95% Confidence Intervals of partitioning value at the premium rate node.

Candidate Label Node 95% Confidence Interval

Model 2b-2 4/5 (0.5173 , 0.5459)

Model 2b-3 3/4 (0.5737 , 0.5923)

Model 2b-4
3/4 (0.5755 , 0.6004)

6/7 (0.5022, 0.5371)

Model 2b-5
4/6 (0.3887 , 0.4748)

6/7 (0.6400 , 0.7566)

• Despite the fact that variable selection in each node is error-controlled, model 2b showed a low

percentage of false discovery at 6.9%. False discovery is detected when there are many possible

partitioning variables with minimal information at the decision node, as well as when the number

of noise variables within a subtree increases.

(ii) Model 4b: YDecision ∼ 1| XPremiumRate + XReferralCode+XAge+ XRiskProvince+ XY earsClaimFree

• The tree-fitting process with an intercept-only covariate is intended to assess whether the MOB

method is capable of partitioning over proper baseline covariates that interact with the treatment

indicator. Additionally, when partitioning is not restricted, we examine the rate of false discovery,

the probability of producing a full-size tree, and the probability of discovering an over- or under-

fitted subgroup.

• Model 4b has a slightly higher average maximum normalized Gini score of 53.1% than Model 2b

but has a similar small variation of 0.1% across 1000 runs. The best-sized tree for each iteration

is chosen based on the highest normalized Gini score, as depicted in Figure 2.9.8:
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Figure 2.9.8: Max normalized Gini coefficients of 5-fold cross-validation across 1000 iterations.

• Table 2.9.5 summarizes the simulation results in terms of the number of recovered terminal nodes,

splitting criteria, average coefficient estimates for each estimated subgroup, and the in-sample

performance metric (i.e., average deviance and average max normalized Gini score) that yields

the best-sized tree.

Table 2.9.5: Performance of tree-based regression over 1000 iterations for subgroup
identification.

Estimated

Subgroups

Candidate

Label

Frequency

of Subgroup

Candidates

Terminal Model

(equation for each terminal model stated in terms of average coefficient

estimates)

4 Model 4b-1 258

node 3, ReferralCode = 0 & PremiumRate ≤ 0.5882:

logit(P (YDecision = 1)) = 0.8466

node 4, ReferralCode = 0 & PremiumRate > 0.5882:

logit(P (YDecision = 1)) = 1.4899

node 6, ReferralCode = 1 & RiskProvince = 1:

logit(P (YDecision = 1)) = −1.7459

node 7, ReferralCode = 1 & RiskProvince = 2:

logit(P (YDecision = 1)) = 0.1702

In-sample average deviance: 1.0915

In-sample average max normalized Gini: 0.5181
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Table 2.9.5 – continued from previous page

Estimated

Subgroups

Candidate

Label

Frequency

of Subgroup

Candidates

Terminal Model

(equation for each terminal model stated in terms of average coefficient

estimates)

4

Model 4b-2 143

node 2, ReferralCode = 0:

logit(P (YDecision = 1)) = 1.1813

node 4, ReferralCode = 1 & RiskProvince = 1:

logit(P (YDecision = 1)) = −1.7593

node 6, ReferralCode = 1 & RiskProvince = 2 & PremiumRate ≤ 0.4981:

logit(P (YDecision = 1)) = −8.9226

node 7, ReferralCode = 1 & RiskProvince = 2 & PremiumRate > 0.4981:

logit(P (YDecision = 1)) = 0.4323

In-sample average deviance: 1.0877

In-sample average max normalized Gini: 0.5553

Model 4b-3 19

node 2, ReferralCode = 0:

logit(P (YDecision = 1)) = 1.1692

node 5, ReferralCode = 1 & RiskProvince = 1 & PremiumRate ≤ 0.6622:

logit(P (YDecision = 1)) = −2.2535

node 6, ReferralCode = 1 & RiskProvince = 1 & PremiumRate > 0.6622:

logit(P (YDecision = 1)) = −0.8965

node 7, ReferralCode = 1 & RiskProvince = 2:

logit(P (YDecision = 1)) = 0.1941

In-sample average deviance: 1.0924

In-sample average max normalized Gini: 0.5473
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Table 2.9.5 – continued from previous page

Estimated

Subgroups

Candidate

Label

Frequency

of Subgroup

Candidates

Terminal Model

(equation for each terminal model stated in terms of average coefficient

estimates)

5

Model 4b-4 196

node 3, ReferralCode = 0 & PremiumRate ≤ 0.5916:

logit(P (YDecision = 1)) = 0.8688

node 4, ReferralCode = 0 & PremiumRate > 0.5916:

logit(P (YDecision = 1)) = 1.5183

node 6, ReferralCode = 1 & RiskProvince = 1:

logit(P (YDecision = 1)) = −1.7489

node 8, ReferralCode = 1 & RiskProvince = 2 & PremiumRate ≤ 0.5002:

logit(P (YDecision = 1)) = −8.5336

node 9, ReferralCode = 1 & RiskProvince = 2 & PremiumRate > 0.5002:

logit(P (YDecision = 1)) = 0.4458

In-sample average deviance: 1.0815

In-sample average max normalized Gini: 0.5190

Model 4b-5 21

node 3, ReferralCode = 0 & PremiumRate ≤ 0.5744:

logit(P (YDecision = 1)) = 0.8439

node 4, ReferralCode = 0 & PremiumRate > 0.5744:

logit(P (YDecision = 1)) = 1.4803

node 7, ReferralCode = 1 & RiskProvince = 1 & PremiumRate ≤ 0.6516:

logit(P (YDecision = 1)) = −2.2933

node 8, ReferralCode = 1 & RiskProvince = 1 & PremiumRate > 0.6516:

logit(P (YDecision = 1)) = −0.9370

node 9, ReferralCode = 1 & RiskProvince = 2:

logit(P (YDecision = 1)) = 0.2153

In-sample average deviance: 1.0816

In-sample average max normalized Gini: 0.5160
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Table 2.9.5 – continued from previous page

Estimated

Subgroups

Candidate

Label

Frequency

of Subgroup

Candidates

Terminal Model

(equation for each terminal model stated in terms of average coefficient

estimates)

5

Model 4b-6 11

node 2, ReferralCode = 0:

logit(P (YDecision = 1)) = 1.1915

node 5, ReferralCode = 1 & RiskProvince = 1 & PremiumRate ≤ 0.6368:

logit(P (YDecision = 1)) = −2.3590

node 6, ReferralCode = 1 & RiskProvince = 1 & PremiumRate > 0.6368:

logit(P (YDecision = 1)) = −1.0468

node 8, ReferralCode = 1 & RiskProvince = 2 & PremiumRate ≤ 0.4947:

logit(P (YDecision = 1)) = −5.3441

node 9, ReferralCode = 1 & RiskProvince = 2 & PremiumRate > 0.4947:

logit(P (YDecision = 1)) = 0.4137

In-sample average deviance: 1.0770

In-sample average max normalized Gini: 0.5593

Model 4b-7 3

node 4, ReferralCode = 0 & PremiumRate ≤ 0.5392 & RiskProvince = 1:

logit(P (YDecision = 1)) = 0.8315

node 5, ReferralCode = 0 & PremiumRate ≤ 0.5392 & RiskProvince = 2:

logit(P (YDecision = 1)) = 0.7246

node 6, ReferralCode = 0 & PremiumRate > 0.5392:

logit(P (YDecision = 1)) = 1.3527

node 8, ReferralCode = 1 & RiskProvince = 1:

logit(P (YDecision = 1)) = −1.7408

node 9, ReferralCode = 1 & RiskProvince = 2:

logit(P (YDecision = 1)) = 0.2524

In-sample average deviance: 1.0859

In-sample average max normalized Gini: 0.4891

• The average size of the tree modelled with an intercept-only covariate was 4.29 nodes (standard

deviation, SD = 0.93), whereas the average size of the tree modelled with the treatment effect

covariate was 2.81 nodes (SD = 0.69), indicating that the former model is more likely to include

spurious splits. However, the intercept-only tree model still identifies more than three treatment-

by-subgroup interactions without any noise variables in the decision node 65.3% of the time. In the
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case of tree-based methods, the classification process tends to identify subgroups more frequently

than conventional regression-based methods.

• It first splits at referral code (p − value of M-fluctuation test ≈ 0) followed by the risk province

variable (average p − value of M-fluctuation test ≈ 0). The model also detects prognostic

factors, but there is a higher likelihood of including all relevant predictive factors since one

might miss prognostic factors upon the split of treatment effects. However, the split variables

are not restricted to being predictive or prognostic but are determined based on an association

with the effect of the other covariates. Thus, the strong interaction effect between referral code

and risk province to form subgroups is demonstrated in all 7 candidates, where referral code and

risk province dominate the first two levels of splits. Nevertheless, the fitted model lacks the

power to detect the association between referral code = 0 and risk province (with a detection

rate = 0.003%), especially if the sample size is small (i.e., N ≤ 250 ).

• The algorithm becomes more difficult to retrieve the correct subgroup structure when a prune

tree is more complex and the subgroups are smaller. This is especially true when the partitioned

subgroup has a strong main effect, which occurs approximately 25.3% of the time. Since finding

the predictive effect on the risk province seems to be challenging in such cases, we did not present

the results.

• In 1000 runs, five of the estimated subgroup candidates had an overgrown tree between 6 and 10

terminal nodes with an overall probability of occurrence of less than 0.092%. Subgroup

candidates estimated from a full-size tree model, however, clearly overfit the data, with more

frequent inclusion of the noise variable during the splitting process (see, Table 2.9.6).

Table 2.9.6: False discovery rate on overgrown tree

Estimated Subgroups False Discovery Rate

6 44.3%

7 70.0%

8 100.0%

9 0.0%

10 100.0%

As shown in Figure 2.9.9, even for those estimated subgroups obtained without any inclusion of

noise variable in the decision nodes during the training process, there is significantly larger MSE
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and greater variability evidence when comparing out-of-sample MSE to in-sample MSE of the

prediction probability:

• The overall average type I error rate was 0.094% for the tree modelled with an intercept, which

is higher than the error rate reported for model 2b. Since the treatment effect is a statistically

significant predictor factor of the dependent Y variable, the model loses some efficiency, and

when searching over more variables and/or split points and/or assessing interactions with other

coefficients, the accuracy of the model decreases.

Findings from the comparison analysis between MOB and the base logistic model clearly exemplify

MOB’s ability to capture subgroups in the presence of global effects. Also, the tree model naturally

distinguishes the prognostic versus the predictive role of each covariate and handles higher-order

interactions. The significant difference between the logistic model and the MOB algorithm is that the

latter can readily detect subgroup(s) and is identifiable by predictive factors. The key advantage of MOB

over the conventional logistic model is that the tree-based subgroup identification produces a

straightforward visualization. Furthermore, the method allows us to focus attention on predictive factors,

while other terms such as noise effect or nuisance parameters can be held fixed. In short, the MOB-based

classification technique is designed to choose subgroups with different response outcomes rather than

recover subgroups with different treatment effects.
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Figure 2.9.9: In-sample and out-of-sample MSE of the estimated subgroups greater than 5 over 1000
repeated samples.
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2.9.3 Goodness-of-fit between GLM Tree-based Model and Logistic Regression

The goodness-of-fit assessment uses the out-of-sample prediction errors of the two best candidates of the

MOB and logistic models, respectively:

Table 2.9.7: Out-of-sample prediction probability error over 1000 runs.

Candidate
Root Mean Square Error, Predictive Accuracy, Residual Standard Error,

Model RMSE 16 R2 17 RSE 18

Median Mean (± SD) Median Mean (± SD) Median Mean (± SD)

Logistic Regression

Model 1a 0.220213 0.220227 (± 0.003276) 0.064971 0.064686 (± 0.009839) 0.220323 0.220337 (± 0.003278)

Model 6a 0.089889 0.090077 (± 0.002107) 0.844104 0.843393 (± 0.007806) 0.090024 0.090213 (± 0.002111)

GLM tree-based model with treatment effect as a covariate and partition variable

Model 2b-2 0.049829 0.04987 (± 0.001569) 0.951595 0.951404 (± 0.003335) 0.049854 0.049895 (± 0.00157)

Model 2b-4 0.048438 0.048487 (± 0.001459) 0.953918 0.953818 (± 0.00307) 0.048463 0.048511 (± 0.00146)

GLM tree-based model with an intercept as a covariate

Model 4b-2 0.046682 0.046679 (± 0.001313) 0.957382 0.957233 (± 0.002776) 0.046694 0.046691 (± 0.001313)

Model 4b-4 0.044816 0.044851 (± 0.001353) 0.960286 0.960219 (± 0.002705) 0.044828 0.044863 (± 0.001353)

Overall, the results of Table 2.9.7 suggest that tree-based models perform better than conventional

logistic regressions. In addition to accurately recovering subgroups, the MOB algorithm also captured

significant associations between treatment and the main effect of the simulated datasets. The aim of this

study was to confirm that a single global GLM is inefficient for describing the response-covariate relationship.

With additional covariates, the data set can be partitioned to create a better local regression model for

each partition cell. Additionally, the variable selection in each node is error-controlled, with the partitioning

criterion variable evaluated using the Bonferroni-adjusted p−value. This eliminates any noise variables from

the final output and the errors in the overall model using the MOB approach are rather small. In summary,

the tree-based model obtained over repeated subsamples of the training data proved to be relatively stable.

Therefore, the proposed tree-based approach can facilitate the study of price sensitivity segmentation with

prognostic properties while offering some information on predictive variables.

16RMSE =

√∑
(p−p̂)2

n
, where p: true probability of success, p̂: predicted probability of success, and n: sample size.

17R2 = 1−
∑

(p−p̂)2∑
(p−p̄)2

, where p̄: mean of true probability of success.

18RSE =
√ ∑

(p−p̂)2

degree of freedom
.
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2.10 Empirical Study and Data Considerations

To illustrate the usage of classification based on differential price responses in real-world applications, we

employ a data set from an online insurance shopper’s experience from 2018 to 2020. The product offered by

an online broker platform comprises personal property and liability package insurance with a combination

of all risk and named peril coverages. Empirical study focuses primarily on consumers’ behaviour and their

price sensitivity for owner’s occupied property insurance. Owners’ occupied products can be further tailored

and shopped separately for condo or home, and so the granular breakdown of policy types developed and

made available to digital consumers is shown in Table 2.10.1.

Table 2.10.1: Product offered by Canadian Insurtech brokerage.

Policy Type Coverage Description

Condo Protecting condominium units and property against loss resulting from destruction

or damage. Condo insurance also offers personal liability, additional living expenses,

contents, and deductible protection coverage.

Standard Home,

Excellence Home, or

Home with Suite

Provides financial protection to the homeowner in the event of loss, which includes

dwelling, detached structure, personal contents, additional living expenses, and

personal liability. Excellence Home is a specialty product designed for homes with a

replacement cost value in excess of Cad$ 1 Million. Home with suite is a customized

product manufactured for homeowners, who rent out a secondary suite in their home.

The price paid by qualified leads is in the form of an annual premium determined by carriers

(including the insurance company, managing general agent, and syndicates at Lloyds of London) with

whom the Insurtech brokerage places their risk.

2.10.1 Dataset Properties

The metadata19 consists of two layers of policy lifecycles:

(i) Pre-purchase class (quote application) with a sample size of 4,183 and

(ii) Post-purchase class (new and renewal policy) with a sample of 1,906.

The PS classification framework was performed using the entire lifecycle of an insurance policy, from

pre-to-post purchase, and the portfolio dataset consisted of 8 Canadian Insurtech brokerages over the period

19Due to the confidentiality of online consumers’ privacy, the data is not accessible in the public domain and shall be
shared upon request.
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of January 2018 to December 2020. A database of Canadian Insurtech software service providers is used

to collect a set of attributes concerning coverage characteristics, property risk profiles, shopping behaviour,

qualified leads and insureds socio-demographics, and past insurance experience. Additionally, on post-

purchase metadata, we extracted information on the cancellation status as of Dec 31st, 2020. The variables

collected for this study are presented in Table A.5.1 (Section A.5).

2.10.2 Data Mining

Decision tree classification algorithms can only deal with completely structured data, and with Insurtech

brokerage resides their information in the form of unstructured data in a relational database, it is essential

first to identify task-relevant table storage and transform the information into structured data. We approach

this by extracting and organizing a massive unstructured relationship table stored on Azure Cloud into a

neat cube structure using the Transact-SQL query. The complete relationship joins and structured data

model for both pre- and post-purchase metadata are shown in Appendix A.4

In the pre-purchase lifecycle, a qualified lead can decide to either purchase or drop off upon being

presented with a premium based on his choice of coverage and product type. Conversely in the post-

purchase phase, a policyholder’s decision involves a continuous flow, where an insured can either continue

to have an inforce policy or request to cancel the contract at any point in time. Due to the difference in

response variable data types between pre- and post-purchase (i.e., categorical data type in the pre-purchase

phase and continuous form in the post-purchase phase) and because it is necessary to merge two separate

metadata flat files as a single data source to construct the PS model, therefore, it is requisite to transform

the decision outcome of the post-purchase phase from a continuous variable to its categorical counterpart.

This procedure is known as the discretization technique.

The discretization technique was applied for policies that were cancelled prior to Dec 31stt, 2020.

Policies that remain active as at Dec 31st, 2020, are classified as inforce. The descriptive statistics of the

cancellation policy are summarized below:

Policy Cancellation Inforce
Type Rate Policy Count Rate Policy Count
Condo 30.05% 250 69.95% 582
Home 21.18% 172 78.82% 640

Total 25.67% 422 74.33% 1222
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Figure 2.10.1: Cancellation rate vs Inforce rate (left) and distribution of time-lapse from inception to
cancellation (right).

Figure 2.10.2: Density distribution of time lapse from inception to cancellation (left) and statistics
descriptions (right).
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We draw the following analysis based on the above descriptive statistics:

(i) Distribution of cancellation duration has a significant spike at 1 year and less.

(ii) Coefficient variation of 72% implies time-lapse from inception to cancellation has a greater level of

dispersion around the mean, which means it is highly skewed distributed.

(iii) Based on points (i) - (ii) above and with the distribution of time-lapse values not uniform, we proposed

using the unsupervised approach of discretization method without the knowledge of class labels.

Thus, we considered three different discretization approaches of heuristic, k-mean cluster, and Jenks. The

efficiency of each discretization method is analyzed in Table 2.10.2.
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Table 2.10.2: Performance results of discretization technique.

Method Discretized outcome Discretization performance assessment

KSDCC statistics EMDCC statistics Class imbalance distribution by product type

Discretized Value Condo Home

Heuristic

Case 1:

0.327 0.240

Cancel ≤ 0.5 year CancelLessHalf 21.2% 44.8%

Cancel > 0.5 year & ≤ 1 year CancelHalftoOne 19.6% 32.6%

Cancel > 1 year & ≤ 2 year CancelOnetoTwo 40.4% 21.5%

Cancel > 2 year CancelGreatTwo 18.8% 1.2%

Heuristic

Case 2:

0.443 0.388
Cancel ≤ 0.5 year CancelLessHalf 21.2% 44.8%

Cancel > 0.5 year & ≤ 1 year CancelHalftoOne 19.6% 32.6%

Cancel > 1 year CancelGreatTwo 59.2% 22.7%

Heuristic

Case 3:

0.557 0.333
Cancel ≤ 1 year CancelLessOne 40.8% 77.3%

Cancel > 1 year & ≤ 2 year CancelOnetoTwo 40.4% 21.5%

Cancel > 2 year CancelGreatTwo 18.8% 1.2%

Heuristic

Case 4:

0.557 0.481Cancel ≤ 1 year CancelLessOne 40.8% 77.3%

Cancel > 1 year CancelGreatOne 59.2% 22.7%

K-Mean Cluster

Case 1: (break parameter = 4)

0.393 0.241

Cancel < 129 days CancelLess129 18.0% 37.8%

Cancel ≥ 129 days & < 292 days Cancel129To292 12.0% 26.7%

Cancel ≥ 292 days & < 544 days Cancel292To544 44.4% 32.0%

Cancel ≥ 544 days CancelGreat544 25.6% 3.5%



K-Mean Cluster

Case 2: (break parameter = 3)

0.493 0.314
Cancel < 209 days CancelLess209 22.4% 50.6%

Cancel ≥ 209 days & < 529 days Cancel209To529 52.0% 45.3%

Cancel ≥ 529 days CancelGreat529 25.6% 4.1%

Jenks

Case 1:

0.393 0.238

Cancel ≤ 127 days CancelLess127 18.0% 37.8%

Cancel > 127 days & ≥ 289 days Cancel127To289 12.0% 26.7%

Cancel > 289 days & ≥ 532 days Cancel289To532 44.4% 32.0%

Cancel > 532 days CancelGreat532 25.6% 3.5%

(1) KSDCC statistics20 = sup
x
|FXmax

(x)− FXmin
(x)|

(2) EMDCC statistics 21 =
∫
R |FXmax

(x)− FXmin
(x)|dx

20Kolmogorov-Smirnov Distance of Cumulative Curves (KSDCC) metric measures the largest possible distance between cumulative distribution functions that could be
represented by the binned data. These distances serve as an upper bound of errors between the true empirical
distribution of continuous data and empirical cumulative distribution from the binned data.

21Earth Mover’s Distance of Cumulative Curves (EMDCC) metric is similar to KSDCC statistic, but it uses an integral to capture the difference across all points of the
curve rather than just the maximum difference.



We draw the following conclusions based on discretization results:

(i) Based on KSDCC statistics, the lowest worst-case error bounds were obtained from case 1 of the

heuristic method followed by 2nd least large loss information achieved by case 1 of k-mean cluster and

Jenks approach.

(ii) EMDCC statistics suggest the least information loss from discretized is Jenks, followed by the next

minimum cost of loss information from the discretized transformation of case 1 of the heuristic approach.

(iii) Proportion distribution of each policy type with respect to discretized outcome, indicates that the

heuristic method of case 2 and case 4 binning form are slightly better off in terms of class imbalance.

The other 5 discretized binning class exhibits substantial imbalance issue within the ydecision variable.

(iv) Both case 1 & case 2 of the heuristic discretization approach captures the difference across all empirical

cumulative distribution (ECDF) with lower worst case error bounds.

Thus, the modest level of information loss from the discretization strategy is attained using a heuristic

approach. In addition, the proportion distribution for each policy type using a heuristic discretized approach

exhibits a consistent spread. This advocate for a heuristic approach is likely to exhibit minimal SD between

label class compared to Jenks & k-mean approach. Comparing all four binning cases of the heuristic approach,

case 4 has the greatest information loss error based on KSDCC and EMDCC statistics. However, judging

by class imbalance for each policy type, cases 1 and 3 display an obvious imbalance proportion for the home

policy type.

Based on the preceding analysis, we consider the heuristic strategy utilizing a binning format of cases

2 and 4. Although case 4 has the greatest possibility of loss information error, in consideration of the class

imbalance impact on upcoming PS model performance, it is prudent to shortlist case 4 binning form.

Explanatory Data Analysis (EDA)

Pre- and post-purchase metadata flat files were merged, and the data granularity was redefined as quote

number or policy number depending on the row record from pre-purchase or post-purchase respectively.

Merged data included a sample size of 4,248. Additionally, ydecision variable takes the form of multi-class,

with the following level:

(i) Inforce: when a quote was purchased and remains inforce as at Dec 31st, 2020.

(ii) Drop off: when a complete quote did not progress to bind.
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(iii) Cancel: when a quote was purchased and at some point in time the policyholder raises a cancellation

request. The cancel class was further categorized based on the discretization outcome shortlisted in

Subsection 2.10.2.

Overall, the decision outcome indicates that 61.3% of consumers drop off at quote upon being presented

with premium and 28.8% remain inforce with offered premium, whilst 9.9% cancel their contract at some

point in time after purchase. Evaluation of PS using premium amount is not a suitable variable as the dollar

amount is only comparable among the group of consumers with equivalent total insured value. To produce a

collective price comparison against consumer decisions, we normalized the premium amount to the average

rate per $100 exposure:

average rate per $100 exposure =
Gross written annual premium

Total exposure
× 100 (2.10.1)

PS is modelled based on the relationship between the multi-class response variable of consumer decision,

ydecision and the average rate (a.k.a, average rate per $100 exposure) as a key predictor with a premium rate

ranging between $0.06 and $2.28. EDA findings are summarized below:

(i) Average rate distribution.

Figure 2.10.3: Density distribution (left) and QQ-plot (right) of the average rate.
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Figure 2.10.4: Boxplot of average rate by policy type (left) and non-parametric hypothesis test (right).

• The average rate predictor reflects a long tail distribution, and the highest frequency of average

price is between $0.15 to $0.25. The histogram reveals that 98.54% of the insurance contracts

are priced below $1.00, which corresponds to the central bulk of the distribution. About 1.18%

of owner’s occupied coverage is priced between $1.00 and $1.50. Whilst 0.28% of contracts are

priced above $1.50. The descriptive statistics of the average rate are as follows:

Statistics Policy Type
Description Condo Home

Sample size 1,645 2,603
Mean 0.43 0.20
SD 0.23 0.10
Median 0.38 0.17
Min 0.12 0.06
Max 2.30 1.10
Range 2.20 1.10
Skew 3.30 2.10
Kurtosis 15.90 7.40
Standard error of mean 0.0056 0.002
Coefficient Variation 0.53 0.51

• Based on the Kruskal-Wallis test, the training model is built by taking into consideration the

differences in average rate among classes that may exist. This is accomplished by including

product type as the predictor.

• Hypothesis test results and descriptive statistics, suggest that tree-based algorithms are an
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appropriate model for the current dataset. The decision tree learning can handle both the highly

skewed average rate predictor variable and non-ordinal categorical response variable of ydecision.

• The sample size at each policy level reveals imbalanced data. This is a known factor from a

business conscious decisions on their portfolio management. In addition, it is difficult to earn

customer loyalty through a digital platform as well the owner’s occupied product has more

underwriting scrutiny compared to a tenant insurance policy. Thus, it is challenging to attain a

balanced portfolio.

(ii) Consumer decision, ydecision distribution within the class and its association with predictor, average

rate.

• The dependence between the response variable and the average rate is assessed using both case 2

and 4 output attained from the discretization process (reference Table 2.10.3).

Table 2.10.3: Discretization comparison with 4 levels and 5 levels.

Evaluation and Response Variable

With 5 levels

1. Distribution of ydecision:

2. Distribution of ydecision with respect to average rate:
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Table 2.10.3 – Continued from previous page

3. Kruskal-Wallis hypothesis test:

Ho: Distribution of average rate is similar across ydecision class

Kruskal-Wallis χ2 = 209.76 (df = 4)

p− value < 2.2e− 16

With 4 levels

1. Distribution of ydecision:

2. Distribution of ydecision with respect to average rate:
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Table 2.10.3 – Continued from previous page

3. Kruskal-Wallis hypothesis test:

Ho: Distribution of average rate is similar across ydecision class

Kruskal-Wallis χ2 = 208.88 (df = 3)

p− value < 2.2e− 16

• Overall density distribution of consumer decisions for both levels 4 and 5 exhibits an imbalance

class. Also, the density distribution of the average rate with respect to consumer decision reveals

classification overlap, where there is an insignificant difference, especially between inforce and

drop off decision. This is primarily due to an imbalance data composition.

• Based on the Kruskal-Wallis hypothesis test, it appears there are significant differences among

digital shoppers’ decisions with respect to price.

• Overlapping classes implies digital consumers offered similar policy type and coverage protections,

tend to differ in terms of purchasing or renewal decisions. The EDA outcome aligns with our

current research problem of online consumers being price-sensitive.

Establish Apt Number of Levels for Response Variable

Based on the discretization process, we have shortlisted 2 binning levels. To narrow down the choice to 1

binning form, a comparison analysis is done by measuring the association strength between the response

variable and common rating predictors. In addition, we evaluate the complexity of the classification problem
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at hand for 5 levels and 4 levels of ydecision.

Table 2.10.4: Association comparison between 4 and 5 level class of ydecision.

Evaluation ydecision with 5 levels ydecision with 4 levels

How informative some of the

features are to separate the

overlapping classes.

Examine by fitting basic classification model:

YDecision ∼ PolicyType + AverageRate + AverageTotalExposure

Maximum Fisher’s Discriminant Ratio

(F1),

Maximum Fisher’s Discriminant Ratio

(F1),

(i) Mean = 0.9356 (i) Mean = 0.9357

(ii) SD = 0.0343 (ii) SD = 0.0343

Volume of the overlapping region

(F2),

Volume of the overlapping region

(F2),

(i) Mean = 0.4493 (i) Mean = 0.3810

(ii) SD = 0.2011 (ii) SD = 0.1330

Dependence between ydecision and

average rate

Association is assessed using a multinomial logistic regression:

YDecision ∼ AverageRate

referenceclass : Cancel > 1yr

residual deviance = 8, 179.5 residual deviance = 7, 857.0

Dependence between ydecision and

policy type

Association is assessed using chi square test with p− values computed

by Monte Carlo simulation

χ2 = 234.4 χ2 = 233.5

Cramer′s V = 0.24 Cramer′s V = 0.23

(strong association) (strong association)

Dependence between ydecision and

risk province

Association is assessed using chi square test with p− values computed

by Monte Carlo simulation

χ2 = 155.7 χ2 = 145.5

Cramer′s V = 0.10 Cramer′s V = 0.11

(weak association) (weak association)
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Table 2.10.4 – Continued from previous page

Evaluation ydecision with 5 levels ydecision with 4 levels

Dependence between ydecision and

building type

Association is assessed using chi square test with p− values computed

by Monte Carlo simulation

χ2 = 411.4 χ2 = 410.4

Cramer′s V = 0.16 Cramer′s V = 0.18

(strong association) (strong association)

* Note:

1. The guideline of Cramer’s V interpretation can be found in Wahiduzzaman et al. [88].

2. Maximum Fisher’s Discriminant Ratio (F1) calculates the value of the greatest discrimination ratio among

all fitted features based on the overlap between feature values. A lower F1 value indicates at least one feature

in the selected subset can distinguish the classes of samples from other classes linearly. Thus, a low F1 value

signifies the existence of a feature for which a hyperplane perpendicular to its axis can separate the classes

fairly. F1 value is bounded in the (0,1] interval. See, Lorena et al. [69] for further details of F1 measure.

3. The volume of the overlapping region (F2) computes the overlap of the distributions of the feature values

within the classes. So, a higher F2 value indicates a greater amount of overlap between the problem classes,

and thus, the complexity of constructing a classification model is also greater. See Lorena et al. [69] for the

details on the F2 measure equation and general discussion on the use of F1 and F2 metric.

4. Since the expected values on some cells are small and large, the p− value is computed for a Monte Carlo

test by producing a reference distribution.

Comparing the results in Table 2.10.4, 4 levels of bin reflect a favorable outcome in terms of handling

classification based on a tree-based model.
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2.11 Applications in Owner-Occupied Property Insurance

A list of variables considered in the PS model and respective pairwise plot inclusive correlation statistics is

presented in Appendix A.5.

2.11.1 Price Sensitivity Modelling

Price grouping based on decision response disparities

CTree algorithm is applied with and without resampling strategy on the transformed structured data using

average rate and policy type as mandatory predictors. Meanwhile, the average total exposure variable is

modelled in two aspects, where first as a predictor in the primary classifier equation and next as an offset since

the total exposure is a priori known factor. The multi-class customer decision is modelled as the response

variable. The minimum criterion of the CTree parameter is a pre-fixed value that is used to regulate the

depth of tree pruning. In our decision model, we tune the tree over mincriterion = 0.90, where a split is

achieved when the criterion, 1 − p− value > mincriterion. In other words, the p− value must be smaller

than 0.10 in order to split the node.

To compare the goodness of fit of the CTree combined with random oversampling strategy, some

commonly used tree algorithms with and without resampling techniques are considered as part of the

benchmark model. The fitting and test results for a combination of the resampling technique with the tree

algorithm are presented in Table 2.11.1. The resampling strategy is implemented only on training data and

none of the information in test data is used to create synthetic observations. Thus, the results produced in

Table 2.11.1 are generalizable to assess the performance across all the fitted models.

Rating of insurance contracts is developed at the grain of policy type and generally, consumers know in

advance the type of product they intend to purchase. So, of all the 6-model shortlisted, we eliminate models

with rules that are not able to achieve optimal binary split at policy type variable. The remaining 4 models

are declined at the validation stage based on the classification performance metric for one of the following

reasons:

(i) Worst classification performance on individual class level, shown by recall and precision metric. This

is obvious for those minority classes, especially decision made by the customer to cancel the contract

in less than 1 year.

(ii) ROC curve of each level is closer to the diagonal margin (AUC value < 60%), whereby it reflects the

classifier model is no better than random guessing.
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Table 2.11.1: List of CTREE models fitted to the trained dataset.

No. Resampling Choosen Offset Overall Model
Strategy Variable Accuracy Kappa

1
None Average Rate, Plan Type & None 0.6132 0.0936

Average Total Exposure

2
None Average Rate & Average Total Exposure 0.6049 0

Plan Type

3
Oversampling using 50% Average Rate, Plan Type & None 0.5595 0.3734

of the trained data Average Total Exposure

4
Oversampling using 75% Average Rate, Plan Type & None 0.6009 0.4657

of the trained data Average Total Exposure

5
Oversampling using 100% Average Rate, Plan Type & None 0.6198 0.4931

of the trained data Average Total Exposure

6
Downsampling using 100% Average Rate, Plan Type & None 0.4242 0.2322

of the trained data Average Total Exposure

7
Downsampling using 50% Average Rate, Plan Type & None 0.5748 0.1541

of the trained data Average Total Exposure

8
50 Fold Cross Validation Average Rate, Plan Type & None 0.6116 0.0862

with 2 repeats Average Total Exposure

9
Oversampling using 50% Average Rate & Average Total Exposure 0.5043 0.2956

of the trained data Plan Type

9
Oversampling using 75% Average Rate & Average Total Exposure 0.5199 0.3532

of the trained data Plan Type
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Table 2.11.2: Performance of fitted CTREE models based on the test dataset.

No. Resampling Choosen Offset Overall Assessment Single Class Assessment Cohen’s Kappa Variation Model Analysis
Strategy Variable Accuracy Kappa AUC Recall Precision G-Mean (Test VS Train) Selection Remark

1 None

Average Rate

None 0.6298 0.0774 0.6102

CancelGreatOne: 0.4 CancelGreatOne: 0.49 CancelGreatOne: 0.62

-21% ✓

Setback: Not able to achieve,
Plan Type CancelLessOne: 0 CancelLessOne: NaN CancelLessOne: 0 optimal binary split

Average Total Exposure DropOff: 0.96 DropOff: 0.64 DropOff: 0.27 for Condo & Home at
Inforce: 0.04 Inforce: 0.5 Inforce: 0.2 average rate > $0.6107.

2 None
Average Rate

Average Total Exposure 0.6251 0 0.5

CancelGreatOne: 0 CancelGreatOne: NaN CancelGreatOne: 0

NaN ✗Plan Type
CancelLessOne: 0 CancelLessOne: NaN CancelLessOne: 0

DropOff: 1 DropOff: 0.63 DropOff: 0
Inforce: 0 Inforce: NaN Inforce: 0

3
Oversampling using 50%

Average Rate

None 0.5962 0.1939 0.6806

CancelGreatOne: 0.6 CancelGreatOne: 0.36 CancelGreatOne: 0.75

-93% ✓

Setback: Not able to achieve,

of the trained data
Plan Type CancelLessOne: 0.01 CancelLessOne: 0.02 CancelLessOne: 0.1 optimal binary split

Average Total Exposure DropOff: 0.77 DropOff: 0.69 DropOff: 0.51 for Condo & Home at
Inforce: 0.31 Inforce: 0.45 Inforce: 0.51 average rate > $0.6111.

4
Oversampling using 75%

Average Rate

None 0.4715 0.1492 0.7021

CancelGreatOne: 0.66 CancelGreatOne: 0.26 CancelGreatOne: 0.75

-212% ✓
Optimal binary split for

of the trained data
Plan Type CancelLessOne: 0.2 CancelLessOne: 0.06 CancelLessOne: 0.39

each policy type.
Average Total Exposure DropOff: 0.52 DropOff: 0.7 DropOff: 0.52

Inforce: 0.4 Inforce: 0.41 Inforce: 0.52

5
Oversampling using 100%

Average Rate

None 0.4532 0.1438 0.7123

CancelGreatOne: 0.69 CancelGreatOne: 0.29 CancelGreatOne: 0.77

-243% ✓

Setback: Class AUC metric for

of the trained data
Plan Type CancelLessOne: 0.11 CancelLessOne: 0.05 CancelLessOne: 0.3 ”CancelLessOne” = 0.59, which is close

Average Total Exposure DropOff: 0.41 DropOff: 0.7 DropOff: 0.51 diagonal margin 0.5. The results reveal
Inforce: 0.57 Inforce: 0.38 Inforce: 0.55 a poor classification performance.

6
Downsampling using 100%

Average Rate

None 0.548 0.1742 0.6603

CancelGreatOne: 0.66 CancelGreatOne: 0.17 CancelGreatOne: 0.73

-33% ✗of the trained data
Plan Type CancelLessOne: 0 CancelLessOne: NaN CancelLessOne: 0

Average Total Exposure DropOff: 0.67 DropOff: 0.69 DropOff: 0.53
Inforce: 0.37 Inforce: 0.43 Inforce: 0.53

7
Downsampling using 50%

Average Rate

None 0.6257 0.0993 0.6675

CancelGreatOne: 0.62 CancelGreatOne: 0.43 CancelGreatOne: 0.76

-55% ✗of the trained data
Plan Type CancelLessOne: 0 CancelLessOne: NaN CancelLessOne: 0

Average Total Exposure DropOff: 0.94 DropOff: 0.64 DropOff: 0.3
Inforce: 0.04 Inforce: 0.51 Inforce: 0.21

8
50 Fold Cross Validation

Average Rate

None 0.6315 0.0798 0.6099

CancelGreatOne: 0.4 CancelGreatOne: 0.52 CancelGreatOne: 0.63

-8% ✗with 2 repeats
Plan Type CancelLessOne: 0 CancelLessOne: NaN CancelLessOne: 0

Average Total Exposure DropOff: 0.97 DropOff: 0.64 DropOff: 0.27
Inforce: 0.04 Inforce: 0.51 Inforce: 0.21

9
Oversampling using 50% Average Rate

Average Total Exposure 0.5792 0.1805 0.6662

CancelGreatOne: 0.42 CancelGreatOne: 0.27 CancelGreatOne: 0.62

-64% ✓

Setback: Class AUC metric for

of the trained data Plan Type
CancelLessOne: 0.07 CancelLessOne: 0.09 CancelLessOne: 0.25 ”CancelLessOne” = 0.59, which is close

DropOff: 0.73 DropOff: 0.69 DropOff: 0.52 diagonal margin 0.5. The results reveal
Inforce: 0.36 Inforce: 0.44 Inforce: 0.53 a poor classification performance.

10
Oversampling using 75% Average Rate

Average Total Exposure 0.4791 0.1355 0.6335

CancelGreatOne: 0.46 CancelGreatOne: 0.16 CancelGreatOne: 0.62

-161% ✓

Setback: Prediction performance

of the trained data Plan Type
CancelLessOne: 0.13 CancelLessOne: 0.06 CancelLessOne: 0.33 of majority class drop-off

DropOff: 0.55 DropOff: 0.7 DropOff: 0.51 is poor compared
Inforce: 0.4 Inforce: 0.4 Inforce: 0.52 to model 9.

* If the discrepancy of kappa metric < 0 implies overfitting and discrepancy of kappa metric > 0 implies underfitting.



For the next modelling phase, a random oversampling of 75% of the training data is paired with the

CTree technique. The selected model is used to classify groups based on differing premium rates. The chosen

model reveals an overfitting issue, and with the dataset being highly imbalanced, an overfitting problem is

unavoidable completely. The up-sampling technique aims to duplicate observations from minority classes to

reinforce its signal. Based on the validation findings, the opted model produces an overall AUC of 0.70 and

AUC for each class as follows:

Figure 2.11.1: ROC curve of test sample based on CTree combined with of random oversampling model.
Note: pROC package in R plots specificity on the X-axis in the reverse direction from 1 to 0.

The selected model divides the predictor space of average rate, plan type, and average total exposure

into 98 inner nodes and 99 terminal nodes to achieve a non-overlapping region. The CTree partitioning rule

reveals that there is a hidden group of consumers defined by TIV and an average rate for each product type,

resulting in considerable disparities in their purchase and renewal decisions. Recall that we are interested

in investigating the impact of premium rates (treatment, Z) on digital consumers’ decision-making process

(response, Y) for an owners’ occupied insurance product. Therefore, we achieve the price grouping for each
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product using propensity scores. The propensity score is defined as the conditional probability of treatment

given a pre-treatment covariate:

p(x) = P (Z | X),where (2.11.1)

X represents the plan type.

The price groups are built on the assumption that the propensity score is adequate for controlling pre-

treatment differences between consumers’ decision groups.

For illustration, we extract an inner node that belongs to the condo plan type for establishing the groups

based on propensity scores (see, Figure 2.11.2 and Figure 2.11.3). In a typical case, it is expected to have

a lower purchase rate as the average rate rises. The empirical results, on the other hand, show an unusual

phenomenon in which the average rate ≤ $0.4303 has a lower purchase probability of 50.83% when compared

to an average rate > $0.7044, which yields a purchase rate of 53.7%. There is no easy explanation for these

findings, although it might signify some underwriting bargains that are not associated with price. Another

unusual scenario is that for a higher average rate, the probability of terminating insurance after 1 year is

often greater than the probability of terminating insurance before 1 year. However, empirical evidence shows

that, regardless of the premium rate, digital consumers with condo policies are more likely to renew their

insurance contracts for more than a year. The following price groups for condo products are established

based on the propensity score matching results, and we develop the grouping for home policy type on a

similar basis:

Table 2.11.3: Digital consumers are defined by differences in their purchase and renewal decisions with
respect to average rate.

Policy Type Grouping

Condo

Group 1: average rate ≤ $0.4303

Group 2: $0.4303 < average rate ≤ $0.4666

Group 3: $0.4666 < average rate ≤ $0.7404

Group 4: average rate > $0.7404

Home
Group 1: average rate ≤ $0.4666

Group 2: average rate > $0.4666

Appendix A.6 shows a fraction of the CTree model with partitioning rules and a scatterplot of empirical

outcomes defined by price groups, as given in Table 2.11.3.
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Figure 2.11.2: Inner node of condo policy at average rate > $0.4303.
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Figure 2.11.3: Inner node of condo policy at average rate > $0.7404.
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Feature Selections for Price Groups

In this subsection, the price groups determined from Table 2.11.3 are analyzed separately to achieve group

traits, that will be integrated into price sensitivity segmentation modelling. Using the original dataset,

feature selection modelling is performed for each price group per product. The objective is to extract useful

information about group attributes and consumer traits from large volumes of data. Often, we do not require

every feature at our disposal to train a model since an overlarge set of features may elevate random fluctuation

of undesired noise and contain redundant association with the target variable, resulting in an overfitting and

a detrimental influence on model accuracy. A well-designed feature reduces potential prediction error and

increases robustness, allowing an easy price sensitivity assessment of digital consumers. The set of features,

its association with the response variable, and variation within class levels are illustrated through a pair-wise

plot in Appendix A.5.

Some of the features such as year built, risk location, and customer relationship score exemplify large

variability within class levels of the response variable. Thus, a reference point is required to help distinguish

the important features from the unimportance ones for each one of the price groups per product. To resolve

the issue, we execute the Boruta algorithm with the max iteration of 500 and p − value criteria of 0.1 to

shortlist relevant important features. The Boruta algorithm applies random forests for feature relevance

estimation and produces a ranking of their relevance with respect to the response variable. The loss of

classification accuracy caused by random permutation of feature values in training cases is used to estimate

feature importance. Loss of classification accuracy is computed for each tree in the forest and finally, the

mean and standard deviation of loss accuracy is attained. The Z score, which represents the importance

measure, is defined as follows:

Z score =
µloss accuracy

σloss accuracy
, (2.11.2)

Z score metric is then used in determining the rank order of feature sets. In addition, the following descriptive

statistics are generated over multiple iterations from each attribute’s Z score to reinforce the selection process:

(i) meanImp: Mean of importance

(ii) medianImp: Median of importance

(iii) minImp: Minimum of importance

(iv) maxImp: Maximum of importance
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(v) normHits: Fraction of random forest runs. It is the number of hits normalized to the number of

important source runs.

Table 2.11.4 summarizes the selected important predictive variables for each group. The Z score

variability of predictors from Boruta output is visualized using a boxplot (see, Appendix A.7). Customer

relationship score is the only variable that is common across all groups per product. This is an expected

result because the scores of online consumers are tracked based on their portal activity. Given that the

empirical study focuses solely on the digital market, simplified accessibility to serve consumer’s needs does

implicitly influence the decision of to whether persist with the same insurance service provider. It is worth

noting that aside from group 4 of condo products, the mortgage indicator ranked first in terms of relevant

features. Previous claim count, gender, building type, and square footage variables, on the other hand, are

considered unimportant features across all price groups.

Benchmark and feature selection models are developed by fitting both sets of features (all predictors and

reduced predictors shortlisted by the Boruta algorithm) to the random forests algorithm in order to assess

model performance between overlarge feature sets and reduced predictors. The results are summarized in

Table 2.11.5 and Figure 2.11.4. 4 out of 6 models fitted with a reduced feature set exhibit lower absolute

variation between train and test accuracy metrics. One notable finding from our empirical feature selection

modelling is that the hybrid model of Boruta and RF algorithm outperformed the standalone RF model

fitted with an overlarge feature set. One conclusion that can be drawn from the result is that we opt to

construct the PS models with a reduced set of features for each group.
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Table 2.11.4: Variable selection for each price group per product achieved via RF-based Boruta algorithm.

Group 1 Group 2 Group 3 Group 4

Condo

Age CreditScore Age CreditScore

AverageStdDeductible CustomerRelationshipScore CreditScore CustomerRelationshipScore

CreditScore DiscoveryMethod CustomerRelationshipScore DiscoveryMethod

CustomerRelationshipScore HasMortgage DiscoveryMethod MailingProvince

DiscoveryMethod MailingProvince HasMortgage PreviousClaimType

HasMortgage PreviousClaimType MailingProvince YearsClaimFree

MailingProvince ReferralCodeIndicator PreviousClaimType YearsInsured

PreviousClaimType RiskLocation ReferralCodeIndicator

ReferralCodeIndicator YearBuilt RiskLocation

RiskLocation YearsClaimFree YearBuilt

YearBuilt YearsInsured YearsClaimFree

YearsClaimFree CreditScore YearsInsured

YearsInsured

Home

Age CreditScore

ArchitecturalStyle CustomerRelationshipScore

CreditScore DiscoveryMethod

CustomerRelationshipScore HasMortgage

DiscoveryMethod MailingProvince

HasMortgage PreviousClaimType

MailingProvince ReferralCodeIndicator



Table 2.11.4 – Continued from previous page

Group 1 Group 2 Group 3 Group 4

PreviousClaimType YearsClaimFree

ReferralCodeIndicator YearsInsured

RiskLocation

YearBuilt

YearsClaimFree

YearsInsured



Table 2.11.5: Benchmark and feature selection models performance.

Plan Price Group Benchmark Model : Random Forest algorithm
Type Group Number Complete set of predictors OOB est error rate Train prediction metric Test prediction metric Accuracy differences between train & test

Condo

average rate ≤ $0.4303 1
AverageStdDeductible + ReferralCodeIndicator + RiskLocation + BuildingType + Age +

17.87%
Accuracy: 0.9869 Accuracy: 0.852

-15.8%Gender + CreditScore + MailingProvince + PreviousClaimCount + CustomerRelationshipScore +
YearsClaimFree + YearsInsured + HasMortgage + YearBuilt + PreviousClaimType + DiscoveryMethod Kappa: 0.9774 Kappa: 0.729

$0.4303 < average rate ≤ $0.4666 2
AverageStdDeductible + ReferralCodeIndicator + RiskLocation + BuildingType + Age +

11.48%
Accuracy: 1.0000 Accuracy: 0.8361

-19.6%Gender + CreditScore + MailingProvince + PreviousClaimCount + CustomerRelationshipScore +
YearsClaimFree + YearsInsured + HasMortgage + YearBuilt + PreviousClaimType + DiscoveryMethod Kappa: 1.0000 Kappa: 0.6991

$0.4666 < average rate ≤ $0.7404 3
AverageStdDeductible + ReferralCodeIndicator + RiskLocation + BuildingType + Age +

25.60%
Accuracy: 0.9855 Accuracy: 0.7966

-23.7%Gender + CreditScore + MailingProvince + PreviousClaimCount + CustomerRelationshipScore +
YearsClaimFree + YearsInsured + HasMortgage + YearBuilt + PreviousClaimType + DiscoveryMethod Kappa: 0.9784 Kappa: 0.6973

average rate > $0.7404 4
AverageStdDeductible + ReferralCodeIndicator + RiskLocation + BuildingType + Age +

32.89%
Accuracy: 0.9737 Accuracy: 0.6562

-48.4%Gender + CreditScore + MailingProvince + PreviousClaimCount + CustomerRelationshipScore +
YearsClaimFree + YearsInsured + HasMortgage + YearBuilt + PreviousClaimType + DiscoveryMethod Kappa: 0.9556 Kappa: 0.4094

Home

average rate ≤ $0.4666 1

AverageStdDeductible + ReferralCodeIndicator + RiskLocation + BuildingType + Age +

12.85%

Accuracy: 0.987 Accuracy: 0.8763

-12.6%
Gender + CreditScore + MailingProvince + PreviousClaimCount + CustomerRelationshipScore +

YearsClaimFree + YearsInsured + HasMortgage + YearBuilt + SquareFootage + PreviousClaimType + Kappa: 0.9718 Kappa: 0.7263
ArchitecturalStyle + DiscoveryMethod

average rate > $0.4666 2

AverageStdDeductible + ReferralCodeIndicator + RiskLocation + BuildingType + Age +

22.00%

Accuracy: 1.0000 Accuracy: 0.8462

-18.2%
Gender + CreditScore + MailingProvince + PreviousClaimCount + CustomerRelationshipScore +

YearsClaimFree + YearsInsured + HasMortgage + YearBuilt + SquareFootage + PreviousClaimType + Kappa: 1.0000 Kappa: 0.3067
ArchitecturalStyle + DiscoveryMethod

Plan Price Group Feature Selection Model: Boruta coupled with Random Forest algorithm
Type Group Number Subset predictors based on Boruta variable selection algorithm OOB est error rate Train prediction metric Test prediction metric Accuracy differences between train & test

Condo

average rate ≤ $0.4303 1
AverageStdDeductible + ReferralCodeIndicator + RiskLocation + Age + CreditScore + MailingProvince +

18.52%
Accuracy: 0.9836 Accuracy: 0.8592

-14.5%CustomerRelationshipScore + YearsClaimFree + YearsInsured + HasMortgage + YearBuilt +
PreviousClaimType + DiscoveryMethod Kappa: 0.9717 Kappa: 0.7431

$0.4303 < average rate ≤ $0.4666 2
ReferralCodeIndicator + RiskLocation + CreditScore + MailingProvince + CustomerRelationshipScore +

11.48%
Accuracy: 1.0000 Accuracy: 0.8197

-22.0%YearsClaimFree + YearsInsured + HasMortgage + YearBuilt +
PreviousClaimType + DiscoveryMethod Kappa: 1.0000 Kappa: 0.6672

$0.4666 < average rate ≤ $0.7404 3
ReferralCodeIndicator + RiskLocation + Age + CreditScore + MailingProvince + CustomerRelationshipScore +

23.67%
Accuracy: 0.9855 Accuracy: 0.7712

-27.8%YearsClaimFree + YearsInsured + HasMortgage + YearBuilt +
PreviousClaimType + DiscoveryMethod Kappa: 0.9784 Kappa: 0.6588

average rate > $0.7404 4
CreditScore + MailingProvince + CustomerRelationshipScore +

30.26%
Accuracy: 0.9605 Accuracy: 0.6562

-46.4%YearsClaimFree + YearsInsured +
PreviousClaimType + DiscoveryMethod Kappa: 0.9333 Kappa: 0.4094

Home

average rate ≤ $0.4666 1

ReferralCodeIndicator + RiskLocation + Age +

13.70%

Accuracy: 0.9837 Accuracy: 0.8803

-11.7%
CreditScore + CustomerRelationshipScore + YearsClaimFree +

YearsInsured + HasMortgage + YearBuilt + ArchitecturalStyle + Kappa: 0.9649 Kappa: 0.7369
DiscoveryMethod + MailingProvince+PreviousClaimType

average rate > $0.4666 2

ReferralCodeIndicator + CreditScore + CustomerRelationshipScore +

24.00%

Accuracy: 0.9800 Accuracy: 0.8846

-10.8%
YearsClaimFree + YearsInsured +
HasMortgage + DiscoveryMethod + Kappa: 0.9519 Kappa: 0.5357

MailingProvince + PreviousClaimType



Figure 2.11.4: Goodness of fit between standalone RF model and RF-based Boruta algorithm.
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Price Sensitivity Model for Owner’s Occupied Insurance

As a result of the collective framework of CTree + Boruta algorithm + RF from the previous two

subsections, we were able to establish well-defined price groups per product and shortlist important

predictive characteristics for each group. In the final phase of modelling, the MOB algorithm is used to

identify differential decisions on price based on selected predictors. This is achieved through a multinomial

model defined as:

ln [
P(Yi = j | Xi , Z)

P(Yi = J | Xi , Z)
] = α0 + α1Xi,where (2.11.3)

J th: class level of response variable designates to serve as a baseline category, for level, j = 1, . . . J − 1.

Xi: average rate per $100 exposure.

Z: tailored partitioning variable based on features selected by Boruta algorithm.

The goal is to identify whether the parameters of the fitted model in Equation (2.11.3) are stable over each

specific ordering implied by the partitioning variables Zi. If there is some overall instability with respect to

any of the partitioning variables Zi, the node is split into C locally optimal segment. The stability is assessed

through fluctuation test statistics and the split of a node into a child node is accomplished if p− value falls

below the prefixed significance threshold level 0.1. To limit over-pruning of the tree, the parameter maxdepth

is set to 5.

In addition, we have excluded the partitioning variable “Has Mortgage” from all groups, although the

variable has been shortlisted as an important predictive feature. The main reason for dropping the “Has

Mortgage” variable is that the comparison of PS analysis is performed across all groups for both home and

condo product type. Mortgage financing criteria vary depending on the type of condo and home a consumer

owns. Therefore, characterizing the group based on the mortgage is more insightful having information

on the term of the mortgage, total mortgage amount, and outstanding principal remains. Given there

is insufficient mortgage data, the MOB modelling is performed with the remaining shortlisted predictive

variables excluding the “Has Mortgage” variable.

Based on the results of the MOB algorithm, we draw the following price sensitivity assessment from the

identified groups:

(1) Condo product

(i) The group with an average rate ≤ $0.4303

The group consists of 1,029 consumers. Using MOB, we arrive at Figure 2.11.5, which shows a
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partitioning rule with terminal nodes specified by year built, discovery method, risk location, age,

and years insured. Consumers with risk property older than 1975 or whose year of construction is

unknown are classified by Nodes 12 and 13 as being more price-sensitive than those with a property

lifespan of less than 44 years. Consumers who found the digital platform through a referral, such as

Facebook or word of mouth, are the least price-sensitive and have the highest average purchase rate

of 81%. They are also least transient, as evidenced by their higher average policy inforce rate of

71.3%. Consumers who have previous experience in insuring their property (years insured > 0) are

the second greatest price-sensitive group, which makes sense from a business viewpoint.

Figure 2.11.5: Output of the Group 1 partitioning rule.

(ii) The group with $0.4303 < average rate ≤ $0.4666

In total, this group comprises 183 digital consumers. A uniqueness of this group is that there is
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no splitting criterion by the GLM tree model, which indicates those consumers who shop for condo

insurance between the price ranges of $0.4303 and $0.4666 have unidentifiable traits to further explain

their price sensitivity attribute. However, within this subgroup, the highest PS displayed at an average

rate between $0.4556 and $0.4656, as measured by an 8.7% decrease in the purchase rate and a 0.7%

decrease in the inforce rate. In comparison to group 1, consumers in group 2 are classified as a low PS

group.

(iii) The group with $0.4666 < average rate ≤ $0.7404

The group consists of 325 digital consumers, and the subgroup segmentation shown in Figure 2.11.6 is

produced by the GLM tree fitted to this group. Terminal node 5, which corresponds to consumers with

claims-free > 8 years, is expected to be more price-sensitive than node 4 which relates to consumers

with claims-free ≤ 8 years. The latter corresponds to individuals with the least or no claim profile and

contributes to a lower loss ratio for an organization. Note that the highest PS for this group always

appears between price ranks 2 and 3 for all terminal nodes (see, Table 2.11.6). When the average rate

exceeds $0.5133, the biggest PS is observed at node 5, with a fall in the purchase and inforce rates.

Other subgroups defined by terminal nodes 2 and 4 have substantially lower PS, with the maximum

decays in the purchase and inforce rates estimated below 8%. Therefore, the latter subgroup may be

classified as low to least PS groups.

Table 2.11.6: Purchase and inforce rates for each average rate rank.

Premium Rate Intervals Node 2 Node 4 Node 5
Ranks Purchase Rate Inforce Rate Purchase Rate Inforce Rate Purchase Rate Inforce Rate

1 [0.4667 , 0.4878] 71.0% 7.1% 49.0% 43.1% 0.0% 0.0%
2 [0.4878, 0.5133] 85.0% 7.7% 44.0% 41.8% 50.0% 50.0%
3 [0.5133, 0.5556] 77.0% 0.0% 43.0% 39.7% 20.0% 0.0%
4 [0.5556, 0.7044] 72.0% 0.0% 42.0% 33.3% 54.0% 0.0%

PS4 7.7% 7.7% 5.4% 6.3% 30.0% 50.0%
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Figure 2.11.6: MOB segmentation of Group 3 (top) and price sensitivity pattern in terminal nodes
(bottom).

(iv) The group with average rate > $0.7404

The group consists of a total of 108 consumers. Condo policies priced above $0.7404 are deemed to be a

pricey product, where the average annual gross premium is valued at $600 for average exposure $56,000.

The PS of insurance shoppers in this group can be portrayed based on customer relationship scores.

Figure 2.11.7 highlights that node 2 has the highest sensitivity, with a customer relationship score ≤

6. According to the partitioning results, consumers who shop for insurance costs above $0.7404 are

deemed to be more engaged with their digital portal account. For shoppers with customer relationship

scores > 6, the PS is much lower with the highest decay in the purchase rate and inforce rate being

11.7% and 0%, respectively. So this subgroup can be classified as a moderate PS group. Overall, the

findings show that consumers in this group are more transient and unlikely to renew their contract for

more than 2 years with the same service provider.
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Figure 2.11.7: MOB segmentation of Group 4 (top) and price sensitivity pattern in terminal nodes
(bottom).

107



(2) Home product

(i) The group with average rate ≤ $0.4666

This group consists of 2,527 customers. The resulting tree structure generates segmentation, with the

terminal node defined by credit score, customer relationship score, years claim free, and years insured

(see, Figure 2.11.8). In comparison to nodes 5, 6, 8, and 9 on the opposite leaf of the tree, terminal

node 10, which represents risker customers with credit scores of either bankruptcy, unknown, or good,

are more price-sensitive. Consumers with relationship scores less than 4 make up distinct subgroups

identified by nodes 5, 6, 8, and 9. Customers in this trait subgroup with a claim free profile of more than

5 years appear to be the least price-sensitive, as assessed by a 4.3% and a 1.9% decrease in purchase

and inforce rates, respectively. PS was found to decline by one-third of the largest PS observed at node

10 for those individuals with credit scores ranging from excellent to low, as shown by nodes 12 and 13.

This observation is corroborated by the PS4 index in Table 2.11.7.

Figure 2.11.8: MOB segmentation of Group 1

Table 2.11.7: Purchase and inforce rates for each average rate rank.

Premium Rate Intervals Node 5 Node 6 Node 8 Node 9 Node 10 Node 12 Node 13
Ranks Purchase Rate Inforce Rate Purchase Rate Inforce Rate Purchase Rate Inforce Rate Purchase Rate Inforce Rate Purchase Rate Inforce Rate Purchase Rate Inforce Rate Purchase Rate Inforce Rate

1 [0.063100 ,0.13575] 17.6% 9.8% 0.0% 0.0% 14.7% 10.7% 8.0% 6.8% 77.9% 74.7% 80.8% 61.6% 78.8% 62.1%
2 [0.13575,0.1728] 11.4% 8.0% 16.7% 16.7% 7.8% 4.4% 7.1% 6.6% 74.3% 61.0% 71.3% 51.7% 77.0% 62.3%
3 [0.1728 ,0.23605] 7.6% 5.7% 10.3% 10.3% 10.1% 6.3% 9.2% 5.8% 78.2% 68.3% 71.4% 53.8% 79.6% 75.9%
4 [0.23605 ,0.4666] 7.7% 6.4% 11.1% 3.7% 5.6% 2.8% 4.9% 3.8% 50.9% 40.4% 64.4% 46.6% 70.0% 40.0%

PS4 6.3% 2.2% 6.3% 6.6% 6.9% 6.2% 4.3% 1.9% 27.3% 28.0% 9.6% 9.9% 9.6% 35.9%
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(ii) The group with average rate > $0.4666

This group comprises 76 consumers. The PS behaviour of consumers in this group is indicated by their

credit score. Consumers classified under node 3 with credit scores ranging from good to poor exhibit

the highest PS, with a drop in purchase and inforce rates by 33.3% and 25%, respectively. Customers

with unknown credit ratings, on the other hand, have the lowest PS, as indicated by a 0% drop in the

purchase and inforce rates. Also, those consumers in the latter subgroup are transient and are less

likely to renew their insurance contracts for more than 2 years. Note that the highest PS4 index is

always found between ranks 1 and 2, $0.4666 < average rate < $0.5267 for all the terminal nodes.

Figure 2.11.9: MOB segmentation of Group 2 (top) and price sensitivity pattern in terminal nodes
(bottom).

The overall empirical results in Table 2.11.8 compare MOB’s goodness of fit performance to the following

benchmark models:
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(i) Global Multinomial (Full): Multinomial model with feature selection based on Boruta coupled with

Random Forest.

(ii) Global Multinomial (Stepwise): Multinomial model with backward stepwise selection approach.

(iii) Global Multinomial (Reduced): Multinomial model with predictors determined according to the

partitioning criterion of the MOB algorithm.

The benchmark model formulated mathematically as follows:

log(
P (Y = k | X,Z)

P (Y = Cancel Great One | X,Z)
) = β0 + β1X + α1Z1 + · · ·+ αpZp, where (2.11.4)

Customer decision categorical variable, Yk with k ∈ {Cancel Less One,DropOff, Inforce},

X is the average rate per $100 exposure, and

Z = (Z1, . . . , Zp) is a vector whose components are predictors chosen based on one of the aforementioned

variable selection methods. The coefficients in Equation (2.11.4) are estimated based on the maximum

likelihood approach.

In most cases, the global multinomial (Reduced) model has the highest AIC score for both condo and

home product types, whilst the proposed GLM tree-based classification framework has the lowest. However,

the goodness of fit based on the deviance metric yields mixed findings, with groups 2 and 4 of the condo

product and group 2 of the home having the lowest deviance in favour of the global multinomial (Full)

model. To assess the stability of the results obtained, a comparison of out-of-sample prediction errors

between the GLM tree model and the global multinomial was performed from January to June 2021 using

the Insurtech brokerage dataset. Regardless of the variable selection method, the global multinomial model

exhibited a larger average misclassification error in predicting consumer purchase/renewal decision variables

and, moreover, the variability was also significantly larger than the proposed MOB approach (see, Figure

2.11.10).

The following are two concerns that contributed to the bias-variance tradeoff in the global multinomial

model and led to adverse inferences against the GLM-based recursive partitioning framework:

(i) The maximum likelihood estimation of the multinomial model suffers from small sample bias due to the

limited number of examples for the rarer outcomes within each price group. Further, an unbalanced

class distribution of the decision variables causes a converge problem, resulting in inflated coefficient

estimates and standard errors.
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(ii) As part of the price sensitivity classification framework, the first phase involves identifying price groups

whose purchase/renewal decisions differ significantly, leading to a quasi-complete separation problem

(Albert and Anderson [2]) in the subset data. This entails a subset with a small sample size containing

independent variables with large parameters (i.e., credit score, discovery method, or mailing province),

resulting in the multinomial model failing to converge and causing certain parameter estimates to be

infinite-valued or poorly estimated.

In summary, the empirical study suggests that the tree-based classification model is capable of

handling highly imbalanced datasets within a small sample size in a multi-class classification problem, and

with its algorithm capable of capturing nonlinear relationships, the tree-based model is more flexible than

the global multinomial model. It is important to consider that the properties of the maximum likelihood

estimator, which relies on asymptotic normality, may deteriorate for small sample sizes or when the

number of parameters is higher than the number of observations. A higher-order bias reduction can be

achieved by adjusting the score equation in an additive manner (Firth [34]; Kosmidis et al. [61]), ensuring

that there are finite estimates for GLM even when the estimates diverge in separation issues. As such,

dealing with (quasi) separation problems using the standard MOB algorithm can be alternatively pursued

by using an extension of GLM-based recursive partitioning with a bias-reduced estimation method (see,

Migliorati et al. [73] for the application of the bias-reduction GLM tree model).
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Figure 2.11.10: Out-of-sample prediction performance between GLM-based recursive partitioning and
global multinomial for the condo product (top) and home product (bottom).
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Table 2.11.8: Goodness of fit assessment between GLM tree-based model and multinomial logistic models.

Plan Price Group Sample Performance Models
Type Group Number Size Metric MOB Global Multinomial (Full) Global Multinomial (Stepwise) Global Multinomial (Reduced)

Condo

average rate ≤ $0.4303 1 1029
AIC 159.56 1116.42 1085.70 1337.12

Deviance 119.56 846.42 875.70 1205.12

$0.4303 < average rate ≤ $0.4666 2 183
AIC 78.42 240.98 198.69 358.40

Deviance 74.42 48.98 102.69 346.40

$0.4666 < average rate ≤ $0.7404 3 325
AIC 189.27 482.88 461.79 570.73

Deviance 173.27 278.88 299.79 534.73

average rate > $0.7404 4 108
AIC 118.54 225.26 174.90 189.46

Deviance 108.54 87.26 132.90 171.46

Home
average rate ≤ $0.4666 1 2527

AIC 311.38 2392.54 2304.68 2814.21
Deviance 271.38 2062.54 2106.68 2736.21

average rate > $0.4666 2 76
AIC 37.67 162.00 68.85 92.08

Deviance 27.67 0.00 14.85 50.08



2.11.2 Price Sensitivity Assessment

The differential PS group among digital consumers was evaluated based on two index metrics, the purchase rate and the inforce rate, which is defined

by the average premium rate per $100 exposure ranked by 25% percentiles (D = 4). The results are summarized below with PS classification as

follows:

1: Extremely sensitive, 2: Highly sensitive, 3: High to moderate sensitive, 4: Moderate to low sensitive, 5: Low sensitive, and 6: Least sensitive

(i) Condo product

Price group in accordance Rules Rule PS4 Index PS
differential consumer behavior Sizes Purchase Rate Inforce Rate Classification

average rate ≤ $0.4303

Year Built in {1976 to 1999, greater 2000}

2.5% 16.7% 2.8% 4
Discovery Method in {Customer Referral, Google, Mortgage Broker, NotAvailable, Other, Property Manager, Realtor, Rent Faster}

Risk Location in {alberta}
Age ≤ 25

Year Built in {1976 to 1999, greater 2000}

24.4% 11.0% 13.8% 4
Discovery Method in {Customer Referral, Google, Mortgage Broker, NotAvailable, Other, Property Manager, Realtor, Rent Faster}

Risk Location in {alberta}
Age > 25

Year Built in {1976 to 1999, greater 2000}

17.0% 9.2% 9.0% 5
Discovery Method in {Customer Referral, Google, Mortgage Broker, NotAvailable, Other, Property Manager, Realtor, Rent Faster}

Risk Location in {british columbia, manitoba, ontario, saskatchewan}
Years Insured ≤ 0

Year Built in {1976 to 1999, greater 2000}

30.5% 20.6% 19.3% 4
Discovery Method in {Customer Referral, Google, Mortgage Broker, NotAvailable, Other, Property Manager, Realtor, Rent Faster}

Risk Location in {british columbia, manitoba, ontario, saskatchewan}
Years Insured > 0

Year Built in {1976 to 1999, greater 2000}
19.0% 7.8% 3.3% 5

Discovery Method in {Facebook, PartnerReferral, WordOfMouth}
Year Built in {1945 to 1975, less 1945, NotAvailable}

3.2% 28.6% 45.7% 3
Years Insured ≤ 9

Year Built in {1945 to 1975, less 1945, NotAvailable}
3.4% 64.3% 11.1% 1

Years Insured > 9

$0.4303 < average rate ≤ $0.4666 No splitting criterion 100.0% 8.7% 0.7% 5

$0.4666 < average rate ≤ $0.7404

Mailing Province in {alberta} 31.4% 7.7% 7.7% 6

Mailing Province in {british columbia, notavailable, ontario}
60.6% 5.4% 6.3% 6

Years Claim Free ≤ 8
Mailing Province in {british columbia, notavailable, ontario}

8.0% 30.0% 50.0% 2
Years Claim Free > 8

average rate > $0.7404
Customer Relationship Score ≤ 6 63.0% 48.3% 6.7% 2

Customer Relationship Score > 6 37.0% 11.7% 0.0% 4



(ii) Home product

Price group in accordance Rules Rule PS4 Index PS
differential consumer behavior Sizes Purchase Rate Inforce Rate Classification

average rate ≤ $0.4666

Credit Score in {Below300-Bankruptcy, Consented but not ran, Good, NotAvailable}
15.8% 6.3% 2.2% 5Customer Relationship Score ≤ 4

Years Claim Free ≤ 0
Credit Score in {Below300-Bankruptcy, Consented but not ran, Good, NotAvailable}

3.3% 6.3% 6.6% 4Customer Relationship Score ≤ 4
0 < Years Claim Free ≤ 1

Credit Score in {Below300-Bankruptcy, Consented but not ran, Good, NotAvailable}
13.9% 6.9% 6.2% 4Customer Relationship Score ≤ 4

1 < Years Claim Free ≤ 5
Credit Score in {Below300-Bankruptcy, Consented but not ran, Good, NotAvailable}

31.7% 4.3% 1.9% 6Customer Relationship Score ≤ 4
Years Claim Free > 5

Credit Score in {Below300-Bankruptcy, Consented but not ran, Good, NotAvailable}
14.2% 27.3% 28.0% 1

Customer Relationship Score > 4
Credit Score in {Average, Consent Not Given, Excellent, Poor, Very Poor}

12.8% 9.6% 9.9% 3
Years Insured ≤ 9

Credit Score in {Average, Consent Not Given, Excellent, Poor, Very Poor}
8.3% 9.6% 35.9% 2

Years Insured > 9

average rate > $0.4666
Credit Score in {NotAvailable} 72.4% 0.0% 0.0% 2

Credit Score in {Average, Consent Not Given, Good, Poor, Very Poor} 27.6% 33.3% 25.0% 1



2.11.3 Discussion

The CTree algorithm identified 4 and 2 appropriate price groups for condo and home products,

respectively, from which an independent PS segmentation was determined using Boruta random forest,

followed by MOB algorithms. Each segmentation defined online consumer groups having differential PS

(see, Subsection 2.11.2). A PS segment of a given product is characterized by the following attributes:

property year built, customer relationship score, discovery method, years insured, years claim free, age, risk

location, mailing province, and credit score. The MOB algorithm determined 13 and 9 PS classification

subgroups for condo and home products, respectively, based on the reduced attributes achieved from the

Boruta-random forest framework.

The identified subgroups shed light on pertinent business insights that will aid in designing the

micromarketing and pricing strategy. For the condo product, we obtained a highly PS group defined by

property built prior to 1975 with its purchase and inforce rates reduced subject to sensitivity thresholds of

average rate between $0.2648 and $0.4289. For the home product, we identified 2 high PS groups defined

by credit score criterion with good to poor or bankruptcy, and customer relationship scores > 4. Purchase

and inforce rates decreased approaching their sensitivity thresholds with the average rate for the first group

between $0.23605 and $0.4666 and the range for the second group between $0.4691 and $0.602225. A

subgroup of the condo product, on the other hand, had unidentifiable differential PS segment traits, found

to be low sensitivity at an average rate threshold between $0.4330 to $0.4666. Similarly, for the home

product, we found a nearly insensitive group defined by credit score anywhere in good, bankruptcy, or

unknown category, customer relationship scores < 5, and year claim free > 5. In both cases, we could

recommend a hike in the average rate, which would increase the underwriting profit while expecting to

have a minor influence on the closing ratio and retention rate.

The proposed mechanism demonstrated the value of integrating several decision tree algorithms to

assess the price sensitivity of digital consumers resulting in the discovery of business drivers that may

support actuaries in pricing decisions. Although we have implemented it to specific owners-occupied personal

property in a digital insurance market, we contend it may also be applicable to other business scenarios,

where the purchase and renewal decisions are heavily influenced by product pricing. The empirical results

in Section 2.11.1 allowed us to attest to the last two hypothesis statements, RH2 and RH3. Additionally,

to restore the balance on the dataset, the proposed CTree hybrid modelling strategy with oversampling of

the minority classes improved classification performance. With an overall AUC of 70% obtained from the

oversampling + CTree model, we were able to produce a concrete finding for our third research question,
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RQ3. Furthermore, the research question, RQ2, is likewise attainable based on the GLM-based recursive

partitioning algorithm.
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2.11.4 Simulation and Empirical Classification Runtime

In the following table, we summarize the runtime of the simulation study:

Simulation design details Runtime

Five-fold cross-validation for logistic model 2,580 sec elapsed

Five-fold cross-validation for GLM tree modelled with one covariate 31,380 sec elapsed

Five-fold cross-validation for GLM tree modelled with intercept 26,700 sec elapsed

The trend of the three algorithms’ runtime does differ with most time spent on the feature selection modelling

phase. The R code runtime output for each phase of model fitting is presented below:

(i) CTree with oversampling modelling

Modelling phase details Runtime

Oversampling 0.61 sec elapsed

CTree model fit 3.79 sec elapsed

Goodness of fit test 2.65 sec elapsed

Price group data generation 2.26 sec elapsed

(ii) Boruta algorithm with RF model

Modelling phase details Runtime

Home: total of 2 price groups 20.71 sec elapsed

Condo: total of 4 price groups 13.83 sec elapsed

(iii) MOB algorithm based on GLM

Modelling phase details Runtime

Home: total of 2 price groups 3.28 sec elapsed

Condo: total of 4 price groups 5.82 sec elapsed
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2.12 Conclusions

The CTree algorithm is the foundation for our proposed PS categorization framework, in which the algorithm

identifies six price groups for both condos and homes with significant differences in the purchase (renewal)

decision. The RF-based Boruta algorithm further refines the price groups by using randomized shadow

variables as base learners to identify important features for each price group. Each price group has a

specific relevant set of variables, and no two groups have identical feature sets. Finally, the price groups

are used by the MOB algorithm to arrive at a partitioning structure that defines PS segmentation. Instead

of using the global model to estimate the response-covariates relationship for the entire dataset, the local

multinomial model is integrated into MOB’s tree-splitting mechanism, which assesses parameter stability

using a fluctuation test. A subset of observations for each terminal node is used to construct a local fitting

model, which has been shown to be more efficient than a global model. This chapter was designed to find

the appropriate partitioning characteristics and cut-off values that would define differentiated PS groups.

This was accomplished using trend movement between the percentiles of purchase and inforce rates.

We use simulation to demonstrate the effectiveness of the MOB algorithm in finding subgroups with

varying average rate effects in the context of skewed class proportions. In addition to accurately recovering

subgroups, the MOB algorithm proved to have relatively low error variability. The empirical study was

carried out using digital consumers who shop for personal property insurance in Canada. By analyzing

out-of-sample error analysis, we showed that a hybrid decision tree model captures data signals from highly

imbalanced data and produces well-defined differential price sensitivity segments compared to a standalone

multinomial regression model. The RF-based Boruta technique has also been shown to be robust in detecting

significant features, particularly when categorical variables have a high cardinality within subsets of a small

sample size. Thus, actuaries can utilize the proposed framework for the pricing calibration procedure, taking

into consideration consumers’ loyalty programs as a rating factor.

Although the hybrid tree framework surpassed the conventional multinomial approach in terms of

goodness-of-fit, the oversampling strategy used in the first modelling phase produced an overfitting

concern. More research is needed to assess the properties of sampling with highly imbalanced overlap

classes. Additionally, the empirical study was conducted between January 2018 and December 2020, at the

height of the Covid-19 pandemic. We had not addressed the pandemic’s confounding effect on PS

assessment, and this encourages potential future work paths. An even more intriguing research avenue is to

investigate the PS classification framework using model-based recursive partitioning with a bias reduction

estimation strategy that aims to reduce the estimation bias in the presence of a (quasi) separation problem.
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Chapter 3

Loss Cost Trend Modelling

3.1 Introduction

The essence of experience rating is to estimate the expected loss cost for future policy effective periods.

This estimated projected loss is obtained by correcting the actual past loss experience to a claim cost level

anticipated in the future exposure period. The aforementioned correction phase an actuary encountered as a

part of the pricing framework is known as the loss trending procedure. The historical experience of loss profile

is a good guideline for forecasting future loss exposure of an insurance portfolio. However, the inflation in

claim cost will not replicate itself identically, and thus, it is crucial to make the historical experience relevant

to match the present (or prospective) loss level, by evaluating the shift in claim cost between exposure

periods. These shifts are applied to past losses to recalibrate the historical trend to trends anticipated to

emerge in the future.

The presence of dynamic forces produces a measurable shift in claim experience as time passes. This

shift is known as a trend and a trend factor is any index, which measures the changes over time. In the

perspective of ratemaking, Rosenberg [79] defined a trend as the general movement in the course of time of

a statistically quantifiable change and a distribution curve representing such a change. For loss time series,

Lt and t ≥ 0, the projected change in claim value reflected by the trend factor is defined by:

E(Lt+j) = E(Lt)(1 + ∆t+j), where (3.1.1)

E(Lt+j): trended expected loss payments prevailing at future time (t + j),
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E(Lt): expected loss payments during experience period t,

∆t+j : projected change in the claim cost level between past experience period, t and future effective

period, (t + j).

Such dynamic forces that contribute towards a change of past loss experience take into consideration

economic, societal, demographic, regulatory, and legal. Unfortunately, some of these dynamic forces are

notoriously difficult to measure with any degree of certainty, in which actuaries often rely on historical data

from insurance and non-insurance sources to estimate claim trends. Besides, the trend selection process is

the only element that requires substantial professional judgment. Hence, the primary concern is with the

adequacy level as to the degree of judgment in choosing a proper trend factor.

The idea of the trending procedure is to act as a bridge to close the gap between periods in due course

of measurable differences in the cost level of claims. With the loss trending procedure, historical losses are

restated as if they have been incurred at the level expected during the future exposure period, whereby it is

meant to align with the distribution of insureds’ rating characteristics. Unlike other industries which realize

the impact of dynamic forces (i.e., standard inflation) on their production cost almost immediately and have

their price adjusted at the point of sales, the situation is reversed for insurers. A lack of monitoring and

calibrating risk premiums will result in an insufficient premium amount to indemnify future losses incurred.

Hence, overlooking the trending process whilst constructing a ratemaking model has nearly a one-for-one

detrimental effect on the underwriting profits, which could potentially distress the insurers’ solvency position.

The mathematical proof of errors in the trend factor has nearly a one-for-one effect on realized underwriting

profit shown below:

Consider a policy with a single loss payment one period from the policy inception date, t. Assume the

insurer’s asset, that is the premium, P received from the policyholder invested at a rate, rf and the insurer’s

net underwriting income, Ψ at the end of the period is:

Ψ = Pt(1 + rf ) − Lt(1 + ∆a)

= Lt
(1 + ∆)

(1 − Θ)
− Lt(1 + ∆a), where

(3.1.2)

Pt: premium 1

Lt: expected loss at premium level prevailing at time t

rf : risk-free rate

∆a: actual change of trend

1Premium expressed as simple discounted cash flow issued at the time, t with a single loss: Pt = Lt
(1 + ∆)
(1 + r)

, where

(1 + r) is the risk-adjusted discount factor for losses, that is (1 + r) = (1 + rf )(1 − Θ) [26].
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∆: estimated change of trend

Θ: profit loading

Suppose the net underwriting income is normalized based on the ideal projected premium accumulated at

interest, defined as:

Pa(1 + rf ) = Lt
(1 + ∆a)

(1 − Θ)

Ψ

Pa(1 + rf )
=

Lt(1 + ∆) − Lt(1 + ∆a)(1 − Θ)

(1 − Θ)
× (1 − Θ)

Lt(1 + ∆a)

=
(∆ − ∆a)

(1 + ∆a)
+ Θ

(3.1.3)

The term (∆ − ∆a)
(1 + ∆a)

in the above equation is the normalized error ratio of the trend factor, which is

directly proportional to net underwriting income. Since the provision of profit loading, Θ is often a small

percentage, the error on the trending factor can significantly alter an insurer’s profit or solvency position.

In selecting trends, actuaries seek a balance between responsiveness and stability, as such the trend factor

should be responsive to real changes in experience and not to aberrations in the data.

The application of ratemaking is attained by developing a trend factor for pure premium. Under

certain circumstances, aggregation of frequency and severity information modelled in a single trend factor

directly from pure premium could often mask important trend patterns in the data. This chapter proposes

an alternative approach to the existing loss trend strategy which accounts for separate trend models of

frequency and severity and multiplies these outcomes to achieve a pure premium trend. The reason for

seeking a separate loss trend modelling of pure premium is to cater to the variation of magnitude shift

in dynamic forces between frequency and severity. This becomes substantial when considering the shift of

standard or superimposed inflation, where often the inherent impact is obvious on the monetary unit, that

is the severity component than in frequency. In addition, disaggregation can create a pooling effect due to

offsetting random errors, yielding a better prediction of the trend factor.

The pure premium trend can be expressed in terms of individual modelled frequency and severity trend

components as:

(1 + ∆p
t+j) = (1 + ∆f

t+j)× (1 + ∆s
t+j), where (3.1.4)

∆p
t+j : projected change in the pure premium level between past experience period, t, and future effective

period, (t+ j).
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(1 + ∆f
t+j): frequency trend factor between experience period, t, and future effective period, (t+ j).

(1 + ∆s
t+j): severity trend factor between experience period, t, and future effective period, (t+ j).

The severity trend is generally taken into price modelling consideration, however, the trend adjustment for

the frequency component is often omitted. When both trend factors are implemented, the severity factor

tends to be dominant in terms of magnitude due to the dollar characteristic and predictable patterns driving

the dynamic forces. We have established a dual-focus trending procedure to estimate the trend factors of both

severity and frequency components. The severity trend model presented in this study assumes to be primarily

led by one inflation 2, that is the observed claim inflation. Whilst frequency trend presumes to be influenced

by insurance portfolio changes such as deductibles, policy limits, coverages, and other attributes affecting the

mix of the insurance portfolio. Additionally, since the focus of this thesis is restricted to short-tail personal

line insurance policies, the severity trend is modelled with respect to paid claims. Consideration of paid

claims is sufficient for insurance products having quick claim reporting and settlement behaviour, since the

incurred but not reported losses (IBNR) is not a significant component for short tail loss distribution.

The classical risk premium model expressed in Equation (3.1.4) uses the separation approach to achieve

global trend estimates for frequency and severity respectively. A major limitation of the classical approach is

that the trend factor estimate gets updated based on the overall shift of claim severity, which is a rudimentary

technique that presumes the inflation trend is immutable. In the long run, the implication for insurers

depends on how far recent developments represent an enduring shift to a significantly higher trend in claims

growth, that further outstrips estimates assumed when policies were originally underwritten. Such persistent

claim inflation that goes unrecognized for years leads to chronic underpricing and under-reserving.

Another caution in trend modelling is the time interval for which estimates are assessed. The two

possibilities to compile loss experience for trend modelling either via accident or policy year basis. Experience

compiled based on policy year compares the earned premiums and exposures with incurred losses based on

policies that were underwritten to be effective within a calendar year. Meanwhile, the accident year compares

earned premiums and exposures with the losses incurred during a calendar or fiscal year, regardless of when

the policies were underwritten. So, the main differences between these two approaches are:

(i) Policy year considers losses that arise out of the event that occurred during a given 12-month period.

The experience gauged on a policy year basis covers two calendar years. Thus, the overlap of policy year

requires the trend effect to be averaged between calendar years. Averaging the trend effect minimizes

2The term inflation may be misleading in the context of insurance loss since in an economic perspective inflation refers to
a sustained increase in the overall price level of goods and services. However, in actuarial scope, the term inflation
indicates the change in average loss value per claim, which is synonymous with claim inflation.
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the actual peak and valley of loss trending pattern.

(ii) Experience assessed using accident year shows pure premiums, claim frequencies, and severities for

consecutive calendar year periods, as such losses for any given year are comparable to subsequent

years, and any apparent shift in loss trend is easily detectable. In addition, the historical experience

based on the accident year becomes available 12 months sooner than the policy year basis, in which the

reduction of a time lag between the experience period and rate review period makes the accident year

technique to be more indicative of current loss experience. Thus, the historical experience gathered for

modelling purposes is responsive to changing conditions.

In other words, the policy year basis emphasizes on exposures while the accident year stresses on losses.

Benbrook [10] provides more details on using calendar-accident experience instead of policy year experience

for trend projection.

A standard model of trend estimation nearly always assumes to have a deterministic trend and adapts

the linear regression to model both frequency and severity trend factors (see, Friedland [36] for an application

of trending procedure in P&C insurance). The general equation of the linear trend model is expressed as:

E(St−i) = αS + βS(t− i) + εSt−i

E(ft−i) = αf + βf (t− i) + εft−i , where

(3.1.5)

t: present time.

i: projection future period.

αS , βS , αf , βf : parameters of the linear model, which are estimated using ordinary least squares.

εSt−i
, εft−i

: random error during the trending period.

St−i: average paid cost per claim in period (t− i).

ft−i: average loss counts per exposure unit in period (t− i).

The estimated value of slope coefficients in Equation (3.1.5) produces the projected trend factors for frequency

and severity respectively. The linear regression model’s simplicity has the advantage of transparency, as well

as the estimated trend factor being easily attainable by solving a linear system. With the linear model,

the projected trend factor presumes to increase or decrease by a constant amount during the trending

timespan. However, the linear model may not be appropriate for a decreasing trend, especially since the loss

frequency often exhibits a declining trend respective to the accident year resulting in a negative estimate,

that contradicts the practical application of ft−i > 0.
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A series of extensions based on the linear regression model have emerged since then, the most widely

applied model includes the Box-Jenkins procedure using integrated autoregressive moving average (ARIMA).

The ARIMA model produces a precise nature of pure premium correlation with itself at differing time lags

and adjusts accordingly. The adjustments can narrow the range of subsequent predicted values to produce

a greater confidence band. However, insurance losses may not incur regularly in time, especially for non-

automobile coverages that have uneven claim experience in time. Irregular intervals between claim samples

reveal the time-series approach of autoregressive or moving average processes, in the form of ARIMA models,

are practically unreasonable candidates for modelling loss trends.

As aforesaid limitations, we considered an extended version of the severity component, that is by splitting

the severity deflator (or superimposed inflation) and base severity as two separate random variables to achieve

a precise estimation of the inflation trend factor. Our theoretical investigation exploits a semi-parametric

extension of a generalized linear model (GLM), and a generalized Linear Mixed Model (GLMM), called the

generalized additive model (GAM) for trend estimation. The reason behind opting for GAMs is that they

could fit both linear and smooth non-linear trends for time-dependent data as well can handle the irregular

spacing of samples in time. The proposed method broadly pursues the following strategy:

(i) Frequency trending procedure:

Combining the flexibility of nonlinear effects and temporal dependence between the claim count (serial

correlation), we introduce a new model called the generalized additive model with m autoregressive

terms and seasonal period of length h, GAMSAR(m)h using Poisson distribution, that ally the inclusion

of correlation in adjacent time points and smooth functions of covariates, as splines, to explain the

trend of expected claim count.

(ii) Severity trending procedure:

First, we empirically derive the historical claim inflation by applying the separation method, to discern

the development year effect and calendar year trend effect. The second phase is to use the notion of

discounting to reposition the severities at a common point in time. In the third step, we employ the

GAMs to estimate the parameter of the base severity component. The last step is to inflate the severity

component to the period of prediction.

To test the proposed extended severity structure, a comparison is made between the revised and classical

approach using the general insurance claims development synthetic dataset that represents the Canadian

Insurtech brokerage loss severity portfolio of houseowners/householders over the accident year 2011 – 2020.

In addition, the separation cum DMT (abbreviation of discount, model, and trend) framework used in
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severity trend factor estimation produces a fresh approach to gauge the standard/superimposed inflation

inherent in claim costs, which substitutes the conventional approach of estimating claim inflation using the

CPI metric. Further, the hybrid modelling technique with time series was introduced as an extended version

of frequency trend projection. As such, the focus of this chapter is on establishing a scientific approach to

pricing, that is via semiparametric regression procedures under trending processes.

3.2 Problem Statement and Research Questions

In a hypothetical scenario, when claim inflation is identical to CPI, it would not be essential to devote much

attention to estimating trend factors. This is exemplified through a pricing framework using a perfect capital

market model:

Fisher [91] claims that the nominal interest rate is highly correlated with expected inflation via the following

equation:

(1 + rnominal) = (1 + i)(1 + rreal), where (3.2.1)

rnominal: nominal risk-free interest rate.

rreal: real rate of interest.

i: expected rate of inflation.

Assuming the pricing solution modelled using perfect capital market theory through discounted cash flow:

P = L
∑
t

(1 + i)tπt

(1 + rnominal)t
, where (3.2.2)

P : premium.

L: total losses valued at the premium rate at the beginning of the accident year.

π: proportion of total claim paid during development year,t.

For a simple illustration, the premium in Equation (3.2.2) is assumed to be subject to risk neutral. A key

concern to the above pricing equation is the extent to which fluctuation of premium amount will be due to

changes in the interest rate and inflationary expectations. Kraus and Ross [25, 62] assert that the impact

of interest rate changes on the premium will remain minimal as long as claim cost inflation does not depart

significantly from general CPI and Fisher’s proposition is upheld. In such an instance, it is irrelevant for an

explicit trend factor estimation.

The insurance scheme is based on risk mitigation, whilst the CPI tracker is subject to the overall
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consumption of a household, as such insurers are likely to be exposed to specific components of CPI per

product type. An example of such disparity relates to how housing costs are added to CPI. The CPI metric

assesses the cost of owners’ equivalent rent of a primary residence, where it takes account of the value of

renting a residence and does not consider the selling price of a home. So, the consumption portion of

owners’ equivalent rent is included in the CPI calculation, whilst the investment portion of price

appreciation/depreciation in the value of a home is discarded from the index measure. Meanwhile, the cost

of claims for homeowners’ losses covers the full cost of a home, both the consumption and investment

portion, which further deviates CPI from claim cost inflation. Therefore, an insurer can anticipate the

indemnity of the claim amount to rise more rapidly than the general inflation rate (see, Asinya and Joel

[5]). This contradicts the above simple case of pricing Equation (3.2.2) assumption and may result in an

underestimate of projected claim expectation.

To model the loss trend Y given X, it is often useful to start by assuming the conditional mean of the

pure premium component (i.e., frequency or severity) is a linear function of the predictor (i.e., accident year).

While a linear relationship between the response and predictor is a useful starting point, consider the data

in Figure 3.2.1, which shows the quarterly severity trend of renter’s insurance:

Figure 3.2.1: Severity trend of renter’s insurance for Insurtech companies based in Canada.

As is often the case in practical scenarios, the linearity assumption is not convincing. In this case, a

more complex model is required to capture the underlying trend features. Further, as illustrated in Figure

3.2.1, the average growth rate of severity over the last five years exceeds 50%, indicating a non-negligible

influence from inflation.

Building on the theoretical and practical implication of the trend model as exemplified above, our
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research questions associated with the current chapter are as follows:

RQ1: Does the estimated pure premium obtained via extended loss cost structure exhibit lower relative

error than the conventional frequency–severity approach?

RQ2: Does the GLM approach under conventional frequency/severity trend modelling significantly under-

or over-estimate the trends?

The research questions above are explored through a simulation study. Findings from the study

contribute to the application of the literature on claims trends as most of the research on this interface has

been developed from a theoretical point of view.

3.3 Aim, Objectives, and Hypothesis

The chapter aims to develop a loss trending procedure that has practical insights into pricing mechanisms.

Our focus on improvising conventional claim trending procedures via semiparametric machine learning

technique has led the way in using predictive modelling to establish a scientific approach to a multi-peril

insurance pricing framework. In addition, the predictive analytics drawn from practical application

problems aimed at creating business value for insurance practitioners in terms of boosting underwriting

profit margins and trimming claims leakage by obtaining tighter parameter interval estimates.

The twin objectives of this study were:

(i) To develop stochastic claims trending procedure for loss components of frequency and severity, along

with recognizing the advantages and disadvantages of stochastic models over the traditional linear

deterministic models.

(ii) To assess the predictive ability of irregular time series loss occurrence using the semiparametric GAMs

approach.

Two prominent hypotheses set to dictate the stated problem:

RH1: Claim inflation estimated from the loss experience is a significant variable for pure premium

estimation.

RH2: Loss count trend modelling using GAMSAR is expected to have a smaller relative error in the

presence of an irregular time-spaced stochastic claim distribution in comparison to the conventional

trending approach using the GLM algorithm.
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3.4 Main Contributions

This chapter for the first time investigates the trending process by solely considering a data mining approach

with minimal use of professional judgment in establishing the estimates. First, we present an extended

version of the pure premium structure, that includes three random variable components of frequency, base

severity, and severity deflator, with each component explicitly modelled using a GAM with cubic splines. In

the conventional loss trending procedure, the expert sometimes tempers trend selection based on actuarial

judgment, leading to uncertainties in model accuracy. The present research delves into the extended loss

cost framework, which is derived through the causal inference solution utilizing the do(·) operator. This

produces greater credibility to trend estimation as well as dismissing any concerns about model precision.

Additionally, we have expanded the lost cost model for multiperil insurance contracts, and to the best of our

knowledge, this is the first time that an algorithm based on CV on a rolling window basis combined with

semiparametric GAM has been proposed for the purpose of loss trend analysis.

Second, the proposed GAMSAR model for count trend analysis captures the non-linear dependencies

across accident years. The novel integration of the nonlinear effect between response and predictor variables

and the consideration of the serial correlation of adjacent time points ensure that the Poisson GAMSAR(m)h

has better coverage and smaller relative error. For the first time, we address frequency trend analysis and

propose the use of GAM with seasonal autoregressive terms, which is relatively new to property-casualty

insurance.

Third, this chapter recommends a hybrid technique for managing claims inflation trends and determining

the ultimate trend severity component. In this study, we modified the use of the separation technique as

a pre-processing step for pricing solutions and incorporated the extrapolation approach to severity trends

by estimating inflation using empirical loss information. Unlike the conventional trending procedure, the

separation technique does not rely solely on an economic indicator such as CPI, to estimate claim inflation.

To explicitly incorporate calendar year effects, we model and calibrate empirical claim inflation using DMT

framework. DMT framework offers a generic solution to assimilate observed inflation into severity projection.

The discounting procedure followed by the DMT modelling strategy offers to eliminate time variation in

residuals. The hybrid technique of separation cum DMT framework has made no restriction on the statistical

methods used for estimating base severity parameters. Our proposed framework offers a generalized structure,

where it applies to a wide range of estimation models. Further, this flexibility gives the opportunity to tailor

the method to individual perils within multi-peril insurance contracts.
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3.5 Structure

The rest of this chapter is organized as follows. Section 3.6 provides a literature review to discover some of the

established loss trending models. Section 3.7 presents an extended version of the pure premium structure and

introduces two severity random variables, which are base severity and severity deflator. Section 3.8 discusses

the GAM estimation procedure for both parametric counterparts as well as non-parametric components that

are estimated through some smoothed functions. Section 3.9 provides a detailed derivation of GAM with

the seasonal autoregressive term (GAMSAR) followed by a technique for estimating the parameters. A

simulation study of personal property loss frequency modelled using GAMSAR is presented in Section 3.9.2.

A hybrid approach of separation technique cum DMT framework for severity trend modelling is detailed in

Section 3.10. Section 3.10.3 provides a simulation investigation regarding the appropriateness of the proposed

severity by comparing it with the conventional GLM modelling approach. Section 3.11 provides the detailed

run time of each simulation execution. Finally, the study is concluded in Section 3.12 with some empirical

recommendations and future research directions.

Unless otherwise specified, all numerical applications are implemented with the R statistical software.
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3.6 Literature Review

The literature on loss trend modelling gets minimal attention across the research community, especially

when considering the evaluation of alternative methods. Actuarial scholarly journals typically opt for a

model from a limited set of alternatives and have mostly been assembled based on judgmental

considerations (see, Dickmann [29] for an overview of industry practices in trend modelling). In such

instances, the quantitative historical loss experience relies on a qualitative judgment, which may or may

not result in biased estimates depending on the degree of data deficiencies. On the contrary, some studies

have focused on alternative methods to achieve loss trend projection accuracy, including time series and

econometric models. Ussif [87] presented three alternative econometric models to test the hypotheses of the

impact of two economic variables, which are employment and unemployment rate in modelling frequency

trend for a worker’s compensation insurance. The trend factor selection developed by the author is based

on the California Workers Compensation Institute (CWCI) solely from medical claim frequency data and

very little judgment was applied in consideration to maintain objectivity in the estimation process. The

empirical evidence reveals that two nonlinear models of logarithmic-linear and semi-logarithmic outperform

the linear counterpart and the presence of economic variables as predictors substantially payoff to produce

reliable trend factor estimates in comparison to the conventional actuarial trending equation,

Yt = β0 + β1(time) + εt.

Cummins [26] explored fuzzy set theory (FST), a relatively new mechanism for trend factor decision

problems. FST provides a set of mathematical rules that simultaneously consider several forecasting

equations and distinguish them by the ranking process. The nature of FST modelling is to explicitly

consider the forecasting output of trend factors as part of the decision-making process. The scholars

combine statistical forecasting models and judgmental consideration to achieve the selection of trend factor

estimates. One key conclusion drawn by Cummins [26] is that a single forecasting method produces greater

estimate accuracy by combining sets of the method to discover trend factor estimates.

Loss trend analysis is commonly based on the calendar year effect, which is synonymously referred to as

claim inflation. Verbeek [13] and Taylor [86] proposed a separation method to separate claims inflation from

the development pattern of average claim cost. The basic assumption put forward by both authors is that the

claims’ development pattern and calendar year effects are independent of one another. It was pointed out by

Clark [21] that in computing the loss reserve variance, the inflation index should be extracted theoretically

from loss insurance data itself, but most actual loss information is not stable enough to provide a credible

evaluation, so external factors should be incorporated to characterize the inflation index. However, the
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proposed mean-reverting time series model has a shortcoming, where the external inflation indices, CPI are

shown as an insignificant explanatory variable for loss amount movement. Alternative model with calendar

year effects, depicting the effects of economic inflation assumed to work in a multiplicative way and was

established by Rietdorf [78]:

E(Xij) = αiβjδi+j , and

V ar(Xij) = φαiβj(δi+j)
2, with

(3.6.1)

Xij being the observable incremental losses and the calendar year effect, δi+j made up of two aspects:

(i) Economic inflation.

(ii) Superimposed claim inflation.

Whilst the theory set out by Kuang et al. [63], who analyze the model with 3-way effects makes an implicit

assumption about the calendar year effect using the age-period-cohort model:

E(Xij) = αi + βj + γi+j−1 + δ, where (3.6.2)

α: the parameter of the cohort corresponds to accident time,

β: the parameter of the claim’s development time,

γ: the parameter associated with the calendar period effect, and

δ: an overall level parameter.

Kuang et al. [63] considered the model in Equation (3.6.2) using a form, where the logarithm of

incremental claims is assumed to be Normally distributed. One problem with the proposed approach is that

it is not identified since the parametrization in Equation (3.6.2) is not unique. A common way to deal with

this identification problem is to impose identification constraints and with that, the parameters in Equation

(3.6.2) can be estimated using maximum likelihood. However, the calendar period parameter is estimated

only up to the last observed calendar period, i+ j − 1.

Most research works of this scope are centered on claim-reserving aspects of the treatment of calendar

year effects and rarely spotlight the stochastic modelling of claim inflation. One such intriguing work of

stochastic claim inflation modelling was introduced by Jespersen [50] and is known as the DMI (discount,

model and inflate) framework. The proposed framework does not make any general statistical distribution

assumptions, but it is required at the component layer. The framework comprises of three components:
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(i) The observed severities are discounted by smoothed inflation, Îk to have all severities comparable and

denoted in the monetary index of period one:

Xhk = X̃hk

Îk
, where

X̃hk , h = 1 , . . . , nk , k = 1 , . . . , R be observed losses during the estimation period ranging from

month 1 to R, where nk is the number of claims in kth period.

Îk modelled from GAM inflation smoother, log (Ik) = β0 + f(k) + εk, with raw inflation as a

response variable and claim month as covariates.

(ii) The base severity is modelled based on discounted severities achieved from (i) using GLM,

g(µµµb) = E(X | Z) = Zβββ

(iii) The output from (ii) is inflated to the future period of prediction. For the inflate procedure, the filtered

inflation 3, Īn used as a predictor for inflation in period (n + 1). The inflated estimated severity, µ̃hk

for the hth claim in the period of kth expressed as:

µ̃hk = µ̂hk Īk−1, where

µ̂hk is the estimated base severity for the hth claim in the kth period. It is the (n1 + . . . + nk−1 + h)′th

element of GLM prediction vector µ̂µµb.

Through empirical study, the author has proven DMI framework is more robust compared to the benchmark

model that includes overall CPI. However, the author has developed the DMI framework based on the

accident period, where the accident month is used as an explanatory variable. In terms of practicality, the

approach is likely to be undesirable as the premium amount does fluctuate month-to-month and the use of

the accident period may result in an overlap between the IBNR development factor and trend effect.

The use of regression framework in actuarial is well developed and broadly accepted for loss trend

modelling. The aim of the trending procedure utilizing regression analysis is to identify the trend rate

underlying the historical experience. Linear and exponential regression analysis is the most common

frequency trend models (see, Friedland [36] for an overview):

(i) Linear model: f = β0 + β1(time) + ε

3Filters are data processing procedures that smooth out high-frequency fluctuations in data. Filters aim at extracting
the signal but are only allowed to use historical observations, Im, m ≤ k. A simple moving average is one type of
filter that makes use of historical observation to extract the signal. The term ”filtered inflation” describes the use of
filtering techniques on raw inflation in order to remove noise and extract true inflation signals.
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(ii) Exponential model: f = β0 exp
β1(time) + ε

With a linear model, the trend estimate is a projection that increases or decreases by a constant amount.

Whereas, for an exponential model the estimated result is a projection with a constant rate of change.

However, the result of both regression models suggests an increasing trend. The estimate of the linear model

will result in a negative value for a decreasing trend, which contradicts the practical scenarios.

With climate changes and human activities, natural disasters such as wildfires and floods have caused

mounting damage to properties and infrastructure. The continuously growing natural disaster losses have

not only impacted the profitability of property insurance but have significantly modified the loss attributes

of property coverage. Natural disaster frequencies across different localities share some common patterns

over time. Taking into account the dependencies of natural disaster occurrences among different time and

localities may help to improve the modelling and predictive accuracy of loss frequency trends. The work by

Li and Su [68] exemplifies how the prevalence of some natural disasters, such as wildfires, displays apparent

seasonal trends in loss frequency, as the majority of wildfire outbreaks occur during the summer cycle. Most

importantly, a moderate degree of seasonal effect is seen in the severity series due to its amplified monetary

value and calendar period effects, but not as strong as it transpires in the loss frequency data. Thus, the

common drivers of a natural disaster such as seasonality and temporal dependencies effects may not be

explicitly explained by standard GLM or GAM models.

It is important to note that the problem with frequency trend modelling is not the autocorrelation in

the time series itself but the autocorrelation in the residuals that leads to a violation of the independence

assumption of standard GLM or GAM models. Yang et al. [97] proposed a GAM with autoregressive

terms (GAMAR) that is less computationally intensive, but it works with count data in Poisson regression

situations to embody autocorrelation of the response variable when modelling. Yang et al. [97] conducted

two simulation studies to compare the performance of GAM and GAMAR for estimation. In all, the covariate

parameter estimation from the two simulations shows robustness with respect to disturbances of AR order,

and overall, GAMAR performed better than GAM when observations were autocorrelated. Although the

biases of the mean parameter estimates from GAM are almost similar to GAMAR, the authors made the

conclusion based on the closeness of coverage values of 95% confidence intervals (CI). Based on simulation

evaluations with various AR orders, the scholars found that the coverages of 95% CI from GAM are far less

than 95%, while those from GAMAR are close to 95%. Also, the relative errors of parameter estimates from

GAM are larger than those of GAMAR.

The approach proposed for severity trend modelling is distinct from existing work, though, the
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inspiration for our work came from the DMI framework proposed by Jespersen [50]. The key differences

between our proposed and Jespersen’s model are:

(i) By considering inflation as a random variable of the calendar year effect, we modelled the parameter

estimation using the separation method.

(ii) The smoothed inflation and filtered inflation are estimated by incorporating key driving factors that

influence observed claim inflation as covariates.

(iii) The base severity is modelled using GAM to allow for a non-linear relationship between predictor and

response. Taking into account the response-covariate relationship specification of the real example

presented in Figure 3.2.1, we proposed a semiparametric additive model using a cubic spline.

Research work by Yang et al. [97] provides a motivation to extend our frequency trend modelling study

into a more complicated case, where the GAMAR model is extended to incorporate seasonality effects with

a temporal dependency structure.
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3.7 Extended Loss Cost Model Structure

The frequency-severity model defined in Equation (3.1.4) is a standard model of insurance claims, in which

the pure premium trend is modelled individually. The classical loss cost model is inbuilt with the improper

omission of important covariates (i.e., potential confounders), causing it to differ from real-world conditions.

While the assumption of implicit inflation on severity trends is unrealistic, the classical risk model remains

the basis of many risk models in insurance mathematics. The purpose of this section is to justify the claim

inflation-loss cost model in a causal inference setting. We examined the extended form of the severity

component for a multiperil policy composed of M coverages, M = {1, . . . ,m}, which are further decomposed

into M random variables of base severity and severity deflator, respectively.

To expand further on the boundaries of the integration between causality and machine learning, we

perform a theoretical investigation of the extended loss cost framework using structural causal models (SCM).

The concept of intervention or manipulation lies at the core of causality, as expressed by the standing motto

of Holland [47], ”No causation without manipulation”. To this effect, we first define a process of intervention

within the classical loss model computation layer that will subsequently reveal sensible construction of the

extended loss cost framework akin to those of intervention on SCM. Additionally, the SCM relates causal

effect and probability statements between variables, X and Y in a system as a functional relationship, which

makes it ideal for practical implementation with regression mechanisms.

3.7.1 Structural causal models and their solutions

Definition 3.1. (Structural causal model, (Pearl [77])) SCM is a tupleM := ⟨X ,U , f ,P(U)⟩, where

• X is a finite set of N endogenous variables, that are observed variables of interest in the model. Each

variable Xi ∈ X is defined on a finite domainM[Xi].

• U is a finite set of N exogenous variables (or noise variables), that are unobserved variables taking into

consideration factors beyond the scope of the model. Each variable Ui ∈ U is defined on a domain

M[Ui].

• f is a set of N modular and measurable structural functions, one for each endogenous variable Xi. The

value assumed by an endogenous node is deterministically computed as Xi = fi(pa(Xi),Ui), where

pa(Xi) ⊆ X\{Xi} is a set of endogenous variables directly affecting Xi and pa represents connoting

parents of Xi.
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• P(U) is a probability distributions over the exogenous variables.

P(U) and f induce a distribution P(X ) over observable variables.

In SCMs, the functional relationships between variables are expressed in terms of deterministic

equations, where each equation expresses an endogenous variable in terms of a casual mechanism

depending on endogenous and exogenous variables. It is assumed that the underlying model is recursive,

that is, there are no cyclic dependencies among the variables.

Definition 3.2. (Structural equations, (Pearl [77])) LetM := ⟨X ,U , f ,P(U)⟩ be a SCM. We call the set of

equations Xi = fi(pa i,Ui), i = {1, . . . , N} ∈ X , where

pa i ∈ X represents other endogenous variables that determine Xi, and Ui ∈ U represents exogenous noise

due to unmodelled factors.

Definition 3.2 can be viewed as each endogenous variable Xi has a set of parent endogenous variable

pai, an associated exogenous variable Ui and a function fi specifies the relationship between Xi with other

variables pai of interest, and everything else, Ui that may influence the value of Xi. We emphasize that the

above functional mapping is deterministic, as all of the randomness in Xi is being captured either by pai or

Ui. The central idea of structural equations is to exploit the invariant characteristics of the SCM mechanism

without committing to a specific functional form. This property of invariance enables modification of the

SCM mechanism via intervention through the do(X = x) operator which fixes a set of endogenous variables

X ⊆ X to the values x. An intervention on the SCMM produces a new set of post-intervention modelMι.

Definition 3.3. (Perfect Intervention, (Pearl [77])) Let M := ⟨X ,U , f ,P(U)⟩ be a SCM, X ⊆ X a subset

of endogenous variables and ξX ∈ ΥX a value associate to each variable with Υ =
∏

i∈X Υi product

domain of the endogenous variables. In a perfect intervention, the do(X, ξX) operator mapsM to the SCM

Mι =Mdo(X,ξX) := ⟨X ,U , f̃ ,P(U)⟩, where the intervened causal mechanism f̃ is given by

f̃i(pa i,Ui) =


ξi, i ∈ X

fi(pa i,Ui), i ∈ X\X
(3.7.1)

The operator do(Xi = ξi) defined in Definition 3.3 disconnects Xi from its parents and sets it value

to ξi, while leaving the remainder of the causal relationship with its response variable and local probability

model undisturbed. So the intervention process in a structural equation framework is a local effect and it

only influences the variable Xi with no other direct influence on any other variable.
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Theorem 3.4 (Probabilistic implications of d-separation, (Pearly [77])). If any sets of random variables X

and Y are d-separated by Z in a directed acyclic graph, G, then X is independent of Y conditional on Z in

every distribution compatible with G. Conversely, if X and Y are not d-separated by Z in a directed acyclic

graph, G, then X and Y are dependent conditional on Z in at least one distribution compatible with G.

All the assumptions and properties of SCM are discussed at length in the literature Pearl [77].

3.7.2 From classical to extended loss model through do(·) operator

Using Pearl’s SCM approach, we present the simplest classical loss model of standalone insurance coverage,

which involves the effect of an endogenous loss amount variable, X on the outcome severity variable, Y in

the presence of a causal relationship involving the claim inflation confounder factor, Z. Each endogenous

variable X, Z, and Y is associated with its corresponding exogenous unobserved variables UX , UZ , and

UY . As part of the SCM setup, exogenous variables, also known as random errors, are taken into account

to explain the unaccounted variability behavior of variables in the model. A variable UX , for example,

represents factors that contribute to the loss amount X but have no bearing on variable UY , such as the

homeowner’s negligence behaviour, a home with excessive dust particles, or the driver’s driving reflexes.

We further assume that all the exogenous variables, U are mutually independent, in which case the causal

model has the form of a Markovian model. In its simplest version, the root of manipulating the classical to

extended loss structure using the intervention process via the do operator is depicted in Figure 3.7.1.

Figure 3.7.1: The causal graphs for the severity loss system. (a) The observational causal graph with X
(i.e., loss amount) is the endogenous variable, Y (i.e., severity) is the target variable, and Z (i.e., claim
inflation) is the confounder impacting both the loss amount and the loss severity. (b) A causal graph of
this system after intervention on X.
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The path analysis model given in Figure 3.7.1 (a) corresponds to a situation where an observed change

in the value of severity results from a change of loss amount could just as well be attributed to a change of

claim inflation. Figure 3.7.1 (a) is referred to as the observational causal directed acyclic graph (DAG) that

distinguishes it from the forthcoming experimental DAG. We denote the density function and expectation

with respect to the observational distribution with a superscript O. Based on the prototypical example of

the effect of treatment X on the outcome Y under the confounder Z, we establish a causal model for the

classical loss framework (focusing mainly on the severity components) and the corresponding set of structural

equations:

Z = fZ(UZ) (3.7.2)

X = fX(Z,UX)

Y = fY (X,Z,UY ) , where

the fj ’s are deterministic functions of the parent variables paj , j ∈ {X,Y,X} and its respective exogenous

variables. The observational distribution admits the factorization according to Equation (3.7.2) with respect

to Radon-Nikodym derivatives of the probability measure P:

PO
Y,X,Z,U(y, x, z,u)) = PO

Y |X,Z,U(y|x, z,u)) PO
X|Z,U(x|z,u) PO

Z|U(z|u) PO
U(u)

= PO
Y |pa(Y)(y|paY ) P

O
X|pa(X)(x|paX) PO

Z|pa(Z)(z|paZ) P
O
U(u)

= [P(fO(X,Z,UY ))PO
UY

(uY )][P(fO(Z,UX))PO
UX

(uX)][P(fO(UZ))PO
UZ

(uZ)]

(3.7.3)

Equation (3.7.3) is established based on the connection between d-separation criterion and conditional

independence through theorem 3.4. It appears that the conditioning and weighting operation based on

exogenous variables, PO
Uj
(uj), j = {X,Y, Z} in Equation (3.7.3), causes unidentified problems since the

parameters whose functions are based on unobserved random variables cannot be estimated. There are no

consistent estimators for causal parameters when there are unobserved variables. Suppose we impose an

assumption that the exogenous variable distributions are Normal. If we are interested in evaluating the

dependence of Y on X in the form of the conditional distribution, PO
Y |X , as shown in Figure 3.7.1 (a), there

are two channels by which information flows from cause to outcome. One is the direct path of X → Y . The

other is an indirect (or backdoor) path of X ← Z → Y . While the direct path is a causal effect, the

backdoor path is not causal. Instead, it is a process that creates a spurious correlation between X and Y

that is driven solely by fluctuation in the Z random variable. Since X and Y variables are observed, we

cannot isolate the causal effect from the indirect inference. On a similar note, the causal effect remains
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unidentifiable although we prefix the unobserved variable with some random distributions.

The only solution to avoid the confounding effects is to alter the conditional terms,PO
Y |X by adjusting

an adequate control variable, which can be accomplished through a non-randomization intervention on

observational data, as shown in Figure 3.7.1 (b). The causal (non-confounded) effect of X on Y is determined

through the use of a mathematical do(·) operator that simulates physical interventions by eliminating directed

edges to X using the following manipulation steps:

(i) assign random variable X to take on some specified value x′,

(ii) sum (or integrate) the density of Y |X, pa(X) over a set of parents of X if the parent variables are

observed. In the event that some members of pa(X) are unobserved, then sum (or integrate) the

density of Y |X,S over a conditioning set of observed control covariates, S.

By adjusting on a set of parents of X (or control covariates, S), the intervention strategy instructs us to

block all non-causal paths between a predictor and response variable of interest, while leaving all causal

pathways to remain open. The procedure above is a generalization of Pearl’s [77] backdoor criterion, which

only uses observational densities estimated from the data. According to the loss cost framework defined in

Figure 3.7.1, the effect of an intervention do(X = x′) on Y is:

P(y|do(x′)) =

∫
pa(X)

P(y|x′, pa(X))P(pa(X))

(since, X consist of unobserved parent, UX , we introduce set of conditioned variables, S = {Z}.)

=

∫
pa(X)

P(pa(X))

∫
S

P(y, s|x′, pa(X))

=

∫
pa(X)

P(pa(X))

∫
S

P(y|x′, pa(X), s)P(s|x′, pa(X))

(since, blocking back-door paths implies that Y ⊥ pa(X)|X,S.)

=

∫
pa(X)

P(pa(X))

∫
S

P(y|x′, s)P(s|x′, pa(X))

(since, no set of variables is a descendants of X implies that X ⊥ S|pa(X).)

=

∫
pa(X)

P(pa(X))

∫
S

P(y|x′, s)P(s|pa(X))

(since, P(s) =

∫
pa(X)

P(pa(X))P(s|pa(X)).)

=

∫
S

P(y|x′, s)P(s)

=

∫
Z

P(y|x′, z)P(z)

(3.7.4)
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Equation (3.7.4) yields an experimental DAG and the average causal effect of X on Y written in terms of

the post-interventional distribution, P (y|do(x′)). In other words, adjusting for the parent of the intervened

variable X is the same as partitioning the sample into homogenous groups with respect to S = {Z}, assessing

the effect of the intervention in each homogenous group, and then averaging the results. It should be noted

that all the terms on the right-hand side of Equation (3.7.4) are observational conditional probability, and

not counterfactual. Therefore, the effect P (y|do(x′)) on Y of an intervention on X is identifiable when the

set of observed control covariates, S satisfy following conditions:

(i) no variable Si ∈ S is a descendant of X. This implies X should have no influence on any of the

variables in S.

(ii) set of variable S blocks any path γ between X and Y that has an incoming arrow into X.

The modified structural equation of an intervention do(X ′) that holds X = x′ is defined as follows:

Z = fZ(UZ) (3.7.5)

X = x′

Y = fY (X,Z,UY ) , where X ⊥ Z, and Cov(X,UY ) = Cov(Z,UY ) = 0.

If S is an adequate control set for (X,Y ), by substituting the post-intervention distribution as expectation,

the average causal effect is estimable from pre-intervention data without bias. By comparing the structural

equations of the pre- and post-intervention, it is possible to proof the latter assertion: The mutilated model

in Equation (3.7.5) dictates:

E[Y |do(x′)] = E[fY (x
′, Z, UY )]

whereas the pre-intervention model of Equation (3.7.2) gives:

E[Y |X = x′] = E[fY (X,Z,UY )|X = x′]

= E[fY (x
′, Z, UY )|X = x′]

= E[fY (x
′, Z, UY )]

Therefore, E[Y |do(x′)] = E[Y |X = x′].

Strata of S commonly contain many variables, some of which may be continuous, making stratification

based on S impractical. As a result, we rely either on the regression model E[Y |X ′, S] or use propensity

score to estimate the causal effects. Naturally, if we were to estimate the average effect of X on Y of
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the experimental DAG using the regression mechanism, assuming fY has a linear structural form and the

exogenous variable UY = ε, then:

E[Y |do(x′)] = E[fY (x
′, Z, UY )]

= E[αx′ + βTZ + ε]

∂
∂x′E[Y |do(x′)] = α.

According to the aforementioned expression, the direct causal effect ofX on Y can be deduced from coefficient

regression, βY X|Z .

This derivation illustrates how the causal assumptions embedded in the classical loss cost framework

can be used to predict post-intervention distributions from the pre-intervention distributions, which further

permits the use of a structural Equation (3.7.5) to expand the loss cost framework. When a claim is

reported by an insured, an insurer typically sets aside a certain amount known as initial incurred. The

final compensation will obviously be dependent not only on the extent of the damage but also on the initial

amount incurred and the level of inflation during the period of compensation. As part of the causal analysis

process, the aim is to determine the impact of the insurance company’s initial incurred expenses on the

final compensation granted to the insured. Specifically, the inflation assessment, Z, determines the insurer’s

provisioning of the initial incurred cost, X, which in turn impacts the final compensation, Y . Based on the

same methodology, we propose an extended loss model in which X represents pure severity (i.e., an average

loss per claim without inflation influence), Z represents claim inflation, and Y represents loss severity (i.e.,

the nominal value of the average loss adjusted for inflation).

Referring to the structural Equation (3.7.5), the general equation of the extended loss model is as follows:

µµµ(s) =



µ
(s)
1

µ
(s)
2

...

µ
(s)
m



=



E[S
(b)
1 | ZZZ1] (E[Ir1 |WWW 1])

E[S
(b)
2 | ZZZ2] (E[Ir2 |WWW 2])

...

E[S
(b)
m | ZZZm] (E[Irm |WWWm])


, where

(3.7.6)
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µ
(s)
m : mean of actual severity per mth coverage,

S
(b)
m : base severity per mth coverage,

E[Irm |WWWm]: smoothed expected severity deflator (superimposed inflation) per mth coverage,

ZZZm: a set of categorical and continuous covariates per mth coverage for base severity modelling, and

WWWm: covariates of economic indices per mth coverage.

The multiplication of two expected random variables, base severity, and severity deflator, in Equation

(3.7.6) produces the actual severity estimator, µ
(s)
m . The comparison between classical structure and revised

pure premium decomposition (a.k.a, extended loss cost model) is depicted in the DAG in Figure 3.7.2:
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Figure 3.7.2: DAG depicting pure premium variable in relation to frequency and severity variables and
comparing them with that of the classical and revised loss cost models in multiperil settings. Note.
Modified from sources: Guharay et al. [40], Bellini [8], and Jespersen [50].

The recalibration of premium rates will require a full re-estimation of all parameters, βββ in the classical

loss cost structure. However, under the revised structure only the inflation index changes, while the base

severity estimates remain unaffected when neither the claim management process nor portfolio structure

is altered. The extended approach is intended to differentiate average severity estimates between calendar

years. Assume two single-peril policies x and y with average base severity, µ
(b)
x > µ

(b)
y . When the loss model

is fully re-estimated based on the classical approach, we have a revised average severity µ
(s)
x ⪋ µ

(s)
y , with

the relative severity between calendar years may shift in any direction depending on additional(or absent)

association signals in the data. However, when updating the inflation component under the revised structure,

the average severity changes proportionally, µ
(s)
x = (E[Ir]) · µ(b)

x > (E[Ir]) · µ(b)
y = µ

(s)
y for some scaling

constant (E[Ir]) > 0. So, the relative average claim severity between calendar years remains alike. In Section

3.10, we present the details of estimating inflation using the loss reserve triangle.

144



3.7.3 Simulation Study

The pure premium simulation study was carried out to ascertain how well the classical frequency severity

structure and the extended loss cost model can predict the pure cost in the presence of claim inflation.

This subsection presents a detailed analysis of the relative bias of a classical model in estimating mean pure

premium based on some widely used rating factors, including total insured value, property attributes, and

insured historical experiences. We ran 100 simulations, each with 252 monthly loss samples from the year

2000 to 2020, using a combination of parametric and nonlinear structural models. To assess the model’s

performance, we applied a 13-fold time series cross-validation on a rolling window basis 4. In each run set,

the window parameter for sequential cross-validation was set to 228-time points, with a forecast horizon of

12 time points. Additionally, we investigate the simulation setting in a multi-peril insurance program that

bundles personal home and automobile coverage. We assume that the loss incidents from home and auto

coverages are independent of each other. The true coefficient parameter values for each loss random variable

are referenced from P.Pecora, and M.Dobring [75], Wong [94], the real economy blog [70], and insurance

research council [22].

(i) Severity Deflator

The It represents claim inflation (in percentage), with each home and auto coverage modelled

independently using semiparametric GAM regression based on its own individual predictor variables:

It =


Normal(µt , 0.018), if home coverage,

Normal(νt , 0.01), if auto coverage.

(3.7.7)

µt = s1(x1t) + s2(x2t) + s3(t) + γ1 x3t + εt, where

x1t: social inflation rate (in percentage),

x2t: growth of property repair and replacement cost rate (in percentage),

t: time period in months from the year 2000 till 2020,

x3t: climate disaster destruction count (i.e., hailstorm, fire or flood),

γ1: parametric coefficient of x3t variable. It true value, γ1 = 0.009,

si: cubic spline function. The knots are determined using sample quantiles at 25%, 50%, and 75%.

4The rolling window approach involves using an initial training window along with the prediction horizon, such that
the initial window used for training grows by one observation time unit each round until the training and forecast
window captures the entire series.
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The term si
5 is defined as:

si =

K+d+1∑
k=1

βik bik(x), for i = 1, 2, and 3. (3.7.8)

The coefficient parameters of this spline function:

βik =


0.13 0.2 0.08 0.2 0.15 0.34 0.65

0.1 0.3 0.07 0.25 0.35 0.4 0.6

0.1 0.25 0.12 0.1 0.15 0.25 0.55


εt: error variable follows Normal(0.05 , 0.01) distribution.

νt = s1(z1t) + s2(t) + εt, where

z1t: vehicle parts, and maintenance inflation rate (in percentage),

t: time period in months from the year 2000 till 2020,

si: cubic spline function and its coefficient parameters are as follows:

βik =

0.35 0.08 0.15 0.25 0.15 0.2 0.75

0.07 0.21 0.18 0.1 0.15 0.26 0.38


εt: error variable follows Normal(0.03 , 0.01) distribution.

(ii) Base Severity

S
(b)
t denotes base severity and both home and auto coverage are separately modelled by a

semiparametric GAM regression model:

S
(b)
t =


Gamma(µ

(b)
t , 0.1), if home coverage,

Gamma(ν
(b)
t , 0.16), if auto coverage.

(3.7.9)

ln(µ
(b)
t ) = −s1(x1t) + s2(x2t) + s3(t) + γ1 x3t + γ2 x4t + γ3 x5t + εt, where

x1t: log of total insured value (in dollar value),

x2t: property age,

t: time period in months from the year 2000 till 2020,

x3t: property loss count resulted from severe weather event,

5see, Section 3.8.
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x4t: property risk location. It is a categorical variable with 3 levels:

x4t =


1 = Alberta

2 = British Columbia. Assigned as the reference class.

3 = Ontario

x5t: type of loss. It is a categorical variable with 2 levels:

x5t =


1 = Water or F lood

2 = Other. Assigned as the reference class.

si: cubic spline with knots determined using sample quantile at 25%, 50%, and 75%. The coefficient

parameters of the spline function:

βik =


0.3 0.13 −0.1 0.19 0.1 0.3 0.25

0.3 0.18 0.2 0.12 0.15 0.4 0.45

0.1 −0.05 0.13 0.15 0.06 0.17 0.2


γ1: parametric coefficient of x3t. The true value, γ1 = 0.0008.

γ2: parametric coefficient of x4t. The true value,

γ2 =


1.7, if x4t = Alberta

0.9, if x4t = Ontario

γ3: parametric coefficient of x5t. The true value, γ3 = 0.8, if x5t = Water or F lood.

εt: error variable follows Gamma(µ=0.3 , σ2=0.1) distribution.

ln(ν
(b)
t ) = s1(y1t) + s2(y2t) + s3(t) + γ1 y3t + γ2 y4t + εt, where

y1t: driver’s age,

y2t: log of total insured value (in dollar value),

t: time period in months from the year 2000 till 2020,

y3t: years of driving experience,

147



y4t: vehicle type. It is a categorical variable with 3 levels:

y4t =


1 = Sports

2 = SUV

3 = Sedan. Assigned as the reference class.

si: cubic spline and its coefficient parameter:

βik =


0.07 0.04 0.16 0.1 0.17 0.12 0.18

0.12 0.05 0.15 −0.06 0.11 0.15 0.17

0.17 −0.07 0.1 0.13 0.06 0.17 0.12


γ1: parametric coefficient of y3t. The true value, γ1 = −0.35.

γ2: parametric coefficient of y4t. The true value,

γ2 =


0.1, if y4t = Sports

0.05, if y4t = SUV

εt: error variable follows Gamma(µ=0.15 , σ2=0.05) distribution.

(iii) Loss Count

Yt denotes loss count random variable conditional on taking positive values 6, and each coverage, auto,

and home, is separately modelled using parametric GAM regression

Yt =


zero− truncated Poisson(λt), if home coverage,

zero− truncated Poisson(ϑt), if auto coverage.

(3.7.10)

ln(λt) = γ1 x1t + γ2 x2t + γ3 x3t + offset(log(TIV )) + εt, where

x1t: property loss count resulted from severe weather event,

6Let fX(x) be untruncted Poisson distribution for x ∈ {0, 1, 2, . . .}. Then the zero-truncated of gX(x) is given by

gX(x) =
fX (x)

1− fX (0)
for x ∈ {0, 1, 2, . . .}.
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x2t: property risk location. It is a categorical variable with 3 levels:

x2t =


1 = Alberta

2 = British Columbia. Assigned as the reference class.

3 = Ontario

x3t: type of loss. It is a categorical variable with 2 levels:

x3t =


1 = Water or F lood

2 = Other. Assigned as the reference class.

γ1: parametric coefficient of x1t. The true value, γ1 = 0.0018.

γ2: parametric coefficient of x2t. The true value,

γ2 =


0.6, if x2t = Alberta

0.4, if x2t = Ontario

γ3: parametric coefficient of x3t. The true value, γ3 = 0.45, if x3t = Water or F lood.

εt: error variable follows zero-truncated Poisson(λ = 0.05) distribution.

ln(ϑt) = γ1 y1t + γ2 y2t + offset(log(TIV )) + εt, where

y1t: years of driving experience,

y2t: vehicle type. It is a categorical variable with 3 levels:

y2t =


1 = Sports

2 = SUV

3 = Sedan. Assigned as the reference class.

γ1: parametric coefficient of y1t. The true value, γ1 = −0.15.

γ2: parametric coefficient of y2t. The true value,

γ2 =


2.95, if y4t = Sports

1.35, if y4t = SUV
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εt: error variable follows zero-truncated Poisson(λ = 0.07) distribution.

The simulation study comparing classical and extended loss cost models was conducted with the

assumption that claim frequency and severity are independent. Moreover, we simulated the pure risk

premium under the assumption of a zero deductible. To accomplish this, we first simulate samples from the

extended loss cost structure, including base severity, severity deflator, and frequency. Then the severity

term with implicit inflation is derived according to the following equation:

St = S
(b)
t

t∏
j=1

(1 + (Ij/100)), for t = 1, 2, ... 252. where (3.7.11)

St: inflated severity random variable,

S
(b)
t : base severity random variable,

Ij : claim inflation random variable.

The R code for simulation is included in Appendix B.1. Figure 3.7.3 presents the average correlation plot of

the simulated dataset.

To arrive at an estimated pure premium, each of the claim components (i.e., base severity, severity

deflator, loss count, and severity random variable) is independently fitted to the GAM regression model as a

response variable. The penalized maximum likelihood method is used to estimate the regression parameters.

The best model with the smallest out-of-sample RMSE from cross-validation is used to assess the overall

estimated pure premium between the classical and extended loss cost structures.
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Figure 3.7.3: Pairwise scatter plots of average monthly loss components: base severity, severity deflator,
loss count, and severity attained from 100 independent replications.
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Simulation results

By using RMSE and relative RMSE 7 criteria, we assess the accuracy of the GAM approach in modeling

loss components. Table 3.7.1 reports the out-of-sample accuracy of the loss components for each coverage

modelled using semiparametric GAM.

Table 3.7.1: Out-of-sample relative RMSE results for each loss component over 100 iterations.

Coverage Loss Average Standard Relative RMSE
Type Components Deviation of Error Minimum Maximum Mean

Home

Severity Deflator 0.216 3.751% 11.672% 7.332%
Base Severity 0.238 5.827% 29.770% 13.359%
Loss Count 81.000 12.653% 82.638% 34.857%
Severity 13.490 6.327% 30.066% 14.578%

Auto

Severity Deflator 0.159 5.031% 17.047% 10.233%
Base Severity 54.872 18.954% 95.840% 47.402%
Loss Count 2.448 12.950% 185.980% 64.722%
Severity 574.675 21.211% 93.633% 45.458%

Each loss component performed better when modelled using GAM with a mean relative RMSE less than

75%, demonstrating GAM regression has relatively high explanatory power and predictability, particularly

when the dependent and predictor variables exhibit nonlinear relationships. In comparison to the base

severity variables, however, the average standard deviation of error of the severity variable is significantly

higher for both home and auto coverage. This result is anticipated. Given that the severity random variable

has implied claim inflation, regressing based on the risk attributes is insufficient to explain the remaining

unexplained variations that are induced by the inflation factor. As shown in Figure 3.7.4, the high variability

of the severity variable is presented as a histogram along with the estimated density of the out-of-sample

RMSE for each loss component.

7Relative RMSE% = RMSE
ȳ

× 100, with ȳ is the mean of loss components [6].
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Figure 3.7.4: Estimate of out-of-sample RMSE from GAM model fit using time series cross-validation for
each claim component.
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Examining the implications of the classical versus the extended model on pure premium estimates, as

well as assessing the predictive ability of the loss models, are crucial to the ratemaking framework and

estimation of unearned premium reserve allocation. The symmetric mean absolute percentage error

(sMAPE) 8, normalized root mean square error (NRMSE) 9, and root mean square percentage error

(RMSPE) 10 are calculated to assess the bias between the overall actual and estimated pure premiums

obtained from both classical and extended loss models. The results are summarized in Figure 3.7.5. The

effectiveness assessment of the classical and extended loss model are presented in Table 3.7.2. In addition,

we assessed the variation between the estimated pure premiums based on the two loss cost frameworks for

each coverage over the last 3 years, particularly when the inflation rate displays an exponential surge (see,

Figure 3.7.6).

Table 3.7.2: Empirical effectiveness assessment under two different loss cost estimates: classical model and
extended loss model. The mean, median, min, and max over 100 independent replications are summarized
in this table.

Statistics sMAPE NRMSE RMSPE Bias PP Mean

11

Relative Error

of PP SD 12

Classical Pure Premium Structure

Mean 24.4538 0.4691 4.0602 -0.0076 -0.2235

Min 20.3930 0.2760 2.9480 -0.0135 -0.4550

Median 24.4265 0.4615 4.0025 -0.0081 -0.2390

Max 31.0930 0.7490 5.8040 0.0017 0.2160

Revised Pure Premium Decomposition Structure

Mean 24.2764 0.4527 4.0581 -0.0069 -0.1903

Min 20.3680 0.2780 2.9420 -0.0129 -0.4330

Median 24.3180 0.4435 3.9830 -0.0073 -0.2095

Max 30.5570 0.7480 5.7940 0.0037 0.3190

8sMAPE = 100%
m

∑m
i=1

|Ei−Ai|
(|Ei|+|Ai|)

2

, where Ei: Estimate and Ai: Actual [20].

9NRMSE = RMSE
Mean(A)

, where RMSE = 2
√

1
n

∑n
i=1(Ai − Ei)2 [32].

10RMSPE =
2

√∑n
i=1(

|Ai−Ei|
|Ai|

)2

n
× 100% [17].

11Bias = ē − ō, where ē: estimated pure premium mean determined from fitted regression model, ō: actual pure premium
mean.

12RelativeErrorofSD = Se − So
So

, where Se: estimated pure premium SD, So: actual pure premium SD.
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Based on the results presented in Table 3.7.2 and Figures 3.7.5 to 3.7.6, we draw the following

conclusions:

(i) In Figure 3.7.5, the assessment points of classical and extended loss models occasionally overlap,

indicating a relatively small bias difference between the two loss models. However, it is reassuring to

learn that the extended model is slightly more likely to produce lower errors with at least 65% success

rates, as determined by counting the instances in which the revised model’s assessment metric is less

than the classical approach over 100 replications. Moreover, the average pure premium estimated by

the extended loss cost framework is consistently close to the actual average pure premium for both

home and auto coverage, as depicted in Figure 3.7.6. Since the significance of claim inflation on

pure premium estimates is only visible in the last three years, the variation differences of residual

estimates between the two frameworks are smaller. Likewise, the lower inflation rates in prior years

were dominated by the monetary value of the severity variable. This simulated analysis closely mirrors

the actual transition in claim costs experienced by the P & C insurance market [15].

(ii) The extended loss model demonstrates a smaller bias in the pure premium mean estimate that is closer

to zero when compared to the classical loss structure. Table 3.7.2 reveals, for example, that the average

bias of the mean pure premium is -0.0069, which is nine-tenths of the average bias of the classical model

(-0.0076). Also, the extended model yields a lower average relative error (ARE), confirming that the

estimates from the proposed model have a smaller variation and are relatively close to the overall true

pure premium.

(iii) In terms of relative percentage precision 13, the extended loss model outperformed the classical model

by 18.16%. Results show improved precision based on standard error for an overall pure premium

estimate when modelled using the revised pure premium decomposition approach. Although the

classical approach was less precise compared to the proposed model, it was still acceptable, with a

small trade-off in bias from using an extended approach. When the claim inflationary pressures are

moderate to low, the performance differences between both models are minimal.

The severity deflator variable simulated for home and auto coverage ranges from [0.57% , 4.72%] and [0.17%

, 3.37%], respectively mimicking industry trends. As a result, it is difficult to judge which of the classical and

extended loss models is superior because the estimation abilities of the classical and extended loss models

are compromised when inflation effects are moderate to low. However, based on the most recent 3 years of

13Relative Percentage Precision = 100[(Empirical SE of extended model
Empirical SE of classical model

)2 − 1], where

Empirical SE = 2
√

1
nsim−1

∑nsim
i=1 (θ̂i − θ̄)2, as such θ: estimand of true value, and θ̂i: estimated value of θ [37].
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estimated average pure premiums with claims inflation rates exceeding 2.6% for home coverage and 1.4% for

auto coverage, we found that the extended loss model produced slightly better estimation results with lower

prediction errors yielding relative percentage precision of 28.95%.
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(a) sMAPE comparison between classical and extended loss model. When compared to the classical structure, the extended
model has 75 out of 100 replications with lower sMAPE value.

(b) NRMSE comparison between classical and extended loss model. When compared to the classical structure, the extended model
has 76 out of 100 replications with lower NRMSE value

(c) RMSPE comparison between classical and extended loss model. When compared to the classical structure, the extended model has 66
out of 100 replications with lower RMSPE value

Figure 3.7.5: Error assessments between classical and extended loss model over 100 independent
replications
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Figure 3.7.6: Comparison of actual and estimated average pure premiums over 100 independent
replications for the last 3 years.

To demonstrate the classical model’s tendency to over- or under-estimate pure premium, we further

compared the predictive accuracy of the estimated average pure premium per unit exposure under two

alternative frameworks at the granularity of rating factors. These results are summarized in Table 3.7.3.
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Table 3.7.3: Empirical effectiveness assessment of two alternative pure premium modeling frameworks
based on rating factors and coverage type. The average estimator accuracy measures summarized below
are based on 100 independent replications.

Rating Factors Average Bias 14 Average Relative Error 15 Standard Error of Bias 16

Classical Loss Model: Home Coverage

TIV:

(90,000 , 300,000] -0.00163 0.06157 0.00037

(300,000 , 600,000] 0.02535 1.40774 0.00284

(600,000 , 900,000] 0.02872 3.05221 0.02418

Property age:

(0 , 20] -0.00088 0.05486 0.00033

(20 , 50] -0.00058 0.19099 0.00130

(50 , 80] 0.01345 0.54586 0.01247

Severe weather destruction count:

(0 , 500] 0.00224 0.16292 0.00024

(500 , 1000] -0.01061 0.06476 0.00039

(1,000 , 3,000] 0.01345 0.10831 0.00166

Risk location:

AB -0.00305 0.09681 0.00057

BC 0.00015 0.06452 0.00039

ON -0.00023 1.88872 0.00098

Loss type:

Water -0.00145 0.07703 0.00047

Other -0.00052 0.06888 0.00042

Classical Loss Model: Auto Coverage

TIV:

(10,000 , 100,000] -0.00964 0.57733 0.00100

(100,000 , 500,000] 0.00079 0.14435 0.00009

(500,000 , 800,000] 0.00567 2.33573 0.00080

Driver’s Age:

(30 , 40] -0.00020 0.29450 0.00020

(40 , 50] -0.00035 0.06803 0.00006

(50 , 80] -0.00120 0.32956 0.00056
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Table 3.7.3 – Continued from previous page

Rating Factors Average Bias Average Relative Error Standard Error of Bias

Years of Driving Experience:

(0 , 5] 0.00002 0.06584 0.00005

(5 , 10] -0.00299 0.09265 0.00009

(10 , 20] -0.00120 0.30263 0.00039

Vehicle Type:

SUV 0.00029 0.09895 0.00009

Sedan -0.00048 0.08769 0.00008

Sports -0.00101 0.62027 0.00013

Extended Loss Model: Home Coverage

TIV:

(90,000 , 300,000] -0.00093 0.05507 0.00034

(300,000 , 600,000] 0.02631 1.44148 0.00296

(600,000 , 900,000] 0.02919 3.09216 0.02462

Property age:

(0 , 20] -0.00017 0.05154 0.00032

(20 , 50] 0.00027 0.18866 0.00128

(50 , 80] 0.01383 0.56391 0.01246

Severe weather destruction count:

(0 , 500] 0.00228 0.16560 0.00024

(500 , 1000] -0.00764 0.06317 0.00038

(1,000 , 3,000] 0.01383 0.09449 0.00149

Risk location:

AB -0.00242 0.09103 0.00053

BC 0.00089 0.06626 0.00041

ON 0.00058 1.87258 0.00099

Loss type:

Water -0.00075 0.07534 0.00046

Other 0.00020 0.06570 0.00042
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Table 3.7.3 – Continued from previous page

Rating Factors Average Bias Average Relative Error Standard Error of Bias

Extended Loss Model: Auto Coverage

TIV:

(10,000 , 100,000] -0.00955 0.57236 0.00099

(100,000 , 500,000] 0.00088 0.15958 0.00010

(500,000 , 800,000] 0.00576 2.35557 0.00081

Driver’s Age:

(30 , 40] -0.00013 0.30281 0.00021

(40 , 50] -0.00026 0.06047 0.00005

(50 , 80] -0.00116 0.32752 0.00055

Years of Driving Experience:

(0 , 5] 0.00007 0.06727 0.00005

(5 , 10] -0.00279 0.08450 0.00009

(10 , 20] -0.00116 0.28664 0.00037

Vehicle Type:

SUV 0.00039 0.10447 0.00009

Sedan -0.00038 0.07913 0.00007

Sports -0.00095 0.61077 0.00012

Since the pure premium is determined on a per unit exposure basis, the decimal difference in the accuracy

measures between the two loss models is small. Compared to the classical framework, the extended model

has a significantly lower bias and relative error, with the absolute difference percentage ranging between

[0.85% , 12.8%] for home coverage and [0.62% , 11.1%] for auto coverage. In certain instances, however, the

two alternative frameworks produce mixed results, particularly with regard to the rating factor TIV at class

levels 2 and 3, in which the classical model shows a smaller relative error for both coverages. At a smaller

class sample size, the average bias and relative error were slightly lower in favour of the classical model.

When the class sample size is evenly distributed, rating factors such as property age, weather destruction

count, risk location, loss type, years of driving experience, driver’s age, and vehicle type are more favourable

14Average Bias = 1
nsim

∑nsim
i=1 (ēi − ōi), where ēi: estimated pure premium mean of ith replication, ōi: actual

pure premium mean ith replication.

15Average Relative Error = 1
nsim

∑nsim
i=1 | ēi − ōi

ōi
|.

16Standard Error (SE) of Bias =
2

√
1

(nsim−1)

∑nsim
i=1 (ēi − ōi)2

nsim
.
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to the extended model.

Nonetheless, the estimate of the standard error (SE) of bias of the average pure premium is of primary

interest in ensuring that the estimates are not over- or under-estimated from the actual. The SE of average

pure premium estimates resulting from the extended loss technique modelled over a 21-year sample period

for both coverages is negligible at a scale of 1 × 10−4 and unlikely to have a major practical influence on

pricing. Despite the fact that the average pure premium estimates in Table 3.7.3 appear to be compromised

by a very small bias when examined through two different loss frameworks, the SE of bias varies significantly

as the inflation rate rises over the last three years (see, Figure 3.7.7). The proposed model has clearly

outperformed the classical one, especially in cases where claim inflation consistently rises over time. The

proposed model demonstrates superior efficacy, emphasizing its potential value in modeling claim inflation

and base severity separately. This underscores the potential importance of the framework in offering accurate

premium rates through a tailor-made predictive model that factors in each loss component distribution and

its association with covariates. By decomposing the parameter estimation based on each loss component per

coverage, insurers can gain a deeper insight into the true costs of loss and make more informed decisions

about premium rate calibration, allocation of unearned premium reserves, and underwriting management.
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Figure 3.7.7: Comparison of the standard error of bias between classical and extended loss model over 100 replications for the last 3 years by rating
factor and coverage.



To understand the potential differences between the two alternatives’ loss cost frameworks, we estimated

the overall pure premium under three different average inflation spans, and the corresponding statistical

accuracy estimators are presented in Table 3.7.4. Figure 3.7.8 illustrates the fitted densities of the overall

pure premium over 100 iterations for the last 12 months of 2020, comparing the actual to the classical, and

extended loss cost frameworks.

(i) The proposed framework displays a notable variation in the density distribution, with a gradual shift

towards actual simulated results as the trend of claim inflation increases over time (see, Figure 3.7.8).

Further, the results below indicate that the extended framework yields a slightly more accurate pure

premium estimate by consistently having a greater coverage probability of encompassing the 99th

percentile of the simulated sampling distribution:

Months 1 2 3 4 5 6 7 8 9 10 11 12

Extended loss cost framework (%) 23 24 35 25 26 20 19 20 18 16 25 25

Classical loss cost framework (%) 16 13 29 19 19 11 9 13 8 14 17 12

(ii) This simulation study emphasizes the significance of modelling the claim inflation variable separately

from the severity loss components, particularly in light of the increasing trend in inflation over time.

Table 3.7.4 confirms this, as the absolute difference in the accuracy assessment becomes more significant

with the rise of average inflation’s lower bound.

Table 3.7.4: Comparison of accuracy assessment of overall pure premium (PP) estimates over three
different average inflation spans.

Average Inflation 17
Average Bias Average Relative Error Standard Error of Bias

PP Mean PP SD PP Mean PP SD PP Mean PP SD

Pure Premium Estimated From Classical Loss Cost Model

≥ 0.58% -0.0012 -0.0052 0.1120 0.3982 0.0006 0.0005

≥ 1.13% -0.0203 -0.0152 0.0972 0.3443 0.0043 0.0027

≥ 1.57% -0.0372 -0.0150 0.1491 0.2390 0.0117 0.0050

Pure Premium Estimated From Extended Loss Cost Model

≥ 0.58% -0.0004 -0.0051 0.1080 0.3999 0.0004 0.0005

≥ 1.13% -0.0140 -0.0147 0.0694 0.3377 0.0030 0.0026

≥ 1.57% -0.0234 -0.0137 0.0940 0.2256 0.0076 0.0047

17”Average Inflation of [0.58% , 3.73%]” is subject to 21 years of simulated losses, ”Average Inflation of [1.13% , 3.73%]” is
subject to the last 3 years of simulated losses, ”Average Inflation of [1.57% , 3.73%]” represents accuracy assessment
based on the last 12 months of simulated losses.
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Figure 3.7.8: Ridge plot of two alternative frameworks. The plot shows density estimates of average pure
premium over 100 replications for the last 12 months of the year 2020.
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Figure 3.7.9: Comparison of the average pure premium by average inflation rate for two alternative
frameworks over the last 3 years.

The simulation analysis concludes by showing that the extended loss cost framework improves estimation

efficiency, especially when losses are subject to rising inflation trends, thus producing a favourable response

to RQ1 (see, Figure 3.7.9).
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3.8 Semiparametric Generalized Additive Model

Nonparametric regression relaxes the conventional assumption of linearity and normality, as well as allows

visual judgment to uncover the structural behaviour of the response-predictor relationship. Unfortunately,

these benefits are sometimes accompanied by drawbacks, where many nonparametric regressions do not

perform well when the number of covariates is large, and, in such instances, it requires a large dataset to

mitigate the curse of dimensionality. Another pitfall of nonparametric regression is the difficulty of

interpreting their results, and the relationship between response and covariates is agnostic in terms of

functional form. To overcome these downsides, the proposed model by Hastie and Tibshirani [44], the

Generalized Additive Model (GAM), offers a desirable alternative where it supports the use of

multidimensional data and provides the ability to fit nonlinear associations while retaining the

interpretability advantages of the linear fit, GLM.

GAM assumes the dependency of the mean response variable on additive predictors through a monotonic

nonlinear link function described by a distribution member in the exponential family. Although the GAM

structure closely represents the behaviour of data, similar to the nonparametric approach, the probability

distribution of the response variable needs to be predetermined prior to model fitting. In this state, GAM

is more aptly referred to as the semiparametric model.

For a set of independent observations, j = 1, . . . , n, let the yj denote a univariate response variable

and suppose a set of covariates, which can be split into n × p matrix, Z =


z11 . . . z1p
...

. . .
...

zn1 . . . znp

 of covariates

modelled with respect to parametric, and n× q matrix, X =


x11 . . . x1q

...
. . .

...

xn1 . . . xnq

 of the covariates modelled

nonparametrically. In the absence of interaction effects among covariates, the general form of semiparametric

GAM is defined by:

yj = zzzjΥΥΥ +

q∑
l=1

sl(xjl) + εj ,

g{E[yj | zzzj , xxxj ]} = g(µj) = ηj = zzzjΥΥΥ +

q∑
l=1

sl(xjl), where (3.8.1)

zzzj : jth row from predictor matrix ZZZ. zzzj = [zj1, zj2, . . . , zjp] corresponding to the parametric component

including the intercept.

ΥΥΥ: unknown parameter p× 1 vector, [Υ1,Υ2, . . . , Υp]
T of parametric fit.
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sl(·): set of univariate smoothers {l = 1, . . . , q} for covariate XXX to be estimated nonparametrically, where

x′
jls are continuous covariates, that are deemed to have an effect on mean yj .

εj : independent random errors of (ZZZ,XXX) with E[εj ] = 0 and var(εj) = σ2.

g(·): monotonic link function, that transforms the mean of the distribution function to linear prediction. It

plays a vital role in addressing the problems of the linear probability model (i.e., discards the unbounded

predicted probability that may have nonsensical values less than 0 or greater than 1).

The expression in Equation (3.8.1) excludes interaction terms among covariates, however, it should be

noted that the interaction effect among two or more covariates can be contained in a single smoothing term

(i.e., two-term interaction of variables x∗l and x∗l+1, s(x∗l , x∗l+1)). One should consider the increased

variance that is likely to arise when smoothing over multiple interaction effects. The tolerance of variance

increment and ultimate model performance depends on the size of the data used. However, it is recommended

that no more than three covariates should be incorporated in a single smooth term.

The zzzjΥΥΥ in expression (3.8.1) belongs to a parametric component, as the finite number of parameters

are known upfront. On the other hand,
∑q

l=1 sl(xjl) belongs to the nonparametric component and so, the

number of parameters (effective degree of freedom) can grow with the sample size. The smoothed function,

sl(·) does not have a formulaic way of describing the covariates-response relationship and it is often done

graphically. One popular framework for creating the nonlinearity term, sl(·) is through the spline function.

Although there are numerous smoother functions, this thesis focuses predominantly on the natural cubic

regression spline, which is further discussed in the subsection below.

3.8.1 Natural Cubic Regression Spline

Let function, fl=1,..,m ∈ Cp(ζl−1 , ζl), where Cp refers to p-times continuously differentiable, as such p ∈

N ∪ {∞} and −∞ ≤ ζ 0 < ζ 1 < . . . < ζ m ≤ ∞. The term, fl signifies a smooth function. Mathematically,

a smooth function is a property measured by continuous derivatives up to some desired order, say p over

some domain, (ζ l−1 , ζl).

A piecewise smooth function of f : (ζ0 , ζm) → R is defined as f(a) := fl(a) for a ∈ (ζl−1 , ζl). The

term, fl(a) is also known as the spline curve. Splines are applied to mathematically reproduce flexible shapes

that develop to form a single smooth curve through a piecewise polynomial curve (i.e., joins of two or more

polynomial curves). Importantly, the adjacent functional polynomial pieces join each other at the interval

endpoints known as knots (or breakpoints). In other words, a spline models the response, Y as a separate

low-degree polynomial defined on various intervals of the covariate, X as opposed to fitting a high-degree
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polynomial over the entire range of X. These intervals are non-overlapping and collectively cover the whole

range of X. So, the type of polynomial, order of polynomial and placement of knots what defines the spline

functions.

Spline curves of any given degree are expressed as a linear combination of basis functions:

s(x) =

K+d+1∑
k=1

βk bk(x), where (3.8.2)

bk: k
th basis functions of covariate x,

βk: associated spline coefficients

d: polynomial of degree

k: number of knots

Basis functions used in Equation (3.8.2) comprises of series of function that has local support and built-in

cross-segment continuity specified by the knot set. Although many different configurations are feasible, a

popular choice of the spline is the cubic spline. The popularity of cubic spline is mainly due to its smoothest

among all functions in the sense that it has a minimal integrated squared second derivative, which is easily

fitted using linear least squares regression.

The spline of polynomial degree 3 with continuity and slope constraints at each knot, and additional

constraint of linearity at the tails of boundary knots, typically before the first and after the last knot embodies

a natural cubic spline (also known as restricted cubic spline). The extra linearity constraint makes the end

of boundary distribution less erratic and more reliable than linear splines (unrestricted cubic splines). The

strength of this function is that segmented lines represent a free-form line with analytical parameters. The

number of breakpoints is reduced, and the regression model absorbs input error, particularly in the expression

of straight-line points.

The natural cubic spline, with K ordered interior knots of κ1 < . . . < κK(and a linearity constraint for

values (−∞, κ1] and [κK ,∞)) can be written as (see, e.g., Kvarving [66]):

s(x) = β0 + β1x+

K−2∑
i=1

ϑi[(x− κi)
3
+ −

(x− κK−1)
3
+[κK − κi]

[κK − κK−1]
+

(x− κK)3+[κK−1 − κi]

[κK − κK−1]
], where (3.8.3)

enforcing boundary constraints of the following:

(i) β2 = β3 = 0

(ii)
∑K

i=1 ϑi = 0

(iii)
∑K

i=1 ϑi · κi = 0
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Here, β0, β1, ϑi are the coefficients of corresponding basis function, and

( · )+ denotes the positive part of the function, which can be restated as ( x− κi )+ = max (0 , (x− κi)).

With the additional boundary conditions, it saves 4 degrees of freedom (2 at each boundary:

β2, β3, ϑK−1, and ϑK ) and reduces the variance at the expense of higher bias. In the case of a natural 3

degrees spline the model degrees of freedom are:

(4)(K − 1)︸ ︷︷ ︸
interior neighbourhood

+ (2)(2)︸ ︷︷ ︸
exterior neighbourhood

− (3K)︸ ︷︷ ︸
continuity constraints

= K

This implies that the model degrees of freedom for natural cubic splines depend only on the number of

knots. Thus, the inclusion of cubic terms with continuity constraints implies natural cubic spline function

can be more parsimonious for complex non-linear data trends than a linear spline with many knots. The

natural cubic spline function with an annual periodic boundary condition and its corresponding parameters

are depicted in Figure 3.8.1, as specified in Equation (3.8.3).

Figure 3.8.1: Illustration of the natural cubic spline with annual periodic boundary. Let x is the time, s(x)
is the spline function for x > X0 and x < XK . The cubic coefficients of the spline function s(x) to be 0 for
x > κK and x < κ1, as such κ1 and κK are the location of the first knot and the last knot, respectively.
In compliance with boundary constraint conditions, the functions s(X0) (between X0 and κ1) and s(XK)
(between κK and XK) are linear with the same slope.

Due to the stochastic nature of the data, the fitted function is not nearly as firmly constrained as

with an interpolating spline. For such cases, an optimization routine is required rather than just a simple

solution of a linear system of equations as in the case of conventional cubic spline interpolation. In this

thesis, we apply the optimization procedure by minimizing a criterion that depends on a least squares-like

term plus a term penalizing roughness (details are presented in Subsection 3.8.3). While the critique of
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nonparametric regression as being prone to overfitting is perhaps overstated, the natural cubic regression

spline is a data-independent curve fitting that is designed to directly address this criticism.

3.8.2 Number and Spacing of Knots

The flexibility of the regression spline is determined by the number and position of the knot points. It is

obvious from Equation (3.8.3), that for a natural cubic spline the number of knots, K are more important

than their positions, κ. According to Chen [18] a common strategy is to first select the total number of

knots, K, and then allocate the knots in an equally spaced way via a visual inspection approach:

(i) For a small sample size, a reasonable default is to choose the knots to ensure that there is a fixed number

of unique observations, say 4-5 between each knot. On a large dataset the acceptable maximum number

of knots in total, say 20-40.

(ii) The equidistant space knots approach is achieved by computing an average distance between points,

δ = max (x)−min(x)
K−1 . The knots are then defined by, κl = min (x) + δ(l− 1), for l = 1, . . . , K, where K

is maximum number of knots.

(iii) Fixed selection method using sample quantile, where the maximum number of knots defined by

min( 14n , 35) (see, Ruppert et al. [80]).

Although the above rudimentary approaches work well in most instances, there are times one needs a more

sophisticated algorithm that uses a data sample to determine K such as the full search algorithm proposed

by Ruppert et al. [80]. The algorithm is an iterative process based on a generalized cross-validation (GCV)

selection criterion. As the numerical dataset used in this chapter is small to medium-sized, we utilize the

quantile approach in determining the maximum knots.

For the smoothing spline model, neither the precise number of knots, K nor the accurate position of

knots, κ plays a crucial role in determining model flexibility. The smoothing parameter, λ from penalized

log-likelihood estimation procedure has a great deal of influence on model fit and controls the amount of

spline roughness applied to a given dataset.
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3.8.3 Model Estimation

Traditionally, GAMs with smoothing spline(s) are fitted through an iterative estimation procedure based

on a backfitting algorithm. Although backfitting iterative procedure works well in practice, a more direct

derivation procedure is desirable. On that note, we focus on the penalized least square (PLS) method. The

PLS estimators minimize the residual sum of squares (RSS) plus the penalty term, intending to provide a

balance fitting of the data closely, as well as avoid excessive roughness or rapid variation. The estimates

are obtained by regression on partial residuals, following Speckman [84]. Speckman [84] provided evidence

that the rates of the estimates for linear and nonlinear parts could not be optimised without controlling the

correlation between the explanatory variable of the linear part and the functional part of the model.

Consider the case in which the likelihood depends on both parametric component and non-parametric

smooth functions of predictor variables, as such the smooth function variable is represented by a basis

expansion. Thus, in matrix vector notation the semiparametric model can be rewritten as:

Y = ZΥ+ S + ε, (3.8.4)

The log-likelihood is assumed to satisfy the Fisher regularity conditions and has bounded continuous

derivatives of order 1 and 2 with respect to the parameters (i.e., with respect to sl(x) for any fixed set of x

in the case of a smooth function, sl).

To avoid overfitting, the additive model estimates parameters Υ and S by minimizing the penalized

likelihood function:

L(Υ, S) = ∥Y − ZΥ − S∥2 + λSTΛS

= (Y − ZΥ − S)T (Y − ZΥ − S) + λSTΛS, where

(3.8.5)

Λ is known as a penalty matrix, which takes a symmetric non-negative definite form. By manipulating the

singular value decomposition of a natural spline basis function, we can express the term Λ in terms of a

smoother matrix, Aλ:

Aλ = B(BTB + λΨ)−1BT , where (3.8.6)

B = [blk] is a matrix whose (l, k) element is blk = bk(xl), the kth basis function evaluated at lth covariate

xl. bk(xl) is K-dimensional set of basis functions representing a family of the natural cubic spline.

Ψ = [ωlk] is a matrix whose (l, k) element is ωlk =
∫
B′′B′′dxl, as such B′′ is the second derivative of all

the basis functions defined in Equation (3.8.3) evaluated with respect to covariate xl.

Aλ = B(BTB + λBT (BT )
−1

ΨB−1B)−1BT

Aλ = B(BT (I + λ(BT )
−1

ΨB−1)B)−1BT

Aλ = BB−1(I + λ(BT )
−1

ΨB−1)(BT )−1BT

Aλ = (I + λ(BT )
−1

ΨB−1)
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∴ Aλ = (I + λΛ)
−1

, where Λ = (BT )
−1

ΨB−1

Note, Λ depends only on the x’s. Whilst, a smoother matrix, Aλ depends on λ and x’s but not on the y’s.

Thus, this smoother matrix is known as linear smoother, where applies a linear transformation to the

target of interest, y. The rewritten expression above is known as the Reinsch [27] form of Aλ. The Reinsch

form expression permits better understanding when the tuning parameter, λ > 0 varies. As we increase λ,

we are shrinking away from the wiggler basis functions.

GAM estimates Υ and S by optimizing the objective function (3.8.5):

∂L(Υ, S)

∂Υ
= 2[− ZT (Y − ZΥ) + ZTS] (3.8.7)

∂L(Υ, S)

∂S
= 2[− (Y − ZΥ) + S + λΛS] (3.8.8)

Solving for S produces

∂L(Υ, S)
∂S = 0

− (Y − ZΥ) + S(I + λΛ) = 0

Ŝ = (I + λΛ)
−1

(Y − ZΥ)

∴ Ŝ = Aλ(Y − ZΥ)

Plugging Ŝ into Equation (3.8.7) produces

∂L(Υ, S)
∂Υ = 0

− ZT (Y − ZΥ) + ZTAλ(Y − ZΥ) = 0

− ZTY + ZTZΥ + ZTAλY − ZTAλZΥ = 0

ZTZΥ− ZTAλZΥ− ZTY + ZTAλY = 0

ZT (ZΥ− AλZΥ)− ZT (Y −AλY ) = 0

[ZT (I − Aλ)ZΥ] − [ZT (I −Aλ)Y ] = 0

[ZT (I − Aλ)Z]Υ = ZT (I −Aλ)Y

Υ̂ = [ZT (I − Aλ)Z]−1ZT (I −Aλ)Y

The sparsity of the estimates is controlled by tuning parameter, λ, which is usually chosen by data

driven method using prediction error. We measure the prediction error for different models as λ varies and

opt for the optimal λ, that has minimal prediction error via cross-validation or generalized cross-validation

(GCV).
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3.9 Generalized Additive Model with Seasonal Autoregressive

Term

When point processes occur relatively frequent, they can be converted to an equally spaced time series. In

contrast, claim frequency administered by property and casualty insurance programs, which is closely related

to economic series, is generally modelled using an unevenly spaced time series method, such as GAM. The

GAM framework allows frequency trends to be modelled through a spline function with respect to time, and

splines can also be used to account for possible confounding factors, such as technological advancement and

localized crime rates. However, a thorough trend analysis should not only consider the series of claims events

ordered in time but also account for the potential correlation of adjacent points in time (see, Boucher et al.

[14] for an overview of other alternatives used to model loss count with time dependence). In risk theory, the

response variable uses the counting process to model claim frequency, demonstrating the significant presence

of correlation in the claim count built over time. Additionally, the significance of climate change is considered

to be an instrumental risk factor in loss modeling due to its direct effects on atmospheric perils and indirect

impact on weather-driven perils such as flooding and wildfires (see, Jessup et al. [51] for a detailed discussion

of the importance of considering the seasonality component in loss modeling).

Therefore, modelling the claim occurrence of homeowners’ coverage places a strong emphasis on changes

in precipitation patterns throughout the annual cycle. When modelling frequency trends, it is becoming

increasingly important to account for seasonal variation and autocorrelation of the response variable. This

is because the seasonality usually causes the series to be non-stationary, as the average loss count values at

some particular times within the seasonal span (for example, yearly or quarterly) may be different than the

average loss count at other times.

The presence of autocorrelation, on the other hand, has a detrimental impact on GAM estimation

outcomes because the basic property of the additive model requires each response observation to be

independently distributed. The standard errors of the regression coefficients are likely to be

underestimated when this assumption is violated. Another statistical issue often encountered in claim

frequency modelled by Poisson regression is the overdispersion problem. A common approach to adjusting

for overdispersion is to specify a dispersion parameter, Φ in the estimation procedure. However, in the

presence of autocorrelation, it further inflates the variance of the estimate by Φ and leaves the estimate

unchanged, resulting in a poor confidence interval estimation of the trend projection. Even if the

projection trend with an autocorrelation error produces unbiased estimates, its prediction intervals may be

wider than in the case of stationary loss series.
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Contrary to adding a dispersion parameter, individual overdispersion could be accommodated by the

serial correlation among response observations in an autoregressive (AR) context. Towards this direction,

we consider embedding seasonal autoregressive (SAR) structure to generalized additive model (GAMSAR)

and thus, capture the intertemporal dependency (i.e., trends and seasonal effects), as well the nonlinear

response-covariates relationship. GAMSAR model provides two advantages over GAM, especially:

(i) Apart from being a probabilistic model as in GAM, it is a generalised time series model capable of

constructing temporal trends and periodic fluctuation across time.

(ii) Because the AR term describes the autocorrelation structure of observations, the Pearson residuals of

GAMSAR converge to white noise, yielding reliable estimation results.

An additive model in the context of time series can be expressed as conditional distribution of each

observation yt, for t = 1, .., n given the previous information set Ft−1 = {ZZZ1, . . . ,ZZZt,XXX1} that contains

past observations of yt and present regressor vectors, Zt = (Zt1, . . . , Ztp) related linearly with the response

variable, whilst Xt = (Xt1, . . . , Xtq) related through some smooth function. Similar to GAM, the random

variable yt given past information, is assumed to be a sufficient statistic of the exponential family (EF),

yt|Ft−1 ∼ EF (µt).

The distributional parameter of conditional mean, µt = E[yt] is associated with the covariates via known

one-to-one monotonic and twice differentiable link function, g. Similar to Yang et al. [97] expression, the

GAMSAR model allows mth autoregressive terms to be included additively in the link predictor. However,

an additional term, h, is used to account for the length of the seasonal period.

g(µt) =

p∑
i=1

Zt,iΥi +

q∑
l=1

sl(Xt,l) +

m∑
j=1

cj [g(yt−jh)− {
p∑

i=1

Z(t−jh),iΥi +

q∑
l=1

sl(X(t−jh),l)}], where (3.9.1)∑p
i=1 Z(t−jh),iΥi: parametric component of categorical covariates,∑q
l=1 sl(Xt,l): spline smoothers of continuous covariates,

[g(yt−jh)− {
∑p

i=1 Z(t−jh),iΥi +
∑q

l=1 sl(X(t−jh),l)}]: seasonal autoregressive term, and

cj : seasonal autoregressive coefficients.

The last term in Equation (3.9.1) represents the seasonal autoregressive term comprised of a function of the

past values of yt, Zt, and Xt, which is an extended version following the work of Benjamin et al. [11] and

Yang et al. [97].

The order of m with seasonal period h is chosen based on residual autocorrelation as described below:

(i) Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots are good indicators

to determine the order of the model. Confidence intervals of an uncorrelated series are often considered
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as a criterion for selecting the orders. In the presence of a seasonality pattern, the autocorrelations

at the seasonal lags h, 2h, ...,mh, are nonzero, so the PACF plot exceeds the limit of CI at these

seasonal lags. The ACF plot, on the other hand, resembles a combination of damped sine functions

and exponential decay for these lags. This approach is used as a preliminary tactic to determine the

seasonal AR order in the empirical study.

(ii) Significant evaluation using p-value can also be considered as a benchmarking approach to determine

the order term. If the p-value of seasonal AR(m0 +1)h from GAMSAR(m0 +1)h is greater than 0.05,

whilst the p-value of seasonal AR(m0)h from GAMSAR(m0)h is less than 0.05, then GAMSAR(m0)h

considered to be an apt model fit.

3.9.1 Model Estimation

Before deriving the estimates of GAMSAR(m)h parameters, it is useful to define the partial likelihood with

respect to a nested sequence of conditioning histories. According to Fokianos [35],

Definition 3.5. Let Ft, t = 0, 1, . . . be an increasing sequence of σ − fields, F0 ⊂ F1 ⊂ F2, . . . , and let

Y1, Y2, . . . , be a sequence of random variables on some common probability space such that Yt is Ft

measurable. The density of Yt given Ft defined by ft(yt; θ), where θ ∈ Rp is a fixed parameter. The partial

likelihood function relative to θ,Ft and the data Y1, Y2, . . . , YN is given by product:

PL(θ; y1, . . . , yN ) =

N∏
t=1

ft(yt; θ) (3.9.2)

The general form of a GAMSAR parameter vector is specified as:

θθθ = (Υ1, . . . ,Υp, (β
(1)
k )K+d+1

k=1 , . . . , (β
(q)
k )K+d+1

k=1 , c1, .., cm)T , where

(Υ1, . . . , Υp): coefficients related to parametric components,

((β
(1)
k )K+d+1

k=1 , . . . , (β
(q)
k )K+d+1

k=1 ): spline coefficients of nonparametric components, and

(c1, . . . , cm): coefficients related to seasonal autoregressive term.

The jointly distributed time series {Zt, Xt, yt}, t = 1, . . . , n, where yt is the response variable and

{Zt, Xt} are time-dependent random covariates with parameter vector, θθθ that can be estimated by employing

the rules of conditional probability. Given the GAMSAR(m)h, the joint density of the observed time series,

{Zt, Xt, yt} can be expressed as a product sequence of conditional likelihoods, as such density the function,

f(yt|F t−1;θθθ) entirely based on the current response given past response and covariates information:

fθθθ(Z1, X1, y1, . . . , Zn, Xn, yn) = fθθθ(Z1, X1) [

n∏
t=2

fθθθ(Zt, Xt | dt)] [
n∏

t=1

fθθθ(yt | st)], where (3.9.3)
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dt = (y1, X1, Z1, . . . , yt−1, Zt−1, Xt−1), and

st = (y1, X1, Z1, . . . , yt−1, Zt−1, Xt−1, Zt, Xt)

The second term on the right-hand side of Equation (3.9.3) constitutes a partial likelihood according to Cox

[23], which is used for the GAMSAR(m)h model inference. There is also information about θθθ in the first

product, however, under reasonable conditions, the loss of information on the first product term is negligible.

So according to Definition 3.4, the simplified partial likelihood of GAMSAR(m)h:

PL(θθθ; y1, . . . , yn) =

n∏
t=1

fθθθ(yt|Ft−1) (3.9.4)

The partial likelihood in Equation (3.9.4) takes account only of what is known to the observer up to the

time of actual observation, and it does not require full knowledge of the joint distribution of response and

covariates. The Ft−1 is generated by past values of the response series and past and perhaps present values of

the covariates, meaning all that is known at time t−1 with the possibility of including {Zt, Xt} when known.

The anomaly of known {Zt, Xt} at t−1 occurs, for example, when they are deterministic, shifted processes or

when yt is a delayed output. An exemplary case in this thesis is the relationship between property attributes

such as age or geographical location of risk property, {Zt, Xt} the covariates, and number of losses, y the

response. The property age at a specific location of a bound policy is known at time t but the loss count by

demographic profile can only be determined at a later period as the claims get reported. In this particular

situation, we may include {Zt, Xt} in the past. Some desirable properties of the maximum partial likelihood

estimator including asymptotic normality, consistency, and efficiency have been proven by Wong [95].

The estimates of model parameters, θ̂θθ is attained via the maximum partial likelihood estimator (MPLE),

and the following expression is an extension form that is described in Fokianos [35]:

Sn(θθθ) = ∇ logPL(θθθ) = 0, where (3.9.5)

∇ = ( ∂
∂Υ0

, . . . , ∂
∂Υp

, ∂
∂β(1) , . . . ,

∂
∂β(q) ,

∂
∂c1

, . . . , ∂
∂cm

)

Additionally, the estimation of spline function, sl(Xtl) is simplified to the coefficients estimation of basis

functions, β(l). Since the spline curve of lth covariate is a linear combination of basis functions with respect

to its parameter vector β(l) = (β
(l)
1 , . . . , β

(l)
K+d+1) so, the spline functions are also considered as linear terms

from the perspective of computation.

The nonlinear system of equations in (3.9.5) can be solved numerically using an iterative algorithm,

such as the Newton-Raphson procedure. For our estimation problem, we shall consider using the numerical

technique proposed by Yang et al. [97] known as the modified Newton-Raphson method. The modified

Newton framework is expressed in the form of Fisher Scoring as follows:
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Definition 3.6. (Modified Newton-Raphson algorithm, (Yang [97]))

θθθi+1 = θθθi + Γ−1
∗ (θθθi)

∂ln(PL)

∂θθθ

∣∣∣∣
θθθ=θθθi

, where (3.9.6)

Γ(θθθ) = −∂2ln(PL)
∂θθθ∂θθθT is the observed information matrix, and

Γ−1
∗ (θθθi) is the modified version of inverse observed information matrix, Γ−1(θθθi) and is defined as:

Γ−1
∗ (θθθ) =


Γ−1(θθθ), if Γ(θθθ) is invertible

Pdiag((λ∗
1)

−1, . . . , (λ∗
(p+1)((K+d+1)q)m)−1) PT , if Γ(θθθ) is non− invertible,

(3.9.7)

where

P is an orthogonal matrix, that satisfies PTΓ(θθθ)P = diag(λ1, . . . λ(p+1)((K+d+1)q)m).

To ensures Γ−1
∗ (θθθ) is positive definite, the eigenvalues of Γ(θθθ) is pre-conditioned to let:

λ∗
j = max(λj , 0.01), j = 1, . . . , (p+ 1)((K + d+ 1)q)m.

The iteration continues until we achieve desired optimal parameter estimates, θ̂θθi+1 which is subject

to convergence condition | θ̂θθi+1 − θ̂θθi | ≤ ε, where ε is the desired tolerance level and is usually very small,

ε = 10−8. The R code procedure for estimation calculation is presented in Appendix B.2 as part of GAMSAR

function.
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3.9.2 Simulation Study for Frequency Trend

We propose using a generalized additive model with a seasonal autoregressive term for estimating the trend

of loss frequency. Resorting to a simulation study, this subsection examines the relative efficiency of GLM,

GAM, GAMAR, and GAMSAR in the presence of yearly seasonal variations in a loss count. For the purpose

of assessing loss count in temporal dependency conditions, we simulated monthly data over a twelve-year

span (2011-2022) by modifying the trend slope, seasonal amplitude, trough position, and noise parameters

that generate non-linear time series synthetic data. The parameter values were established using decomposed

results of the loss frequency based on actual policyholder losses from Canadian Insurtech brokers for personal

property insurance products, including owners occupied, renters, and landlords. While trend prediction is

our primary goal, we also examined the predicted spline function of the average loss frequency in link scale

for all of the various additive models along with comparing parameter estimates between GAMSAR and

other additive models. In contrast to the conventional Poisson linear regression framework, we examined the

influence of non-linear functional mappings on the loss count series data. The regression models were trained

on the first 10 years of data, and the subsequent two years’ series were used to evaluate the out-of-sample

prediction performance.

The synthetic time series data was generated by first simulating frequency samples based on digital

brokers’ claim files using a Gaussian mixture autoregressive model (MAR) of Wong and Li [93]. Then, using

the Poisson distribution, we execute 100 simulations with 144 monthly simulated loss frequency samples to

produce a loss count with trend and seasonality characteristics.

(i) Loss Frequency

{xt} is a process that assumes to follow a MAR with a cumulative distribution function, conditional

on past loss frequency information defined as:

F (xt | Ft−1) =
∑K

k=1 πkΦ(
xt−ϕk0−

∑pk
i=1 ϕkixt−i

σk
), where

Ft−1: sigma field generated by the process with all available information up to time t − 1. The past

values are based on 56 samples drawn from an irregular monthly univariate series of personal

property loss frequency data collected between March 2016 and December 2020.

K: total number of autoregressive components.

0 < πk < 1 , k = 1, . . . ,K: the proportions, specifying a discrete normal probability distribution.

Each πk is the unconditional probability of an observation to be generated by component k at any

given time t. Weights of mixing components, πk obtained from βk∑K
i=1 βi

, where β ∼ Uniform(0 , 1).

Φ(·): cumulative distribution function of the standard normal distribution.

ϕϕϕk = (ϕk1, . . . , ϕkpk
): vector of autoregressive parameters for the kth component, with ϕk0 being the
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shift/intercept. pk is the autoregressive order of component k.

σk > 0: scale parameter for the kth component.

The details of tuning a MAR model with target features for a specified period, T , and length, n for

the loss frequency time series are shown in Algorithm 7 below:

Table 3.9.1: Generation of time series with target features.

Algorithm 7: Tuning a MAR model with target features

1: Choose a target feature point, F̃FF in the feature space or let F̃FF represent the features that were extracted

from existing loss frequency series that one wants to match.

2: Find a parameter vector, Θ∗ that evolve a loss frequency series, XF̃FF with its feature vector, FFF as close as

possible to the target feature point F̃FF .

3: Generate a initial population of size Np for the parameter vector, Θ = {πk , ϕi}, k = 1, . . . ,K and i =

k0, . . . , kpk. The population is composed of a number of individual time series, each of which is evaluated by

a fitness function in step 4.

4: For each iteration, repeat the following procedure until convergence criteria, ε are met. The typical

criteria used is the maximum fitness function is at least −0.01.

(a) For each member of the current population, simulate a time series, j and calculate its feature vector,

FFF j .

(b) Calculate the fitness value for each member:

Fitness(j) = 1
c
||FFF j − F̃FF ||, where c is a scaling constant and || · || is the Euclidean distance measure for

the feature space.

(c) Produce the new generation based on crossover 18, mutation 19, and the survival of the fittest

mechanism in order to improve the average fitness of each generation.

5: From the final population, we opt for the instance that is closest to the target point (i.e., has the largest

fitness value) to be the newly generated time series for the corresponding target.

Kang et al. [55] pseudocode’s in Table 3.9.1 is based on a genetic algorithm, which starts from a

randomly chosen initial time series and uses a combination of selection, crossover, and, mutation to

evolve time series that project as close to the target points as possible. The new frequency time series

instance generation process described in Table 3.9.1 is implemented using the R package GRATIS

(see, Kang et al. [54]).

18Under a crossover process, the offspring time series are formed with the crossover probability by combining different
parts of the samples from their parental time series, which are partitioned by a random integer in the range of the time
series length.

19A mutation process alters the values of some samples in the parental time series randomly using the mutation
probability.
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We set the target feature point, F̃FF for the related decompose components to be (0.8, 0.8, 3.0, 15.0)

using the decomposition findings of loss frequency, which included the strength of trend and

seasonality as well as the spikiness of peak and trough.

(ii) Loss Count

The dependent variable loss count, Yt is assumed to follow Poisson distribution with mean, E(Yt) = µt

as such µt is modelled using a GAMSAR:

ln (µt) = ns(xt, 5) + c1(ln (y
∗
t−12)− ns(xt−12, 5)) + εt, where

y∗t−12i
20 = max(y, 0.5).

h = 12: annual (12-month) seasonal lag.

xt: monthly loss frequency simulated from 2011 to 2022 assuming MAR model.

ns(xt, 5) =
∑5

l=1 βlsl5(xt), where sl5 denotes the B-spline basis for the natural cubic spline.

The arbitrary coefficient parameters used in the design of this simulation study are as follows:

(β0, β1, β2, β3, β4, β5) = (0.8, 0.4, 0.36, 0.38, 0.25, 0.15) and c1 = 0.7

εt ∼ Normal(0, 0.2).

Simulation results

A simple linear regression model fitted to loss frequency to examine the temporal characteristics of the

synthetic data produced by the MAR model:

xt = t + εt, where

xt: simulated loss frequency.

t: time (monthly basis).

εt: error term with iid Gaussian random variables of zero mean and variance, σ2.

The ACF 21, PACF, and decomposition of the time series plot in Figure 3.9.1 show the presence of a

stochastic trend, autocorrelation at lags {1, 4, 6, 8} and seasonal variation at lag 12. The estimated sample

autocorrelation was determined using the Durbin-Watson test, and the significant serial correlation at lag

12 was verified using the Friedman Rank test. The results are given in Table 3.9.2.

20Any y values that are zero or negative are replaced by 0.5. We assume the claim count variable, y reported below the
standard deductible or denied claims are removed from trend analysis in order to reduce complexity.

21ACF and PACF statistics are calculated using Pearson residuals defined as:
Zt = ŷt− yt√

ŷt

181



Table 3.9.2: Temporal analysis of simulated loss frequency.

Friedman Rank test

Hypothesis test:

H0: Monthly proportions of yearly totals are the same for all years.

H1: There is seasonality in the data and at least two monthly proportions are not equal to each other.

Test statistics: 98.85 (p-value: 3.33× 10−16)

Conclusion: reject H0 and there is a significant presence of seasonal variations.

Durbin-Watson test

Estimated autocorrelation at lags, t = {1, 4, 6, 8, 12}:

ρt = {0.5787, 0.2306, 0.2517, 0.1639, 0.7416}

Hypothesis test:

H0: No correlation among residuals at lags t.

H1: Residuals are autocorrelated at lags t.

D-W statistics: {0.832, 1.463, 1.400, 1.554, 0.338} and its corresponding p-value: {0.0, 0.0, 0.0, 0.03, 0.0}

Conclusion: reject H0 and there is a significant presence of autocorrelation.

Figure 3.9.1: ACF and PACF of linear regression (right) and decomposition loss frequency (left).

To examine the presence of residual autocorrelation, the ACF and PACF of the first iteration sample

(see, Figure 3.9.2) were analyzed against various lag periods using 5 different trained regression equations,

as given below:

log(yt) =


β0 + β1 xt, if GLM

β0 + ns(xt, 5), if GAM, GAMAR(1), GAMAR(2), or GAMAR(1)12, where
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yt: monthly loss count at time, t = 1, . . . , 120.

xt: monthly loss frequency.

ns(·, 5): natural cubic spline basis function with 5 interior knots.

βi: regression coefficients, i = 0, 1.

The PACF plot of the first four fitted models (i.e., GLM, GAM, GAMAR(1), and GAMAR(2)) reveals an

obvious spike at lag 12, indicating a significant 12-month seasonality. Table 3.9.3 summarizes the proportion

of significant autocorrelation spikes at lag 12 calculated over 100 runs based on the loss count variable with

seasonal effect trained through five different regression models. Using a standard regression approach to

model the loss count variable with seasonality, it is clear that the residuals are not white noise and it is

correlated at seasonal lag. Another important aspect of any claim count model is its ability to capture

the influence of the overdispersion phenomenon. Failure to account for overdispersion yields in biased and

inconsistent parameter estimates, which can lead to erroneous inferences about unearned premium reserve

adjustments, over-optimistic forecasts of uncertainty in setting rates per risk class, and jeopardizing the

predictability of loss exposure. The Pearson estimate of the dispersion parameter is presented in Table 3.9.4.

Estimates of dispersion highlight the superiority of our newly proposed GAMSAR model and its effectiveness

in controlling autocorrelation and overdispersion simultaneously.

Table 3.9.3: Proportion of significant autocorrelation spike at lag 12 over 100 iterations in a PACF plot.

Fitted Model GLM GAM GAMAR(1) GAMAR(2) GAMAR(1)12

Proportion 0.99 0.98 0.99 0.99 0.41

Table 3.9.4: Average estimated dispersion parameter over 100 iterations.

Fitted Model GLM GAM GAMAR(1) GAMAR(2) GAMAR(1)12

¯̂
ϕ 0.752 1.765 1.731 1.688 1.243
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Figure 3.9.2: ACF and PACF plots with 5% critical values at ± 2√
n
. The ACF and PACF of residuals from

the first sample modelled using five different regression equations: GLM, GAM, GAMAR(1), GAMAR(2),
and GAMAR(1)12.
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The average estimated spline function ̂ns(xt, 5) over 100 replications of the fitted models’ GAM,

GAMAR, and GAMSAR are presented in Figure 3.9.3. In spite of the fact that its initial starting value is

based on coefficient estimates of GAM, the estimated link predictor of a natural cubic spline function

obtained from four separate additive models varied greatly. That is because the iterative Newton’s

estimation technique is contingent on the prior estimate value that is highly influenced by the stationarity

properties of the residuals. Since Pearson residuals from the GAMSAR model are close to white noise, the

estimated spline function of the proposed model roughly mimics the true spline fit with smaller variation

than the GAM and GAMAR models of orders 1 and 2.

Figure 3.9.3: Average estimated natural cubic spline function of loss frequency predictor over 100

replications. Black: the true spline function, Red: ̂ns(xt, 5) modelled with GAM, Blue: ̂ns(xt, 5) modelled

with GAMAR(1), Orange: ̂ns(xt, 5) modelled with GAMAR(2), and Green: ̂ns(xt, 5) modelled with
GAMAR(1)12.
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Table 3.9.6 summarizes the average results of the partial likelihood parameter estimates in terms of

bias, relative error, coverage rate of 95% CI on true value, and standard error to help determine if there are

potential variations between GAM, GAMAR, and GAMSAR. When compared to the other additive models,

the estimate values from GAMSAR are noticeably closer to the true value. For instance, the coverage

rate of 95% CI on true parameter value is persistently greater than other additive models. Even though

there are only microscopic differences between GAM and GAMAR, estimates accuracy for GAMAR(1)

has underperformed. The average bias and relative error of mean estimates from the GAMAR(2) model

are far from the true value, however, the differences are modest and are comparable to the GAMSAR

model. Additionally, the initial estimate value assigned during Newton’s estimation procedure was based

on coefficient estimates from GAM, which may explain why the average coefficient estimate of GAMSAR

departs from the true value at times. Across four models, the Pearson correlation coefficients between the

estimated average loss frequency and the true loss frequency are as follows: GAM: 0.8717, GAMAR(1):

0.9393, GAMAR(2): 0.9622, GAMAR(1)12: 0.9931. These results demonstrate that the GAMSAR model is

better suited when the data exhibits seasonality effects.

In spite of the microscopic difference in estimation between GAM and GAMAR(2), GAM has a larger

in-sample MSE with a greater variability (see, Figure 3.9.4 (a)). This result should not come as a surprise

as a standard regression model like GAM fails to capture temporal dependence, making it less useful for

producing predictions since its smooth function is likely to become unstable outside the range of training

data. Nonetheless, the in-sample fit might not be the only direction on which we should focus. In fact, we

should be cautious when drawing conclusions from these in-sample comparisons. While statistical goodness-

of-fit tests show that GAMAR(2) fits the data similarly to GAMSAR, the model may not perform well out

of sample owing to its seasonal patterns and long-term trends structure. Therefore, we analyze the out-of-

sample performance of these predictive models based on the simulated data over the last two years (see,

Table 3.9.5 and Figure 3.9.4(b)).

Table 3.9.5: Comparisons of out-of-sample RMSE among the predictive modeling results.

Fitted Model Mean Coefficient of Variation

GLM 2.14 0.2187

GAM 2.43 0.3115

GAMAR(1) 2.02 0.2114

GAMAR(2) 2.10 0.2090

GAMAR(1)12 1.59 0.1654

The GAMAR(1)12 model yields a RMSE of 1.59%, which is about 27-52.8% lower than any other model
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considered in this study. These improvement gains are substantial and greater than those observed in-sample,

which were closer to 16.8- 20.6%. The GAMAR(1) and GAMAR(2) models lead to similar RMSEs of 2.02%

and 2.10%, respectively. Surprisingly, and unlike the in-sample results, the GLM model performs worse

than the GAMAR(1)12 model. They lead to a disimprovement of 24.6%; this contrasts with the in-sample

results which showed a 20% improvement from GAMAR(1)12. GAM model has the highest in-sample and

out-of-sample RMSEs. Dispersion of RMSEs between the in-sample and out-of-sample has increased by

about 213-669%. However, this did not alter the ranking of predictive accuracy of our proposed model,

which implies that the GAMAR(1)12 model is robust to different sampling data sets. The GAM model still

has the worst performance based on large RMSE variations, while the GAMAR(1)12 model performs the

best.

In comparison with the actual loss count for the past two years, GAMAR(1)12 predicted values are

closer to the true loss counts. However, the other considered model failed to account for seasonal variations,

and the loss count prediction for the past 24 months was generally underestimated (see, Figure 3.9.5). In

light of these simulation results, it is evident that standard regression is inadequate in the context of loss

variables with special characteristics such as a non-linearity relationship between dependent and predictors,

temporal dependency, and seasonal variation, which solidifies the research problem to question, RQ2. To

conclude, the newly proposed GAMSAR has been shown to provide a superior fit for the simulated data

when there is a periodic correlation across the seasonal components (see, Figure 3.9.6).
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Table 3.9.6: Comparison of partial likelihood estimation between GAM, GAMAR of orders 1 and 2, and GAMSAR at seasonal lag 12.

Fitted Model
Parameters β0 β1 β2 β3 β4 β5 c1 c2

True Values 0.8 0.4 0.36 0.38 0.25 0.15 0.7 0

GAM

Average Estimates

0.6953 0.3809 0.2795 0.1422 0.0658 0.4882

GAMAR(1) 0.6911 0.3969 0.3415 0.2250 0.2220 0.4009 0.2124

GAMAR(2) 0.6965 0.4124 0.4155 0.2595 0.2573 0.4106 0.1685 0.1235

GAMAR(1)12 0.6704 0.5614 0.6433 0.6335 0.6526 0.3817 0.3747

GAM

Average Bias

-0.1047 -0.0191 -0.0805 -0.2378 -0.1842 0.3382

GAMAR(1) -0.1089 -0.0031 -0.0185 -0.1550 -0.0280 0.2509 -0.4876

GAMAR(2) -0.1035 0.0124 0.0555 -0.1205 0.0073 0.2606 -0.5315 0.1235

GAMAR(1)12 -0.1296 0.1614 0.2833 0.2535 0.4026 0.2317 -0.3253

GAM

Average Relative Error

0.7933 1.6187 2.0105 1.3877 5.1495 4.0727

GAMAR(1) 0.8163 1.6498 2.0099 1.5550 5.3095 4.1847 0.6965

GAMAR(2) 0.7908 1.6447 1.9813 1.4666 5.2840 4.2822 0.7593 ∞

GAMAR(1)12 0.6652 1.2935 1.7059 1.1959 4.4921 3.1691 0.4647

GAM

Coverage Rate

75 72 75 72 77 60

GAMAR(1) 73 70 73 69 75 64 0

GAMAR(2) 72 69 77 74 77 60 0 52

GAMAR(1)12 88 90 93 92 92 84 3

GAM

SD of Estimates

0.7777 0.8135 0.8875 0.6208 1.6364 0.6848

GAMAR(1) 0.8135 0.8544 0.9105 0.7186 1.7329 0.7755 0.1396

GAMAR(2) 0.7861 0.8339 0.8854 0.6937 1.6994 0.7850 0.1312 0.1370

GAMAR(1)12 0.6485 0.6408 0.7017 0.5015 1.3415 0.5509 0.1034



(a) Comparison of in-sample MSE for 5 different regression models over 100 independent replications.

(b) Comparison of out-of-sample MSE for 5 different regression models over 100 independent replications.

Figure 3.9.4: Goodness-of-fit assessment of GLM, GAM, GAMAR, and GAMSAR models in the presence
of seasonal variations.
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Figure 3.9.5: Comparison of actual versus predicted loss count for the last 2 years modelled using 5 different regression frameworks over 100
independent replications.



Figure 3.9.6: Comparison of actual versus predicted average loss count modelled using 5 different
regression frameworks. Note: the solid dark grey line represents the actual average loss count and the
solid blue line represents the average predicted loss count. The first 120 data points represent only the
actual average loss and the last 24 data points depict both the actual average loss count and the average
predicted loss count.
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3.9.3 Applications of Loss Count Trend Modelling

Figure 3.9.7: Empirical loss count time series data obtained from digital brokers in Canada.

Figure 3.9.7 depicts the loss count trend for personal property that comprises landlord, renter, and

homeowner insurance coverages from January 2015 to December 2020. The data displays an obvious annual

seasonal variation pattern, a gradually increasing stochastic trend, and a negative correlation between loss

count and TIV (see, Figure B.3.3). Since the long-time trend of empirical observations is unobvious as

shown in Figure 3.9.7, a small autoregressive term of 1 with seasonal lag at 12 is opted to control for

secular trend and periodic fluctuation. Moreover, Figure B.3.1 shows that PACF exceeds 95% CI bounds

for the autocorrelations lags less than 12, and thereafter lags are contained within the bounds. As such, we

propose using Poisson GAMAR(1)12 for modelling the property insurance loss count data. Some conventional

regression models, such as GLM and GAM, are also taken into consideration as benchmarks to assess the

goodness of fit of the GAMSAR. EDA details are presented in Appendix B.3.

The degree of freedom of the two natural spline functions is first determined based on the marginal

effect that minimizes AIC locally, and the results are summarized in Table 3.9.7. Next, the trained models

were evaluated using key performance metrics, including the test of autocorrelation in the residuals, the

significance of the overdispersion effect, the percentage of deviance explained, and the average of error

squares.
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Table 3.9.7: Optimal selection of df for natural spline function using AIC metric based on train dataset.

df ln (E(loss countt)) = ns(time, df) ln (E(loss countt)) = ns(TIV, df)

2 423.50 426.47

3 425.37 426.33

4 426.57 425.87

5 428.23 425.11

6 429.50 426.36

7 431.95 425.42

8 430.72 427.74

9 434.57 424.85

10 410.20 421.87

AIC and log-likelihood criterion are used to identify the top three trained models, which are then further

analyzed using two different trend projection techniques. The first method entails directly regressing the

loss count variable against time and TIV predictors, after which the point predictions are evaluated using

absolute error and relative error sMAPE metrics. With the second approach, the prediction interval of 95%

is constructed from an estimated conditional mean of the loss count variable and its standard error as defined

in Equation (3.9.8):

ŷi ± 1.96× [(XT
i (X

TX)−1σ̂2Xi) + σ̂2]
1
2 , where (3.9.8)

σ̂2 = MSE.

In addition to the prediction interval coverage probability (PICP) metric, we also assess the quality of

prediction intervals by measuring the interval width using a new index developed by Khosravi et al. [59],

which is normalized mean prediction interval width (NMPIW). NMPIW is defined as follows:

NMPIW =
1

n R

n∑
i=1

(Ui − Li), where (3.9.9)

R = ŷmax − ŷmin.

Li and Ui are lower and upper bounds of the ith prediction interval, respectively.

The NMPIW metric enables objective comparison of prediction intervals built for different targets.

Practically, it is desirable to have prediction intervals with small NMPIW.

For prediction, we withheld the most recent six months of data, and the model was trained using 66

sample points. The loss count trend is modelled according to the following equations:

(i) GAMAR(1)12
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ln (µt) = ns(t, df) + ns(xt, df) + c1(ln (y
∗
t−12)− ns(t− 12, df)− ns(xt−12, df))

(ii) GAMAR(1)

ln (µt) = ns(t, df) + ns(xt, df) + c1(ln (y
∗
t−1)− ns(t− 1, df)− ns(xt−1, df))

(iii) GAM

ln (µt) = ns(t, df) + ns(xt, df)

(iv) GLM

ln (µt) = β0 + β1 t+ β2 xt,

where the random variable loss count, Yt ∼ Poisson(µt), and predictors are:

t: date of loss (monthly basis).

xt: total insured value evaluated at the time of loss, t.

ns(·, df): natural cubic spline with df = 10.

Under a similar expression in Subsection 3.9.2, the realization of the loss count variable is defined as:

y∗t = max(yt, 0.5).

The initial values for the numerical approach of modified Newton Raphson are obtained from coefficients

estimated from the GAM model.

Results and Discussion

In comparison to the other three regression models, GAMAR(1)12 has the highest likelihood and lowest

AIC. The autocorrelations covering a range of 24 lags of the residuals are examined using the Box-Ljung test

and the results are summarized in Table 3.9.8. The p-values from the Box-Ljung test, on the other hand,

are less than 10−15 for all four regression models, indicating that the trained models still have correlated

residuals. Despite the fact that GAMAR(1)12 appears to be superior in terms of goodness of fit, both the

GAM and GAMAR(1) performed equally on par. The actual versus fitted trend of the training dataset for

all four regression models is presented in Figure 3.9.8. The empirical results highlight the potential serious

limitations of using the conventional GLM model in trend estimation and hence, we discard the GLM model

for the subsequent trend projection analyses.

Table 3.9.8: Goodness of fit results for training dataset under four different regression models.

Performance metric GLM GAM GAMAR(1) GAMAR(1)12

Autocorrelation, ρ̂12 0.6338 0.4110 0.4728 0.3810

Box-Ljung test (p-value) 139.8907 (0) 70.3897(0) 88.7091(0) 73.6125 (0)
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Table 3.9.8 – Continued from previous page

Performance metric GLM GAM GAMAR(1) GAMAR(1)12

Pearson Dispersion, ϕ̂ 8.2778 0.9832 2.6274 2.4080

% Deviance Explained 4.4685 28.7197 33.1979 40.4566

Truncated MSE 22 0.4090 0.3524 1.9777 1.9175

Log-likelihood -208.0283 -183.9864 -178.2400 -151.6052

AIC 422.0566 409.9728 400.4801 347.2104

Figure 3.9.8: Actual vs Fitted trend plot. The grey line indicates the actual loss count of the training
dataset, and the blue line represents the fitted trend.

To assess the point prediction accuracy over three different regression models, we obtained the absolute

error metric of the test dataset and presented them in a boxplot in Figure 3.9.9. Absolute error analyses

show that there are greater variations of the interquartile range (IQR) across prediction models, with the

GAMARmodel having the best point prediction ability based on the lowest median absolute error. According

to sMAPE results, GAM has the highest relative error of 1.25%, while the proposed model GAMAR(1)12

is 33.8% worse than GAMAR (0.9671% v.s. 0.7229%). As a result, it is obvious that the point prediction

obtained from GAMAR(1)12 falls in between GAM and GAMAR models. Figure 3.9.10 depicts the results.

22Truncated MSE = 1
54

∑66
t=13(ŷt − yt)2.
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Figure 3.9.9: Boxplots of absolute error for three prediction models of GAM, GAMAR, and GAMAR(1)12.

Figure 3.9.10: Historical observation and future forecasts for the recent six months for which our proposed
model yields an sMAPE of 0.97%.
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Overall prediction outcomes of the three trained regression models are listed in Table 3.9.9. We compare

the forecasting results to the GAMAR(1)12, which is shown to have more precise forecasting ability than the

standard GAM model. To better illustrate the superiority of the GAMAR(1)12, the out-of-sample prediction

interval for each of the three regression models is presented in Figure 3.9.11. It can also be seen from Table

3.9.9 that GAM has the largest NMPIW and the widest prediction interval, while GAMAR(1)12 has the

least NMPIW.

Figure 3.9.11: Prediction interval for each of three regression models: GAM, GAMAR, and GAMAR(1)12.
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Table 3.9.9: Quantitative assessment of prediction intervals on the test dataset.

Performance metric GAM GAMAR(1) GAMAR(1)12

NMPIW 2.5631 1.5968 1.3375

PICP 23 50% 83.3% 66.7%

It is difficult to conclude the best model among GAMAR and GAMAR(1)12 since there is a tradeoff

between point and interval forecasting abilities (see, Table 3.9.10). For example, the GAMAR(1)12 model

has the smallest NMPIW but ranks second when comparing the PICP metric. This may be due to the fact

that the empirical data contains a mix of autocorrelation in seasonal and nonseasonal lag. Another major

limitation of this empirical study is that the current assessment used is based on an asymptotic assumption

of the sample size is assumed to be large, which is not satisfied in the case of personal property insurance

due to the shortness of claim data. Based on the trend forecasting results, we conclude this study by

proposing a semiparametric additive integrated seasonal autoregressive model for modelling irregular time

series with periodic fluctuation and nonlinear trends. Additionally, the current empirical study has addressed

the hypothesis statement RH2, and confirmed that trend modelling using conventional GLM does, in fact,

underestimate or overestimate loss count, particularly when there is a significant nonlinear relationship

between the loss count variable and its predictors, as well as the presence of strong temporal dependency.

As the currently proposed model is restricted to just considering modelling the seasonality variation and

nonlinear trend, this empirical study paves the way for future research on expanding GAMAR(1)12 model

to include autocorrelation at nonseasonal lag.

23PICP = 1
n

∑n
i=1 ci, where ci = 1, if yi ∈ [Li , Ui], otherwise ci = 0.
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Table 3.9.10: Loss count prediction of the recent 6 months data under three regression models.

Loss Period TIV Actual Loss Count
Point Prediction 95% Prediction Interval

GAM GAMAR(1) GAMAR(1)12 GAM GAMAR(1) GAMAR(1)12

Jul 2020 10,334 13 24.01 12.31 10.00 [11.184 , 51.540] [4.630 , 19.999] [2.961 , 17.047]

Aug 2020 1,287,445 9 15.92 6.22 6.10 [7.109 , 35.636] [0.383 , 12.059] [0.753 , 11.454]

Sep 2020 539,810 7 32.33 10.28 12.48 [11.366 , 91.935] [4.223 , 16.339] [6.928 , 18.032]

Oct 2020 581,884 1 37.25 10.35 15.34 [12.000 , 115.603] [4.131 , 16.572] [9.635 , 21.038]

Nov 2020 3,278,013 3 23.15 6.31 15.21 [5.747 , 93.210] [0.443 , 12.180] [9.831 , 20.588]

Dec 2020 4,065,691 1 9.39 3.88 7.00 [0.991 , 88.916] [-4.879 , 12.630] [-1.023 , 15.025]



3.10 Severity Trending Framework

The objective of this section is to present an enhanced severity trend model for forecasting incurred claim

costs using the extended loss cost structure framework, as discussed in Section 3.7. Although it is obvious that

economic factors like inflation affect loss severity, the average premium per exposure can change significantly

over time even in the absence of rate changes. Likewise, because the revised premium rate will not take

effect immediately, it is customary to trend the incurred losses to account for anticipated claim cost inflation.

Given that incorporating continuous changes in claim severity is of greater importance for estimating the

severity trend, we proposed a trend model that is more amenable to econometric forecasting.

We introduce a two-step procedure to exploit the severity trend modelling in light of the fact that loss

severity and claim inflation measure trends at different time scales, with the latter using the calendar year

while incurred claims tracks based on accident year. The framework of two-phase trend modelling is intended

to overcome the mixture distribution effect on final trend estimates. To the best of our knowledge, this is

the first time the two-step trend modelling approach has been used to explicitly consider a combination of

time scale trends in both loss severity and claim inflation. The main benefit of using the two-step modelling

approach is that, rather than attempting to compromise on the predictors’ selection of a single long-term

trend, the framework allows for the governance of its own subgroup-specific set of parameters as well as

accommodating data heterogeneity without uncontrollably increasing model complexity.

In comparison to data modelling, we propose algorithmic modelling that combines the DMT framework

with Taylor’s separation method [86]. Taylor [86] established the separation method in the context of

quota share reinsurance. The direct claim handling process by the primary insurer is comparable to the

claim payout mechanism of the quote share contract. Taylor’s [86] approach built for the purpose of the

reinsurance program has not been adapted nor researched in direct personal line insurance. In this subsection,

we have repurposed the separation method in the context of a multiperil short tail portfolio. In order to

investigate the efficiency of Taylor’s [86] approach for estimating the calendar year effect, we have also added

superimposed inflation in addition to base inflation.

The fundamental basis of algorithmic modelling is it does not assume any specific model for the data

but treats the data mechanism as unknown. As a result, when compared to data modelling, algorithmic

models significantly expand the class of functions that can be approximated. They are more efficient when

dealing with large and complex datasets, as well as when modelling for non-linearity response-predictors

relationships. Model validation is generally assessed based on the degree of predictive accuracy. Most

algorithmic models lack in terms of interpretability, which limits their use in application to insurance pricing
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problems. Among algorithmic models, the proposed framework of DMT is unique in the sense of achieving

both predictive accuracy and model interpretation goals. Additionally, the DMT system requires little data

pre-processing and tuning of the parameters. It is highly robust to less than clean data and can be applied

to regression problems from a variety of response distributions. As a result of these characteristics, the

proposed framework is a good candidate for loss cost modelling. Figure 3.10.1 shows a flow chart illustrating

the proposed severity trend modelling framework.

Figure 3.10.1: Flow chart depicting the algorithmic modelling of the severity trending framework.
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3.10.1 The Separation Method

The severity deflator estimates are central to our advancement over the traditional loss trending method.

To empirically derive the historical inflation in severities over t disjunct period, we consider the separation

method outlined by Taylor [86]. The fundamental purpose of the separation method is to distinguish two

patterns from available claims data, which are:

(i) Development pattern for the accident year.

(ii) Calendar year effect, primary constitute of claims inflation.

An underlying assumption of the method is that the patterns (i) and (ii) are independent of one another. In

addition, we assume that the claims cost is completely settled in development year t.

As set out, the separation method uses a run-off triangle 24, which is a two-way tabulation according

to the accident year and development period of claims costs to date. Another dimension of the loss triangle

setup is that the calendar year is located on a diagonal of the run-off triangle.

Figure 3.10.2: Observed incremental losses run-off triangle.

Let suffixes i ∈ {0, 1, . . . , t} and j ∈ {0, 1, . . . , t} correspond to accident year and development year

respectively (see, Figure 3.10.2). We presume the incremental losses Ck,u are random variables observable

for calendar year k + u ≤ t and non-observable for calendar year k + u ≥ t+ 1. Thus, Ck,u refers to the

24Loss development triangles are standard methodologies developed by the actuarial profession to track how claims, both
known and unknown, change over time. This is a standard actuarial method of displaying the movement of a claim. See,
Hindley [46] for a detailed overview of the claim reserving procedure in P& C insurance.
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loss from an accident that occurred in year k and was settled with a delay of u years, therefore pertaining

to the calendar year k + u.

Given that the conditions affecting individual claim sizes remained constant, the ratios of an average

claim paid per claim in development year u relative to accident year k to the average claim paid per claim

to the end of development year t relative to accident year k has an expected value of ϑu. It is assumed that

the ϑu is stationary and independent of the accident year k. Additionally, by assuming that claims would

be fully paid by year t, it establishes a secondary constraint of:∑t
j=0 ϑj = 1.

According to the aforementioned assumptions, the estimates for the separation method assume an arithmetic

separation approach.

Besides, the claim cost of a specific development year, u is assumed to have an exogenous influence

related to the year of payment, k + u (analogous to the calendar year effect). This is to account for an

implicit modeling allowance of the claims inflation variable. λk + u is considered as an index factoring the

claim inflation from one calendar year to another. In this manner, the separation method segregates the

claim delay distribution from the calendar-year influences of claim inflation. Economic inflation is typically

assumed to work in a multiplicative way suggesting that the expected incremental claims cost of development

year u per claim with accident year k is defined as:

Definition 3.7. (Separation model, (Taylor [86]))

Ck,u = νkλk+uϑu + εk,u, where (3.10.1)

E[Ck,u] = νkλk+uϑu,

νk: exposure index attributable to the accident year k. It is a known parameter.

ϑu: the effect of development year u. It is an unknown parameter.

λk+u: the effect of calendar year k + u during which the claim is settled. It is an unknown parameter.

εk,u: error term and E[εk,u] = 0.

As established by Rietdorf [78] in Equation (3.6.1), the variance of incremental claims cost is expressed

through the mean/variance relationship, where it is a function of the mean, up to a multiplicative scale

parameter φ ≥ 0:

V ar[Ck,u] = φλk+uE[Ck,u]

Instead of directly modelling losses, each run-off triangle element is normalized by a volume index

(a.k.a, exposure index) that is associated with the accident year. The purpose of normalization is to ensure
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that losses between accident years are reasonably comparable to one another, as well as to mitigate any

heterogeneity caused by pooling claim experiences. Any volume indexes influenced by monetary inflation,

such as premium or sum insured, are improper for the calendar year estimation framework. In fact, non-

inflationary volume indexes, such as the number of contracts or the expected number of claims are more

appropriate.

The estimation of the calendar year effect is done in a two-step procedure. The marginal sum technique

is used to first estimate the unknown parameter {λ0, . . . , λt}, then the extrapolation method is used to

estimate the effects of future calendar years {λt+1, . . . , λ2t}. We describe the estimation process in greater

detail below:

Marginal sum technique

The marginal sum equation derived by Taylor [86] was under the assumption that all the losses are strictly

positive and that the right-hand side of each iteration of the marginal sum equation is strictly positive as

well. In Dietze [31] it is proven that the marginal sum equations have a radially uniqueness estimator of

the fixed points of Φ. However, Taylor’s [86] marginal sum estimation method for the separation model is

more general than that discussed in this subsection since the original approach does not presume any form of

the normalized index, νk. With the separation model assumed to be fulfilled, we present the marginal sum

equation specifically for personal line homeowners portfolio and presume the exposure index ν̂k corresponds

to the expected number of claims.

The incremental losses, Ck,u are normalized based on the expected number of claims, ν̂k in the accident

year k:

Zk,u =
Ck,u

ν̂k
, where (3.10.2)

Zk,u is the normalized incremental losses.

We can express the expectation of normalized incremental loss as:

E[Zk,u] = E[
Ck,u

ν̂k
]

E[Zk,u] ≈ λk+uϑu, where ν̂k ≈ νk, according to Taylor [86].

The marginal sum equation along the tth diagonal, dt derived as:

dt = Zt,0 + Zt−1,1 + . . .+ Z0,t

= (ϑ0 + ϑ1 + . . .+ ϑt)λt

and with constraints of
∑t

j=0 ϑj = 1, the estimate of λt is:

λ̂t = dt (3.10.3)
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From Equation (3.10.3) we can derive the tth development year effect:

ϑ̂t =
Z0,t

λ̂t

Similarly, next the (t− 1)th diagonal, dt−1 is given by:

dt−1 = Zt−1,0 + Zt−2,1 + . . .+ Z0,t−1

= (ϑ0 + ϑ1 + . . .+ ϑt−1)λt−1

= (1− ϑt)λt−1

Thus, the estimate of λt−1:

λ̂t−1 = dt−1

(1−ϑ̂t)

and the corresponding (t− 1)th development year effect, ϑ̂t−1:

Z0,t−1 + Z1,t−1 = (λ̂t−1 + λ̂t)ϑ̂t−1

ϑ̂t−1 =
Z0,t−1+ Z1,t−1

(λ̂t−1+ λ̂t)

The recursively derivation along diagonals produces a general solution to the parameter λr and ϑj :

λ̂r =

∑r
i=0 Zi,t−i

1−
∑t

j=r+1 ϑ̂j

(3.10.4)

ϑ̂j =

∑t−j
i=0 Zi,j∑t−j
i=0 λ̂t−i

, where (3.10.5)

j ∈ {0, 1, . . . , t} denotes the development year, and

r ∈ {0, 1, . . . , t} represents the diagonal of accident year i and development year j, as such r = i+ j.

Based on the estimation results, the expected claim inflation rate, ir can be derived using the rate of change

between two consecutive calendar year effects:

ir =
λ̂r

λ̂r−1

− 1 (3.10.6)

Let r = 1 be the starting point for the first year of inflation estimation. By using the calendar year r = 0

as the base year, we can calculate the inflation index as follows:

Ir =
λ̂r

λ̂0

(3.10.7)

So, the chain relationship of Ir:

Ir =
λ̂1

λ̂0

× λ̂2

λ̂1

× . . .× λ̂r−1

λ̂r−2

× λ̂r

λ̂r−1

= (1 + i1)× (1 + i2)× . . .× (1 + ir−1)× (1 + ir)

=

r∏
n=1

(1 + in) (3.10.8)
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Consistency of Parameters’ Estimation

The estimates derived from the marginal sum equation in fact produce an asymptotically unbiased estimator

as given in Proposition 3.10.1:

Proposition 3.10.1: If νk →∞ for all 1 ≤ k ≤ t then λ̂k+u
p−→ λk+u, θ̂u

p−→ θu, for 0 ≤ u ≤ t− 1.

Proof :

The proof of Proposition 3.10.1 following the Bühlmann Straub estimation method in claim means (see, Yi

et al. [99]).

E(Ck,u) = νkθuλk+u

E(Ck,u)
νk

= θuλk+u

Apply Chebyshev’s inequality if νk →∞ we have,

P (|Ck,u

νk
− θuλk+u| ≥ ε) ≤ 1

ε2
· V ar(

Ck,u

νk
)

≤ 1

ε2
· 1

(νk)2
· φλk+uE[Ck,u]

≤ 1

ε2
· φ(λk+u)

2θu
νk

≤ V ar(Ck,u)

νkε2
→ 0

Thus
E(Ck,u)

νk

p−→ θuλk+u proving the consistency of parameters’ estimation θu and λk+u. The recursive

expressions (3.10.4) and (3.10.5) with the continuous mapping theorem yield the desired results.

Extrapolation

A raw inflation index time series {Ir , r = 0, 1, . . . , t} is obtained from Equation (3.10.8). The variance in

loss severity, however, produces heterogeneous observations, and thus raw inflation estimates can be volatile

from month to month. This may result in lower prediction precision, particularly if a high (or low) inflation

rate is observed in a specific month, as this may not necessarily reflect the overall upcoming inflation trend.

Additionally, in reality, it is impossible to estimate the true inflation today using future observations. In an

attempt to overcome this issue, we employed the concept of filters. The filter technique aims at extracting

the signal in the presence of noise based on historical observations. In this regard, a semiparametric GAM

approach has been chosen, which combines the use of filtering and extrapolation techniques. The benefit of

using a regression-based approach is that the filters are implicitly defined by a model that is consistent with

the data signal. We estimated the true inflation trend by measuring the change over time using the calendar

period, r as a covariate. The smooth function of time, r is included to filter out the effect of those unknown

noise variables. A general smoothed inflation index is defined as:

g(E[Îr]) = ZZZΥ̂ΥΥ +

q∑
l=1

ŝl(xxxl), where (3.10.9)
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ZZZ: matrix of covariates correspond to the parametric component.

xxx: vector of covariates correspond to the nonparametric component.

The estimation outputs of Υ̂ΥΥ and ŝl can be used to calculate a smoothed inflation on the inverse function

g scale. Either a univariate time series model or a multiple regression model with auxiliary economic variables

can be used to estimate the smoothed inflation index parameters. To estimate the claim inflation index, the

explanatory factors need to be projected into the future. This is a major drawback of the latter technique.

So, to avoid adding complexity, we propose to use predictors that are already known in advance, such as the

standard key indicators typically used in insurance portfolio analytics, and the simplified semiparametric

GAM model given by:

g(E[Îr]) = Υ̂1(CoverageTyper) + ŝ(r), where (3.10.10)

Îr: smoothed inflation index at a time, r ∈ {1, . . . , t} as a dependent variable to achieve projected index at

a future time, m ∈ {t+ 1, . . . , 2t}.

g(·): link function.

Υ̂: coefficient associated to categorical coverage type predictor.

ŝ: natural cubic spline of historical time period (e.g., monthly or quarterly).

The smoothed inflation index, Îr together with the extrapolated inflation index, Ĩm, m = {t + 1, . . . , 2t}

can be used to move the monetary units of claim severities back, and forth in time25.

25The framework is analogous to present value (PV) and future value (FV) in financial modeling.
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3.10.2 Discount, Model, and Trend (DMT) Framework

In this subsection, we propose using an algorithmic approach to model the severity trend adjusted for claim

inflation, with no statistical assumptions pertaining to the overall framework. The only prior assumption

of response distribution is restricted to a single segment of the entire procedure. The overall framework is

defined by three elements:

(i) A smoothed inflation time series variable with a time scale similar to the estimator severity variable.

(ii) A well-defined risk model of loss severity for estimating parameters.

(iii) A machine learning algorithm for extrapolating the claim inflation of the future from the current trend.

The DMT framework is established in three steps, using the three elements mentioned above:

Table 3.10.1: Severity trend modelling adjusted for claim inflation.

Algorithm 8: DMT Framework

1: Discount

Use the smoothed inflation index, Îr to discount the loss severity component to period one.

2: Model

Estimate the corresponding parameters by applying the risk model to the discounted loss severity.

The estimated model is used to forecast the loss severity in the index of period one.

3: Trend

Multiply the base severity (at period one) by the extrapolated inflation, Ĩm to achieve trended severity at time

m ∈ {t+ 1, . . . , 2t}.

The step-by-step procedure is given as follows:

Step 1: Discount

A discount factor of the smoothed inflation index, Îr, is applied to loss severity, similar to financial modelling,

to discount the monetary losses back to present value.

Let yhr, h = 1, . . . , nr, r = 1, . . . , t be the observed loss amounts during the period ranging from month 1 to

t, where nr is the number of claims in the rth period. So, the discounted observed losses by Îr, is defined as:

ỹhr =
yhr

Îr
(3.10.11)

The present value of losses, ỹhr are defined at the monetary index of period one, which enables the value of

future dollars comparable to present dollars. The main reason for implementing the discounting step prior

to parameter estimation is that the GAM requires the dependent variable to be independent and
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identically distributed (iid) given the predictor variables. Furthermore, using the discounting procedure

prior to parameter estimation ensures that the mean severity is equal over time, which is ideal for

continuing to use the regression model.

Step 2: Model

The risk modelling technique used in this step is similar to the approach used for the base severity from the

extended loss cost structure (see, Section 3.7). Forming a vector of all the discounted losses (of step 1)

index at period one yields the dependent variable of base severity:

s̃r =

∑nr

h=1 ỹhr
nr

, where (3.10.12)

s̃r is the observed average severity in rth period discounted to period one.

The base severity is thus represented as a t-dimensional vector s̃ssb = {s̃1, . . . , s̃t}T . Given that the

observed response vector s̃ssb is a realization of an iid random vector, SSSb = {S1, . . . , St}, as such St has a

density function belonging to a known exponential family with mean, µ
(b)
t . The expected value of base

severity is modelled by semiparametric GAM regression conditional upon known predictors.

Since the risk model takes the form of estimates of discounted severity, the predicted severity values

correspond to discounted monetary units.

Step 3: Trend

The final step in the DMT framework is the severity trending procedure, which is analogous to discounting.

We use an inflating procedure to reposition the severity estimates to a future point in time. Given that the

response base severity is in the index time = 1, the fitted value of GAM estimates needs to be inflated to

the level expected during future exposure rating period m ∈ {t + 1, . . . , 2t}. As a result, the trended

severity vector estimate, µ̃µµm can be expressed as:

µ̃µµm = µ̂µµbĨm, where (3.10.13)

µ̂µµb: estimated expected base severity vector achieved from GAM output in step 2.

Ĩm: extrapolated inflation index.

The individual expected base severity estimate, µ̂
(b)
r for the rth period can be obtained from the rth element

of the GAM prediction vector, µ̂µµb.
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3.10.3 Simulation Study for Severity Trend

We construct a simulated dataset of multivariate inflated paid run-off triangles to assess the severity trend

predictability performance of the DMT framework. We consider the case of multiperil coverage comprised

of dwelling 26 and contents 27 based on named peril basis 28, each with its own run-off triangle and claim

inflation, but the results are easily generalizable to more covered perils. The simulation parameters mimic the

real loss experience from houseowners/householders portfolio of a Canadian digital broker. Each simulated

dataset is produced using quarterly development for the ten-year period from the year 2011 to 2020. This

simulation study was independently repeated 100 times. Since the losses studied are short-tailed, we simplify

by setting IBNR and IBNER to zero, ignoring the reserve component of the loss incurred amount. We assume

that no payments are made later than 40 quarters after the quarter in which the accident happens (t = 40).

The study consists of three stages, the first of which generates the simulated frequency and inflated claim

payments for each covered peril of dwelling and contents in accordance with the accident and development

period. In the second phase, the following comparative trend analysis approaches are modelled using training

datasets ranging from the first quarter of 2011 to the fourth quarter of 2019:

(i) Silo approach 29 in conjunction with the arithmetic separation cum DMT framework.

(ii) Aggregate approach 30 in conjunction with the arithmetic separation cum DMT framework.

(iii) Silo approach in conjunction with the conventional framework31.

(iv) Aggregate approach in conjunction with the conventional framework.

Each of the aforementioned approaches uses semiparametric GAM to estimate parameters, and the GLM

model serves as a benchmark model:

(i) For a silo approach, the loss variables modelled using the semiparametric GAM are defined as:

26Named peril of dwelling coverage provides financial protection against loss due to destruction and damage to a
residence’s interior and exterior.

27Named peril of content coverage protects the valuables and personal belongings in the home against loss or damage as a
result of theft, natural disasters, and accidents.

28Named perils policies cover only the events listed in the policy.

29The modelling strategy is conducted independently for each designated coverage in a silo manner to achieve individual
trended severity by a covered peril.

30The loss trend modelling for an aggregate strategy is carried out collectively per portfolio. The aggregate technique is
also known as the combined approach. The calculations in the aggregate approach are exactly the same as in the silo
method with only one collection of coverage type.

31see, Appendix B.4.

210



(a) Smoothed and extrapolated inflation index.

log(E[I
(i)
r ]) = s(i)(r) + ε

(i)
r , where

I
(i)
r : Inflation index variable of rth quarter calendar period for ith coverage. Inflation index

modelled by the Normal distribution.

s(i)(·): cubic spline function for the ith coverage.

ε
(i)
r : random error with E[ε

(i)
r ] = 0 and V ar[ε

(i)
r ] = σ2

ε

(b) Risk model of base severity.

log(E[S
(i)
t ]) = s(i)(t) + ε

(i)
t , where

S
(i)
t : Base severity variable of tth quarter accident period for ith coverage. Base severity modelled

by the Gamma distribution.

s(i)(·): cubic spline function for ith coverage.

ε
(i)
t : random error with E[ε

(i)
t ] = 0 and V ar[ε

(i)
t ] = σ2

ε

(ii) For an aggregate approach, the loss variables modelled using the semiparametric GAM are defined as:

(a) Smoothed and extrapolated inflation index.

log(E[Ir]) = s(r) + εr, where

Ir: Inflation index variable of rth quarter calendar period. Inflation index modelled by the Normal

distribution.

s(·): cubic spline function.

εr: random error with E[εr] = 0 and V ar[εr] = σ2
ε

(b) Risk model of base severity.

log(E[St]) = s(t) + εt, where

St: Base severity variable of tth quarter accident period. Base severity modelled by the Gamma

distribution.

s(·): cubic spline function.

εt: random error with E[εt] = 0 and V ar[εt] = σ2
ε

An out-of-sample dataset, covering the first through fourth quarters of 2020, is then used to assess the

performance of the proposed multiperil loss severity trend framework.

The synthetic run-off triangle for each coverage type, i ∈ {Dwelling, Contents} is composed of 8

modelling steps, each of which builds on the output from previous steps. Figure 3.10.3 depicts the simulation

development of a single insurance claim for a particular coverage type.
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Figure 3.10.3: Development of individual property claim.

Table 3.10.2: Simulation model of the frequency and inflated paid loss triangles for
houseowners/householders portfolio with two coverage types, i ∈ {Dwelling, Contents}.

Algorithm 9: Development triangles of frequency and inflated claim payment based on a quarterly period for 10

years

Input:

Reference value 32, ri = 100000 or 10000 when coverage type, i = Dwelling or Contents respectively,

Time unit 33, T = 1
4
,

Effective annual exposure rate associated to each period t, Eit = 7000 or 3000 when coverage type, i = Dwelling or

Contents respectively,

Constant expected claim frequency per unit exposure for period t, λit = 0.02 or 0.03 when coverage type, i =

Dwelling or Contents respectively;

Output:

Triangles of frequency and inflated loss payout for each coverage type, i ∈ {Dwelling, Contents} with 40 periods of

development.

Algorithm:

1: Simulating the claim arrival process, which is a random variable related to loss occurrence:

Random variable loss count is assumed to follow a Poisson distribution,

Nit ∼ Poisson(Eit × λit), where i ∈ {Dwelling, Contents} and t = 1, . . . , 40.

The occurrence time of any claim in period,t is assumed to follow Uniform distribution,

Uit ∼ Uniform[t− 1 , t].
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Table 3.10.2 – Continued from previous page

2: Simulating the claim size, which is a random variable related to base claim size:

Random variable base (non-inflated) loss amount is assumed to follow a left truncated 34 power normal

distribution: Y si
it ∼ Normal(µit, σit), where

{si , µit , σit} =


{0.2 , 5.5 , 1.55} if i = Dwelling

{0.2 , 2.5 , 1.05} if i = Contents

truncated value, di =


100 if i = Dwelling

50 if i = Contents

3: Simulating the notification delay on claim size and occurrence period of the claim, which is a

random variable related to loss notification:

It is assumed that the notification delay follows a Weibull distribution and that the mean notification delay

(in quarters) is given by,

µi =


min{3 , max{1 , 2− 1

3
log( Yit

0.5ri
)}} if i = Dwelling

min{3 , max{1 , 2− 1
3
log( Yit

0.6ri
)}} if i = Contents

The mean notification delay decreases logarithmically with respect to claim size. The coefficient of variation,

CVi of the notification delay is assumed to be constant and independent of the claim size and occurrence

period.

CVi =


0.70 if i = Dwelling

0.85 if i = Contents

4: Simulating the delay from claim notification to closure, which is a random variable related

to loss settlement delay:

213



Table 3.10.2 – Continued from previous page

It is assumed that the settlement delay follows a Weibull distribution and the mean settlement delay

(in quarters) is proportional, pi up to a scaling factor αi, defined as:

pi =


min{25 , max{1 , 6 + 4log( Yit

0.1ri
)}} if i = Dwelling

min{25 , max{1 , 6 + 4log( Yit
0.15ri

)}} if i = Contents

αi =



min{0.85 , 0.65 + 0.02(Uit − 21)} if i = Dwelling and Yit < 0.1ri and Uit ≥ 21

max{0.85 , 1 − 0.0075(Uit)} if i = Dwelling and otherwise

min{0.85 , 0.65 + 0.03(Uit − 21)} if i = Contents and Yit < 0.15ri and Uit ≥ 21

max{0.85 , 1 − 0.0085(Uit)} if i = Contents and otherwise

So, the mean of settlement delay, υi = αi × pi.

The coefficient of variation, CVi of the settlement delay is assumed to be constant and independent

of the claim size and occurrence period.

CVi =


0.6 if i = Dwelling

0.7 if i = Contents

5: Simulating number of partial payments associated with a particular claim, which is a random

variable related to loss payment count:

The number of partial payments variable assumed to follow a mixture distribution. It is assumed that at least

one payment is required and that no losses are settled without any single cash payment.

Let Mit represent the number of partial payments associated with a specific coverage type in period t, β
(1)
i

defined as the first benchmark for a claim size, and β
(2)
i is the second benchmark for a claim size. So, the

corresponding mixture distribution35 of variable Mit is given by,

PMit(m) =



P (Mit = 1) = P (Mit = 2) = 1
2

if i ∈ {Dwelling , Contents} and Yit ≤ β
(1)
i

P (Mit = 2) = 1
3

if i ∈ {Dwelling , Contents} and β
(1)
i < Yit ≤ β

(2)
i

P (Mit = 3) = 2
3

if i ∈ {Dwelling , Contents} and β
(1)
i < Yit ≤ β

(2)
i

(1−p)mp

1−(1−p)3
, where p = 1

µit−3
if i ∈ {Dwelling , Contents} and Yit > β

(2)
i

and µit = min{8 , 4 + log( Yit

β
(2)
i

)}.
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Table 3.10.2 – Continued from previous page

Hence,

β
(1)
i =


0.0375× ri if i = Dwelling

0.0355× ri if i = Contents

β
(2)
i =


0.075× ri if i = Dwelling

0.065× ri if i = Contents

6: Simulating sizes of partial payments in constant dollar values and without taking inflation

into account, which is a random variable related to loss payments:

The sampling of partial payment sizes is assumed to be conditional on the number of partial payments, and

the loss size. The simulation is built up in four steps:

(i) We simulate the complement of the proportion of total claim size, θ′it represented by the last two payments

from a Beta distribution with mean

µit =


1−min{0.95 , 0.75 + 0.04log( Yit

0.1ri
)} if i = Dwelling

1−min{0.95 , 0.75 + 0.03log( Yit
0.1ri

)} if i = Contents

and the coefficient of variation is assumed to be constant at

CVi =


0.20 if i = Dwelling

0.25 if i = Contents

(ii) We simulate the proportion of the last two payments, qit paid in the second last payment implying

settlement of the loss, using a Beta distribution with mean

µit = 0.90, for i ∈ {Dwelling, Contents}

and the coefficient of variation is assumed to be constant at

CVi =


0.03 if i = Dwelling

0.02 if i = Contents
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Table 3.10.2 – Continued from previous page

(iii) We simulate the remaining unnormalized proportions of payment paid from a Beta distribution with mean

µit =
θ′it

Mit−2
for i ∈ {Dwelling, Contents}

and the unnormalized coefficient of variation is assumed to be constant at

CVi =


0.10 if i = Dwelling

0.20 if i = Contents

(iv) Normalize the proportions simulated in step (iii) such that the proportions add up to 1. The final step is to

calculate the actual partial payment amounts by multiplying the normalized proportions by the claim size,

Yit.

In the cases where there are only 2 or 3 partial payments, proceed as if there were 4 or 5 payments respectively

with the last two payments equating to zero.

7: Simulating the delay of one partial payment relative to the previous, which is a random variable

associate to inter-partial payment delays:

Generate random samples of partial payment times for each payment per losses occurring in each of the

calendar periods. The simulation is divided into 2 cases:

216
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(a) Losses with at least 4 partial payments

The simulation is built up in two steps:

(i) Sampling the last payment delay from a Weibull distribution with mean

µit =
1
4
, for i ∈ {Dwelling, Contents}

and the coefficient of variation is assumed to be constant at

CVi =


0.20 if i = Dwelling

0.30 if i = Contents

(ii) Sampling the remaining payment delay from a Weibull distribution with mean

µit =
υi
Mit

, where υi is the mean of settlement delay (see, step 4)

and the coefficient of variation is assumed to be constant at

CVi =


0.35 if i = Dwelling

0.45 if i = Contents

(b) Losses with less than 4 partial payments

Sampling is performed in the same manner as in case (a), but without separating out the simulation phase of

the last payment delay.

8: Converting to inflated payment patterns:

The sampling includes 3 forms of inflation:
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(i) Base Inflation

Applied quarterly constant inflation rates for both past and future periods:

φi =


2% if i = Dwelling

3% if i = Contents

fi(t) = (1 + φi)
t, where

fi(t): base inflation index, the ratio of dollar values at calendar time, t to those at calendar time 0.

(ii) Superimposed Inflation with respect to occurrence time

The superimposed inflation index with respect to the occurrence time, t′ of the claim is defined as follows:

Ii(t
′|Yit′) =


1 if i ∈ {Dwelling, Contents} and t′ ≤ 20

1− 0.4max{0 , 1− Yit′
0.15ri

} if i = Dwelling and t′ > 20

1− 0.4max{0 , 1− Yit′
0.2ri
} if i = Contents and t′ > 20

Yit′ represents the size of a claim without allowance for inflation.

This is to account for some external change to the insurance scheme at the end of the occurrence period, t =

20, and as a result, the smallest claims will reduce in size by up to 40%. This change will not affect claims

that exceed 15% and 20% of the reference claim values in size for coverage types dwelling and contents,

respectively.

The actual dollar value of a constant dollar partial payment is:

p
(m)
ir = s

(m)
ir

fi(t
(m))

fi(1)

Ii(t
′|Yit′ )

Ii(1|Yit′ )
, where

s
(m)
ir represent the mth constant partial payment for claim r without allowance for inflation.

t(m) represent the mth partial payment period.

Appendix B.5 contains the R code for these simulations. The pairwise plots and the simulated mean

32Reference value is the monetary scale of claim sizes.

33Time unit refers to accident and calendar periods basis.

34The truncation is done via resampling to cater for the deductible amount.

35If Yit ≤ β
(1)
i or β

(1)
i < Yit ≤ β

(2)
i , then variable Mit follows a discrete distribution. If Yit > β

(2)
i , then variable Mit

follows a geometric with minimum 4.
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correlations over 100 replication are presented in Appendix B.6.

Simulation results

Separation method-based severity deflator estimation results

Figure 3.10.4: Average normalized loss severity development trend for each coverage in a 10-year period
over 100 replications.

Figure 3.10.4 shows the average normalized loss development chart for dwelling and contents coverage.

According to the simulated claim development trend, we observe that, while a considerable loss payout is
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indemnified within the 15th quarter for dwelling coverage and 10th quarter for contents coverage, there are

several visible peaks in the claim payout as it develops a downward trend. This volatility is primarily caused

by the calendar year effect of the superimposed inflation on the normalized claim payouts as the development

period increases. Prior to investigating the trend estimation efficiency based on the DMT framework, we

examine Taylor’s [86] marginal sum estimation method on diagonal effects and compare it with the actual

average inflation rate for each calendar period. Actual average inflation rates are computed based on the

average relative differences between pure payments at the base year and their respective inflated payments.

Based on the estimation assessment of the marginal sum equation, Table 3.10.3 shows the significance of these

differences against the actual value. It appears that the marginal sum equation overestimates the parameter,

λk+u particularly in the first calendar quarters, owing to the discontinuity between accident periods caused

by superimposed inflation relative to occurrence times (see, Figure 3.10.5). The average standard error of

the estimated diagonal effect based on marginal sum estimation is 65.53 for dwelling coverage and 69.50

for contents coverage. Comparing the combined modelling strategy with the silo modelling approach, the

average standard error of the estimated diagonal effect was higher at 77.14. This is due to the separation

method being built on the assumption that the diagonal effects are at a constant rate within a calendar

period, which is not the case given the significant influence of superimposed inflation.

Table 3.10.3: Error assessment of the marginal sum estimation technique based on silo modelling strategy.
The statistics are calculated from 100 independent replications.

Descriptive Statistics
Average NRMSE Average sMAPE (%)

Dwelling Contents Dwelling Contents

Min 5.01 6.27 142.94 153.66

Mean 9.21 10.81 164.59 169.12

Max 34.22 27.00 180.77 189.93

CV 0.45 0.32 0.05 0.04
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Figure 3.10.5: Comparison of the estimated raw average inflation rate to its actual simulated value in 10
calendar year span.

Since the raw estimates of the inflation index are quite volatile from quarter to quarter, a smoother

using two separate regression techniques were studied to determine estimates of trend signals by calendar

period. We conducted 6-fold cross-validation on a rolling window basis 36 to assess the smoothing procedure

and the ultimate smoother model was selected based on the minimum RMSE criterion. The chosen smoother

model was then used to extrapolate the inflation index to the year 2020 for use in the DMT framework. To

aid the comparison of smoother model performance, we report the R2-Adjusted and RMSE metrics between

different pairs of Figure 3.10.6. Regardless of the silo or combine modelling strategy, the cubic smoothing

spline of GAM produces a better model for the inflation index smoother than GLM, with a R2-Adjusted of

GAM that is 0.8 times greater than GLM. To determine whether the differences between GAM and GLM

are statistically significant, we apply the Diebold and Mariano [30] test (DM test) on the residual series

achieved from the out-of-sample cross-validation of the smoothing procedure. Let ε′r and εr be the error of

the benchmark and test models, respectively. The loss differential between the two models is thus defined

36For each simulation run set, the initial window parameter for sequential cross-validation was set to 20-time points, with
a forecast horizon of 10-time points.
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as dr = |ε′r| − |εr|. Under the null hypothesis that the two models have equal absolute smoothing errors,

where Diebold and Mariano [30] prove that the DM statistic follows a standard normal distribution. Table

3.10.4 shows a one-sided DM test comparing the GAM to the GLM model as a smoother function for the

quarterly estimated inflation index. Two different ways of estimating the inflation rate using the separation

method (i.e., silo versus combined) did not change the out-of-sample smoother model ranking, implying

that the GAM is robust and superior to the GLM, especially when the raw inflation index has a non-linear

relationship with the calendar period.

Figure 3.10.6: 6-fold cross-validation for the smoother procedure based on two alternative modeling
strategies and the smoothing efficiency between GAM and GLM regression over 100 replications.
Notes: The cubic spline of the GAM accounted for an average 42.5% and 49.9% of the log inflation index
variations based on the silo and combined modeling strategy, respectively. The GLM model yielded lower
adjusted R2 values on average of 24.6% and 28.3% based on the silo and combined modeling strategy,
respectively. Compared to the combined strategy, which marked the RMSE of 4.3 and 8.1 for GAM and
GLM models, the silo approach yields the smallest RMSE variation of 0.84 and 1.63 for GAM and GLM
models, respectively.
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Table 3.10.4: One-sided Diebold-Mariano test statistics for comparing the accuracy between GAM and
GLM as smoother functions at 10% significance level.
Notes: The percentages in the table below show the proportion of p− value ≤ 0.1 over 100 iterations.

Coverage Silo Approach Combined Approach

Dwelling 66%

Contents 72%

Dwelling & Contents 63%

DMT-based base severity estimation results

Exploratory data analysis of base severity determined through the discounted step of the DMT framework is

presented in Appendix B.6. There is a notable difference in the estimated base severity between GAM-based

and GLM-based smoother functions, where smoothed inflation determined from GAM affects the estimated

base severity to have a strong positive association with the accident quarter. GLM-based smoother functions

resulted in mixed associations between estimated base severity and accident period, with dwelling coverage

exhibiting a strong negative association while contents coverage displays a positive association. Table 3.10.5

provides a preliminary assessment of the efficiency of the separation cum DMT framework based on the

significance of bias differences between the estimated base severity and the true non-inflated average payment

for occurrence quarters 1 to 36. When comparing the average sMAPE of GAM-based smoother inflation

function to GLM in estimating discounted severity (a.k.a, base severity), there is an overall improvement of

5.7% in employing GAM-based inflation smoothing for dwelling coverage. For contents coverage, however,

the sMAPE result favors GLM-based smoother inflation by 1.25 times less than GAM. As depicted in Figure

3.10.5, there is a greater fluctuation in the raw inflation index derived using Taylor’s approach, causing the

smoothing spline of the GAM to be wiggly enough to reproduce raw inflation’s behaviour. On the other

hand, actual simulated inflation is less volatile and displays a linear relationship with respect to the calendar

period. So, when a GLM-based smoother is applied to Taylor’s raw inflation index, it averages out the

volatility and closely resembles the actual value. This means that the carryover of the bias estimation from

Taylor’s approach in the initial phase may affect the final DMT results. Although the aim of the current

study is not directly related to calendar year effect models, it throws some light on the possible future

extensions to the loss triangle diagonal estimation framework.

In spite of the bias estimate of Taylor’s method, there is a 9.8% - 11.4% improvement in using the

separation cum DMT framework as an alternate technique to the conventional approach, especially when

the severity component is influenced by rising inflationary pressure. The GAM method on a combined

modeling approach, however, resulted in an sMAPE ≥ 100%, indicating that the average base severity has
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been overestimated compared to the true non-inflated average payment. This result is anticipated because

each coverage has been simulated with its own base inflation and superimposed inflation. Thus, unifying the

inflation and modeling losses together amplifies the variability resulting in an overestimation of the severity

components. This result illustrates the advantages of the extended loss cost model proposed in Section 3.7.

Table 3.10.5: Error assessment of the estimated base severity using the separation cum DMT framework.
The statistics are calculated from 100 independent replications.

Descriptive Statistics
Silo Approach: Average sMAPE (%) Combined Approach: Average sMAPE (%)

Dwelling Contents Dwelling - Contents

Smoothed severity deflator using GAM method

Min 23.83 28.53 11.95

Mean 90.17 88.65 124.32

Max 177.89 176.88 191.42

CV 0.45 0.36 0.39

Smoothed severity deflator using GLM method

Min 16.56 26.29 14.30

Mean 95.58 70.82 138.27

Max 181.86 173.66 195.00

CV 0.45 0.52 0.33

DMT-based risk modelling results

We applied 4-fold cross-validation on a rolling window basis 37 to detect and reduce overfitting during the

risk modelling phase of the base severity variable. The ultimate base severity model was chosen using the

least out-of-sample RMSE criterion. Based on the GAM-based smoother function of the silo strategy, the

relative RMSE coefficient of variation of the risk model fitted to the base severity is 0.364, which is lower

compared to the combined strategy’s value of 0.558. Likewise, the relative RMSE coefficient of variation of

the risk model corresponding to the GLM-based smoother function of the silo approach yielded 0.41, which is

1.3 times lower than the combined strategy. Thus, these two different ways of deriving the base severity (i.e.,

GAM-based versus GLM-based smoother functions) did not modify the out-of-sample modelling strategy

ranking, suggesting that the silo approach potentially preferable to the combined strategy, particularly when

estimating the loss severity of a multiperil insurance portfolio (see, Figure 3.10.7).

The fitted base severity is obtained by regressing the estimated base severity which was calculated by

37For each simulation run set, the initial window parameter for sequential cross-validation was set to 28-time points, with
a forecast horizon of 5-time points.
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discounting the normalized average paid using a smoothed raw inflation index. These results rely on the raw

inflation index that was estimated using the marginal sum equation. The performance evaluation of each risk

model is reported in Table 3.10.6. Table 3.10.6 mirrors Table 3.10.5 and gives the in-sample sMAPE metrics

that are measured relative to the true average non-inflated payment. When compared to the silo technique,

the combined modelling strategy once again performs poorly. Additionally, according to the average sMAPE

results for content coverage, GLM-based models outperform GAM-based models by yielding a 1.2 times

lower average error assessment. However, the larger coefficient of variation of the estimated residuals poses

the question of whether the estimated expected base severity from the GLM-based model is worth the degree

of volatility and downside risk that trend estimation may exhibit over the course of the exposure period.

Interestingly, the GAM-based models of the silo approach still produce sMAPE ≤ 100%, suggesting that

the separation cum DMT framework has a small margin of 5% - 7% ability to estimate the true non-inflated

average payment value. The performance of DMT frameworks is influenced by the degree of bias in the

marginal sum equation’s calculation of raw inflation (see, Figure 3.10.8).

Table 3.10.6: Error assessment of the fitted base severity achieved from risk model. The statistics are
calculated from 100 independent replications.

Descriptive Statistics
Silo Approach: Average sMAPE (%) Combined Approach: Average sMAPE (%)

Dwelling Contents Dwelling - Contents

GAM-based smoother function and GAM-based risk model

Min 31.65 41.59 25.59

Mean 93.01 94.31 123.70

Max 176.25 182.90 190.10

CV 0.42 0.33 0.37

GLM-based smoother function and GLM-based risk model

Min 33.45 30.30 25.04

Mean 104.55 78.54 135.88

Max 184.34 180.93 194.81

CV 0.39 0.46 0.33
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Figure 3.10.7: Out-of-sample relative RMSE from 4-fold cross-validation for evaluating the risk model
of estimated base severity. The error assessment comparing the silo and combined modelling strategy is
performed over 100 replications.
Notes: Since the dependent variable that is fitted to the risk model is obtained from two separate
smoother functions, the error assessments from the risk model are not comparable across the regression
techniques GAM and GLM.
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Figure 3.10.8: Quartely trend of fitted average base severity relative to the base period, Q1 of 2011, and
the difference between the estimated base severity based on two alternative smoother functions.
Notes: Actual value (grey dashed line) represents average non-inflated payment per unit exposure
determined from the simulated transactional records. The estimated value (orange solid line) represents
the average base severity per unit exposure obtained by discounting the normalized average payment
based on smoothed inflation. The fitted value (blue solid line) represents the average base severity per unit
exposure that was regressed using two alternative risk models.
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DMT-based trend results

Trending, the main objective of this subsection, allows the actuary to adjust for changes in loss cost over

time, particularly with regard to changes in premium rates of loss factors such as inflation, portfolio mix, and

nonrecurring changes (i.e., tort settlements, or legislative changes). An estimation of the underlying trend

of a given loss severity entails more than just fitting a line to historical data. It is important to ensure that

the error terms are not systematically biased or serially correlated when compared to neighbouring points.

A goodness-of-fit measurement was performed on each of the models analyzed previously using Ljung-Box

and Jarque-Bera tests on the in-sample residual values at a 5% significance level. The results are shown in

Table 3.10.7.

Table 3.10.7: Hypothesis tests of residuals from various fitted models within DMT framework.
Notes: The percentages in the table below show the proportion of p− value ≥ 0.05 over 100 iterations.

Fitted Models
Silo Approach Combined Approach

Dwelling Contents Dwelling - Contents

Ljung-Box test of order 12 for the smoother function

GAM 80 79 73

GLM 34 74 28

Ljung-Box test of order 24 for the risk model

GAM 98 97 96

GLM 83 73 86

Jarque-Bera test for the smoother function

GAM 53 35 46

GLM 81 28 74

Jarque-Bera test for the risk model

GAM 36 18 54

GLM 73 32 85

Comparing the goodness-of-fit of GAM and GLM, the GLM-based model has a lower percentage of

residuals meeting the white noise criterion across 100 iterations. The estimated residuals from GAM-based

models, however, deviated from normality due to the small sample size of 36. Also, according to previous

risk model results, the average sMAPE of GAM-based models of the silo strategy was close to 95%, favouring

GLM-based models, particularly for the contents coverage. The high average sMAPE is due to the additional

imposition of superimposed inflation and the inefficiency of the separation method to evaluate varying

inflation in relation to the calendar period and occurrence time. In fact, we should proceed with caution
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when drawing inferences from these in-sample comparisons. Therefore, we performed a thorough trend

analysis using two alternative modelling strategies as of the year 2020 from an out-of-sample perspective and

compared the separation cum DMT framework to the conventional method in terms of the efficiency of trend

estimation, as well as the error assessment in relation to actual values. It is common practice to calibrate

premium rates on an annualized basis, so for the purposes of ratemaking, the annual average trend estimates

based on six alternative approaches are presented in Table 3.10.8 below. The severity values estimated from

the DMT framework used in calculating the trend estimates were inflated, according to Equation (3.10.13).

It is evident from the results of Table 3.10.8 that the proposed GAM-based separation cum DMT

framework performed marginally better in comparison to conventional frameworks when adapted to the

silo modelling strategy with a relative difference of trend estimates to the actual is 0.8 - 0.9. The significant

increase in the actual average severity trend by the end of 2020 is mostly owing to fewer historical

development experiences in recent accident years. The proposed GAM-based DMT framework, on the

other hand, smoothed the average severity estimates over the accident years, resulting in steady trend

growth. A significant advantage of implementing the proposed framework over directly calculating trend

rates based on raw average severity is that adjusting premium rates according to raw average severity is

likely to result in rates fluctuating on an annual basis. The unexpected spike in premium rates may induce

distress among policyholders, consequently resulting in a high churn rate.

In a combined modeling strategy, the GAM-based separation cum DMT framework understated the

trend estimates, whereas the conventional framework reports a closer estimate coverage to the actual

annual growth rate with a relative difference of approximately 0.17 - 0.85. Whether a silo or a combined

modelling strategy is employed, the GLM-based separation cum DMT framework has clearly

underestimated the severity trend (see, Figure 3.10.9). Table 3.10.9 reports the out-of-sample prediction

accuracy of average severity for accident year 2020 as of the fourth quarter of 2020. The results from

Tables 3.10.8 and 3.10.9 did not change the model ranking when the silo modelling technique was adapted,

implying that the GAM-based separation cum DMT framework outperformed the conventional framework.

The conventional framework not only yielded an average symmetric absolute error accuracy of over 75% for

the silo modelling strategy but also had the lowest average directional accuracy score of 6.29%. One key

reason for this is that the conventional framework follows a linear model, which is inefficient in capturing

nonlinear trends with respect to accident periods. Furthermore, the conventional framework jointly models

the claim inflation and the loss severity variable assuming a gamma distribution, in contrast to the initial

simulation set-up of superimposed inflation, which was constructed using a piece-wise function with respect

to the occurrence period and the non-inflated claim size. Thus, the proposed method allowed the flexibility

229



to model claim inflation independent of severity variable, resulting in a lower average relative error for both

silo and combined modelling strategies.

Another issue that has not been discussed as frequently as loss trending is the importance of separately

modelling the individual coverage inflation. Aggregating and modelling the individual coverages as a single

random variable reduced the prediction accuracy by 0.2% - 41% while increasing the error variability by a

factor of 4.0 - 4.8. This illustrates a strong necessity for a multiperil portfolio to be modelled using a silo

strategy.

Overall, this simulation study highlights the importance of modelling claim inflation variables

independently from severity variables, as well as the influence of estimating the trend for each coverage

separately for the multiperil contracts. The findings of this study corroborate hypothesis RH1 that the

claim inflation calculated from loss experience is a significant influence in determining loss trending.

Furthermore, the conventional framework produces poorer predictive accuracy in a silo modelling strategy,

as well as understates trend rates. It is difficult to proclaim that the proposed framework is the best model

since there is a tradeoff in terms of sMAPE accuracy metric between the silo and the combined modelling

strategy. To affirm the significance of the proposed framework, we expand the study to understand its

implication in terms of loss reserve, particularly in the projection of ultimate loss.
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Table 3.10.8: Annual average severity trend estimated using an exponential function. The associated adjusted R2 value is in parentheses.

Fitted Models
Based on last 6 years observations Based on 10 years observation

Dwelling Contents Dwelling - Contents Dwelling Contents Dwelling - Contents

Silo modelling strategy

Actual 96.8% (0.92) 152.9% (0.71) 125.6% (0.92) 116.6% (0.74)

Conventional Framework -5.6% (1.0) -82.3% (0.036) -3.9% (1.0) -31.4% (0.49)

Separation & DMT Framework: GAM-based 3.6% (0.90) 26.4% (1.0) 23.6% (0.62) 18.7% (1.0)

Separation & DMT Framework: GLM-based -11.2% (1.0) 25.5% (1.0) -11.3% (1.0) 24.4% (1.0)

Combined modelling strategy

Actual 80.0% (0.98) 109.8% (0.96)

Conventional Framework 66.5% (0.94) 16.4% (0.95)

Separation & DMT Framework: GAM-based -5.9% (0.99) -7.9% (0.95)

Separation & DMT Framework: GLM-based -14.9% (1.0) -15.3% (1.0)

Notes: The annual average severity trend is determined using an exponential function of µ̃40 = a exp(b ∗ t) + c, where µ̃40 is the estimated inflated

severity modelled based on various approach, a is the initial value, b is the trend rate, t represent accident period and horizontal asymptote c ̸= 0.

The parameters of the exponential function are estimated using the nonlinear least square optimization technique. The annualized trend estimate is

relative to the base year 2011.



Table 3.10.9: Out-of-sample average severity prediction assessment for the accident year 2020 as at quarter
4 of 2020. The average is computed based on 100 replications.

Trend models Average

sMAPE

Average

NRMSE

Average

MDA38

Average

Relative Error

Silo modelling strategy:

Conventional Framework 79.78 2.10 6.29 0.880

Separation + DMT Framework: GAM-based 68.42 1.12 43.86 0.661

Separation + DMT Framework: GLM-based 88.60 1.44 18.71 0.842

Combined modelling strategy:

Conventional Framework 89.18 0.84 100 4.196

Separation + DMT Framework: GAM-based 96.27 0.94 100 2.675

Separation + DMT Framework: GLM-based 88.74 0.83 100 3.662

Figure 3.10.9: Comparison of average severity trend estimates between conventional framework and
separation cum DMT framework.

38MDA refers to mean directional accuracy. MDA tests the ability of the underlying model to predict the direction of
change rather than the magnitude of the forecasting error. MDA metric allows to ascertain how well the evaluation
procedure is able to predict the future loss of a certain model [12].
MDA = 1

N

∑
t 1sign(At −At−1) == sign(Et −At−1), where

At is the actual value at time t.
Et is the forecast value at time t.
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The implication of studied trend models on loss reserves

For the purposes of examining the implications of loss trend models on loss reserves, we use the expected

loss method to estimate the projected ultimate loss for two studied models, the conventional framework and

the GAM-based separation cum DMT frameworks. See, Korn [60] for a detailed discussion on frequency-

severity techniques used for estimating future claims loss settlement amounts. We discard the GLM-based

separation cum DMT frameworks model from loss reserving analysis due to the model’s poor performance

in trend estimation. This leaves a total of four models for the rest of this study: Separation cum DMT

based on silo strategy, Conventional framework on silo strategy, Separation cum DMT based on combined

strategy, and Conventional framework on combined strategy. The valuation of the projected ultimate loss

was performed as of the fourth quarter of 2020, as reported in Table 3.10.10. Surprisingly, and unlike the

trend estimate results, the separation cum DMT framework underestimated the actual value of average loss

paid per coverage basis as well as on a combined basis. According to the proposed framework, the relative

deviation of the estimated ultimate loss from the actual is approximately 39% - 63.7% for silo strategies,

and 30.6% for combined strategies. This is due to the inefficiency of Taylor’s [86] approach with regards to

estimating both constant base inflation across the development period and varying superimposed inflation

depending on the size of the claim and the period of occurrence. Conversely, the conventional framework

yielded a relative average deviation of 0.8% - 10.5% for the silo strategy and 12.4% for the combined strategy.

To determine whether these differences are statistically significant, we apply a two-sided DM test [30] on the

series of sMAPE based on accident year for every framework. For a two-sided test, the alternative hypothesis

is that both frameworks have different levels of accuracy.

Table 3.10.10: Two-sided Diebold-Mariano test statistics for comparing the accuracy between separation
cum DMT framework and conventional framework at 5% significance level.
Notes: The percentages in the table below show the proportion of p− value ≤ 0.05 over 100 iterations.

Coverage Silo Approach Combined Approach

Dwelling 76%

Contents 33%

Dwelling & Contents 77%

Given the mixed results with respect to the proportion of DM tests that reject the null hypothesis over

100 iterations, the proposed framework could be a viable alternative to severity trend modelling, especially

when considering multiperil coverage with varied claim inflationary trends. The result of this comparison

in terms of forecast accuracy assessed with sMAPE is shown in Figure 3.10.10 - 3.10.12. The proposed

framework produces large errors in the first 3 to 4 accident years by underestimating the ultimate loss,
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followed by smaller errors in the later accident periods, resulting in an estimated ultimate loss that is closer

to the actual value. Overall, although the conventional framework generally outperforms the separation cum

DMT counterpart when based solely on estimated ultimate loss, there are several cases (e.g., in terms of

white noise criterion of estimated residuals) when the latter provides a better fit. However, a more extensive

analysis using larger inflation in conjunction with or in the absence of an association with the size of the

claim payout could be useful for quantifying these differences.

Running the 100 iterations showed the average coefficient of variation for absolute total errors between

actual and estimated ultimate loss over all the accident years for the proposed method under the silo strategy

for dwelling coverage is 0.393 compared to 0.743 for the conventional framework. Meanwhile, for contents

coverage, the proposed framework’s coefficient of variation for absolute total errors over all the accident

years is 0.402, and 0.750 for the conventional framework. The coefficient of variation for absolute total errors

across all accident years for the proposed framework is 0.448, and 1.149 for the conventional framework,

based on the combined strategy. These findings imply that the separation cum DMT framework reduces the

standard deviation down by more than half.
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Figure 3.10.10: sMAPE comparison between separation cum DMT and conventional framework for
dwelling coverage. For the first three accident years of 2011 through 2013, the separation cum DMT
framework revealed noticeably poorer average sMAPE findings, with the average sMAPE for the
conventional framework being 99.6% lower than the proposed framework. Between the accident years of
2013 and 2020, the average sMAPE difference between proposed and conventional dropped by about three
one-hundredths.
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Figure 3.10.11: sMAPE comparison between separation cum DMT and conventional framework for
contents coverage. For the first four accident years of 2011 through 2014, the separation cum DMT
framework revealed noticeably poorer average sMAPE findings, with the average sMAPE for the
conventional framework approximately 98.3% lower than the proposed framework. Between the accident
years of 2015 and 2020, the average sMAPE difference between proposed and conventional dropped by
about nine one-hundredths.
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Figure 3.10.12: sMAPE comparison between separation cum DMT and conventional framework for
combined coverages of dwelling and contents. In contrast to the silo strategy, the average sMAPE
difference between the proposed and conventional framework is small, with a relative difference of about
two-tenth to six-tenth across the accident year.
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Table 3.10.11: Projection of ultimate loss based on two trend modelling frameworks as of fourth quarter 2020. The average ultimate loss is
calculated from 100 independent replications.

Accident
Average Actual Ultimate loss based on silo strategy Ultimate loss based on combined strategy
Claim Count Dwelling Contents Dwelling - Contents

Year Dwelling Contents Actual Separation cum DMT Conventional Actual Separation cum DMT Conventional Actual Separation cum DMT Conventional
2011 357.73 162.90 1,482,933.0 1,013,534.5 1,491,016.0 47,732.8 6,632.8 51,653.2 1,538,432.0 1,494,979.1 1,553,802.0
2012 358.58 163.31 1,517,240.0 958,878.1 1,463,983.0 47,999.4 7,736.7 50,743.3 1,573,047.0 1,325,192.3 1,521,073.0
2013 356.02 160.62 1,495,416.0 917,001.9 1,424,053.0 47,389.9 9,488.5 48,936.6 1,550,134.0 1,192,093.7 1,471,851.0
2014 357.03 156.57 1,489,612.0 934,289.1 1,400,365.0 46,947.3 11,723.8 46,777.3 1,544,299.0 1,148,233.8 1,430,193.0
2015 357.23 161.28 1,546,601.0 962,877.4 1,375,461.0 48,342.3 14,533.8 47,291.6 1,602,742.0 1,154,310.6 1,413,091.0
2016 345.44 150.48 1,519,282.0 933,737.1 1,304,628.0 46,290.4 16,060.8 43,327.9 1,572,565.0 1,053,715.5 1,321,938.0
2017 350.34 156.19 1,520,946.0 919,970.6 1,299,230.0 46,540.2 19,632.1 44,211.1 1,575,168.0 989,042.8 1,322,084.0
2018 357.75 156.47 1,525,419.0 895,251.0 1,302,647.0 46,536.0 23,201.5 43,587.0 1,579,329.0 907,480.1 1,315,347.0
2019 351.94 156.80 1,520,282.0 852,612.7 1,256,204.0 46,970.1 27,618.0 42,855.6 1,575,025.0 826,243.4 1,271,956.0
2020 358.70 159.04 1,560,735.0 866,177.7 1,261,584.0 47,687.2 34,478.9 49,626.3 1,616,276.0 802,909.7 1,140,537.0

Average Total 358.80 158.37 1,517,846.6 925,433.0 1,357,917.1 47,243.6 17,110.7 46,901.0 1,572,701.7 1,089,420.1 1,376,187.2



3.11 Trend Modelling Runtime Analysis

The runtimes for each simulation study are summarized below:

(i) Extended Loss Cost Model Structure

Simulation design details Runtime

Parameter setting 20.67 sec elapsed

Severity deflator modelling with cross-validation 30.74 sec elapsed

Base severity modelling with cross-validation 67.72 sec elapsed

Claim count modelling with cross-validation 40.01 sec elapsed

Severity modelling with cross-validation 68.05 sec elapsed

Prediction error analysis 46.48 sec elapsed

Pure Premium comparison analysis (extended versus classical model) 61.94 sec elapsed

Comparison analysis (misspecified, benchmark, and proposed models) 15.04 sec elapsed

(ii) GAMSAR algorithm

Simulation design details Runtime

Frequency synthetic dataset based on Gaussian MAR 11.03 sec elapsed

GAMSAR algorithm with cross-validation 90.42 sec elapsed

Model comparison analysis (GAM, GAMAR and GAMSAR) 80.68 sec elapsed

(iii) Separation cum DMT framework

Simulation design details Runtime

Dwelling claim payout triangle 318.26 sec elapsed

Contents claim payout triangle 217.33 sec elapsed

Separation modelling 51.94 sec elapsed

DMT framework modeling with cross-validation 580.61 sec elapsed

239



3.12 Conclusions

In this chapter, we have addressed the pros and cons of the conventional frequency-severity trend modeling

framework and presented a novel structure to the classical pure premium by splitting the severity random

variable into base severity and severity deflator variables. The extended loss cost model structure served as

the foundation for the subsequent severity trend with claim inflation modelling investigation. The key reason

for proposing the extended loss cost structure was to construct a multivariate trend model for loss amount

and associated inflation index according to the distribution properties of each individual loss component.

Combining the extended loss cost structure with the DMT framework permits for the discounting of severities

prior to estimation, and forecasted severities are inflated according to the future exposure inflation index,

thereby maintaining homogeneity in light of the diagonal effect. When the performance of the extended loss

cost structure was compared to that of the classical technique, it was observed that the pure premium under

the classical approach has a higher relative error and deviates significantly from the true value, especially

when the inflation rate has increased in the last three years.

We relaxed the conventional trend modeling assumption of linearity and normality and adapted an

enhanced regression technique of semiparametric GAM. The primary objectives of the advanced trend

modeling technique are to accommodate the nonlinear relationship between response-predictor(s) and

account for any temporal dependency. Taking into consideration seasonality variations in frequency trend

modeling, we have expanded the standard semiparametric GAM to semiparametric GAM with seasonal

autoregressive terms. Through simulation investigation of loss count, the GAMSAR model outperformed

the standard regression models of GLM and GAM. However, the only drawback of the GAMSAR model is

that it is inefficient when the data exhibits a combination of temporal trend dependency and seasonal

fluctuations. This expanded the current scope of research for future work direction to investigate

semiparametric GAM with a seasonal ARIMA model.

Another critical assumption made in conventional severity trending is that the claim inflation rates are

determined based on empirical inflation from CPI. We have explored a new approach to estimating claim

inflation using Taylor’s [86] separation technique instead of relying on the CPI index. The goal of the proposed

approach is to establish an adequate estimated claim inflation rate and not presume that insurance losses will

inflate parallel to economic inflation growth. In the presence of multivariate claim inflationary conditions,

we developed a simulation study based on multiperil coverage of houseowners/householders portfolio to

demonstrate the significant improvement in trend prediction performance with the proposed separation

cum DMT framework over the conventional technique using GLM. The study reveals that the proposed
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framework based on the silo approach is a new promising alternative technique for severity trending with a

higher directional accuracy rate exceeding 43% and a 0.75 times lower average relative error when compared

to the conventional framework. The advantage of the proposed approach is that the time predictor used for

claim inflation trend modeling is based on calendar year whilst the loss severity is modelled using accident

year. The DMT framework is an attempt to generalize a method so that it can be used in practice for

modeling package insurance contracts with individual coverage that has its own inflation and base severity

trend patterns. However, the drawback of the separation cum DMT framework with a silo approach is that

its inefficiency in estimating superimposed inflation, especially when the inflation has a complex association

between calendar period and varies according to accident period and size of claim payout. As an alternative

to the separation method, a regression model can be used to estimate the diagonal effect to take into account

varying inflation within the loss triangle, which could be considered for future research. Additionally, the

loss severity trend modelling using the DMT framework can be expanded for future research by considering

coverages of a package insurance product whose covered perils are a combination of short and long-tail loss

distributions.

If the trend prediction uncertainty is high, then this uncertainty may affect the estimation of pure

premium level more than the distributional assumptions. A suggestion to insurers developing internal models,

and supervisory authorities evaluating them to consider the effects of the uncertainty in trend prediction

in detail in their ongoing work. As a result, we were motivated to enhance the conventional loss trending

technique by employing a hybrid modeling approach that incorporates the semiparametric regression model

and the loss development chain ladder technique.
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Chapter 4

Conclusions and Future Work

Directions

4.1 Review and Conclusions

The core objective of this thesis is to propose a risk profiling mechanism and loss cost modeling by relaxing

the assumptions of homogeneity and temporal independence. This is one of the primary elements in achieving

an actuarially sound ratemaking framework and ensuring the long-run sustainability of personal property

insurance programs. In general, this thesis develops and evaluates five advanced supervised machine learning

approaches for a multiperil homeowners insurance portfolio, including semi-supervised decision tree learning,

two-phase classification mechanism using hybrid decision tree learning, extended loss cost modeling based on

semiparametric GAM, semiparametric GAM with seasonal autoregressive regression model, and separation

cum DMT framework based on silo approach.

We provide a thorough discussion of the advantages of using demand and loyalty-based risk profiling

mechanisms and developed a machine learning framework that uses the differential price sensitivity patterns

of consumers’ purchasing and renewal decisions to achieve an alternative risk classification that results

in improved micro-marketing and underwriting risk management decision strategies. Following this work,

we also proposed a new solution to handle severe imbalanced overlap class distribution, by expanding the

traditional decision tree algorithm and combining it with a sampling technique to reduce misclassification and

increase the classification prediction for the minority classes. According to empirical evidence, this modified
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decision tree algorithm outperforms the standard conditional inference tree algorithm in terms of classification

prediction based on precision and recall values. Within this framework, propensity score matching is utilized

in an attempt to control for the confounding variable. The general idea for this matching algorithm is to pair

consumers based just on their conditional probability of assignment (e.g., the propensity score) to a particular

treatment (e.g., the premium rate offered), rather than modeling using all their risk characteristics in the

initial phase. This approach is intended to obtain the potential reaction to any counterfactual premium rate

change. Finally, within the two-phase classification modelling framework, we constructed a comprehensive

feature selection algorithm using Random Forest-based Boruta to deal with high dimensional predictor

variables and established well-defined PS groupings by its core traits using model-based recursive partitioning.

As part of the improvement of the personal property insurance loss cost modeling, we provide a

systematic discussion of the issues associated with implicit claim inflation that are modelled as part of the

severity component. We overcome the disadvantage of conventional pure premium structures by

decomposing the classical severity component and proposing two new random variables, base severity

(a.k.a, pure severity without inflation effect) and severity deflator (a.k.a, claim inflation) through do(·)

operator under a causal inference framework. Using Pearl’s [77] structural causal framework, we utilized

the causal intervention by adopting the backdoor criterion that helped us define confounding. This comes

with an important observation that including all predictors into a regression to control for the confounder

effect can be misguided and possibly introduce bias by for example conditioning on a collider. Thus, the

structural causal model (SCM) provided the basis for deriving alternative distributions from observational

data, followed by a systematic mechanism relating expected severity as a function of base severity and

severity deflator. This framework provides flexibility for severity deflators and base severity to have their

own distributions and regression models.

Generalized additive models are commonly used in nonlinear relationship modeling and have been

studied extensively in statistical applications and to some extent in loss cost modeling. However, most

research has typically focused on defining all the predictors either of nonparametric or parametric form.

In this thesis, we considered a mix of both parametric and nonparametric predictors, where we considered

semiparametric GAM models. The core reason for using the semiparametric approach is to maintain the

predictor to its original data form without needing to perform many transformations (i.e.: discretization).

To capture the seasonal variations of the loss frequency data, we extended the semiparametric GAM to

incorporate times series autoregressive terms. GAMSAR is being utilized for the first time to model the

loss frequency component. The parameters were estimated by maximizing the penalized likelihood using

a numerical technique known as modified Newton-Raphson. Through a simulation study, we assessed the
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GAM, GAMAR, and GAMSAR prediction assessment measures and discovered that GAMSAR outperforms

the others. Aside from having a smaller relative error, GAMSAR tackles the overdispersion problem when

the response variable is assumed to have a Poisson distribution.

We developed a severity trend modelling framework for a multiperil insurance contract under claim

inflation settings. Based on the revised pure premium framework, we considered Taylor’s [86] separation

technique to estimate claim inflation, assuming that the calendar period of the loss development triangle

drives the trend of loss inflation. It is shown theoretically that the parameter estimation of the separation

technique using the marginal sum method has some appealing statistical properties including it holds

asymptotic convergence of the estimator. Finally, we combined the separation technique with an extended

loss cost structure using a general DMT framework in order to establish severity trend prediction. A series

simulation model was constructed to assess the predictability performance of the separation cum DMT

framework. With different base severity and loss inflation distributional assumptions, a synthetic loss

triangle mimicking a digital broker homeowner/householder portfolio of a quarterly dataset for a period of

ten years is generated. Following this, prediction trend error assessments for the last four quarters are

computed for both the proposed separation cum DMT framework and benchmark conventional technique.

In a special case of a multiperil contract with two coverages, we find, as expected, that the claim inflation

index variable modelled based on the calendar period from the development triangle affects the ultimate

severity trend predictions markedly. Treating all coverages as if they were of the same insurance type (the

combined or aggregated method) yielded a greater average prediction error metric compared to treating

the peril-covered types individually (the silo method). However, when comparing the average coefficient of

variations of the prediction error of ultimate loss, the suggested framework clearly outperforms others.
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4.2 Area of Future Work

(i) Generalized propensity score (GPS) in continuous premium changes

The CTree algorithm discretize the premium rate changes and then employs a propensity score

matching algorithm to establish the price grouping. The foundation of the risk profiling mechanism

using PS assessment begins with defining appropriate price groups having significant differences in

the demand for insurance products (i.e., purchase or renewal decision). One important future work

direction is to investigate using generalized propensity score in continuous treatment effect (i.e.;

premium rate offer) for causal analysis. One advantage of considering the continuous approach is that

it eliminates any compression of information from discretization. In addition, adopting a continuous

approach expands our current discrete PS assessment for premium optimization problems. In other

words, the discrete approach indicates the best rate change category (i.e., range band), whereas the

continuous approach identifies the exact rate change itself, which may then be used in practice for

premium purchase or renewal offer optimization.

(ii) GLM-based recursive partitioning with bias reduction estimation

Subgroup identification via standard MOB can be viewed as an adaptive method, that implicitly seeks

to balance between the bias introduced through omitting potential predictor effects and the additional

variance introduced by fitting models to a partitioned dataset. When a small sample size is used, the

partitioned subgroup becomes noisy due to a lack of association between the dependent and predictor

variables, or the effects of the covariates are only prognostic. This may result in an increase in the

variability of the parameter estimations, introducing the bias-variance trade-off. In the case of greater

noise, the standard MOB often refrains from partitioning into subgroups and therefore has a similar

fit to the global multinomial model.

In order to improve the maximum likelihood of the local GLM within the MOB algorithm for small

subgroups, it might be worthwhile to exploit an alternative strategy that reduces the estimation bias.

Firth [34] showed that an estimator with asymptotic order O(n−2) bias can be derived through the

modified score function, of the form

S∗(β) = S(β) +A(β) = 0, where (4.2.1)

If l(β) is the log-likelihood for q-vector of parameters β, then the score equations, S(β) = ∇βl(β) = 0

solves to produce maximum likelihood estimator β̂,

General bias-reducing adjustment based on the expected matrix given by,

At(β) =
1
2 tr[{E[I(β)]}−1 + { E[S(β)S(β)

T
St(β)] + E[−I(β)St(β)] }], t = 1, . . . , q, and
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The observed information matrix I(β) = −∇β∇T
β l(β).

All the expectations are with respect to the model and at β. The resulting estimator β̂∗ has a mean

bias of order O(n−2) less than O(n−1) of the maximum likelihood estimator.

Further research could be directed towards integrating GLM-based recursive partitioning and mean

bias-reducing adjusted score estimation techniques for classification based on the price sensitivity of a

small dataset.

(iii) Generalized Additive Model with seasonal ARIMA term

The final fitted frequency trend model in the empirical analysis of the frequency trend reveals significant

spikes on the residual ACF plot, demonstrating the presence of nonseasonal temporal dependencies.

As the original empirical dataset contains significant temporal dependencies at nonseasonal lag, it

will be appealing to refit the model with detrended time series or extend the GAM with seasonal

ARIMA term. With having to introduce autoregressive integrated moving average term to GAMSAR,

the statistical properties of parameter estimation using the maximum penalized likelihood approach

need to be revisited. In addition, it will be appealing to explore the convergence of the numerical

approach in a large data volume as the complexity of the regression model expands to GAM with

SARIMA. The GAMSAR model could also be explored with zero-inflated Poisson distribution in order

to accommodate the special characteristics of non-life insurance, where it is feasible that no claims are

reported for a period of time, resulting in a data set with more zeros than expected. An excess of zero

claim counts is common for policies covering different risks under a multiperil contract or specialized

insurance programs such as armored vehicles, livestock, or fine arts. A comprehensive discussion of

zero-inflated regression models based on different distributions can be found in Winkelmann [92] and

Denuit et al. [28] for an exhaustive review of models used in ratemaking.

(iv) Estimation of separation technique using GLM model

Even if the historical settlement pattern is reasonably stable, the future runoff may be quite

uncertain because of doubts that the pattern will continue, as claim inflation may not repeat itself.

In addition, the arithmetic separation method adopted in this thesis assumes that the losses of a

specific development period are proportional to an inflation index, which is a special case of the losses

dominated by high rates of inflation. When there is an influence of operation management, such as

changing the mix line of business or coverage within a risk group, which is tied to the policy (or

underwriting) period rather than the accident period, the assumption is no longer applicable. In such

cases, parameter estimation using the marginal sum technique is no longer practicable. Another

drawback of the marginal sum estimation approach is that they do not provide an estimate for the
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error boundaries. This can be overcome by considering the geometric separation method in

conjunction with regression techniques to estimate parameters:

Zi,j = ϑjλi+j , where (4.2.2)

Zi,j : the normalized incremental losses.

ϑj : the effect of development year j. It is an unknown parameter.

λi+j : the effect of calendar year i + j during which the claim is settled. It is an unknown parameter.

Taking logarithms of Equation (4.2.1) yields a linear model (only in case of Zi,j > 0)

ln(Zi,j) = ln(ϑj) + ln(λi+j) + εi,j , i+ j ≤ n where

εi,j denotes an error term.

The logarithms of Equation (4.2.1) can be rewritten as a matrix form:

Y = Xβ + ε, where

β = (ln(ϑ0), · · · , ln(ϑn), ln(λ0), · · · , ln(λn))
T .

Y denotes the vector containing the [ (n+1)(n+2)
2 ] observed normalized incremental loss variables

grouped by origin (or accident) period,

Y = (ln(Z0,0), · · · , ln(Z0,n), ln(Z1,0), · · · , ln(Z1,n−1), · · · , ln(Zn,0))
T .

ε is a corresponding error vector,

ε = (ln(ε0,0), · · · , ln(ε0,n), ln(ε1,0), · · · , ln(ε1,n−1), · · · , ln(εn,0))T .

It consists of (2n + 2) unknown parameters. Thus, the design matrix, X of dimension

[ (n+1)(n+2)
2 ]× (2n+ 2) defined as follows:

X =



I([n+1],[n+1]) I([n+1],[n+1])

I(n,n) 0(n,1) 0(n,1) I(n+1,n+1)

...
...

...
...

I([n−i+1],[n−i+1]) 0([n−i+1],i) 0([n−i+1],i) I([n−i+1],[n−i+1])

...
...

...
...

I(1,1) 0(1,n) 0(1,n) I(1,1)


, where

I is a unit matrix, and

0 denotes a null matrix.

The aforementioned concept was first proposed by Goovaerts et al.[39], and according to the author,

the model does not have a unique solution. They proposed a solution by updating X and β, thereby
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eliminating the first column in the design matrix X and the first element of β. Using the estimation

proposed by Goovaerts et al.[39], it is appealing to reassess the predictability of DMT framework

under the geometric separation method.

My Ph.D. research in the application of machine learning algorithms to actuarial ratemaking has sparked

numerous other exciting future work topics. It is intriguing, for example, to look into a more efficient

estimation approach for the arithmetic separation technique and apply it to severity trend modelling. In

addition, based on the extended loss cost model structure in Chapter 3, it appears promising to apply the

extended framework to a novel multivariate exponential tilting premium principle to accomplish a scientific

approach to improving the personal property insurance pricing framework.
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Appendix A

APPENDICES FOR CHAPTER 2

A.1 Classification Performance Metric

We outline the performance metrics that are used in assessing the classifier’s learning ability for each of

the proposed hybrid tree-structure algorithm. In presence of imbalanced dataset, some evaluation metrics

might be affected by skewed class distribution and produces misleading results towards majority class(es).

Though de facto standard metrics such as accuracy score 1 and error rate 2 are predominantly mentioned

in literatures, these metrics becomes meaningless in a highly imbalanced class distribution, due to more

weighs positioned on majority class(es) and thus, resulting in a bias performance on cases that are poorly

represented in dataset.

The empirical study in this chapter consists of a multiclass imbalanced dataset. So, the performance

metrics employed in Section 2.11 primarily focuses on multiclass confusion settings. The overall and single

class assessment metrics are derived from a confusion matrix of n multiclass settings, as shown in Figure

A.1.1. Entry cell Nij , where i ̸= j reflects the number of samples that classified(predicted) as class Cj but

in fact it belongs to class Ci. An ideal classifier will have a confusion matrix with only diagonal elements

and the rest of the off-diagonal cell entries set to zeros.

1accuracy score =
True Positive(TP ) + True Negative(TN)

True Positive(TP ) + True Negative(TN) + False Postive(FP ) + False Negative(FN)

2error rate = 1 − accuracy rate
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Figure A.1.1: Confusion matrix for multiclass classification.

The confusion matrix provides 4 indices, that are used as a basis to derive the evaluation metrics:

(i) Single class performance metric

A single class technique is an evaluation metric that quantifies the performance for each classifier class.

Metrics addressed below are less sensitive in the domain of skewed class distributions:

1. Sensitivity (recall):

• Measures the classifier’s ability to correctly identify a given class.

• Sensitivityclass = TP class

TP class + FNclass
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2. Precision:

• Represent classifier’s certainty of correctly predicting a given class.

• Precisionclass = TP class

TP class + FP class

3. G-mean:

• It is geometric mean of sensitivity and specificity. It is an alternative metric to account for poor

performance of accuracy score in imbalance data domain.

• G−Meanclass =
√
sensitivity × specificity

4. Area under the receiver operating characteristic curve (AUC):

• Receiver operating characteristic curve (ROC) combines the sensitivity and specificity visually to

characterize the model behaviour with respect to each class. Alternatively, the ROC curve can

also be represented by plotting the true positive rate (TPR) against false positive rate (FPR).

• AUC measures the entire 2-dimension area underneath ROC curve, where it assesses the quality

of model predictions irrespective of the classification threshold, α value.

• The closer AUC measure to 1 the performance of test model is better. The baseline (diagonal line)

represents a random prediction ( 1
number of classes ) and thus, AUC value below baseline indicates

the model is performing worse than randomly guessing the class.

• The plot function of the ROC curve obtained from the pROC library in R software plots the

x-axis of specificity in decreasing manner order 1 to 0.

Figure A.1.2: ROC Curve.
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(ii) Overall class performance metric

Overall assessment technique provides an insightful interpretation of the classifier learning ability as a

whole. To make comparison across multiple classification model, the following assessment metrics are

mostly stated in multi-class imbalanced data learning literatures:

1. Cohen’s Kappa (Cohen’s κ)

• Accuracy score simply accounts for correct and incorrect classification results but does not

compensate for confusion matrix generated by chance and so to counteract this issue, Ben David

[9] recommends the usage of Cohen’s κ, that attempts to correct the degree of agreement by

subtracting the portion of the counts attributed by chance.

• Cohen′s κ =
(c×s) − (

∑K
k pk×tk)

s2 − (
∑K

k pk×tk)
, where

c =
∑n

j=1 Njj total number of elements correctly predicted

s =
∑n

i=1

∑n
j=1 Nij total number of elements

pk =
∑n

j=1 N···j total number of times that class j was predicted

tk =
∑n

i=1 Ni··· total number of times that class i truly occurs

• When Cohen’s κ value falls within following range, it signifies:

0, model’s prediction is totally independent from the actual classification.

1, model’s prediction is totally dependent from the actual classification.

< 0, agreement between model’s algorithm and true labels distribution is worse

than random agreement.

2. Accuracy

• Fraction of fitted model predictions is correct

• Accuracy =
∑c

i=1 TP i +
∑c

i=1 TNi∑c
i=1 TP i +

∑c
i=1 TNi +

∑c
i=1 FP i +

∑c
i=1 FNi

, where

c denotes number of response classes

3. Multiclass AUC

• Computed by taking average AUC of all the classes.

• It yields an overall measure of how well each class is separated from all of the others.
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• Overall performance of the classification rule under multiclass AUC derived by calculating the

average separability between all pairs of classes i and j:

MAUC = 2
c (c−1)

∑
i<j Â(i, j), where

c denotes number of response classes.

Â(i, j) is the estimated AUC between class i and j, as such Â(i, j) = Â(i | j) + Â(j | i)
2 .

Â(i | j) is the probability that randomly drawn member of class j will have lower estimated

probability of belonging to class i. than a randomly drawn member of class i. So, Â(j | i) is

the probability of a randomly drawn member of class i will have a lower estimated probability of

belonging to class j than a randomly drawn member of class j.
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A.2 R Code and Output of Simulation Study

#Simulation Study - evaluate MOB of glmtree

library(party)

library(partykit)

library(truncnorm)

library(strucchange)

library(rlang)

library(ggplot2)

library(caret)

library(ROCR)

library(plyr)

library(MLmetrics)

set.seed(123)

#Simulate dataset

for (i in 1:1000) {

#sample size

n = 5000

#generate sample data on covariates

premiumrate= rnorm(n,0.6,0.1)

referralcode = rbinom(n,1,0.3)

age=round(rtruncnorm(n, a=20, b=65, mean=35, sd=5))

yrsclaimfree = rpois(n,3)

riskprovince= rbinom(n,1,0.5)

#built correlation between y and some x’s

z = 2*premiumrate-3*referralcode+2*(premiumrate≥0.4)*referralcode*riskprovince -2*

(premiumrate¡0.4)*referralcode*riskprovince

pr = 1/(1+exp(-z))

#convert response variable to binary format

YDecision = as.factor(rbinom(n,1,pr))

#simulated dataset

data1 = data.frame(premiumrate,age,referralcode = as.factor(referralcode),yrsclaimfree,

riskprovince = factor(riskprovince,labels = c(”AB”,”ON”)),YDecision,z)
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simdata[[i]]=data1

#split between train & test at 60:40 ratio

trainIndex =createDataPartition(data1$YDecision, times=1, p = 0.60, list = FALSE)

trainData[[i]] = data1[trainIndex, ]

testData[[i]] = data1[-trainIndex, ]

}

#simulated dataset logistic modeling

#Using 5-fold CV to evaluate each of simulated dataset using logistic regression model

set.seed(123)

for (j in 1:1000){

#specify the cross-validation method

ctrl = trainControl(method = ”cv”, number = 5)

df= trainData[[j]]

df1=subset(df,premiumrate≥0.4&referralcode==1)

df1$YDecision= factor(df1$YDecision)

df1$riskprovince=factor(df1$riskprovince)

df2=subset(df,premiumrate<0.4&referralcode==1)

df2$YDecision=factor(df2$YDecision)

df2$riskprovince= factor(df2$riskprovince)

df3=subset(df,premiumrate≥0.4&referralcode==0)

df3$YDecision= factor(df3$YDecision)

df3$riskprovince= factor(df3$riskprovince)

df4=subset(df,premiumrate<0.4&referralcode==0)

df4$YDecision= factor(df4$YDecision)

df4$riskprovince= factor(df4$riskprovince)

dfTest= testData[[j]]

#examine whether there is statistical difference between risk province in the binary outcome y

model1=train(YDecision∼riskprovince, data = df, trControl = ctrl, method = ”glm”, family =

”binomial”)

#restricts to a subgroup of consumer offered premium rate ≥ 0.4 and x2=1 (with referral code)

model2=train(YDecision∼riskprovince, data = df1, trControl = ctrl, method = ”glm”, family =

”binomial”)

#restricts to a subgroup of consumer offered premium rate <0.4 and x2=1 (with referral code)
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model3=train(YDecision∼riskprovince, data = df2, trControl = ctrl, method = ”glm”, family =

”binomial”)

#restricts to a subgroup of consumer offered premium rate ≥0.4 and x2=0 (without referral code)

model4=train(YDecision∼riskprovince, data = df3, trControl = ctrl, method = ”glm”, family =

”binomial”)

#restricts to a subgroup of consumer offered premium rate <0.4 and x2=0 (without referral code)

model5=train(YDecision∼riskprovince, data = df4, trControl = ctrl, method = ”glm”, family =

”binomial”)

#global: full logistic regression model

model6= train(YDecision∼premiumrate+referralcode+ riskprovince + age + yrsclaimfree ,data = df,

trControl = ctrl,

method = ”glm”,family = ”binomial”)

}

#Using 5-fold CV to evaluate each of simulated dataset using MOB algorithm for subgroup model without

main effects

set.seed(123)

for(j in 1:1000){

Traindt= trainData[[j]]

Testdt= testData[[j]]

#reset the levels

levels(Traindt$riskprovince)

levels(Traindt$riskprovince)=c(1,2)

#5-fold CV

folds = split(Traindt, cut(sample(1:nrow(Traindt)),5))

errs = rep(NA, length(folds))

tree= list()

for(z in 1:length(folds)){

test = ldply(folds[z], data.frame)

train = ldply(folds[-z], data.frame)

tree.model = glmtree(YDecision∼riskprovince | premiumrate + referralcode + riskprovince + age +

yrsclaimfree, data = train, family = binomial,alpha = 0.05)

tree[[z]]=tree.model

#Normalized gini index
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errs[z]=NormalizedGini(test$YDecision, predict(tree.model,test))

}

t=which.max(errs)

GiniIndex[j,]=errs

finaltree[[j]]=tree[[t]]

}

#Using 5-fold CV to evaluate each of simulated dataset using MOB algorithm for subgroup model with

main effects

#Cross validation with MOB model fit for trained data

set.seed(123)

for(k in 1:1000){

Tndata= trainData[[k]]

Tsdata= testData[[k]]

#reset the levels

levels(Tndata$riskprovince)

levels(Tndata$riskprovince)=c(1,2)

#5-fold CV

fold = split(Tndata, cut(sample(1:nrow(Tndata)),5))

err = rep(NA, length(fold))

treeModel= list()

for(s in 1:length(fold)){

ts = ldply(fold[s], data.frame)

tn = ldply(fold[-s], data.frame)

glmtree = glmtree(YDecision ∼ 1 | premiumrate + referralcode + riskprovince + age + yrsclaimfree,

data = tn, family= binomial,alpha = 0.05)

treeModel[[s]]=glmtree

#Normalized gini index

err[s]=NormalizedGini(ts$YDecision, predict(glmtree,ts))

}

m=which.max(err)

NormGiniIndex[k,]=err

finalglmtree[[k]]=treeModel[[m]]

}
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Output 1: First four of simulated data structure

No. premiumrate age referralcode yrsclaimfree riskprovince YDecision z

1 0.5439524 31 0 4 AB 1 1.087905

2 0.5769823 33 0 4 ON 0 1.153965

3 0.7558708 30 0 2 AB 1 1.511742

4 0.6070508 38 1 1 ON 0 1.214102

Output 2: Comparison of the distribution of purchasing decisions between the global effect and subgroups

with a differing premium rate.

Figure A.2.1: Distribution plots for the simulated samples from the first iteration.
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Output 3: Sample size trend of each subgroup fitted to the logistic regression model

Figure A.2.2: Subgroups sample size trend of model 2a, 3a, 4a and 5a.
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A.3 Total Exposure Equation

Product Type Total Exposure (TIV) equation

Home, Home with Suite & Excellence Home
= Building value limit + Outbuilding limit +

Contents limit + Additional living expenses

Owner Occupied Condo = Contents limit + Additional living expenses limit

A.4 Transformation unstructured to structured data

Data source from a Canadian software company provides brokerage management system to Insurtech

companies across Canada.

(i) Pre-Purchase Lifecycle Metadata
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(ii) Post-Purchase Lifecycle database tables



A.5 Dataset Descriptions

Table A.5.1: Pre- and post-purchase variables collected for 3 years.

Attribute Types Variables Description (Data type)

Pre-purchase lifecycle metadata

Coverage characteristics

Gross written annual

premium

Base premium amount excluding

tax, service fees , and financing fees.

(currency)

Standard deductible Overall coverage deductible.(whole

number)

Total exposure (a.k.a, Total

Insured Value(TIV))

Sum insured for overall coverage.(whole

number)

Policy type (a.k.a, Plan

type or product type)

Type of insurance coverage

manufactured.(string)

Property risk profile

Building type Residential building design: High Rise,

Detached, Low Rise, Townhouse, Duplex,

Dwelling, & Apartment-Basement.

(string)

Risk location, province Insured property province location.

Limited to property in Canada. (string)

*Year built Insured property-built year.(date)

*Square footage Insured property building floor space.

(whole number)

*Architectural style Residential structural layout: Detached,

Semi-Detached, In-Row, Sixplex,

EndRow, Duplex, Triplex, Fourplex,

Fiveplex & Not Available.(string)
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Shopping Behaviour

Decision Consumer’s decision flagged either as

drop-out or purchase. (string)

Referral code indicator Has a promotional/discount code.

(boolean)

Discovery method How consumers get to know the online

site. (string)

Customer relationship score Customer score is determined based

on their progress on the online

platform.(integer)

Consumer socio-demographic

Gender Consumer gender type. (string)

Age Consumer age at the point of quote

creation date. (whole number)

Credit score Consumer’s creditworthiness: Average,

Poor, Very Poor, Consent not given,

Good, Excellent, Consent but did not

verify, Below300-Bankruptcy & Not

Available. (string)

Mailing location, province Mailing address province. It could be

outside of Canada. (string)

*Property mortgage

indicator

Flag to indicate if the consumer

has property mortgage on risk

insured.(boolean)

Prior Insurance Experience

Years claim free Number of years claim free. (whole

number)
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Previous claim count Number of claims submitted in past.

(whole number)

Years insured Number of years holding insurance

protection on the risk insured. (whole

number)

Previous claim type Type of property insurance claim filed in

past. (string)

Post-purchase lifecycle metadata

The data extracted for post-purchase is similar to attributes listed on the pre-purchase

lifecycle except for following items:

Cancellation workflow

Term Start Date Inception date of insurance

contract.(date)

Term End Date Expiry date of insurance contract. (date)

Effective Date Effective date is the date of insurance

contract cease. This takes place when

cancellation workflow initiated. (date)

Flat Cancel Indicator Indicator 0/1, if the policy is incepted

and ceases on the same date. (boolean)

Policy Initial Status Initial state of the policy lifecycle based

on term start date. It could be either

new or renewal. (string)

Policy End Status Last state of the policy lifecycle based on

term start date. It could be either cancel

or inforce. (string)

272



Policy End Status Last state of the policy lifecycle based on

term start date. It could be either cancel

or inforce. (string)

Shopping Behaviour Decision Insured’s decision to continue retain

or cancel the insurance contract. It is

derived using discretization procedure.

(string)

Note:

(1) *online broker platform gathers some specific information based on the policy type.

(2) The total exposure (TIV) 3 calculation varies based on product type.

3TIV equation for each product type is available in Appendix A.3.
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A.5.1 Explanatory Data Analysis

(i) Statistics of all variables considered in PS Model.

No. Variable Name type mean dispersion median mean absolute deviation *min **max nlevs

1 YDecision factor NA 0.39 NA NA 187.00 2,604.00 4

2 PlanType factor NA 0.39 NA NA 1,645.00 2,603.00 2

3 AverageTotalExposure integer 612,213.80 522,653.40 570,000.00 622,692.00 36,000.00 3,670,000.00 0

4 AverageStdDeductible integer 1,855.40 951.02 2,500.00 2,223.90 500.00 5,000.00 0

5 AverageRatePer100 numeric 0.29 0.20 0.24 0.15 0.06 2.28 0

6 ReferralCodeIndicator logical NA 0.43 NA NA 1,820.00 2,428.00 2

7 RiskLocation factor NA 0.54 NA NA 31.00 1,962.00 5

8 BuildingType factor NA 0.39 NA NA 54.00 2,603.00 6

9 CreditScore factor NA 0.42 NA NA 3.00 2,457.00 9

10 PreviousClaimCount integer 0.05 0.22 0.00 0.00 0.00 1.00 0

11 CustomerRelationshipScore integer 2.63 3.43 0.00 1.48 -10.00 10.00 0

12 YearsClaimFree integer 4.64 4.14 4.00 5.93 0.00 13.00 0

13 YearsInsured integer 5.01 4.27 5.00 7.41 0.00 13.00 0

14 HasMortgage logical NA 0.37 NA NA 1,580.00 2,668.00 2

15 YearBuilt factor NA 0.49 NA NA 104.00 2,176.00 5

16 SquareFootage factor NA 0.61 NA NA 128.00 1,645.00 4

17 PreviousClaimType factor NA 0.30 NA NA 2.00 2,969.00 9

18 ArchitecturalStyle factor NA 0.44 NA NA 1.00 2,362.00 10

19 DiscoveryMethod factor NA 0.47 NA NA 14.00 2,236.00 11

20 MailingProvince factor NA 0.66 NA NA 1.00 1,448.00 10

21 Gender factor NA 0.43 NA NA 15.00 2,424.00 4

22 Age integer 41.99 13.48 39.00 13.34 18.00 118.00 0

*Min statistics for categorical columns is the size of the smallest category

**Max statistics for categorical columns is the size of the largest category



(ii) Pairwise plot of all variables considered in PS Model
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A.6 Partitioning Rules from CTree Model

(i) The color-coded splitting rules are used in establishing the price groups according to consumers’

differential decision-making process.
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(ii) Price groups based on consumers’ differential purchase and renewal decisions from CTree coupled with

oversampling algorithm.
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A.7 Relative Feature Importance based on Boruta Algorithm

The boxplot shows the relative ranking of feature sets based on importance scoring, Z score. Ranked

features are ordered along the X-axis with color-coded. Three blue boxplot corresponds to shadow features

of minimum, average, and maximum values. The green boxplot corresponds to features that are considered

important and relevant, whilst the red boxplot is confirmed as unimportant. At times, the algorithm may

not be able to make a firm conclusion about feature importance, and in such instances, it is represented by

a yellow boxplot to imply uncertain feature importance.

Descriptive statistics illustrated below are based on the initial run of the Boruta algorithm. The

attributes marked as “tentative” from the initial Boruta execution are reassessed and revised descriptive

statistics are produced.

(i) Condo
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(ii) Home
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Appendix B

APPENDICES FOR CHAPTER 3

B.1 R Code simulation study of extended loss cost model

We present the R code built to generate inflated losses of multiperil insurance portfolios for 20-year durations.

#Simulation comparison between classical model & extended pure premium model

library(ggplot2)

library(simstudy)

library(PerformanceAnalytics)

library(gratia)

library(mgcv)

set.seed(123)

simdata = list()

for (i in 1:100) {

#duration from year 2000 till 2020

mth=seq(1, 252)

ddef = defData(varname = ”time”, formula=”1*..mth”, dist = ”nonrandom”)

#severity deflator for home

ddef = defData(ddef, varname = ”x1”, formula = ”0.05;0.3”, dist = ”uniform”)

ddef = defData(ddef, varname = ”x2”, formula = ”0.05;0.3”, dist = ”uniform”)

ddef = defData(ddef, varname=”socialinf”, formula = ”x1*2 + 1.5*log(time)”,dist = ”nonrandom”)
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ddef = defData(ddef, varname=”replacecost”, formula = ”x2 ∗ (2(0.01∗time))”,dist = ”nonrandom”)

ddef = defData(ddef, varname=”weatherevent”, formula = ”0.6*(log(time))”, dist = ”poisson”,

link=”log”)

ddef = defData(ddef, varname = ”error”, formula=0.05, variance = 0.01, dist= ”normal”, link=”identity”)

#Severity deflator for auto

ddef = defData(ddef, varname = ”x5”, formula = ”1;4”, dist = ”uniform”)

ddef = defData(ddef, varname=”sparepart”, formula = ”0.25*x5 + 1.5*log(time)”,dist = ”nonrandom”)

ddef = defData(ddef, varname = ”ATerror”, formula=0.03, variance = 0.01, dist= ”normal”,

link=”identity”)

#base severity & frequency for home

ddef = defData(ddef, varname=”Weather”, formula = ”sqrt(0.25*time)”, dist = ”poisson”, link=”log”)

ddef = defData(ddef, varname=”x3”, formula =1.75, variance = 0.4, dist= ”normal”)

ddef = defData(ddef, varname=”PropertyAge”, formula=”ceiling(exp(x3))”, dist = ”nonrandom”)

ddef = defData(ddef, varname=”RiskLoc”, formula=”0.3;0.6;0.1”, dist=”categorical”)

ddef = defData(ddef, varname=”LossType”, formula=”0.4;0.6”, dist=”categorical”)

ddef = defData(ddef, varname=”x4”, formula=11.6 ,variance =0.5, dist = ”gamma”,link = ”log”)

ddef = defData(ddef, varname = ”SVerror”, formula=0.3, variance =0.1, dist= ”gamma”, link=”identity”)

ddef = defData(ddef, varname = ”frq.error”, formula=0.05, dist= ”noZeroPoisson”, link=”identity”)

#base severity & frequency for auto

ddef = defData(ddef, varname=”VehicleType”, formula=”0.3;0.5;0.2”, dist=”categorical”)

ddef = defData(ddef, varname=”x6”, formula =45, variance = 5.5, dist= ”normal”)

ddef = defData(ddef, varname=”DriverAge”, formula=”ceiling(x6)”, dist = ”nonrandom”)

ddef = defData(ddef, varname=”x7”, formula=12.2 ,variance =0.2, dist = ”gamma”,link = ”log”)

ddef = defData(ddef, varname=”DrivingYears”, formula = ”0.5*sqrt(time)”, dist = ”noZeroPoisson”,

link=”identity”)

ddef = defData(ddef, varname = ”SVATerror”, formula=0.15, variance =0.05, dist= ”gamma”,

link=”identity”)

ddef = defData(ddef, varname = ”frqAT.error”, formula=0.07, dist= ”noZeroPoisson”, link=”identity”)

simdata[[i]]= genData(252, ddef)

simdt=simdata[[i]]

#TIV conditioning

defC = defCondition(condition = ”x4≤90000”, formula = ”90000+x4”,dist = ”nonrandom”)

defC = defCondition(defC, condition = ”x4>90000”,formula = ”x4”, dist=”nonrandom”)

283



simdt = addCondition(defC, simdt, ”TIV”)

defC = defCondition(condition = ”x7≤10000”, formula = ”10000+x7”,dist = ”nonrandom”)

defC = defCondition(defC, condition = ”x7>10000”,formula = ”x7”, dist=”nonrandom”)

simdt = addCondition(defC, simdt, ”ATTIV”)

#log TIV

def2 = defDataAdd(varname=”log.TIV”, formula=”log(TIV)”,dist=”nonrandom”)

simdt = addColumns(def2, simdt)

def3 = defDataAdd(varname=”log.ATTIV”, formula=”log(ATTIV)”,dist=”nonrandom”)

simdt = addColumns(def3, simdt)

#Convert risk location to factor & dummy

simdt= genFactor(simdt,”RiskLoc”, labels=c(”AB”,”BC”,”ON”),replace=TRUE)

simdt= genDummy(simdt, varname = ”fRiskLoc”, sep = ” ”)

#Convert loss type to factor & dummy

simdt= genFactor(simdt,”LossType”, labels=c(”Water”,”Other”),replace=TRUE)

simdt= genDummy(simdt, varname = ”fLossType”, sep = ” ”)

#Convert credit score to factor & dummy

simdt= genFactor(simdt,”VehicleType”, labels=c(”SUV”,”Sedan”,”Sports”),replace=TRUE)

simdt= genDummy(simdt, varname = ”fVehicleType”, sep = ” ”)

#HOME

#to obtain quartile of non-linear predictor for severity deflator

#predictor1: socialinf

theta1 = c(0.13,0.2,0.08,0.2,0.15,0.34,0.65)

#c(0.13,0.2,-0.07,0.2,0.15,0.4,0.65)

#predictor2: time for severity deflator

theta2 = c(0.1, 0.25, 0.12, 0.1, 0.15, 0.25,0.55)

#c(0.1, 0.25, 0.12, 0.1, 0.15, 0.25,0.4)

#predictor3: replacecost

theta3 = c(0.1, 0.3,0.07, 0.25, 0.35, 0.4, 0.6)

#c(0.1, 0.3,-0.2, 0.25, 0.35, 0.4, 0.5)

#to obtain quartile of non-linear predictor for base severity

#predictor4: log.TIV

theta4 = c(0.3,0.13,-0.1,0.19,0.1,0.3,0.25)

#predictor5: time for base severity
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theta5 = c(0.1, -0.05, 0.13, 0.15, 0.06, 0.17,0.2)

#predictor6: PropertyAge

theta6 = c(0.3, 0.18,0.2, 0.12, 0.15, 0.4, 0.45)

#AUTO

#to obtain quartile of non-linear predictor for severity deflator

#predictor7: spare part inflation rate

theta7 = c(0.35,0.08, 0.15,0.25,0.15,0.2,0.75)

#c(0.35,-0.1, 0.15,0.2,0.15,0.2,0.65)

#predictor8: time for severity deflator

theta8 = c(0.07, 0.21, 0.18, 0.1, 0.15, 0.26, 0.38)

#to obtain quartile of non-linear predictor for base severity

#predictor9: log.ATTIV

theta9 = c(0.12,0.05,0.15,-0.06,0.11,0.15,0.17)

#predictor10: time for base severity

theta10 = c(0.17, -0.07, 0.1, 0.13, 0.06, 0.17,0.12)

#predictor11: Driver Age

theta11 = c(0.07, 0.04,0.16, 0.1, 0.17, 0.12, 0.18)

#HOME response

#Spline1 of social inflation

simdt=genSpline(dt = simdt, newvar = ”Spline1”,predictor = ”socialinf”, theta = theta1,knots =

c(0.25,0.5,0.75), degree = 3, newrange = ”0.001;3”,noise.var = 0)

#Spline2 of time

simdt=genSpline(dt = simdt, newvar = ”Spline2”,predictor = ”time”, theta = theta2,knots =

c(0.25,0.5,0.75), degree = 3, newrange = ”0.001;2”,noise.var = 0)

#Spline3 of Replacement cost

simdt=genSpline(dt = simdt, newvar = ”Spline3”, predictor = ”replacecost”, theta = theta3, knots =

c(0.25,0.5,0.75), degree = 3, newrange = ”0.001;2”, noise.var = 0)

#predictor spline: log.TIV

simdt=genSpline(dt = simdt, newvar = ”Spl1”, predictor = ”log.TIV”, theta = theta4, knots =

c(0.25,0.5,0.75), degree = 3, newrange = ”0.001;3”, noise.var = 0)

#predictor spline: time

simdt=genSpline(dt = simdt, newvar = ”Spl2”, predictor = ”time”, theta = theta5, knots =

c(0.25,0.5,0.75), degree = 3, newrange = ”0.001;2.5”, noise.var = 0)
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#predictor spline: property age

simdt=genSpline(dt = simdt, newvar = ”Spl3”, predictor = ”PropertyAge”, theta = theta6, knots =

c(0.25,0.5,0.75), degree = 3, newrange = ”0.01;6.5”, noise.var = 0)

#AUTO response

#Spline4 of spare part inflation

simdt=genSpline(dt = simdt, newvar = ”Spline4”, predictor = ”sparepart”, theta = theta7, knots =

c(0.25,0.5,0.75), degree = 3, newrange = ”0.001;3”, noise.var = 0)

#Spline5 of time

simdt=genSpline(dt = simdt, newvar = ”Spline5”, predictor = ”time”, theta = theta8, knots =

c(0.25,0.5,0.75), degree = 3, newrange = ”0.001;2”, noise.var = 0)

#predictor spline: log.ATTIV

simdt=genSpline(dt = simdt, newvar = ”Spl4”,predictor = ”log.ATTIV”, theta = theta9, knots =

c(0.25,0.5,0.75), degree = 3, newrange = ”0.001;10”, noise.var = 0)

#predictor spline: time

simdt=genSpline(dt = simdt, newvar = ”Spl5”, predictor = ”time”, theta = theta10, knots =

c(0.25,0.5,0.75), degree = 3, newrange = ”0.001;10”,noise.var = 0)

#predictor spline: driver age

simdt=genSpline(dt = simdt, newvar = ”Spl6”, predictor = ”DriverAge”, theta = theta11,knots =

c(0.25,0.5,0.75), degree = 3, newrange = ”1;25”,noise.var = 0)

#Home response: Severity deflator, Claim Count, Claim Inflation Rate

addef= defDataAdd(varname = ”SevDefl”, formula=”Spline1 + Spline3 + Spline2 + (0.009*weatherevent)

+ error”, dist=”normal”,variance=0.018)

addef= defDataAdd(added, varname = ”InfRate”, formula=”(1+(SevDefl/100))”, dist = ”nonrandom”)

addef= defDataAdd(added, varname = ”z6”, formula = ”exp((0.0018*Weather) + (0.4* fRiskLoc ON) +

(0.6*fRiskLoc AB) +(0.45*fLossType Water) + 0.00001*log.TIV + frq.error)”, dist=”nonrandom”)

addef= defDataAdd(added, varname = ”ClaimCnt”, formula = ”z6”, dist=”noZeroPoisson”,

link=”identity”)

addef= defDataAdd(addef,varname = ”z5”, formula=”exp(-Spl1 + Spl2 + Spl3 + (0.0008*Weather) +

(0.9* fRiskLoc ON) +(1.7*fRiskLoc AB) + (0.8*fLossType Water) + SVerror)”,dist = ”gamma”, variance

= 0.1, link=identity)

addef= defDataAdd(added, varname = ”TotalBaseAmt”, formula=”600+x5”, dist = ”nonrandom”)

#Auto response: Severity deflator, Claim Count, Claim Inflation Rate

addef= defDataAdd(added, varname = ”AutoSevDefl”, formula=”Spline4 + Spline5 + ATerror”,
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dist=”normal”,variance=0.01)

addef= defDataAdd(added, varname = ”AutoInfRate”, formula=”(1+(AutoSevDefl/100))”, dist =

”nonrandom”)

addef= defDataAdd(added, varname = ”z7”, formula = ”exp((-0.15*DrivingYears) + (1.35*

fVehicleType SUV) + (2.95*fVehicleType Sports)+ 0.00001*log.ATTIV + frqAT.error)”,

dist=”nonrandom”)

addef= defDataAdd(added, varname = ”AutoClaimCnt”, formula = ”z7”, dist=”noZeroPoisson”,

link=”identity”)

addef= defDataAdd(added, varname = ”z8”, formula=”exp(Spl6 + Spl4 + Spl5 - (0.35*DrivingYears) +

(0.05*fVehicleType SUV)+(0.1*fVehicleType Sports) +SVATerror)”,dist = ”gamma”, variance = 0.16,

link=identity)

addef= defDataAdd(addef,varname = ”AutoTotalBaseAmt”, formula=”200+z8”, dist = ”nonrandom”)

simdata[[i]] = addColumns(addef, simdt)

simdt=simdata[[i]]

def2 = defDataAdd(varname=”BaseSev”, formula=”TotalBaseAmt/ClaimCnt”,dist=”nonrandom”)

def2 = defDataAdd(def2, varname=”AutoBaseSev”, formula=”AutoTotalBaseAmt/AutoClaimCnt”,

dist=”nonrandom”)

simdt = addColumns(def2, simdt)

simdata[[i]] = simdt

}

Data1=list()

i=0

#original inflation rate- home0.5-4.7% and auto0.1-3.3%

for(i in 1:100){

Data1[[i]]=simdata[[i]][,c(4,2:3,7:10,12:14,16,18:19,21,23:28,32,35,50:51,53,55:57,59,61:63)]

claimdata=Data1[[i]]

claimdata$Multiplier=cumprod(claimdata$InfRate)

claimdata$Sev=claimdata$Multiplier*claimdata$BaseSev

claimdata$AutoMultiplier=cumprod(claimdata$AutoInfRate)

claimdata$AutoSev=claimdata$AutoMultiplier*claimdata$AutoBaseSev

Data1[[i]]=claimdata

}
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B.2 R Code of GAMSAR regression function

R Code below confined to Poisson distribution, and the parameter estimation logic is based on the numerical

approach of modified Newton Raphson developed by Yang et al. [97].

gamSAR = function (formula, data, p.ar=1, h.fq=h, starts = starts, w = rep(1,NN), family = ”poisson”,

cc = 0.5, de = 0.01, control=list(...),...)

{

if(family$!=$”poisson”)

stop(”sorry, only poisson family is currently implemented”)

family=poisson()

control = do.call(”glm.control”, control)

times = control$maxit

epsilon = control$epsilon

if (missing(data))

data = environment(formula)

mf = match.call(expand.dots = FALSE)

m = match(c(”formula”, ”data”), names(mf), 0L)

mf = mf[c(1L, m)]

mf$drop.unused.levels = TRUE

mf[[1L]] = as.name(”model.frame”)

mf = eval(mf, parent.frame())

term.labels = attr(attributes(mf)$terms,”term.labels”)

mt = attr(mf, ”terms”)

y = model.response(mf, ”any”)

X = model.matrix(mt, mf, contrasts)

xnames = colnames(X)

ynames = names(y)

b =ncol(X)-1

p = p.ar

h = h.fq

NN = NROW(y)

pp =rep(0,p)

r=matrix(0,times+1,1+b+p)
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r[1,]=c(starts,pp)

#aa is part of design matrix for AR resar pearson residuals

aa=matrix(0,NN-(p*h),p)

#Q is partial derivative of eta (linear predictor) on every parameter

Q=matrix(0,NN-(p*h),b+p+1);

QQ=matrix(0,NN-(p*h),b+1)

#transpose of X

tX=t(X)

#all are variables used in the calculation

a=mm=n=u=numeric(NN);

yy=max(cc,y) avoid that y<0

yy=y

yy[y<cc]=cc

pan = 0

k=1

while(k<(times+1)&pan==0)

{

if(k==1)

#while in the first iteration #give the initial parameters.

{

bb=r[k,c(1:(b+1))];

pp=r[k,c((b+2):(b+p+1))];

#calculate a, the intermediate variable a. It is to used to determine the seasonal autoregression term

a=log(yy)-X%*%bb;

for(i in 1:p)

#modified to cater for GAMSAR with seasonal lag h

aa[,p-i+1]=a[((h*(i-1))+1):(NN-(p*h)+(h*(i-1)))]

n[((p*h)+1):NN]=(X%*%bb)[((p*h)+1):NN]+aa%*%pp+log(w)[((p*h)+1):NN]

u=exp(n)

#log partial likelihood lpl=ln(L)

lple=y[(1+(p*h)):NN]*n[(1+(p*h)):NN]-u[(1+(p*h)):NN]

lpl=sum(lple)

lpl0=lpl;
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}

#Q are partial derivatives of eta on each coefficient

#Since the first p*h time points don’t have the full AR terms

#Q matrix begin at time ((p*h)+1), Q[t,i] is the partial derivative of eta on the ith coefficient at time

point (t+(p*h)).

rp=rev(pp)

for(t in 1:(NN-(p*h)))

QQ[t,]=as.matrix(tX[,t:(t+p-1)])%*%rp

Q[,1:(b+1)]=X[(1+(p*h)):NN,]-QQ

Q[,(2+b):(1+b+p)]=aa

#dpl is the partial derivative of partial likelihood on each coefficient

edpl=(y[(1+(p*h)):NN]-u[(1+(p*h)):NN])*Q;

dpl=apply(edpl,2,sum)

#tt is fisher information matrix

tt=matrix(0,b+p+1,b+p+1);

for(t in 1:(NN-(p*h)))

{tt[1:(1+b),1:(1+b+p)]=tt[1:(1+b),1:(1+b+p)]+u[t+(p*h)]*Q[t,1:(1+b)]%*%t(Q[t,1:(1+b+p)])

tt[(b+2):(b+p+1),(b+2):(b+p+1)]=tt[(b+2):(b+p+1),(b+2):(b+p+1)] +

u[t+(p*h)]*Q[t,(b+2):(b+p+1)]%*%t(Q[t,(b+2):(b+p+1)])

for(j in (b+2):(b+p+1))

tt[1:(1+b),j]=tt[1:(1+b),j]+(y[t+(p*h)]-u[t+(p*h)])*X[t+p+b+1-j,1:(1+b)]

}

tt[(2+b):(1+b+p),1:(1+b)]=t(tt[1:(1+b),(2+b):(1+b+p)])

#eigen decomposition of tt

ev=eigen(tt);

#val is the eigen values of tt

val=ev$values;

#vec is the eigen vector matrix of tt

vec=ev$vectors;

#if all eigen values are larger than de, tt1 is the inverse matrix of tt

# else

if(all(val>de))

tt1=solve(tt) else
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{ tt[c(1:(b+1)),c((b+2):(b+p+1))]=matrix(0,b+1,p);

tt[c((b+2):(b+p+1)),c(1:(b+1))]=matrix(0,p,b+1);

tt1=solve(tt);

}

#l indicates whether it is the first time to change the coefficients in this iteration

l=1;

#to get the new coefficients, add adr to the former coefficients

adr=tt1%*%dpl;

#when the mode of adr is less than epsilon, make r[k+1]=r[k]

if(t(adr)%*%adr>epsilon)

{ #when the new lpl is larger than the old lpl, then r[k+1]= new coefficients

while(lpl≤lpl0)

{ if(l==1)

{

#new r=old r+adr

r[k+1,]=r[k,]+adr

#change the indicator l

l=l+1;

} else r[k+1,]=r[k,]+runif(1,0,1.5)*adr;

#new r=old r+adr

#get lpl for comparison

bb=r[k+1,c(1:(b+1))];

pp=r[k+1,c((b+2):(b+p+1))];

a=log(yy)-X%*%bb;

for(i in 1:p)

#modified to cater for GAMSAR with seasonal lag h

aa[,p-i+1]=a[((h*(i-1))+1):(NN-(p*h)+(h*(i-1)))]

n[((p*h)+1):NN]=(X%*%bb)[((p*h)+1):NN]+aa%*%pp+log(w)[((p*h)+1):NN]

u=exp(n)

lple=y[(1+(p*h)):NN]*n[(1+(p*h)):NN]-u[(1+(p*h)):NN]

lpl=sum(lple)

}

} else
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{r[k+1,]=r[k,];

pan=1;

}

lpl0=lpl;k=k+1

}

fit=list()

Estimate =r[k,]

Std.Error =sqrt(diag(tt1))

zvalue = Estimate/Std.Error

Pr = 2 * pnorm(-abs(zvalue))

fit$coefficients = cbind(Estimate, Std.Error, zvalue, Pr)

dimnames(fit$coefficients) =list(c(xnames,paste(”AR”, 1:p.ar, sep = ””)),c(”Estimate”,”Std.Error”,”z

value”,”Pr(> |z|)”))

names(n) = 1:NN

names(u) = 1:NN

n = n[-(1:(p*h))]

u = u[-(1:(p*h))]

fit$linear.predictor = n

fit$fitted.values = u

y = y[-(1:(p*h))]

w = w[-(1:(p*h))]

dev.resids = family$dev.resids

aic = family$aic

Pearson.res = (u-y)/sqrt(u)

phi =sum(Pearson.res2)/(NN-1-b-2*p)

fit$aic = aic(y, mu=u, wt=w) + 2 * (1+b+p)

fit$dev = sum(dev.resids(y, mu=u, wt=w))

fit$Pearson.residuals = Pearson.res

fit$phi = phi

fit$X = X

fit$loglikelihood = -(1/2)*aic(y, mu=u, wt=w)

ll= c(”Intercept”,term.labels,”AR”)

fc = c(attr(X, ”assign”),rep(max(attr(X,”assign”))+1,p))
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aaa = factor(fc, labels = ll)

asgn = split(order(fc), aaa)

nterms = length(asgn)

predictor = matrix(ncol = nterms, nrow = NN)

dimnames(predictor) = list(rownames(X), names(asgn))

aab=rbind(matrix(0,(p*h),p),aa)

X1 =cbind(X,aab)

for (i in seq(1,nterms)) {

iipiv = asgn[[i]]

predictor[, i] = X1[, iipiv, drop = FALSE] %*% Estimate[iipiv]

} fit$term.predictors = predictor[-(1:(p*h)),]

fit$pan = pan

fit

}
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B.3 Descriptive statistics of empirical loss count for trend

modelling

A simple linear regression model fitted to loss count to examine the temporal characteristics of the empirical

data:

yt = t+ εt, where

yt: empirical loss count

t: time (monthly basis)

εt: error term with iid Gaussian distribution of zero mean and variance, σ2.

Figure B.3.1: ACF and PACF residual plot of a simple linear regression model.

The ACF plot shows a combination of damped sine functions and an exponential decay pattern, whereas the

PACF plot shows a significant spike at lag 12, indicating the presence of a seasonality component. We plotted

the Seasonal-Trend decomposition of loss count variable (see Figure B.3.2) as well as the Durbin-Watson,

and Friedman rank test to confirm the seasonal effect (see Table B.3.1). The pair-wise correlation plot in

Figure B.3.3 confirms the negative association between loss count and TIV.
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Figure B.3.2: Time series decomposition of loss count variable.

Figure B.3.3: Time series decomposition of loss count variable.
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Table B.3.1: Temporal analysis of empirical loss count of personal property insurance.

Friedman Rank test

Hypothesis test:

Test statistics: 39.25 (P-value: 4.81× 10−5)

Conclusion: reject H0 and there is significant presences of seasonal variations.

Durbin-Watson test

Estimated autocorrelation at lag 12:

ρ̂12 = 0.6564

Hypothesis test:

D-W statistics: 0.3825 (P-value: 0.0)

Conclusion: reject H0 and there is significant presences of autocorrelation.
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B.4 Conventional loss severity trend modelling framework

We assume that all policies have a length of one year, and that they are written uniformly over the year. We

divide each accident year of equal length, and denote the accident period by I. The ultimate development

period is denoted by J . The incremental claim amounts and counts for accident period i, development period

j are denoted by Cij and Nij , respectively (see Figure B.4.1).

Figure B.4.1: Development of individual claim.

The framework is defined by two steps:

Step 1: Normalization method

The normalized loss severity of accident period, i are defined by:

Si =
∑J

j Cij∑J
j Nij

Step 2: Trend estimation and forecast

The trends are estimated using regression model with normalized loss severity as a response variable. The

general form of the commonly used regression model can be expressed as

Si = β0 + β1X1,i + β2X2,i + · · ·+ εi, where

X1,i, X2,i, . . . are explanatory loss variables, such as accident period, i, coverage limits, property risk

location, loss type or any other significant property risk attributes.

εi is a random error with E[εi] = 0.
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B.5 R Code synthetic data generation of loss development triangle

with claim inflation for severity trend modelling

We present the R code built to generate the loss triangle of dwelling coverage and disregard the content as

the algorithm procedure is identical except for the parameter values.

# Simulate 100 replication of loss triangle with inflation for dwelling coverage. library(SynthETIC)

library(ChainLadder)

library(dplyr)

library(PerformanceAnalytics)

library(GGally)

library(mgcv)

library(forecast)

library(fitdistrplus)

library(fabletools)

library(tictoc)

tic(”Dwellingclaimpayout”)

#Functions

#left truncated power normal distribution

S df = function(s) {

# truncate and rescale

if (s < 100) {

return(0)

} else {

p trun = pnorm(s0.2, 5.5, 1.55) - pnorm(1000.2,5.5, 1.55)

p rescaled = p trun/(1 - pnorm(1000.2, 5.5, 1.55))

return(p rescaled)

}

}

#dependence of notification delay on claim size and occurrence period of the claim

notidel param = function(claim size, occurrence period) {
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#specify the target mean and target coefficient of variation

target mean = min(3, max(1, 2-(log(claim size/(0.50 * ref claim))/3))/4 / time unit

target cv = 0.70

#convert to Weibull parameters

shape = get Weibull parameters(target mean, target cv)[1]

scale = get Weibull parameters(target mean, target cv)[2]

c(shape = shape, scale = scale)

}

#Claim settlement delay represents the delay from claim notification to closure

setldel param = function(claim size, occurrence period) {

if (claim size < (0.10 * ref claim) & occurrence period >= 21) {

a = min(0.85, 0.65 + 0.02 * (occurrence period - 21))

} else {

a = max(0.85, 1 - 0.0075 * occurrence period)

}

mean quarter = a * min(25, max(1, 6 + 4*log(claim size/(0.10 * ref claim))))

target mean = mean quarter / 4 / time unit

#specify the target Weibull coefficient of variation

target cv = 0.60

c(shape = get Weibull parameters(target mean, target cv)[1, ],

scale = get Weibull parameters(target mean, target cv)[2, ])

}

#number of partial payments from a mixture distribution

rmixed payment no = function(n, claim size, claim size benchmark 1, claim size benchmark 2) {

# construct the range indicators

test 1 = (claim size benchmark 1 < claim size & claim size <= claim size benchmark 2)

test 2 = (claim size > claim size benchmark 2)

# if claim size <= claim size benchmark 1

no pmt = sample(c(1, 2), size = n, replace = T, prob = c(1/2, 1/2))

# if claim size is between the two benchmark values

no pmt[test 1] = sample(c(2, 3), size = sum(test 1), replace = T, prob = c(1/3, 2/3))
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# if claim size > claim size benchmark 2

no pmt mean = pmin(8, 4 + log(claim size/claim size benchmark 2))

prob = 1 / (no pmt mean - 3)

no pmt[test 2] = stats::rgeom(n = sum(test 2), prob = prob[test 2]) + 4

no pmt }

#sizes of partial payments conditional on the number of partial payments from mixed distribution

rmixed payment size = function(n, claim size) {

# n = number of simulations, here n should be the number of partial payments

if (n >= 4) {

# 1) Simulate the ”complement” of the proportion of total claim size represented by the last two payments

p mean = 1 - min(0.95, 0.75 + 0.04*log(claim size/(0.10 * ref claim)))

p CV = 0.20

p parameters = get Beta parameters(target mean = p mean, target cv = p CV)

last two pmts complement = stats::rbeta(1, shape1 = p parameters[1], shape2 = p parameters[2])

last two pmts = 1 - last two pmts complement

# 2) Simulate the proportion of last two pmts paid in the second last payment

q mean = 0.9

q CV = 0.03

q parameters = get Beta parameters(target mean = q mean, target cv = q CV)

q = stats::rbeta(1, shape1 = q parameters[1], shape2 = q parameters[2])

# 3) Calculate the respective proportions of claim amount paid in the last 2 payments

p second last = q * last two pmts

p last = (1-q) * last two pmts

#4) Simulate the unnormalised proportions of claim amount paid in the first (m - 2) payments

p unnorm mean = last two pmts complement/(n - 2)

p unnorm CV = 0.10

p unnorm parameters = get Beta parameters(target mean = p unnorm mean, target cv = p unnorm CV)

amt = stats::rbeta(n - 2, shape1 = p unnorm parameters[1], shape2 = p unnorm parameters[2])

# 5) Normalise the proportions simulated in step 4

amt = last two pmts complement * (amt/sum(amt))
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# 6) Attach the last 2 proportions, p second last and p last

amt = append(amt, c(p second last, p last))

# 7) Multiply by claim size to obtain the actual payment amounts

amt = claim size * amt

} else if (n == 2 — n == 3) {

p unnorm mean = 1/n

p unnorm CV = 0.10

p unnorm parameters = get Beta parameters(target mean = p unnorm mean, target cv = p unnorm CV)

amt = stats::rbeta(n, shape1 = p unnorm parameters[1], shape2 = p unnorm parameters[2])

# Normalise the proportions and multiply by claim size to obtain the actual payment amounts

amt = claim size * amt/sum(amt)

} else {

# when there is a single payment

amt = claim size

}

return(amt)

}

#inter-partial delays

r pmtdel = function(n, claim size, setldel, setldel mean) {

result = c(rep(NA, n))

# First simulate the unnormalised values of d, sampled from a Weibull distribution

if (n >= 4) {

# 1) Simulate the last payment delay

unnorm d mean = (1 / 4) / time unit

unnorm d cv = 0.20

parameters = get Weibull parameters(target mean = unnorm d mean, target cv = unnorm d cv)

result[n] = stats::rweibull(1, shape = parameters[1], scale = parameters[2])

# 2) Simulate all the other payment delays

for (i in 1:(n - 1)) {

unnorm d mean = setldel mean / n

unnorm d cv = 0.35
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parameters = get Weibull parameters(target mean = unnorm d mean, target cv = unnorm d cv)

result[i] = stats::rweibull(1, shape = parameters[1], scale = parameters[2])

}

} else {

for (i in 1:n) {

unnorm d mean = setldel mean / n

unnorm d cv = 0.35

parameters = get Weibull parameters(target mean = unnorm d mean, target cv = unnorm d cv)

result[i] = stats::rweibull(1, shape = parameters[1], scale = parameters[2])

}

}

# Normalise d such that sum(inter-partial delays) = settlement delay

# To make sure that the pmtdels add up exactly to setldel, we treat the last one separately

result[1:n-1] = (setldel/sum(result)) * result[1:n-1]

result[n] = setldel - sum(result[1:n-1])

return(result)

}

param pmtdel = function(claim size, setldel, occurrence period) {

# mean settlement delay if (claim size < (0.10 * ref claim) & occurrence period >= 21) {

a = min(0.85, 0.65 + 0.02 * (occurrence period - 21))

} else {

a = max(0.85, 1 - 0.0075 * occurrence period)

} mean quarter = a * min(25, max(1, 6 + 4*log(claim size/(0.10 * ref claim))))

target mean = mean quarter / 4 / time unit

c(claim size = claim size,setldel = setldel,setldel mean = target mean)

}

dwel rate = (1 + 0.02)(1/4) − 1

base inflation past = rep(dwel rate, times = 40)

base inflation future = rep(dwel rate, times = 40)

base inflation vector = c(base inflation past, base inflation future)

# Superimposed inflation

# 1) With respect to occurrence time (continuous scale)

SI occurrence = function(occurrence time, claim size) {
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if (occurrence time <= 20 / 4 / time unit) 1

else 1 - 0.4*max(0, 1 - claim size/(0.15 * ref claim))

}

# 2) With respect to payment time (continuous scale)

# compounding by user-defined time unit

SI payment = function(payment time, claim size) {

{1}

}
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B.6 Descriptive statistics of simulated severity components for

separation and DMT framework

The pairwise correlation plot with covered peril and quarterly time point (accident or calendar time basis)

as predictors, and severity components (base severity or severity deflator) as a response variable.

Figure B.6.1: Pairwise correlation plot of the estimated average severity deflator using the arithmetic
separation technique.

Over 100 replications, the simulated data show that the accident quarter has a mixed correlation with the

average inflation index (raw inflation index computed using the separation approach) per covered peril type,

with mean Pearson correlations of 0.00862 and -0.901 for dwelling and contents, respectively. These statistics

are intended to demonstrate the heterogeneity in the simulation setup for both coverages. This implies that

the inflation index may have a negligible impact on some coverages type while it has a strong negative

impact on others. The heterogeneity of claim inflation indicates that the traditional trend modelling method

for some special insurance portfolios may fail to consider the actual calendar period loss trend differences,

therefore a new trend prediction framework should be considered.
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Figure B.6.2: Pairwise correlation plot of a base severity obtained from smoothed severity deflator variable
modelled through GAM.

According to the silo approach, the mean correlation (over 100 replications) of base severity (derived

from smoothed severity deflator using the GAM regression) and accident quarter per coverage type yields

0.86 and 0.92 for dwelling and contents, respectively. Meanwhile, the mean correlation between base severity

and accident quarter for the combined strategy is 0.17. The results show that modelling the severity deflator

separately for each coverage of the multiperil portfolio is a key trend prediction technique for ensuring the

accuracy of the estimated base severity is achieved with lower prediction errors and concurrently obtained

reliable loss severity trend forecast values. Additionally, the results show that the aggregate estimation

technique has a considerable negative impact on trend modelling, which indicates that underestimated pure

premium is likely to be anticipated for future exposure.
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Figure B.6.3: Pairwise correlation plot of a base severity obtained from smoothed severity deflator variable
modelled through GLM.

The computed mean correlations (over 100 replications) between base severity and accident quarter per

coverage exhibit mixed association when the smoothed deflator modelled using GLM for a silo approach, with

dwelling having a strong negative association with respect to accident quarter of -0.93, while contents coverage

have a strong positive association of 0.79. While The combined approach’s mean estimated correlation is

-0.98, indicating a negative relationship between base severity and accident period. The reported results

clearly exemplify the importance of the risk modelling assumptions.
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