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Abstract

In the current era of software development, multi-language codebases are common, and change propaga-

tion in these codebases is challenging. The existing change propagation tool ModCP is a solution that

can assist software developers with propagating changes across several languages, but only one at a time.

However, ModCP has some architectural problems in that make supporting new languages hard to develop

and maintain for a long time. In addition, supporting change propagation across code snippets consisting of

a programming language embedded inside a different programming language would be a useful feature for

ModCP. To achieve this, we must detect the embedded code snippets in a code being analyzed by ModCP.

In this thesis, we develop a new, more efficient architecture for ModCP, involving a single abstract model

that each language extends for its usage, resulting in complete isolation between language results. We

compare our approach with a baseline version that uses the same, concrete model for all languages and adds

new models when necessary. Our approach reduces code complexity and development time and makes code

more compatible with best practices of development compared to the baseline.

Moreover, we design a system for ModCP to guess and validate the programming language used in

code snippets, based on the initial detection of keywords, as input to execute change propagation for multi-

language codes embedded inside each other. We compare our keyword detection approach with existing deep

learning and brute force approaches and show that our method is the best choice if accuracy, performance,

and scalability are needed simultaneously.
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Chapter 1

Introduction

Software maintenance is the process of modifying and updating systems to improve performance, fix bugs,

and satisfy new requirements (Bennett and Rajlich, 2000). Maintenance is a crucial part of a software’s

life cycle, and over time it gets more expensive and complex as the code base grows: software maintenance

can account for up to 90% of the total cost of software ownership (Dehaghani and Hajrahimi, 2013). As a

result, software maintenance activities can be a significant source of risk, impacting the cost of the software

development process. The “manual” maintenance of software by software developers (i.e., without the use of

specialized software tools possessing syntactic or semantic knowledge of the programming language in use)

can be prone to various types of errors; to mitigate this risk, utilizing software development and analysis tools

(SDATs) can aid in semi-automating the process, by identifying potential changes, implementing changes,

and detecting errors (Fenton and Neil, 2000; Johnson et al., 2013).

SDATs play an important role in the software development process by providing automated support

for tasks such as code analysis, testing, and debugging, which can significantly reduce the time and cost

associated with finding software bugs or defects compared to manual inspections (Johnson et al., 2013).

Dependencies are the relationships and interactions between various entities within a software system, such

as components, objects, packages, and functions; dependencies manifest themselves through direct or indirect

means and in contexts that are static, dynamic, or a hybrid of both (Arias et al., 2008; Angerer, 2014). Such

dependencies may result in subsequent changes to dependent entities as a result of modifications to the

source code of the entities upon which they depend. The management of dependencies within the system is

critical in maintenance tasks such as change propagation, refactoring, and code reuse (Arnold and Bohner,

1996). Developers use SDATs to conduct such tasks in different development contexts such as code review

and continuous integration (Vassallo et al., 2019).
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Software change impact analysis (CIA) involves the identification of potential consequences of change,

or estimating what needs to be modified to accomplish a change (Basri et al., 2015) — “estimating” due to

the imprecise knowledge of the impending changes and to the limits of computability. Static change impact

analysis techniques involve an examination of the program’s syntax, semantics, relationships with other

components of the system, and dependencies. The analysis process often encompasses a review of program

artifacts such as code comments, data flow diagrams, control flow graphs, and other relevant components.

By analyzing these elements, potential impacts of changes can be identified, enabling developers to identify

and mitigate any issues that may arise from modifying the code (Sun et al., 2015).

In the context of software development, change propagation (CP) refers to the updating of program

outputs or results due to a modification in its inputs (Acar et al., 2005, 2006); this technique aims to ensure

that the system remains consistent and functional despite changes made to its components or dependencies.

We can think of CIA as a way to prevent potential problems before making changes to a system, a proactive

approach aimed at avoiding unexpected software defects or system failures that could arise due to the change,

whereas CP is a reactive approach that aims to ensure that changes made to a system are correctly reflected

in its output.

Once the change impact analysis is performed and the potential consequences of changes are estimated,

developers may decide to implement the changes. However, in some cases, the implementation of changes

may not be easy due to strongly coupled code entities or the relevant implementations being spread across

multiple locations. Therefore, developers may resort to refactoring to make changes easier to implement

(Fowler, 2019). It is important to exercise caution during the refactoring process to ensure that unintended

consequences do not arise. This is where change propagation becomes useful, as it identifies unintended

changes and corresponding secondary changes needed to keep the system in a consistent state (Men, 2018).

ModCP is a change propagation tool designed by Men (2018) that utilizes a unique dependency model to

detect statement-level dependencies and to update the model incrementally. This model allows ModCP to

efficiently analyze large code bases in terms of space and time. This tool performs incremental maintenance

that makes it able to synchronize with changes in large-scale models with a 96% faster rate on average

compared to re-building the model from scratch. In addition, ModCP has been shown to enhance developer

productivity by completing tasks up to 50% faster (Men, 2018). Initially, the tool was specifically designed

for the analysis of Java source code.
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1.1 Supporting multiple languages in ModCP

In the next step of the development of ModCP, the industrial partner of the ModCP project (Find it EZ

Software Corporation1) required an extension in order to accommodate new languages. We aimed to support

some common and popular languages in use by the customers of Find it EZ: Java (Arnold et al., 2005),

C# (Microsoft, 2022a), and Transact-SQL (T-SQL) (Microsoft, 2022b). The implementations for Java,

C#, Python (Python Software Foundation, 2022), and T-SQL were initially created by Afzal (2020). This

expansion allowed for the analysis of multilingual code bases, increasing the tool’s utility and versatility.

Yet another language/technology of particular significance to Find it EZ is Crystal Reports (SAP, 2023),

a business intelligence application that enables the creation and generation of reports from various data

sources. Crystal Reports offers a specialized programming language referred to as Crystal Reports Formula

Language (CRL). This language is used for implementing complex formulas and custom functions within

Crystal Reports. With the use of CRL, data manipulation and analysis within reports are made possible;

it allows for the execution of calculations, design, and layout control of reports, as well as the capability to

create custom charting and graphing features.

1.1.1 Previous work

Previous efforts by Afzal (2020) to incorporate new languages in ModCP employed a methodology that aimed

to maximize the utilization of existing language models and classes for new languages, with extensions only

being implemented as a last resort. The ModCP codebase comprised a Visual Studio solution with a set

of projects therein. The main project, called Core, included models that represented abstract syntax trees

and parsers for each language supported. The solution utilized by Afzal to support multiple languages

relied on the same models for all supported languages and, in specific cases, added supplementary classes

to provide the necessary functionality, subclassing wherever possible to minimize code duplication. This

approach was effective and efficient when supporting a limited number of similar languages, such as C# and

Java. However, this approach might result in excessive use of anti-patterns such as Swiss army knife (Din

et al., 2012) or spaghetti code (Moha et al., 2010) and an increase in code complexity, making it difficult to

support subsequent new languages.

1.1.2 Our solution

As an alternative, we implement a new approach to support all existing languages, including the addition

of Crystal Reports. We compare this approach to the previous methodology through the examination of

1https://www.finditez.com/ [accessed 2023/03/28]
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complexity measures and factors involving the speed of development to determine which approach is more

promising.

Refactoring to Separate Core from Extensions

Professor Robert Walker performed a major refactoring of the original codebase to eliminate all language-

specific details from the Core project, which retained the central CP algorithms and a generic framework for

extension to specific languages and technologies; all the language-specific details were moved to the Exten-

sions project, with one sub-project dedicated per supported language/technology; the sub-projects retain

dependencies on the Core project but not on each other. The test suite from the original implementation

by Men (2018) was extended and used to validate the refactored codebase. The goal was to improve the

maintainability of the core functionality of ModCP, while increasing the cohesion of the language-specific

sub-projects and decreasing the coupling between the various projects and sub-projects as much as possible.

Supporting multiple languages based on the architecture of Walker’s version

Our development approach continues the work done by Professor Walker. The strategy we employ within

the Extensions project is to keep each language model separate from one another. The languages will only

extend the base models defined in the Core project, and no files or models will be shared among them. This

approach will help to minimize the complexity of both Core and Extensions projects, hopefully improving

their maintainability and scalability for the future addition of new languages. Prior to the work undertaken

in this thesis, it remained to be seen whether the refactored design for ModCP was an improvement in

practice.

We implement support for C#, T-SQL, and CRL (in addition to Java, already provided therein), and

we compare our development metrics with those for Afzal’s version to determine whether our alternative is

successful in terms of reducing complexity and increasing scalability or not.

1.1.3 Our evaluation

For evaluating our approach, we use various metrics. To evaluate the efficiency of our ModCP extension,

we compare the maintainability and code complexity metrics of our ModCP version with that of the version

developed by Afzal (2020). Our designed research question to evaluate this section is:

• RQ1: Is our approach able to simplify the codebase and decrease its complexity when compared to

Afzal’s version?

We conclude that our approach makes the code less complex and more maintainable.

4



1.2 Identifying embedded languages

1.2.1 Problem

During the implementation of the support for Crystal Reports within ModCP, several instances were en-

countered where SQL code was embedded within CRL in the form of string literals. This pattern was also

observed with the use of SQL in Java and C# code. As the development of ModCP centres around a change

propagation tool, the ability to parse, model, and analyze code embedded within string literals is a crucial

but missing feature of this tool. To establish a relationship between the hosting code and code embedded

within string literals, it is necessary to determine whether a string literal in question represents a piece of

code or simply a regular string. To address this, we design and implement an approach that takes a string

as input and outputs a determination as to which programming language it is written in; performance and

accuracy are essential factors in the implementation of this tool, which has been integrated into the ModCP

codebase. We evaluate its performance and accuracy in comparison to a brute force model (a model that

tries all available parsers against the given input), an existing tool that employs deep learning approaches

(called Guesslang, described in Section 2.2.4), and a Unix command named file to guess the programming

language in which a string is written.

1.2.2 Previous work

To determine the programming language of a given string, a method is the use of the Guesslang (Somda,

2021) repository, which employs artificial intelligence and deep learning techniques. This method has the

advantage of supporting multiple languages with minimal implementation effort simply by training large

numbers of samples. However, its downside is that it is slower than desired for our specific uses in ModCP.

Another useful tool for this use case is the Unix file command (Darwin, 2011). This tool determines

the type of the given input file and supports a wide range of file types, from multimedia to text files, and

can also specify the programming language of some of the input text files. It uses a predefined database of

file signatures, and whenever it faces a new file, it tries to match the existing patterns in the file with its

database and provides a guess for the type of the given file.

A potential alternative for identifying the programming language of a given text is the brute force method.

This approach involves running the parser of each language generated from the ANTLR grammar against

the input text. If some existing parser is able to parse the input text without any errors, it is considered the

correct parser for that language. While this approach has a precision of 100%, meaning no false positives, its

main disadvantage is the difficulty in supporting new languages. This is because implementing the grammar
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and parser for each version of a language is time-consuming, and adding more languages exponentially

increases the time it takes to run all parsers, making the approach non-scalable.

1.2.3 Our solution

To identify an embedded language used within a string, we employ a technique known as keyword detection.

We have a set of expected languages, and for each language, we have a set of keywords specific to that

language. When a string input is received, the input stream is tokenized into a set of words, and the number

of common tokens between the input stream and each set of language keywords is counted. If the count of

shared keywords for a particular language exceeds a predetermined threshold, that language is considered a

potential match. Following this stage, the languages are sorted in descending order based on the number of

tokens matched from the input string. For each language, its parser is applied to the given input stream,

and the first parser that is able to parse the string without error is identified as the language used within

the input stream.

1.2.4 Our evaluation

We evaluate our keyword detection approach by comparing it with Guesslang, file, and the brute force

approaches in terms of accuracy, performance, and scalability.

Our designed research question to evaluate this section is:

• RQ2: How accurate is our approach compared to the brute force approach, Guesslang, and file?

• RQ3: How does the performance of our approach compare to the brute force approach, Guesslang, and

file?

• RQ4: How scalable is our approach in terms of performance for supporting new languages?

Our findings suggest that our keyword detection approach is superior to the other approaches if all three

aspects need to be achieved. This means that if the primary concern is accuracy while scalability is not a

major consideration, the brute-force approach can be employed. However, if both accuracy and scalability

are important but response time is not a concern, Guesslang can be utilized as it doesn’t require additional

implementation for new languages. Our proposed approach strikes a balance between these factors.

1.3 Non-disclosure agreement with the industrial partner

The theses of Men (2018), Afzal (2020), and Singh (2021) are subject to the terms of the Research Agreement

between Find it EZ Software Corporation and the Governors of the University of Calgary made effective
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on 1 November 2017. This thesis is subject to the terms of the Research Agreement between Find it EZ

Software Corporation and the Governors of the University of Calgary made effective on 1 September 2022.

In addition, all four students (including Shahryar Soltanpour) have agreed individually to non-disclosure

and intellectual property agreements with Find it EZ Software Corporation. In a nutshell, we agree to not

disclose confidential information of Find it EZ Software Corporation, and the title to all research results

are the property of Find it EZ Software Corporation (including the software and other artifacts produced

during these projects); we retain the right to use these artifacts for further research and to publish any

research results arising from these research projects not divulging confidential information in the process.

As such, we agree not to publish detailed accounts of the software created by each student, providing only

high-level overviews that do not suffice to reproduce the software in question: this is closed-source software,

as agreed to by all the parties. The four students received financial incentives for agreeing to these terms,

and Professor Robert Walker received grant funding.

1.4 Thesis statement

The thesis of this dissertation is: (a) that our approach to extending ModCP results in a reduction in

complexity, and therefore an increase in its maintainability and scalability; and (b) that our approach for

identifying the language of a given string, compared to currently existing machine learning model, file, and

the brute force baseline, shows superior accuracy and performance.

1.5 Thesis outline

The remainder of the thesis is structured as follows. Chapter 2 describes relevant literature and details

of the development of ModCP, highlighting the issues encountered during implementation utilizing prior

versions; it also describes scenarios in which the detection of the language of embedded strings and their

relationship to the surrounding code is necessary, mentioning tools for detecting programming languages in

strings. Chapter 3 examines the design and implementation of the new extension strategy in ModCP and

the implementation of Crystal Reports using this method, as well as the implementation of the embedded

language detection algorithm. In Chapter 4, measurements are presented to demonstrate the accuracy,

performance, and overall quality of the code in comparison to previous implementations. Chapter 5 discusses

the potential limitations and implications of the work. Chapter 6 concludes the thesis.
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Chapter 2

Related Work and Background

In this chapter, we begin by presenting situations where it is necessary to identify and parse embedded code

to determine its connection with the hosting code, as well as the tools used for detecting embedded languages.

We also examine the versioning process of ModCP, outlining the changes made in each version and addressing

any architectural issues that arise. Additionally, the chapter explores how our implementation of ModCP

extends previous versions.

2.1 Embedded language occurrences

There are numerous instances within the C#, Crystal Reports, and Java languages in which SQL code is

embedded within a string and interacts with the embedding code. In such scenarios, the ability to accurately

identify the embedded language proves invaluable, as it allows for the selection of the appropriate parser

and the execution of ModCP, ultimately resulting in the creation of a highly beneficial change propagation

graph between the embedding and embedded code.

2.1.1 SQL embedded in Java

As shown in Listing 2.1, the function findPersonById(..) takes two input arguments, the id of the requested

user and an instance of the Connection class to be able to connect to the database. The SQL query is

embedded at line 2; lines 2–5 set the value of id in the query and fill the ResultSet variable with the query

execution result. If a record with this id is found, the condition expression in line 6 will be true. Fields

defined in line 2 are used in lines 8–11 to extract id, first name, last name, and age fields from the ResultSet

object; these are then inserted into a Person object that is returned.
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If it is possible to parse the string content within the rawQuery variable, a correlation can be established

between the SQL query on line 2 of the code and the Java code on lines 8–11.

2.1.2 SQL embedded in Crystal Reports

The embedding of SQL within Crystal Reports represents a frequent use case within the code examples of

our industrial partner; thus, the ability to accurately detect this occurrence holds significant industrial value.

Listing 2.2 is a simplified example of a Crystal Reports file containing embedded SQL. We can see that

a variable named RenewalDate is defined in line 3 in the Crystal Reports code; this variable is used in the

embedded SQL query in line 12 and is also used in the Crystal Reports formula in line 20. As we can see,

these two code snippets share the use of this variable; we should be able to establish a connection between

these in ModCP.

2.1.3 JavaScript embedded in HTML.

A prevalent example of embedded languages is the utilization of JavaScript within HTML to create dynamic

web pages. In Listing 2.3, a header element is defined with id greeting in line 7, and a button is defined

with id changeBtn in line 8. Line 12 in the JavaScript code tries to get the document with greeting id and

line 15 tries to get the element with changeBtn id. By writing lines 18–21 we will update the text value

of the header element whenever the button is clicked. If we update the id of elements in line 7 or 8, we

should update the JavaScript codes at lines 12 and 15, respectively. Therefore, a change propagation tool

can monitor modifications to these codebases, alerting the developer to the need for updates to one language

when changes are made to the other.

2.2 Potentially useful means to identify embedded languages

In this section, we explore existing techniques for detecting embedded language code snippets. We begin by

discussing the brute force approach and its pros and cons. Then, we delve into machine learning concepts

and their applications. Next, we describe Guesslang, which utilizes machine learning, and Linguist, a tool

from a related field, and finally, we will describe file, a Unix command used to determine the programming

language of the given input.

9



1 public Person findPersonById(int id, Connection conn) {
2 String rawQuery = ”SELECT id, first name, last name, age FROM sample table WHERE id = ?”;
3 PreparedStatement pstmt = conn.prepareStatement(rawQuery);
4 pstmt.setInt(1, id);
5 ResultSet rs = pstmt.executeQuery();
6 if (rs.next()) {
7 Person person = new Person();
8 person.setId(rs.getInt(”id”));
9 person.setFirstName(rs.getString(”first name”));

10 person.setLastName(rs.getString(”last name”));
11 person.setAge(rs.getInt(”age”));
12 return person;
13 }
14 else {
15 return null;
16 }
17 }

Listing 2.1: SQL embedded in Java.

1 Main Body
2 Report Parameters
3 Parameter: @RenewalDate
4 Type: DateTime
5 ListType: Static
6 Tables
7 Table: Command
8 Connection: Connection #1
9 SQL Command: SELECT ∗ FROM

10 DentalFee
11 WHERE
12 DentalFee RenewalDate = {?@RenewalDate}
13 Parameters: @RenewalDate
14

15 Formula Fields
16 Field: lblMsgBody4
17 Formula: WhilePrintingRecords;
18 shared stringVar lblMsgBody4;
19

20 lblMsgBody4 := REPLACE( lblMsgBody4, '<!−−RenewalDate−−>', CStr( {?
@RenewalDate}, ”d−MM−yyyy” ) )

Listing 2.2: SQL embedded in Crystal Reports.
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1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>DOM Manipulation</title>
5 </head>
6 <body>
7 <h1 id=”greeting”>Hello, World!</h1>
8 <button id=”changeBtn”>Change Greeting</button>
9

10 <script>
11 // Select the greeting element
12 let greeting = document.querySelector('#greeting');
13

14 // Select the change button
15 let changeBtn = document.querySelector('#changeBtn');
16

17 // Add a click event listener to the change button
18 changeBtn.addEventListener('click', function() {
19 // Change the greeting text
20 greeting.textContent = 'Welcome to my website!';
21 });
22 </script>
23 </body>
24 </html>

Listing 2.3: JavaScript embedded in HTML.

2.2.1 Brute force

One potential solution for identifying the language of an embedded code snippet is a brute-force approach.

This approach involves implementing the grammar of each language and testing the input string against

all the generated parsers to identify any matches. If a match is found, the language of the input can be

determined, while the lack of a match indicates that the input is not written in any language currently

supported by the system. This approach provides 100% precision with no false positives. However, the

process of running the input string against each grammar is resource-intensive and not easily scalable as

the number of supported languages increases. In addition, we may need to develop and maintain different

grammars for different versions of the same language which makes this approach more difficult to maintain

and scale.

2.2.2 Machine learning

The field of machine learning investigates how computers can replicate human learning processes, acquire new

knowledge and skills, recognize existing information, and continually enhance their performance. In contrast

to human learning, machine learning can learn at a faster rate and rapidly accumulate knowledge, which
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can be easily disseminated to produce tangible results. As a result, any advancements made by humans in

machine learning can significantly improve the capacity of computers and thereby impact society as a whole

(Rebala et al., 2019). Another important aspect of machine learning is its potential for knowledge transfer.

Once a machine learning model has been trained on a particular dataset or task, it can be reused or adapted

for other similar tasks or domains. This means that the knowledge acquired through machine learning can

be easily shared, replicated, and scaled, leading to faster progress and more rapid innovation.

Supervised and unsupervised learning are two major types of machine learning approaches, each with its

own strengths and applications. Supervised learning is a type of machine learning in which the algorithm

learns to make predictions or decisions based on labelled data. In other words, the algorithm is trained on a

dataset in which the correct answers or outcomes are already known, and it learns to make accurate predic-

tions by identifying patterns in the input data that are associated with the correct answers. Unsupervised

learning is a type of machine learning in which the algorithm learns to identify patterns and structures in

unlabelled data; unlike with supervised learning, there is no predefined “correct” answer or outcome for the

algorithm to learn from. Instead, the algorithm must discover hidden structures and relationships in the

data on its own, and use this information to organize the data or make predictions (Dahiya et al., 2022).

2.2.3 Neural networks

Neural networks (Lawrence, 1993; Müller et al., 1995; Gurney, 1997) are computational models used in

machine learning that mimic the structure and function of the human brain. They are composed of in-

terconnected processing units, called neurons, which are organized in layers. Neurons receive input signals

from the previous layer and apply a mathematical operation to these inputs to produce an output signal

that is then transmitted to other neurons in the next layer. Each connection between neurons in a neural

network is assigned a weight, which determines the strength of the connection. During the training phase,

the weights are adjusted using an optimization algorithm based on the input–output pairs presented to the

network. The goal of the training process is to minimize the difference between the predicted output and

the true output for a given input. Once the weights have been learned, the neural network can be used to

make predictions on new input data.

Neural networks have found applications in diverse fields such as science, medicine, and engineering,

delivering state-of-the-art solutions in some cases. However, some researchers believe that neural networks

have been used indiscriminately in situations where simpler methods could have been more effective, leading

to a somewhat negative perception of them (Krogh, 2008).
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2.2.4 Deep learning

Deep learning (LeCun et al., 2015; Goodfellow et al., 2016) is a technique that employs multiple layers of

artificial neurons to learn complex patterns and relationships in data, thereby enabling accurate predictions

or decisions in a variety of applications. Supervised and unsupervised learning methods are used in deep

learning, depending on the task and dataset. Supervised learning involves training deep learning algorithms

using labelled data to recognize and classify objects in images, to transcribe speech into text, or to translate

between languages, while unsupervised learning involves learning useful features or representations of the

data without explicit supervision or feedback.

One of the key benefits of deep learning is its ability to learn from large and complex datasets, such

as images, videos, or natural language text, without requiring manual feature engineering. Deep learning

algorithms automatically extract relevant features from raw data, reducing the amount of manual labor and

expertise needed to develop effective machine learning models. Additionally, deep learning algorithms are

able to generalize well to new and unseen data due to their ability to learn high-level representations of the

data, making them well-suited for real-world scenarios that require robust and reliable performance.

Overall, deep learning has enabled significant advancements in a wide range of fields, including computer

vision, natural language processing, robotics, and self-driving cars, making it a powerful and flexible approach

to machine learning.

2.2.5 TensorFlow

TensorFlow (Abadi et al., 2015) is a free and open-source software library developed by Google for carrying

out numerical computation and machine learning tasks. Its primary purpose is to assist in the creation

of machine learning models, with a focus on neural networks, and to perform large-scale numerical tasks

efficiently. At its core, TensorFlow provides a range of tools that enable the creation and execution of

computational graphs, which are a way of representing mathematical operations as a directed graph. Each

node in the graph represents a mathematical operation, while the edges between them indicate the flow of data

between nodes. By utilizing the distributed computing capabilities of modern hardware, TensorFlow allows

for the efficient execution of complex computational graphs. In addition to computational graph capabilities,

TensorFlow includes high-level APIs that simplify the process of building neural networks and other machine

learning models. These APIs provide pre-built components for common tasks, such as data preprocessing,

model training, and inference, making it easier for developers to create complex models. With a large and

active user community, TensorFlow has become one of the most popular machine-learning libraries in the

world. It has found application in a wide range of fields, including image and speech recognition, natural
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language processing, and robotics (Singh et al., 2020).

2.2.6 Linear classification

Linear classification is a valuable machine learning technique due to its efficiency in both training and testing

procedures. One of its significant advantages is its ability to handle large-scale applications, making it a

popular choice in many fields (Yuan et al., 2012). In linear classification, the goal is to separate data points

into different classes by creating a linear decision boundary based on input features. The decision boundary

can be a line or a hyperplane, depending on the number of features. By finding the best parameters for

the linear function, the classifier can accurately classify new data points. Since linear classification has

a simple structure, it is computationally efficient, making it particularly useful in large-scale applications.

Additionally, linear classifiers are easy to interpret and explain, making them suitable for applications where

interpretability is important.

2.2.7 Identifying the language of a given string

There is a limited amount of research in the field of identifying the programming language of a given string;

however, there have been some notable open-source and industrial efforts in this area.

Guesslang

Guesslang is a program that is designed to identify the programming language used in a given source code.

With its support for over 50 programming languages, Guesslang claims a detection accuracy rate of over 90%

(Somda, 2021). Guesslang is the closest tool to our use case. The Guesslang model utilizes a TensorFlow-

based deep learning architecture, which is reported as having been trained on a dataset of 1,900,000 unique

source code files sourced from 170,000 public GitHub projects. The model is a combination of a deep neural

network classifier and a linear classifier, tuned to gain both performance and accuracy.

The developers of Guesslang assert that their deep learning model demonstrates a high level of accuracy,

specifically 93.45%, as determined through testing on a dataset of 230,000 distinct source files.

The primary limitation of the Guesslang model in its intended usage is its performance, or the time

required to determine the programming language of a given string. The developers prioritize accuracy over

performance, which can result in longer processing times. Additionally, they acknowledge that the model

may make false guesses for code that is at the boundary between two languages. For example, a valid

JavaScript source code is also a valid TypeScript source code. Listing 2.4 shows a code that can be executed

by both Typescript and JavaScript interpreters without any errors.
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1 function greet() {
2 return 'Hello, world!';
3 }
4

5 try {
6 const greeting = greet();
7 console.log(greeting);
8 } catch (error) {
9 console.error(error);

10 }

Listing 2.4: A valid code for Javascript and Typescript.

2.2.8 Linguist

Linguist (GitHub, 2022) is used to determine the breakdown of programming languages used in a GitHub

repository. It is implemented by GitHub and the statistics it generates are displayed on the front page of

each GitHub repository. This tool is aimed at allowing users to quickly understand the dominant languages

used in the project and the makeup of the codebase.

To use Linguist, one must define a list of languages and give it as the input to Linguist. Then it tries

to exclude the files that seem to be auto-generated, analyzing the remainder. It also permits the user to

override its predefined steps. It generates the aforementioned language bar that is shown on the first page

of each GitHub repository.

The primary limitation of Linguist is its reliance on file extensions as a means of identifying programming

languages. This method proves to be inadequate in situations where the input is in the form of a literal string,

since there is no file extension in such cases, or in languages embedded within others since the extension

would only apply to the host language. This renders Linguist ineffective in determining the presence of

embedded languages within other languages. We, therefore, do not consider it further.

2.2.9 Unix file command

Another tool that aims to detect the type of an input string is the Unix file command (Darwin, 2011). The

file command reads the patterns of a given input stream and searches the patterns inside its database for

different types of files. Based on the patterns found, it returns the most probable guess for the type and the

programming language of the input. The major advantage of this command over Linguist is that it does not

consider the extension of the given file, which is useful in our use case. This tool supports a variety of types

of files, from multimedia and text files to some programming languages. The main GitHub repository for

the file command (File, 2011) does not provide support for C# files, but it does provide support for Java

files. Based on this, we can compare the accuracy and performance of this command with other approaches.
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2.3 Modelling heterogeneous software systems

Software development and analysis tools (SDATs) are used by software developers for the purpose of creat-

ing, modifying, and maintaining software programs. The process of software maintenance involves making

modifications and updates to systems in order to enhance performance, address defects, and meet emerging

requirements. Maintenance is an essential aspect of the software development lifecycle and is known to be-

come increasingly costly and complex as the codebase grows. Research suggests that software maintenance

may account for as much as 90% of the overall cost of software ownership (Dehaghani and Hajrahimi, 2013).

A heterogeneous software system is a system that is composed of multiple subsystems that are interdepen-

dent and interact with each other, with each subsystem potentially being coded in a different programming

language. This is a common occurrence in the development of various types of software systems, including

embedded systems, mobile applications, web applications, and J2EE patterns, where multiple technologies

and languages are utilized (Mushtaq and Rasool, 2015).

In accordance with recent trends, applications have increasingly transitioned from utilizing a single lan-

guage to utilizing a combination of multiple languages (such as Java, XML, SQL, etc.) (Chikofsky and

Cross, 1990) and various technologies. The prediction of change propagation within source code represents

a critical challenge in the analysis and maintenance of multilingual enterprise applications (Aryani et al.,

2011). Before any maintenance work can be done, it is important to fully understand the systems involved;

this understanding often takes up the majority of the total time and effort needed for maintenance, often

ranging from 40 to 90 percent (Strein et al., 2007).

Various methods exist for modelling heterogeneous software systems in order to analyze them. These

models aid in identifying entities within each language and representing their relationships with one another.

The selection of the optimal approach for modelling largely depends on the researcher or developer’s specific

needs and use case. In the following, we will discuss two of the most commonly utilized methods for modelling

heterogeneous systems.

2.3.1 Universal model approach

In this methodology, a single model is employed to depict all entities and their relationships across all

languages. The benefit of this methodology is that it simplifies the development process by saving resources

and time; however, the conversion of a language from its original model to the universal model may result

in the loss of certain language-specific properties.

One methodology that employs this model is FAMIX (Synytskyy et al., 2003), which utilizes a language-

independent meta-model for refactoring code written in object-oriented languages. However, a limitation
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of FAMIX is that it has not undergone extensive testing across all languages and further experimentation

across a broader range of languages is identified as an area for future research. The FAMIX model forms the

fundamental aspect of the Moose platform for software analysis (Nierstrasz et al., 2005).

MoDISCO is an open-source tool that helps developers cope with legacy code by converting legacy code

into meta-models to describe them. This tool is considered a suitable tool for small and medium-sized

projects but it needs more evaluation data on industrial projects (Harman, 2010).

Moise and Wong (2005) used GXL (Graph eXchange Language) schemas to represent languages such as

C/C++, Java, Tcl, Fortran, and Cobol. Their model is designed in a way to contain all needed features

for all languages, but some features are not supported in all languages. For example, their model supports

macros that are only available in C/C++. They also believe that their tool can be expanded more in control

and data integration mechanisms.

2.3.2 Multiple models approach

An alternative method for representing different languages is to utilize a model specific to each language. This

can also be achieved by grouping closely related languages and utilizing a single model for that grouping. The

benefit of this approach is the ability to retain a higher level of detail compared to the previously mentioned

methodology; however, the disadvantage is that implementing a new model for each new language requires

a significant investment of time and resources.

Tools such as X-DEVELOP (Strein et al., 2007) group languages based on their similarities and then

provide a model to represent each group. However, X-DEVELOP lacks support in generalization, dynamic

language contents, upcoming languages, and low-level languages (Schink, 2013).

DATRIX (Lapierre et al., 2001) is developed by The Datrix team within Bell Canada. It uses a language-

specific model that can be extended to new languages only with difficulty, due to the presence of many

language-dependent properties (Strein et al., 2007).

COMPOST (Ludwig and Heuzeroth, 2001) is the implementation of a metaprogramming model in

which they try to provide an approach to adapt software systems with continuously changing requirements.

Metaprogramming is a programming technique that empowers computer programs to treat other programs

as data, granting them the ability to possess self-awareness and manipulate themselves in various ways. It

encompasses a range of methods through which a program can acquire knowledge about its own structure

or modify itself dynamically. (Czarnecki and Eisenecker, 2000). In our case what ModCP does can be

considered as metaprogramming since it parses and analyzes the given code.

The utilization of a universal model approach has witnessed growth, aligning with the rise of multi-
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language programming practices. However, it is worth noting that many existing resources and tools em-

ploying multi-model representations are outdated and may not adequately cater to current needs.

2.4 ModCP version history

The ModCP framework is a change propagation system developed within the Laboratory for Software Mod-

ification Research at the University of Calgary, in collaboration with Find it EZ Software Corporation. To

date, various modifications and revisions have been implemented to the ModCP codebase, which will be

discussed in detail, in order to reach the latest version before our work.

A total of four versions of ModCP were previously created, and this thesis introduces a fifth one. Our

objective is to label each version so that it can be easily distinguished throughout the remainder of this

thesis. In Figure 2.1, a solid line between two nodes shows that the source node was developed from the

target node, either as an extension or refactoring thereof as per the label, and a dotted line shows that the

target node re-implements the novel features from the source node (“influenced by”). We see that Men (2018)

has implemented the initial version of ModCP (labelled Men’s version). Afzal (2020) and Singh (2021) have

implemented their own versions based on Men’s version, which we label as Afzal’s version and Singh’s version,

respectively. Professor Walker refactored the code from Men’s version resulting in a heavily restructured

code base, which we refer to as Walker’s version. In this thesis, we describe our re-implementation of the

features of Afzal’s version and Singh’s version atop Walker’s version; we refer to the resulting, novel version

as Soltanpour’s version.

Figure 2.1: Versioning of ModCP.

2.4.1 Initially: Men’s version

As put forth by Men (2018), ModCP is the SDAT that is used to identify change propagation in a given

single or multi-language system and assist programmers in their daily development tasks. Men asserts that

the model is capable of effectively handling large code bases while maintaining efficiency in terms of memory
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Figure 2.2: Projects and their relationships in Afzal’s version of ModCP.

usage and performance. ModCP uses a technique called program slicing (Weiser, 1981), a method for

simplifying programs by identifying and removing unnecessary code based on the values of certain variables,

referred to as the slicing criterion. The resulting simplified program is referred to as a program slice. This

technique has been extensively studied and has been applied to a variety of fields since its proposal.

However, the initial implementation of ModCP did not offer support for multiple programming languages,

only supporting the analysis of programs written in Java.

2.4.2 Adding support for multiple languages: Afzal’s version

Afzal (2020) proposed a method for change propagation by utilizing a dependency analysis model and

creating a standard meta-model referred to as the “unified meta-model.” This approach utilizes abstract

syntax representation models as modular components for each language, which can be integrated into the

meta-model for any new languages that are introduced.

In Afzal’s version, the ModCP codebase contains a Microsoft Visual Studio solution, and the solution

contains four projects, as illustrated in Figure 2.2 as a component diagram in Unified Modeling Language

(the arrows represent dependencies and the boxes with the “plug” icon represent projects). The Core project

keeps the parsers and grammars of each language and the model classes to represent the abstract syntax

tree (AST) of the given program. The grammars are compatible with ANTLR 4 (Parr, 2013), and ANTLR

is able to generate the C# parser for the grammar file. Therefore, the Core project contains C# parser

files for other languages as well. The other projects in this solution are: Evaluation, which is responsible for

performing an empirical evaluation of ModCP compared to more traditional alternatives; Propagation, which

is responsible for generating call graphs and data graphs for the given AST; and Test, which is responsible

for testing the functionalities in the other projects.
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2.4.3 Adding persistence to ModCP: Singh’s version

According to Singh (2021), the computation of ModCP’s complex models is excessively demanding, rendering

it impractical to recalculate them each time the system is restarted and resulting in undesirable downtime

in the developer’s daily workflow. As a result, Singh sought to identify the optimal strategy for persistently

storing and restoring the models as needed. To this end, they evaluated various data persistence tools and

selected the one most suitable for ModCP use cases. Initially, the author considered databases such as

Python-CSV, MySQL, Neo4j, and PostgreSQL, but later determined that object serialization methods may

be more efficient for this purpose. The evaluated object serialization methods included BinaryFormatter,

DataContract, NewtonSoft JSON.NET, and Protobuf-net. Ultimately, the authors determined that Data-

Contract serialization technology was the most cost-effective in terms of the time required to execute the

processes for storing and retrieving the model and required the least amount of disk space to store the

translated models.

2.4.4 Redesigning a universal model: Walker’s version

Following the work of Men (2018), Professor Robert Walker refactored the ModCP codebase with the aim of

decoupling language models from one another. Specifically, he redesigned the architecture such that a base

abstract model, comprising interfaces and abstract classes, is located within the Core project, with all slicing

algorithms dependent on this base model. Additionally, he created another project, named Extensions, in

which models and parsers for specific languages can be implemented in a mutually independent manner by

extending the base model in the Core project. This design adheres to the universal model approach for

representing different languages and conversely, the Extensions project comprises distinct languages that are

not incorporated into the universal model of the Core project. Figure 2.3 shows the projects’ dependencies

after adding the Extensions project and moving language-related files to this project.

Figure 2.4 represents the packaging of models of each language in the refactored version and how they

extend the base interfaces of the Core model. As represented, each model is separated from other languages

and can have its own language-specific classes, such as ImportStatement in Java and UsingStatement in C#.

Limitations

The limitations of Walker’s version include:

• The base model defined in the Core project may not be able to provide a sufficient base model for all

languages. Some languages may not have concepts such as statements, expressions, etc. but they have

to extend the Core models and fill them with some irrelevant details.
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Figure 2.3: Project structure after introduction of the Extensions project.

• The isolation of each language inside Extensions project increases code duplication, especially for

similar languages. For instance, C# and Java have lots of similarities but they cannot reuse each

other’s models since they are supposed to be kept isolated from each other. However, strictly speaking,

Walker’s version does not require this; in principle, one could have a hierarchy of languages, sharing

their commonalities. We chose the route of strict language separation to avoid the potential, added

complexities of managing such a hierarchy.

• The design of ModCP constrains the abstract syntax trees arising from languages to involve a class

hierarchy for different node types. The alternative of using a single class for nodes would require either

encoding the type information in a different way (replicating the support for polymorphism within

the implementation language, C#) or expansion of the polymorphism into nested if-expressions each

of which would likely need to repeat complex checks (such as determining the relative location of a

node within its surrounding structures). Since pursuing one of these alternatives would have required

extensive re-implementation of the ModCP code base, we do not see this as a realistic alternative

presently.

2.5 Integrating Afzal’s and Singh’s versions into Walker’s version

After Prof. Walker’s refactoring, it was necessary to port the novel features of Afzal’s version and Singh’s

version into Walker’s version. The lessons learned from Singh’s version were relatively easy to port, as

described in Section 2.5.1. Integrating Afzal’s version turned out to be far more complicated and necessitated

completely re-implementing the extensions, leading to the opportunity for much of this thesis; the issues

encountered are detailed in Section 2.5.2.
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Figure 2.4: Model packaging and inheritance in Walker’s version.
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2.5.1 Porting the extensions of Singh’s version atop Walker’s version

Enabling data persistence is essential for Walker’s version. To achieve this, the approach suggested by Singh

(2021) needs to be ported; this involves annotating each class and its parents with special annotations to

allow for serialization and deserialization of all program classes, which will be applied to all model classes in

the Core and Extensions projects.

2.5.2 Porting the extensions of Afzal’s version atop Walker’s version

In the software architecture of Afzal’s version, all the classes used to represent ASTs are stored inside the Core

project and there is a single model representing all languages. The Model directory contains other directories

such as Declaration, Expression, Statement, etc., and inside each of these directories, there are classes that

represent various kinds of that entity. For instance, inside the Statement directory, we have classes such as

AssertStatement, BlockStatement, etc. In the case of statements, we have three kinds of classes: (1) those that

are shared between all languages, residing in the root directory of Statement; (2) those that are only related

to procedural languages including Java, C#, and Python, reside inside the GPP directory; and (3) those that

are related to the Transact-SQL language that reside in the TSql directory; this division exists for directories

other than statements as well. Classes in the GPP and TSql directories extend classes in the root of the

directory. In addition, in some cases, a class in TSql extends a class in GPP while we expect these directories

not to be dependent on each other.

Inside the GPP classes, the codebase has to support four languages, C#, Java, C, and Python. The fact

that all these languages use the same classes makes the classes much more complex; remembering that some

of these classes are extended by T-SQL makes this structure yet more complex.

Problems with the architecture of Afzal’s version

We identify various issues within the ModCP codebase of Afzal’s version that have hindered development,

maintainability, and traceability, leading to the consideration of alternative methods for orchestrating diverse

languages and aligning the codebase with fundamental principles of software engineering.

• Unused methods and attributes for some languages.

Each language possesses its own special concepts that may or may not be present in other languages.

When multiple languages use the same model, those concepts must be defined in all of them. As an

example, the method shown in Listing 2.5 is used by all languages in Afzal’s version. This method is

defined inside the Method class in the language model. At line 2, the code checks whether this instance

is a constructor or not, has a parent super class, and is static or not; all of these concepts are defined
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1 public CallSite GetCallSiteBySelf() {
2 if (!method.IsConstructor() && !hasSuper && !method.IsStatic()) {
3 if (method.Language == ”tsql” || method.Language == ”python”) {
4 poly = false;
5 }
6 else {
7 poly = true;
8 }
9 }

10 }
11

Figure 2.5: An example of special cases for handling Python and T-SQL.

in an object-oriented language such as Java, but when they are used to represent a non-object-oriented

language like T-SQL, they become irrelevant values. Therefore, despite the fact that T-SQL does not

support the concepts of constructors, polymorphism, and static methods, its model still implements

the IsConstructor() and IsStatic() methods, and the fields hasSuper and poly.

• Inheritance problems.

In 30+ instances within the ModCP codebase, it is observed that a class in the T-SQL language extends

a class from the GPP directory. For example, the class BatchDeclaration from T-SQL extends the class

ProcedureDeclaration in GPP. When extending an existing class, it is crucial to evaluate whether an

“IS-A” relationship exists between the two classes and to ensure adherence to the Liskov Substitution

Principle (LSP) (Noback, 2018), asserting that objects of a superclass should be able to be replaced

with objects of its subclasses without disrupting the functionality of the application. This principle

necessitates that the objects of subclasses exhibit the same behavior as the objects of the superclass. In

the context of TSql, this extension does not conform to this principle, as it is not a specialized version

of C#, Java, or Python, and therefore does not align with the fundamental principles of software

engineering.

Figure 2.6 shows another example of these complex inheritance relations between classes. In this

example, we have a class named Declaration in the GPP directory and TSQLDeclaration in the T−

SQL directory. The classes in these directories do not follow any particular rule for inheritance. In

GPP, some classes like TypeDeclaration extend the general Declaration class suggesting that Declaration

must be the parent of all declarations. Conversely, we can see that ProcedureDeclaration does not

extend Declaration. Similarly, in the T−SQL directory, there is a class called TSQLDeclaration that

presumably should be the parent of all classes in that directory. While DatabaseDeclaration follows this

rule, BatchDeclaration breaks it by extending ProcedureDeclaration from GPP.
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Figure 2.6: An example of complex inheritance relationships.

• Adding a new language to ModCP.

Given the details above about how models are orchestrated inside ModCP, design decisions about

adding a new language would not be deterministic. There can be multiple possible ways to add a new

language.

1. Add the new language in GPP.

To add a new language to the GPP directory, we would have to deal with more complex conditional

statements, like the one in Listing 2.5. As a result, when we add support for more languages in our

codebase, the number of these complex conditional statements increases; as they are redundant

and repeated in different classes, the developer should be careful to update all of them if needed

while adding a new language, which makes maintenance more time-consuming.

2. Completely isolate the newly added language.

It is possible to fully isolate our language model from other language models, thereby minimizing

the impact of languages on one another. However, this approach necessitates the duplication and

independent implementation of all functionality present in ModCP, as it currently only supports

GPP and TSql. This would require the creation of distinct versions of ModCP for each added

language, resulting in an inefficient approach with regard to development speed, code reusability,

and maintainability.
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3. (Hybrid) Create a new directory and extend GPP.

This methodology resembles the approach employed in the case of the TSql directories. While

this approach facilitates development by enabling the utilization of GPP classes at will and the

incorporation of personalized logic as needed, it also presents the drawback of making tracing

and debugging significantly more challenging, as it becomes difficult to determine the origin of

functionality, whether it be from GPP or TSql. Additionally, as the number of languages developed

utilizing this methodology increases, the associated maintenance costs will also experience a rapid

increase.

2.6 Summary

In this chapter, we discussed the subject of software development analysis tools and the two prevalent

models for representing language models, namely the universal-model and the multiple-models approaches,

providing examples of their usage and highlighting their advantages and disadvantages. We also provided

an overview of the evolution of ModCP, tracing its development from its inception to the current version.

The architecture of the ModCP codebase was outlined and examples of its shortcomings and the resulting

challenges for code maintenance and development were provided.

Additionally, the topic of embedded code, where code written in one language is integrated with code

written in another language, was examined. Additionally, we mentioned notable related works in the field

of embedded language detection, including Guesslang, Linguist, and the Unix file command, and identified

their limitations, which motivated the development of a new embedded language detection system within

ModCP.
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Chapter 3

Approach

This chapter presents a comprehensive description of the implementation process of Soltanpour’s version of

ModCP. We outline the integration of support for previously supported languages and also the addition of

Crystal Reports, a new language not previously supported in earlier versions of ModCP. Our implementa-

tion also includes the application of persistence, as previously described in Singh (2021), to the refactored

architecture of ModCP (Walker’s version). Furthermore, we discuss the method employed for the detection

of embedded languages and describe the evolution of the implementation process, from the initial brute force

approach to the implementation of a more accurate and efficient keyword detection approach.

Specifically, I have implemented Crystal Report AST, builder, evaluation, and tests alongside C# AST,

builder, and tests. In addition, I have implemented T-SQL AST, builder, and tests. I also have ported the

functionality of serialization in the current version and I have implemented the embedded language brute

force and keyword detection approaches. In terms of git stats, I have made 152 commits on ModCP with

3900 files and 1,540,450 line modifications.

3.1 ModCP Extension

In Walker’s version of ModCP, language-related models moved to the Extensions project, leaving the Core

project to contain only the abstract model; a model to support Java is already implemented in the Extensions

project.

3.1.1 Implement C#

Figure 3.1 shows the directory hierarchy of C# in the Extensions project. The C# directory contains two

main directories, Parser and Model. Parser contains the CSharpLexer and CSharpParser classes which are auto-
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Figure 3.1: C# Directories in Soltanpour’s version.

generated based on the given ANTLR 4 grammar. The CSharpASTBuilder class is responsible to translate

files processed by the lexer and parser to the AST models in the Model directory.

The first step to implement the support for C# is to create a parser for C# code. We use GitHub

(2021) to get an ANTLR 4 grammar for C#. ANTLR supports generating lexers and parsers for C# code;

since ModCP is written in C# as well, this simplifies the integration of the parser into ModCP. Using the

pre-build commands feature of Visual Studio, we generate the C# parser from the given grammar each time

the Extensions project is built. The next step is to develop a model to represent the abstract syntax tree

(AST) of parsed C# code. Since Java syntax is similar to C# in most cases, we leverage the experience

expressed in the Java models in constructing the equivalent C# ones.

The Resolver directory contains some helper classes and methods; their main responsibility is to get a

type, field, or method name and try to find its definition, return type, and input arguments. The classes

within this directory mainly inherit from AbstractDiagramVisitor from the Core project.

The statement directory models statements such as for, if, while, block, etc. in the AST. There is a class

in this directory named Statement that serves as the base class for all other statement classes, extending the

IStatement interface from the Core project.

The expression directory models various expressions that may appear in the code, with “binary expression”

being one of the most common. Likewise, the directory includes a root class named Expression that serves

as the parent class for other expression classes and extends the IExpression interface from the Core project.

The declaration directory is used to model the declaration of methods, classes, fields, anonymous classes,

functions, or other types. The main class in this directory is TypeDeclaration, which serves as the base class
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and extends the ITypeDeclaration class from the Core project.

The operator directory is responsible to reflect various types of operators that are defined in the language,

such as Binary operators.

Lastly, the type directory contains definitions for the various types that may exist in the language, ranging

from primitive and built-in types like Integer and Boolean to user-defined types such as classes. The main

class in this directory is simply called Type and extends the IType interface from the Core project.

To integrate the parser generated from the grammar into the extended core model for C#, we create a

set of ASTBuilder classes. Each builder will contain an instance of the generated lexer and parser, and its

role will be to use the parser on given code, then to traverse the parser’s output in order to construct the

abstract syntax tree (AST) based on the defined model. It is crucial to update the grammar during this step

to ensure all desired information is extracted and properly transferred to the model.

After completing the implementation of the models, builder, and parser, we should write both unit tests

and integration tests to validate the correctness of each component individually and also in combination with

each other. For guidance on how to set up these tests and what functionality to test, we took inspiration

from the Java tests.

Some of the most important functionalities that we want to test include:

• Control Flow Graph (CFG) Tests: To confirm the accuracy of the control flow graph, tests are per-

formed on various types of statements such as for, while, if, switch, etc. These tests verify that the

graph is generated correctly for all potential combinations.

• Anonymous Class Test: The aim of this testing is to confirm that ModCP correctly identifies inner

and anonymous classes and has the capability to resolve their types.

• Call Graph Test: This testing validates if the call graph between functions and classes has been

accurately detected and created.

• Call Site Test: Each statement in the model has a collection of call sites, representing the list of

functions invoked within that statement. Call site tests evaluate the accuracy of this list.

• Expression Test: This testing compares the program against complex expressions to evaluate parsing

accuracy.

• Parse Test: This testing evaluates the parser for corner cases such as classes with the same name.

• Program Dependence Graph (PDG) Test: This testing validates the integration and collaboration of

all components from parsing to graph creation to ensure the main flow of the program, which is the

creation of a program dependence graph, is executed correctly.
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In total, we created 139 automated test cases for C# and made sure all of them pass.

Main challenges in C# development

The implementation of the parser for C# posed several challenges, including differences in naming con-

ventions and language features compared to Java, such as the use of “string” instead of “String” and the

existence of “partial classes”. Additionally, there were discrepancies in the behaviour of methods, such as

“substring(Integer, Integer)” between the two languages. When using Java’s “substring(start, end)” function,

it retrieves a substring that begins at the START index and concludes at one index prior to the specified

END. Conversely, in C#, you can achieve the same outcome by invoking the “substring(start, start − end)”

method.

These challenges required extensive debugging and tracing. Furthermore, it took additional time to

become familiar with the code and develop and write tests for C#. Lastly, there were also issues with

the proper versioning of ANTLR and setting up the pre-build command to generate the C# output from

ANTLR.

3.1.2 Implement T-SQL

Following the successful implementation of C#, we added support for Transact-SQL to ModCP. This lan-

guage has been prioritized as it holds significance for our industrial partner.

The steps followed for T-SQL are similar to the ones we followed for C#. We utilized the ANTLR

grammar available from GitHub (2021) and added a new command to our pre-build process to generate the

T-SQL parser files using ANTLR.

The next step is to generate the AST models to represent T-SQL codes. Building on the work of

Afzal (2020), much of the T-SQL directory could be reused, but significant modifications were necessary to

adapt the models for use with ModCP. The structure of the directories for the Model directory remained

consistent with C#, although the specific classes within them were designed specifically for T-SQL and

were not present in other languages. Examples of these language-specific classes include BatchDeclaration,

ProcedureDeclaration, SelectStatement, and InsertStatement.

Once the model and parser are implemented, the next step is to write the ASTBuilder classes that iterate

through the parsed data and instantiate the models to construct the abstract syntax tree (AST). The general

behaviour of the builder classes is similar to what we developed for other languages and it was not a significant

challenge during the development process.

Lastly, we wrote tests to examine the functionality of the T-SQL parser, the tested functionalities being
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mostly what was previously covered by the C# tests. We wrote 40 tests that successfully ran on T-SQL.

Main challenges in T-SQL development

Finding adequate examples for testing purposes proved to be a challenge, as a limited amount of examples

were available for the desired scenarios. To address this, we created custom T-SQL code that, while not

typical, was necessary for testing various components of ModCP. Some test cases were also eliminated as

they were not relevant to the context of T-SQL.

3.1.3 Data Contract implementation

Following the refactoring conducted by Prof. Walker, it was necessary to implement the solution proposed

by Singh (2021) to enable data persistence in the updated version of ModCP.

To add the ability to serialize and deserialize all classes in the program, we needed to annotate each class

with the annotations specified in Listing 3.1. By adding these, we mark a class as one that can be serialized

by DataContract. If the class has a parent class, we should add the same annotations to the parent class

as well, and if it does not have any parent classes, we have to add the type of the class to our serialize and

deserialize functions like what is done in Listing 3.2. If we add annotations to two classes Parent and Child

in which Parent is the parent of Child, in addition to adding the code from Listing 3.1 to both classes, we

should add that in Listing 3.3 to the class Parent as well. In this case, there is no need to add Listing 3.2

for the Child class.

For each field of the class that we are going to serialize, we should add annotations to the field, as

exemplified in Listing 3.4. Note that the Order number should be unique for each field within a given class.

1 [System.Serializable]
2 [System.Runtime.Serialization.DataContract(IsReference = true)]

Listing 3.1: Annotations for serializing a class.

1 DataContractSerializer serializer =
2 new DataContractSerializer(typeof(ModularProgramDependenceGraphProject),
3 new System.Type[] { typeof(Namespace.ClassA), typeof(Namespace.ClassB)} );

Listing 3.2: Introducing a serializable class to Data Contract.

1 [System.Runtime.Serialization.KnownType(typeof(Child))]
2 public class Parent {}

Listing 3.3: Additional annotatations for the parent class.
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1 [System.Runtime.Serialization.DataMember(Order = 2)]
2 public int Line { get; private set; }

Listing 3.4: Additional annotatations for the parent class.

Usually, we increment the number for each field, starting from 1.

DataContract in the Extensions Project

To begin the process of persisting models in the Extensions project, we add DataContract serialization

annotations to each model and field, making them serializable. If an annotation is forgotten for a class, the

code will throw an exception while it tries to serialize or deserialize a class with that type expressing that

the serialization of this class is not supported. It was crucial to exclude auto-generated Lexer and Parser

classes from the annotations, as they are regenerated every time the program is built, which would delete

any manually added annotations. To be more specific, each time that we use Visual Studio to compile the

project, If there is no change in the whole Extensions project and the projects it depends on, they won’t

be regenerated. But if there are any changes in Extensions project or any project it depends on, all parser

classes will be regenerated.

Additionally, since the data stored in these classes is not useful, there is no need to persist it.

Data Contract in the Core Project

When we annotate a class as serializable, we have to annotate its parent classes as well. As a result, we

reach the models in the Core project and we have to annotate those basic models. We have followed the

same process for all other languages to make sure all of the models can be serialized properly.

Testing Data Contract Implementation

In order to verify the success of the annotation process, we implemented a function that serializes and

deserializes a given model. This function was added to various tests in each language immediately after the

creation of the model and prior to processing it. By doing this, we were able to identify any classes or fields

that may have been overlooked during the annotation process. Additionally, it helped to ensure that the

models remained unchanged before and after serialization.
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3.1.4 Implement Crystal Reports

Implementation

Prof. Walker developed the ANTLR grammar for Crystal Reports, on the basis of user documentation for

Crystal Reports and a large body of examples provided by Find it EZ; this served as the foundation for

our project. Since Crystal Reports has a distinct structure from other supported languages, we were unable

to reuse much of the existing code. The Crystal Reports files consist of nested key–value pairs, and our

grammar is able to parse the values. Therefore, we incorporated pre-existing Java code, also developed by

Prof. Walker, to parse the files to a key–value dictionary. We translated this code to C# and integrated it

into our Crystal Reports builder. With this implementation, we can utilize our ANTLR grammar to parse

each value.

Our development process involved creating models and builder classes concurrently. We iteratively refined

the builder classes, extending the necessary models from the Core project whenever a new model was required.

Through this iterative process, we successfully implemented the models and types needed to accurately

represent the Crystal Reports codes.

Testing

Once we completed an initial version of the Crystal Reports parser, we began writing tests to identify and

address potential bugs that might arise during the development process. Similar to our approach with

previous languages, we created tests for the control-flow graphs, call graphs, program dependence graphs

(PDGs), PDG slicer, resolvers, and parser, all of which were covered for Crystal Reports. A significant

portion of the development and debugging process took place during the testing process.

Evaluation

Alongside our effort to ensure the correct functioning of ModCP with Crystal Reports through testing, we

devised evaluation scenarios and tests to gauge the recall and precision of the ModCP change propagation

detection in detecting dependencies in this new language. We calculated the recall and precision for each

test case scenario, which will be discussed in further detail in Chapter 4.

Main challenges of Crystal Reports development

The implementation of support for Crystal Reports was the most challenging task among the languages

covered in this thesis. Initially, we had to familiarize ourselves with the language’s syntax, usage, and coding
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conventions since it was a new and unfamiliar language to us. Crystal Reports posed unique parsing chal-

lenges compared to the other languages because it employed a key–value structure in each file, necessitating a

different parsing procedure. Furthermore, the development of models and builders, in this case, was distinct

from that of the other languages, rendering any prior knowledge or previous examples obsolete. Finally, we

faced difficulties in finding reliable, publicly accessible sources of Crystal Reports code, compelling us to rely

solely on examples from our industrial partner.

Upon completion of the language extension for ModCP, a simplified version of the model is depicted in

Figure 3.2. This diagram serves as an illustrative example of how classes from various languages now extend

the base model in the Core project while remaining isolated from each other in the Extensions project. It

should be noted that this structural diagram only represents a sample of the new model architecture and

does not include all of the structural details.

3.2 Embedded language detection

In this part, we address the issue of identifying embedded language strings. Specifically, we aim to develop

a system that can take string input and determine the programming language in which the input is written.

3.2.1 Brute force approach

One potential solution is a brute force approach, which involves implementing the grammar for each language

that we want to support. When given a string input, we would then run all of the generated parsers against

the input to check for matches without errors. If a match is found, we can determine the language, but if no

match is found, we conclude that the input is not written in a language currently supported by the system.

Complications in this situation include the need to choose an order in which to try the parsers and the

question of whether a single positive result will suffice or if all languages for which the string is a valid code

snippet should be reported. In our SDAT context, a single positive result will be needed so the process can

end as soon as one is found.

Advantages

This approach guarantees 100% precision, meaning there will be no false positives.

Disadvantages

The drawback is that the process of running the given string against each grammar is expensive and not

easily scalable as the number of supported languages increases.
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Figure 3.2: Project structure after Soltanpour’s version.

3.2.2 Keyword detection approach

In this approach, we define a general interface named Detector; this interface provides the two methods

intersectTokens(..) and parse(..) as seen in Listing 3.5.

1 int intersectTokens(string text, HashSet<string> tokens);

2 void parse(string text);

Listing 3.5: Methods of Detector

We create a class for each supported language in our system that implements an interface. The class

contains a set of language-specific keywords that can distinguish that language from others. When the
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Algorithm 1: Brute force approach.

Input : A text to detect for which to determine the programming language
Output: The programming language name or null

1 detectors← [CSharp, Java, TSql, CrystalReports];
2 foreach detector ∈ detectors do
3 try:
4 detector.parse(text);
5 return detector;

6 catch ParseException:
7 continue;

8 return Null;

intersectTokens(..) method is called, the tokens set is intersected with the keywords set, and the number of

matching keywords found in the input is returned; the most promising candidate is tried, as explained in

the next subsection. The parse(..) method runs the given text through the language-specific parser. If the

parsing fails, an exception is thrown; otherwise, the code is considered successfully parsed.

3.2.3 Algorithm

Algorithm 2: Keyword detection approach.

Input : A text for which to detect the programming language
Output : The programming language name or null

1 detectorToKeywordsCount← emptyMap()
2 detectors← [CSharp, Java, TSql, CrystalReports]
3 tokens← tokenize(text)
4 foreach detector ∈ detectors do
5 detectorToKeywordsCount[detector]← detector.intersectTokens(tokens)

6 sortedDetectors← sortDescendingByCount(detectorToKeywordsCount)
7 foreach detector ∈ sortedDetectors do
8 try do
9 detector.parse(text)

10 return detector

11 catch ParseException do
12 continue

13 return null

Above, we present Algorithm 2 for language detection. We start by counting the number of keywords

found for each detector in the detectorToKeywordsCount map. Next, we sort the map in descending order

based on each detector’s value. This allows us to determine the most likely language of the input text. We

can efficiently identify the correct parser for the given language by performing this intersection and sorting

step. It is important to note that this intersection and sorting step is relatively quick compared to running
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the parser against the language.

The purpose of the tokenize(..) method is to split a given text into words by white space, trim them of

any additional pre-pending or post-pending whitespace, and return them as a set. This method is language-

independent and is intended for use with all supported languages; thus, its performance is high-speed.

3.2.4 Refining the algorithm

Two steps were taken to improve the performance of our algorithm. First, we observed that some words

commonly used in comments, such as is, as, and do in C#, are also keywords in programming languages. Since

we aim to keep the tokenization step fast and minimal and do not use grammars and regular expressions to

parse the text, we cannot differentiate comments from other code parts. Therefore, we removed very common

keywords from the list of C# keywords to reduce the number of Java code snippets wrongly detected as C#

due to their comments. As a second step to improve our algorithm, we have established a threshold for the

number of keywords present in the text to filter out weak guesses. Detectors with a keyword count below the

threshold are removed before the sorting stage. While this helps quickly identify non-code snippets, there is

a risk of missing actual code snippets that use only a few keywords. We have used an empirical approach to

determine the best value for this threshold, and we figured out that in our test cases, the best value would

be zero to reduce the risk of eliminating the code snippets with a few keywords. Algorithm 3 shows the

threshold feature added to the existing keyword detection algorithm. At line 6, we remove those parsers that

have fewer keywords in common with the input threshold value. In our empirical study, we used a threshold

value of 5. We also could use some approaches such as using regular expressions to discard comments, but

we chose not to do this to keep our performance high.

3.2.5 Comparison against brute force

As previously discussed, our approach involves prioritizing the guesses made by the brute force method to

achieve better performance without sacrificing accuracy. This approach has the advantage of requiring only

a relatively small implementation cost for each supported language. We will provide a detailed comparison

of this approach with both the brute force method, Guesslang (Somda, 2021), and the Unix file command

(Darwin, 2011).

3.3 Summary

In this chapter, we delved into the details of how we extended the functionality of ModCP to support multiple

programming languages. We began by discussing the implementation of models, builders, and parser classes
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Algorithm 3: Keyword detection approach with threshold.

Input : A text for which to detect the programming language and a threshold value
Output : The programming language name or null

1 detectorToKeywordsCount← emptyMap()
2 detectors← [CSharp, Java, TSql, CrystalReports]
3 tokens← tokenize(text)
4 foreach detector ∈ detectors do
5 detectorToKeywordsCount[detector]← detector.intersectTokens(tokens)

6 filteredDetectors← detectorToKewordsCount.filter(count >= threshold)
7 sortedDetectors← sortDescendingByCount(filteredDetectors)
8 foreach detector ∈ sortedDetectors do
9 try do

10 detector.parse(text)
11 return detector

12 catch ParseException do
13 continue

14 return null

for the C# language, one of the most widely used programming languages in the industry. We described

the most important classes in the Models directory and explained the tests that we performed to ensure the

correctness of our implementation.

After successfully implementing the C# language support in ModCP, we extended its functionality to

support T-SQL language as well. We followed the same steps as before and implemented the necessary

models, builders, parsers, and tests to support T-SQL. By doing so, we were able to expand the scope of

ModCP to include support for database programming languages.

Furthermore, we implemented the work done by Singh (2021) to add persistence to ModCP. We integrated

their work into our newly implemented models and classes to allow ModCP to persist data.

We discussed the implementation of Crystal Reports support in ModCP. We explained how this was the

most challenging language to implement among all of the supported languages, due to the lack of rich online

resources and references, combined with the ambiguity of the language. However, we were able to overcome

these challenges and successfully add Crystal Reports support to ModCP.

The rest of this chapter details our approach to identifying the programming language of a given string.

Initially, we implemented a brute force method to identify bottlenecks and explore potential solutions. We

discovered that prioritizing candidates based on a pre-determined order could enhance performance while

preserving accuracy. To this end, we developed a keyword detection approach that involved counting the

number of language-specific keywords present in the given text, sorting the languages in descending order

based on the number of identified keywords, and then executing the parser in this order. Our accuracy was
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further improved by excluding common keywords used in comments and setting a threshold for the number

of keywords required for identification.
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Chapter 4

Evaluation

In this chapter, we evaluate our extension of ModCP and our language identifier tool. Regarding the ModCP

extension, we ask one research question (RQ1) and find its answer by extracting data from code metrics in

the different developed versions. The research question is:

• RQ1: Is our approach able to simplify the codebase and decrease its complexity when compared to

Afzal’s version?

Regarding embedded language detection, we have asked three research questions (RQ2–4) to compare our

approach with the brute force approach, Guesslang, and the Unix file command, in terms of performance,

accuracy, and scalability. These research questions are:

• RQ2: How accurate is our approach compared to the brute force approach, Guesslang, and the Unix

file command?

• RQ3: How does the performance of our approach compare to the brute force approach, Guesslang, and

the Unix file command?

• RQ4: How scalable is our approach in terms of performance for supporting new languages?

4.1 ModCP efficient extension

In this section, we compare our approach for extending ModCP with the approach taken by Afzal (2020).

Our approach involved extending ModCP to support C#, T-SQL, and Crystal Report languages. To evaluate

our approach, we compare various code measurements arising from the codebases for two approaches in order

to assess the resulting code complexity and maintainability.
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Table 4.1 includes general metrics obtained from Men’s version, Afzal’s version, Walker’s version, and

Soltanpour’s version for the Core project. It is evident that in Afzal’s version, there are ten times more classes

than in Soltanpour’s version with double the number of methods per class, which supports the hypothesis

that the addition of new languages requires the inclusion of new methods and classes in the existing project

for Afzal’s approach.

Metric
Men’s Walker’s Afzal’s Soltanpour’s
version version version version

Number of classes 23 100 1444 102
Number of interfaces 4 38 28 37
Mean methods per class 5.052 4.113 8.249 4.066
Mean lines per class 83.39 7.30 195.0 129.1
Mean executable lines per class 27.26 125.8 53.07 34.47
Mean lines per method 6.218 15.671 7.827 15.29
Mean executable lines per method 2.479 5.038 3.258 4.879

Table 4.1: General metrics for the Core project in each version.

4.1.1 RQ1: Is our approach able to simplify the codebase and decrease its

complexity when compared to Afzal’s version?

To answer this, we measure some code quality metrics defined below for our work result and that of Afzal

(2020); these include:

• Cyclomatic complexity: The cyclomatic complexity (CC) metric proposed by McCabe (1976) measures

the number of linearly independent paths through a piece of code. The basic idea behind cyclomatic

complexity is that the more decision points there are in a program, the more complex it is likely to

be. Decision points can include things like if-statements, loops, and switch-statements. A higher

cyclomatic complexity score indicates that a program has more decision points, and is therefore likely

to be more complex and harder to maintain (Ebert et al., 2016).

• Maintainability index: The MI score is calculated based on a formula that takes into account several

factors, including the Halstead volume (Hariprasad et al., 2017), McCabe’s cyclomatic complexity

(McCabe, 1976), and the lines of code in the system. These factors are combined to produce a single

score between 0 and 100, where higher scores indicate better maintainability (Welker, 2001).

• Depth of inheritance: In the context of object-oriented programming, the depth of inheritance metric

refers to the maximum distance from a class node to the root of the tree, which is measured by counting
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the number of ancestor classes. A high depth of inheritance can indicate a complex and tightly coupled

class hierarchy that may be difficult to modify and maintain over time. On the other hand, a shallow

inheritance tree can indicate a more modular and flexible design (Chidamber and Kemerer, 1994;

Shaheen and du Bousquet, 2008).

• Class coupling: This is a metric that evaluates the level of interconnection between classes in a software

system. This metric measures the number of classes that are coupled to a particular class, which

indicates how many other classes rely on that class. In the field of software engineering, it is commonly

agreed that excessive coupling can be detrimental to the structure of a system, leading to increased

complexity (Hitz and Montazeri, 1995; Briand et al., 1997; Harrison et al., 1998; Aggarwal et al., 2006).

• Lines of code: The lines of source code (LOC) metric is a simple measure of the size of a software

program that counts the total number of physical lines of code in the program. This metric is commonly

used to provide a rough estimate of the development, testing, and maintenance effort required for the

software. However, it is important to note that LOC is not a reliable indicator of software quality,

efficiency, or maintainability, as it disregards the structure, readability, and complexity of the code.

Additionally, factors such as formatting, comments, and blank lines can significantly affect the LOC

count, although they do not contribute to the program’s functionality.

• Lines of executable code: This is a measure of software program size that counts only the number of

lines of code that are possibly executed at runtime. Unlike lines of code, which may be influenced by

factors such as comments, formatting, and blank lines, lines of executable code only take into account

the code that is executed (Bhatt et al., 2012).

We collect measurements of the metrics for both versions, presenting them in Tables 4.2 and 4.3. Table 4.2

compares the measurements of the classes in the Core project between Soltanpour’s version and Afzal’s

version, while Table 4.3 compares the language-specific models, which in Soltanpour’s version are located in

the Extensions project, but were located inside the Models directory in the Core project of Afzal’s version.

Table 4.2 shows that there is a slight increase in the maintainability index and reduction in depth of

inheritance, and we were able to significantly reduce the cyclomatic complexity, class coupling, lines of

code, and lines of executable code. This reduction in complexity makes the Core project easier to maintain

and less complex, as evidenced by the 45.64% reduction in cyclomatic complexity and 42.70% reduction

in class coupling. The reduction in lines of code and executable code by 31.8% and 45.80%, respectively,

further highlights the significant reduction in complexity within the Core project. As the Core project is the

foundational component of ModCP and serves as a dependency for other projects, reducing its complexity
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Metric
Afzal’s Soltanpour’s Change
version version (A → S)

Maintainability index 84.77 84.86 +0.1%
Cyclomatic complexity 25.13 13.66 -45.6%
Depth of inheritance 1.58 1.30 -17.7%
Class coupling 12.74 7.30 -42.7%
Mean lines of code per source file 141.63 96.60 -31.8%
Mean lines of executable code per source file 45.63 24.73 -45.8%

Table 4.2: Metrics for the Core project in each version.

Metric
Afzal’s Soltanpour’s Change
version version (A → S)

Maintainability index 80.68 81.06 +0.5%
Cyclomatic complexity 20.11 19.66 -2.2%
Depth of inheritance 2.20 2.11 -4.1%
Class coupling 10.22 12.94 +26.6%
Mean lines of code per source file 91.47 92.01 +0.6%
Mean lines of executable code per source file 31.69 33.66 +6.2%

Table 4.3: Metrics for the Model directory in each version.

is crucial in simplifying the entire system and moving complexity to non-fundamental components.

Upon reviewing Table 4.3, we can observe that the language-specific models in both versions are quite

similar, with only minor increases for metrics such as class coupling and lines of code in Soltanpour’s version

than Afzal’s version. Notably, the cyclomatic complexity has been slightly reduced. It is important to note

that the language-specific models in the Extensions project were extracted from the Core project and may

have a higher level of complexity, but their overall code complexity is equivalent to the models in the Core

project of Afzal’s version. This indicates that we were able to reduce the functionality of the Core project

by extracting a portion of it and incorporating it into the Extensions project with the same level of code

complexity.

Evaluate the correctness of Crystal Reports implementation in ModCP

In order to ensure an accurate representation of Crystal Reports in ModCP and to verify its ability to

correctly identify change propagations, a series of test cases were designed. The test cases were based on and

inspired by the real-world examples shared by our industrial partner. In each test case, we have two versions

of code, the first version is called a baseline version, and the other version is called an updated version. The

difference is that the updated version has been refactored in some lines compared to the baseline version

to do the same functionality with a different approach. The refactoring may involve adding or removing

a variable, changing a variable name, changing some code that has no side effect on other lines, changing
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string literals, changing functions that are circularly connected to each other, and changing for and while

loops. The aim is to evaluate ModCP’s ability to predict necessary changes, identify unnecessary changes,

and detect missed changes. ModCP states changes in terms of lines of code; for example, it states that if

you make a change at line number 10, you should probably change lines 11, 14, and 15 as well. The recall

and precision results for each test case are presented in Table 4.4. We have designed 7 test cases to cover

different aspects of changes.

1. Variable Name: The point of the test is to check if a variable name is changed, then all of the direct

and indirect references to that variable should be potentially updated.

2. Function Call: In this test case, a function is calling another function. The callee is returning a string

literal; this string literal is changed and we expect that the line in the caller function which is using

the return value be marked as a potential change.

3. Function Call V2: This test case involves the same change as the previous one. The difference is that

in this case, we have added some lines of code to the called function that do not contribute to the

return value, but ModCP still detects them as potential candidates for being updated which is not

expected.

4. Chain: In this test case, we want to check if ModCP detecting a change in function D, whose return

value is being used by a function C, whose return value is used by a function B whose return value is

used by a function A. All lines in functions A, B, and C that are directly or indirectly using the return

value of function D are expected to be marked as potential changes.

5. Circular: This test case defines three functions that call each other circularly. We expect that if we

make a change in one of the functions, both other functions should be marked as potential changes

regarding this update.

6. For: This test case changes the value of a variable name that is defined outside of a for-loop but used

and re-assigned inside the for-loop body. We expect ModCP to identify all potential changes inside

the loop body that might be affected by this update.

7. While: This test case makes a change in the value assigned to a variable inside a while-loop body. We

expect ModCP to identify all potential changes inside the loop body that might be affected by this

update.

Recall and precision are two important metrics that are used to evaluate the performance of algorithms.

Recall is the proportion of actual positive cases that are correctly identified as positive by the algorithm. It
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is a desirable feature when the goal is to minimize the number of false negatives or instances where relevant

items are not identified. Precision, on the other hand, refers to the proportion of predicted positive cases

that are actually positive. These metrics are widely used in machine learning, data mining, and information

retrieval. In the context of computational linguistics and machine translation, recall has been shown to be of

major importance as it reflects how many of the relevant cases have been identified. Therefore, both recall

and precision are important measures to consider in different contexts. The formulae for calculating recall

and precision (relative to a specific context) are shown in Equations 4.1 and 4.2, respectively (Powers, 2020),

where TP is the set of true positive occurrences, FN the set of false negatives, and FP the set of false

positives. In this context, true positives are the number of potential lines of code to be changed that are

detected by ModCP and are actually changed in the updated version. False Positive means the number of

potential lines of code to be changed that are detected by ModCP but not changed in the updated version.

True negative means that a line of code is not considered to be a potential change and it is not changed in

the updated version. False negative means a line of code is considered not to be a potential change, but it

had to be changed in the updated version of the code.

recall =
|TP |

|TP |+ |FN |
(4.1)

precision =
|TP |

|TP |+ |FP |
(4.2)

This evaluation process was conducted to ensure the reliability and effectiveness of our approach for

representing Crystal Reports in ModCP.

As depicted in Table 4.4, ModCP always attempts to predict all possible changes, resulting in a recall

rate of 100% for Crystal Reports. This means that there are no false negatives in our results. However,

it may predict more changes than necessary, ensuring that no changes are missed. This cautious approach

implemented by ModCP has been effective for Crystal Reports, as demonstrated by the evaluation results.

Test Case Name Recall Precision

Variable Name 100% 50.0%
Function Call 100% 75.0%
Function Call V2 100% 15.3%
Chain 100% 60.0%
Circular 100% 71.4%
For 100% 100.0%
While 100% 70.0%

Table 4.4: Recall and precision of ModCP change propagation identification in Crystal Reports.

45



4.2 Embedded Language Identification

In this section, we present a comparison between our approach and other methods, namely the brute force

method, Guesslang (Somda, 2021), and the Unix file command (Darwin, 2011).

4.2.1 Evaluation Procedure

To evaluate our approach against other methods, we need to gather a collection of code snippets written in

different languages supported by both Guesslang and our keyword detection approach. Java and C# are

the only languages supported by Guesslang, brute-force, and keyword detection while file does not support

C# but supports Java. All of these approaches take a string as the input parameter and determine its

programming language. Therefore, we want to gather samples of files written in the supported languages

and use the content of those files as the input for our language detection tools.

Therefore, we need to first gather a collection of code snippets written in Java, and C#. After collecting

suitable samples (we refer to these samples as test cases), the next step is to use the content of our test case

files as the input of different tools. While running the tools against the given test cases, we will record some

data related to their performance and accuracy that makes us enable to compare the approaches in terms

of performance, accuracy, and scalability.

4.2.2 Collecting Test Cases

For this purpose, we select 10 popular repositories (based on GitHub stars) per language to use their files’

contents as sample data for evaluation; the Java repositories are RxJava (Christensen, 2022), ElasticSearch

(Elastic.Co, 2022), Retrofit (Square, 2022b), OkHttp (Square, 2022a), Spring Boot (Spring, 2022a), Guava

(Google, 2022), MPAndroidChart (Jahoda, 2021), Glide (BumpTech, 2022), Spring Framework (Spring,

2022b), and ButterKnife (Wharton, 2020), and the C# repositories are Shadowsocks Windows (Shadowsocks,

2021), Powershell (Powershell, 2022), CodeHub App (CodeHubApp, 2020), ASP Net Core (DotNet, 2022),

Wox Launcher (Launcher, 2022), dnSpy (dnSpy, 2022), v2rayN (2dust, 2022), eShopOnContainers (.NET

Foundation, 2022), WaveFunctionCollapse (Gumin, 2022), and ShareX (ShareX, 2022).

After cloning the aforementioned repositories, in the course of our testing, we discovered that the grammar

we used for C# could only handle features up to version 6, which was not sufficient for the repositories

under consideration. To address this limitation, we included the ModCP files as a project written in C# 6

to ensure that our test cases use the supported version of C#. Additionally, we made some modifications

to our grammar to accommodate the basic features found in the more recent versions such as the ability to

parse arrow functions in constructors introduced in C# version 7.
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To conclude, we have three sources in our test cases: Java codes extracted from the aforementioned

GitHub repositories, C# codes extracted from the aforementioned GitHub repositories, and C# version 6

codes extracted from the ModCP codebase. In the table, we refer to them as C# Repositories, Java Repos-

itories, and C# ModCP respectively.

For testing the detectors in Java and C#, we gathered files with .java and .cs extensions from the sources.

We then developed a Python script and randomly selected 100 files from each source as our test cases. To

select random cases, we used Python 3’s built-in random library which generates pseudo-random numbers

(Python Software Foundation, 2008). Additionally, we selected 50 files per source that have the largest

number of characters to evaluate the detectors’ performance on longer inputs. We use the content of these

files as the code snippet inputs to file, Guesslang, brute force, and keyword detection approaches.

4.2.3 Order of parsers in brute force

Each time that we have run the brute force algorithm, we used a random ordering of different language

parsers. To make our results more reliable and prone to best-case or worst-case scenarios, for each test case,

we have run it for 10 times, and each time the order was random, and we picked the median number.

4.2.4 RQ2: How accurate is our approach compared to the brute force, Guess-

lang, and file approaches?

To answer this question, we run our test cases against each method. The results of our first attempt are

included in Table 4.5. Regarding Equation 4.1, TP in this context contains the test cases that their language

is guessed correctly, and FN contains test cases that their language was not guessed correctly. In this context,

precision is not relevant since we do not have any false positives; therefore, we are just measuring recall in

our calculations.

As the Unix file command does not support C# files, its recall in all of the tables in this research question

is represented with 0%, but it supports Java files, and its recall for Java is compared to other approaches.

Test case Keyword Detection (With Validation) Guesslang Brute Force file

C# Repositories 32% 90% 32% 0%
Java Repositories 100% 92% 100% 87%

Table 4.5: Recall of each strategy (initial attempt).

The errors encountered in the brute force method are due to some code snippets that are valid but not

supported by our grammar. This highlights a limitation of the brute force approach: it requires a fully

functional grammar for each version of each programming language, making it challenging to maintain and
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scale; however, in our context, we ultimately need to obtain abstract syntax trees for the code snippets,

which would require such grammars anyways.

The errors that happen in the keyword detection approach have the same cause. On our next try, we

tried to fix errors in our grammar to support more features of higher versions of C# such as supporting the

syntax of anonymous functions, and we removed the test cases that are not compatible with the brute force

grammar. We believe that it is fair to remove some of the test cases since we want to test our system against

what it actually supports, and brute force must have the ability to parse all of the given inputs. Table 4.6

shows the results after this improvement.

Test case Keyword Detection (With Validation) Guesslang Brute Force file

C# Repositories 100% 91% 100% 0%

Table 4.6: Recall after C# grammar improvement.

We significantly increased the accuracy of our C# detector from 32% to 75%, but it still falls short of the

ideal accuracy achieved in Java. To address the issue of grammar incompatibility, we added more samples of

C# version 6 from the ModCP project. Our initial attempt on these C# version 6 files resulted in improved

accuracy, as shown in Table 4.7. These results indicate that our approach works well when the grammar is

properly aligned with the input provided. After this, we decided to keep these samples as part of our next

measurements that aim to assess other aspects of accuracy and performance.

Test case Keyword Detection (With Validation) Guesslang Brute Force file

C# ModCP 100% 96% 100% 0%

Table 4.7: Recall on ModCP C# files.

As outlined in Chapter 3 and the keyword detection algorithm, our algorithm consists of two parts:

the first part involves predicting the most likely programming language based on the input string, while

the second part involves validating the prediction by running the parsers against the input. In contrast,

Guesslang and file solely focus on the prediction aspect and do not perform any validation. As a result, we

deemed it appropriate to compare the accuracy of our prediction component with that of Guesslang and file

to gauge the effectiveness of our algorithm’s prediction capabilities without validation. Table 4.8 presents

the preliminary results of this comparison.

We encountered a peculiar scenario wherein the accuracy of C# identification was remarkably high, while

that of Java was surprisingly low. Upon further investigation, we determined that C# encompasses almost

all of the keywords utilized in Java and has some keywords, such as is, as, and in, that are commonly

present in comments. Consequently, our keyword detection approach perceives these keywords in comments

48



Test case Keyword Detection(Without Validation) Guesslang file

C# ModCP 100% 96% 0%
C# Repositories 99% 91% 0%
Java Repositories 51% 92% 87%

Table 4.8: Recall of guesses without validation.

as language-specific keywords, leading to a higher rate of C# identification and a lower rate of Java identi-

fication. As a result, the number of identified C# codes has increased, while the number of identified Java

codes has decreased.

To address this problem, we opted to exclude the generic keywords from the list of C# keywords, i.e.,

treat them as stop words (Fox, 1989), and re-run our tests. The outcomes of these tests are presented in

Table 4.9.

Test case Keyword Detection (Without stop words and validation) Guesslang file

C# ModCP 96% 96% 0%
C# Repositories 79% 91% 0%
Java Repositories 96% 92% 87%

Table 4.9: Recall of guesses without validation, but after stop word removal.

As evident from the results, this modification resulted in a substantial improvement in the accuracy of

identifying Java codes. It has decreased the accuracy in C# but the tradeoff is more even now between

different languages.

Conclusion

We can conclude our final accuracy numbers in Table 4.10. In the KD (With validation) row, each guess is

validated by running against the guessed language grammar.

Test case KD (Without validation) KD (With validation) Guesslang Brute Force file

C# ModCP 96% 100% 96% 100% 0%
C# Repositories 79% 100% 91% 100% 0%
Java Repositories 96% 100% 92% 100% 87%

Table 4.10: Final recall of guesses (Stop words are ignored in keyword detection columns).

Based on our analysis, we can deduce if our approach outperforms the other approaches in terms of

performance, it would become a viable alternative with the same accuracy but better performance, making

it a favourable option.
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4.2.5 RQ3: How does the performance of our approach compare to the brute

force, Guesslang, and file approaches?

To measure the performance, we used the same samples as the previous analysis. In addition, for each

project, we selected the top 50 files with the most characters to see how our approach performs in the worst-

case scenario. In order to mitigate the impact of job scheduling and prioritization by the operating system,

we conducted a minimum of 10 test runs for each case and selected the median result to minimize undesired

variability.

Test case Keyword Detection (With validation) Guesslang Brute Force file

C# ModCP 0.039 2.965 0.082 N/A
C# Repositories 0.047 2.621 0.085 N/A
Java Repositories 2.287 2.872 2.333 0.003

Table 4.11: Mean time to detect a string’s language (in seconds).

Table 4.11 provides us with the mean time required to detect a string’s language, for each of the three

approaches. Notably, we can observe that Guesslang takes a considerable amount of time to detect the

programming language of a single string and is more suited for manual queries rather than scalable automated

ones. Furthermore, we can see that the keyword detection approach has reduced the time by 50% compared

to the brute force method.

These results unexpectedly reveal that the processing time for Java repositories in both the keyword-

detection and brute-force approaches is significantly longer than that of other programming languages. After

further investigation, we determined that the root cause of this problem is the grammar we used for Java,

which is not optimized for efficiency. To mitigate this issue, we replaced the grammar with an open-source

grammar obtained from GitHub (2021), resulting in a significant improvement in our algorithm’s performance

shown in Table 4.12.

Test case Keyword Detection (With validation) Guesslang Brute Force file

Java Repositories 0.008 2.872 0.009 0.003

Table 4.12: Performance on Java (in seconds) after updating the grammar.

The subsequent evaluation involves measuring the performance of the keyword detection approach against

other methods for files with the maximum number of characters to assess their performance under worst-case

conditions. To achieve this, we selected the top 50 files with the most characters from both Java Repositories

and ModCP. The outcomes of running all three approaches on these files are demonstrated in Table 4.13.

As evident from the results in Table 4.13, our keyword detection approach shows significant improvement
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Test case Keyword Detection (With validation) Guesslang Brute Force file

C# ModCP - Top 50 Chars 0.555 2.965 0.645 N/A
Java Repositories - Top 50 Chars 0.298 3.081 0.301 0.005

Table 4.13: Performance on top 50 files with the most characters, in seconds.

in performance compared to other approaches. Specifically, it outperforms Guesslang by almost 82% and the

brute-force approach by almost 15% for C# language. In the case of Java, our method performs almost 90%

better than Guesslang. In this case, keyword detection and brute force have nearly identical performances.

In this table, the file command is showing the best performance, but we should note that in this table,

keyword detection and brute force are validating the guess but Guesslang and file are just making a guess

without validation. We will conduct another experiment to just compare the guessing in the next part.

To evaluate the impact of the validation part on the performance of the keyword detection approach,

we have conducted a similar experiment as in the accuracy analysis by removing the validation step. The

objective is to compare the performance of the guessing section of our approach to Guesslang. The results

are shown in Table 4.14 for both the general sets and the sets restricted to the top 50 samples with the most

characters.

Test case Keyword Detection (Without validation) Guesslang file

Java Repositories 4.865 × 10-6 2.872 3.04 × 10-3

C# Repositories 3.190 × 10-6 2.621 N/A
C# ModCP 8.401 × 10-6 2.965 N/A
Java Repositories - Top 50 1.147 × 10-4 3.081 5.18 × 10-3

C# ModCP - Top 50 9.487 × 10-5 3.058 N/A

Table 4.14: Performance on Java after updating the grammar, in seconds, excluding validation.

The results presented in Table 4.14 demonstrate that the keyword detection approach significantly out-

performs Guesslang in terms of performance. Specifically, keyword detection is approximately 32,000 times

faster than Guesslang. In the case of C# repositories, the keyword detection approach is performing nearly

600 times better than file, and in the case of C# ModCP top 50 files, it performs better than file by 45

times. This vast difference can be attributed to the simplicity of keyword detection, which only involves a

tokenizer and a few set-intersection operations, as opposed to the complex, deep learning algorithms used

by Guesslang and pattern-matching used by file.

Conclusion

To address the research question, we performed measurements on regular and worst-case samples using the

keyword-detection approach, which prioritizes language detection to improve brute-force performance. We
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found that the keyword-detection approach significantly outperformed Guesslang in just the guessing section

and performed at least 45 times better than the file command again in the guessing section. Considering its

superior performance and comparable accuracy, we conclude that the keyword-detection approach offers the

best option for the accuracy–performance trade-off.

4.2.6 RQ4: How scalable is our approach in terms of performance for support-

ing new languages?

To investigate the answer to this research question, we collected test cases for Crystal Reports and T-SQL, in

addition to the existing ones for Java and C#. Find it EZ, our industrial partner, provided a rich resource for

these languages, which facilitated the sample-gathering process, as there were not many open-source samples

available. For our research, we conducted a study to examine the impact of integrating a new language into

our keyword detection approach, with the goal of determining the additional cost of incorporating a new

language into the overall system’s performance. This analysis will provide insight into the performance of

our approach as we aim to expand it to support a larger number of languages.

In our current study, we have implemented a keyword detection approach that supports four languages.

To evaluate the impact of adding a new language to the system’s performance, we conduct a series of

experiments. Each experiment involves generating a new permutation of the four languages and testing the

system’s performance by adding languages in the order specified by the permutation. We begin with the

first language in the permutation and test it against all samples for all four languages. We then add the next

language in the permutation and repeat the tests. This process continues until all four languages have been

added, and we move on to the next permutation to repeat the experiment. Figure 4.1 shows an example in

which the permutation is Crystal Reports, T-SQL, Java, and C#.

Since there are 4! = 24 permutations of these languages, we have 24 versions of diagrams similar to

Figure 4.1. To determine the impact of adding a new language on our approach latency, we performed a

linear regression. To do this, we used Python to write a script using the scikit-learn library (Buitinck et al.,

2013; Pedregosa et al., 2011) that provided us with an API to calculate the linear regression for the given

data. After calculation, we drew the diagram using the matplotlib library (Hunter, 2007) in Python.

The equation of the fitted line obtained from the data is y = 2883x + 18323, indicating that adding a

new language only results in an increase of 2,883 nanoseconds, while the constant 18,323 nanoseconds can

mainly be attributed to the cost of tokenization.
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Figure 4.1: An example of adding new languages.

Figure 4.2: Regression over all 24 sets of data.

Conclusion

Drawing upon the measurements in this section, we infer that the cost of integrating a new language into

our keyword detection approach is negligible and that the approach scales easily to accommodate additional

languages. Essentially, the integration of a new language merely involves an additional intersect operation

between two sets, which is highly efficient and justifies the approach’s scalability.

4.3 Summary

We conducted an evaluation of our approach for extending ModCP in comparison to Afzal’s version. The

main objective of our evaluation was to investigate how our approach could enhance code complexity. We

have figured out that our development approach will increase the maintainability index by 0.1% and reduces
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complexities such as cyclomatic complexity by 45% and depth of inheritance by 17% and the number of

lines of code by 30–40% in the Core project. We then assessed our approach for detecting embedded code

snippets using keyword detection, comparing it to the brute-force method, the Guesslang tool, and the Unix

file command in terms of accuracy and performance. We evaluated both the guess and evaluate components,

as well as just the guessing component. Our results indicate that the guessing component of our approach

has nearly identical recall compared to the Guesslang and file but with better performance. Therefore, our

approach is highly efficient and accurate for detecting code snippets. We also examined the scalability of

the guessing section and determined that adding a new language has a minimal impact (2.883 nanoseconds

added for a new language) on the program’s performance.

54



Chapter 5

Discussion

In this chapter we discuss the limitations of our work and potential threats to its validity, and we propose

ideas for future work.

5.1 Limitations

5.1.1 ModCP extension

One potential limitation of the model proposed in the Extensions project is that any language incorporated

must be able to conform to the predefined classes in the Core project, such as Statement and Expression.

This limitation could pose a challenge when attempting to implement a language that cannot be adequately

represented by the Core project’s concepts, as is the case with the Prolog programming language. Prolog

relies on formal logic and symbolic computation, utilizing logical rules and facts rather than explicit state-

ments or expressions to define program behaviour (Colmerauer, 1990). While T-SQL and Crystal Reports

are syntactically different languages than Java and C#, the concepts used in those languages were ultimately

able to be mapped to the model. However, if the concepts of a new language are significantly different from

those defined in the Core project, the model may not be able to represent it effectively.

In the Extensions project, the code for each language is isolated from others, which creates the challenge

of not being able to reuse code across languages. This results in duplication of code, particularly for similar

use cases in languages such as C# and Java. While duplicate code may not require frequent modification

(Hotta et al., 2012), it can complicate the maintenance and evolution of the code (Ducasse et al., 1999).

Although we have pursued the approach with the idea of complete independence of the languages supported,

there is also the possibility of grouping related languages so as to provide a type hierarchy for some of the
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common constructs therein; whether this will be an improvement or would lead to a more confusing structure

overall is an open question.

5.1.2 Language Identification

Our keyword-detection approach has limitations that we discuss here.

The first problem is that, unlike Guesslang which can be trained on many languages and then detect

all of them, we need development effort to add each new language. That is why our approach supports

four languages at this stage while Guesslang supports 54 programming languages. If we want to add a new

language with a validation part as well, we should implement a correct ANTLR grammar for that language

and this can increase development costs. If we just want the guessing part, we just need to gather keywords

of that language and create a new Detector class for that language.

Another issue is that Guesslang can be trained on multiple versions of a programming language, and

slight syntactical differences among these versions do not affect its precision much. However, in our validation

process, we must ensure that our grammar supports all versions of the language or utilize different grammars

for each version. Alternatively, we can create a grammar that encompasses the fundamental principles of

the language, which are consistent across all versions. Nonetheless, this method demands significantly more

maintenance than Guesslang.

Another limitation is that in the guessing phase, we do not parse the provided text, which causes the

keyword detection approach to consider keywords used in the comments. If a foreign language keyword is

often repeated in the comments, it can mislead the keyword detection approach. Similarly, this scenario can

occur with Guesslang as well, where if we embed a code in another language in the comments section of the

input text, Guesslang’s output may be inaccurate.

An additional constraint of our approach is its inability to identify strings that are produced during

runtime. Since we examine the codebase in a static manner and do not monitor the code during execution,

any code snippets created by concatenating various variables, for instance, would not be detected. This

limitation is shared by both the brute force method and the Guesslang approach as well.

Since the brute force and the keyword detection approach with validation parse the input with the

grammars, the input string should be in its final format to be able to be parsed by the grammar. But our

approach without validation alongside Guesslang and file, is still able to make a guess about the programming

language.

Another limitation of our approach is supporting languages that do not have any keywords. LISP is

an example of a language that does not have any keywords (Steele, 1990). At this moment, our industrial
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partner is not using languages of this kind, but in case its needed, we need to implement a new detector

class for this language and process the input in a different way such as regular expressions.

5.2 Threats to Validity

There are several threats to the validity of our work for the extension of ModCP and also for identifying

the embedded language. Based on Wright et al. (2010),Wohlin et al. (2012), and Siegmund et al. (2015), we

have categorized threats to validity into three categories.

• Internal validity threats: This pertains to the degree of accuracy and scientific soundness of the

conclusions drawn from our observations regarding the relationship between the independent and de-

pendent variables. It concerns the validity of the relationship between these variables.

• External validity threats: This pertains to the validity issues that arise when attempting to gener-

alize and replicate experimental results in different contexts or scenarios.

• Construct validity threats: A construct validity threat refers to a potential issue or challenge that

could undermine the validity of the constructs being measured or manipulated in a research study.

These threats arise when there are concerns regarding the accuracy, appropriateness, or representa-

tiveness of the operationalizations or measures used to assess the constructs of interest.

5.2.1 Language identification

We collected a dataset of samples to evaluate language identification methods using widely-used GitHub

repositories. These repositories are typically subjected to extensive review by developers and adhere to best

practices in coding syntax and commenting. However, if we had access to private or industrial code bases, we

might encounter varying syntaxes and commenting conventions, which could require further adjustments to

our keyword-based detection or grammar to enhance their precision. This can be categorized as an external

validity threat. To fix this in the future, we should get access to some private industrial repositories and

study their code to check if they use some different patterns in their programming style and update our

approach accordingly.

In the evaluation chapter, the reported performance metrics for each approach may be influenced by

various factors such as background processes running on the operating system during the execution of our

jobs, or issues with job scheduling and priority on the OS. This can be categorized as an internal validity

threat. To fix this, we have taken measures to minimize these effects by running each test case at least
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ten times and selecting the median value of the resulting data, ensuring that we do not rely solely on the

best-case or worst-case scenarios.

We support four languages in the current version of the keyword detection approach. In case we want to

scale our approach and support multiple new languages, common keywords and comments in the given input

can increase the chance of being wrongly detected and the accuracy numbers reported in the evaluation

chapter may be subject to change. This can be categorized as an external validity threat. To fix this, we

should try to accommodate the language-specific keywords that are not used in other languages and increase

their weight in scoring the detector to decrease the effect of this threat as much as possible.

5.3 Future work

5.3.1 ModCP extension

Now that we have a system inside ModCP that can guess the embedded language, the next step is to use

this system inside the parsing section of ModCP. So when ModCP faces a string literal, it passes the string

literal to our keyword detector and if the keyword detector says that this is a programming language, it tries

to parse it. After parsing, ModCP should determine the variables inside the embedding code that are being

used by the embedded code and make relations between them,

ModCP architecture now has the ability to be extended and support new languages without making

the code much more complicated. Therefore, we can implement new languages such as Python, JavaScript,

MySQL, C, and C++.

5.3.2 Language detection

We can add support for more programming languages in the keyword-detection approach. The process of

adding a new language is to gather all of its keywords, write a grammar for our desired version, then create

a new class to guess based on the keywords and validate using the grammar.

We can add support for C# language to the Unix file command as it is an open-source library. Adding

support for new languages makes this tool a more powerful tool and with its performance that is notably

better than Guesslang, it can become one of the main options for this purpose.

An additional avenue of exploration in this field is the optimization of Guesslang’s functionality. As out-

lined in the evaluation section, the primary issue facing Guesslang is its sub-optimal performance, rendering

it unsuitable for real-time deployment. Should a viable solution be identified to resolve this issue and a

usable API be developed for other tools, such as ModCP, the accuracy, and scalability of Guesslang in terms
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of language support make it a viable replacement option.

5.4 Summary

This chapter provides an overview of the limitations of the research, including challenges posed by the

use of disparate syntaxes, code duplication, the scope of the keyword detection approach, and the parsing

of comments. The discussion also highlights potential threats to the validity of the study, particularly

the reliance on the dataset gathered from popular open-source repositories that may be different from

actual private industrial code bases. Furthermore, the chapter suggests future directions for research, such

as integrating the keyword detector into the ModCP parsing section and exploring relationships between

embedded and embedding code.
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Chapter 6

Conclusion

Software maintenance is the process of modifying and updating systems to improve performance, fix bugs,

and satisfy new requirements. Maintenance is a crucial part of a software’s life cycle, and over time, it

gets more expensive and complex as the code base grows. The manual maintenance of software by software

developers can be prone to various types of errors; to mitigate this risk, software development and analysis

tools (SDATs) can aid in semi-automating the process, thereby increasing the efficiency and accuracy of

the maintenance process. Impact analysis involves identifying potential consequences of a modification, or

estimating what parts of code need to be updated in reaction to a change. Change propagation (CP) is

a software development technique that ensures the consistency and functionality of a system by updating

program outputs or results when there is a modification in its inputs or dependencies.

ModCP is a static change propagation analysis tool. Initially, the tool was specifically designed for the

analysis of Java source code. In the next step of the development of ModCP, the industrial partner of the

ModCP project required an extension in order to accommodate new languages, focusing on common and

popular languages such as C# and Python. This part of the development was done by Afzal (2020). In their

implementation architecture, all of the models representing the ASTs were stored inside the Core project

and there was a single model representing all languages. However, they also needed to implement a new

model for cases that could not fit into the current universal model. For instance, they introduced a directory

named GPP to represent Python, Java, C#, and T-SQL models, but because T-SQL has some different

concepts, they had to make another directory for some special cases of T-SQL. Some classes in this directory

extend each other and some extend classes in the GPP directory. This caused the code to be more complex

and harder to maintain, resulting in issues like the following.

• Each language possesses its own special concepts that may or may not be present in other languages.
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When multiple languages use the same model, those concepts must be defined in all of them.

• In a significant number of instances within the ModCP codebase, we observed that a class in a TSql

directory extends a class from the GPP directory while T-SQL is not a special case of “GPP”, so an

inheritance relationship is wrong in this case.

• The current architecture makes the process of adding a new language ambiguous and costly. A de-

veloper does not know whether they have to implement a new directory or add the new language to

existing classes, making the code base poorly extendable.

In addition, another language of particular significance for our industrial partner was Crystal Reports

(SAP, 2023), a business intelligence application that enables the creation and generation of reports from

various data sources. We wanted to implement this language besides other languages in the ModCP as well.

During the implementation of the support for Crystal Reports for ModCP, a significant number of

instances were encountered where embedded SQL code was utilized in the form of strings and called upon

other functions. To establish a relationship between code and embedded strings, it is necessary to determine

whether a string in question is a piece of code or simply a regular string. To address this, an approach was

designed and developed that takes a string as input and outputs a determination of whether it is written in

a programming language or not.

There are multiple studies and development works about representing multiple languages using models.

Some studies use a universal model to represent all languages and some use a model per group of languages

or a model per language to do so. Professor Robert Walker has used the idea of a combination of these two

models to represent languages. The idea is to create an abstract model inside the Core project and create

a language-specific model for each language in the Extensions project. Each language in the Extensions

project inherits the base abstract model and has nothing in common with other languages in the Extensions

project. We implemented the C#, T-SQL, and Crystal Reports languages on this architecture and compared

the results with the architecture developed by Afzal (2020) to see how these architectures will lead to increase

code maintainability and reduce code complexity.

6.1 ModCP development

We developed our ModCP extension work by starting with the development of the support for the C#

language. For each language, we have to write or find a grammar (lexer and parser), generate the C# code

from the grammar, implement the models in the Extensions project, and create a builder to generate models

by iterating on the generated lexer and parser. After doing these, we have to write tests to make sure that
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each stage from parsing the language to creating the dependency graphs for the given code in that language

is correctly executed. After C#, we did the implementation for T-SQL and Crystal Reports languages as

well.

During the implementation of the mentioned languages, we have added the work done by Singh (2021)

to our models. The responsibility of their work was to persist the models and graphs generated from the

source code by using the DataContract API to avoid the cost of re-calculation.

6.2 Language identifier development

During the development of Crystal Reports, we encountered situations where SQL code was embedded within

the report file, which made a connection with Crystal Reports variables. Similar occurrences were also found

in Java or C# code, and HTML code with embedded JavaScript. Parsing the embedded code and finding

its relation to the embedding code is a crucial feature for ModCP as a change propagation framework. In

response to this, we developed a system that takes a string as input, detects the programming language of

the code snippet, and validates the guess if required.

Our approach aims to improve the brute-force performance of traditional methods that run the given

string against all supported grammars to determine the correct parser. Our solution involves designing a

Detector class for each language, which contains the keywords specific to that language. By counting the

number of keywords found in the input, we prioritize the order of parser execution against the given string.

The brute force method can be used as one of our baseline approaches based on this.

There are limited implementations regarding this work available. The closest tools to our work are

Guesslang and the Unix file command. Guesslang utilizes deep learning and TensorFlow to implement a

linear classifier trained on an extensive dataset of publicly available source codes on the internet. The Unix

file command is a command-line tool that detects the type of the given file and its programming languages

if applicable using the patterns it finds in the file. We also used them as baseline approaches for guessing

the input without validation.

6.3 Evaluating our implementation

In order to evaluate our implementation for extending ModCP and language identifier, we have designated

research questions and found their answers by extracting data from code metrics, and performance and

accuracy tests.

RQ1: Is our approach able to simplify the codebase and decrease its complexity when compared to the
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baseline? We evaluated our codebase against the code developed by Afzal (2020), considering factors such

as cyclomatic complexity, maintainability index, depth of inheritance, class coupling, and lines of code.

Our approach has increased the maintainability index by 0.1% and reduced complexities such as cyclomatic

complexity by 45% and depth of inheritance by 17% and the number of lines of code by 30–40% compared

to Afzal’s version. As a result of our analysis, we were able to reduce the complexity of our Core project and

establish a new project called Extensions. This project now contains all language models, which are isolated

from each other to improve the overall organization of our codebase.

RQ2: How accurate is our approach compared to the brute force and the baseline approaches? Regarding

accuracy, our approach exhibits the same level of accuracy as the brute force method, achieving a 100%

accuracy rate when utilizing both the guessing and validation components. On the other hand, Guesslang

provides a 94% accuracy rate and file provides 87% accuracy on Java. By removing the validation component

from our approach, the guessing component was able to achieve an average accuracy rate of approximately

90% with significantly better performance.

RQ3: How is the performance of our approach compared to the brute force and the baseline approaches?

For the purpose of evaluating performance, we conducted tests on three approaches, both on typical use cases

and on samples with the highest number of characters in the file. After making adjustments to different parts

of our approach, we were able to achieve a performance that was almost 32,000 times better than that of

Guesslang and at least 45 times better than file for the guessing component alone. Moreover, our approach

demonstrated performance that was 10 times better than Guesslang for both guessing and validation and

twice as fast as brute force.

RQ4: How scalable is our approach in terms of performance for supporting new languages? For this

study, we assessed the scalability of our keyword detection approach in adding new languages. We added

languages one by one for all possible permutations of supported languages to measure the time it takes

to add a new language. The results showed that adding a new language only takes 2,883 nanoseconds,

which is an extremely small amount of time. This indicates that our keyword detection approach can easily

accommodate new languages without increasing the system’s latency.

6.4 Future work

Regarding future work for the ModCP extension, one potential avenue is integrating an embedded language

detection system into ModCP to enable the parsing of multi-language codes and relating their graphs to

each other. Additionally, new languages like Python, JavaScript, MySQL, C, and C++ can be implemented

into the new architecture of ModCP. The keyword detection approach can be improved by adding support
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for more programming languages in the language detection system. Another area of exploration in this

field is optimizing Guesslang’s functionality. Currently, the sub-optimal performance of Guesslang makes it

unsuitable for real-time deployment. Moreover, adding the support for more languages such as C# to file

makes it a powerful tool with an acceptable performance that can be used in use cases such as guessing the

embedded language.
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