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Abstract 

The increasing use of low-cost inertial sensors in various mass-market applications necessi-

tates their accurate stochastic modeling. Such task faces challenges due to outliers in the sensor 

measurements caused by internal and/or external factors. To optimize the navigation perfor-

mance, robust estimation techniques are required to reduce the influence of outliers to the sto-

chastic modeling process. The Generalized Method of Wavelet Moments (GMWM) and its Mul-

ti-signal extensions (MS-GMWM) represent the latest trend in the field of inertial sensor error 

stochastic analysis, they are capable of efficiently modeling the highly complex random errors 

displayed by low-cost and consumer-grade inertial sensors and provide very advantageous guar-

antees for the statistical properties of their estimation products. On the other hand, even though a 

robust version exists (RGMWM) for the single-signal method in order to protect the estimation 

process from the influence of outliers, their detection remains a challenging task, while such at-

tribute has not yet been bestowed in the multi-signal approach. Moreover, the current implemen-

tation of the GMWM algorithm can be computationally intensive and does not provide the sim-

plest (composite) model. In this work, a simplified implementation of the GMWM-based algo-

rithm is presented along with techniques to reduce the complexity of the derived stochastic mod-

el under certain conditions. Also, it is shown via simulations that using the RGMWM every time, 

without the need for contamination existence confirmation, is a worthwhile trade-off between 

reducing the outlier effects and decreasing the estimator efficiency. 

Generally, stochastic modeling techniques, including the GMWM, make use of individual 

static signals for inference. However, it has been observed that when multiple static signal repli-

cates are collected under the same conditions, they maintain the same model structure but exhibit 

variations in parameter values, a fact that called for the MS-GMWM. Here, a robust multi-signal 
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method is introduced, based on the established GMWM framework and the Average Wavelet 

Variance (AWV) estimator, which encompasses two robustness levels: one for protection against 

outliers in each considered replicate and one to safeguard the estimation against the collection of 

signal replicates with significantly different behaviour than the majority. From that, two estima-

tors are formulated, the Singly Robust AWV (SR-AWV) and the Doubly Robust (DR-AWV) and 

their model parameter estimation efficiency is confirmed under different data contamination sce-

narios in simulation and case studies. Furthermore, a hybrid case study is conducted that estab-

lishes a connection between model parameter estimation quality and implied navigation perfor-

mance in those data contamination settings. Finally, the performance of the new technique is 

compared to the conventional Allan Variance in a land vehicle navigation experiment, where the 

inertial information is fused with an auxiliary source and vehicle movement constraints using the 

Extended and Unscented Kalman Filters (EKF/UKF). Notably, the results indicate that under lin-

ear-static conditions, the UKF with the new method provides a 16.8-17.3% improvement in 3D 

orientation compared to the conventional setting (AV with EKF), while the EKF gives a 7.5-

9.7% improvement. Also, in dynamic conditions (i.e., turns), the UKF demonstrates an 14.7-

17.8% improvement in horizontal positioning and an 11.9-12.5% in terms of 3D orientation, 

while the EKF has an 8.3-12.8% and an 11.4-11.7% improvement respectively. Overall, the UKF 

appears to perform better but has a significantly higher computational load compared to the EKF. 

Hence, the EKF appears to be a more realistic option for real-time applications such as autono-

mous vehicle navigation. 

Keywords: Inertial Sensor Stochastic Calibration, Robust Estimation, Generalized Method of 

Wavelet Moments, Average Wavelet Variance Estimator, Monte-Carlo Simulations, Extended 

Kalman Filter, Unscented Kalman Filter 
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Coordinate Frames 

Body frame (b-frame) 

• Origin: origin of the mutually orthogonal IMU accelerometer triad 

• X-axis: towards the forward direction (i.e., roll axis) 

• Y-axis: towards the transverse direction (i.e., pitch axis) 

• Z-axis: towards the vertical direction (i.e., yaw axis) to complete a right-handed frame 

Inertial Frame (i-frame) 

• Origin: Earth’s centre of mass 

• X-axis: direction of the vernal equinox 

• Y-axis: orthogonal to complete a right-handed frame 

• Z-axis: spin axis of the Earth (defined by the North and South celestial pole) 

• Axes are non-rotating with respect to distant galaxies 

Earth-Centered Earth-Fixed Frame (e-frame) 

• Origin: Earth’s centre of mass 

• X-axis: Intersecting the mean equatorial plane and the mean Greenwich meridian plane 

• Y-axis: Orthogonal to complete a right-handed frame 

• Z-axis: Mean spin axis of the Earth 

• Rotates with respect to the i-frame around its Z-axis at a fixed angular rate ωe = 15.041 

deg/hr 
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Navigation frame (n-frame) 

• Origin: same as the b-frame 

• X-axis: tangent to geodetic meridian, pointing towards the geodetic North 

• Y-axis: orthogonal to complete a right-handed frame 

• Z-axis: orthogonal to the reference ellipsoid (here the WGS84 reference ellipsoid is em-

ployed) 

• Identical to the NED Local Level Frame 

Vehicle frame (v-frame) 

• Origin: ground projection of the rear drive axle’s midpoint and aligned with the roll, pitch, 

and azimuth axes of the vehicle (assuming a front wheel steering system) 

• X-axis: towards the vehicle’s longitudinal axis 

• Y-axis: pointing right, along the line connecting the ground projection points of the two rear 

wheel centers 

• Z-axis: orthogonal to complete a right-handed frame, pointing downward 
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Chapter One: Introduction 

1.1 Background and Objectives 

Inertial sensors are an integral part of modern navigation, with applications ranging from 

aviation and drones to vehicular and pedestrian navigation. They are the fundamental unit of the 

Inertial Navigation System (INS) (Groves, 2013), an autonomous system that is capable of deliv-

ering precise high frequency and short term position, velocity, and attitude (PVA) information 

for the moving platform they are mounted on. However, the INS standalone operation degrades 

rapidly with time due to the effects of random errors governing the inertial sensor measurements. 

In fact, this phenomenon is particularly intense when dealing with either low-cost or consumer-

grade equipment, due to the fact that their observation noise is not only high leveled but also 

very complex structured. Therefore, to prevent the evolution of the inertial sensor stochastic er-

rors, maintain high navigation solution quality and avoid the INS performance derailment, inte-

gration with aiding sources is required. Specifically, these aiding sources have complementary 

characteristics to the INS, a comparatively lower bandwidth and offer partial navigation state in-

formation (i.e., nav-aids). Here, since particular focus will be given to outdoor vehicular naviga-

tion, a characteristic example of such source is the Global Navigation Satellite System (GNSS) 

(Misra and Enge, 2011), incorporated in the context of strapdown inertial navigation (Titterton 

and Weston, 2004). 

Even though the synergy between INS and GNSS is very beneficial, a challenge arises in real-

life vehicular navigation situations where the latter’s information is obstructed, and the former 

has to operate on standalone mode for a period of time. In such an occurrence, the navigation 

performance would be reliant on three major factors: (a) the quality of the knowledge regarding 

the inertial sensor random error behavior, (b) the estimation method/filter employed for the in-
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formation fusion and (c) motion constraints, whose usefulness is linked with the quality of the 

inertial sensor noise behavior. 

Currently, the latest trend in the modeling of inertial sensor random errors is the Generalized 

Method of Wavelet Moments (GMWM) (Guerrier et al., 2013a), which offers a stochastic analy-

sis (statistical) framework capable of estimating the parameters of a composite stochastic model 

that balances the adequate description of the sensed random behavior and the simplicity of that 

model’s structure. However, as it stands now, the identified stochastic model by the GMWM 

based on a single calibration signal (presumed intrinsically stationary) has room for further com-

plexity reduction, while the whole implementation can also be improved in terms of simplicity 

and speed, without sacrificing the quality of the final product. 

The GMWM is capable of efficiently identifying and estimating high and low frequency error 

terms with great accuracy. In addition, unlike the standard Allan Variance method (Allan, 1966) 

that has been the status quo in the navigation community for the last 15 years, it is capable of 

precisely identifying and quantifying multiple time-correlated error terms that affect different 

regions of the mid frequency spectrum. On top of that, this method includes a robust feature, 

which based on fundamental concepts of robust statistics, it is capable of providing some level of 

protection to the estimation process by reducing the impact of existent outliers within the one 

signal that is being utilized for the stochastic analysis (Guerrier et al., 2022). However, it can be 

challenging to determine whether the data at hand are contaminated with outliers or not. 

On another note, it has been observed in recent studies regarding low-cost and consumer-

grade inertial sensors (Radi et al., 2019), that when multiple calibration signals are collected un-

der the exact same operating conditions, there is a certain variation in stochastic behavior from 

one signal replicate to another. In order to consider this phenomenon, a multi-signal stochastic 
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error modeling framework was proposed as well as three different estimators that are based on it 

(Radi et al., 2019; Bakalli et al., 2023). Nevertheless, despite the fact that the improvements it 

offers over the single-signal GMWM have been demonstrated in a recent study (Bakalli et al., 

2023), it contains no safeguards against the influence of outliers that exist within the multiple 

calibration signals that are being considered by the method. In fact, the situation is more compli-

cated in the multi-signal case since even if only a small number of signal replicates contain a 

significant number of outliers, that can affect not only the estimation of the composite model that 

describes the random error behavior but also the selection of the proper model structure. 

After conducting the stochastic modeling of the inertial sensor errors, the derived knowledge 

has to be included within the navigation algorithm in order to allow for their recursive compen-

sation and thus, improve the INS performance. Typically, the incorporation of such information 

as well as the integration of INS with other aiding sources in order to estimate the integrated nav-

igation solution along with its corresponding uncertainty, is conducted by the means of Bayesian 

filtering (Haug, 2005). 

The navigation problem is a real-life ever evolving system that can be observed by various 

sensors like the INS and GNSS systems. In the context of Bayesian filtering, the mathematical 

description of such system is comprised of two parts: the dynamic/kinematic or system model 

and the measurement model. The first one is driven by the INS due to its high bandwidth and it 

expresses the physics behind the motion (i.e., evolution of the navigation states over time) from 

the previous to the current time, while the latter relates the information from auxiliary sources 

(e.g., GNSS, motion constraints) to the propagated state. Furthermore, Bayesian filtering consid-

ers the navigation states (i.e., position, velocity, attitude) as random variables that can be fully 
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characterized by their probability distribution function (PDF) and constitute a 1st-order hidden 

Markov chain model (HMM), which is visually represented in Figure 1.1. 

 

Figure 1.1: 1st-order Hidden Markov model (HMM) representation (Georgy, 2010) 

Consequently, the conditional probability distribution of each state moment, considering all its 

past and future values, depends only on the immediately preceding moment �𝑝𝑝(𝐱𝐱k|𝐱𝐱k−1)� and 

each independent measurement 𝐳𝐳, observes and characterizes a single state moment of the HMM 

�𝑝𝑝(𝐳𝐳k|𝐱𝐱k)� (Rabiner and Juang, 1986). 

For navigation purposes, the estimation of the full state vector 𝐱𝐱 is required whenever an ob-

servation becomes available. Therefore, Bayesian filtering should be implemented recursively in 

order to adapt the state PDF to the new information and quantify its posterior shape (Särkkä, 

2013). Generally, the structure of such a filter is divided into two parts: the prediction and the 

update. During the prediction stage, the INS mechanization equations (i.e., system model) are 

utilized in tandem with the latest inertial sensor measurements and previous epoch’s state 

knowledge in order to estimate the “predictive” conditional transition PDF of the state at the pre-

sent time. However, this PDF does not utilize any current moment information and since the 

measurements used for its estimation are noisy (i.e., inertial sensor observations), especially for 

the case low-cost and commercial grade equipment, it only natural that it will be deformed. As 

for the update stage, the information provided by an aiding source like GNSS is utilized along 
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with the predictive PDF and the Bayes theorem (fundamental statistics formula) in order to esti-

mate a posterior PDF that encompasses all the available information (see (Simon, 2006) for an 

in-depth discussion). 

The aforementioned recursive implementation of the Bayes theorem yields high-dimensional 

integrals, which according to Doucet, (1998), it is virtually impossible to analytically evaluate 

unless the system at hand is Gaussian and linear in nature. Furthermore, it is emphasized that the 

latter case refers to romanticized systems and only nonlinear ones exist in real-life (Noureldin et 

al., 2013). Therefore, in order to overcome the intractability of these integrals in nonlinear sys-

tems, sub-optimal methods have to be utilized, which employ some form of approximation to the 

inference of their solutions. A brief description of such techniques, including their respective ad-

vantages and disadvantages can be found in (Arulampalam et al., 2002). 

Nowadays, the most heavily used Bayesian filtering approaches for the purpose of integrated 

vehicular navigation are: 

A) The Extended Kalman Filter (EKF) 

B) The Unscented Kalman Filter (UKF) 

C) Particle Filter (PF) variants 

The primary differences between these Bayesian filters are the manner in which they handle 

the nonlinearities of the system and measurement models as well as the way that they perceive 

the state PDF. Furthermore, if the complex stochastic modeling information for the inertial sen-

sor errors provided by the multi-signal GMWM-based stochastic analysis approach is to be con-

sidered, then this would cause a considerable increase to the computational cost since the state-

space size should be augmented. Consequently, this automatically disqualifies the use of the PFs 
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from practical applications since due to their inherent curse of dimensionality, the demand for 

computational resources would be prohibitively large. Therefore, only the EKF and UKF ap-

proaches are viable Bayesian filter candidates for the infusion of such stochastic analysis infor-

mation for the inertial sensor errors. In addition, it should be noted that the UKF, a less restric-

tive approach than the conventional EKF, has never been utilized before along with GMWM-

based stochastic analysis for the inertial sensor errors and thus, it would be worthwhile to inves-

tigate the benefits of such synergy to the navigation performance. 

With the aforementioned in mind, the subject of this thesis is the robust stochastic modeling 

of inertial sensor errors as well as its contribution to the integrated vehicular navigation perfor-

mance while using different information fusion methods. Furthermore, besides the use of GNSS 

as an aiding source, two motion constraints can also be utilized: (a) the Non-Holonomic Con-

straints (NHCs), which express the intuitive observation that the velocities along the vertical and 

transversal direction of a moving car should be equal to zero and (b) the Zero Velocity Updates 

(ZUPTs), where the velocity of the vehicle along all three dimensions is equal to zero since it has 

stopped moving. Hence, the following research objectives will be realized in this thesis: 

1) Propose a simplified implementation for GMWM-based algorithms that ensures speed, accu-

racy, and complexity reduction of the final composite stochastic model. 

2) Highlight the usefulness of performing the single-signal stochastic analysis of inertial sensor 

errors in a robust way. 

3) Establish and validate a new robust multi-signal stochastic modeling method in the context 

of the GMWM framework. 

4) Modify the EKF-based and UKF-based INS/GNSS/NHC/ZUPT algorithms in order to in-

fuse them with the new stochastic analysis approach’s information. 
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5) Investigate the contributions of the new robust multi-signal stochastic modeling method to 

the EKF-based and UKF-based INS/GNSS/NHC/ZUPT integrated navigation performance. 

6) Compare the performance of the EKF and UKF schemes. 

1.2 Thesis Outline 

For the purpose of realizing the aforementioned research objectives, this thesis is structured in 

the manner that is described in the following. 

Chapter 2 starts by mentioning the fundamental principles of Inertial Navigation. Then, it pro-

ceeds to break down the error budget associated with the measurements provided by the Micro 

Electronic Mechanical System (MEMS)-based inertial sensors into two main categories: the de-

terministic and the stochastic. The definition for each error is also provided. Furthermore, the 

properties that characterize the most common stochastic processes that are being utilized in the 

literature for modeling the random error behavior are highlighted. 

In Chapter 3, the methods of quantifying the deterministic error influence on the inertial sen-

sor measurements are mentioned. Subsequently, a concise literature review is presented for each 

of the available stochastic modeling techniques, along with their corresponding algorithm and 

weaknesses that warrant further investigation. Furthermore, it is highlighted that the entirety of 

past studies exposes the connection between the inertial sensor stochastic modeling quality and 

the final navigation performance via a small number of practical experiments. However, such an 

endeavor is not enough to infer reliable conclusions from a purely statistics viewpoint and thus, 

the use of a recently proposed navigation simulator by Cucci et al., (2023) is suggested for the 

validation of the new robust GMWM-based multi-signal method that will be presented in this 

thesis. Finally, it is noticed that the GMWM-based stochastic analysis has only been tested in the 
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context of an EKF filter and only for INS/GNSS integration, without the assistance of other up-

dates. 

Chapter 4 is devoted to main contributions of this thesis, which are related to the stochastic 

modeling of low-cost and commercial-grade inertial sensor errors. Firstly, a refined implementa-

tion algorithm for the GMWM is presented. In addition, the mathematical foundation for reduc-

ing the derived stochastic model’s complexity under specific conditions is established, along 

with ways to assess whether these conditions are satisfied. Second, a simulation study is con-

ducted, in order to investigate whether the robust version of the GMWM can be effectively uti-

lized in every scenario, without requiring confirmation of whether the calibration data at hand 

are corrupted or not. Subsequently, a novel robust multi-signal wavelet variance-based stochastic 

modeling method that contains two layers of robustness is presented. From that, two estimators 

are defined, which are evaluated through a simulation and a case study in order to assess their 

efficiency in terms of stochastic model parameter estimation. Moreover, the contribution of the 

new robust estimators to the navigation performance was evaluated via a hybrid study by em-

ploying the navigation simulator proposed by Cucci et al., (2023) and real inertial sensor data 

that have been artificially contaminated with outliers. Finally, the stochastic analysis of commer-

cial grade inertial sensors was implemented using the newly established approach as well as the 

conventional Allan Variance method. 

In Chapters 5, the structure of an EKF-based INS/GNSS/NHC/ZUPT loosely coupled integra-

tion algorithm is presented in detail. Furthermore, special focus is given in reporting how the 

knowledge derived by the new stochastic analysis method can be properly infused within the fil-

ter. 
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Chapter 6 contains the description of a novel UKF-based INS/GNSS/NHC/ZUPT loosely 

coupled integration scheme, in the sense that this is the first time that stochastic modeling infor-

mation derived by GMWM-based estimators is being infused in the context of such a filter.  

In Chapter 7, the stochastic modeling information derived in Chapter 4 is infused within the 

EKF and UKF filters described in Chapters 5 and 6 respectively and thus 4 filter configurations 

are created. Then, their performance is evaluated in terms of horizontal positioning and 3d orien-

tation estimation accuracy via a real-life vehicle navigation experiment. In fact, this assessment 

is conducted under different conditions in order to highlight the improvement that the new sto-

chastic estimators can provide over the classical Allan Variance from multiple aspects. Finally, 

the computational times of the filters are also calculated in order to provide further evidence for 

selecting the most appropriate configuration.  

Chapter 8 is the final chapter of this thesis, where the derived conclusions from the previous 

chapters are summarized. In addition, several recommendations are made for expanding the re-

search presented here in order to make further contributions. 
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Chapter Two: Inertial Sensors and Measurement Error Budget 

2.1 Introduction 

The measurements provided by MEMS-based inertial sensors, which are primarily utilized for 

low-cost applications, are typically compromised by a significant error budget. These errors can 

be classified into two different categories, depending on their nature: the deterministic and sto-

chastic. In this chapter, a listing of the errors that belong to each type as well as their respective 

properties will be provided, with a particular focus given to the characteristics of the stochastic 

ones. Before that however, the operational principle, based on which the inertial sensor meas-

urements can be translated to navigation information will be briefly mentioned. 

2.2 Inertial Navigation System and Inertial Sensors 

An Inertial Navigation System is a self-contained system able to produce high-rate PVA in-

formation in the 3d space using inertial sensor measurements and the Dead Reckoning concept. 

According to that concept, it is possible to determine the navigation states of a moving platform 

by combining measurements of acceleration and angular rate that sense its motion between sub-

sequent points w.r.t an inertial frame and the knowledge of its initial condition. Specifically, a 

proper manipulation of the angular rates can infer the transformation between the inertial and the 

navigation frame (commonly the Local Level Frame (LLF)) and allow the evaluation of the atti-

tude in the new state. In turn, using that information, the acceleration observations can be re-

ferred to the navigation frame (n-frame), where a single and a double integration over time 

would produce the position and velocity of the platform respectively at the end of the sensed 

movement (El-Sheimy, 2014). 

The apparatus that can provide the aforementioned observations in the 3d space and eventual-

ly lead to a full navigation solution is called the Inertial Measurement Unit (IMU), which is 
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comprised by an accelerometer and a gyroscope orthogonal triad. The accelerometers sense the 

linear motion along three mutually orthogonal directions by measuring the applied specific force 

(difference between the acceleration w.r.t the inertial frame and the gravitational acceleration), 

while the gyroscopes perceive the angular motion along mutually orthogonal directions as well 

through angular rate observations. Ideally, the axes of both sensor triads are aligned with each 

other, share the same origin (accelerometer triad’s) and since they are mounted on the surface of 

the IMU, they define the so-called body frame (b-frame) (Noureldin et al., 2013). 

2.3 MEMS-based Inertial Sensor Error Budget 

Conventional INS devices are highly sophisticated, heavy, and particularly high-priced. 

Therefore, it stands to reason that they are unapproachable by the average consumer. A solution 

to this problem has been provided by advancements in the MEMS technology, which by combin-

ing silicon-based microelectronics and micromachining, has allowed the production of chip-

based inertial sensors (e.g., accelerometers, gyroscopes) that are compact, lightweight, cheap, 

power-efficient and reliable for mass-market applications (Aggarwal, 2010). Regardless, the out-

put from this type of sensors is compromised by errors, with the magnitude and complexity of 

which being inversely proportional to the value of the sensors, that cause the rapid degradation of 

the INS standalone performance over time.  

Typically, the nature of the errors that govern the inertial sensor measurements (either of ac-

celerometers or gyroscopes) and influence their performance can be divided into two distinct 

categories: deterministic and stochastic. The deterministic errors are related to the equipment’s 

inherent property and manufacturing defects (Rogers and Schetz, 2003), can be corrected 

through a calibration procedure (in-lab or in-field) since their effects to the sensor output can be 

described with a closed-form expression and removed from the measurements prior to the INS 
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mechanization (i.e., algorithm that translates the inertial sensor output to navigation infor-

mation). As for the stochastic ones, their randomness forbids the direct calculation of their mag-

nitude but their behaviour over time can be modeled stochastically. Moreover, it should be high-

lighted that the operating conditions like the temperature and the dynamics have a non-negligible 

impact to the behaviour of the stochastic errors, which is why their influence should also be con-

sidered during the stochastic calibration (Abdel-Hamid, 2005; Stebler et al., 2014a). 

In the following section, the errors that belong to each of these two general categories will be 

briefly discussed. 

2.3.1 Deterministic Errors 

2.3.1.1 Bias 

Practically, the bias is the output of any sensor in the case when there is no external input and 

it is defined as a long-term average of the measurements under specific operating conditions that 

is independent of the observable (i.e., specific force, angular rate) (Noureldin et al., 2013). Re-

garding the gyro bias, it is usually expressed in radians per second (rad/sec), while the accel-

erometer bias is given in metre per second per second (m/sec2). 

Furthermore, it is possible for the sensor bias to be different for positive and negative inputs. 

Such dissimilarity is called bias asymmetry and shares the same units as the sensor bias for both 

inertial sensor types (Hou, 2004). 

2.3.1.2 Scale Factor 

The scale factor represents the ratio of change in output to a corresponding change in input 

and it can be mathematically quantified as the slope of the optimally fitted line to the input-

output data using the Least Squares (LS) method (Aggarwal, 2010). Given that, it is possible to 
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define the scale factor error as the divergence of that slope from unity, which is usually ex-

pressed in parts per million (ppm). 

Similarly to the bias, the scale factor could also present a difference for positive and negative 

inputs. It is specified as a fraction of the scale factor over the input range and it directly implies 

that the input-output gradient has a discontinuity at the zero input location (Hou, 2004). 

2.3.1.3 Axes Misalignment 

Axes misalignment is a consequence of an imperfect sensor mounting during the manufactur-

ing stage and refers to the deviation of the inertial sensors’ sensitive axes from the mutually or-

thogonal axes of the INS b-frame. In turn, this results to a cross-axis signal coupling in the b-

frame (Aggarwal, 2010). 

2.3.2 Stochastic Errors 

The primary expression of the stochastic error category is the noise, which is defined as an 

unwanted, non-systematic disturbance contained within the output signal and it is related to the 

sensor itself or to external electronic interference (Hou, 2004). In addition, the inertial sensor 

noise contains the random fluctuations of the deterministic errors over time, meaning the bias 

(bias drift) and scale factor (scale factor instability). 

As it was mentioned earlier, the stochastic errors cannot be directly quantified. Instead, what 

can be done is the modeling of their behaviour over time using a stochastic process. A stochastic 

process is defined as a discrete and finite ensemble of functions of time {x(𝑡𝑡)}, collected with a 

fixed time interval Δ𝑡𝑡. This means that at any sampled time 𝑡𝑡k, the inertial sensor noise value 

x(𝑡𝑡k) represents a random variable that has been randomly drawn from a specified probability 

distribution (Gelb, 1974). Furthermore, such a process is usually assumed to be stationary, mean-
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ing that its statistical properties (i.e., the statistics of its probability density) are invariant with 

respect to absolute time (Brown and Hwang, 2012). In other words, if two different chunks of 

data with size 𝑁𝑁 are chosen in the manner demonstrated in Figure 2.1, then it should be antici-

pated that the average signal properties (e.g., means, autocorrelations, etc.) computed based on 

each of those data chunks are very similar (Orfanidis, 1988).  

 
Figure 2.1: Data chunks selected from a stationary signal. (Orfanidis, 1988) 

In the following segment, the most common stochastic processes used to describe the random 

errors of MEMS-based inertial sensors will be presented, along with their respective descriptive 

differential equation, discrete state-space model, and power spectral density (PSD) representa-

tion. 

2.3.2.1 Gaussian White Noise (WN) 

Gaussian white noise is a stationary stochastic process whose random variables are independ-

ent and identically distributed (i.i.d) based on a Gaussian distribution with zero mean and a finite 

variance (σ2WN). Furthermore, it has a constant power spectral density (hence the white designa-

tion), meaning that its power is uniformly distributed throughout the entirety of the spectrum and 

it can be utilized as the innovation sequence for the production of other random processes (Gelb, 

1974). On another note, it should be mentioned that the WN process is also referred to in the 

navigation-related literature as angle or velocity random walk (ARW/VRW) depending on 
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whether it is being used to describe the gyroscope or the accelerometer measurement noise re-

spectively. 

The WN process has a correlation time that is shorter than the sampling interval Δ𝑡𝑡, it repre-

sents a high frequency noise term, and it is characterized by the rate PSD function SWN(𝑓𝑓), the 

differential equation ẊWN(𝑡𝑡) and the discrete state space model XWNk (at an arbitrary time k). 

The mathematical models of these three quantities are provided below by equations (2.1), (2.2) 

and (2.3) respectively (Gelb, 1974): 

 SWN(𝑓𝑓) = σ2WN, σ2WN ∈ ℝ+ (2.1) 

 ẊWN(𝑡𝑡) = W(𝑡𝑡) (2.2) 

 XWNk = Wk, Wk ~i.i.d 𝒩𝒩(0,σ2WN) (2.3) 

2.3.2.2 Quantization Noise (QN) 

The quantization error represents the small deviation between the actual amplitudes of the 

points that are sampled from the true analog signal (continuous) and the corresponding digitally 

encoded values (finite) produced by the analog-to-digital (ADC) converter (Widrow and Kollár, 

2008). 

The quantization error is regarded as a random process with a short correlation time and 

whose rate PSD expression and discrete state-space model are provided by the following equa-

tions (El-Sheimy et al., 2008; Stebler et al., 2014b): 

 SQN(𝑓𝑓) = 4q2QN sin2 �
π𝑓𝑓
Δ𝑡𝑡
� Δ𝑡𝑡, 𝑓𝑓 <

Δ𝑡𝑡
2

 𝑎𝑎𝑎𝑎𝑎𝑎 q2QN ∈ ℝ
+ (2.4) 
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 X𝑄𝑄𝑄𝑄𝑘𝑘 = �12q2QN (𝑌𝑌𝑘𝑘 − 𝑌𝑌𝑘𝑘−1), 𝑌𝑌𝑘𝑘 ~i.i.d 𝑈𝑈(0,1) (2.5) 

where q2QN is the defining parameter of the QN process, 𝑓𝑓 is the frequency, Δ𝑡𝑡 is the data inter-

val and 𝑌𝑌𝑘𝑘 is a standard (i.i.d) uniform variable. 

2.3.2.3 Random Walk (RW) 

Random walk takes its name from the analogy of a person that at any moment can potentially 

move towards any arbitrary direction with a standard step length. It is defined as a zero-mean 

random process with long correlation time that is generated by integrating a WN process. In oth-

er words, RW consists of the sum of a sequence of WN-based random changes in a random vari-

able, meaning that not only there is no pattern to the variations of that random variable but also 

that such changes cannot be predicted (Gelb, 1974; Ibe, 2013). 

Based on that, the state uncertainty of the RW grows linearly with the number of generated 

samples (Nassar, 2003). This means that such a process is non-stationary and thus a direct deri-

vation of a rate PSD expression is not possible. However, it is reasonable to consider that the 

RW process is stationary within small time intervals (Mohamed, 1999). With this in mind, an 

approximation to the rate PSD can be determined for the description of the RW process, the for-

mula of which is given below (Stebler et al., 2014b): 

 S�RW(𝑓𝑓) =
𝛾𝛾2RW

(2𝜋𝜋𝑓𝑓)2 , 𝛾𝛾2RW ∈ ℝ+ (2.6) 

where 𝛾𝛾2RW is the variance of the RW process. Furthermore, its continuous and discrete mathe-

matical descriptions are provided by the following equations (Stebler et al., 2014b): 
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 ẊRW(t) = W(t) (2.7) 

 XRWk+1 = XRWk + Wk, Wk ~i.i.d 𝒩𝒩�0, 𝛾𝛾2RW� (2.8) 

Finally, it should be highlighted that for accelerometers, the literature refers to the RW as Ac-

celeration Random Walk (AccRW), while for gyros it is called Rate Random Walk (RRW).  

2.3.2.4 Drift Ramp (DR) 

Before the stochastic modeling of the inertial sensor errors, the deterministic ones must be 

removed via a deterministic calibration procedure. However, such task cannot realistically be 

perfect and because of this, there is a small fraction of systematic influence left in the data that 

affects the random error behaviour. To model that impact, a stochastic process called drift ramp 

can be utilized, which grows linearly with time, has a random variable as its growth rate and be-

cause of those properties, it is a non-stationary process. 

Depending on the type of sensor measurements that are modeled, the DR can be designated as 

Drift Acceleration Ramp (DAccR) for accelerometers and Drift Rate Ramp (DRR) for gyro-

scopes, while its approximate rate PSD and discrete-state space model are given by the following 

equations (El-Sheimy et al., 2008): 

 S�DR(𝑓𝑓) =
ω2

DR

(2π𝑓𝑓)3 , ωDR ∈ ℝ+ or ωDR ∈ ℝ−  (2.9) 

 XDRk = ωDR Δ𝑡𝑡 (2.10) 

where ωDR is the defining parameter of the DR process and symbolizes the growth rate of the 

drift. 
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2.3.2.5 Bias Instability (BI) 

Bias instability is a low-frequency noise process originated from random flickering of the sen-

sor’s electronics and it causes bias fluctuations in the data over time (Hou, 2004). Furthermore, it 

is strongly related to the stability of the sensor (its ability to provide the same output to the same 

input over a period of time for a single run) and it is usually approximated by a first-order Gauss-

Markov process (See (Farrell et al., 2022) for how this is implemented in practice). 

The rate PSD that describes this stationary random process along with a state-space model 

that could describe its behaviour are provided below (Stebler et al., 2014b): 

 SBI(𝑓𝑓) = �
σ2BI (2π𝑓𝑓)⁄

0
 
, 𝑓𝑓 ≤ 𝑓𝑓0
, 𝑓𝑓 > 𝑓𝑓0

 (2.11) 

 XBIk+1 = �
Wk+1 ,

XBIk ,
 
     if mod(tk+1, TBI) = 0

otherwise
, Wk+1 ~i.i.d 𝒩𝒩(0,σ2BI) (2.12) 

where (σ2BI, TBI) are the bias instability variance and fluctuation period, 𝑓𝑓0 is the cut-off fre-

quency and mod(∙) is the modulo operator. 

2.3.2.6 Gauss-Markov (GM) 

Random processes that are stationary and have exponential autocorrelation functions are 

called Gauss-Markov processes (El-Diasty and Pagiatakis, 2008). Generally, they can be used to 

model the behaviour of a multitude of physical processes with a good enough accuracy. For nav-

igation applications, the 1st order Gauss-Markov (GM1) process is the one that is primarily used 

for the study of inertial sensor errors due to its mathematical model’s simplicity and ability to 

describe time-correlated random errors. 
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Figure 2.2: Fully characterizing (theoretical) autocorrelation function of the 1st-order Gauss-Markov stochastic pro-

cess. 

The autocorrelation RGM1 (See Figure 2.2 for graphical representation) and PSD of such pro-

cess are provided by the following equations: 

 RGM1(τ) = σ2GM1 e−βGM1|τ| (2.13) 

 SGM1(𝑓𝑓) =
2σ2GM1 βGM1

(2π𝑓𝑓)2 + βGM1
2 (2.14) 

where τ is the shift in time, βGM1 is the inverse of the process’ correlation time Tc and σ2GM1 is 

the variance of the GM1-based state. From equation (2.13 it is evident that the GM1 process it 

able to represent bounded uncertainty, meaning that the correlation coefficient for any time shift 

τ can either be less or equal to the correlation coefficient for zero time shift (Gelb, 1974). 

The differential equation and discrete state-space model that describes the GM1 stochastic 

process are given by the equations below: 

 ẊGM1(𝑡𝑡) = −βGM1 XGM1(𝑡𝑡) + W(𝑡𝑡) (2.15) 

 XGM1k+1 = e−βGM1Δ𝑡𝑡 XGM1k + Wk, Wk ~i.i.d 𝒩𝒩�0,σ2GM1 �1 − e−2βGM1Δ𝑡𝑡�� (2.16) 
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where Δ𝑡𝑡 is the time interval of the available data. Finally, by observing equation (2.16), it can 

be inferred that when the correlation time is small, the GM1 simulates a WN process, while 

when the correlation time is large, then the GM1 approximates a RW process. 

2.3.2.7 Autoregressive (AR) 

An autoregressive process is a stationary random process that makes the assumption that a 

signal’s behaviour can be predicted from a linear combination of the past observations plus a 

gaussian random variable. The autoregressive process of order 1 (AR1), meaning that only one 

previous observation is used every time to predict the next, is most times chosen to model the 

time-dependent inertial sensor random error behaviour and it can be described by the following 

discrete state-space model: 

 XAR1k+1 = φAR1 XAR1k + 𝜀𝜀k, 𝜀𝜀k ~i.i.d 𝒩𝒩�0, 𝜉𝜉2AR1� (2.17) 

where φAR1 is the parameter that refers to the systematic part of the AR1 and 𝜉𝜉2AR1 is the vari-

ance of gaussian white noise 𝜀𝜀k that drives the process. 

At this point, an important note should be made. The AR1 process is essentially a re-

parameterization of the GM1 process, and they can be used interchangeably after certain consid-

erations. Assuming that the data interval value is known and equal to Δ𝑡𝑡, then the relationships 

between the AR1 and GM1 defining parameters can be written as follows: 

 φAR1 = e−βGM1Δ𝑡𝑡 ⟷ βGM1 = −
ln (φAR1)

Δ𝑡𝑡
 (2.18) 

 𝜉𝜉2AR1 = σ2GM1�1 − e−2βGM1Δ𝑡𝑡� ⟷ σ2GM1 =
𝜉𝜉2AR1

1 − e−2βGM1Δ𝑡𝑡
 (2.19) 
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2.4 Summary 

This chapter was devoted to a brief description of the deterministic and random errors that 

characterize MEMS-based inertial sensors. A particular focus however was given to the stochas-

tic processes that are typically used to model the random error behavior. Specifically, their corre-

sponding defining parameters, state-space model and PSD expression were presented, all of 

which will be used in forthcoming chapters. 
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Chapter Three: Deterministic and Stochastic Calibration of Inertial Sensors 

3.1 Introduction 

In the previous chapter it was highlighted that the inertial sensor errors can be divided into 

two distinct groups: the deterministic and the stochastic. The errors that belong in the first cate-

gory can be evaluated through a calibration procedure, since their effects can be described in an 

explicit way and then removed from the measurements. That being said, the first section of this 

chapter will highlight the characteristics of the major deterministic calibration techniques that are 

available, such as the LLF calibration, the 6-position static and angle rate tests as well as vari-

ous multi-position calibration methods. As for the second category, a stochastic modeling tech-

nique has to be applied on deterministic error-free long static data, so that the behavior of the 

random errors over time can be modeled and then their influenced mitigated within the naviga-

tion (fusion) filter. Therefore, the second part of the chapter will be devoted to the presentation 

of the methods that can be used for such a task along with their respective weaknesses. Specifi-

cally, the Autocorrelation Function (ACF), the Power Spectral Density (PSD), the Allan Vari-

ance Linear Regression (AVLR), the Maximum Likelihood Estimator (MLE), the Generalized 

Method of Wavelet Moments (GMWM) and its multi-signal extensions will be mentioned. 

3.2 Deterministic Calibration 

In general, deterministic calibration can be defined as a procedure that compares sensor 

measurements with known reference information, evaluates coefficients (i.e., bias, scale factor, 

non-orthogonality) that force the sensor output to match with the reference values over a desired 

range and which are then utilized for the removal of the systematic effects from the measurement 

data (Chatfield, 1997; Noureldin et al., 2013). Usually, such a task is performed with high accu-

racy in a laboratory environment using specialized equipment (e.g., turntable), while it is also 
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possible to be conducted in the field, without any equipment requirement but with decreased cal-

ibration accuracy. Below, the most commonly used deterministic calibration techniques will be 

described. 

3.2.1 LLF Calibration 

This calibration technique was formally defined in the work of Salychev (1998) and in princi-

ple, it is conducted in a laboratory environment. Specifically, the IMU device is secured on a 

multi-axis turntable whose axes are precisely aligned with the ones of the LLF. Then, the table 

rotates through several different and well-known orientations, in each of which static measure-

ments are collected. Eventually, using the LS estimation method, all the error coefficients can be 

derived. 

Even though this calibration method offers high accuracy in the estimation of the error coeffi-

cients, it is unable to calibrate low-cost gyros. The reason behind this is related to the fact that 

the reference signal used in this case, the Earth’s rotation rate (ωe), is a very weak signal that 

cannot be detected by the low-cost gyros due to the high levels of noise that they exhibit. In addi-

tion, the equipment required for the implementation of this method is very expensive, while its 

efficiency is highly dependent on the alignment accuracy of the turntable’s axes to the LLF, a not 

at all easy task to accomplish in practice (Shin and El-Sheimy, 2002). 

3.2.2 6-Position Static and Angle Rate Tests 

The 6-position static test is the standard laboratory technique for the deterministic calibration 

of inertial sensors (Titterton and Weston, 2004). It requires the placement of the IMU on a lev-

elled surface (usually a turntable), the alignment of the sensitive axis of each inertial sensor to-

wards the upward and downward direction along the local vertical as demonstrated in Figure 3.1 
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and the collection of static data in each of the 6 resulting positions (if a mutually orthogonal sen-

sor triad is employed). 

 
Figure 3.1: Sensitive axes of the accelerometer triad when the Z-axis is pointing upwards (left) and downwards 

(right), along the direction of gravity (local vertical). (Noureldin et al., 2013) 

Eventually, the bias (b) and scale factor error (s) can be calculated from the following expres-

sions (Aggarwal, 2010): 

 b =
lu̅p + ld̅own

2
 (3.1) 

 s =
lu̅p − ld̅own − 2 ∙ 𝑅𝑅

2 ∙ 𝑅𝑅
 (3.2) 

where lu̅pand ld̅own are the mean values of the sensor measurements with the sensitive axis 

pointing upwards and downwards along the local vertical and 𝑅𝑅 is the reference signal. For the 

case of accelerometers, 𝑅𝑅 is theoretically equal to the value of gravity g at the location of the 

IMU but in practice, the value of normal gravity γ is utilized, as it is derived from Somigliana’s 

formula (Wei and Schwarz, 1990) with the approximate latitude (ϕIMU) and ellipsoidal height 

(hIMU) of the IMU as inputs. As for the gyroscopes, 𝑅𝑅 is equal to the vertical component of the 

Earth’s rotation rate at the location of the IMU (ωe sinϕIMU) (Poddar et al., 2017). 
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At this point, it should be mentioned that the accuracy of this method is highly dependent on 

how well the surface that the IMU was placed is aligned with the local vertical. Furthermore, this 

technique is not only unable to estimate the misalignment (non-orthogonality) angles of the IMU, 

but it is also incapable of calibrating low-cost gyros due to the masking of the reference signal by 

the high levels of noise in the measurements (Aggarwal, 2010). 

In order to allow the calculation of the non-orthogonalities along with the other error coeffi-

cients, El-Diasty and Pagiatakis (2008) proposed an improved 6-position test based on an ex-

tended measurement model that includes them and a weighted LS estimation procedure. Accord-

ing to that work, the accelerometer sensor triad measurements can be described in matrix form as 

follows: 

 �
f̃x
f̃y
f̃z

� = �
sa,x ma,yx ma,zx ba,x

ma,xy sa,y ma,zy ba,y
ma,xz ma,yz sa,z ba,z

� ∙ �

fx
fy
fz
1

� ⟺ f̃ = 𝐌𝐌c ∙ f (3.3) 

where (fx, fy, fz) are the true unknown specific force values, (f̃x, f̃y, f̃z) the specific force meas-

urements, (ba,x,ba,y,ba,z) the bias errors, (sa,x,sa,y,sa,z) the scale factor errors and ma the non-

orthogonalities. Subsequently, the standard 6-position test data collection procedure is conduct-

ed, and the following LS problem is formed, with the 𝐌𝐌c error coefficient matrix being the un-

known: 

 𝚨𝚨LS = �

g −g 0 0 0 0
0 0 g −g 0 0
0 0 0 0 g −g
1 1 1 1 1 1

� (3.4) 
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𝐖𝐖LS =

⎣
⎢
⎢
⎢
⎡�f ̅  x

 up�
x
− g �f ̅  x down�x + g �f ̅  y

 up�
x

�f ̅  y down�x �f ̅  z
 up�

x
�f ̅  z down�x

�f ̅  x
 up�

y
�f ̅  x down�y �f ̅  y

 up�
y
− g �f ̅  y down�y + g �f ̅  z

 up�
y

�f ̅  z down�y
�f ̅  x

 up�
z

�f ̅  x down�z �f ̅  y
 up�

z
�f ̅  y down�z �f ̅  z

 up�
z
− g �f ̅  z down�z + g⎦

⎥
⎥
⎥
⎤
 (3.5) 

 𝐱𝐱� = 𝐌𝐌c = (𝐖𝐖 ∙ 𝐏𝐏 ∙ 𝐀𝐀𝐓𝐓) ∙ (𝐀𝐀 ∙ 𝐏𝐏 ∙ 𝐀𝐀𝐓𝐓)−1, 𝐏𝐏LS = σ02 ∙ 𝚺𝚺−1 (3.6) 

where f ̅is the mean value of the specific force measurements, σ02 is the a-priori variance factor 

(usually is set to be equal to unity) and 𝚺𝚺 is the diagonal sample Variance-Covariance (V-C) ma-

trix. 

Even though this improved version of the 6-position static test is capable to fully calibrate the 

accelerometer triad, it is still unable to do the same for the gyroscope triad in the case of low-cost 

inertial sensors. To overcome this issue, the so-called angle rate test should be employed to each 

of the 6 positions, with the IMU being placed on a levelled precise rate rotating table and with 

the sensitive axis of each sensor aligned with the rotation axis of the table each time. Then, by 

introducing rotations with a constant rate (e.g., 60 deg/sec) in a clockwise and counter-clockwise 

manner, a strong reference signal for the gyro calibration is provided and the aforementioned LS 

adjustment equations can be utilized for the complete low-cost gyroscope triad calibration (El-

Diasty and Pagiatakis, 2008). 

3.2.3 Multi-Position Calibration 

The last method is the multi-position calibration, which is more flexible and cost-effective 

than the other methods because it does not require expensive equipment to be implemented. The 

literature contains many versions of this type of calibration, but they are all based on the princi-

ple that at any IMU orientation, the total sensor output (norm) should be equal to the magnitude 
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of the reference signal. However, this creates a problem in the gyro triad calibration because the 

Earth’s rotation rate is a very weak signal and impossible to be sensed by low-cost gyros. 

Ferraris et al., (1995) were the first ones to introduce a multi-position in-field technique for 

the determination of the biases and scale factors of tri-axial accelerometers and gyroscopes, 

without the need of any kind of equipment. To accomplish this, the authors basically suggested 

the implementation of a 6-position static test on an arbitrary surface and as a result, the sensitive 

axis of each sensor is to be very roughly aligned with the local vertical towards the upward and 

downward direction. However, such a method does not consider the axes misalignment errors 

and obviously, it cannot provide any guarantees about whether the sensitive axis of each sensor 

has been accurately aligned with the direction of the reference quantity (gravity or the Earth’s 

rotation rate).  

Shin and El-Sheimy (2002) extended the multi-position scheme considering the axes misa-

lignment parameters and suggested that the estimation of the error coefficients should be con-

ducted via an optimization framework using iterative LS adjustment. Furthermore, such a pro-

cess requires the inversion of a matrix and in order to be able to provide reliable results, the 

number of different positions needs to be greater than the number of unknown error coefficients 

that need to be estimated. Therefore, the authors suggested the generation of 26 different posi-

tions by placing each face, side and corner of the IMU vertically, towards the upward and 

downward direction. Even though this method was shown to be highly efficient in fully calibrat-

ing the accelerometer triad of low-cost IMUs, it is unable to provide a reliable estimation for the 

gyro scale factors and non-orthogonalities due to observability issues of the reference quantity.  

Later, Zhang et al., (2009) attempted to enhance the preceded multi-position calibration meth-

ods by evaluating the misalignments between the accelerometer and the gyroscope triads. To do 
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so, the differences between the rotational axis direction measurements as they were independent-

ly derived from the accelerometer and gyroscope triads were utilized. Moreover, the authors pro-

posed a near-optimal calibration scheme by maximizing the sensitivity of the norm of the IMU 

measurements with respect to the calibration parameters. Finally, it should be highlighted that 

although this method was found to outperform the traditional laboratory method described in 

(Xiao et al., 2008) (24-position scheme for accelerometer parameters and gyro biases and a 3-

axis rotation scheme for the gyro scale factors and non-orthogonalities), the calibration of the 

gyro triad requires the use of a turntable, a fact that makes this method reliant on external equip-

ment. 

Nieminen et al., (2010) continued the work of Syed et al., (2007), who utilized a turntable in 

order to enhance the method of Shin and El-Sheimy (2002) and fully calibrate the low-cost gyro 

triad, by including cross-axis correlation terms to the considered error coefficients. Specifically, 

this technique exploits the large range of centripetal accelerations caused by different rotation 

rates introduced by the employed turntable, while simultaneously compensating many different 

error sources. In addition, the proposed method considers the IMU as a black box, meaning that 

it does not require any a-priori knowledge about the properties of the IMU and its characteristics. 

Finally, the authors state that the suggested approach is less prone to errors, exploits more accu-

rate sensor models and provides a better accuracy than the methods proposed by Syed et al., 

(2007) and the traditional ones, since it calibrated the IMU for different dynamic ranges. 

Finally, a very interesting research by Li et al., (2012) proposes a simple and efficient in-situ 

calibration method for smartphone low-cost MEMS-based IMUs that requires no expert 

knowledge on how to perform or specialized equipment. Specifically, the Kalman Filter (KF)-

based loosely coupled INS/GNSS navigation algorithm is employed, where when the GNSS ob-
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servation is available, it can be used to calibrate the IMU biases and scale factors and when it is 

not, they are replaced by a kind of pseudo-observations that are related to the limited movement 

of the IMU in the user’s hands. Eventually, the hand motions introduce sufficient dynamic condi-

tions that allow the estimation of the IMU biases and scale factors within just 30 seconds and 

with sufficient accuracy. However, the non-orthogonalities are not considered, since the modern 

MEMS manufacturing technology makes these errors smaller than others, relatively time-

invariant and possible to control. 

3.3 Stochastic Calibration 

After the removal of the systematic (deterministic) errors from the inertial sensor measure-

ments, the effects of the random errors should also be considered. The reason for this is because 

they are a major contributing factor to the rapid drift of the INS standalone performance, espe-

cially in the case of low-cost and consumer grade MEMS-based inertial sensors. In addition, the 

literature suggests that the operating conditions like the temperature and the dynamics have a 

non-negligible impact on the behaviour of the random errors, which is why their influence 

should also be taken into account (Aggarwal et al., 2008a; Radi et al., 2018). 

The procedure of obtaining knowledge regarding the behaviour of the random errors associat-

ed with the inertial sensor (accelerometers, gyroscopes) output is designated as “stochastic cali-

bration”. A typical setting for the implementation of such task is: a) the placement of the IMU 

that contains the sensors on a pre-levelled surface, b) the acquisition of long data (e.g., 3hr) un-

der different temperature and dynamic conditions, c) the removal of the systematic error influ-

ence using the calibration coefficients estimated by a deterministic calibration method (See para-

graph 3.2) and d) the utilization of the deterministic error-free data in the context of a stochastic 
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modeling technique in order to quantify and model the error behavior using a stochastic process 

under each specific condition and for each sensor. 

Following that procedure, the derived state-space models characterizing the errors of the sen-

sors are included within the navigation algorithm in order to allow recursive compensation for 

their effects (Stebler et al., 2011). However, the noise that governs the low-cost inertial sensor 

measurements presents a rather complex spectral structure. Therefore, it is highly possible that a 

multitude of stochastic processes would have to be utilized for each individual sensor, since one 

might not be enough to describe the random error behaviour throughout the entirety of the ob-

served noise’s spectrum.  

Generally, there are several mathematical tools that can be used to perform the random error 

analysis of the data collected for stochastic calibration purposes. The most commonly used ones 

will be presented below, along with their respective characteristics as well as a brief literature 

review. 

3.3.1 Autocorrelation Function (ACF) 

The Autocorrelation Function (ACF) is a continuous time-domain statistical metric that de-

scribes the behavioral change of the correlation between the signal under analysis and a phased 

version of itself (linear convolution) and it is able to detect repeating patterns in that signal 

(Smith, 1999). Assuming that the input signal is a stationary random process X(𝑡𝑡), then its corre-

sponding ACF would be given by the following formula (Brown and Hwang, 2012): 

 RX(τ) = 𝛦𝛦{Χ(𝑡𝑡)X(𝑡𝑡 + τ)} = average � � Χ(𝑡𝑡) X(𝑡𝑡 + τ)
∞

t=−∞

� (3.7) 
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where RX is the ACF of the random process X(𝑡𝑡), 𝛦𝛦{∙} denotes the mathematical expectation, 𝑡𝑡 is 

an arbitrary time value and τ is the time shift from one sample to another. However, in practice, 

it is only possible to collect discrete-time signals. Instead, the Autocorrelation Sequence (ACS) 

should be evaluated, which is derived by replacing the time t in equation (3.7) with the sampling 

sequence k and the time shift τ with the sampling interval d. Therefore, the equation that pro-

vides the ACS is (Orfanidis, 1988): 

 RX(m) = Ε{Χ(k) X(k + d)} = average � � Χ(k) X(k + d)
∞

k=−∞

� (3.8) 

The statistical autocorrelation values delivered by equation (3.8) are based on an ensemble 

averages approach that requires an infinite (discrete) dataset for their calculation, which is im-

possible to collect in reality. Instead, the stationarity assumption that has already been made 

permits the calculation of an approximation to the ACS that uses a finite data chunk 

(y0, y1, … , y𝑄𝑄−1) of length 𝑁𝑁 and time averages. Such an approximation is referred as sample 

autocorrelation and it is provided by the following equation (Orfanidis, 1988): 

 R�X(d) =
1
𝑁𝑁

� yk yk+d

𝑄𝑄−1−d

k=0

, 0 ≤ k ≤ 𝑁𝑁 − 1 (3.9) 

In the inertial navigation field, the ACS method has been primarily used for the defining pa-

rameter estimation of Gauss-Markov processes (used to model the inertial sensor random errors) 

by fitting long static inertial sensor measurements (after the deterministic calibration has been 

conducted and the mean value has been subtracted) to their respective fully characterizing auto-

correlation expression (Gelb, 1974). In addition, the ACS can also be used in the context of the 

Yule-Walker/autocorrelation method, where the parameters of Autoregressive processes (AR) of 
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any order can be optimally estimated by solving a set of linear normal equations (Makhoul, 

1975). However, the choice of the AR order should be made carefully, since if the derived model 

that is to be included within the navigation algorithm (usually a Kalman Filter) is of a high order, 

then destabilization is very possible (Nassar and El-Sheimy, 2005). 

Generally, there are numerous studies, where the ACS technique and either a GM1 or an AR 

(of order 1 or higher) was utilized in order to stochastically analyze the inertial sensor measure-

ments produced by tactical-grade, navigation-grade or consumer-grade IMUs (Niu et al., 2002; 

Nassar and El-Sheimy, 2005; Georgy et al., 2010; Yuksel et al., 2010; Li et al., 2015). Moreover, 

it can be utilized as a tool to determine the existence of colored noise within the analyzed signal 

(Guerrier et al., 2012). However, the correlation method suffers from several weaknesses that 

make it unreliable for the task of stochastic modeling of inertial sensors, especially when dealing 

with low-cost ones. Specifically, it assumes that the input signal is stationary in nature, some-

thing that, as it will be shown in a later chapter, might not always be the case in practice. In addi-

tion, Quinchia et al., (2013) identified that the performance of the ACS-based methods depends 

highly on the size of the signal under analysis and concluded that it is unlikely that an accurate 

ACS can be obtained from experimental data since they will always be limited and finite. On an-

other note, Nassar, (2003) highlighted the fact that the input sequence to an ACS-based method 

has to be outlier-free and which is why it has to be pre-filtered (e.g., wavelet de-noising). How-

ever, such a procedure always contains the risk of removing useful information along with the 

outliers. In order to counter this problem, several robust estimators of the autocorrelation have 

been introduced (e.g., Ma and Genton, 2000), which even though they manage to be less influ-

enced by the existence of extreme measurements (outliers), their efficiency appears to be notice-

ably decreased. Finally, it should be mentioned that the ACS method does not investigate the in-
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put signal in order to study its unique random behavior. Instead, it can only estimate coefficients 

of a chosen type of stochastic process, whose theoretical ACS expression can be mathematically 

derived. 

3.3.2 Power Spectral Density (PSD) 

The PSD is the primary method for representing the frequency-domain expression of any pe-

riodic or non-periodic signal as well as for studying its spectral content and variations (Hou, 

2004). Assuming a stationary and ergodic (the statistical properties of the stochastic process can 

be identified from a single realization) random process X(𝑡𝑡), its PSD SX is mathematically de-

fined as the Fourier Transformation (FT) of its fully describing autocorrelation function RX and 

thus the following Wiener-Khinchine relation applies (Brown and Hwang, 2012): 

 SX(𝑓𝑓) = ℱ{RX(𝑡𝑡)} = � RX(τ)e−2𝑗𝑗π𝑓𝑓τdτ
∞

−∞
, −∞ < 𝑓𝑓 < +∞ (3.10) 

where SX is in units2 Hz⁄  if X(t) is measured in units, ℱ{∙} is the FT operator, 𝑗𝑗 is the imaginary 

unit and 𝑓𝑓 is the frequency in Hz. However, due to the stationarity of the X(𝑡𝑡) process, the inte-

gral above does not converge. Instead, in order to ensure integrability, the Fourier transform 

should be applied to a (finite) sample realization of the truncated process in the interval [0, T] 

that is denoted as XT(𝑡𝑡). Therefore, while also taking into account the fact that it is generally 

convenient to specify the PSD as a one-sided function, for any particular sample realization of 

XT(𝑡𝑡), the following expression is defined as its periodogram (IEEE Std 1293, 2018): 

 S�XT
1 (𝑓𝑓) =

1
T
�ℱ�RXT��

2
=

1
T

|X(𝑓𝑓)|2, 𝑓𝑓 ≥ 0 (3.11) 

where T is the data record span and X(𝑓𝑓) is the continuous FT of the autocorrelation function and  
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by averaging over an ensemble of periodograms for a large span of time, the PSD can be derived 

(Heinzel et al., 2002). 

The considerations that have been made so far require the collection of continuous and infi-

nite data, something that is impossible to achieve in practice, on both accounts. Consequently, 

assuming that 𝑥𝑥𝑘𝑘 (𝑘𝑘 = 0,1, … ,𝑁𝑁 − 1) discrete and finite experimental data observing a station-

ary random process have been collected at uniform time intervals Δ𝑡𝑡, the one-sided discrete peri-

odogram can be evaluated using the following formulas (IEEE Std 1293, 2018): 

 S�X1�𝑓𝑓j� =
Δ𝑡𝑡2

T
�Xj�

2
, j = 0,1, … , �

𝑁𝑁
2
� − 1, 𝑓𝑓j =

j
2T

 (3.12) 

 S�X1�𝑓𝑓⌊𝑄𝑄 2⁄ ⌋� =

⎩
⎨

⎧ Δ𝑡𝑡
2

T
�X⌊𝑄𝑄 2⁄ ⌋�

2
, if 𝑁𝑁 is odd

Δ𝑡𝑡2

2T
�X⌊𝑄𝑄 2⁄ ⌋�

2
, if 𝑁𝑁 is even

 (3.13) 

where 𝑁𝑁 is the sample size (let it be a power of 2) and Xj is the Discrete Fourier Transform 

(DFT) of the autocorrelation sequence, evaluated using the collected 𝑥𝑥𝑘𝑘 data.  

In practical applications, one of the most popular methods for the calculation of the PSD from 

experimental data is the Welch’s Overlapped Segmented Average (WOSA) method (Welch, 

1967). According to that, a long data record should initially be collected, its corresponding ACS 

calculated using equation (3.9) and its mean value removed from its entirety (Orfanidis, 1988). 

Then, the resulting data are subdivided into shorter overlapping segments. The larger the length 

and amount of these segments, the higher the frequency resolution of the PSD estimate, and the 

improvement of its statistical stability is achieved. Following that, a window function (see 

Heinzel et al., (2002) for an overview of the available window functions) is applied to each of 

those segments in order to reduce the impact of the spectral leakage phenomenon, caused by the 
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periodicity assumption of the DFT, which will be utilized in the next step (Orfanidis, 1988). 

However, it should be highlighted that since these functions involve some form of compromise 

between the resulting peak in the frequency domain, the amplitude accuracy and the reduction 

rate of spectral leakage, uncertainty is unavoidably introduced into the evaluated spectrum 

(Heinzel et al., 2002). Finally, using the DFT equations (3.12) and (3.13), the periodogram of 

each window segment is computed and the derived periodograms are averaged together (ensem-

ble averaging) in order to obtain the final PSD estimate (Heinzel et al., 2002). 

For the case of performing stochastic analysis of accelerometer/gyroscope random errors us-

ing the PSD method, an acceleration domain PSD for an accelerometer or an angle rate domain 

PSD for a gyroscope has to be computed, which require a simple modification of the aforemen-

tioned PSD estimate (See Hou, (2004) for how this is implemented). Then, the PSD is plotted in 

a log-log plot where the x-axis shows the frequency values, and the y-axis contains the corre-

sponding discrete (one-sided) PSD values. Using the derived plot, a slope analysis is performed 

and through which it is possible to identify stochastic processes that describe the random error 

behaviour in different parts of the spectrum. Specifically, the stochastic processes that can be 

identified are random walk (rate/acceleration random walk), bias instability, drift ramp, white 

noise (angle/velocity random walk) and quantization noise, with the characteristic slopes of each 

shown in Figure 3.2. However, it is highlighted that because the random walk and drift ramp 

processes have the same theoretical slope in the PSD plot, they cannot be distinguished using 

frequency domain analysis. 
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Figure 3.2: Theoretical one-sided PSD slopes of identifiable stochastic processes. (adapted from Quinchia et al., (2013)) 

In practice, where real data are utilized, gradual transition would exist between the different 

PSD slopes, rather than the sharp ones shown in Figure 3.2 and the slopes might be different than 

the -2, -1, 0 and +2 values. Therefore, it is evident that a certain amount of noise would always 

exist in the plot curve due to the uncertainty of the measured PSD. Furthermore, it is very com-

mon that due to the density of the high frequency data points in the log-log PSD plot, challenges 

might arise in the identification of the random processes. Hence, instead of the ensemble averag-

ing approach, the frequency averaging technique (IEEE Std 1293, 2018) can be used instead, 

which is able to reduce the amount of points in the PSD estimate and thus make the process iden-

tification easier. Finally, it should be mentioned that the various slopes of the PSD log-log plot 

can either be estimated by eye (and thus the frequency averaging technique should be employed) 

or through a LS fit of the following function to the estimated PSD curve: 

 
A1

𝑓𝑓2
+

A2

𝑓𝑓
+ A3 + A4𝑓𝑓2 (3.14) 
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where 𝑓𝑓 is the frequency and A1, A2, A3 and A4 are the random walk, bias instability, white 

noise, and quantization noise characteristic parameters respectively. 

In the inertial navigation literature, the PSD method has been utilized for the stochastic analy-

sis of inertial sensor measurements provided by low-cost MEMS-based IMUs (Petkov and 

Slavov, 2010; Quinchia et al., 2012; D’Alessandro et al., 2017) as well as for validating the con-

sistency of higher level stochastic modeling techniques like the AVLR. However, although the 

PSD method can determine the high frequency noise components (i.e., WN) with great accuracy, 

it has certain limitations that make it unattractive for applications where high accuracy is re-

quired and the signals have a complex spectral structure (low-cost MEMS-based inertial sensor 

noise). Firstly, the PSD method assumes that the input signal is stationary, something that as it 

will be shown later, it is not always valid in practice. Secondly, the identification of low-

frequency noise parameters is characterized by an estimation accuracy deficit since the low-

frequency part of the PSD contains information with significantly elevated uncertainty (Hou, 

2004). Third, the PSD method does not have a way to protect its estimation quality from the ex-

istence of outliers in the input signal and thus some form of de-noising must be conducted prior 

to the processing. And finally, the PSD slope analysis is unable to identify correlated noise 

terms, which can be very impactful to the standalone operation of low-cost and consumer grade 

inertial sensors if they are not considered. 

3.3.3 Maximum Likelihood Estimator (MLE) 

Practically, the random errors of inertial sensor measurements are often issued from a latent 

composite process (i.e., a process composed of a sum different underlying processes). The MLE 

is a widely used approach, which through the expectation-maximization (EM) algorithm (Demp-
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ster et al., 1977) within a KF is able to optimally estimate the coefficients of that composite pro-

cess (Huang et al., 2007; Zhu et al., 2021).  

In the work by Stebler et al., (2011), an automation of this process by maximizing the likeli-

hood function of the assumed state-space models under investigation (i.e., proposals for the 

true/unknown error generating model) using a constrained version of the EM algorithm was pro-

posed. Furthermore, the authors highlighted the increased generality of the method compared to 

the AVLR as well as its ability to estimate models (albeit relatively simple) on which the AVLR 

identification fails. Unfortunately, even though the MLE is a statistically sound and efficient es-

timator, it was identified that it becomes numerically unstable when the size of the observed ran-

dom process is large and the complexity of the model increases (e.g., sum of several AR1 pro-

cesses), meaning that it gets very sensitive to the selection of the initial parameter approximation 

and that the convergence to a global minimum is no longer guaranteed.  

In another research, Zhao et al., (2011) put forward a nonlinear adaptive KF to improve the 

estimation results, while Nikolic et al., (2016) proposed a log-sampling strategy with the same 

purpose in mind but without, however, solving either the numerical instability nor the conver-

gence problems. 

Finally, with the aforementioned in mind as well as of the fact that such procedure can be 

very computationally intense (Balamuta et al., 2018), the practical applicability of the MLE to 

the stochastic modeling of inertial sensor errors is indirectly established (Guerrier et al., 2013a). 

3.3.4 Allan Variance Linear Regression (AVLR) 

The AVLR is a time-domain technique that was proposed by Allan, (1966) for the purpose of 

studying the phase and frequency instability of precision oscillators. Later, the IEEE Std, (1999) 

introduced the AVLR as a method for the identification and quantification of the random noise 
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exhibited by linear accelerometers, while Hou and El-Sheimy, (2003) were the first to apply it 

for the stochastic calibration of MEMS-based inertial sensors. Nowadays, datasheets provided by 

the manufactures typically utilize AVLR-derived information in order to characterize the antici-

pated IMU performance (Farrell et al., 2022). 

Through the AV quantity, the root mean square (RMS) random drift error is expressed as a 

function of the averaged times and the study of its behaviour permits the knowledge inference 

about the underlying stochastic processes as well as the study of their individual contribution to 

the total noise statistics of the analyzed (error) signal. 

The calculation of this method’s fundamental quantity, the AV, is based on cluster analysis of 

the data at hand. Generally, there are several different ways for how the clusters can be created 

(i.e., selection of stride step and cluster length), with each of which leading to a different variant 

of the method (See (Riley and Howe, 2008) for an overview of the available variants). One of the 

most frequently used and asymptotically most efficient is the Maximal Overlap Allan Variance 

(Greenhall, 1991), which although it manages to provide an instability estimate with enhanced 

confidence, its computational burden is significantly increased compared to the ordinary AV (Li 

and Fang, 2013a). The algorithm for its calculation is presented below: 

1) Assuming that a long inertial sensor measurement sequence X1,…, XT has been collected for 

calibration purposes with sampling time t0 and length T and that the influence of the deter-

ministic errors has been removed via deterministic calibration. Then, divide this time series 

into clusters with size 𝜏𝜏 (1 ≤ 𝜏𝜏 ≤ T 2⁄ ) in the manner shown in Figure 3.3. The calculation 

of the AV requires the use of different cluster lengths, each of which corresponds to a differ-

ent AV curve point. A standard choice for them is 𝜏𝜏 = 2i, where i = 1, … , J and                 

J = ⌊log10(T) log10(2)⁄ ⌋ − 1 
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Figure 3.3: Maximal overlap cluster sampling for the evaluation of the AV. (adapted from Riley and Howe, (2008)) 

2) For the smallest cluster length (𝜏𝜏 = 2), calculate the mean value y�j of each created cluster 

using the formula y�j = (1 𝜏𝜏⁄ )∑ Xt
𝜏𝜏+j−1
t=j , for j = 1, … , T − 𝜏𝜏 + 1 

3) Evaluate the total cluster number MAV = T − 2𝜏𝜏 + 1 

4) Compute the maximal overlapped AV value using the following formula (Greenhall, 1991): 

 σ2AV(𝜏𝜏 = 2) =
1

2MAV
�[Ω�k(𝜏𝜏) − Ω�k−𝜏𝜏(𝜏𝜏)]2
M

k=1

 (3.15) 

where Ω� denotes the mean value of the measurements included in the cluster at hand. 

5) Repeat steps 2-5 for the different cluster lengths, going from the smallest (𝜏𝜏 = 2) to the larg-

est value (𝜏𝜏 = 2J). This permits the instability study for different correlation time scales. 

6) Calculate the Allan Standard Deviation (ADEV) by taking the square root of the AV for 

every scale. Then, determine their pointwise estimation quality through the equation: 

 errorADEV�𝜏𝜏 = 2i=1,…,J� =
1

�2 �T𝜏𝜏  − 1� 
 (3.16) 

and from which it is evident that as the number of clusters increases, the more accurate the 

estimation of the ADEV becomes. 
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7) Create a log-log plot to represent the ADEV (σAV) curve with respect to the cluster times 𝜏𝜏, 

which in turn will be used to perform the stochastic analysis of the input signal. 

Subsequently, the identification and quantification of the different stochastic processes is 

conducted by performing independent regressions (based on a LS approach) on the visually iden-

tified linear regions of the σAV log-log plot. The reason why this is possible it because there is a 

unique relationship between the AV �σ2AV(𝜏𝜏)� and the rate PSD �S(𝑓𝑓)� of the underlying sto-

chastic processes (assumed to be stationary), which is given below (El-Sheimy et al., 2008): 

 σ2AV(𝜏𝜏) = 4� S(𝑓𝑓)
∞

0
∙

sin4(π𝑓𝑓𝜏𝜏)
(π𝑓𝑓𝜏𝜏)2 ∙ d𝑓𝑓 (3.17) 

Generally, the (statistically independent) processes that are considered by this method are the 

ones that produce power-law noises with linear ADEV representation and more specifically WN, 

RW, QN, BI and DR. The characteristic σAV slopes of each of those processes as well as their 

respective theoretical value (See (Tehrani, 1983; Zhang, 2008) for the detailed derivations) are 

provided in Table 3.1. Also, it should be mentioned that it is possible to identify the existence of 

time-correlated and sinusoidal noise through the AVLR. However, due to the fact that such pro-

cesses have a rather complex AV expression, they cannot be rigorously estimated using this ap-

proach (Guerrier et al., 2013b) and thus they will not be considered here. 

The relevant research literature regarding the application of the AVLR focuses on either the 

study of the random error behaviour of the inertial sensor errors with respect to certain condi-

tions (i.e., normal, varying temperature or dynamics) (e.g., see (El-Diasty et al., 2007; Aggarwal 

et al., 2008b; El-Sheimy et al., 2008; Li and Fang, 2013b; Hussen and Jleta, 2015; Miao et al., 

2015; Yuan et al., 2016)) or the investigation of the contribution of such knowledge in a KF-
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based INS/GNSS loosely coupled integration practical setting (e.g., see (Zhiqiang Xing and Ge-

bre-Egziabher, 2008; Han et al., 2009; Moafipoor et al., 2011; Hidalgo et al., 2012; Zhang et al., 

2013; Quinchia et al., 2013; Hidalgo-Carrió et al., 2016)). In the latter case, the results from eve-

ry one of these studies show a considerable improvement to the overall performance compared to 

the conventional considerations (e.g., simple, and manually tuned AR1 models), a fact that par-

ticularly highlights the significance of considering accurate modeling of the inertial sensor noise 

in the navigation algorithms. Finally, it is noticed that all the available works utilize the EKF to 

include the derived inertial sensor error stochastic modeling knowledge and thus allow for their 

online compensation. However, it hasn’t really been investigated whether the use of a less-

restrictive filter like the UKF along with the improved stochastic modeling for the inertial sensor 

random drift could potentially provide an even better performance. 

Table 3.1: Properties of identifiable stochastic processes by the AVLR analysis. (El-Sheimy et al., 2008; Zhang, 2008) 

Stochastic 
Process Coefficient 𝛔𝛔𝐀𝐀𝐕𝐕(𝐓𝐓) Theoretical 

Slope 

QN Qz Qz�
3

T2 −1 

WN N N�
1
T

 − 1 2⁄  

BI B B�
2ln2
π

 0 

RW K K�
2T2 + 1

6T
 + 1 2⁄  

DR R R �
T√2

2
� +1 

In the research by Li and Fang, (2013), the authors proposed the integration of a not fully 

overlapping approach for the implementation of the cluster sampling into the calculation algo-
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rithm of the Allan Variance and Total Variance (TV) quantities. Briefly, the TV (Han et al., 

2007; IEEE Std 1139, 2009) is an extension of the AV that uses the maximal overlapping cluster 

samples and manages to improve the estimation accuracy in long cluster times but its computa-

tional burden is quite heavy. The resulting estimators were shown to be less computationally in-

tensive than their fully overlapping counterparts, while managing to maintain a similar perfor-

mance. Consequently, this work provides the attribute of computational efficiency to the AV and 

TV methodologies and thus is very beneficial for the task of stochastically modeling inertial sen-

sor errors, where long datasets must be utilized for the inference of an accurate solution. Fur-

thermore, the authors proposed a way for the additional improvement in analysis efficiency and 

parameter estimation accuracy by using different AV/TV variants based on their individual ad-

vantages in order to study the short, middle, and high cluster times respectively. 

A very interesting application of the AVLR was presented by Niu et al., (2014), where posi-

tioning solution errors derived by three different processing strategies, Single Point Positioning 

(SPP), Precise Point Positioning (PPP) and Differential GNSS (DGNSS) were stochastically 

studied. From that analysis, the authors noticed that the random behavior of each one of them is 

rather complex as well as that there are considerable differences (both in terms of model struc-

ture and parameter value) not only between each processing strategy but also between different 

data rates. As a result, the common assumption made by the navigation community that the posi-

tioning errors are just white noise was formally debunked and highlighted that the adoption of 

more detailed and complex models instead, can potentially provide significant contributions to 

the improvement of GNSS positioning methods and applications. 

In another research work by Wang et al., (2018), the AVLR was utilized for the purpose of 

boosting the MEMS-based INS/GNSS navigation performance from two separate aspects. The 



44 

 

first one referred to the stochastic analysis of the inertial sensor errors using the AVLR instead of 

the regularly used (and manually tuned) AR models and the inclusion of the derived knowledge 

within the navigation filter (e.g., Kalman Filter) to allow recursive error compensation. As for 

the second, it was introduced at the level of GNSS for the error covariance adaptive estimation, 

which subsequently was incorporated within an innovation-based robust KF (Yang et al., 2001; 

Yang and Gao, 2006). The navigation performance of the fused algorithm that includes both lev-

els of improvement was evaluated in a case study, where information from either DGNSS or SPP 

mode were used as the auxiliary source within the integration filter. Eventually, from the analysis 

of the results, the authors observed a considerable improvement compared to the analogous con-

ventional counterparts, something that once again confirmed the importance of using accurate 

stochastic modeling knowledge in the context of navigation applications. 

Despite the apparent popularity of this approach due to its simplicity and straightforwardness in 

the navigation field, it suffers from certain weaknesses that do not justify its widespread use. 

Specifically, Guerrier et al., (2016) provided sound mathematical evidence about the statistical 

inconsistency of the AVLR method when estimating the parameters of composite stochastic pro-

cesses. This is something that is directly related to the difficulty of the AVLR in separating the 

random processes in the spectral domain, especially for the case of multiple underlying GM1s 

(Stebler et al., 2012). And since in low-cost inertial sensor applications, the signals typically pre-

sent a very complex spectral structure (i.e., existence of multiple time-correlated processes), the 

utilization of the AVLR should be avoided. In addition to that, the AVLR, just like all the sto-

chastic modeling methods that have been mentioned so far, utilizes a single signal to conduct its 

analysis. This means that it implicitly makes a stationarity assumption, something that as it will 

be shown later, might not be the case when stochastically studying signals produced by low-cost
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and consumer-grade equipment. And last but not least, it is important to mention that the AVLR 

does not have a robust feature and thus it is unable to handle data infected with outliers without 

significantly compromising the accuracy of the derived stochastic modeling information. That is 

why, in order to evade such an occurrence, it is common practice to pre-filter the available data 

before they are inputted into the AVLR for processing (Hou, 2004). However, a significant 

drawback from that would be that along with the removal of the outliers, the useful information 

carried by the signal will probably be diluted. 

3.3.5 Generalized Method of Wavelet Moments (GMWM) 

The GMWM1 was formally proposed by Guerrier et al., (2013a) and it represents the most re-

cent approach for the accurate identification of the underlying stochastic processes that comprise 

the random drift generating function of a single input (error) signal as well as the efficient esti-

mation of their corresponding defining parameters. It belongs to the Generalized Method of 

Moments (GMM) estimator family (Hansen, 1982) and it utilizes the Generalized Least Squares 

(GLS) principle along with wavelet multiresolution analysis in order to optimally estimate the 

coefficients of a candidate composite stochastic model that can be characterized by high com-

plexity. Moreover, this estimator is statistically consistent (i.e., converges in terms of probability 

to the truth as the considered sample size tends to infinity) and asymptotically normally distrib-

uted (i.e., the distribution of the estimator converges to a normal distribution as the considered 

sample size increases) with comparable finite sample performance to the MLE (Guerrier et al., 

2013a), it has been formally shown to outperform the AVLR in terms of efficiency (Guerrier et 

al., 2020) and it is also computationally efficient (Balamuta et al., 2018). Finally, it is highlighted 

that the GMWM makes an intrinsically stationarity assumption, which means that if a suitable 

transformation of the input dataset is applied, which here is the first-order differences, then the  

https://github.com/SMAC-Group/gmwm
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outcome would be stationary. 

According to Guerrier et al., (2013a), the GMWM operates under the assumption that the true 

(unknown) error generating function is the summation outcome of multiple independent and ad-

ditive Gaussian stochastic processes. However, there is a certain condition that applies here. The 

processes QN, WN, RW and DR can only be included once in the composite model of the gener-

ating function, while the AR1/GM1 processes can be included multiple times. Therefore, with 

this in mind, the two-step algorithm of the GMWM is presented below: 

1) Assuming that a long discrete data sequence 𝒀𝒀𝑿𝑿 of static inertial sensor measurements has 

been collected at a sufficiently large data rate 𝑓𝑓 (e.g., 100Hz) and that the influence of the 

deterministic errors has been removed. Then, evaluate the empirical (equation (3.18)) and 

model-implied wavelet variances (WVs) (equation (3.19)) by utilizing the sequence 𝒀𝒀𝑿𝑿 and 

the candidate model correspondingly (Percival, 1995; Serroukh et al., 2000; Percival, 2002): 

 𝑣𝑣�j2 =
1
Μj
�𝑊𝑊j,𝑡𝑡

2

Μj

𝑡𝑡=1

 (3.18) 

where 𝑣𝑣�j2 is the classical empirical WV, T the length of the input signal, Μj = T − 𝜏𝜏j + 1 the 

wavelet coefficient (𝑊𝑊j,𝑡𝑡) length at scale 𝜏𝜏j, j is the wavelet decomposition level with jmax =

⌊log2T⌋ − 1, ⌊∙⌋ is the floor operator, 𝜏𝜏j = 2j are the Haar wavelet scales, 𝑊𝑊j,𝑡𝑡 =

∑ ℎj,𝑙𝑙𝒀𝒀𝑿𝑿−𝒍𝒍
𝜏𝜏j
𝑙𝑙=1  are the wavelet coefficients derived by applying the Maximal Overlap Discrete 

Wavelet Transform (MODWT) to the input data sequence 𝒀𝒀𝑿𝑿 and ℎj,𝑙𝑙 = 1 𝜏𝜏j⁄  are the 

MODWT Haar wavelet filters (See Mallat, (1999)). 

 𝑣𝑣j2(𝜽𝜽) = � S𝑤𝑤j
(𝑓𝑓)𝑎𝑎𝑓𝑓

1 2⁄

−1 2⁄
= � mod �𝐻𝐻j(𝑓𝑓)�

2
S𝐹𝐹𝜽𝜽(𝑓𝑓) 𝑎𝑎𝑓𝑓

1 2⁄

−1 2⁄
 (3.19) 
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where 𝑣𝑣j2(𝜽𝜽) is the model-implied WV, S𝑤𝑤j is the wavelet coefficient PSD, mod(∙) is the 

modulus operator, 𝐻𝐻j(𝑓𝑓) is the transfer function of the MODWT wavelet filter ℎj,𝑙𝑙, 𝜽𝜽(𝑝𝑝 × 1) 

is the vector that contains the defining parameters of the candidate model with 𝜽𝜽 ∈ 𝚯𝚯 ⊂ ℝ𝑝𝑝 

and 𝚯𝚯 assumed to be a compact set, 𝐹𝐹𝜽𝜽 is the candidate/tested random drift generating model 

and S𝐹𝐹𝜽𝜽 its implied PSD expression. The PSD and Haar WV expression for each of the pro-

cesses considered by the GMWM are provided in Table 3.2. 

Table 3.2: Properties of the stochastic processes that are utilized by the GMWM framework. 

Stochastic 
Process 

PSD 
S(𝑓𝑓) 

Theoretical Haar WV 
𝑣𝑣j2(𝜽𝜽) 

QN 4q2QN sin2 �
𝜋𝜋𝑓𝑓
Δ𝑡𝑡
�Δ𝑡𝑡, 𝑓𝑓 <

Δ𝑡𝑡
2

 
6q2QN

22j
 

WN σ2WN σ2WN

2j
 

RW 
𝛾𝛾2RW

(2𝜋𝜋𝑓𝑓)2 
(22j + 2) 𝛾𝛾2RW

12 ∙ 2j
 

DR 
ωDR

(2𝜋𝜋𝑓𝑓)3 22j ωDR
2

16
 

AR1 
𝜉𝜉2AR1

1 + φAR1
2 − 2φAR1 cos(2𝜋𝜋𝑓𝑓) 

�(φAR1
2 − 1)2j + 2φAR1 �−4φAR1

2j−1 + φAR1
2j + 3��  𝜉𝜉2AR1

(φAR1 − 1)3(1 + φAR1) 22j
 

2) Solve the minimization problem of the distance between the empirical and model-implied 

WV using the GLS in order estimate (optimally) the defining parameter values of the candi-

date model. The equation that expresses this problem is given below: 

 𝜽𝜽� = argmin𝜽𝜽∈𝚯𝚯 �𝒗𝒗� − 𝒗𝒗(𝜽𝜽)�
𝑇𝑇
𝛀𝛀�  �𝒗𝒗� − 𝒗𝒗(𝜽𝜽)� , (3.20) 
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where 𝜽𝜽� is the vector that contains the model parameter estimations, 𝒗𝒗� = �𝑣𝑣�1
2 … 𝑣𝑣�jmax

2� is 

the empirical WV values vector, 𝒗𝒗(𝜽𝜽) = �𝑣𝑣1(𝜽𝜽)2 …𝑣𝑣jmax(𝜽𝜽)2� is the model-implied WV 

values vector and 𝛀𝛀�  is the GLS positive definite weight matrix, which is chosen in a way 

that maximizes the asymptotic efficiency of the GMWM estimator (See (Guerrier et al., 

2013a) for more information). For the case of inertial sensor calibration, where the input 

signal’s size is typically quite large, a sensible choice for 𝛀𝛀�  can be given by the following 

equation: 

 𝛀𝛀�𝑖𝑖,𝑗𝑗 = �
1

�𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖ℎ,j − 𝐶𝐶𝐶𝐶𝑙𝑙𝑜𝑜𝑤𝑤,j�
2 if i = j

                 0                   if i ≠ j
 , (3.21) 

where 𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖ℎ,j and 𝐶𝐶𝐶𝐶𝑙𝑙𝑜𝑜𝑤𝑤,j represent the piecewise 95% confidence intervals (CIs) for the jth 

wavelet scale of the empirical WV (see Percival and Walden, (2000), eq. 314c). 

As it was mentioned above, the optimization/minimization problem that the GMWM attempts 

to solve is based on the GLS. Therefore, as such, it is sensitive to the selection of the initial con-

dition since if this is not done properly, it is highly possible that the estimation process would get 

stuck to a local minima (instead of the global one) or even diverge entirely. Balamuta et al., 

(2018) addressed this issue by infusing the GMWM framework with a heuristic algorithm that 

performs a grid-search in order to appropriate starting values for the GLS-based optimization. 

Another challenge that the GMWM faces is the determination of the composite model’s struc-

ture which manages to best describe the stochastic behavior of the input (error) signal with the 

less possible complexity. In order to tackle it, Guerrier et al., (2015) developed a consistent and 

unbiased estimator for a model selection criterion called the Wavelet Variance Information Cri-



49 

 

terion (WVIC), which was based on theoretical results of Guerrier and Victoria-Feser, (2015) and 

the mathematical equation that describes it is provided below: 

 𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶� = �𝒗𝒗� − 𝒗𝒗(𝜽𝜽)�
𝑇𝑇
𝛀𝛀�  �𝒗𝒗� − 𝒗𝒗(𝜽𝜽)� + 2𝑡𝑡𝑡𝑡�𝑐𝑐𝑐𝑐𝑣𝑣� [𝒗𝒗�,𝒗𝒗(𝜽𝜽)] 𝛀𝛀�𝑇𝑇� , (3.22) 

The first term of equation (3.22) is designated as the objective function of the GMWM. It de-

scribes an unbiased estimator of the minimized discrepancy between the data-based empirical 

WV and the candidate model-implied WV and its value decreases as the complexity of the tested 

model increases. As for the second term, it is referred to as optimism and it expresses the com-

plexity of the candidate model. In fact, it acts as a penalty for overfitting to the empirical behav-

ior and its value increases as the number of individual stochastic processes included into the test-

ed composite model rises. Eventually, the model with the smallest WVIC criterion value is the 

one that achieves the optimal balance between future error prediction accuracy and simplicity, 

and it is the one that should be selected.  

The computation of the optimism in equation (3.22) is generally a difficult task because it 

contains the covariance matrix between the empirical and model-implied WV, a quantity which 

is not a directly observable statistic. According to Guerrier et al., (2015), the most prominent and 

convenient way to provide an estimation of this covariance is parametric bootstrap. Moreover, 

the authors proposed an automatic model selection algorithm based on the calculation of the 

WVIC criterion. Specifically, the user provides the most complicated model that should be con-

sidered, and the algorithm evaluates the WVIC for all the nested models with great speed, ranks 

them and outputs the best one (has the smallest criterion value). However, even though this algo-

rithm provided a statistically rigorous way to find the optimal model structure, the computational 

burden can be considerable, especially when the nested model number is too high.  
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The GMWM algorithm that contains all the aforementioned improvements has a significant 

fundamental weakness, which is related to the fact that its estimation result is particularly prone 

to the existence of outliers in the analyzed (error) sequence. In order to overcome this limitation 

without the need for pre-filtering, Guerrier et al., (2022) proposed a natural extension to the 

GMWM (i.e., maintains its statistical properties) called the Robust Generalized Method of Wave-

let Moments (RGMWM) which makes the classical one robust in the infinitesimal sense and 

therefore capable of reducing the effects of the outliers to the estimation solution. Specifically, 

the way that this is achieved is by using an M-estimator with a bounded Influence Function (IF) 

(See (Maronna et al., 2019) for an in-depth discussion) for the calculation of the empirical WV, 

the equation of which is provided below (Guerrier et al., 2022): 

 𝑣𝑣�j2 = argzero𝑣𝑣∈ℝ+ �
1
Μj
�𝜔𝜔2 �

𝑊𝑊j,𝑡𝑡

𝑣𝑣
; 𝑣𝑣2, 𝑐𝑐� �

𝑊𝑊j,𝑡𝑡

𝑣𝑣
�
2

Μj

𝑡𝑡=1

− 𝑎𝑎(𝑣𝑣2, 𝑐𝑐)� , (3.23) 

where 𝑣𝑣�j2 is the robust version of the empirical WV, 𝜔𝜔 is the weight function that corresponds to 

the selection of the 𝜓𝜓-function (i.e., the IF), 𝑐𝑐 is a tuning constant that controls the relationship 

between efficiency and robustness and 𝑎𝑎 is a rectification term that ensures that the true WV will 

be derived if the estimator is applied to the same data from which the wavelet coefficients were 

obtained from. A potential option for 𝜔𝜔 would be the Tukey-Biweight 𝜓𝜓-function (Beaton and 

Tukey, 1974), which is the one that was used by Guerrier et al., (2022) and it is presented below: 

 𝜔𝜔[𝐵𝐵𝑖𝑖] �
𝑊𝑊j,𝑡𝑡

𝑣𝑣
; 𝑣𝑣2, 𝑐𝑐� =

⎩
⎪
⎨

⎪
⎧��

𝑊𝑊j,𝑡𝑡

𝑣𝑣
 
1
𝑐𝑐
�
2

− 1�
2

if �
𝑊𝑊j,𝑡𝑡

𝑣𝑣
� ≤ 𝑐𝑐

                0                if �
𝑊𝑊j,𝑡𝑡

𝑣𝑣
� > 𝑐𝑐

 , (3.24) 
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Finally, the authors highlighted that in order to make sure that the M-estimator provides the 

highest level of robustness as possible, they suggested that the tuning constant’s value could be 

set to 𝑐𝑐 ≈ 4.97, which is the analogous to a 60% efficiency compared to the classical estimator.  

Even so, it can be very challenging to detect with absolute certainty whether the data at hand 

contain outliers or not, which are actually very common in practice. The reason behind this limi-

tation is the fact that even though robust statistics provides us with outlier detection markers 

(e.g., Mahalanobis distances), it is highly possible that a phenomenon called the “masking ef-

fect” is in effect. What this means is that the effects of the outliers in the data at hand interact in 

such a manner that they are overlooked by those markers (See (Maronna et al., 2019) for an in-

depth discussion). 

For the case of stochastic analysis using the GMWM, Balamuta et al., (2016) suggested that a 

visual comparison between the classical and robust WV, in a log-log plot with respect to time 

scales and where their respective 95% CIs are also included, could be a reasonable contamina-

tion test. However, if outliers are indeed present, then the information conveyed by the classical 

WV would be unreliable and thus incapable of providing a theoretically valid conclusion. 

In the research work by Radi et al., (2018), the GMWM and the AVLR were utilized for the 

investigation of the correlation between the dynamics and the stochastic error behaviour of low-

cost MEMS-based inertial sensors included into smartphones. Based on that analysis, it was 

highlighted that even though the dynamic conditions vary, the model structure remains the same, 

but the parameter values change as well as that the GMWM has the unique ability to efficiently 

detect and quantify time-correlated noises in the form of AR1 processes, while the AVLR failed 

to do so. Furthermore, the authors created an adaptive EKF-based navigation algorithm that is 

capable of changing the stochastic error model parameter values that describe the inertial sensor 
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random drift in real-time, depending on the sensed dynamics of the platform. Finally, the pro-

posed filter driven by modeling information from the GMWM and the AVLR using static and 

multiple dynamic condition data was tested in a simulated INS/GNSS scenario during very small 

(10sec) GNSS outages. The results from this application confirmed not only the superiority of 

the GMWM over the AVLR but also the importance of considering the influence of dynamics to 

the inertial sensor error random behaviour in practice. 

In another work by Zhao and Zhao, (2023), an online application and inclusion of the derived 

information into an EKF-based INS/GNSS filter for vehicular navigation in urban cities was 

proposed. Specifically, this algorithm utilizes a static state detector with an adaptive threshold in 

order to identify the times when the vehicle is stopped and uses the collected static IMU data to 

perform the stochastic modeling of the inertial sensor errors. In fact, the data during the first stop 

are used to determine the stochastic model structure and then the accumulated data from the 

stops after that are used to update the model parameter values in real-time. The performance of 

this algorithm was tested in a real vehicle navigation scenario using the GMWM, AVLR and 

MLE stochastic methodologies and it was found that not only the GMWM clearly surpasses 

them in terms of resulting navigation accuracy but also its online performance is also validated. 

A very interesting and meaningful contribution has very recently been presented in the re-

search work of Cucci et al., (2023a). Specifically, the authors proposed an extension to the 

GMWM algorithm for processing daily GNSS positioning solutions in order to simultaneously 

estimate the parameters of linear functional (geophysical) and stochastic error models, along 

with their respective uncertainty level. This newly created framework called GMWMX, where X 

refers to its eXogenous inputs, is a semi-parametric approach (i.e., unspecified underlying data 

distribution) that can ensure its statistical properties as an estimator like consistency and asymp-
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totic normality without the need for strict parametric assumptions like the MLE does. From that 

framework, the authors defined two estimators, the GMWMX-1 and GMWMX-2, and compared 

their performance with the standard MLE via simulations with different stochastic model struc-

tures, available data length and size of missing information. The analysis of the derived results 

clearly showed that the GMWMX estimators offer superior computational efficiency that allows 

the processing of large GNSS networks in mere minutes by just using a personal computer, while 

in reality, that computational load would prohibit the use of the standard MLE. Furthermore, it 

was highlighted that the GMWMX estimators provide very similar results with the MLE in terms 

of stochastic model parameter estimation. As for the functional model, the performance of the 

GMWMX-1 appears to be slightly worse than the MLE, while the GMWMX-2 sacrifices part of 

its computational potency in order to equate its efficiency to the MLE. 

3.3.6 Multi-signal GMWM Extensions 

The methodologies that have been described so far utilize a single signal in order to conduct 

the analysis of the inertial sensor error drift. This means, that a stationarity assumption is being 

made, where the parameter vector 𝜽𝜽0 defining the true (unknown) error generating function that 

fully describes the analyzed signal is constant in time (Figure 3.4a). However, Bakalli et al., 

(2017) highlighted that when multiple inertial sensor replicate are collected under the same oper-

ating conditions, their WV log-log plots (either classical or robust) demonstrate a certain varia-

bility but still follow the same general shape.  

With the purpose of describing this occurrence, Bakalli et al., (2017) proposed the concept of 

near-stationarity. According to that, it is assumed that every error signal is produced by the same 

true (composite) stationary generating model 𝐺𝐺(𝜽𝜽0) but with the defining parameter vector of 

each replicate 𝜽𝜽i being a random intercept from an unspecified probability distribution (i.e., each 
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parameter vector component is an independent random variable) (Figure 3.4b). Furthermore, the 

authors introduced a near-stationarity test with the purpose of determining whether the stationari-

ty assumption is valid (null hypothesis) or not (alternative hypothesis), and with the outcome in 

mind, choose the proper CI inference method for the estimated stochastic model parameters (See 

(Radi et al., 2019) for more information). 

 

Figure 3.4: Schematic representation of the stationarity (a) and near-stationarity (b) concepts. (Radi et al., 2019) 

The near-stationarity setting is actually very common in practice, especially when low-cost 

equipment is utilized, and thus certain challenges arise. The first one is that if only one signal is 

used for the stochastic analysis, then it is possible that the derived model will not be optimal for 

navigation applications. And the second, is the fact that in practice, when numerous replicated 

have been collected and a single one has to be chosen for the analysis, the selection criterion is 

somewhat arbitrary. Therefore, there is the danger of picking one that is not representative of the 

general sensor behaviour (i.e., abnormal replicate). 

Given these challenges, it is clear that this parameter variation has to be sufficiently taken into 

account in order to estimate a model that optimally describes the future behaviour of the inertial 

sensor random errors. In turn, this will contribute not only to the accuracy enhancement of the 

final navigation solution but also to increased reliability of the corresponding uncertainty. For 
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that reason and as extensions of the GMWM framework, 3 multi-signal estimators have been 

proposed based on the near-stationarity principle and with each having a different minimization 

criterion: the Average GMWM (AGMWM) (Bakalli et al., 2017), the Multi-signal GMWM 

(MS-GMWM) (Radi et al., 2019) and the Average Wavelet Variance (AWV) estimator (Bakalli 

et al., 2023). 

Assuming that 𝐾𝐾 independent static inertial sensor signal replicates have been collected using 

the same IMU under invariant operating conditions and with each signal having a length of Ti. 

Then, the optimization problem that each of the 3 aforementioned multi-signal estimators solves 

for the purpose of estimating the true (unknown) parameter vector 𝜽𝜽0 are given below (Bakalli et 

al., 2023): 

 𝜽𝜽�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑜𝑜 = argmin𝜽𝜽∈𝚯𝚯 ��𝑤𝑤i𝜽𝜽�i

𝐾𝐾

𝑖𝑖=1

− 𝜽𝜽�
𝐼𝐼

2

, 𝜽𝜽�i = argmin𝜽𝜽i∈𝚯𝚯‖𝒗𝒗�i − 𝒗𝒗(𝜽𝜽i)‖Ω2  (3.25) 

 𝜽𝜽�𝐴𝐴𝐴𝐴𝐴𝐴
† = argmin𝜽𝜽∈𝚯𝚯 ��𝑤𝑤i𝒗𝒗�i

𝐾𝐾

i=1

− 𝒗𝒗(𝜽𝜽)�
Ω

2

 (3.26) 

 𝜽𝜽�𝐴𝐴𝑀𝑀−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = argmin𝜽𝜽∈𝚯𝚯�𝑤𝑤i

𝐾𝐾

i=1

‖𝒗𝒗�i − 𝒗𝒗(𝜽𝜽)‖Ω2  (3.27) 

where �𝜽𝜽�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑜𝑜 ,𝜽𝜽�𝐴𝐴𝐴𝐴𝐴𝐴

† ,𝜽𝜽�𝐴𝐴𝑀𝑀−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� are the estimations of the stochastic model parameter vector 

using the AGMWM, AWV and MS-GMWM estimator respectively, ‖Z‖Ω2 = Z𝑇𝑇ΩZ with Z ∈ ℝJ, 

𝜽𝜽�i is the parameter vector derived from processing each available signal individually with the 

GMWM, ∑ 𝑤𝑤i𝒗𝒗�i𝐾𝐾
𝑖𝑖=1  is the AWV wavelet variance, Ω is a positive definite weight matrix and an 

estimator that maximizes asymptotic efficiency for the case of multi-signal inertial sensor sto-

chastic calibration can be 𝛀𝛀� = ∑ 𝑤𝑤i𝛀𝛀�i𝐾𝐾
𝑖𝑖=1  (Guerrier et al., 2013a), 𝛀𝛀�i is derived using equation 
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(3.21) for every considered signal and 𝑤𝑤i = Ti ∑ Tj𝐾𝐾
j=1⁄  is a weighting factor for each empirical 

WV based on the signal length, while also satisfying the condition ∑ 𝑤𝑤i
𝐾𝐾
i=1 = 1. Practically, this 

choice for the weighting factor represents the intuitive consideration that the longer the signal, 

the more knowledge it contains and thus the estimator should perceive its greater importance. 

(Bakalli et al., 2023) investigated the statistical properties of all these 3 multi-signal estima-

tors and provided the mathematical explanation and conditions under which they are consistent 

and asymptotically normal. Furthermore, it was highlighted that the AGMWM aims to estimate 

the expected value of the G model, which is optimal (and equivalent to the other two estimators) 

only for the case where the underlying processes have a linear WV representation (i.e., WN, QN, 

RW, DR). However, if there are processes with nonlinear WV behaviour (AR1/GM1), which is 

actually very common for the case of stochastically modeling low-cost inertial sensor errors, then 

this estimator would not provide representative information and thus its use should be avoided 

for navigation applications. As for the AWV and MS-GMWM, the authors demonstrated their 

equivalence in targeting the parameter values that optimally predict the future error behaviour 

(and included within the navigation algorithm) and have no stipulations for doing so about the 

linearity/nonlinearity of the underlying processes. Nevertheless, they suggested that AWV would 

be a more preferable choice for inertial sensor stochastic calibration due to practical advantages. 

The reason for that is because the AWV can make use of the well-established GMWM frame-

work by simply using the weighted average of the WVs and weight matrices of the available sig-

nals instead of the single-signal-based quantities. Consequently, it can take advantage of the 

starting value guessing algorithms that the GMWM employs. On the other hand, if the MS-

GMWM is chosen, then the use of GMWM’s algorithms for finding initial parameter values will 

not be possible. Alternatively, a possible choice would be to use the AGMWM solution as a 
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starting point, which might not be good enough if the underlying processes are heavily nonlinear. 

Therefore, it is evident that the use of AWV would be the safest choice. 

Given these theoretical conclusions, the authors compared the efficiency of the AWV and 

AGMWM estimators in terms of parameter estimation in two simulation studies, with varying 

model complexity. From that, they confirmed that the AWV and AGMWM aim for a different 

quantity altogether, with the AWV targeting the optimal one, based on the observed behaviour. 

Finally, a case study was also conducted, where models derived by applying the single-signal 

GMWM to multiple real signal replicates as well as by using the AWV were inputted into an 

EKF, and several Monte-Carlo (MC) navigation simulations were conducted. The results from 

this application showed that the AWV model provided (most times) optimal results in terms of 

position and orientation accuracy as well as of accurate and reliable navigation state uncertain-

ties. Contrarily, the various GMWM-derived models appeared to significantly over or under-

estimate the state estimations in most cases. 

On another note, just like in the GMWM, there is the need for a rigorous determination of the 

model structure that best describes the sensed behavior with the least possible complexity. For 

that reason, Radi et al., (2019) proposed an automatic algorithm (See Figure 3.5), in the context 

of the MS-GMWM estimator, that evaluates an extension of the WVIC criterion to the multi-

signal case. This new criterion was named the Cross-Validated Wavelet Variance Information 

Criterion (CV-WVIC) and it was evaluated for every nested model within an inputted complex 

one in order to eventually determine the optimal, which is the one with the smallest criterion val-

ue. However, just like in the single-signal GMWM, such a meticulous investigation for the prop-

er model structure can be very computationally intensive in the case where a large number of 
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candidate models is considered and eventually, it might also be possible that the obtained “best” 

model can be simplified further. 

 

Figure 3.5: The MS-GMWM algorithm that incorporates the CV-WVIC criterion evaluation. 

A very interesting application of the MS-GMWM was conducted by Radi, (2018), who uti-

lized this innovative framework to meticulously study the influence of temperature and platform 

dynamics to the stochastic modeling of low-cost MEMS-based inertial sensor errors. In addition, 

the author created an environmentally adaptive EKF filter for INS/GNSS integration, which 

could alter the stochastic model parameter values depending on the applied dynamics and tem-

perature of the IMU. Eventually, the application to a real-life vehicular navigation problem con-

firmed that by considering the influence of the operating conditions (i.e., temperature, dynamics) 

to the inertial sensor random drift behavior, it is possible to further improve the 2D positioning 

accuracy of the INS standalone solution. 
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Despite the improvement that the multi-signal extension has provided, a very important factor 

has not been considered, which can compromise the estimation of stochastic model parameter 

values that optimally predict the future error behavior. That factor is none other than the exist-

ence of potential outliers in the considered data, a danger that is logically more likely to occur in 

the multi-signal case. Therefore, in order to ensure the estimation accuracy and stability of the 

navigation solution as well as of its corresponding uncertainty, this issue must be addressed. Fur-

thermore, in the past, the connection between stochastic modeling efficiency and navigation per-

formance has only been investigated via a very limited number of practical experiments, which 

are definitely not enough to infer reliable conclusions from a statistics point of view. On another 

note, this advanced stochastic modeling knowledge has only been utilized in the context of an 

EKF for simple INS/GNSS integration, without the provision of any additional updates, that in 

turn can provide a more frequent compensation for the inertial sensor bias. Finally, it would also 

be worthwhile to investigate what kind of improvement these additional updates could introduce 

not only in an EKF but also in the context of a less restrictive filter like the UKF. 

3.4 Summary 

In this chapter, the existing deterministic calibration methods and stochastic modeling tech-

niques were presented along with a concise description of their algorithms. Moreover, past re-

search works were mentioned, and particular focus was given in highlighting the weaknesses of 

the stochastic analysis approaches. From that, although it was made apparent that the GMWM-

based stochastic modeling approaches represent the latest advances in the field of inertial sensor 

stochastic calibration, there are still weaknesses that warrant further investigation (main objec-

tive of this thesis). Below, these limitations are provided in bullet form, and which will be ad-

dressed in the next chapters: 
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• The WVIC-based model selection algorithm can be very computationally intensive in the 

case where a large number of models are being investigated. In addition, the selected “best” 

model might require further simplification. 

• The contamination test suggested by Balamuta et al., (2016) for the choice between the clas-

sical or robust single-signal GMWM is not theoretically sound. 

• The multi-signal GMWM approach does not contain safeguards against the existence of any 

type of outlier in the considered calibration data. 

• In past studies, the connection between the quality of inertial sensor stochastic calibration 

and navigation performance has only been investigated via a small number of practical ex-

periments, something that is not enough for the inference of well-founded conclusions. 

• To this day, the stochastic knowledge about the inertial sensor errors derived from GMWM-

based estimators has only been infused within an EKF and only for a simple INS/GNSS in-

tegration, without the provision of other, more frequent, updates. 
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Chapter Four: Robust Stochastic Modeling of MEMS-based Inertial Sensor 

Errors 

4.1 Introduction 

In low-budget applications, where MEMS-based IMUs are mostly utilized, the major factor 

that determines the quality of the provided navigation solution is the available knowledge about 

the inertial sensor random drift behavior, which is hard to obtain accurately in practice. The pri-

mary reason for this is that it is very common that the inertial sensor measurements collected for 

calibration purposes contain outliers due to either internal or external factors, which cannot be 

precisely identified. Nevertheless, it is theorized that they are associated with the condition of the 

IMU (e.g., assembly integrity, ageing, material quality) and/or the surface where the IMU is 

placed (e.g., turntable), since it is highly likely that any vibration, no matter how small, can af-

fect the output of the inertial sensors. Consequently, stochastic calibration should be implement-

ed using an estimator that can decrease the influence of such outliers in order to efficiently esti-

mate the proper model. In turn, when the derived model is inputted within the navigation algo-

rithm that integrates INS with GNSS and other aiding sources like cameras, magnetometers, etc. 

and the GNSS information is unobtainable (outage regions), the INS standalone solution would 

be optimal in terms of accuracy and reliability. 

Currently, the modern approach for the effective handling of the complex random error nature 

displayed by low-cost and consumer grade MEMS-based inertial sensors is the GMWM and its 

multi-signal extensions (See Sections 3.3.5 and 3.3.6 respectively). However, even though the 

existent framework is very rigorous regarding the model selection using its automatic algorithm 

based on the calculation of the WVIC criterion for all the models nested within a very complex 

one (Guerrier et al., 2015), it can still be computationally intensive when the number of investi-



62 

 

gated models is large. To counter this issue and make sure that the model selection is conducted 

in a good enough and fast way, a simplified algorithm for implementing the GMWM will be pre-

sented in this chapter. In addition, ways of reducing the complexity of the derived model will be 

suggested. 

On another note, despite the fact that the GMWM has a natural robust version called the 

RGMWM (Guerrier et al., 2022), it can be difficult to determine whether the analyzed data con-

tain outliers or not and whether the RGMWM should be used instead. The reason behind this is 

the fact that even though robust statistics provides us with statistical markers (e.g., Interquartile 

range method, Mahalanobis distance, “three sigma edit” rule, etc.) to probe the existence of out-

liers, it is highly likely that their effects interact in such a manner that they remain undetected. 

This phenomenon is designated in the literature as the “masking effect” (See (Maronna et al., 

2019) for more details). Therefore, with this in mind, along with the fact that the available con-

tamination test (See Balamuta et al., 2016)) is not theoretically sound, an alternative will be ex-

plored. 

As for the multi-signal extensions of the GMWM (Bakalli et al., 2017; Radi et al., 2019; Ba-

kalli et al., 2023), none of the available estimators contain any such safeguard and that is why 

they remain vulnerable to the effects of outliers. To address this limitation, the multi-signal ap-

proach will be extended to include a certain level of robustness and its efficiency will be evaluat-

ed, both in terms of parameter estimation accuracy and contribution to the reliability of the navi-

gation solution. Finally, the stochastic calibration of a consumer grade MEMS-based IMU will 

be conducted using the new robust multi-signal method as well as the standard maximal overlap-

ping AVLR and their results will be compared. 
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4.2 A Simplified GMWM Implementation Algorithm and Model Complexity 

Reduction Techniques 

In this section, a simpler version of the single-signal GMWM-based algorithm for the stochas-

tic calibration of MEMS-based inertial sensors will be presented in a step-by-step fashion 

through a typical practical example. 

First, a MEMS-based IMU is placed on a levelled surface and 1.5hr static measurements are 

collected with a 100Hz sampling rate under standard conditions. Then, for the data referring to a 

single inertial sensor, say the Y Gyroscope, the deterministic error influence is removed (using 

either manufacturer-provided coefficients or by performing a deterministic calibration process) 

and the corresponding robust empirical WV is evaluated. In turn, the very complicated model 

M1 = 4AR1 + DR + RW + WN + QN is fitted to it using the GMWM framework and with start-

ing parameter values for the optimization process provided by the guessing algorithm of Bal-

amuta et al., (2018). From the results of this fit, Figure 4.1 is created that contains the empirical 

WV and its corresponding 95% CIs, the model-implied WV and the individual contribution of 

each stochastic process (See Table 3.2) included within the M1 model (i.e., the WV expression of 

each process that is characterized by the estimated parameters). Then, from a visual inspection of 

the individual process contributions, it is possible to remove the redundant ones that are less sig-

nificant compared to others that describe the same region. Specifically, based on Figure 4.1, it is 

clear that between the 4th AR1, 1st AR1, WN and QN processes, it is the 4th AR1 that has the 

most significant contribution to the higher scales and thus the rest can be safely removed. 
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Figure 4.1: Robust empirical WV along with the corresponding 95% CIs and Implied WV constructed from the M1 

model estimated parameters. The individual contribution of each stochastic process to the overall fit is also included. 

Furthermore, the DR process can also be removed since it is not important enough to appear 

somewhere near the region of the RW, which is much more important to the fit for the higher 

scales. Hence, the simpler model M2 = 3AR1 + RW is fitted to the empirical WV but with the 

initial conditions being the parameter values that these specific processes had in the M1 model 

fit. The results from this operation are demonstrated in a similar way as before in Figure 4.2. 

At this point, it is important to highlight that the contribution shapes of the 5 considered sto-

chastic processes by the GMWM framework are well known and demonstrated in Figure 4.3. In 

fact, by comparing that with Figure 4.2, it is evident that the 3rd AR1 tends to emulate the WN 

behavior, something that is also confirmed by the process’ small φ value (~0.0228). Therefore, 

since this is actually a very common occurrence when studying the random behavior of inertial 

sensor error, it is worth investigating whether the model can be simplified by over-bounding 

such an AR1 process with WN. 
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Figure 4.2: M2 model fit to the robust empirical WV. 

At this point, it is important to highlight that the contribution shapes of the 5 considered sto-

chastic processes by the GMWM framework are well known and demonstrated in Figure 4.3. In 

fact, by comparing that with Figure 4.2, it is evident that the 3rd AR1 tends to emulate the WN 

behavior, something that is also confirmed by the process’ small φ value (~0.0228). Therefore, 

since this is actually a very common occurrence when studying the random behavior of inertial 

sensor error, it is worth investigating whether the model can be simplified by over-bounding 

such an AR1 process with WN. 

 
Figure 4.3: Approximate contribution to the WV log-log plot of each of the 5 considered stochastic processes by the 

GMWM. (Adapted from (Clausen et al., 2018)) 
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The theoretical Haar WV expression of an AR1 process was presented in Table 3.2 and a 

proper manipulation of that equation yields: 

 𝑣𝑣j2�φAR1, 𝜉𝜉2AR1� = 𝜉𝜉2AR1 �
1

(1 − φAR1)22j
+

2φAR1 �4φAR1
2j−1 − φAR1

2j − 3�
(1 − φAR1)3(1 + φAR1) 22j

� (4.1) 

Based on that, let 

 P1(φAR1) =
1

(1 − φAR1)22j
 (4.2) 

and  

 P2(φAR1) =
2ϕAR1 �4φAR1

2j−1 − φAR1
2j − 3�

(1 − φAR1)3(1 + φAR1) 22j
 (4.3) 

Then, since by definition φAR1 ≥ 0, it can be deduced that P1(φAR1) > 0 and P2(φAR1) ≤ 0. 

Therefore, the following is obtained: 

 𝑣𝑣j2�φAR1, 𝜉𝜉2AR1� = ξ2AR1[P1(φAR1) + P2(φAR1)] ≤ 𝜉𝜉2AR1 P1(φAR1), (4.4) 

 𝜉𝜉2AR1 P1(φAR1) = 𝜉𝜉2AR1
1

(1 − φAR1)22j
=

𝜉𝜉2AR1
(1 − φAR1)2  

1
2j

=
σ2φ
2j

 (4.5) 

where the right side of the inequality is basically equal to the WV expression of WN. As a result, 

any AR1 can be over-bounded by WN with variance 𝜎𝜎2φ. However, this approximation is not 

always valid, and it must be applied in cases where the φAR1 is sufficiently small. After a lot of 

experimentation to find a proper threshold, it was found that a good condition for when to im-

plement this can be φAR1 ≤ 0.2. 
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Given this conclusion and for the case at hand, the equation (4.5) is utilized for the 3rd AR1 of 

the M2 model and the updated model M3 = 2AR1 + RW + WN can be fitted, where the initial 

values of the optimization originate from the M2 model and the over-bounded WN variance. The 

result from the M3 model fit is depicted in Figure 4.4 for a final assessment. 

On top of that, it was also noticed that there are cases where one or two WV points deviate 

from the general trend in a local region of the log-log plot and sometimes a more refined fit can 

be achieved by removing those scales from consideration when estimating the candidate model. 

Specifically, this can be achieved by setting their corresponding weight value in the Ω to be 

equal to an extremely high number. Therefore, with this in mind, an improvement was intro-

duced to the GMWM code in order for the framework to provide the option of taking this special 

circumstance into account. 

 
Figure 4.4: M3 model fit to the robust empirical WV. 
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Indeed, for the case at hand, the first scale very slightly deviates from a WN behavior and as a 

result, scales 6-8 seem to not exactly follow the empirical WV. Thus, that scale was removed, the 

fit was repeated and according to Figure 4.5, the result became slightly better than before. And 

even though the difference in the final parameter values is not noteworthy, it is still proof that the 

proposed concept can be beneficial. 

Finally, one more simplification is possible and that is the over-bounding of an AR1 charac-

terized by a big correlation time using a RW process. The reason why this might be desirable is 

the happenstance where the duration of the navigation experiment is not big enough for the ef-

fects of such an AR1 to “appear”. Therefore, with this in mind, a way to implement this over-

bound will be presented next. 

 
Figure 4.5: Refined M3 model fit to the robust empirical WV. 

According to Table 3.2, the Haar WV representation of a RW stochastic process is: 
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 𝑣𝑣j2�𝛾𝛾2RW� =
�22j + 2� 𝛾𝛾2RW

12 ∙ 2j
 (4.6) 

and in order to find the proper RW variance that corresponds to an AR1, the following equation 

should be solved:  

 𝑣𝑣j2�𝛾𝛾2RW� = 𝑣𝑣j2�φAR1, 𝜉𝜉2AR1� (4.7) 

Now, the question arises about which scale should be utilized for the derivation. A simple choice 

would be the first one but due to the fact that there is this +2 in the numerator of equation (4.6), 

the WV expression of the process in the log-log plot presents a break from the linear trend in that 

scale, and thus it is disqualified. Instead, the 2nd WV point is regarded as a more reasonable 

choice and the derivation of solving equation (4.7) for j = 2 is presented below: 

 

𝑣𝑣22�𝛾𝛾2RW� = 𝑣𝑣22�φAR1, 𝜉𝜉2AR1� ⇒ 

𝛾𝛾2RW
(22∙2 + 2) 

12 ∙ 22
= 𝜉𝜉2AR1

(φAR1
2 − 1)22 + 2φAR1�−4φAR1

22−1 + φAR1
22 + 3�

(φAR1 − 1)3(1 + φAR1) 22∙2
 

⇒ 𝛾𝛾2RW =
48 
18

∙ 𝜉𝜉2AR1
2(φAR1

2 − 1) + φAR1(−4φAR1
2 + φAR1

4 + 3)
8(φAR1 − 1)3(1 + φAR1)  

(4.8) 

With this in mind, an example is conducted to test the validity of this outcome. Let’s assume 

that an AR1 process has been estimated based on 1 million inertial data points with 100 Hz sam-

pling rate and which is characterized by the model parameter values φAR1 = 0.999985837 and 

𝜉𝜉2AR1 = 1.21568E − 11. Then, using equation (4.8), the variance of the over-bounding RW 

process is evaluated and the implied WVs of the two processes are plotted against each other in a 

log-log plot, shown in Figure 4.6. Based on that, it can be concluded that the two processes are 

very close to each other for most scales, meaning that the followed reasoning is validated. 
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Figure 4.6: WV expression of an AR1 against its over-bounding RW. 

However, it is also evident that the fit becomes progressively worse as the time scale value in-

creases. Therefore, in order to investigate the relationship between the elapsed time and approx-

imation accuracy, the following quantity is calculated for each WV scale: 

 ��𝑣𝑣j2�φAR1, 𝜉𝜉2AR1�
𝑗𝑗=1

�𝑣𝑣j2�𝛾𝛾2RW�
𝑗𝑗=1

� �100 (4.9) 

In turn, this basically represents the over-bound percentage of the AR1 by the RW for an elapsed 

time equal to the corresponding time scale. Therefore, through a log-log plot, it would be possi-

ble to visually match any operation duration with the RW approximation level of the AR1 pro-

cess at hand. Such a plot, for the case discussed here, is shown in Figure 4.7. 
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Figure 4.7: Cumulative sum ratio of the AR1-implied WV over the RW-implied WV. 

Generally, an adequate over-bound percentage is assumed to be 80%. As a result and based on 

Figure 4.7 for the example discussed here, the RW can replace the AR1 for any operation with 

duration less or equal than 10 minutes. And if the investigated model already contains a RW pro-

cess, then due to the additive noises assumption made by the GMWM, the two variances (exist-

ing and over-bounded RW) can be added together and then placed within the navigation algo-

rithm. 

4.3 Simulation Study for the Utilization of RGMWM in Every Scenario 

In the introduction of this chapter, it was mentioned that it can be very challenging to detect 

with absolute certainty whether the data at hand are contaminated with outliers or not. The stand-

ard practice deals with this issue by conducting a pre-filtering procedure before the stochastic 

analysis. However, it is almost certain that such a course of action will unavoidably remove 

some useful information as well. Furthermore, in the case where the classical GMWM is used 

and outliers are present in the data, then there is very high potential that this will lead to either a 
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mistaken choice for the model structure or a bad estimation quality of the defining parameters. In 

fact, this danger is also present when a pre-filtering process is implemented. Hence, a simulation 

study will be conducted in order to investigate whether the use of the RGMWM in every single 

scenario without the need for outlier existence confirmation is a worthwhile exchange between 

reduction in the estimator’s efficiency and protection against potential outlier effects. Besides, it 

is not unrealistic to assume that there is always going to be some form of corruption to the iner-

tial sensor measurements when low-cost or consumer grade equipment is utilized. 

Presuming that a signal 𝑿𝑿𝑿𝑿 with sample size T = 106 has been collected using a 100Hz data 

rate and that it is fully described by the composite stochastic model ℳ that consists of one 

AR1(φ = 9.998343 ∙ 10−1, 𝜉𝜉2 = 6.926130 ∙ 10−10) and one WN(𝜎𝜎2 = 5.921208 ∙ 10−5). 

The rationale behind the choice of such a signal length is the fact that commonly 2 to 3 hours of 

data are necessary for the study of both the short and long-term stochastic characteristics of the 

noise that typically governs low-cost inertial sensors. And if a 100Hz sampling rate is utilized 

(standard choice in practice) then 1 million samples would represent almost 3hr of data, thus sat-

isfying the criterion that was mentioned above. Next, 𝐻𝐻 = 500 MC simulations are implemented 

using this information to produce that many signal realizations and then, based on each of them, 

the ℳ model parameter inference is conducted by both the GMWM and the RGMWM. In the 

end, boxplots are created for the purpose of not only displaying the empirical distributions of the 

derived solutions from both estimators but also for comparing their proximity to the truth. Figure 

4.8 contains these boxplots and according to it, both estimators appear to be consistent in target-

ing the true values. Furthermore, the efficiency loss of the RGMWM against the GMWM does 

not appear to be noteworthy and thus, either one can be utilized for the derivation of accurate 

stochastic modeling knowledge in an outlier-free data scenario. 
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Figure 4.8: Empirical distributions of the GMWM (classical) and RGMWM (robust) estimator ℳ model parameter 

solutions using 500 MC-simulated 𝑿𝑿𝑿𝑿 that are outlier-free. 

Following that, a second simulation study is conducted, for the purpose of showcasing the su-

perior performance of the RGMWM over the GMWM in the case where outliers are present in 

the data at hand. Specifically, 1000 data points are randomly selected from each of the 𝐻𝐻 realiza-

tions of the 𝑿𝑿𝑿𝑿 signal (0.1% of the total length) and Gaussian white noise is added to them, which 

is characterized by a standard deviation equal to 4 times the one of the ℳ model WN process. 

Eventually, the derived results are again represented with the help of boxplots in Figure 4.9, from 

which it is evident that unlike the GMWM. the RGMWM manages to remain close to the true 

value. Therefore, it is confirmed the RGMWM must always be utilized when outliers are present 

in order to impart some level of protection against their damaging influence. 

The results presented in this section have been published in (Minaretzis et al., 2022). 
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Figure 4.9: Empirical distributions of the GMWM (classical) and RGMWM (robust) estimator M model parameter 

solutions using 500 MC-simulated 𝑿𝑿𝑿𝑿 that contain outliers. 

4.4 Robust Multi-Signal Wavelet Variance-based Stochastic Modeling Ap-

proaches 

As mentioned in Section 3.3, the standard methods for performing the stochastic analysis of 

low-cost (and consumer grade) inertial sensor errors utilize only one signal to derive knowledge 

about their behavior. In past research works, it was observed that some level of variation in terms 

of model parameter values between replicates is displayed, something that was also confirmed by 

practical experimentation, as it is apparent in Figure 4.10. Recently, estimators have been pro-

posed to consider this by using multiple signals to conduct the stochastic model parameter esti-

mation in an efficient way and with statistical guarantees (i.e., consistency, asymptotic normali-

ty). However, it is possible that outliers might exist in each of those signals, the impact of which 

has so far been neglected in this context. Henceforth, this kind of contamination will be referred 
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2The Bosch Sensortec BMI085: https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi085/ 

to with the term “data corruption”. Furthermore, according to Figure 4.10, it is also possible to 

collect signal replicates (e.g., replicate 4) with notably different WV behavior compared to the 

rest in some regions, a phenomenon that is designated as “sample contamination” and whose ef-

fects are also yet to be considered. Therefore, to address these limitations and with the purpose of 

providing protection to the estimation outcome from both, a new robust multi-signal approach 

will be presented here. Finally, the efficiency of this new approach will be evaluated in a simula-

tion, a case, and a hybrid case study, with respect to parameter estimation accuracy and contribu-

tion to the reliability of the navigation solution. 

 
Figure 4.10: Classical (left panel) and robust (right panel) wavelet variances of 12-hour Y-Accelerometer static iner-
tial sensor measurement replicates that were collected using an ultra-low-cost (~10 USD) MEMS-based Bosch Sen-

sortec BMI085 tri-axial IMU2 with a data rate of 200Hz. Also, deterministic calibration was conducted a-priori. 

https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi085/
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4.4.1 Definition of the Robust Multi-Signal Method and its Estimators 

The new robust multi-signal approach is chosen to be derived as a natural extension to the 

AWV estimator (Bakalli et al., 2023) described by equation (3.26). Specifically, this is achieved 

by substituting the classical empirical WV with its robust counterpart in order to account for data 

corruption and by utilizing the weighted trimmed mean instead of the standard weighted mean in 

order to consider sample contamination. In the end, the fully describing expression of this two-

layered robust multi-signal approach is given by: 

 𝜽𝜽� = argmin𝜽𝜽∈𝚯𝚯 �
∑ 𝑤𝑤i𝒗𝒗�i
𝐾𝐾−𝑝𝑝
i=𝑝𝑝+1

𝐾𝐾 − 2𝑝𝑝
− 𝒗𝒗(𝜽𝜽)�

Ω

2

 (4.10) 

where 𝐾𝐾 is the number of available signal replicates, ∑ 𝑤𝑤i𝒗𝒗�i
𝐾𝐾−𝑝𝑝
i=𝑝𝑝+1 𝐾𝐾 − 2𝑝𝑝�  is the method’s char-

acteristic empirical WV and 𝒗𝒗�𝑖𝑖 is the robust estimator for the WV (see equations (3.23) and 

(3.24)) based on the ith replicate. As for how the weighted trimmed mean is implemented, the 

available WV values for each scale are sorted in ascending order, then based on the trim level 

𝑡𝑡𝑡𝑡 ∈ [0,0.5], 𝑝𝑝 = ⌊𝑡𝑡𝑡𝑡 ∙ 𝐾𝐾⌋ number of the lowest and highest values are removed and eventually, 

the weighted mean of the values left is calculated. In addition, the weight matrix is calculated as 

a weighted mean of the 𝛀𝛀�i values for each scale but with the corresponding values to the WV 

points that remained after the truncation. Finally, the trim level should be selected in a way so 

that a balance is maintained between the removal of the abnormal replicate(s) and the preserva-

tion of as much information as possible. 

For the purposes of this study, two estimators are defined. The first one is called the Singly 

Robust AWV (SR-AWV) estimator, it contains one layer of robustness that accounts of data cor-

ruption, and it is derived by equation (4.10) with 𝑝𝑝 = 0. And the second is called the Doubly 
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Robust AWV (DR-AWV), it is equipped with safeguards against both data corruption and sam-

ple contamination and it is also given by equation (4.10) with 𝑝𝑝 ≠ 0. 

The detailed mathematical circumstances ensuring the statistical consistency and infinitesimal 

robustness of the proposed parent estimator given by equation (4.10) are beyond the scope of this 

dissertation. However, they have been included in (Minaretzis et al., 2023), which is a manu-

script that has been submitted for publication. 

On another note, an important question arises, concerning the amount of signal replicates 𝐾𝐾 

that is considered by the multi-signal estimators. From a logical standpoint, the greater this num-

ber is, not only the more representative the resulting stochastic modeling information becomes of 

the inertial sensor stochastic error behaviour becomes, but also the more replicates can be con-

sidered for inference by the DR-AWV estimator, after a reasonable trim level is selected. Never-

theless, in practice, it is only feasible to obtain a relatively limited number of replicates. Hence, 

considering this constraint and drawing on empirical insights garnered from the experiments 

conducted for the purposes of this thesis, it is recommended that a minimum of 6, and ideally 10, 

calibration signal replicates be used for the stochastic modeling of inertial sensor errors. 

4.4.2 Simulation Study 

The aim of this segment is to showcase the efficiency of the newly proposed robust multi-

signal estimators compared to their classical counterpart in accurately estimating the true model 

coefficients that dictate the random error characteristics of inertial sensor measurements pro-

duced by MEMS-based equipment. To that end, a simulation study is implemented for the fol-

lowing 3 data collection scenarios that are based on artificial accelerometer measurements: 
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1) No outliers are present in the simulated datasets (clean setting-Scenario I), 

2) Different kinds of outliers are included in the replicates that affect different parts of the sig-

nal spectrum (data corruption setting-Scenario II), 

3) The same outliers of the former setting are existent along with a replicate with notably dis-

similar random error behavior compared to the rest (sample contamination setting-Scenario 

III) 

Moreover, the evaluation of the estimator statistical performance was chosen to be conducted 

through a robust variant of the Root Mean Square Error (RMSE), the equation of which is given 

below (Guerrier et al., 2022): 

 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 = �med�
𝜃𝜃�i − 𝜃𝜃i,𝑜𝑜
𝜃𝜃i,𝑜𝑜

�
2

+ mad�
𝜃𝜃�i
𝜃𝜃i,𝑜𝑜

�
2

, (4.11) 

where med(∙) is the median operator, mad(∙) is the median absolute deviation, 𝜃𝜃�i refers to the 

ith component of the estimated parameter vector that defines the considered stochastic model and 

𝜃𝜃i,𝑜𝑜 is its corresponding true value. As for the reason why such metric was selected, it is to allow 

for a more meaningful comparison between the classical and robust estimators, since the for-

mer’s bias is unbounded in the presence of outliers. 

With these in mind, let’s assume that 𝐾𝐾 = 8 signal replicates are generated via a MC simula-

tion approach from the compound model 𝒩𝒩 with data rate 𝑓𝑓 = 100𝐻𝐻𝐻𝐻 and length T = 524284 

data points (~1.5 hrs) apiece. This model consists of one AR1, one RW and one WN stochastic 

process, while for each replicate, their parameter values are random intercepts from the follow-

ing beta (𝛽𝛽) distributions: 
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 AR1(φ) = 0.9835489 + (𝐵𝐵1 ∙ 3.4476489 ∙ 10−3), 𝐵𝐵1~𝛽𝛽(6,2) (4.12) 

 AR1(𝜉𝜉2) = 1.286053 ∙ 10−8 + (𝐵𝐵2 ∙ 9.019592 ∙ 10−9), 𝐵𝐵2~𝛽𝛽(2.2,6.1) (4.13) 

 RW(𝛾𝛾2) = 2.904098 ∙ 10−11 + (𝐵𝐵3 ∙ 1.279669 ∙ 10−11), 𝐵𝐵3~𝛽𝛽(1.8,3.5) (4.14) 

 WN(𝜎𝜎2) = 5.195192 ∙ 10−5 + (𝐵𝐵4 ∙ 5.24353 ∙ 10−6), 𝐵𝐵4~𝛽𝛽(3,4) (4.15) 

Regarding Scenario I, after the “clean” replicates have been simulated, the characteristic WV 

of each multi-signal estimator, AWV, SR-AWV and DR-AWV were evaluated through the equa-

tions: 

 𝒗𝒗�𝑨𝑨𝑨𝑨𝑨𝑨 = ��𝑤𝑤i𝑣𝑣�ij

𝐾𝐾

i=1

𝐾𝐾� � , i = 1, … ,𝐾𝐾 and j = 1, … , jmax (4.16) 

 𝒗𝒗�𝑺𝑺𝑺𝑺−𝑨𝑨𝑨𝑨𝑨𝑨 = ��𝑤𝑤i𝑣𝑣�ij

𝐾𝐾

i=1

𝐾𝐾� � , i = 1, … ,𝐾𝐾 and j = 1, … , jmax (4.17) 

 𝒗𝒗�𝑫𝑫𝑺𝑺−𝑨𝑨𝑨𝑨𝑨𝑨 = � � 𝑤𝑤i𝑣𝑣�ij

𝐾𝐾−𝑝𝑝

i=𝑝𝑝+1

𝐾𝐾 − 2𝑝𝑝� � , i = 1, … ,𝐾𝐾 and j = 1, … , jmax (4.18) 

where the DR-AWV is chosen to utilize a 15% trim level (𝑝𝑝 = 1). Subsequently, each of these 

WVs as well as their respective weight matrices (see paragraph 4.4.1 for how they are calculat-

ed) were utilized in the context of the simplified algorithm presented in Section 4.2 to optimally 

estimate the parameters of 𝒩𝒩. This process was repeated for 𝐻𝐻 = 500 iterations and from the 

derived results, the RMSE of equation (4.11) was evaluated. Also, it is noted that the true 𝒩𝒩 pa-

rameter values required for the calculation of the statistical metric were estimated via parametric 

bootstrap. 
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As for Scenario II, different kinds of outliers were introduced to the clean replicates, which 

are described in bullet form below: 

• 131 data points (=0.025% of the overall length) were chosen in a random way from every 

signal and substituted with values produced by a WN process with σ2 = 0.02 m2 sec4⁄ . In 

this way, the lower scales of the WV are influenced. 

• A step function with amplitude 𝐴𝐴 = 0.002 m sec2⁄  and centered right in the middle of every 

one of those signals was added to their entirety in order to affect the higher WV scales. 

• 5 vibrations that last 5 seconds each were introduced to three signal replicates every 15 

minutes (i.e., 90000 data points), thus compromising the middle scales. 

Given that, the same process as the first scenario was implemented, where all three multi-signal 

methods estimate the 𝒩𝒩 model for each of the 𝐻𝐻 simulations and the RMSE quantity was evalu-

ated based on the results.  

Finally, concerning Scenario III, it is practically the same as Scenario II but with one key dif-

ference. Specifically, the RW parameter value of the 𝒩𝒩 model that produces one of signals with 

no vibrations is multiplied by a factor of 4 in order to create an abnormal replicate. In the end, 

the estimation of the 𝒩𝒩 model coefficients was conducted using the classical and robust multi-

signal estimators for the same number of simulations as before and the corresponding RMSE 

values were calculated from the solutions. 

Using the RMSE produced from the three scenarios, a semi-log plot with respect to the y-axis 

is constructed and presented in Figure 4.11. From that, it is clear that all the estimators demon-

strate a very similar level of efficiency in estimating the stochastic model parameters in Scenario 

I, where no outliers exist. Furthermore, in regard to Scenario II, the classical estimator appears to 
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be significantly biased compared to the robust estimators, which manage to maintain their per-

formance at the same level as in the clean scenario, while also being equivalent with each other 

(just as in scenario I). Finally, in Scenario III, it is evident that the existence of the abnormal rep-

licate has only deteriorated the efficiency of the SR-AWV estimator for the RW(𝛾𝛾2), something 

that makes sense, considering the way it was created. As for the DR-AWV, it seems that it has 

managed to avoid its damaging impact. 

 
Figure 4.11: Robust RMSE values for each of the utilized multi-signal estimators and for every parameter of the 𝒩𝒩 

composite stochastic model. 

Therefore, based on the above observations, it can be inferred that the robust estimators not 

only are capable of reducing the influence of outliers but also perform in a similar way as the 

classical one in the clean data scenario. In fact, the latter extends the conclusion derived in sub-

section 4.3 to the multi-signal case since the robust estimators can be safely used in the case of 

outlier-free data without meaningful loss in efficiency. Moreover, even though the DR-AWV is 

performing nicely under both data corruption and sample contamination conditions, the SR-

AWV is particularly problematic when there is a replicate distribution problem. 
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This simulation study has been included within (Minaretzis et al., 2023), a manuscript that has 

been submitted for publication. 

4.4.3 Case Study 

In this part, the classical and robust AWV-based estimators will be utilized for the stochastic 

analysis of real inertial sensor datasets, produced by low-cost equipment. That equipment was 

chosen to be the MEMS-based Bosch Sensortec BMI085 IMU; a very small (i.e., 3.0mm ×

4.5mm × 0.95mm), high performance, chip-based IMU that contains 16-bit accelerometer and 

gyroscope triads, and it was made for the purpose of Augmented/Virtual Reality applications. 

The collection of data was conducted in a lab environment, where the device was positioned 

on a pre-levelled turntable and 6 static replicates of approximately 8.6 million data points 

(~12hrs) each were obtained under the same conditions using a 200Hz data rate. Furthermore, 

the deterministic calibration of the sensor was already implemented beforehand and with the ob-

tained coefficients from that process, their effects were removed from the calibration datasets. 

For the sake of demonstrating the importance of using the new robust multi-signal method, 

the Y-axis accelerometer replicates were chosen to be stochastically analyzed and presented 

here. Therefore, based on these signals, the characteristic WVs of the AWV (WV-AWV), SR-

AWV (WV-SR-AWV) and DR-AWV (WV-DR-AWV) estimators using equations (4.16), (4.17) 

and (4.18) were calculated and Figure 4.12 was created, where all of them were plotted together 

for comparison along with their respective 95% CIs, calculated using a percentile parametric 

bootstrap approach and the chi-squared (χ2) distribution (Efron and Tibshirani, 1994). From that, 

it can be inferred that the existence of outliers in each replicate severely compromises the WV-

AWV in the mid scales, while the two robust ones are handling it quite well. In addition, it is ev-

ident that the abnormal replicate creates a problem on the higher scales, even for the WV-SR-
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AWV and that the WV-DR-AWV manages to reduce its effects. Therefore, it is reasonable to 

select the DR-AWV estimator to stochastically model the random behavior of the Y-

accelerometer. 

Finally, by utilizing the algorithm presented in Section 4.2, it was identified that a composite 

model containing 4 AR1 processes is the one that best describes the behavior of WV-DR-AWV. 

Figure 4.13 demonstrates the fit of that model along with the individual contributions of those 

processes to the implied WV and which confirms the ability of the DR-AWV estimator to not 

only select an adequate model structure but also to efficiently estimate its coefficients in such a 

practical setting. 

This case study and its results have been published in (Minaretzis et al., 2022). 

 
Figure 4.12: Comparison of the characteristic WVs of the multi-signal estimators AWV, SR-AWV and DR-AWV 
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Figure 4.13: Model fit based on the WV-DR-AWV along with the corresponding 95% CIs and Implied WV derived 
from the estimated model parameters. The contributions to the overall fit of each of the included stochastic process-

es are also included. 

 

4.4.4 Hybrid Case Study 

In the previous two sections, the efficiency of the two new robust multi-signal estimators in 

targeting the true (unknown) parameter values under different types of contamination in the col-

lected inertial sensor data was established in both a simulation and a case study. However, when 

the INS system is coupled with other sensors like the GNSS system, the correlation between the 

efficiency in estimating the true (unknown) stochastic model parameter values and the quality of 

the final integrated solution in terms of accuracy and validity of the obtained uncertainty is not at 

all apparent. Commonly, the assessment of a navigation system and thus the exposure of the 

aforementioned connection is implemented by conducting a small number of real-life experi-

ments and then comparing the derived solution with one produced by a higher-grade system. 
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Nevertheless, the inference of statistically meaningful conclusions would require the replication 

of thousands of such experiments, which is not feasible in practice. 

With these in mind and with the purpose of combining practical experimentation and strong 

statistical consideration, a recently proposed navigation simulator3 in (Cucci et al., 2023b) is uti-

lized. Specifically, this engine makes use of real trajectory information to produce ideal sensor 

data and along with sensible and programmable error generating algorithms, contaminates them 

in order to mimic real-life INS/GNSS navigation settings. Subsequently, it employs multiple dif-

ferent realizations of this realistic information within a conventional EKF in order to estimate the 

navigation solution for each of them. Therefore, in this way, a reasonable approximation to the 

anticipated system performance can be obtained in a statistically rigorous way since the metrics 

about the solution accuracy and reasonableness of the estimated confidence intervals are evaluat-

ed based on a large number of experiment replicates. Furthermore, given that, it is possible to 

make an informed decision between possible configurations. 

 
Figure 4.14: Schematic representation of the navigation simulator algorithm. 

The algorithm according to which this navigation simulator operates is demonstrated in Fig-

ure 4.14 and described below in some detail: 

https://github.com/SMAC-Group/navigation
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1) According to the application that is being considered, a trajectory is inputted within the sim-

ulator in the form of position 𝒓𝒓𝑡𝑡 and orientation 𝐑𝐑b,𝑡𝑡
𝑛𝑛  (direction cosine matrix) datasets with a 

certain (stable) rate. This trajectory is considered to be the reference solution. 

2) For every single MC simulation that will be conducted, the position and orientation data are 

utilized for the inference of the following quantities: 

 𝐯𝐯𝑡𝑡𝑛𝑛 =
𝒓𝒓𝑡𝑡+1 − 𝒓𝒓𝑡𝑡

Δt
 (4.19) 

 𝜶𝜶𝑡𝑡𝑛𝑛 =
𝝊𝝊𝑡𝑡+1𝑛𝑛 − 𝝊𝝊𝑡𝑡𝑛𝑛

Δt
, (4.20) 

 𝝎𝝎𝑛𝑛𝑛𝑛,𝑡𝑡
𝑛𝑛 =

𝑠𝑠𝑐𝑐𝑙𝑙�𝐑𝐑b,𝑡𝑡
𝑛𝑛 T𝐑𝐑b,𝑡𝑡+1

𝑛𝑛 �
Δ𝑡𝑡

, (4.21) 

where 𝐯𝐯𝑡𝑡𝑛𝑛 is the velocity of the moving platform in the n-frame, 𝜶𝜶𝑡𝑡𝑛𝑛 is the corresponding ac-

celeration, 𝝎𝝎𝑛𝑛b,𝑡𝑡
b  is the angular velocity of the body frame with respect to the n-frame and 

expressed in the body frame, 𝑠𝑠𝑐𝑐𝑙𝑙(∙) expresses the logarithmic mapping in the SO(3) 3D ro-

tation group (see (Solà, 2017) for an in-depth description of this notion) and Δ𝑡𝑡 is the inter-

val of the input data. 

Then, error-free inertial sensor measurements are reverse-engineered using the results pro-

vided by equations (4.19), (4.20) and (4.21) as well as the orientation data like so: 

 Gyroscope measurements → 𝝎𝝎ib,𝑡𝑡
b = 𝝎𝝎𝑛𝑛b,𝑡𝑡

b + �𝐑𝐑b,𝑡𝑡
𝑛𝑛 �

T
𝐑𝐑𝑒𝑒
𝑛𝑛 𝝎𝝎𝑛𝑛𝑒𝑒

𝑒𝑒 , (4.22) 

 Accelerometer measurements → 𝒇𝒇𝑡𝑡𝑛𝑛 = 𝐑𝐑b,𝑡𝑡
𝑛𝑛 T(𝜶𝜶𝑡𝑡𝑛𝑛 + 𝐠𝐠𝑛𝑛), (4.23) 

where 𝐑𝐑𝑒𝑒
𝑛𝑛 is a transformation matrix between the n-frame and the Earth-Centered Earth-

Fixed (ECEF) frame (e-frame, position-dependent), 𝝎𝝎𝑛𝑛𝑒𝑒
𝑒𝑒  represents the Earth’s rate of rota-
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tion and 𝐠𝐠𝑛𝑛 is the gravity vector in the n-frame. Moreover, it is very important to mention 

that for the inference of the aforementioned quantities, a non-rotating and flat Earth is con-

sidered. As a result, the effects of the Earth’s rotation, the Coriolis acceleration, the coning 

and sculling as well as the direction variation of the gravity vector are completely ignored. 

And despite the fact that such gross simplification is unreasonable for real-world applica-

tions, (Cucci et al., 2023b) considered that this assumption has a minimal influence to the 

assessment of the employed inertial sensor stochastic model, according to a certain accuracy 

requirement. Besides, in the case where low-cost IMUs are employed, such effects are over-

shadowed by the significant random drift that typically characterizes such devices. 

3) At this point, the simulator assumes that the inertial sensor error behavior is somewhat inde-

pendent from the environmental conditions (i.e., temperature, platform dynamics), which as 

mentioned in Section 3.3, is not valid for low-cost and consumer grade IMUs. As a result, 

static measurements are considered to only contain noise and that this noise has the same 

characteristics as the one that affects the sensor operation during a standard kinematic opera-

tion. Therefore, with this in mind, erroneous inertial sensor measurements are created by 

adding random parts from real static datasets (different parts for every MC iteration). Fur-

thermore, a noise model is assumed for the GNSS position and velocity information, which 

for the sake of simplicity is assumed to be WN. 

4) A standard EKF is infused with the stochastic modeling knowledge that is to be investigated 

(See Chapter 5 for how this is implemented) and in turn, processes the erroneous INS and 

GNSS measurements and estimates the final navigation solution. This procedure is repeated 

in an MC fashion, with different noise realizations being employed every time. 
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5) The results from all the simulations are utilized for the computation of statistical metrics 

(e.g., empirical coverage, mean position, and orientation error) in order to assess the antici-

pated performance of the system based on the considered scenario. 

Based on this INS/GNSS simulator, an experiment is designed to quantify and compare the 

navigation performance when the EKF is infused with information about the inertial sensor error 

behavior. As for where this information comes from, it is derived by utilizing each of the three 

mentioned multi-signal estimators in three different calibration data contamination scenarios. 

Therefore, in this way, a rigorous investigation will be conducted for the contribution to the nav-

igation solution of different levels of robustness in the multi-signal approach. In the following, 

the configuration of the simulation-based engine is described in detail. 

Initially, a 15-minute car trajectory shown in Figure 4.15 was inputted within the simulator in 

the form of position and orientation data at a 100Hz rate. In fact, it was produced by NovaTel’s 

high-end Synchronous Position, Attitude and Navigation (SPAN) system by fusing information 

in a loosely coupled manner from a tactical grade iMAR-FSAS FOG IMU (100Hz data rate) 

whose specifications are shown in Table 4.1 and a GPS/GLONASS high performance GNSS re-

ceiver (1Hz data rate). 

In addition, the rate that the simulated GPS position and velocity information is made availa-

ble was set to 1Hz (very common in practice) and the stochastic models that describe their errors 

were also set. Specifically, the horizontal and vertical position errors are assumed to be produced 

from WN processes with variances 4m2 and 16m2 respectively, while the horizontal and vertical 

velocity errors were also set to be defined by WN processes with 0.0016 m2 sec2⁄  and 

0.0036 m2 sec2⁄  each. 
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Figure 4.15: Car trajectory provided by the SPAN system. 

Table 4.1: iMAR-FSAS IMU technical specifications 

Performance 
Specifications iMAR-FSAS 

 Gyroscopes Accelerometers 

Maximum Data 
Rate 200 Hz 200 Hz 

Range ± 500 deg sec⁄  ± 5g 

Bias 0.75 deg hr⁄  1.0 mg 

Scale Factor 300 ppm 300 ppm 

ARW/VRW 0.16 deg √hr⁄  50 μg √Hz⁄  
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Subsequently, numerous 1.5hr static datasets at a 100Hz rate (T = 524284 data points) were 

collected using the consumer-grade MEMS-based Xsens MTi-G-710 IMU (Movella, 2023), 

which is a small sized device that contains a tri-axial accelerometer and a tri-axial gyroscope, 

among other sensors (i.e., magnetometers, barometers, temperature sensors) and whose specifi-

cations are shown in the Table 4.2. 

Table 4.2: Xsens MTi-G-710 technical specifications 

Performance 
Specifications MTi-G-710 

 Gyroscopes Accelerometers 

Maximum Data 
Rate 2000 Hz 2000 Hz 

Range ± 450 deg sec⁄  ± 20 g 

Bias 0.2 deg hr⁄  5.0 mg 

Scale Factor 0.01 % 0.1 % 

Non-orthogonality 0.05 deg 0.05 deg 

ARW/VRW 0.6 deg √hr⁄  60 μg √Hz⁄  

From them, the signals that presented minimal differences between their classical and robust WV 

were selected as the ones that are more likely to be outlier-free (crude indicator). In addition, the 

WVs of the “clean” signal replicates were compared with each other and it was identified that the 

horizontal accelerometers present a very similar behavior with each other, while the same also 

applies for the horizontal gyroscopes. Therefore, with these in mind, 8 accelerometer and 8 gyro-

scope replicates were chosen to be used for the stochastic error analysis (see Figure 4.16 for the 

WVs of the gyroscope signals), while 1 accelerometer and 1 gyroscope replicate were selected as 
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indicative of the overall behavior in order to be used by the simulator as the contamination 

source of the “perfect” inertial sensor measurements. 

 
Figure 4.16: Comparison between classical and robust WVs of the 8 selected gyroscope signal replicates. 

The selected “clean” signal replicates represent Scenario I and by using equations (4.16), 

(4.17) and (4.18), the characteristic WV of the AWV, SR-AWV and DR-AWV (with 𝑝𝑝 = 2) 

multi-signal estimators are evaluated. From them, it was identified that the composite model 𝒮𝒮, 

comprised of two AR1s, one RW, one WN and one QN stochastic process is capable of suffi-

ciently describing the random behavior of both signal types. Figure 4.17 demonstrates the fit of 

that model to the WV-AWV along with its respective 95% CIs (evaluated via a percentile para-

metric bootstrap approach), the model-implied WV, and the individual process contribution. 
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Figure 4.17: 𝒮𝒮 model fit to the WV-AWV, derived from the gyroscope data. 

Regarding Scenario II, the following data corruption-type outliers, whose collective influence 

affects the entirety of the WV spectrum, are introduced to both types of signals: 

• 1% of each signal (accelerometer and gyroscope) is randomly selected and replaced with da-

ta points drawn from a WN distribution that is characterized with a variance equal to 

0.0256 m2 sec4⁄  for the accelerometer and 0.000676 rad2 sec2⁄  for the gyroscope signals 

(affects the higher frequencies) 

• Small vibrations (500 data points) are introduced to the signals every 90000 samples to eve-

ry signal. This means that eventually, the total number of these vibrations is equal to 5 (af-

fects the mid frequencies) 

• A step function is centered to the middle of each signal and then added to them. Specifically, 

the amplitude Α of that function is Aaccel(𝑖𝑖) = {0.0041,0.0032,0.0055,0.0045,0.0034, 
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0.0060,0.0061,0.0030} m sec2⁄  and Agyro(𝑖𝑖) = {0.00095,0.00114,0.001,0.00094, 0.0011,

0.00085,0.00055,0.0009} rad sec⁄  for 𝑖𝑖 = 1, … 8 (affects the lower frequencies) 

Based on that, the characteristic WVs of the three estimators, meaning the WV-AWV, WV-SR-

AWV and WV-DR-AWV, are evaluated and plotted in Figure 4.18. By inspecting this figure, it 

is clear that the characteristic WVs of the robust estimators demonstrate an almost identical be-

havior, while the WV of the classical one appears to be considerably affected in the lower and 

higher time scale regions. Moreover, even though the robust estimators are unable to stay unaf-

fected in the mid scales, they do manage to remain close to the “clean” data behavior for the 

lower (WN part) and higher (RW part) ones. Then, using these WVs and the corresponding esti-

mator, the 𝒮𝒮 model parameters are estimated. 

 
Figure 4.18: Comparison between the WV-AWV, WV-SR-AWV and WV-DR-AWV in a log-log plot with respect 

to the time scales based on the Scenario II calibration data. 

As for Scenario III, a condition where both data corruption and sample contamination are pre-

sent in the calibration data at hand is created by modifying the Scenario II setting. Specifically, 
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two signals from both data types are forced to demonstrate an abnormal WV behavior compared 

to the rest by changing certain outlier attributes and by adding a new outlier type like so: 

• The variances for the WN point replacement are set to be 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑙𝑙(𝑖𝑖=3,8)
2 = 0.0324 m2 sec4⁄  

and 𝜎𝜎𝑖𝑖𝑔𝑔𝑔𝑔𝑜𝑜(𝑖𝑖=2,5)
2 = {0.000484,0.000676} rad2 sec2⁄  

• The step function amplitudes are altered to the have the values Aaccel(𝑖𝑖=3,8) =

{0.0062,0.0045} m sec2⁄  and Agyro(𝑖𝑖=2,5) = {0.00114,0.0011} rad sec⁄  

• Sequences with the same length as the considered signals are produced by AR1 processes 

and then added to the entirety of the accelerometer and gyroscope signals that were chosen 

to be the abnormal ones. The properties of each of these processes are AR1𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑙𝑙(𝑖𝑖=3,8) = 

(φ = 0.975761, 𝜉𝜉2 = 3.397832 ∙ 10−7) and AR1𝑖𝑖𝑔𝑔𝑔𝑔𝑜𝑜(𝑖𝑖=2,5) = {(φ = 0.97239103, 𝜉𝜉2 = 

1.074129 ∙ 10−8), (φ = 0.9766580, 𝜉𝜉2 = 5.313189 ∙ 10−9)}. 

Subsequently, using this data assembly, the WVs used by the three multi-signal estimators are 

calculated and illustrated in Figure 4.19. Based on that, it is evident that the WV-DR-AWV man-

ages to reduce the impact of the two outlying signal replicates in the mid time scales (AR1 re-

gion) and remain in similar levels as in Scenario II, while the same cannot be said for the other 

two. Therefore, it is confirmed that this scenario fulfills the condition of simultaneous data cor-

ruption and sample contamination existence. In turn, the stochastic analysis is conducted by all 

three estimators based on their corresponding characteristic WV and thus, all the required 

knowledge to properly configure the navigation simulator for the purposes of this study has been 

obtained. 
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Figure 4.19: Comparison between the WV-AWV, WV-SR-AWV and WV-DR-AWV in a log-log plot with respect 

to the time scales based on the Scenario III calibration data. 

Finally, in order to obtain a direct insight of the contribution of the employed inertial sensor 

random error modeling knowledge to the INS standalone performance, two 90-second GNSS 

outages are introduced (300-390sec and 700-790sec). Therefore, the configuration of the 

INS/GNSS simulator that has been described so far is utilized and 𝐻𝐻 = 10000 MC simulations 

are conducted. Furthermore, this procedure is implemented with the simulator’s EKF being in-

fused with the stochastic analysis information inferred from each estimator and calibration data 

scenario. In the end, 9 different collections of navigation solutions from the 𝐻𝐻 conducted test 

runs are provided by the simulator’s engine. 

As it was mentioned earlier, this simulator makes a couple of crude simplifications that make 

the produced results to be rather unrealistic in terms of real-world navigation performance. Nev-

ertheless, a comparison between statistical metrics obtained under different configurations of the 

employed stochastic estimator and calibration data, is more than enough to deduce reasonable 



96 

 

conclusions about whether one is better than the other. Furthermore, it should be highlighted that 

the purpose of robustness in the stochastic modeling of inertial sensor noise is to ensure that the 

information provided to the EKF will aid the INS standalone performance to maintain stability of 

the navigation solution and its reliability. Therefore, with these in mind and for the purpose of 

assessing and comparing the quality of the resulting INS/GNSS solutions driven by different sto-

chastic estimators about the inertial sensor random errors, the empirical coverage (Refer to 

(Cucci et al., 2023b) for how this quantity is calculated by the simulator’s framework) and the 

standard estimation errors (SEEs) for the position and orientation states (uncertainty estimated by 

the EKF) are evaluated and studied. 

Empirical Coverage Analysis 

The empirical coverage, as calculated by the navigation simulator, considers the results of the 

total number of conducted simulations and allows the evaluation of the estimated position and 

orientation solutions as well as their respective uncertainty (provided by the EKF) in terms of 

accuracy and reliability concurrently. Specifically, the empirical coverage (corresponding to the 

position and orientation states as a whole) expresses the probability that single-sided confidence 

intervals of level 𝑠𝑠𝑠𝑠 = (1 − a) (based on the chi-squared distribution), built using the estimated 

position and orientation solutions as well as their respective covariance, contain the true values. 

For the purposes of this study, a confidence level of 𝑠𝑠𝑠𝑠 = 70% is utilized. The rationale be-

hind this decision is that it is important to have a certain range of behavior above and below the 

selected level in order to safely determine whether the produced estimates are being either over-

confident or pessimistic. Furthermore, if the EKF-provided uncertainties are valid, then the cred-

ibility of the previously mentioned confidence intervals is ascertained by the observed empirical 

coverage residing within a certain range around the theoretical level (i.e., 70%). This range rep-
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resents the simulation error and according to (Cucci et al., 2023b), the following formula can be 

used to provide an estimate of the 95% confidence interval for the empirical coverage: 

 [𝐶𝐶𝐶𝐶𝑙𝑙𝑜𝑜𝑤𝑤 𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖ℎ] = 𝑝𝑝 ± 1.96�
a ∙ 𝑠𝑠𝑠𝑠
𝐻𝐻

, (4.24) 

where 𝐶𝐶𝐶𝐶𝑙𝑙𝑜𝑜𝑤𝑤 and 𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖ℎ is the lower and upper limit of the ideal empirical coverage behavior and 

𝐻𝐻 is the number of Monte-Carlo runs that were considered for the calculation of the metric. In 

this study, this interval is approximately between 69.1% and 70.9%.  

Given what has been said, the 70% empirical coverage is calculated for the results from each 

of the 9 different configurations that were mentioned earlier, and a snapshot of that behavior is 

provided in Figure 4.20 in percentage units. 

According to this figure, and particularly for Scenario I, it can be observed that general behav-

ior of the coverage is not in the desired levels for the entirety of the trajectory and the reasons 

behind this are related to problems encountered during the data collection, which in turn appear 

to have influenced the estimation quality of the orientation states. However, despite that, a rela-

tive comparison of the metric’s behavior between solutions driven by the different estimators can 

still provide viable conclusions. 

With the purpose of making the inference of such conclusions more apparent, the empirical 

coverage error is calculated as the difference between the theoretical probability (70%) and the 

ones based on estimations at hand. Then, Table 4.3 is constructed, which contains the mean em-

pirical coverage error for the GNSS outage regions and for each of the three employed stochastic 

estimators in the three calibration data scenarios. Finally, as to why particular focus is given to 

these areas, it is where the INS system operates on standalone mode and thus, the full impact of 
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the provided stochastic modeling knowledge about the inertial sensor errors to the navigation 

performance can be perceived. 

 
Figure 4.20: 70% Empirical coverage of the combined position and orientation states for each estimator and calibra-

tion data contamination scenario. 

Table 4.3: Mean empirical coverage error for the two GNSS outage areas and for each of the three estimators used in 
the different calibration data scenarios. 

 Scenario I 
[%] 

Scenario II 
[%] 

Scenario III 
[%] 

 Outage 1 Outage 2 Outage 1 Outage 2 Outage 1 Outage 2 

AWV 10.75 4.51 -24.82 -25.49 -26.32 -26.32 

SR-AWV 10.30 4.15 0.97 -4.81 -16.20 -19.04 

DR-AWV 11.07 4.84 -9.93 -15.51 -12.16 -17.38 
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According to Table 4.3 for Scenario I, all three estimators seem to provide stochastic model-

ing information about the inertial sensor errors that leads to pessimistic estimations for the posi-

tion and orientation states. Nevertheless, their resulting navigation solutions have almost the 

same quality in terms of closeness to the reference and correctness of the derived reliability for 

both outage regions. Consequently, this confirms the outcomes of the previously conducted sim-

ulation and case studies in the navigation setting. In other words, the new robust estimators can 

be used even in a clean data scenario, without the need for confirmation of outlier existence, and 

still be equivalent to the classical estimator in terms of implied navigation solution quality. 

Regarding Scenario II, the SR-AWV demonstrates the smallest coverage errors, with their 

values indicating that for the 1st outage, the estimation quality of the position and navigation 

states is almost optimal, while for the 2nd, such estimations are being a little overconfident. As 

for the other robust estimator, it appears to be about 10% more overconfident than the SR-AWV 

for both outages in this scenario. Actually, this partly contradicts the conclusion of the simulation 

study, because instead of having the two robust estimators performing the same, the SR-AWV 

appears to be the most dependable in this particular setting by far. Nevertheless, the DR-AWV 

demonstrates the second smallest coverage error and a much better behavior than the classical 

estimator-driven solution, which is considerably unreliable in comparison. 

Finally, for Scenario III, it is evident that the DR-AWV manages to maintain the empirical 

coverage error in nearly the same levels as in Scenario II, while the same cannot be said for the 

SR-AWV. Furthermore, it is noticed that the difference in coverage error between the two robust 

estimator-driven solutions for Scenario III does not appear to be significant. It is speculated that 

the reason behind this is related to the way that the abnormal replicates were created, which was 

with the addition of an AR1 process. As a result, this impacted the estimation quality of the time-
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correlated processes of the 𝒮𝒮 model for the SR-AWV but it had little effect to that of the DR-

AWV. Then, by considering this, along with the fact that the trajectory is relatively small (i.e., 

15min), there is no adequate time for the influence of the time-correlated processes to become 

significant enough. Therefore, the superior efficiency of the DR-AWV in estimating them cannot 

be expressed as a considerable improvement to the navigation performance compared to that im-

plied by the SR-AWV. Nevertheless, this is still a proof of concept that in the case where both 

data corruption and sample contamination exist in the calibration data, unlike the SR-AWV, the 

DR-AWV is capable of maintaining the stability of the navigation solution in terms of accuracy 

and validity of the estimated reliability. 

Standard Estimation Error Analysis 

The SEE of the position and orientation states, as that is provided by the EKF, is a metric that 

has been chosen to be utilized for the reliability assessment of the derived navigation solution 

from the simulator. Furthermore, in order to consider the multiple Monte-Carlo realizations of 

the same experiment, the SEE should be averaged over the total number of conducted simula-

tions, thus creating the Average Standard Estimation Error (ASEE). However, an inspection of 

all the available SEEs revealed that the variability of the behavior from one MC run to another is 

minimal for all the position and orientation states, meaning that a smaller number of simulations 

can be considered, without affecting the inference of conclusions. Therefore, with this in mind, 

as well as to reduce the computational load, the calculation of the ASEE is chosen to be conduct-

ed based on 100 MC simulation solutions. 

What is more, a reasonable assumption is made that the AWV-based solution in Scenario I 

can be considered to be optimal and as such, the validity of the reliability that the other solutions 

provide should be evaluated by a comparison with it. Consequently, ratios are evaluated with re-
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spect to this reference and for all the available ASEE information. For illustration purposes, Fig-

ure 4.21 is created, which contains a snippet of these ratios for the East position (Xe) and the 

Roll Angle (RA) attitude state, each of which was considered to be representative of all the other 

position and orientation components. In addition, the mean values of the ASEE ratio errors dur-

ing the GNSS outages are calculated as the difference of each ratio from unity in percentage 

units and then provided in Table 4.4 for the East position component and Table 4.5 for the roll 

angle. In this way, a quantitative analysis of the inspected quantity is brought forth. 

 
Figure 4.21: ASEE ratios of the East position component (Xe) and roll angle (RA). 

Regarding Scenario I and based on Figure 4.21, it is obvious that the robust estimator-based 

solutions for both position and orientation states are characterized by almost the same reliability 
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as the reference. As a result, the equivalence of the robust estimators to the classical one in terms 

of implied navigation performance is once again confirmed in the clean calibration data scenario. 

Table 4.4: Mean values of the East position ASEE ratio error for the two GNSS outage regions in each scenario. 

 Scenario I 
[%] 

Scenario II 
[%] 

Scenario III 
[%] 

 Outage 1 Outage 2 Outage 1 Outage 2 Outage 1 Outage 2 

AWV – – 75.07 74.05 76.75 77.19 

SR-AWV 0.96 0.94 9.33 9.65 28.88 29.72 

DR-AWV 1.82 1.75 17.23 18.48 20.24 21.24 

Table 4.5: Mean values of the roll angle ASEE ratio error for the two GNSS outage regions in each scenario. 

 Scenario I 
[%] 

Scenario II 
[%] 

Scenario III 
[%] 

 Outage 1 Outage 2 Outage 1 Outage 2 Outage 1 Outage 2 

AWV – – 95.46 91.00 93.58 92.45 

SR-AWV 0.74 0.75 4.24 5.36 25.00 26.86 

DR-AWV 2.09 1.97 13.01 15.46 16.06 18.21 

As for Scenario II, it is strongly implied in Figure 4.21 that the estimations provided by the 

AWV-driven solution are considerably undermined along the entirety of the trajectory and espe-

cially during the GNSS outages. On the other hand, the robust estimators manage to remain sta-

ble, with the SR-AWV being the one that provides the most realistic estimation confidence by a 

margin of at least 10% on average for both state types with respect to the DR-AWV (according 

to Table 4.4 and Table 4.5). 
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Concerning Scenario III and according to the tables above, the DR-AWV solution provides 

the most sensible uncertainty information, which has actually only increased by about 3% com-

pared to its respective one in Scenario II, for the position and orientation components in each 

GNSS outage region. Inversely, the SR-AWV is noticeably problematic since it demonstrates an 

increase in the estimated uncertainty at a level of 20% in general, compared to Scenario II. Final-

ly, it is worth mentioning that Figure 4.21 suggests that the destabilization of the SR-AWV has 

not only affected the reliability estimation in the GNSS outage regions but also in the rest of the 

trajectory. 

4.5 Stochastic Calibration of a Consumer-grade MEMS-based IMU Using the 

New Robust Multi-Signal Method and the Standard AVLR 

In this section, the stochastic calibration of consumer-grade MEMS-based inertial sensors is 

presented, where the newly proposed robust multi-signal approach as well as the conventional 

single-signal AVLR are utilized.  

These sensors were chosen to be the ones included within the Xsens MTi-G-710 device 

(Movella, 2023), which is a small-sized (57 × 42 × 23.5mm) assembly of multiple different 

sensors and it is generally considered to be ideal for visual-inertial systems, UAV navigation and 

surveying applications. Specifically, this apparatus contains a built-in multi-constellation GNSS 

receiver (i.e., GPS, GLONASS, BeiDou, and Galileo), accelerometer, gyroscope, and magne-

tometer triads as well as barometer and temperature sensors. Therefore, by fusing the infor-

mation from all of them, it can provide high rate (up to 2000Hz) position and orientation solu-

tions of very good quality. Furthermore, it can provide the fundamental observables from each 

individual sensor type, like for example, 6 Degree of Freedom (DoF) acceleration and angular 

rate measurements. In this study, only the latter will be utilized for the purpose at hand. 
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As it was mentioned in Section 3.3, before the stochastic modeling of the inertial sensor errors 

is conducted, a deterministic calibration process must occur first. In this case, the 6-position stat-

ic and angle rate tests described in paragraph 3.2.2 were chosen to be implemented in a lab set-

ting. However, because the equipment for accurately aligning the device along those 6 positions 

was out of commission, certain creative improvisations had to be made with the available hard-

ware. Specifically, the Animatics SmartMotorTM Series 4, a single-axis precise rate turntable, 

was utilized to introduce the constant rotation required for the calibration of the gyroscopes (i.e., 

60 deg/sec) and which is shown in Figure 4.22. 

 
Figure 4.22: The complete apparatus used for the deterministic and stochastic calibration of the Xsens MTi-G-710. 

Furthermore, it was noticed that there wasn’t a safe way to place the computer and its power 

source on the table, both of which are required for the collection of the inertial data while the ta-

ble is rotating. To resolve this issue, a metal construct was mounted onto the levelled turntable, 

thus allowing the equipment placement for the data retrieval. In turn, a prototype base was built 

using a 3D printer, where the MTi can be securely bolted on and which in turn can be rotated in 
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4The prototype base was also levelled as precisely as possible to make sure that the turntable sensitive axis is parallel 
to the axis of the gyro aligned with the local gravity direction. In this way, the entirety of the rotation rate signal can 
be sensed with negligible leaks to the other two directions. 

such a way so that alignment with each of the 6-positions can be achieved with an acceptable 

precision. Finally, a piece of wood was secured on top of the metal construct, where the proto-

type base can be bolted on4, along with the MTi. Therefore, given this configuration, the inertial 

sensor deterministic calibration became feasible, and it was conducted in the manner described in 

paragraph 3.2.2 to obtain coefficients that describe the deterministic error effects. In the next 

part, these coefficients will be utilized to create signals that (theoretically) contain only random 

errors and by using those, implement the stochastic calibration of the MTi inertial sensors using 

two different methods. 

SR/DR-AWV Analysis 

For the purpose of modeling the random error behavior of the MTi-G-710 inertial sensors us-

ing the newly proposed method, the device was again placed on the apparatus shown in Figure 

4.22 (with its Z-axis being parallel to the pre-levelled table’s sensitive axis) and 6 static signal 

replicates were collected using a 100Hz data rate for each inertial sensor. Subsequently, the ro-

bust WVs were calculated based on the deterministic error-free data and then, they were com-

pared with each other (for each sensor) in order to determine whether the SR-AWV or the DR-

AWV estimator is more suitable for the analysis. These WVs are presented in Figure 4.23 along 

with the characteristic WV of the estimator that was chosen to be utilized for their behavioural 

modeling. In fact, the SR-AWV was selected for the Y accelerometer and all three gyroscopes, 

while the DR-AWV, with 20% trim, was deemed necessary only for the X and Z accelerometers. 

Therefore, given these decisions, the optimal composite models were determined for each in-

ertial sensor by following the steps described in Section 4.2 and Figure 4.24 is provided below, 

where representative examples of the achieved high quality fits to the empirical behavior can be 

witnessed. 
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Figure 4.23: Robust empirical WVs of 6 static (deterministic error-free) signal replicates along with their respective 

95% CIs as well as the characteristic WV of the selected multi-signal estimator 

  
Figure 4.24: Composite stochastic model fits to the X accelerometer (left panel) and Y gyroscope (right panel) ran-

dom error empirical behavior using the DR-AWV and SR-AWV estimators respectively. 
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Furthermore, it is worth mentioning that 4 Z-accelerometer replicates presented breaks from 

the WN behaviour in the 2nd and 4th WV scale, an influence which was also transmitted to the 

characteristic WV of the DR-AWV estimator. It is speculated that the reason behind these breaks 

is the existence of some sort of high frequency noise to the collected data, while the cause of this 

noise could not be pinpointed. Nevertheless, this issue did not create a problem in the stochastic 

analysis since the capability to remove certain scales from the GMWM-based parameter estima-

tion became possible in this thesis (see Section 4.2). In the following, the parameter values of the 

identified optimal models are given in Table 4.6 for the accelerometers and Table 4.7 for the gy-

roscopes, just as they were provided by the method’s GMWM-based framework. 

Table 4.6: Composite stochastic model parameter values for the accelerometer sensors derived using the SR/DR-
AWV multi-signal estimators. 

Stochastic 
Process 

X 
Accelerometer 

Y 
Accelerometer 

Z 
Accelerometer 

 DR-AWV SR-AWV DR-AWV 
φAR1,1 

[number] 9.9991118934E-01 9.9997413124E-01 9.9988222369E-01 

𝜉𝜉2𝐴𝐴𝐴𝐴1,1 
[m2 sec4⁄ ] 

2.3025623378E-11 6.3063130766E-12 3.2376979539E-10 

φAR1,2 
[number] 9.9788236122E-01 9.9956962851E-01 – 

𝜉𝜉2𝐴𝐴𝐴𝐴1,2 
[m2 sec4⁄ ] 

3.1698883744E-10 7.8018328644E-11 – 

φAR1,3 
[number] – 9.9231814672E-01 – 

𝜉𝜉2𝐴𝐴𝐴𝐴1,3 
[m2 sec4⁄ ] 

– 1.5325490982E-09 – 

𝛾𝛾2𝐴𝐴𝐴𝐴 
[m2 sec4⁄ ] 

1.8740855308E-12 1.2769134172E-12 – 

σ2GWN 
[m2 sec4⁄ ] 5.8001699746E-05 6.2646525277E-05 5.6677308168E-05 
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Table 4.7: Composite stochastic model parameter values for the gyroscope sensors derived using the SR/DR-AWV 
multi-signal estimators. 

Stochastic 
Process 

X 
Gyroscope 

Y 
Gyroscope 

Z 
Gyroscope 

 SR-AWV SR-AWV SR-AWV 
φAR1,1 

[number] 9.9987552667E-01 9.9979175186E-01 9.9991854699E-01 

𝜉𝜉2𝐴𝐴𝐴𝐴1,1 
[rad2 sec2⁄ ] 

1.2071600252E-12 1.3239167141E-12 1.6330417865E-12 

φAR1,2 
[number] 9.9575328313E-01 9.9786425451E-01 9.9904712588E-01 

𝜉𝜉2𝐴𝐴𝐴𝐴1,2 
[rad2 sec2⁄ ] 

4.1704676405E-11 1.0676557808E-11 1.7600027320E-11 

φAR1,3 
[number] – 9.6315054006E-01 9.6083305506E-01 

𝜉𝜉2𝐴𝐴𝐴𝐴1,3 
[rad2 sec2⁄ ] 

– 5.6366165463E-10 1.0010941006E-09 

𝛾𝛾2𝐴𝐴𝐴𝐴 
[rad2 sec2⁄ ] 

2.3442744506E-14 4.2139821371E-14 5.8629278092E-14 

σ2WN 
[rad2 sec2⁄ ] 1.5241658764E-06 1.9294205678E-06 4.6200914915E-06 

Finally, it is highlighted that according to the results shown in the above tables, the MTi iner-

tial sensor random error behavior is partially characterized by multiple time-correlated processes. 

As a result, this confirms the requirement for an alternative to the standard AVLR when dealing 

with low-cost equipment, since it is very difficult for the latter to even detect noise with time-

correlated properties.  

AVLR Analysis 

In contrast with the previous analysis, the AVLR utilizes only a single signal in order to im-

plement the inertial sensor stochastic calibration. To that end, the MTi was placed on the appa-

ratus demonstrated in Figure 4.22 and the required static data were collected at a 100Hz data 

rate. Subsequently, the maximal overlapping ADEV quantity (σAV) was evaluated and its behav-
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iour for each inertial sensor is demonstrated in Figure 4.25 along with the 95% CIs for each σAV 

data point, which were evaluated via the following formula: 

 𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖ℎ,𝑙𝑙𝑜𝑜𝑤𝑤�𝜏𝜏 = 2i=1,…,J� = σAV(𝜏𝜏) ± �2 ∙ errorADEV(𝜏𝜏) ∙ σAV(𝜏𝜏)� (4.25) 

 
Figure 4.25: Maximal overlapping ADEV for the three accelerometer and three gyroscope sensors along with their 

respective 95% CIs 

At this point, it is worth mentioning that even though the theoretical slopes of each of the 

identifiable processes (i.e., RW, WN, BI, QN, DR) in the ADEV plots is known (see Table 3.1), 

the empirical behavior can deviate significantly and thus, it is not at all clear which scales should 

be utilized for the inference of their respective parameters via linear regression. To tackle this 

issue, the process described below can be followed: 
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1) Inspect the ADEV plot and based on the known stochastic process slopes, identify which of 

them are present in the empirical behavior. 

2) Choose the data points that probably correspond to each of those processes and perform in-

dividual linear regressions to evaluate their defining parameter values. 

3) For every identified process, utilize its estimated parameter value(s) along with its corre-

sponding theoretical ADEV expression (see Table 3.1) in order to determine the contribution 

to the overall fit. 

4) Create the implied ADEV by adding the individual contributions of the included sub-

processes to the composite model (assuming that they are additive) and plot it against its 

empirical version. 

5) Repeat steps 1-4 by selecting different point combinations until the least possible difference 

between the empirical and implied ADEV can be achieved. 

On another note, although it is evident by inspecting Figure 4.25 that there are areas where BI 

can be identified, such a process cannot be expressed by a state-space model that can in turn be 

included within the navigation algorithm. Furthermore, according to the literature, the BI can be 

approximated by either a single AR1/GM1 or a higher order autoregressive process, an operation 

that can be done in various different ways (see (Farrell et al., 2022) for an overview). Neverthe-

less, the choice of alternatives to the BI process is somewhat of an artform that depends on mul-

tiple factors, including the subjective opinion of the user and thus, it does not depend on a pure 

statistical reasoning (i.e., a reliable estimator). For the purposes of this thesis, it has been decided 

that only processes that can be described via a state-space model will be investigated (i.e., RW, 

WN and DR) and by using the step-by-step process that was described earlier, obtain the best fit 
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possible to the observed behavior. In turn, when these models are inputted within the navigation 

algorithm, their parameter values will be tuned in order to achieve the optimal performance. In 

fact, by doing this, the BI process that was omitted will essentially be over-bounded by the in-

flated processes. Therefore, with these in mind, the AVLR analysis was implemented and char-

acteristic examples of the achieved fits to the sensed behavior are provided in Figure 4.26 for the 

X accelerometer and Y gyroscope. 

  
Figure 4.26: AVLR-derived model fits to the empirical behavior for the X accelerometer and Y gyroscope sensors 

On top of that, the composite model parameter values are also provided in Table 4.6 and Ta-

ble 4.7 for the accelerometer and gyroscope sensors respectively, which will be used in by the 

navigation algorithms in the next chapters for the recursive compensation of the inertial sensor 

random errors. 

able 4.8: Model parameter values for the accelerometer sensors as they were derived from the AVLR analysis. 

Stochastic 
Process 

X 
Accelerometer 

Y 
Accelerometer 

Z 
Accelerometer 

 AVLR AVLR AVLR 
𝛾𝛾2𝐴𝐴𝐴𝐴 

[m2 sec4⁄ ] 
3.1683974534E-12 2.6794563541E-12 7.7755862066E-11 

σ2WN 
[m2 sec4⁄ ] 6.0292810318E-05 6.5565113721E-05 6.3043472951E-05 
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Table 4.9: Model parameter values for the gyroscope sensors as they were derived from the AVLR analysis. 

Stochastic 
Process 

X 
Gyroscope 

Y 
Gyroscope 

Z 
Gyroscope 

 AVLR AVLR AVLR 
𝛾𝛾2𝐴𝐴𝐴𝐴 

[rad2 sec2⁄ ] 
1.1573253607E-13 1.1654416498E-13 2.0258073166E-13 

σ2WN 
[rad2 sec2⁄ ] 1.6328684006E-06 2.1710272523E-06 5.0172266282E-06 

4.6 Summary 

In this chapter, a more practical implementation of the single-signal GMWM was presented 

along with a mathematical reasoning that permits the complexity reduction of the identified 

composite stochastic model by over-bounding AR1 processes with either using WN or RW un-

der certain conditions. On top of that, the capability to remove certain WV scales from consider-

ation when fitting the models was added to the existing framework, a feature that can be very 

useful when dealing with low-cost and consumer-grade equipment. Furthermore, the idea of uti-

lizing the RGMWM in every scenario without the need for a contamination test was investigated 

in a simulation setting and from which it was established that this is a worthwhile trade-off be-

tween reduction in model parameter estimation efficiency and safeguarding the estimation pro-

cess from the harmful influence of outliers. 

Subsequently, a robust multi-signal method based on the AWV estimator was proposed, con-

taining two layers of robustness. The first one accounts for the existence of outliers in the indi-

vidual signal replicates that are being considered and the second protects the estimation process 

from the collection of abnormal signal replicates, while preserving as much information from 

them as possible. Based on this approach, two estimators were formally defined: the SR-AWV, 

which contains protection against data corruption (one layer of robustness) and the DR-AWV, 

that includes safeguards against sample contamination as well (two layers of robustness). 
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In turn, the efficiency of the new estimators was evaluated in a simulation and a case study in 

terms of model parameter estimation under different calibration data contamination settings, 

from which their robustness to the effects of different types of outliers was established and it was 

also confirmed that they have an equivalent performance to the classical estimation in a clean 

data setting (just as in the single-signal GMWM approach). 

In addition, an innovative evaluation of their contribution to the navigation performance was 

also conducted by the means of a recently proposed MC simulation-based navigation simulator. 

Based on the results from a huge number of simulated trajectories, it was identified that the ro-

bust estimators manage to maintain stability under contamination in terms of not only navigation 

state estimation accuracy but also of correctness of the provided reliability information. Finally, 

the stochastic analysis of consumer-grade inertial sensors was performed using the proper robust 

multi-signal estimator as well as the conventional AVLR, the information from which will be 

used later in the context of different types of navigation algorithms. 
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Chapter Five: Extended Kalman Filter-based Navigation Algorithm for 

Loosely Coupled Integration 

5.1 Introduction 

In this chapter, the EKF, a continuous recursive Bayesian filter will be employed for the solu-

tion of the navigation problem and the infusion of the advanced stochastic modeling for the iner-

tial sensor random error drift, which will help making the predictive PDF less noisy. Specifical-

ly, this is a linearized unbiased estimator that utilizes an analytical approximation to solve the 

aforementioned multi-dimensional integrals. In the end, it provides a single optimal solution for 

the system states, based on the Minimum Mean Square Error (MMSE) criterion, as well as in-

formation about the quality of its estimation (i.e., covariance) (Gelb, 1974). 

Next, the characteristics and structure of an EKF used for loosely integrating the INS system 

with GNSS and other update sources will be described. In addition, special attention will be giv-

en to the way that the advanced stochastic modeling knowledge about the inertial sensor error 

drift that was derived in the previous chapter can be encompassed into it. 

5.2 The Extended Kalman Filter 

As it was mentioned earlier, the navigation equations are nonlinear in nature and this, the 

standard KF cannot be utilized directly. Instead, its algorithm should be altered in order to be 

able to handle this nonlinear system and analytically propagate the state PDF. This modification 

leads to a sub-optimal estimator called the Extended Kalman Filter, where the system model is 

linearized using the Taylor series expansion, usually up to the first order, around the trajectory 

implied by the INS mechanization (Noureldin et al., 2013). As a result, the filter no longer utiliz-

es the absolute state values like the standard KF does. Instead, it employs the state errors with 

respect to the nominal solution around which the linearization occurred, and after each iteration, 
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these errors are used to correct the nominal solution and obtain the optimal estimate, given all the 

available information. Therefore, it is evident that the quality of the EKF estimation is highly 

dependent on the validity of that linearization.  

According to Gelb, (1974), the continuous time system and measurement models utilized by 

the EKF (for navigation purposes) are given by the following equations:  

 δ�̇�𝐱(𝑡𝑡) = 𝐅𝐅(𝑡𝑡) ∙ δ𝐱𝐱(𝑡𝑡) + 𝐆𝐆(𝑡𝑡) ∙ 𝐰𝐰(𝑡𝑡), 𝐐𝐐(𝑡𝑡) (5.1) 

 δ𝐳𝐳(t) = 𝐇𝐇 ∙ δ𝐱𝐱(𝑡𝑡) + 𝒗𝒗(𝑡𝑡), 𝐑𝐑(𝑡𝑡) (5.2) 

where δ�̇�𝐱 is the first derivative of the δ𝐱𝐱 error-state vector, 𝐅𝐅(𝑡𝑡) the dynamic matrix that de-

scribes the rate that the errors from the INS mechanization evolve over time, 𝐆𝐆(𝑡𝑡) the random 

forcing matrix that defines the system noise distribution, 𝐰𝐰(𝑡𝑡) the system noise vector, 𝐐𝐐(𝑡𝑡) a 

continuous-time V-C matrix that is associated with the characteristics of the system noise, δ𝐳𝐳(𝑡𝑡) 

the continuous-time measurement error vector, 𝐇𝐇 the design matrix that provides the ideal con-

nection between measurement error and error state vector and 𝒗𝒗(𝑡𝑡) the measurement noise that is 

characterized by 𝐑𝐑(𝑡𝑡). 

However, in practice, it is impossible to collect continuous data. Therefore, the aforemen-

tioned equations have to be converted into discrete time expressions, which are given below 

(Noureldin et al., 2013):  

 δ𝐱𝐱k = 𝚽𝚽k−1→k ∙ δ𝐱𝐱k−1 + 𝐆𝐆k ∙ 𝐰𝐰k, 𝚽𝚽k−1→k = e𝐅𝐅Δ𝑡𝑡, 𝐰𝐰k~𝒩𝒩(0,𝐐𝐐k) (5.3) 

 δ𝐳𝐳k = 𝐇𝐇k ∙ δ𝐱𝐱k + 𝒗𝒗𝑘𝑘, 𝒗𝒗𝑘𝑘~𝒩𝒩(0,𝐑𝐑k) (5.4) 
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where 𝚽𝚽k−1→k is the state transition matrix that represents how the INS errors are related to the 

error state of the EKF, Δ𝑡𝑡 is the time interval between the previous and current epoch, 𝐆𝐆k the 

noise distribution matrix that describes the error connection between state components, 𝐰𝐰k the 

process noise vector with 𝐐𝐐k variance matrix (diagonal, no covariances considered), δ𝐳𝐳k the vec-

tor that contains the difference between the INS-implied and the auxiliary source’s absolute state 

information and 𝒗𝒗𝑘𝑘 the random noise vector that describes the update with 𝐑𝐑k variance matrix 

(diagonal, no covariances considered). In addition, it is highlighted that the EKF assumes that 𝐰𝐰k 

and 𝒗𝒗𝑘𝑘 are completely independent with each other and that they are both described by a Gaussi-

an WN stochastic process that is characterized by their respective variance matrices. 

With this in mind, the complete error-state EKF algorithm is presented below in two stages 

(Brown and Hwang, 2012; Noureldin et al., 2013): 

A. Prediction 

 δ𝐱𝐱�k
− = 𝚽𝚽k−1→k δ𝐱𝐱�k−1

+ (5.5) 

 
𝐏𝐏k− = 𝚽𝚽k−1→k 𝐏𝐏k− 𝚽𝚽k−1→k

T + 𝐐𝐐k, 

𝐐𝐐k ≈
1
2

 �𝚽𝚽k−1→k 𝐆𝐆k 𝐐𝐐s 𝐆𝐆kT + 𝐆𝐆k 𝐐𝐐s 𝐆𝐆kT 𝚽𝚽k−1→k
T� Δ𝑡𝑡 

(5.6) 

B. Update 

 𝐊𝐊k = 𝐏𝐏k− 𝐇𝐇k
T �𝐇𝐇k 𝐏𝐏k− 𝐇𝐇k

T + 𝐑𝐑k�
−1

 (5.7) 

 δ𝐱𝐱�k
+ = δ𝐱𝐱�k

− + 𝐊𝐊k [δ𝐳𝐳k − 𝐇𝐇k δ𝐱𝐱�k
−] (5.8) 

 𝐏𝐏k+ = [I − 𝐊𝐊k 𝐇𝐇k] 𝐏𝐏k− [I − 𝐊𝐊k 𝐇𝐇k]T + 𝐊𝐊k 𝐑𝐑k 𝐊𝐊k
T (5.9) 
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where δ𝐱𝐱�k
− is the a-priori estimation of the error state vector based only on the INS operation, 

𝐏𝐏k− the matrix that contains the a-priori state estimation uncertainty, 𝐐𝐐s the spectral densities 

matrix of the system noises, Δ𝑡𝑡 is the data interval of the inertial sensor data, δ𝐱𝐱�k−1
+ the vector 

of the updated error state estimation from the previous epoch, 𝐊𝐊k is designated as the Kalman 

gain, [δ𝐳𝐳k − 𝐇𝐇k δ𝐱𝐱�k
−] is called the innovation sequence, I is an identity matrix, δ𝐱𝐱�k

+ is the up-

dated error state vector and 𝐏𝐏k+ is the latter’s covariance matrix. 

Furthermore, it should be mentioned that in practice, the INS system that drives the EKF inte-

gration filter is characterized by a much higher data rate compared to the auxiliary sensors. Con-

sequently, there are times where the INS is operating on standalone mode and thus there is no 

information for the update stage to be triggered. Therefore, in this case, the updated error state 

and covariance take the following forms: 

 δ𝐱𝐱�k
+ = δ � k

−
 (5.10) 

 𝐏𝐏k+ = 𝐏𝐏k− (5.11) 

5.3 Filter Design 

In this section, the manner in which each component of the EKF is formulated in order to cor-

respond to a filter that performs the loosely coupled integration of the INS and GNSS systems, 

while also utilizes updates from the NHCs and ZUPTs will be described. Furthermore, particular 

focus will be given to the infusion of that algorithm with advanced knowledge about the random 

drift of the inertial sensor error errors (derived in the previous chapter) in order to allow their re-

cursive online compensation. 
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5.3.1 Error State Vector 

Generally, the way to encompass the stochastic modeling information about the inertial sensor 

bias instability within a Bayesian-type filter is by utilizing the state-space augmentation tech-

nique (Gelb, 1974). Therefore, with this in mind, the general structure of the EKF error state vec-

tor δ𝐱𝐱 is provided by the expression: 

 δ𝐱𝐱� = [δ𝐫𝐫 δ𝐯𝐯 𝛙𝛙 δ𝛚𝛚b δ𝒇𝒇b]T (5.12) 

where δ𝐫𝐫 = [δϕ δλ δh] is the geodetic position (latitude, longitude, ellipsoidal height) error 

vector, δ𝐯𝐯 = [δvn δve δvd] the velocity error vector expressed in the NED LLF that is cho-

sen to be the n-frame, 𝛙𝛙 = [δr δp δA] the attitude error vector in terms of Euler angles (roll, 

pitch, azimuth) that correspond to the same NED frame, δ𝛚𝛚b the random bias vector for the 3 

gyroscopes and δ𝒇𝒇b the random bias vector for the 3 accelerometers. 

At this point, it should be noted that the dimension of the two latter vectors depends on the 

complexity of the model that has either been chosen arbitrarily (e.g., a single GM1) or identified 

by a stochastic modeling methodology (e.g., GMWM) in order to describe each sensor’s random 

error behavior. Here, for illustration purposes, it is assumed that a model 𝒵𝒵 that is constituted by 

the summation of three GM1s, one RW, one WN and one DR stochastic process has been chosen 

to describe each sensor. As a result, the δ𝛚𝛚b and δ𝒇𝒇b vectors are expressed as follows: 

 δ𝛚𝛚b = �δ𝛚𝛚GM1(1)
b δ𝛚𝛚GM1(2)

b δ𝛚𝛚GM1(3)
b δ𝛚𝛚RW

b δ𝛚𝛚WN
b �

T
 (5.13) 

 δ𝒇𝒇b = �δ𝒇𝒇GM1(1)
b δ𝒇𝒇GM1(2)

b δ𝒇𝒇GM1(3)
b δ𝒇𝒇RWb δ𝒇𝒇WN

b �
T
 (5.14) 
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where each element is a (1 × 3) vector that contains the random bias errors for the measure-

ments of the three inertial sensors (along the x, y, and z directions of the b-frame), as they are 

dictated by the corresponding stochastic process. Consequently, the dimension of the error state 

vector becomes equal to 39. 

5.3.2 System Model 

The system model can be divided into two parts; one that refers to the navigation states and 

one about the inertial sensor random biases. 

Concerning the former, it is based on the errors created from the motion between the previous 

and the current epoch, a process that is implemented by the INS mechanization algorithm. For 

the purposes of this study, the quaternion-based INS mechanization described in (Shin, 2005) 

and used by the Aided Inertial Navigation System (AINS)® software (Shin and El-Sheimy, 

2004a) was adopted as well as its corresponding error differential equations, that were derived 

based on the “psi-angle error model” (Benson, 1975). Specifically, this error analysis is resolved 

with respect to the computer frame (c-frame), which is what the mechanization perceives as the 

true n-frame (i.e., the NED) and in the following, the resulting linearized equations with respect 

to it are given in matrix form (Scherzinger and Reid, 1994): 

 

�
δϕ̇
δλ̇
δḣ
�

�
δ�̇�𝐫c

= �
0 − vE tanϕ (RN + h)⁄   vN (RM + h)⁄

vE tanϕ (RN + h)⁄ 0   vE (RN + h)⁄
− vN (RM + h)⁄ − vE (RN + h)⁄ 0

�
�������������������������������������

𝑭𝑭r,1

�
δϕ
δλ
δh
�

�
δ𝐫𝐫c

 

+ �
1 0 0
0 1 0
0 0 1

�
�������

𝑭𝑭r,2

�
δvn
δve
δvd

�
���
δ𝐯𝐯c

, RN =
αe

(1 − e2 sin2ϕ)1 2⁄ , RM =
αe(1 − e2)

(1 − e2 sin2ϕ)3 2⁄  

(5.15) 
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where αe = 6378137m is the semi-major axis (equatorial radius) of the WGS84 reference ellip-

soid, e = 0.08181919 is its first eccentricity, RN is the radius of curvature in the prime vertical, 

RM is the radius of curvature in the meridian, vE and vN are the horizontal velocities with respect 

to the c-frame (i.e., what the INS mechanization engine perceives as the NED frame), while the 

latitude ϕ and ellipsoidal height h are provided by the INS mechanization. 

 

�
δvṅ
δvė
δvḋ

�
���
δ�̇�𝐯c

= �
−γ (RM + h)⁄ 0 0

0 −γ (RN + h)⁄ 0
0 0 −2γ (Re + h)⁄

�
�����������������������������

𝑭𝑭v,1

�
δϕ
δλ
δh
�

�
δ𝐫𝐫c

 

+��
0 −2ωesinϕ 0

2ωesinϕ 0 2ωecosϕ
0 −2ωecosϕ 0

�
�����������������������

𝑭𝑭v,2

 

+ �
0 −vE tanϕ (RN + h)⁄   vN (RM + h)⁄

vE tanϕ (RN + h)⁄ 0   vE (RN + h)⁄
− vN (RM + h)⁄ − vE (RN + h)⁄ 0

�
�������������������������������������

𝑭𝑭v,2 ⎠

⎞ �
δvn
δve
δvd

�
���
δ𝐯𝐯c

 

�
0 −𝑓𝑓d 𝑓𝑓e
𝑓𝑓d 0 −𝑓𝑓n
−𝑓𝑓e 𝑓𝑓n 0

�
�������������

𝑭𝑭v,3

�
δr
δp
δA
�

�
𝛙𝛙

+ 𝐑𝐑�bn�
𝑭𝑭v,4

�
δ𝑓𝑓x
δ𝑓𝑓y
δ𝑓𝑓z

�
���
δ𝒇𝒇b

 

(5.16) 

where γ is the normal gravity value based on Somigliana’s formula (Wei and Schwarz, 1990) 

with ϕ and h as inputs, Re = �RMRN the Gaussian mean Earth radius of curvature, ωe =

7.292115147 ∙ 10−5 rad sec⁄  the Earth’s rotation rate, �𝑓𝑓e,𝑓𝑓n,𝑓𝑓d� the specific forces expressed 

in the c-frame and 𝐑𝐑�bn the attitude-describing DCM of the IMU with respect to the n-frame as it 

was provided by the INS mechanization. In addition, the full expression of the latter matrix is 

also given, along with the formulas that can be used to extract the attitude angles of the moving 

platform from it: 
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𝐑𝐑�bn = �
cosp cosA −cosr sinA + sinr sinp cosA sinr sinA + cosr sinp cosA
cosp sinA cosr cosA + sinr sinp sinA −sinr cosA + cosr sinp sinA
−sinp sinr cosp cosr cosp

�, 

p� = tan−1
�

−R31

�R32
2 + R33

2�
, r� = tan−1 �

R32

R33
� , A� = tan−1 �

R21

R11
� 

(5.17) 

 

�
δṙ
δṗ
δȦ
�

�
�̇�𝛙

= ��
0 −ωesinϕ 0

ωesinϕ 0 ωecosϕ
0 −ωecosϕ 0

�
�����������������

𝑭𝑭ψ,1

 

+ �
0 −vE tanϕ (RN + h)⁄   vN (RM + h)⁄

vE tanϕ (RN + h)⁄ 0   vE (RN + h)⁄
− vN (RM + h)⁄ − vE (RN + h)⁄ 0

�
�������������������������������������

𝑭𝑭ψ,1 ⎠

⎞ �
δr
δp
δA
�

�
𝛙𝛙

 

+ 𝐑𝐑�bn�
𝑭𝑭ψ,2

�
δωx
δωy
δωz

�
���
δ𝛚𝛚b

 

(5.18) 

Regarding the second part, it is built based on state-space model of the stochastic process(es) 

that have been selected to describe the bias instability of each inertial sensor. Furthermore, it 

should be mentioned that only processes that have such a representation can be included within 

the EKF algorithm, meaning the GM1, RW, WN and DR. Therefore, with this in mind, an exam-

ple is provided below about the gyroscope sensor triad, where the differential equation of each of 

these processes are shown in matrix form: 

 
�
δω̇x
δω̇y
δω̇z

�
���
δ�̇�𝛚GM1

b

= �
−βωx 0 0

0 −βωy 0
0 0 −βω𝑧𝑧

�
���������������

𝑭𝑭GM1
δ𝛚𝛚

�
δωx
δωy
δωz

�
���
δ𝛚𝛚b

+ WGM1, WGM1~𝒩𝒩(0,𝐐𝐐GM1) 
(5.19) 



122 

 

 
�
δω̇x
δω̇y
δω̇z

�
���
δ�̇�𝛚RW

b

= �
0 0 0
0 0 0
0 0 0

�
�������

𝑭𝑭RW
δ𝛚𝛚

�
δωx
δωy
δωz

�
���
δ𝛚𝛚b

+ WRW,δ𝛚𝛚, WRW~𝒩𝒩(0,𝐐𝐐RW) 
(5.20) 

 
�
δω̇x
δω̇y
δω̇z

�
���
δ�̇�𝛚WN

b

= �
0 0 0
0 0 0
0 0 0

�
�������

𝑭𝑭WN
δ𝛚𝛚

�
δωx
δωy
δωz

�
���
δ𝛚𝛚b

+ WWN,δ𝛚𝛚, WWN~𝒩𝒩(0,𝐐𝐐WN) 
(5.21) 

where β is one of the two parameters of the GM1 process. As for the DR process, its discrete-

time state-space expression (see equation (2.10)) indicates that its value is a linear function of 

time and uncorrelated with the error state vector’s evolution. Hence, its contribution is chosen to 

be added to the WN components in the discrete time space, after the completion of the prediction 

stage. Specifically, this means that equation (5.5) should be modified as follows: 

 δ𝐱𝐱�k
− = 𝚽𝚽k−1→k δ𝐱𝐱�k−1

+ + 𝛚𝛚DR Δ𝑡𝑡 (5.22) 

where 𝛚𝛚DR is a vector with the same dimensions as the error state and only has values (ωDR Δ𝑡𝑡) 

for the index that corresponds to the WN process of the inertial sensor where the DR process ex-

ists. 

Subsequently, based on what has been described so far and considering the 𝒵𝒵 model for the 

random drift of the inertial sensor errors, the 𝐅𝐅, 𝚽𝚽, 𝐆𝐆 and 𝐐𝐐s system model matrices are struc-

tured as follows: 
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𝐅𝐅 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑭𝑭r,1 𝑭𝑭r,2 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3
𝑭𝑭v,1 𝑭𝑭v,2 𝑭𝑭v,3 03×3 𝑭𝑭v,4 03×3 𝑭𝑭v,4 03×3 𝑭𝑭v,4 03×3 𝑭𝑭v,4 03×3 𝑭𝑭v,4
03×3 03×3 𝑭𝑭ψ,1 𝑭𝑭ψ,2 03×3 𝑭𝑭ψ,2 03×3 𝑭𝑭ψ,2 03×3 𝑭𝑭ψ,2 03×3 𝑭𝑭ψ,2 03×3

03×3 03×3 03×3 𝑭𝑭GM1,1
δ𝛚𝛚 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 𝑭𝑭GM1,1
δ𝒇𝒇 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 𝑭𝑭GM1,2
δ𝛚𝛚 03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 𝑭𝑭GM1,2
δ𝒇𝒇 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 𝑭𝑭GM1,3
δ𝛚𝛚 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 𝑭𝑭GM1,3
δ𝒇𝒇 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 𝑭𝑭RWδ𝛚𝛚 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 𝑭𝑭RW
δ𝒇𝒇 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 𝑭𝑭WN
δ𝛚𝛚 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 𝑭𝑭WN
δ𝒇𝒇 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5.23) 

𝚽𝚽 = e𝐅𝐅Δ𝑡𝑡 (5.24) 

𝐆𝐆 = I39×39 (5.25) 

𝐐𝐐s = diag ��𝐪𝐪s𝐫𝐫3×1 𝐪𝐪s𝐯𝐯3×1 𝐪𝐪s
𝛙𝛙
3×1 𝐪𝐪s,δ𝛚𝛚

GM1,1
3×1

𝐪𝐪s,δ𝒇𝒇
GM1,1

3×1
𝐪𝐪s,δ𝛚𝛚
GM1,2

3×1
𝐪𝐪s,δ𝒇𝒇
GM1,2

3×1
… 

𝐪𝐪s,δ𝛚𝛚
GM1,3

3×1
𝐪𝐪s,δ𝒇𝒇
GM1,3

3×1
𝐪𝐪s,δ𝛚𝛚
RW

3×1
𝐪𝐪s,δ𝒇𝒇
RW

3×1
𝐪𝐪s,δ𝛚𝛚
WN

3×1
𝐪𝐪s,δ𝒇𝒇
WN

3×1�� 
(5.26) 
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where the calculation of the exponential in equation (5.24) can be implemented via the expm 

MATLAB built-in function, which utilizes the Padé approximation with scaling and squaring 

(Gene H. Golub, 2013). Furthermore, it is noted that after the calculation of the 𝚽𝚽 using this 

method, the diagonal elements that correspond to WN will all be equal to 1, which does not satis-

fy the discrete state-space expression of the process. Therefore, to counter this issue, these ele-

ments should always be manually set to be equal to 0. Finally, it is highlighted that in order to 

avoid numerical instability of the EKF filter, if a sensor has a more simplified model than the 

general one, like for example two GM1s, one RW and one WN, then the rows and columns that 

correspond to the redundant GM1 process in the above matrices should be deleted. 

At this point, a special discussion should be made about the values that the 𝐐𝐐s spectral densi-

ties matrix elements should take and in what units. Specifically, 𝐪𝐪s𝐫𝐫 is usually set to be equal to a 

zero vector, 𝐪𝐪s𝐯𝐯 should be in m2Hz units and it could be set as the squared value of the accel-

erometer noise density (i.e., VRW) that has been pre-multiplied with Δt, while 𝐪𝐪s
𝛙𝛙 should be 

provided in rad2Hz and be equal to the squared value of the gyroscope noise density (i.e., ARW) 

that has been pre-multiplied with Δt. Furthermore, it is noted that both these densities can be re-

trieved from the specifications of the sensor, provided by the manufacturer. As for the values that 

correspond to the inertial sensor random bias states, there is a great deal of confusion among 

practitioners about how they should be properly set, considering the outcome from the stochastic 

analysis techniques (e.g., GMWM). 

In the previous chapter, where the stochastic analysis was conducted, the defining parameters 

of the identified stochastic processes were given in discrete time units. However, the 𝐐𝐐s matrix 

requires its values to be in continuous time, meaning that they have to be expressed as a function 

of the sensor frequency 𝑓𝑓 (i.e., data rate). Furthermore, both the stochastic modeling techniques 
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that were used in Section 4.5, consider AR1 processes, not GM1s. Therefore, a unique considera-

tion has to be made in order to determine the GM1 parameters in the form required by the EKF. 

Let’s consider a continuous time system with the general form �̇�𝐱(𝑡𝑡) = 𝐅𝐅(𝑡𝑡) 𝐱𝐱(𝑡𝑡) + 𝐆𝐆(𝑡𝑡) 𝐰𝐰(𝑡𝑡), 

where 𝐰𝐰(𝑡𝑡) the (continuous time) system (Gaussian and white) noise with qKF spectral density. 

Then, the variance of the corresponding discrete time process noise σ2DISC would be given by 

the following formula (Bar-Shalom et al., 2004): 

 𝜎𝜎DISC2 = � e(Δ𝑡𝑡−𝜏𝜏)𝐅𝐅(t) 𝐆𝐆(𝑡𝑡) qKF 𝐆𝐆(𝑡𝑡)T e(Δ𝑡𝑡−𝜏𝜏)𝐅𝐅(𝑡𝑡)𝑎𝑎𝜏𝜏
𝛥𝛥𝑡𝑡

0
 (5.27) 

which can be used to infer the qKF value of the GM1, RW and WN stochastic processes. The 

derivations for each of them are provided up next. 

1st-order Gauss-Markov 

First, the βDISC parameter of the GM1 process is determined from the φGMWM parameter of 

the AR1 process (the reason why GMWM is included in the subscript is because of its frame-

work’s capability to accurately infer knowledge about time-correlated processes) via equation 

(2.18). In turn, using their respective discrete state-space models, the following derivations are 

conducted: 

 

var(x𝑡𝑡) = var(φGMWM x𝑡𝑡−1 + 𝜀𝜀𝑡𝑡−1) ⇒ 

var(x𝑡𝑡) = φGMWM
2 var(x𝑡𝑡−1) + var(𝜀𝜀𝑡𝑡−1) ⇒ 

var(x𝑡𝑡) = φGMWM
2 var(x𝑡𝑡−1) + 𝜉𝜉2GMWM 

(5.28) 

 
var(x𝑡𝑡) = var�e−βDISC 𝑓𝑓⁄  x𝑡𝑡−1 + w𝑡𝑡−1� ⇒ 

var(x𝑡𝑡) = e−2βDISC 𝑓𝑓⁄  var(x𝑡𝑡−1) + var(w𝑡𝑡−1) ⇒ 

var(x𝑡𝑡) = e−2βDISC 𝑓𝑓⁄  var(x𝑡𝑡−1) + σ2DISC 

(5.29) 



126 

 

Furthermore, the observations are made that both these processes are stationary in time, which 

means that var(x𝑡𝑡) = var(x𝑡𝑡−1) as well as that their variances in discrete time should be equal. 

Hence, the expression below is obtained: 

 
𝜉𝜉2GMWM

1 − φGMWM
2 =

σ2DISC
1 − e−2βDISC 𝑓𝑓⁄ → 𝜉𝜉2GMWM = σ2DISC (5.30) 

Finally, by setting 𝐅𝐅(t) = −βDISC and 𝐆𝐆(t) = I to equation (5.27), the qKFGM1 is derived as fol-

lows: 

 

𝜎𝜎DISC2 = � e−(Δ𝑡𝑡−𝜏𝜏)βDISC  qKFGM1 e−(Δ𝑡𝑡−𝜏𝜏)βDISC 𝑎𝑎𝜏𝜏
Δ𝑡𝑡

0
⟹ 

σ2DISC = qKFGM1� e−2(Δ𝑡𝑡−𝜏𝜏)βDISC 𝑎𝑎𝜏𝜏
Δ𝑡𝑡

0
⟹ 

σ2DISC = qKFGM1 � e−2βDISCΔ𝑡𝑡 e2𝜏𝜏βDISC  𝑎𝑎𝜏𝜏
Δ𝑡𝑡

0
⟹ 

σ2DISC = qKFGM1 e−2βDISCΔ𝑡𝑡 �  e2𝜏𝜏βDISC  𝑎𝑎𝜏𝜏
Δ𝑡𝑡

0
⟹ 

σ2DISC = qKFGM1
e−2βDISCΔ𝑡𝑡

2βDISC
�e2βDISCΔ𝑡𝑡 − 1� ⟹ 

qKFGM1 =
2βDISC σ2DISC
1 − e−2βDISC 𝑓𝑓⁄ , 𝑓𝑓 = 1 Δ𝑡𝑡⁄  

(5.31) 

where qKFGM1 is expressed in either m2Hz sec4⁄  for an accelerometer or in rad2Hz sec2⁄  for a gy-

roscope sensor. 

Random Walk 

The RW process can be considered as a special case of the GM1 process with βDISC → 0. As a 

result, the qKFRW can be obtained by taking the limit of equation (5.31) and by setting 𝜎𝜎DISC2 =
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𝛾𝛾2RW, where 𝛾𝛾2RW is the RW discrete time parameter value, as that is produced by the 

GMWM/AVLR frameworks. This derivation is provided below: 

 
qKFRW = lim

β→0

2βDISC 𝛾𝛾2RW
1 − e−2βDISCΔ𝑡𝑡

= lim
β→0

�2βDISC 𝛾𝛾2RW�
′

(1 − e−2βDISCΔ𝑡𝑡)′
= lim

β→0

2𝛾𝛾2RW
2Δt e−2βDISCΔ𝑡𝑡

 

=
𝛾𝛾2RW
Δ𝑡𝑡

 lim
β→0

1
 e−2βDISCΔ𝑡𝑡

⟹ qKFRW = 𝛾𝛾2RW𝑓𝑓 

(5.32) 

where qKFRW is in either m2Hz sec4⁄  for an accelerometer or in rad2Hz sec2⁄  for a gyroscope. 

White Noise 

After the GMWM/AVLR framework produces the 𝜎𝜎WN
2  defining parameter for the WN pro-

cess, its corresponding qKFWN can be calculated by setting 𝐅𝐅(t) = 0 and 𝐆𝐆(t) = I in equation 

(5.27) as follows: 

 𝜎𝜎WN
2 = � qKFWN 𝑎𝑎𝜏𝜏

Δ𝑡𝑡

0
⟹ qKFWN = 𝜎𝜎WN

2 𝑓𝑓⁄  (5.33) 

where qKFWN is in either m2 sec4 Hz⁄⁄  for an accelerometer or in rad2 sec2 Hz⁄⁄  for a gyroscope. 

5.3.3 Linearized Measurement Model 

As it was mentioned earlier, the measurement model relates the update information with the 

navigation error states and it is expressed by the δ𝐳𝐳, 𝐇𝐇 and 𝐑𝐑 matrices within the EKF algorithm. 

In this study, where focus is given on vehicular navigation, three update sources will be utilized: 

the GNSS system, the NHCs and ZUPTs. Furthermore, it is noted that the updates of each source 

are introduced to the filter independently from each other, depending on the conditions below: 

• GNSS availability: 3d position and velocity updates from the GNSS system, 

• GNSS outage and vehicle in-motion: velocity updates based on the NHCs, 
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• GNSS outage and stationary vehicle: 3d velocity updates based on the ZUPTs. 

Therefore, with this in mind, the linearized measurement model matrices for each update will be 

presented next. 

GNSS System Updates 

First, the matrices that correspond to the position updates from the GNSS system are present-

ed below (Shin, 2005): 

 

δ𝐳𝐳r = 𝐑𝐑e
n (𝐫𝐫�IMUe − 𝐫𝐫�GNSSe ) + 𝐑𝐑�bn  𝒍𝒍GNSSb , 

 𝐑𝐑e
n = �

−sinϕ�  cosλ� −sinϕ�  sinλ� cosϕ�
−sinλ� cosλ� 0

−cosϕ�  cosλ� −cosϕ�  sinλ� −sinϕ�
� 

(5.34) 

 𝐇𝐇r = �I3×3 03×3 �𝐑𝐑�bn  𝒍𝒍GNSSb ×� 03×30� (5.35) 

 𝐑𝐑r = diag��σ2ϕ� σ2λ� σ2h��� (5.36) 

where 𝐑𝐑e
n is the DCM matrix that describes the transformation from the e-frame to the n-frame 

and it is a function of the GNSS-provided latitude ϕ� and longitude λ�, 𝐫𝐫�IMUe  and 𝐫𝐫�GNSSe  are the e-

frame 3d position vectors from the INS mechanization and the GNSS system respectively, 𝒍𝒍GNSSb  

is referred to as the lever arm and represents the 3d vector between the GNSS antenna phase cen-

ter and the IMU’s center with respect to the b-frame and �σ2ϕ� ,σ2λ�,σ2h�� are the variances pro-

vided by the separate EKF filter that estimated the GNSS position information. 
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Subsequently, the linearized model regarding the velocity updates is presented as well (Shin, 

2005): 

 

δ𝐳𝐳v = 𝐯𝐯�IMUc − 𝐯𝐯�GNSSc − [(ω�ien ×) + (ω�enn ×)] 𝐑𝐑�bn  𝒍𝒍GNSSb − 𝐑𝐑�bn�𝒍𝒍GNSSb ×� 𝛚𝛚�ibb ⟹ 

δ𝐳𝐳v = 𝐯𝐯�IMUc − 𝐑𝐑e
c  (𝐑𝐑e

n)T 𝐯𝐯�GNSSn − (ω�inn ×) 𝐑𝐑�bn  𝒍𝒍GNSSb − 𝐑𝐑�bn�𝒍𝒍GNSSb ×� 𝛚𝛚�ibb , 

𝐑𝐑e
c = �

−sinϕ cosλ −sinϕ sinλ cosϕ
−sinλ cosλ 0

−cosϕ cosλ −cosϕ sinλ −sinϕ
� 

ωie
n = [ωe cosϕ 0 −ωe sinϕ]T, 

ωen
n = [vE (RN + h)⁄ −vN (RM + h)⁄ −vE tanϕ (RN + h)⁄ ]T 

(5.37) 

 
𝐇𝐇v = �03×3 I3×3 −(ωin

n ×) 𝐑𝐑�bn  �𝒍𝒍GNSSb ×� − �𝐑𝐑�bn  �𝒍𝒍GNSSb × 𝛚𝛚�ibb � ×�… 

𝐑𝐑�bn  �𝒍𝒍GNSSb ×� 03×3 𝐑𝐑�bn  �𝒍𝒍GNSSb ×� 03×3 𝐑𝐑�bn  �𝒍𝒍GNSSb ×� 03×3 … 

�𝐑𝐑�bn  �𝒍𝒍GNSSb ×� 03×3 𝐑𝐑�bn  �𝒍𝒍GNSSb ×� 03×3� 

(5.38) 

 𝐑𝐑v = diag��σ2v�N σ2v�E σ2v�D�� (5.39) 

where ω�ien  is the Earth’s rotation rate in the n-frame, ω�enn  is referred to as the transport rate (it is 

based on the latitude and longitude provided by the INS mechanization), (∙×) constitutes the 

skew-symmetric representation of a (3 × 1) vector, 𝛚𝛚�ibb  are the gyroscope measurement vector, 

𝐯𝐯�GNSSn  the velocities derived by the GNSS system in the n-frame, 𝐑𝐑e
c  the rotation matrix from the 

e-frame to the c-frame and �σ2v�N ,σ2v�E ,σ2v�D� are the estimated variances by the GNSS filter that 

describe the velocity value variability. 

Eventually, the aforementioned equations are combined in order to constitute the total meas-

urement model matrices for both the position and velocity updates from the GNSS sensor: 

 δ𝐳𝐳 = [δ𝐳𝐳r δ𝐳𝐳v]T, 𝐇𝐇 = [𝐇𝐇r 𝐇𝐇v]T, 𝐑𝐑 = [𝐑𝐑r 𝐑𝐑v]T (5.40) 
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Non-Holonomic Constraint Updates 

The NHCs are two artificial velocity updates that can be provided to the EKF filter when 

dealing with vehicular navigation or robot localization. Specifically, these updates represent the 

intuitive observation that when a car or a robot is in motion and not skidding, the upwards and 

sideways velocities should be equal to zero, or at least very close to it. Below, the linearized 

measurement model that corresponds to these updates and be used in the context of the EKF is 

presented (Shin, 2005): 

 
δ𝐳𝐳NHC = �𝐑𝐑b

v  �𝐑𝐑�bn�
T
𝐯𝐯�IMUc + 𝐑𝐑b

v  �ω�nbb ×� 𝒍𝒍wheelb �
2:3

 , 

ω�nbb = 𝛚𝛚�ibb − �𝐑𝐑�bn�
T(ω�ien + ω�enn ) 

(5.41) 

 
𝐇𝐇NHC = �03×3 �𝐑𝐑�bn�

T
−𝐑𝐑b

v  �𝐑𝐑�bn�
T

 (𝐯𝐯�IMUc ×) −𝐑𝐑b
v  �𝒍𝒍wheelb ×� 03×3 … 

−𝐑𝐑b
v  �𝒍𝒍wheelb ×� 03×3 −𝐑𝐑b

v  �𝒍𝒍wheelb ×� 03×3 −𝐑𝐑b
v  �𝒍𝒍wheelb ×� 03×3 … 

−𝐑𝐑b
v  �𝒍𝒍wheelb ×� 03×3�2:3

 

(5.42) 

 𝐑𝐑NHC = diag��σ2vE,NHC σ2vD,NHC�� (5.43) 

where 𝐑𝐑b
v  is referred to as the boresight matrix and it describes the relationship between the b-

frame of the IMU and the vehicle frame (v-frame), 𝒍𝒍wheelb  is the lever arm between the IMU and 

the vehicle frame’s origin and �σ2vE,NHC ,σ2vD,NHC� are the variances associated with the discrep-

ancies of the side and vertical velocities from the nominal value (i.e., zero), which are reasonably 

selected in order to maximize the navigation performance. 
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Zero Velocity Updates 

The last update source that will be utilized in this study is related to the situation where the 

vehicle has stopped moving. Consequently, all three of its velocity navigation state components 

should be equal to zero, or just very close to it due to the vibrations created by the operation of 

the static vehicle. As for how it is determined whether the vehicle has stopped moving, there are 

two main ways to do it; one that relies on the utilization of the vehicle’s speedometer and one 

that is based on the analysis of the raw inertial sensor measurements (for example, see (Ag-

garwal, 2010) for an accelerometer sensor-based stop detection algorithm). Therefore, the EKF 

measurement model matrices that should be used for the consideration of the ZUPTs would re-

ceive the following form: 

 δ𝐳𝐳ZUPT = 𝐯𝐯�IMUc  (5.44) 

 𝐇𝐇ZUPT = [03×3 I3×3 03×33] (5.45) 

 𝐑𝐑ZUPT = diag��σ2vN,ZUPT σ2vE,ZUPT σ2vD,ZUPT�� (5.46) 

where (σ2vN,ZUPT ,σ2vE,ZUPT , σ2vD,ZUPT) are logically selected variances, affiliated with the ZUPT-

implied velocities. 
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5.4 Filter Initialization 

This section is devoted to the description of the manner in which the aforementioned recur-

sive EKF filter can be initialized. Specifically, this refers to the selection of proper starting val-

ues for the absolute state vector 𝐱𝐱0 and its corresponding V-C matrix 𝐏𝐏0. Typically, the naviga-

tion algorithm is initiated from the first epoch that the GNSS information becomes available. 

Therefore, with this in mind and for the purposes of this study, the state vector 𝐱𝐱0 is chosen as 

follows: 

• The position (ϕ0, λ0, h0) and velocity (vN,0, vE,0, vD,0) components are set to be equal to the 

first GNSS-derived solutions, 

• the initial attitude (r0, p0, A0) is evaluated via a 10-minute static alignment process, con-

ducted prior to the beginning of the navigation experiment (i.e., GNSS information starting 

time), 

• and the random biases for each inertial sensor are set to zero. 

As for the corresponding uncertainty matrix 𝐏𝐏0, it is set to be diagonal and to have the following 

values: 

• The position and velocity elements (i.e., variances) are obtained from the separate EKF that 

estimated the GNSS solutions (that’s why this is a loosely coupled integration algorithm). 

• The initial attitude angle variances are given by the following formulas (Britting, 1971): 

 σ2r0 =
b𝑓𝑓y
g

 (5.47) 

 σ2p0 =
1
2
�−

b𝑓𝑓x
g

+
b𝑓𝑓z
g

 tanϕ −
bωz

ωecosϕ
� (5.48) 
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 σ2A0 = −
b𝑓𝑓z
g

 tanϕ +
bωy

ωecosϕ
 (5.49) 

where (b𝑓𝑓x , b𝑓𝑓y , b𝑓𝑓z , bωy , bωz) are the inertial sensor deterministic biases, evaluated via de-

terministic calibration. 

• The variances that correspond to each stochastic process type that is included within the  

EKF’s system model are: 

 σ2(GM1) =
𝜉𝜉2GMWM

1 − φGMWM
2 (5.50) 

 σ2(RW) = 𝛾𝛾2RW (5.51) 

 σ2(WN) = σ2WN (5.52) 

where (φGMWM, 𝜉𝜉2GMWM) are the AR1 parameters as they were provided by the GMWM 

analysis (the AR1 parameters can be used here due to equation (5.30)) and (𝛾𝛾2RW,σ2WN) 

are the parameters for the RW and WN processes respectively, as they were given by the 

GMWM/AVLR frameworks. 

5.5 Error Feedback 

A final consideration that must be made is about how δ𝐱𝐱�k
+ is utilized to enhance the integrat-

ed navigation performance. Specifically, after the filter has completed an iteration at time k of 

both prediction and update, the absolute (navigation) state vector from the previous time 𝐱𝐱k−1 is 

updated as follows: 

 𝐱𝐱k = 𝐱𝐱k−1 + δ𝐱𝐱�k
+ (5.53) 
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In turn, the components of 𝐱𝐱k that correspond to corrections for the same sensor are added to-

gether and then utilized to correct next epoch’s measurement in the manner that is shown by the 

formula below the gyroscope sensor triad: 

 

𝛚𝛚�k+1b = �
1 + sg,x mg,yx mg,zx

mg,xy 1 + sg,y mg,zy
mg,xz mg,yz 1 + sg,z

�

−1

�
ωx,k+1
b − bg,x

′

ωx,k+1
b − bg,y

′

ωx,k+1
b − bg,z

′

�, 

�
bg,x
′

bg,y
′

bg,z
′
� = �

bg,x + δωx,GM1,1 + δωx,GM1,2 + δωx,GM1,3 + δωx,RW + δωx,WN
bg,y + δωy,GM1,1 + δωy,GM1,2 + δωy,GM1,3 + δωy,RW + δωy,WN
bg,z + δωz,GM1,1 + δωz,GM1,2 + δωz,GM1,3 + δωz,RW + δωz,WN

� 

(5.54) 

where (sg,x, sg,y, sg,z) and (mg,yx, mg,zx, mg,xy, mg,zy, mg,xz, mg,yz) are the gyroscope scale factor 

errors and non-orthogonality angles that have been estimated by deterministic calibration, 

(bg,x, bg,y, bg,z) are the gyro biases at time k and (bg,x
′ , bg,y

′ , bg,z
′ ) the gyro biases at time k + 1. In 

fact, for k = 0, the (bg,x, bg,y, bg,z) quantities are equal to the bias values determined via calibra-

tion. Furthermore, when there is no update to the system, the corrected biases (bg,x
′ , bg,y

′ , bg,z
′ ) 

from the last time there was one is still being utilized to correct the measurements until a new 

update becomes available. 

This scheme, where the bias corrections are fed back to correct the inertial sensor measure-

ments before they are used by the INS mechanization is called the “closed-loop integration 

scheme” and as a result, the quantity δ𝐱𝐱�k−1
+ is set to be equal to zero at the start of every itera-

tion. 
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5.6 Summary 

In this chapter, an EKF-based INS/GNSS/NHC/ZUPT navigation algorithm was presented via 

a thorough description of the matrices that express its linearized system and measurement mod-

els. Furthermore, the way that the stochastic modeling knowledge about the inertial sensor errors, 

obtained from either the GMWM or the AVLR, can be infused within the EKF and more specifi-

cally within the dynamic and spectral density matrices was highlighted. Finally, instructions on 

how to properly initialize the filter were given along with an explanation on how the employed 

closed-loop scheme works, which is related to the manner that the EKF applies the corrections it 

estimates to the inertial measurements of the next epoch(s). 
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Chapter Six: Unscented Kalman Filter-based Navigation Algorithm for 

Loosely Coupled Integration 

6.1 Introduction 

This chapter is devoted to another recursive Bayesian-type filter that has been widely utilized 

for a variety of different applications, called the Unscented Kalman Filter (Julier et al., 1995). 

The UKF is a nonlinear estimator that is based on the MMSE criterion and it attempts to better 

support the notion under which KF variants operate, that it is easier to approximate Gaussian dis-

tributions instead of arbitrary nonlinear PDFs (Julier and Uhlmann, 1997a). Consequently, just 

like the EKF, it assumes the states as Gaussian Random Variables (GRVs), meaning that their 

respective PDF follows the Gaussian distribution. The primary difference however with the EKF 

lies in the fact that the mean and covariance characterizing the state distribution are no longer 

specified by single values. Instead, they are captured with a set of deterministically sampled and 

appropriately weighted points called the Sigma Points (SPs), which are calculated by the Un-

scented Transformation (UT). In turn, these SPs are propagated through the true nonlinear sys-

tem and measurement models and they manage to recursively estimate the posterior PDF’s char-

acteristics with an accuracy up to at least the 2nd order for any nonlinearity (Wan and Van Der 

Merwe, 2000; Van Der Merwe et al., 2001). Therefore, in this way, the UKF achieves a better 

fitting of a Gaussian distribution to the true state PDF than the standard EKF, something that is 

visually demonstrated in Figure 6.1. 
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Figure 6.1: Schematic representation of how the mean and covariance are propagated in (a) reality, (b) a first-order 

truncated Taylor series expansion-based scheme (EKF) and (c) the UT-driven UKF (adapted from Wan and Van Der 
Merwe, (2002)) 

Given the aforementioned, it is important to mention that the UKF does not require the lineariza-

tion of the models based on which the filter is structured and as a result, there is no need for nei-

ther the selection of a state error model, nor the calculation of Jacobian matrices. In fact, this 

makes the UKF to be a much more straightforward approach compared to the EKF and any pos-

sible errors from complex derivations or model linearization are avoided (Julier et al., 1995). 

Furthermore, when the nonlinearity of the system and/or the measurement models is significant, 

the UKF will not have as significant nonlinear truncation errors as the EKF would have and thus, 

better estimation accuracy and more reliable uncertainty information can be obtained (Brown and 

Hwang, 2012). 
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Shin and El-Sheimy, (2004) were the first to adapt the UKF for navigation purposes, while 

they also demonstrated the filter’s prowess in handling attitude errors of any magnitude with 

great efficiency. Nevertheless, due to the fact that the authors utilized Euler angles to describe 

and propagate the attitude, the proposed approach was vulnerable to the occurrence of singulari-

ties, while the way that the attitude differences were being evaluated was insufficient. To resolve 

these issues, Shin, (2005) developed a quaternion-based UKF for multiple navigation sensor in-

tegration based on the approach established by Kraft, (2003), where the noises were assumed to 

be non-additive in nature and the random drift of the inertial sensor biases, scale factors and non-

orthogonalities was considered. As a matter of fact, the resulting filter structure is being utilized 

by the UKF that is included within the AINS® software (Shin and El-Sheimy, 2004a). Finally, it 

should be noted that the UKF has been utilized in a multitude of applications in the navigation 

field with great success (e.g., see (Shin and El‐Sheimy, 2007; Yi, 2007; Bogdanski and Best, 

2018; Liu, 2019)). 

Next, a UKF algorithm for INS/GNSS/NHC/ZUPT integration that utilizes the AINS® soft-

ware’s version as a base and only accounts for the bias instability of the inertial sensors will be 

presented. In addition, it is highlighted that this consideration will be based on the advanced sto-

chastic modeling information derived from the new multi-signal GMWM-based framework as 

well as the standard AVLR, presented in Section 4.5. 

6.2 The Unscented Transformation 

The core element of the UKF filter is the Unscented Transformation (UT), the procedure 

through which the mean 𝐱𝐱� and covariance 𝐏𝐏 of the (presumed) Gaussian state PDF are utilized in 

order to produce the SPs 𝓧𝓧i along with their corresponding weights 𝓌𝓌i
m (for the mean) and 𝓌𝓌i

c 

(for the covariance), based on the three conditions presented below (Julier and Uhlmann, 1997b): 
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 �𝓌𝓌i
m

p−1

i=0

= �𝓌𝓌i
c

p−1

i=0

= 1 (6.1a) 

 �𝓌𝓌i
m 𝓧𝓧𝐢𝐢

p−1

i=0

= 𝐱𝐱� (6.2b) 

 �𝓌𝓌i
c (𝓧𝓧𝐢𝐢 − x�)(𝓧𝓧𝐢𝐢 − x�)T

p−1

i=0

= 𝐏𝐏 (6.3c) 

where p is the number of SPs that capture the mean and covariance. Generally, the literature con-

tains several schemes for the manner that these points are generated, the choice of which also 

determines their number. An overview of these methods can be found in (Van Der Merwe, 

2004). 

In order to select the proper UT scheme, the characteristics of the problem at hand have to be 

considered. Specifically, the INS information that drives the filter has a very high data rate (re-

sulting to an increased computational load), the introduction of the advanced stochastic modeling 

knowledge about the inertial sensor error random drift requires the increase of the state dimen-

sion n (the absolute minimal number of SPs is desirable to maintain computational efficiency in 

logical levels) and that it has to be ensured that the SPs will be sampled in a region close to the 

uncertainty level of the PDF’s mean. Therefore, with these in mind, the Scaled Spherical Sim-

plex UT (SSS-UT) was chosen to be utilized. In fact, according to Julier, (2003), the SSS-UT is 

capable of producing SPs that achieve a 2nd order accuracy in terms of both the mean and the co-

variance of the propagated/transformed state PDF, while also having the advantage of being nu-

merically better compared to SPs derived using other schemes. Nevertheless, before the algo-

rithm of the selected UT is presented, it is worth explaining what each component of its designa-

tion practically means. 
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The spherical part in the SSS-UT refers to the fact that the SPs (satisfying the UT conditions) 

are geometrically dispersed on a hypersphere with radius �n (1 −𝓌𝓌0)⁄  (𝓌𝓌0 the 0th point’s 

weight and n is the dimension of the state vector) and centred at the state mean, apart from one, 

which is located at the exact center of that sphere. However, in high dimensional systems, which 

is the case in this study, even though the mean and covariance of the prior state distribution (be-

fore the propagation and update consideration) are captured correctly, the SP distribution radius 

(i.e., hypersphere) is increased to such a extent that it becomes possible to sample non-local ef-

fects (region far away from the state’s true uncertainty region) (Van Der Merwe, 2004). Conse-

quently, in the case where the nonlinearities are acute, this would potentially result to considera-

ble difficulties, especially with regards to orientation-related sigma point generation, propagation 

and estimation, due to the angle periodicity (Shin, 2004). Therefore, to counter this issue, the 

scaled part is included to the selected UT’s designation, which refers to the appropriate adjust-

ment of the SP sampling area’s size in order to ensure that it will more accurately approximate 

the (true) state uncertainty region, despite the high dimensionality of the system (Julier, 2003). 

Finally, regarding the simplex part, it indicates that not only the produced SPs have been selected 

in such a way that not only they are the absolute necessary (minimal) in number, but also, they 

capture the first two moments of the state PDF’s mean and covariance correctly and minimize 

the third order moment influence (i.e., skewness) (Julier, 2002). 

Having presented the reasons why the SSS-UT has been selected as well as the corresponding 

practical implications, its complete algorithm is presented below, where the SPs are derived from 

the absolute state vector 𝐗𝐗� and its corresponding covariance matrix 𝐏𝐏 (Shin, 2005): 
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1) Select 𝓌𝓌0, with the condition 0 ≤ 𝓌𝓌0 ≤ 1 in mind. 

According to Shin, (2005), the transformed state variance after its propagation through the 

nonlinear system model will correspond to the true quantity if 𝓌𝓌0 = 2 3⁄ . 

2) Evaluate the weight series: 

 𝓌𝓌i = (1 −𝓌𝓌0) (n + 1)⁄ , i = 1, … , n + 1 (6.4) 

where n is the dimension of the 𝐗𝐗� state vector. 

3) Initialize the vector sequence of the SPs (for j = 1): 

 𝓧𝓧u,0
1 = [0], 𝓧𝓧u,1

1 = �
−1

�2𝓌𝓌1
� , 𝓧𝓧u,2

1 = �
1

�2𝓌𝓌1
� (6.5) 

4) Complete the vector sequence of the SPs (for j = 2, … , n): 

 𝓧𝓧u,i
j =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ �𝓧𝓧u,0

j−1

0
�                i = 0

�
𝓧𝓧u,i
j−1

−1 �j(j + 1)𝓌𝓌1⁄
�  i = 1, … , j

�
0j−1

j �j(j + 1)𝓌𝓌1⁄ �     i = j + 1

 (6.6) 

where 𝓧𝓧u,i
j  indicates the SPs that correspond to 𝐗𝐗� = 0 and 𝐏𝐏 = I, j denotes the SP element 

and i is the sequence indicator of each SP. 

5) Determine the weights for the mean (1st moment of the state PDF): 

 𝓌𝓌i
m = �

(𝓌𝓌0 − 1) α2 + 1⁄ i = 0
𝓌𝓌i

2 α2⁄                    i ≠ 0
 (6.7) 
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where α is a small positive constant (10−4 ≤ α ≤ 1) that scales the size of the SP distribu-

tion and prevents the sampling from non-local effects (Van Der Merwe, 2004). 

According to Shin, (2004), this parameter can be set to be equal to the reciprocal of the hy-

persphere’s radius α = �(1 −𝓌𝓌0) n⁄  within which the SPs are conditioned to exist in. 

Thus, the SPs will be sampled within the (±1σ) range from the sphere’s center (i.e., state 

PDF mean). 

6) Evaluate the weights for the covariance (2nd moment of the state PDF): 

 𝓌𝓌i
c = �

(𝓌𝓌0 − 1) α2 + 2 + 𝛽𝛽 − α2⁄ i = 0
𝓌𝓌i

2 α2⁄                                      i ≠ 0
 (6.8) 

where 𝛽𝛽 is a positive parameter that incorporates higher order moment knowledge to the 

state distribution (Van Der Merwe, 2004).  

According to Julier, (2002), for Gaussian distributions, the optimal value would be 𝛽𝛽 = 2. 

7) Apply the Cholesky factorization to the state covariance matrix 𝐏𝐏 in order to obtain the low-

er triangular square root matrix 𝐒𝐒(1 × n). In turn, compute the SSS-UT SPs based on the in-

put state vector 𝐗𝐗�: 

 𝓧𝓧i = 𝐗𝐗� + α 𝐒𝐒 𝓧𝓧u,i, i =, … , n + 1 (6.9) 

From a practical standpoint, in order for the Cholesky factorization to be implemented, the 𝐏𝐏 

matrix has to be positive definite. Therefore, in order to ensure that during the recursive es-

timation process the positive definiteness of the covariance matrix is not violated, a very 

small quantity must be added to its elements (e.g., 10−25). 
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6.3 The Unscented Kalman Filter 

Having described the cornerstone of the UKF, its complete discrete-time algorithm that is to 

be utilized for the purposes of this thesis can now be presented. Furthermore, it should be men-

tioned that the form of this Bayesian-type filter changes slightly depending on whether the sys-

tem and measurement noises are assumed to be additive or non-additive in nature. Here, consid-

ering the characteristics of the INS/GNSS/NHC/ZUPT integration problem, it is realistic to pre-

sume the system noises to be non-additive and the measurement noises to be additive in nature. 

Therefore, with this in mind, the two-step recursive algorithm (prediction and update) of the 

UKF that incorporates the SSS-UT is provided in the following: 

Prediction 

1) Given the prior (Gaussian) state PDF’s mean 𝐗𝐗�k−1|k−1 and covariance 𝐏𝐏k−1|k−1, the SSS-UT 

SPs and their corresponding weights are derived: 

 �𝓧𝓧i,k−1|k−1,𝓌𝓌i
m,𝓌𝓌i

c� = SSS − UT �𝐗𝐗�k−1|k−1,𝐏𝐏k−1|k−1,α,𝛽𝛽,𝓌𝓌0� (6.10) 

2) The SPs are transformed through the original nonlinear system model 𝑅𝑅𝑅𝑅: 

 𝓧𝓧i,k−1|k = 𝑅𝑅𝑅𝑅�𝓧𝓧i,k−1|k−1,𝐮𝐮k−1,𝐰𝐰i,k−1�, i = 0, … , n + 1 (6.11) 

where i is the SP index, 𝐮𝐮k−1 the control input that drives the transition from the previous to 

the current time, 𝐰𝐰i,k−1 the process noise and n is the dimension of the state vector. 

3) Using the basic conditions of the UT (equations (6.2b) and (6.3c)), the mean and covariance 

of the predicted state PDF are evaluated from the SPs: 
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 𝐗𝐗�k−1|k(−) = �𝓌𝓌i
m 𝓧𝓧i,k−1|k

n+1

i=0

 (6.12) 

 𝐏𝐏k−1|k(−) = �𝓌𝓌i
c �Δ𝓧𝓧i,k−1|k��Δ𝓧𝓧i,k−1|k�

T
n+1

i=0

 (6.13) 

where Δ𝓧𝓧i,k−1|k = 𝓧𝓧i,k−1|k − 𝐗𝐗�k−1|k(−). 

4) From the predicted state vector and covariance matrix, the SSS-UT SPs and associated 

weights are calculated: 

 �𝓧𝓧i,k−1|k
′  ,𝓌𝓌i

m′ ,𝓌𝓌i
c′� = SSS − UT �𝐗𝐗�k−1|k(−),𝐏𝐏k−1|k(−),α,𝛽𝛽,𝓌𝓌0� (6.14) 

Update 

1) The SPs are transformed through the original nonlinear measurement model: 

 𝒵𝒵i,k−1|k = ℎ�𝓧𝓧i,k−1|k
′ � (6.15) 

2) Using the UT property of equation (6.2b), the predicted measurements are evaluated from 

the transformed SPs: 

 𝐳𝐳�k−1|k = �𝓌𝓌i
m′𝒵𝒵i,k−1|k

n+1

i=0

 (6.16) 

3) The cross-covariance between the states and the measurements is derived from the following 

formula: 

 𝐏𝐏xz,k = �𝓌𝓌i
c′�Δ𝓧𝓧i,k−1|k

′ ��Δ𝒵𝒵i,k−1|k�
T

n+1

i=0

 (6.17) 
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where Δ𝓧𝓧i,k−1|k
′ = 𝓧𝓧i,k−1|k

′ − 𝐗𝐗�k−1|k(−) and Δ𝒵𝒵i,k−1|k = 𝒵𝒵i,k−1|k − 𝐳𝐳�k−1|k. 

4) The covariance of the innovation sequence, considering the additivity of the measurement 

noises, is computed: 

 𝐏𝐏vv,k = �𝓌𝓌i
c′�Δ𝒵𝒵i,k−1|k��Δ𝒵𝒵i,k−1|k�

T
n+1

i=0

+ 𝐑𝐑k (6.18) 

5) Using the previously evaluated covariance matrices, the Kalman gain 𝐊𝐊 is derived from the 

equation below: 

 𝐊𝐊k = 𝐏𝐏xz,k 𝐏𝐏vv,k
−1  (6.19) 

6) The updated mean 𝐗𝐗� and covariance 𝐏𝐏 of the (posterior) state PDF are determined: 

 𝐗𝐗�k|k(+) = 𝐗𝐗�k−1|k(−) + 𝐊𝐊k �zk − 𝐳𝐳�k−1|k����������
vk

 (6.20) 

 𝐏𝐏k|k(+) = 𝐏𝐏k−1|k(−)− 𝐊𝐊k 𝐏𝐏vv,k 𝐊𝐊k
T (6.21) 

where zk is the auxiliary source information and vk the innovation sequence. 

7) The SPs that correspond to the updated state PDF’s characteristics are evaluated based on 

the SSS-UT: 

 �𝓧𝓧i,k|k
′′ ,𝓌𝓌i

m′′ ,𝓌𝓌i
c′′� = SSS − UT �𝐗𝐗�k|k(+),𝐏𝐏k|k(+),α,𝛽𝛽,𝓌𝓌0� (6.22) 

6.4 Filter Structure 

This section is dedicated to the way that each part of the aforementioned UKF has to be con-

structed in order to perform the INS/GNSS/NHC/ZUPT information fusion in a loosely coupled 
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manner. In addition, the modifications required for the incorporation of the sophisticated stochas-

tic modeling information regarding the inertial sensor bias instability, as that was derived by the 

robust multi-signal GMWM-based method as well as the AVLR in Section 4.5, will be high-

lighted. 

6.4.1 Absolute State Vector 

Similarly to the EKF, the infusion of the UKF’s algorithm with the advanced stochastic mod-

eling for the inertial sensor measurement random errors will be conducted through the state-

space augmentation technique (Gelb, 1974). Moreover, since the process noises are considered to 

be non-additive, this augmentation has to be expanded in order to include them as well and thus 

allow their natural propagation (integration) through the nonlinear system model. Therefore, with 

this in mind and by considering the same 𝒵𝒵 model that was utilized in Chapter 5 to structure the 

EKF state vector, the augmented UKF state 𝐗𝐗a is given below: 

 𝐗𝐗a = [𝐗𝐗 𝐰𝐰]T (6.23) 

 
𝐗𝐗 = [𝐫𝐫n 𝐯𝐯n 𝐪𝐪bn 𝐛𝐛ω,GM1(1) 𝐛𝐛𝑓𝑓,GM1(1) 𝐛𝐛ω,GM1(2) 𝐛𝐛𝑓𝑓,GM1(2) 

𝐛𝐛ω,GM1(3) 𝐛𝐛𝑓𝑓,GM1(3) 𝐛𝐛ω,RW 𝐛𝐛𝑓𝑓,RW 𝐛𝐛ω,WN 𝐛𝐛𝑓𝑓,WN] (6.24) 

 
𝐰𝐰 = [𝐰𝐰v 𝐰𝐰φ 𝐰𝐰bω,GM1(1) 𝐰𝐰b𝑓𝑓,GM1(1) 𝐰𝐰bω,GM1(2) 𝐰𝐰b𝑓𝑓,GM1(2)  
𝐰𝐰bω,GM1(3) 𝐰𝐰b𝑓𝑓,GM1(3) 𝐰𝐰bω,RW 𝐰𝐰b𝑓𝑓,RW 𝐰𝐰bω,WN 𝐰𝐰b𝑓𝑓,WN] 

(6.25) 

where 𝐗𝐗(1 × 40) contains the absolute navigation states and inertial sensor random biases, 

𝐰𝐰(1 × 36) the corresponding zero-meaned, uncorrelated and white process (system) noises vec-

tor (not including the position components) with covariance 𝐐𝐐 = 𝔼𝔼[𝐰𝐰 𝐰𝐰T], 𝐫𝐫n the 3d position in 

terms of geodetic coordinates vector, 𝐯𝐯n the NED velocities vector, 𝐪𝐪bn the Hamilton convention-

based orientation quaternion (Shuster, 1993) that corresponds to the 𝐑𝐑b
n DCM matrix, {𝐛𝐛ω,𝐛𝐛𝑓𝑓} 
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the b-frame gyro and accelerometer bias vectors respectively (based on the stochastic processes 

included within the 𝒵𝒵 model), 𝐰𝐰v the velocity noises, 𝐰𝐰φ the attitude noises and {𝐰𝐰bω ,𝐰𝐰b𝑓𝑓} the 

gyro and accelerometer bias noises respectively. 

6.4.2 System and Measurement Models 

System Model 

Regarding the system model of the UKF, which drives its prediction stage, it has to be struc-

tured in such a way that it considers the augmented state vector of equation (6.23). Specifically, 

this means that it has to be comprised by both the INS mechanization and the sensor error state-

space model expressions. Consequently, the discrete-time nonlinear system model takes the fol-

lowing form: 

 𝐗𝐗k−1|k
a (11: 40,1) = 𝑅𝑅𝐸𝐸�𝐗𝐗k−1|k−1(11: 40,1),𝐰𝐰k−1(7: 36,1)� (6.26) 

 
𝐗𝐗k−1|k
a (1: 10,1) = 𝑅𝑅𝑅𝑅�𝐗𝐗k−1|k−1(1: 10,1),𝐗𝐗k−1|k

a (11: 40,1), … 

�𝐟𝐟b(tk),𝛚𝛚�ibb (tk)�,𝐰𝐰k−1(1: 6,1)� 
(6.27) 

where 𝑅𝑅𝐸𝐸 symbolizes a function of the non-linearized state-space models (i.e., equations (2.3), 

(2.8) and (2.16) for the WN, RW and GM1 respectively) that fully describe each stochastic pro-

cess that is included within the 𝒵𝒵 composite model and every inertial sensor, 𝑅𝑅𝑅𝑅 is the INS 

mechanization procedure as that was simplified by Shin, (2005) from the works of Savage, 

(2000a, 2000b) and �𝐟𝐟b,𝛚𝛚�ibb � are the accelerometer and gyroscope measurements, from which 

the deterministic error effects have been removed. 

Building more on the above equations, it is highlighted that for each SP, the effects of the 

propagated biases (by the 𝑅𝑅𝐸𝐸 function) are removed from the inertial sensor measurements and 
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which in turn, are plugged into the INS mechanization process (𝑅𝑅𝑅𝑅 function) for the inference of 

the navigation solution (i.e., position, velocity, attitude). Furthermore, with this structure, the 

change of the sensor errors is tracked internally, which means that they are adjusted based on the 

updated information and they maintain their values during their absence. Finally, it should be 

mentioned that in equation (6.26), the GM1, RW and WN stochastic processes can be taken into 

account. As for the DR process, in a similar manner as in the EKF, its contribution should be 

added to the WN components of the augmented state vector 𝐗𝐗k−1|k
a  after they have been propa-

gated from the 𝑚𝑚 function. For illustration purposes, this notion is expressed by the following 

formula, which refers to the gyroscope triad: 

 𝐗𝐗k−1|k
a (35: 37,1) = 𝐗𝐗k−1|k

a (35: 37,1) + ωDR Δ𝑡𝑡 (6.28) 

where Δ𝑡𝑡 is the data interval of the inertial sensor measurements that drive the navigation filter. 

Given this system model structure, there are certain things that should be clarified. First, the 

latitude and longitude position components are expressed in degrees and thus, due to their perio-

dicity, the averaging described in equation (6.12) of the UKF’s prediction stage will be problem-

atic. Instead, the position averaging process of the transformed SPs 𝐫𝐫�i,k−1|k
n  can be implemented 

in the e-frame like so: 

 𝐫𝐫�k−1|k
e = �𝓌𝓌i

m �𝐑𝐑n
e  𝐫𝐫�i,k−1|k

n �

p−1

i=0

 (6.29) 

And second, since the attitude of the moving platform is described by a quaternion, the corre-

sponding SP generation and averaging should be modified properly. Regarding the former, the 

error vector δ𝐗𝐗 (i.e., estimation minus truth) is considered only for the attitude:  
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 δ𝐗𝐗 = [⋯ 𝛗𝛗 ⋯]T (6.30) 

where 𝛗𝛗 is the implied rotation vector to the resulting quaternion from (𝐪𝐪�bn)⨂(𝐪𝐪bn)−1 (see (Shin, 

2005, p. 14) for how the quaternion can be converted to a rotation vector). Subsequently, step 7 

of the SSS-UT algorithm (equation (6.9)) is adjusted as follows: 

 Δ𝓧𝓧i = α 𝐒𝐒 𝓧𝓧u,i = �⋯ (𝛗𝛗i)T ⋯�
T

, i =, … , n + 1 (6.31) 

 𝓧𝓧i = �⋯ �𝐪𝐪ϕi ⨂ 𝐪𝐪�bn�
T

⋯� (6.32) 

where 𝐪𝐪ϕi is the corresponding quaternion to the 𝛗𝛗i rotation vector and 𝐪𝐪�bn the quaternion that 

expresses the prior state orientation. 

Furthermore, the quantities provided by equation (6.31) are utilized in equations (6.13) and 

(6.17) of the UKF prediction and update stages respectively. Finally, concerning the averaging of 

the quaternions, the direct implementation of such a process would not result in a quaternion. 

Hence, to overcome this issue, the iterative intrinsic gradient descent algorithm presented by 

Kraft, (2003) is chosen to be utilized for the evaluation of the weighted mean quaternion, which 

is based on the principles of Riemannian geometry (see (Shin and El‐Sheimy, 2007) for a com-

pact presentation of this algorithm). 

Measurement Model 

Contrarily to the EKF, the measurement model of the UKF navigation algorithm is comprised 

of a set of nonlinear equations ℎ. In turn, these equations are utilized to transform the INS-based 

SPs in such a way that they become comparable with the external information that is fed into the 
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filter as updates. As it was mentioned earlier, the errors of the auxiliary information are consid-

ered to be additive. Therefore, the general expression of the measurement model has the form: 

 𝐙𝐙k = ℎ(𝐗𝐗k) + 𝐕𝐕k, 𝐑𝐑k = 𝔼𝔼�𝐕𝐕k 𝐕𝐕kT� (6.33) 

where 𝐙𝐙 is the measurement vector, ℎ the nonlinear vector function of the absolute state vector 

and 𝐕𝐕 the zero meaned, uncorrelated, and white measurement noises vector with covariance 𝐑𝐑. 

In this study, the 3d position and velocity components from the GNSS system, the transversal 

and vertical velocities from the NHCs and the 3d velocity components from the ZUPTs will be 

the updates and their respective measurement model matrices are provided below: 

A) GNSS position 

 𝐙𝐙k(𝐫𝐫GNSS) = diag([1 1 −1]) �𝐑𝐑e
n �𝐫𝐫�GNSSe − 𝐫𝐫�IMUe

i,k−1|k� −  𝐑𝐑�bni,k−1|k 𝒍𝒍GNSSb � (6.34) 

 𝐯𝐯k = zk − z�k−1|k = �𝓌𝓌i
m 𝒵𝒵i,k−1|k

n+1

i=0

 (6.35) 

 Δ𝒵𝒵i,k−1|k = 𝐯𝐯k − 𝒵𝒵i,k−1|k (6.36) 

 𝐑𝐑r(𝐫𝐫GNSS) = diag��σ2ϕGNSS σ2λGNSS σ2hGNSS�� (6.37) 

where 𝐫𝐫�GNSSe  is the GNSS-derived e-frame position vector and 𝐫𝐫�IMUe
i,k−1|k the predicted posi-

tion based on the inertial sensor measurements for each SP. 

B) GNSS velocities 

 
𝐙𝐙k(𝐯𝐯GNSS) = 𝐯𝐯�IMUn

i,k−1|k − (ω�inn ×)i,k−1|k 𝐑𝐑�bni,k−1|k 𝒍𝒍GNSSb − 

𝐑𝐑�bni,k−1|k �𝒍𝒍GNSSb ×� ωib
b  

(6.38) 
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 zk = 𝐯𝐯�GNSSn  (6.39) 

 𝐑𝐑v = diag��σ2vN,GNSS σ2vE,GNSS σ2vD,GNSS�� (6.40) 

C) Non-Holonomic Constraints 

 𝐙𝐙k(𝐯𝐯NHC) = �𝐑𝐑b
v  �𝐑𝐑�bni,k−1|k�

T
𝐯𝐯�IMUn

i,k−1|k + 𝐑𝐑b
v  �ω�nbb ×�

i,k−1|k
 𝒍𝒍wheelb �

2:3
 (6.41) 

 zk = 0 (6.42) 

 𝐑𝐑NHC = diag��σ2vE,NHC σ2vD,NHC�� (6.43) 

D) Zero Velocity Updates 

 𝐙𝐙k,ZUPT = 𝐯𝐯�IMUn
i,k−1|k (6.44) 

 𝐯𝐯k = zk − z�k−1|k = −𝐯𝐯�k−1|k
n  (6.45) 

 Δ𝒵𝒵i,k−1|k = i,k−1|k − z�k−1|k = Δ𝓧𝓧i,k−1|k(4: 6,1: n + 2) (6.46) 

 𝐑𝐑ZUPT = diag��σ2vN,ZUPT σ2vE,ZUPT σ2vD,ZUPT�� (6.47) 

6.5 Filter Initialization 

This part of the chapter is dedicated to how the augmented state vector 𝐗𝐗�0|0
a  and its corre-

sponding covariance matrix 𝐏𝐏0|0
a  are initialized. In fact, their general form is provided by the fol-

lowing expressions: 

 𝐗𝐗�0|0
a = �𝐗𝐗

�0|0
0
� (6.48) 

 𝐏𝐏0|0
a = �

𝐏𝐏0|0 0
0 𝐐𝐐0

� (6.49) 
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where 𝐗𝐗�0|0 refers to the initial position, velocity, and attitude (expressed through a quaternion) of 

the moving platform, 𝐏𝐏0|0 the navigation state covariance matrix and 𝐐𝐐0 the covariance of the 

system noises. In fact, by augmenting the state with the noise vector, the influence of the system 

noises on the covariance evolution can be expressed in a more natural way compared to the EKF, 

since there is no need for the utilization of an approximation to the integration of the 𝐐𝐐 matrix. 

Regarding 𝐗𝐗�0|0, its values are exactly the same as those of the EKF (see Section 5.4), with the 

only difference being that the Euler angles are now expressed as a quaternion. In addition, the 

initial values for the biases and noises are set to be equal to zero. As for 𝐏𝐏0|0
a , modifications 

should be made compared to the EKF’s version, which are provided below in bullet form: 

• The initial position variances are modified as follows: 

 𝐏𝐏0|0(ϕ0) =
𝜎𝜎2ϕ0

(RM + h0)2 (6.50) 

 𝐏𝐏0|0(λ0) =
𝜎𝜎2λ0

[(RN + h0) cosϕ0]2 (6.51) 

 𝐏𝐏0|0(h0) = 𝜎𝜎2h0 (6.52) 

• The initial velocity variances are obtained directly from the separate filter that derived the 

GNSS position and velocity solutions. 

• The dimension of a quaternion is 4, while its degrees of freedom are equal to 3. Therefore, 

the size of the corresponding covariance matrix should be one less than the augmented state 

vector and its components will be the attitude variances given by equations (5.47), (5.48), 

and (5.49). 



153 

 

• The covariance matrix elements that refer to the initial bias variation for the GM1, RW and 

WN stochastic processes are given by equations (5.50), (5.51), and (5.52) respectively. 

• The 𝐐𝐐0 matrix is given by the following formula: 

 𝐐𝐐0 = 𝐐𝐐s Δ𝑡𝑡 (6.53) 

where Δ𝑡𝑡 is the data interval of the INS measurements and 𝐐𝐐s is the EKF’s spectral densities 

matrix of equation (5.26). Furthermore, it is highlighted that the position components are 

removed, since they are typically set to zero and their removal ensures that the implementa-

tion of the Cholesky factorization of the 𝐏𝐏a matrix will always be possible (i.e., its positive 

definiteness is preserved). 

Finally, concluding this section, it is extremely important to highlight that in order for the im-

plementation of the UKF to be possible, the diagonal of the 𝐏𝐏a matrix should be fully populated 

(i.e., no zeros included) to ensure its positive definiteness. As a result, if according to the sto-

chastic analysis, a sensor is found to be characterized by a model with less complexity than the 

one of the 𝒵𝒵 model, then the rows and columns that correspond to the processes that are not in-

cluded within the simpler model should be removed. 

6.6 Summary 

In this chapter, a navigation algorithm for INS/GNSS/NHC/ZUPT integration was presented, 

based on the UKF filter. Moreover, in the context of this Bayesian filter, the system noises were 

considered to be non-additive and thus, the state vector was augmented in order to allow their 

natural propagation through the original nonlinear models. As for the measurement noises, given 

the nature of the estimation problem at hand, it was deemed more logical to presume them as ad-

ditive in nature. Finally, an in-depth description of this algorithm was provided along with the 
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required adjustments for the incorporation of the advanced stochastic modeling knowledge re-

garding the inertial sensor error random behavior that was inferred in Section 4.5. In fact, this is 

the first time that such a UKF filter is used in tandem with GMWM-based stochastic analysis and 

more specifically with modeling information derived from using the new SR/DR-AWV robust 

multi-signal estimators. 
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Chapter Seven: Empirical Evaluation of EKF and UKF-based Navigation Al-

gorithms Infused with SR/DR-AWV Stochastic Modeling Information for the 

Inertial Sensor Random Errors 

7.1 Introduction 

In this chapter, the stochastic modeling analysis of a commercial grade IMU, derived using 

the proposed robust multi-signal GMWM-based framework as well as the conventional AVLR 

method, will be infused within the EKF and UKF-based INS/GNSS/NHC/ZUPT integration al-

gorithms, described in Chapter Five and Chapter Six. In turn, their performance will be evaluated 

in a real-life land vehicle navigation setting and compared with each other. Consequently, in this 

way, the impact of this new and improved stochastic modeling methodology about the inertial 

sensor errors on the overall navigation performance will be explored, in contrast to the classical 

approach and in the context of the two aforementioned Bayesian filter variants. 

7.2 Equipment Setup 

The commercial grade Xsens MTi-G-710, whose inertial sensor random errors were studied in 

Section 4.5 (after a deterministic calibration process was previously performed), was placed on a 

wooden platform that has been bolted in the back of a car. For the purposes of this experiment, 

the reference with respect to which the performance of the MTi will be validated was chosen to 

be NovAtel’s SPAN system. Hence, its components, meaning the high-end iMAR-FSAS IMU 

and the high-quality dual frequency SPAN-SE GNSS (it can detect signals from the GPS and 

GLONASS constellations) receiver, were secured on the very same platform as the MTi, in the 

manner demonstrated in Figure 7.1. On top of that, a high-end GNSS antenna was stuck on the 

top of the car and connected with the SPAN-SE receiver. Finally, it is highlighted that in order to 

allow a direct comparison between the reference and the MTi, the same GNSS information that 
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the SPAN system uses to infer its navigation solution will also be used by the MTi-driven inte-

gration schemes. However, these two sources of information are not synchronized with each oth-

er and generally, the best way to match them is via GPS time. Hence, with this in mind, a low-

cost GNSS antenna was connected to the MTi device and stuck on top of the car. Consequently, 

the inertial sensor measurements will be able to receive a GPS timestamp and thus, allow the 

synchronization with the GNSS information used by the SPAN system. 

 
Figure 7.1: Equipment placement at the trunk of the vehicle 

Following the completion of the equipment placement on the vehicle, a TCR803 3” reflector-

less total station was utilized to measure (with the highest possible accuracy) the quantities men-

tioned below and which are also shown in Figure 7.2: 

1) Lever arm between the MTi’s center (its exact location was identified from the manufac-

ture’s CAD drawings) and the GNSS antenna phase center. 

2) Lever arm between the MTi’s center and the vehicle frame’s origin, with the latter being de-

fined as the center point of the rear drive axle’s ground projection. 

3) MTi body frame and vehicle frame axes. 

4) Boresight (indirect inference by comparing the MTi body frame and vehicle frame axes). 
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Figure 7.2: Sideview representation of the lever arms, MTi IMU body frame and vehicle frame 

7.3 Data Collection 

In order to empirically evaluate the contributions of the new robust multi-signal GMWM-

based framework to the navigation performance in the context of both the EKF and UKF-based 

algorithms described in Chapter Five and Chapter Six, a 20-min trajectory located in a suburban 

area (since open sky conditions and minimal multipath are desired) of NW Calgary was designed 

and demonstrated in Figure 7.3. 

 
Figure 7.3: Designed trajectory in the horizontal plane 
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In the following section, the reasons behind the inclusion of multiple stops and turns in the tra-

jectory will be presented in bullet form: 

• One of the major improvements that the new robust multi-signal GMWM-based framework 

provides compared to the conventional AVLR method is the high accuracy in identifying the 

characteristics of the time-correlated noises that govern the inertial sensor random errors. 

Furthermore, it is noted that the importance of the time-correlated noises starts becoming 

significant to the navigation performance when the moving platform experiences complex 

dynamics. And since here focus is given to vehicular navigation, this means that there have 

to be moments where the vehicle is turning. 

• As it was mentioned in Chapter Six:, the UKF is capable of handling the nonlinearities to the 

system and measurement models in a better way than the EKF. Ergo, the UKF’s advantages 

can be more clearly seen when the nonlinearities become significant, which again occurs 

during vehicle turns. 

• The NHCs are a very useful tool in vehicular navigation, and it is especially important when 

the INS system operates on standalone mode during complex vehicle movements. Therefore, 

it would be very interesting to investigate what the combination of NHCs, the UKF and the 

improved stochastic modeling information about the inertial sensor errors can contribute to 

the INS performance when the vehicle performs a turn and there is a GNSS outage at the 

same time. 

• The ZUPTs, which are also included within the tested algorithms, prevent the navigation so-

lution from deteriorating during vehicle stops. Therefore, it would be worthwhile to investi-

gate whether the use of advanced stochastic modeling information for the inertial sensor er-
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rors in the context of the EKF and UKF filters can further improve the ZUPTs usefulness. 

As a result, regions where traffic lights exist should be included in order to increase the 

chance for a ZUPT to occur. 

Given the aforementioned equipment configuration and trajectory planning, this vehicular 

navigation experiment was implemented on November 15th, 2021. Specifically, regarding the 

MTi, GPS timestamped inertial sensor measurements were collected at a 100Hz data rate using 

the 4.8.2 version of the MT Software Suite. As for the reference system, NovAtel’s Inertial Ex-

plorer software was utilized to collect iMAR’s inertial sensor data at a 100Hz rate, while position 

and velocity information from SPAN’s GNSS receiver in SPP mode were retrieved at a 1Hz rate. 

In turn, the same software was also utilized for the loosely coupled integration of the SPAN sys-

tem’s INS and GNSS information and the estimation of the reference solution, which will be 

used up next to validate the performance of the MTi. 

7.4 Tests and Results Discussion 

In this section, the EKF and UKF filters described in Chapter Five and Chapter Six respec-

tively will each be infused with the stochastic modeling knowledge for the Xsens MTi-G-710 

IMU, which was derived in Section 4.5 using the new SR/DR-AWV estimators and the classical 

AVLR method. 

Since the duration of the trajectory has been set, it is now possible to investigate whether there 

are any time-correlated stochastic processes within the SR/DR-AWV stochastic analysis that can 

be over-bounded using a RW process, based on the procedure introduced in Section 4.2. Specifi-

cally, this will be accomplished by calculating the correlation times of each AR1 process shown 

in Table 4.6 for the accelerometers and Table 4.7 for the gyroscopes and then, by inspecting 

which processes have a large enough correlation time with respect to the total trajectory duration, 
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determine the likely candidates. From such a process, it was found that only one process can be a 

valid possibility for over-bounding since its correlation time is equal to approximately 387sec. 

Actually, this process is the 1st AR1 that refers to the Y-Accelerometer (i.e., AR1,1) and whose 

parameters are shown in Table 4.4. Subsequently, using these parameter values, the duration of 

the trajectory (i.e., 20 min) and the inertial sensor data rate (i.e., 100Hz) in the context of the ap-

proach described in Section 4.2, Figure 7.4 is obtained and presented below: 

 
Figure 7.4: Accumulative sum ratio of the AR1-implied WV over the RW-implied WV 

Based on this figure, it is clear that if this process is to be over-bounded with a RW for the trajec-

tory at hand, the approximation level would be equal to 53%, which is not enough to justify such 

course of action. Consequently, no changes can be applied to the SR/DR-AWV stochastic analy-

sis, and it will be used for the purposes of the experimental evaluation described in this chapter. 

With the stochastic modeling information for this experiment now finalized and in order to 

gain a more comprehensive insight into the performance of the MTi provided by the aforemen-

tioned filter configurations, two realistic scenarios were devised. In fact, each of these scenarios 
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was set to contain one 1min and one 30sec artificial GNSS outages at different locations along 

the trajectory that are far apart from each other. Specifically, the 1min outages were chosen to 

initially contain a straight path trajectory, then encounter a vehicle stop and finally continue on a 

straight path again. In this way, the performance of the ZUPTs can be evaluated. As for the 30sec 

outages, to which more focus will be given since they are the most likely to occur in reality, 

those were placed in regions where both straight course (linear) and vehicle turns (nonlinear) are 

included in order to assess the efficiency of the NHCs. Hence, it becomes possible to: 

1) Evaluate the performance of the algorithms when transitioning from a linear to a nonlinear 

trajectory. 

2) Investigate the improvement that the information provided by the new robust multi-signal 

GMWM-based framework regarding the inertial sensor random errors can have over the 

commonly used AVLR method. 

3) Inspect whether the use of a UKF filter instead of an EKF one along with the knowledge 

provided by the newly proposed SR/DR-AWV estimators about the inertial sensor noise can 

further enhance the navigation performance. 

With the aforementioned in mind, and concerning Scenario I, Outage 1 was chosen to be be-

tween the 80th and 140th second of the trajectory, covering the area of before and after the first 

traffic light region that is shown in Figure 7.3, where there is a 26 second stop (i.e., ZUPT should 

be applied). As for Outage 2, it was set to start at the 590th second and end at the 620th and it con-

tains a sharp right turn.  

Regarding Scenario II, its first outage, designated as Outage 3, was placed partially before and 

after the second traffic light region (see Figure 7.3), where a 33 second stop occurs. In addition, 
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the second outage, hereinafter referred to as Outage 4, was established between the 750th and 

780th second of the trajectory, where the car performs a wide right turn. 

At this point, it should be mentioned that the EKF infused with AVLR information represents 

the conventional method and thus, it is considered as the base solution to which improvement is 

sought after. Furthermore, it is common practice for the AVLR information that is included with-

in the EKF and UKF-based navigation algorithms to be tuned in order to achieve adequately 

good results. However, it was found that the modeling information provided by the SR/DR-

AWV estimators does not require any such process. As for the metrics that were chosen to eval-

uate the performance of the MTi in the context of these filters with respect to the reference solu-

tion, those were the RMS of the 2D positioning errors (RMS2D), the percentage of RMS2D with 

respect to the traveled distance (PRMS2D) and the RMS of the 3D orientation errors (RMS3D), the 

formulas for which are given below: 

 RMS2D = rms���𝑢𝑢rE�
2

+ �𝑢𝑢rN�
2
� (7.1) 

 PRMS2D = (RMS2D Traveled distance⁄ ) ∙ 100 (7.2) 

 RMS3D = rms��(𝑢𝑢r)2 + �𝑢𝑢p�
2

+ (𝑢𝑢A)2� (7.3) 

where �𝑢𝑢rE ,𝑢𝑢rN� are the East and North position error time series (w.r.t the SPAN system’s ref-

erence solution) and �𝑢𝑢r,𝑢𝑢p,𝑢𝑢A� are the error time series of the roll, pitch, and azimuth attitude 

angles. 

Finally, it is underlined that the NHCs were chosen to be applied at a 10Hz rate with a vari-

ance equal to 0.25(m sec⁄ )2, while the ZUPTs were selected to be performed at a 20Hz rate with 
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0.4(m sec⁄ )2 variance. In the following, the results from each of the two scenarios will be pro-

vided and discussed. 

Scenario I 

The statistical metrics for the Scenario I outage regions are provided in Table 7.1. 

Table 7.1: RMS2D, percentage of RMS2D w.r.t the traveled distance and RMS3D values for the outages of Scenario I 

 

According to that, and for Outage 1, both the EKF and UKF demonstrate equivalent error levels 

in terms of horizontal positioning, when either the AVLR or the SR/DR-AWV stochastic model-

ing information is utilized. On the other hand, the EKF with the SR/DR-AWV analysis and the 

UKF with the classical AVLR-derived knowledge provide a very similar orientation estimation 

improvement, with the latter having the edge compared to the conventional setting. Finally, the 

UKF infused with SR/DR-AWV modeling information appears to be the one with the best per-

formance. Therefore, based on this, it can be concluded that in a condition where the car is most-
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ly static, the choice of stochastic modeling estimator does not have any effect on the horizontal 

positioning estimation accuracy. However, the same cannot be said for the orientation determina-

tion quality, which does appear to be correlated with the previously mentioned dilemma. 

Concerning Outage 2 and based on Table 7.1, it is confirmed that with respect to the filters 

that are infused with AVLR stochastic modeling knowledge, the reliable handling of the nonline-

arities up to the 2nd order that the UKF offers is capable of providing a meaningful improvement 

compared to the conventional filter from the aspects of both positioning and orientation when the 

vehicle is turning. In fact, the UKF with the SR/DR-AWV information manages to obtain a sig-

nificant boost of the order of 14.7% in terms of horizontal positioning, which corresponds to 

0.897% of the total outage distance, while the EKF appears to be comparable to it with an 8.3% 

enhancement that translates to 0.962% of the outage distance. As for the orientation, both the 

EKF and UKF introduce a considerable and almost equivalent improvement of approximately 

12%. Therefore, based on the aforementioned, it can be deduced that the combination of an im-

proved inertial sensor random error understanding and a better handling of the system model 

nonlinearities can enhance the navigation performance not only in terms of 2D positioning but 

also in terms of the orientation of the moving platform. Finally, the influence of the stochastic 

modeling information choice as well as of the integration filter implied by the stats of Table 7.1 

is also confirmed by Figure 7.5 and Figure 7.6, where snapshots from the sharp turn that the ve-

hicle performs during the outage are depicted. In fact, it is worth mentioning that the orientation 

error quality is primarily dependent on the azimuth estimation. 
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Figure 7.5: Snapshot of the Outage 2 horizontal positioning solutions 

 
Figure 7.6: Snapshot from the Outage 2 orientation angle estimation errors 



166 

 

Scenario II 

Regarding Scenario II, the EKF and UKF filters infused with both the SR/DR-AWV and 

AVLR stochastic analysis for the inertial sensor errors were implemented and Table 7.2 was 

formed, where the statistics of the derived solutions for the artificial GNSS outage regions are 

included. 

According to Table 7.2, a very similar behavior to Outage 1 is observed for Outage 3, both in 

terms of horizontal position as well as orientation estimation quality. Specifically, all four filter 

configurations appear to be equivalent with respect to horizontal positioning. Moreover, the EKF 

containing the SR/DR-AWV analysis exhibits an almost equivalent performance to the UKF that 

is infused with AVLR information from the orientation determination standpoint (7.5 and 9.1% 

respectively). As for the UKF containing the new robust multi-signal method’s modeling for the 

inertial sensor errors and just like in Outage 1, it is the optimal one since it manages to enhance 

the estimation quality of the orientation compared to the standard scheme by 17.3%. 

Based on Table 7.2, and for Outage 4, it seems that the filters containing the SR/DR-AWV 

stochastic modeling information are the ones to provide a meaningful improvement compared to 

the standard configuration. In fact, the UKF provides a positioning quality improvement com-

pared to the conventional setting at order of 17.8% (i.e., 0.887% of the total outage distance) that 

is better than the EKF by a small but noticeable 5%, while their orientation estimation prowess is 

at more or less the same level. Finally, a more rigorous inspection of the filter’s performance in 

Outage 4 was deemed worthwhile in order to further validate the results provided in Table 7.2 

and thus, Figure 7.7 and Figure 7.8 were created, where snapshots of the horizontal solution and 

attitude angle errors are depicted. 
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Table 7.2: RMS2D, percentage of RMS2D w.r.t the traveled distance and RMS3D values for the outages of Scenario II 

 

From a visual inspection of Figure 7.7, it can be deduced that an accurate knowledge of the 

time-correlated noises can certainly be beneficial to the navigation performance, especially when 

the moving platform is under nonlinear trajectory conditions and it can be maximized when it is 

combined with a better handling of the system model nonlinearities through the UKF. 

As for Figure 7.8, it is evident that the much harsher turn that the moving platform performs, 

compared to Outage 2, results to a more noticeable difference in all three attitude angle estima-

tions from one filter configuration to another. Nevertheless, it is once again confirmed that the 

filters containing the SR/DR-AWV analysis manage to not only enhance the horizontal position-

ing performance but at the same time improve the orientation estimation in a meaningful way, 

with the UKF maintaining the edge on both accounts. 
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Figure 7.7: Snapshot of the Outage 4 horizontal positioning solutions 

 
Figure 7.8: Snapshot from the Outage 4 orientation angle estimation errors 
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Based on the aforementioned, it is clear that under nonlinear trajectory conditions, the UKF 

with the SR/DR-AWV analysis is the one that provides the best horizontal positioning and orien-

tation estimation performance, while the EKF with the same stochastic modeling information is a 

close second. As for the static circumstances, the UKF-based filters are shown to be able to han-

dle the orientation determination in a more efficient way than the EKF-based schemes. 

Computational time 

Another very important aspect that should be considered is the time that it takes to process the 

20-minute trajectory at hand with each of the 4 filter configurations that have been discussed 

here. Therefore, given that the tests were conducted using MATLAB 2023a on an AMD Ryzen 7 

4800H 2.90GHz processor and 16GB RAM, the following table with each filter’s state dimen-

sion and computational time in minutes was constructed. 

Table 7.3: State dimensions and computational times for each filter design 

Integration 
Filter 

Stochastic 
Estimator 

State 
Dimension 

Processing 
Time 
[min] 

EKF 
AVLR 21 3.60 

SR/DR 34 3.62 
(+0.6%) 

UKF 
AVLR 40 10.98 

(+205.0%) 

SR/DR 66 17.14 
(+376%) 

According to the information provided in Table 7.3, several observations can be made. Firstly, 

regarding the EKF filters, the utilization of the SR/DR-AWV stochastic analysis instead of the 

standard AVLR does not seem to impact the computational time, despite the increase in the state 

dimension. This can be attributed to efforts made for the avoidance of including spare stochastic 
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processes in the filter matrices, which in turn resulted to the filter maintaining numerical stabil-

ity. Secondly, and with the aforementioned test results in mind, the EKF algorithm with SR/DR-

AWV information is proven to be suitable for general-purpose and real-time applications, assum-

ing that modern equipment is being utilized. In addition, it is blatantly apparent that a strong cor-

relation exists between the processing time and the state vector dimension of the UKF filters. 

Consequently, both of them exhibit considerably long computational times, which come very 

close to the total duration of the trajectory (55 and 86% of the total time length when using the 

AVLR and SR/DR-AWV respectively). In fact, with respect to the AVLR, the UKF requires 3 

times more processing time than the EKF, whereas with the SR/DR-AWV, it demands nearly 

five times more. Therefore, ultimately, the decision to incorporate the (proven to be superior) 

SR/DR-AWV analysis within either the EKF or UKF depends on the available computational 

capabilities and the specific application at hand. 

7.5 Summary 

In this chapter, tests were conducted in order to assess the impact of the Xsens MTi-G-710 in-

ertial sensor random error analysis on the quality of horizontal positioning and orientation esti-

mation. This evaluation was performed in the context of an INS/GNSS/NHC/ZUPT navigation 

algorithm, where the contribution of the analysis derived using the new robust multi-signal 

GMWM-based stochastic modeling method was compared to the one provided by the conven-

tional AVLR method. Through that, it became possible to examine the effectiveness of the syn-

ergy between the inertial sensor stochastic error modeling information, the NHCs and the ZUPT 

updates. In fact, particular focus was given in regions where GNSS outages have been artificially 

introduced and the moving platform is under either linear-static or dynamic conditions. Further-

more, the potential benefits of utilizing an alternative and less restrictive Bayesian filter like the 
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UKF, instead of the standard EKF, were explored with the purpose of achieving a better collabo-

ration with the new inertial sensor error stochastic analysis and further improving the navigation 

performance. Finally, the computational times for implementing the EKF and UKF-filters, in-

fused with the SR/DR-AWV stochastic analysis information for the inertial sensor random errors 

were discussed. 
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Chapter Eight: Conclusions and Recommendations 

8.1 Summary and Conclusions 

In this thesis, it has been highlighted that the measurements of low-cost and commercial-

grade MEMS sensors are characterized by significant systematic biases and random errors, the 

significance of which tends to get magnified as they are integrated over time for the derivation of 

the navigation solution. Particular focus, however, was given to the random errors, whose level, 

complexity, and behavioral variability from one experimental run to another tends to increase as 

the cost of the sensor drops. Hence, in order to avoid significant degradation of the INS 

standalone performance due to their influence, their precise stochastic calibration is necessary. 

Furthermore, it was pointed out that it is highly possible that their measurements are contaminat-

ed with outliers, whose impact also increases as the cost of the sensor drops and which can create 

problems in the analysis and modeling of the random errors. 

In order to take all the aforementioned characteristics of the measurements provided by low-

cost and commercial-grade MEMS sensors into account (i.e., stochastic error behavioral com-

plexity and variability from replicate to replicate, outlier existence), a multi-signal stochastic 

analysis framework has been brought forward that contains two levels of robustness and it is 

fundamentally based on the GMWM framework and its multi-signal extension, the AWV estima-

tor. In turn, from this new approach, two estimators were defined: the SR-AWV and the DR-

AWV, with the first containing a single layer of robustness against data corruption in each con-

sidered signal replicate and with the latter reinforcing that protection against sample contamina-

tion as well. Finally, based on the aforementioned, a logical deduction is be noted, that the con-

tribution of this new method gets more important as the cost of the sensor drops since the behav-

ioral variability of the errors from run-to-run raises along with the outlier influence.  
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On another note, it should be highlighted that the publicly available framework for the im-

plementation of the GMWM/ RGMWM single-signal stochastic analysis was utilized as a base 

for the development of the new robust multi-signal framework; in the near future, its code will 

also be incorporated in the context of the GMWM engine and thus be made available to practi-

tioners for open use. Furthermore, it is reminded that although this new method targets the prob-

lem of inertial sensor error stochastic modeling, it is characterized by generality and it can be 

used for the stochastic analysis of any observable, as long as intrinsically stationary error se-

quences can be collected. 

Before testing the capabilities of the new estimators, a straightforward and fast to implement 

algorithm for analyzing the calibration data at hand using the single-signal GMWM method and 

by extension, the new multi-signal estimators was presented in Section 4.2. In addition, a math-

ematical reasoning was provided that permits the simplification of time-correlated stochastic 

processes that have been identified and estimated by the algorithm, based on certain conditions. 

Next, the efficiency of the two new estimators in terms of model parameter estimation was 

evaluated in a simulation and a case study setting in Section 4.4, from which the importance of 

their robustness to the effects of different types of outliers was highlighted and established. On 

top of that, it was found that both robust multi-signal estimators perform in an almost equivalent 

way to the classical approach in the clean calibration data setting and thus, either of them can be 

used without the need for confirmation for the outlier existence. In fact, this conclusion was also 

found to be valid for the robust single-signal GMWM method in Section 4.3, where it was estab-

lished that its use in every scenario is a worthwhile trade-off between reduction in model param-

eter estimation efficiency and safeguarding the estimation process from the harmful influence of 

outliers. 
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Building on these two studies, an innovative hybrid study was also conducted using a recently 

proposed navigation simulator in order to investigate the link between the quality of the stochas-

tic modeling provided by these new robust estimators and the implied INS/GNSS navigation per-

formance (during INS standalone operation) in different calibration data contamination scenari-

os. Specifically, based on the results from a huge number of simulated trajectories and the im-

plied empirical coverage and standard estimation error metrics, it was found that by introducing 

robustness to the multi-signal stochastic calibration of inertial sensor errors, stability is main-

tained under contamination (of the calibration datasets) in terms of not only navigation state 

point estimation accuracy but also of correctness of the provided reliability information. 

Given the prowess establishment of the two new robust estimators under different calibration 

data contamination settings, it is highlighted that there has to be a careful inspection of the avail-

able data for the selection between which of the two should be utilized in order to maximize the 

final modeling solution accuracy. Specifically, the SR-AWV is the standard choice and the DR-

AWV should be employed whenever the available data contain signal replicate(s) with noticea-

bly different random error behavior compared to the rest. 

The final section of this dissertation has been devoted to a real-life vehicle navigation experi-

ment, where the stochastic analysis derived in Section 4.5 for the consumer-grade Xsens MTi-G-

710 inertial sensors using the new SR/DR-AWV estimators and the standard AVLR method is 

infused within the conventional EKF and (for the first time) the less restrictive UKF-based filter 

for INS/GNSS/NHC/ZUPT loosely coupled integration. As for the manner that this was per-

formed, that is detailed in Chapter Five and Chapter Six. However, in the context of such pro-

cess, a very interesting fact was noticed. Specifically, unlike the conventional AVLR method, the 

stochastic modeling information provided by the SR/DR-AWV estimators, did not require any 
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tuning process in order to achieve an adequately good performance. Consequently, this consti-

tutes a very beneficial advantage that this new approach offers over the conventional AVLR 

method. 

Having said that, the purpose of such an experiment was the performance evaluation of these 

filters under different conditions as well as to highlight the contribution that the new robust mul-

ti-signal stochastic modeling method provides to the navigation performance compared to the 

classical AVLR, when it is combined with update sources like the NHCs and ZUPTs. Towards 

that end, artificial GNSS outages were introduced in regions where the car performs either line-

ar-static trajectory or is under dynamic conditions. The former was introduced with the intent of 

evaluating the collaboration between the employed inertial sensor stochastic error analysis and 

the ZUPT update, while the latter was to inspect the synergy with the NHCs. 

The performance of the aforementioned 4 filter configurations was evaluated with reference to 

a high-end navigation system and from the point of view of horizontal positioning and orienta-

tion estimation quality. Moreover, an additional comparison was conducted with respect to the 

conventional setting, which is none other than the EKF infused with the AVLR stochastic analy-

sis for the inertial sensor errors. The derived results were presented in Section 7.4 and the con-

clusions that can be inferred from them are summarized below: 

Linear-static conditions (Outage 1 and Outage 3) 

• All 4 filter configurations provided the same horizontal positioning estimation performance. 

• The UKF with AVLR-based information and the EKF infused with SR/DR-AWV 

knowledge for the inertial sensor measurement noise demonstrated a similar 3D orientation 

quality with 11.2%-9.1% and 9.7%-7.5% enhancement compared to the standard setting. 
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• The UKF encompassing the analysis provided by the new robust multi-signal method gave 

the highest improvement in both outages with 16.8% and 17.3% respectively. 

• When utilizing the new approach’s knowledge for the MTi’s inertial sensor errors, the UKF 

provided 7.1% for Outage 1 and 9.8% for Outage 3 more improvement to the conventional 

filter compared to the EKF. 

• Overall, the SR/DR-AWV is the best option during linear-static conditions. 

Dynamic conditions (Outage 2 and Outage 4) 

• In terms of horizontal positioning, the UKF infused with the SR/DR-AWV information was 

the optimal one for both Outage 2, where the trajectory involved a straight path and a sharp 

right turn and Outage 4, where the car performed a much harsher and longer right turn. Spe-

cifically, its improvement to the standard filter was 14.7% and 17.8% respectively. 

• The EKF with SR/DR-AWV provided horizontal positioning solutions that were close to the 

ones provided by its UKF counterpart with enhancements at the level of 8.3% for Outage 2 

and 12.8% for Outage 4. This means that the UKF was better by 6.4% and 5% respectively. 

• It can be deduced that the higher the significance of the nonlinearities, the better the horizon-

tal positioning performance of both filters becomes compared to the standard setting due to 

incorporation of accurate knowledge for the correlated errors. 

• Regarding the quality of the orientation estimation, both EKF and UKF filters infused with 

the SR/DR-AWV stochastic modeling provide an approximately 12% improvement com-

pared to the standard configuration. 
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• Compared to the standard setting, which provides a horizontal error at the order of 1% of the 

total GNSS outage distance (i.e., 1.049 and 1.079%), the UKF infused with SR/DR-AWV 

stochastic analysis information manages to reduce that at the order of 0.89% (i.e., 0.897 and 

0.887%) and the EKF to 0.95% (i.e., 0.962 and 0.940%). 

• Overall, with respect to dynamic conditions, the SR/DR-AWV clearly outperforms the 

standard AVLR and thus it should be the one to be utilized. 

Finally, the computational times of the 4 filter configurations were also calculated. From their 

inspection, it was found that although the state dimension was increased significantly when using 

the SR/DR-AWV instead of the AVLR, the processing time of the EKF-based filter was unaf-

fected. Thus, the numerical stability of this scheme has been confirmed. On the other hand, the 

UKF-based filters appeared to be particularly vulnerable to the state-space augmentation, despite 

their good performance. Therefore, it could be inferred that the EKF infused with SR/DR-AWV 

stochastic modeling information could be a serious candidate for real-time applications, while 

the UKF can certainly be used for applications where post-processing is possible to optimize the 

navigation performance. 

8.2 Recommendations for Further Research 

Given contributions to the overall navigation performance provided by the new multi-signal 

GMWM-based stochastic modeling framework when it is used for the behavioral analysis of the 

inertial sensor measurement noise, this approach can also be utilized in the context of the follow-

ing research ideas to provide further improvements: 

• In the context of inertial sensor stochastic calibration, consider signal replicates that have 

been collected under different operating conditions (i.e., temperature, dynamics) in order to 
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eventually estimate a model that, on average, describes the sensor’s behaviour while also 

taking into account the influence of those conditions. 

• Explore possible contributions in the context of a Reduced Inertial Sensor System (RISS) 

• Analysis of the GNSS positioning solutions provided by low-cost receivers through the vari-

ous different processing strategies (i.e., SPP, DGNSS, PPP, RTK) that exist in the literature 

in order to obtain an in-depth insight to their random behavior. 

• Utilize the analysis of low-cost GNSS receiver-derived SPP positioning solutions to describe 

the stochastic part of an EKF filter for GNSS-only positioning based on the SPP processing 

strategy. Subsequently, it can be investigated whether this complex stochastic analysis can 

provide a meaningful improvement compared to the standard use of a single RW process 

with arbitrarily chosen (tuned) characteristics. 

• The GNSS-only filter mentioned above can be used in tandem with the loosely coupled 

INS/GNSS/NHC/ZUPT algorithms described in this thesis in order to create a navigation 

system that takes full advantage of the newly proposed stochastic modeling method. 

• Study the low-cost GNSS receiver clock oscillator instability. In turn, the derived modeling 

may allow the upgrade of the GNSS receiver’ performance. 
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