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Abstract

Geospatial data analysis often requires the computing of a distance transform (DT) for a

given vector feature. For instance, in wildfiremanagement, it is helpful to find the distance of all

points in an area from the wildfire’s boundary. Computing a distance transform on traditional

Geographic Information Systems (GIS) is usually adopted from image processing methods,

albeit prone to distortion resulting from flat maps. Discrete Global Grid Systems (DGGS) are

relatively new low-distortion globe-based GIS that discretize the Earth into highly regular cells

using multiresolution grids. In this thesis, we introduce an efficient DT algorithm for DGGS.

Our novel algorithm heavily exploits the hierarchy of a DGGS and its mathematical properties

and applies to many different DGGSs. We evaluate our method by comparing its distortion

with the DTmethods used in traditional GIS and its speed with the application of general 3D

mesh DT algorithms on the DGGS grid. We demonstrate that our method is efficient and has

lower distortion. To evaluate our DT algorithm further, we have used a real-world case study of

selecting soil test points within agricultural fields. Multiple criteria including the distance of

soil test points to different features should be considered to select representative points in a

field. We show that DT can help to automate the process of selecting test points, by allowing

us to efficiently calculate objectives for a representative test point. DT also allows for efficient

calculation of buffers from certain features such as farm headlands and underground pipelines,

to avoid certain regions when selecting the test points.
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Chapter 1

Introduction

There has not been a wholesale

shift to the use of geodetic distance,

or of globe-based methods for

calculating area.

Michael F. Goodchild, Reimagining

the history of GIS

We are gathering an immense amount of data about the earth using satellites, drones,

phones and other devices, which is predicted to be around 2.24 exabytes (2,240,000,000 gi-

gabytes) for just one day [1]. This data has great potential to help us understand and predict

geospatial phenomena throughanalysis and simulation. Oneexampleof geospatial phenomena

is wildfire; according toNatural Resources Canada (NRCan) an average of 2.5million hectares of

land burns annually because of wildfire [2]. By simulating the wildfires, they can be accurately

predicted. Another application for geospatial data is agriculture. Precision Agriculture relies on

various geospatial data including satellite imagery to help us better understand crop health

and soil structure. This helps us to direct the resources to the parts of the agricultural fields

that need them the most. Directing the resources not only lowers the cost of agriculture but
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also reduces the waste and pollution of the environment.

1.1 Problem Statement

When working with geospatial data, distance is an inseparable concept. Accurately measur-

ing the distance is crucial in geospatial analysis for instance for determining resource allocation

for agricultural fields or assessing the extent of damage caused by a wildfire. Moreover, de-

termining the distance of all points of a given region to a geospatial feature (e.g. boundary

of a wildfire) is commonly needed. Distance transform (DT) is a mapping that specifies the

distance of points in a domain to a specified feature and is a fundamental and frequent op-

eration to perform analyses and simulations of geographic data. It has been used for various

geospatial analyses including watershed delineation [3], urban planning [3], pipeline route

design [4, 5], and mountain railway alignment [6]. DT can be used to find the farthest distance

from a geospatial feature which has applications for optimizing soil test points.

Traditional Geographic Information Systems (GIS) are usually based on flat maps, and they

have adopted distance transformmethods from image processing techniques [3, 7]. Figure 1.1a

shows the distance transform applied to a feature inside of an image (i.e. regular 2D grid).

Mapping the curved earth into a flat domain introduces distortion, consequently, any distance

transform in image spacemay contain distortion. When a large area is projected, this projection

distortion is greater. Therefore, the traditional GIS approach for distance transform is not

directly applicable to large-scale applications such as pipeline route design [4]. Aside from

the distortion at large-scales, similar to many other operations for the earth, DT can be better

presented and interpreted on the globe rather than 2Dmaps.
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(a) (b) (c)

Figure 1.1: DT applied to different types of grids: (a) a regular image-based grid, (b) a DGGS
grid, and (c) an irregular general mesh. In this visualization, darker cells are closer to the feature
and brighter cells are farther to the feature.

A relatively new GIS approach, Discrete Global Grid Systems (DGGS), is a globe-based

representation of the earth that reduces distortion by approximating the earth with a poly-

hedron [8–10]. A DGGS discretizes the earth into mostly regular cells using multiresolution

grid systems. The regularity andmultiresolution properties of DGGS are the outcome of the

iterative application of a refinement scheme to the initial polyhedron faces [8]. DGGS proved to

be useful for complex geospatial data analysis like risk analysis [11] and point cloud processing

[12]. However, due to the spherical nature of the globe, it is not possible to find a fully regular

discretization for it. Therefore, DT algorithms that are developed for image space will not work

on a DGGS. Hence, the problem is how to develop an efficient DT on a DGGS.

1.2 Goals and Scope

Globe-based geospatial systems, including DGGS, promise to address the issues of flat-

map GIS. However, developing algorithms for curved shapes is more challenging compared

to flat-map GIS. The main goal of this thesis is to develop an efficient DT algorithm on top
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of a DGGS. Our DT algorithm does not make any assumptions about the shape of the DGGS

cells, the type of refinement, and the underlying projection, which is an advantage and makes

this algorithm general and applicable to many DGGSs. Our DT algorithm assumes that the

fundamental operation for traversing theDGGShierarchy is givenby theDGGS.After developing

the DT algorithm, we evaluate the correctness and performance of our DT algorithm. Then,

we compare our DT algorithm with a flat-map-based method in terms of accuracy, and with a

general-mesh-based method in terms of performance.

To more practically evaluate our DT algorithm, we use it to solve the real-world problem

of optimizing soil test points in precision agriculture. The goal is to use the DT to efficiently

calculate different metrics for optimization algorithms. The calculation of DT on DGGS helps

us to automate the test point selection process.

1.3 Methodology

It is not possible to find a fully regular multi-resolution discretization for the globe, hence

every DGGS’ grid is only semi-regular which makes it more challenging than a fully regular

grid. However, there is a possibility of exploiting this semi-regularity to develop amore efficient

algorithm in comparison with irregular grids (see Figure 1.1b and Figure 1.1c). In the context

of general 3Dmeshes, DT algorithms are developed based on geodesic distance calculations

[13, 14]. These general mesh algorithms can be applied to the DGGS grid but are slower,

especially with larger grids. For the DGGS grid, we can use specific properties of DGGS to

develop a more efficient algorithm. The traditional distance transform algorithms work on

either perfectly regular grids (i.e., images) or general meshes. These methods are not fit for the

semi-regularmesh of aDGGS and do not exploit the hierarchy of the underlyingmultiresolution

grid. Thus, a novel approach is needed. To address this need, in this thesis, we introduce a new,

efficient distance transform algorithm for DGGS.

4



In DGGS, we define distance transform as the distance of a set of cells to one or a set of

features. We use the properties of a DGGS, especially the hierarchy and the geometry of the

DGGS, to design an efficient distance transform algorithm. Our algorithm is based on a coarse

to fine hierarchical traversal of the DGGS. We start with a coarse resolution and calculate the

distance of each coarse cell to the feature. This step is efficient because there is a small number

of cells in this resolution. Next, based on calculated distances on the current coarse resolution,

we reduce the search space for the cells in higher resolutions and store all the relevant edges

of the feature in a data structure. We then iteratively refine the grid to a higher resolution and

make use of the pre-calculated search space to find the distance of child cells to the feature. We

show that the distance of the child cells is guaranteed to fall within the proximity of parent cells.

Case Study for Evaluation of DT in Practical Application

To evaluate our distance transform algorithm, we chose the real-world problem of optimiz-

ing soil test points in agriculture. Precision agriculture relies on soil conditions resulting from

soil testing across the field. Soil testing is expensive, and reducing the number of samples is

an important task. One viable approach is to divide the farm fields into homogeneous man-

agement zones that require only one soil sample. As a result, these sample points must be the

best representative of the management zones and satisfy some other geospatial conditions,

such as accessibility and being away from headlands. We use DT to calculate the distance of

a high-resolution sampling (DGGS cells in high-resolution) of the field to the complex man-

agement zone boundaries (see Figure 1.2). The areas of each management zone that have the

maximum distance to the management zone boundaries are candidates for representative

areas. DT is also used to avoid the proximity of the boundary of the field, as these areas are not

representative of the field as well as to find the distance to other features.
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(a) (b)

Figure 1.2: (a) Imaginary management zones for a field and (b), the result of applying DT to the
management zone boundaries. Highlighted areas in (b) are candidates for test point samples.

The conventional GIS process for selecting these points is slow and tedious. In this case

study, we introduce a framework for automatically determining locations for test points using a

constrained multi-objective optimization model. We define the objectives for a representative

area of a management zone. In this model, DT has an essential role in calculating multiple

objectives and constraints efficiently. Then, our algorithm optimizes the objectives using

a scalarization method while avoiding constraints. We assess our method by testing it on

five fields and showing that it generates optimal results. This method is fast, repeatable, and

extendable.

1.4 Contribution

The main contributions of this thesis fall into two parts:

1. A new method for efficient calculation of DT on DGGS is introduced. A mathemati-

cal theorem is introduced and proved, that allows for designing an efficient algorithm.

The performance of this algorithm is also analyzed and reported. Our DT algorithm is

6



compared to image-based andmesh-based methods. It is shown that our DT algorithm

reduces distortion compared to image-based and mesh-based methods and is more

efficient than mesh-based methods.

2. DT is applied to a real-world case study to automate the process of selecting soil test

points in agricultural fields. Selecting soil test points is a time-consuming task and with

the help of DT, this task is automated. It is shown that this automated method is efficient

and produces optimal test points.

Chapters 3 and4are extendedand restructured fromthepaper “EfficientCalculationofDistance

Transform on Discrete Global Grid Systems” by Kazemi, M. and Wecker, L. and Samavati, F.

published in ISPRS International Journal of Geo-Information, in 2022 [15]. Chapters 5 and 6 are

extended and restructured from the paper “Automatic Site Selection in Management Zones

Using Multi-Objective Optimization on Remote Sensing Data” by Kazemi, M. and Samavati, F.

This paper is currently under review.

1.5 Thesis Overview

The outline for the remaining chapters of this thesis is as follows: Chapter 2 covers the

background information and related work on both DT and the case study to give this work

context. Chapter 3 introduces a mathematical theorem and builds an efficient DT algorithm

based on that. Chapter 4 then covers the correctness and performance analysis of the developed

DT algorithm. It also compares the developed DT algorithm with image-based and mesh-

based algorithms. Chapter 5 covers how DT is applied to our case study of selecting soil test

points. Chapter 6 then presents the result of the case study and covers provides evidence of the

optimality of the results. Chapter 7 covers the implementation details of both the DT algorithm
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and the case study. Finally, Chapter 8 concludes with a summary of the thesis, along with

directions for future work.
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Chapter 2

Background and Related Work

In this chapter, we discuss background information for this thesis. We explain related

works and papers to state our work among others. Sections 2.1 through 2.4 present necessary

background information to understand the DT algorithm, and sections 2.5 through 2.8 present

necessary information to understand the case study of DT in agricultural soil sampling.

The basic definition of DT on image space and its applications are presented in section 2.1.

Then, section 2.2 presents the prerequisite information about DGGS that gives context to this

work. Next, in section 2.3, we briefly discuss how distances are calculated in this work, and in

section 2.4, we discuss different algorithms andmethods used to compute the DT on various

domains as well as the advantages and disadvantages of each method.

Section 2.5 gives a general high-level context to our real-world use case by explaining the

importance of soil sampling and the conventional methods used for soil sampling. Then,

sections 2.6 and 2.7, give more details about the specific problem in soil sampling that we

address. Finally, section 2.8 explains the general method used for solving a multi-objective

optimization problem which gives context to the final piece of the case study.
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2.1 Distance TransformDefinition and Applications

In 1966 Rosenfeld et al. introducedDT as a sequential operation in digital picture processing

with applications in shape skeletonization [16]. In the very basic form of Image Space, DT is a

transformation from a binary image in which black pixels are object(s) or feature and white

pixels are the background, to a gray-scale image. In this gray-scale image, the gray level shows

the distance of a background pixel to the feature. Figure 2.1 shows the distance transform

applied to a binary image. By looking at Figure 2.1b, it is obvious that the skeleton of the shape

can be extracted by following the bright pixels of the image.

(a) (b)

Figure 2.1: (a) The binary image before applying DT. (b) The result of applying DT to the binary
image.

After that, the idea of DT has been applied to many different areas and has applications in

medical image processing [17, 18], shape analysis [19–21], computer graphics [22], shortest

path computation [23], image segmentation [24], and Convolutional Neural Networks [25],

to name a few. Also, different distance metrics such as Manhattan distance [16], Chessboard

distance [26, 27], and Chamfer distance [28] have also been used to find distance transform.

However, Euclidean distance is still required for many of these applications [29].
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Besides the various mentioned applications of DT, de Smith [3] showed that DT is useful

for many geospatial applications too. For example, DT may be used for the computation of

multilevel buffer zones for watershed delineation and slope lines [3]. DT is also useful to

construct voronoi regions which is useful for urban planning such as building hospitals and

schools in a city or managing a rescue team in an area [3]. Furthermore, DT has been used for

large-scale construction planning such as pipeline route design [4, 5], and mountain railway

alignment [6]. Smart agriculture is another example which makes use of DT. When sampling

soil from a field, DT can be used to ensure sample points are far enough away from undesirable

areas such as the boundary of the field or known areas of contamination [30].

2.2 Discrete Global Grid Systems

DGGS is a novel approach to GIS which approximates the earth with a polyhedron to make

a global, universal representation of the earth with less distortion compared to flat maps [8].

DGGS is a discretized, hierarchical, and cell-based representation of the earth that provides

efficient neighbourhood access and parent-child traversal [8, 9]. Every DGGS is made of the

following main elements.

Initial Polyhedron

Figure 2.2 shows some of the initial polyhedrons that have been used to create a DGGS

[8, 9]. The closer this polyhedron is to the surface of the earth, the less the projection distortion.

In this work, we use a Disdyakis Triacontahedron DGGS [31].
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(a) (b) (c) (d) (e)

Figure 2.2: (a) Tetrahedron (b)Octahedron (c) Icosahedron (d)Disdyakis dodecahedron (e)
Disdyakis triacontahedron

Refinement Scheme

Cells resulting from the faces of the initial polyhedron are usually considered as the first

resolution of the DGGS (i.e. zero level of refinement). A refinement scheme is applied to the

faces of the polyhedron to make higher resolutions and a set of finer cells. This refinement

can be congruent or non-congruent [8, 9]. Figure 2.3 shows examples of refinements. The

resolution at which the data is being presented is the target resolution of the DGGS. Figure 2.4

shows the Disdyakis Triacontahedron DGGS at different refinement levels [31]. At resolution 1

the average area of the Disdyakis Triacontahedron DGGS cells is around 4250546.6 𝑘𝑚2. As

this DGGS uses a 1 to 4 refinement each consecutive resolution reduces the area by a factor of

1/4. This results in an average area of 15.4𝑚2 at resolution 20.
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(a) (b) (c)

Figure 2.3: Examples of congruent (a) 1 to 4 quad, (b) 1 to 3 triangle, and (c) non-congruent
hexagonal refinement. The black cells are original cells and the green lines show one level of
refinement.

(a) (b) (c)

Figure 2.4: Disdyakis Triacontahedron DGGS at resolution (a) 1, (b) 2, and (c) 3.

Cell Shape

The cell shape of a DGGS naturally comes from the choice of the initial polyhedron and the

refinement scheme. The most common cell shapes are quads, hexagons, and triangles [8, 9].
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Projection

Within aDGGS, projection is themethodof transferring informationbetween thepolyhedral

domain and the spherical domain of the earth. Figure 2.5 shows this projection for Disdyakis

Triacontahedron DGGS as an example [31].

Figure 2.5: Disdyakis Triacontahedron DGGS at resolution three in the polyhedral domain (left)
and the spherical domain (right).

Cell Indexing

To assign and retrieve data to and from the cells, we need to assign some indices to the cells.

Each index uniquely identifies one cell of the DGGS and a database can rely on these indices

instead of coordinates to store the data.

2.3 Distance on Globe

The real distance between two points on the earth depends on the topology of the earth

between those two points. However, this distance is difficult to compute, which is why an

approximation of the earth is often used to measure distances between points. In this work,

the distance between two points is calculated on a spherical domain via great-circle arc (i.e.,
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geodesic) calculations. We use the following formula to calculate the distance between the two

points of 𝑝 and 𝑞 on the sphere (see Figure 2.6) with 𝑟 representing the radius of the earth.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝, 𝑞) = 𝑎𝑐𝑜𝑠 ( ®𝑝
| ®𝑝 |

.
®𝑞
| ®𝑞 |
) ∗ 𝑟

Figure 2.6: The red line is the great-circle arc connecting points 𝑝 and 𝑞 .

The distance of a point on earth to a great circle arc is also needed in this work which is

presented in Algorithm 1. In this algorithm, the arc is represented by the two endpoints which

are connected to each other with a great-circle arc. It is assumed that the point and the two

endpoints are on the spherical domain.

Figure 2.7 gives some geometric context. We assume a unit sphere. Vectors ®𝑣 and ®𝑤 form a

plane. The vector ®𝑁 = ®𝑣 × ®𝑤 is the normal to that plane. We project the point 𝑝 to that plane.

Then, by normalizing that projected vector, we push it to the great circle that intersects 𝑣 and

𝑤 (this is 𝑝 ′ and line 3 in Algorithm 1). So, 𝑝 ′ lies on the great circle, but we do not know if 𝑝 ′ is

between 𝑣 and𝑤 (on the arc) or outside of it. We test it by calculating the cross vectors ®𝑝 ′ × ®𝑣

and ®𝑝 ′ × ®𝑤 . The results of these crosses are also normal to the aforementioned plane. If the

cross vectors point in different directions (180◦ angle between them), then 𝑝 ′ is between 𝑣 and

𝑤 , otherwise (0◦ angle between them), 𝑝 ′ is outside of them.
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Algorithm 1 Point To Great Circle Arc Distance
Input: point, arc
Output: distance
1: normal← normalize(v.cross(w))
2: pDotNormal← p.dot(normal)
3: projection← normalize(point - (pDotNormal * normal))
4: cross1← projection.cross(v)
5: cross2← projection.cross(w)
6: dotOfCrosses← cross1.dot(cross2)
7: if dotOfCrosses < 0 then
8: distance←Distance(point, projection)
9: else
10: d1←Distance(point, v)
11: d2←Distance(point, w)
12: distance←min(d1, d2)
13: end if
14: return 𝑑𝑖𝑠𝑡 𝑎𝑛𝑐𝑒

Figure 2.7: The red line is the great circle arc connecting points𝑣 and𝑤 , and point𝑝 is the point
in question.

2.4 Computing Distance Transform

While a DGGS has benefits over a traditional GIS, the problem of distance transform on

DGGS is not investigated in the literature. In this section, we see how distance transform is

computed in image space and mesh space. Image space is the perfectly regular end of the
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spectrum where distance transform algorithms are efficient. At the other end of the spectrum

are irregular general meshes in which distance transform is inefficient. DGGS is in the middle

of this spectrum where there is some level of regularity but they are not not perfectly regular.

Computing DT on Image Space

Distance transform has been studied extensively in image processing for 2D images since

[16] (See also [29]). It can be computed efficiently in perfectly regular 2D domains, for example,

see [32–34]. However, these algorithms exploit full regularity of the image domain and applying

them to a DGGS grid poses some challenges. One challenge is that the concept of neighbour

and distance are not aligned inDGGS grid (i.e., The neighbours fromdifferent directions usually

do not have the same distance). The second challenge is that the DGGS grid is not perfectly

regular but semi-regular.

Another flaw of using image-based algorithms for GIS applications is accuracy. De smith’s

work [3] uses image-based algorithms to do a distance transform, thus it is required to project

the surface of the earth onto a 2D plane which produces distortion. Using recent methods of

projection in GIS, the distance distortion in a small-scale, such as a city, might be negligible.

However, in large-scale applications, this method has measurable distortion which impacts

accuracy. Our algorithm, in contrast, calculates the distance transform on the globe, which

means the algorithm is applicable to larger scale applications such as pipeline route design

[4, 5], mountain railway alignment [6], and those which operate on a global scale.

Computing DT onMesh Space

Computing DT on a general mesh is more difficult than on 2D images due to the impact of

curvature on distance, as well as the irregular connectivity of general meshes. In 1987, Mitchell

et al. introduced an algorithm that computes the exact geodesic distance on a triangular mesh
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[35]. This algorithm is called the MMP algorithm after the initials of its authors. However, there

was no implementation of an MMP algorithm for 17 years, and it was not until 2005 when

Surazhsky et al. introduced one [36]. The challenge with this work is that it works only for

point features. Bommes et al. generalized the MMP algorithm to work with any arbitrary vector

feature [13]. Approximations of geodesic distance have also been investigated in computer

graphics for example by solving the heat equation on the surface of a mesh [14]. However,

in GIS exact distance calculations are important. While these algorithms can be applied to a

DGGS, they do not exploit any regularity or hierarchy within it.

2.5 Soil Sampling Techniques in Agriculture

To understand the context of our case study, in this section, we present the importance

of soil sampling and different techniques of soil sampling. The productivity of agriculture

depends on the soil nutrients which are maintained by fertilizers. To understand the health of

the soil and apply the right amount and type of fertilizer, a soil test is needed. This test helps

to determine the deficiency of soil nutrients. However, soil testing is expensive [37], and as

a result, based on a report from the United States Department of Agriculture (USDA), only

around 30% of farms in the U.S. adopted soil testing methods [38]. Therefore, it is essential to

minimize the cost of soil testing by minimizing the number of soil tests while trying to capture

the overall soil condition across the field [39]. The traditional methods of soil sampling include

composite sampling (Figure 2.8a) and grid sampling (Figure 2.8b) [40, 41]. Composite sampling

is the practice of collecting soil from various random locations in the field andmixing those

samples tomake a composite sample. This single composite sample then is sent to a laboratory

for soil testing which gives an average understanding of the soil of the entire field. However, it is

common to expect a large variability of nutrients across fields. Therefore, composite sampling

may not be precise, particularly for larger fields. On the contrary, grid sampling gives a more
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accurate understanding of the field (depending on the grid size) by subdividing the entire field

into many smaller regions (subfields) and sampling and testing each subfield. Depending on

the number of subfields, themain drawback of grid sampling is the higher cost due to excessive

testing.

(a) (b)

Figure 2.8: Traditional methods of soil sampling (a) composite sampling and, (b) grid sampling.
Blue flags show the sample points used to make the composite sample (only one test), while
white flags are sampled and tested individually. (Figures are taken from [41])

Precision Agriculture relies on new technologies and various data to help us better un-

derstand the soil structure and facilitate soil testing by carefully selecting a small number of

sites to test the soil [42]. This method increases crop yield and profitability while lowering

the levels of traditional inputs needed to grow crops, such as fertilizers [43]. One of the most

popular approaches in precision agriculture is Soil SamplingManagement Zones or Site-specific

Crop Management [42]. In this method, depicted in Figure 2.9a, a field is divided into several

Management Zones (MZ) which are relatively homogeneous sub-units of a farm field that can

each be treated uniformly. TheMZs are usually delineated by a multilevel thresholding method

(from now on, simply referred to as thresholding) on a performance function across the field

(e.g., historical yield). Figure 2.10 shows an example of a performance function across the field

and how thresholding this functionmakes theMZs. By establishingMZs, eachMZ is considered

homogeneous in the composite soil sampling method. As shown in Figure 2.9b, a composite

sample is done per MZ, which lowers the cost of testing compared to grid sampling by reducing
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the number of tests.

(a) (b)

Figure 2.9: Soil sampling management zones practice. (a) homogeneous sub-units of a farm
field, (b) composite sampling from eachMZ. The soil collected from similar-shaped flags mixes
to forma composite sample, whichmeans only three soil testswill be done. (Figures are adapted
from [41])

Figure 2.10: The process of MZ delineation from a performance function across the field.

Another practice of soil sampling is benchmark sampling. In this practice, the soil is sampled

from a benchmark site — which is a very small area within the entire field or within each MZ—

rather than making a soil composite [41]. Keyes and Gillund showed that benchmark sampling

can replace composite samplingwithout losing the test precision [44]. Thebenefit of benchmark

sampling is that by sampling from the same benchmark sites over the years, the trend of soil

nutrient changes can be tracked [40]. For this method of sampling, it is important to select a

small area of the field as a benchmark site that is representative of the soil of the field. Choosing

a single benchmark site for the entire field suffers again from the issue of not accounting for
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soil variability. Instead, using the soil sampling management zone technique, benchmark

sampling can be done per MZ as shown in Figure 2.11, and the result of the test is applicable to

all parts of that MZ. This method of testing not only provides precise information about the soil

composition but also reveals the trend of the nutrient changes for eachMZ while remaining a

cheap method of soil testing.

Figure 2.11: Benchmark sampling using management zone technique. (Figure is adapted from
[41])

2.6 Delineation of Management Zones

Management zones play an important role in our case study. Therefore, we need to know

how they are constructed before discussing how to select the benchmark sites. Different de-

lineationmethods for site-specific management zones exist based on different information,

usually yield maps, soil properties, topographic properties, electrical conductivity data, or

remote sensing and vegetation indices. Hornung et al. [45] have compared the soil-colour-

based and yield-based methods. Both methods require the availability of agricultural maps

such as soil colour and texture maps, yield maps, and topography maps. Fraisse et al. [46]

proposed a method which relies on soil electrical conductivity data. However seasonal effects

like weather have an impact on the electrical conductivity, so the electrical conductivity map of

a field cannot be compared to one from another field.
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Satellite imagery presents a great added value because of its availability and relatively low

cost. Georgi et al. [47] propose an automatic delineation algorithm based on only satellite

remote sensing data. In this method, they select satellite images of the field that show the

spatial pattern of plant growth. Then, they extract the near-infrared (NIR) band of the selected

images and average them over years to form the performance function. In this thesis, we use a

similar method that constructs the performance function by averaging the selected Normalized

Difference Vegetation Index (NDVI) images from satellite remote sensing data [30]. The details

of this method are discussed in 5.2.

2.7 Benchmark Soil Sampling

Benchmark soil sampling involves taking soil samples from a designated benchmark site,

which is a small area within either the entire field or eachMZ [40]. Research has shown that

benchmark sampling is comparable in accuracy to composite sampling in termsof test precision

[44]. The advantage of benchmark sampling is that by consistently sampling from the same

benchmark sites over time, changes in soil nutrient trends can be monitored [40]. Due to

soil variability, different sampling designs try to find representative points of a field with the

help of different sensory information (e.g. electrical conductivity of the soil) [48, 49]. Another

sampling scheme acts inmultiple stages where first, a large number of points are generated and

then filtered based on some criteria [50]. One study introduces a method for identifying the

representative sampled points from a set of already sampled and tested points using clustering

algorithms and calculating fuzzy membership values for each point [51]. Overall, finding

representative areas of the field remains a challenge for benchmark sampling. Several studies

have suggested thatmanagement zonedelineationprovides abasis for benchmark soil sampling

[52–56]. AlthoughMZs are assumed to be homogeneous for management purposes, the soil

within eachMZstill varies by location. Therefore, it is important to carefully select representative
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areas rather than making arbitrary choices. Different studies have used approximate measures

to manually select representative locations for benchmark sampling [57–59]. For example, the

benchmark sites in Alberta were selected to be representative of soil-landscape and agricultural

land-use found in the agricultural area, under the Alberta Environment Sustainable Agriculture

(AESA) Soil Quality Monitoring Program [57].

Benchmark sampling is a practical and cost-effective method of soil sampling [60, 61].

Typically, the benchmark sampling sites are selected by experts after field surveys, or by farmers

using some guidelines like in [41]. However, the literature lacks algorithmic methods for select-

ing benchmark sites fromMZs. This thesis addresses this gap by introducing an algorithm for

the automatic selection of benchmark sites that relies solely on satellite images and does not

need any auxiliary data (e.g. electrical conductivity sensors).

2.8 Solving amulti-objective optimization problem

Amulti-objective optimization problem is not trivial to solve. The preferences of objectives

should be given for each specific optimizationproblem, otherwise, there is no optimal answer to

amulti-objective optimization problem. In this case, a set of answers can only bePareto optimal

[62]. A Pareto optimal answer means you can not make any objective of that better without

making other objectives worse. In general, methods for solving a multi-objective optimization

problem can be categorized into three categories: methods with (1) a priori articulation of

preferences, (2) posteriori articulation of preferences, and (3) no articulation of preferences

[62]. The most common and general method of solving is to combine all objectives into a

function to make it a single objective function which is called scalarization. However, different

scalarizationmethods, such as Global Criterion, Achievement Function, Compromise Function,

andObjective Product use different combinations [62]. If thesemethods implement aweighting

system for combination, they are a method with a priori articulation of preferences.
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A weighted scalarization method converts a multi-objective optimization problem into

a single-objective optimization problem. The typical method of solving a single-objective

optimization problem is solving for critical points directly if the mathematical expression of

the objective function is well-known and is differentiable (e.g., linear least squares) [63, 64].

When the mathematical expression for the objective function is unknown, gradient-based

methods such as gradient descent, Newton’smethod, or the Quasi-Newtonmethod can be used

[63, 64]. These methods typically start from a random point and rely on the gradient to find the

direction of the steepest descent. The gradient is usually approximated by numerical methods

for the objective function. This process is iteratively repeated until the algorithm converges.

However, these methods may converge to a local minimum depending on the starting point. If

the domain of the objective function is discrete and bounded (e.g., raster data such as satellite

imagery), a complete search method can be applied by evaluating the objective function for

each value in the domain (e.g., each pixel in the raster). This approach guarantees to find

the global minimum but can be expensive if the domain is large. DGGS, as a data integration

platform, is a discretization of the earth; hence, it can be naturally used to evaluate and solve

an optimization problem efficiently. Moreover, we can control the size of the search space by

changing the resolution of the DGGS to tune the trade-off between performance and accuracy.
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Chapter 3

Calculating Distance Transform on

DGGS

Themain goal of this thesis is to develop an efficient algorithm for computing a distance

transform on a DGGS. In contrast to image space and mesh space algorithms, our method

exploits the hierarchy and the geometric properties of a DGGS grid. This allows our method to

be more efficient than the general mesh-based versions. In Section 3.1, we explain how DGGS

hierarchy is exploited to reduce the search space of the DT. Section 3.2, is introducing two

algorithms that rely on the DGGS hierarchy to calculate DT.

3.1 Reducing the Search Space for Developing an Efficient

Algorithm

TheDT algorithm relies on amassive reduction of search space using the hierarchy of DGGS

cells. We first discuss and prove a theorem that enables us to exploit the hierarchy to reduce

the search space.
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Figure 3.1: Distance of a cell to a feature.

Our algorithm needs three main inputs. First is a vector feature, e.g. the border of a country.

This input consists of a list of edges, where each edge is defined by two points on the earth that

are connected by a great-circle arc. The second input is the DGGS that we want to operate on.

The DGGS enables us to utilize the hierarchical grid to optimize the algorithm. And the last

input is the resolution of the DGGS on which DT needs to be calculated. We call this resolution

the target resolution. The goal is to compute theminimumdistance from each cell of a region at

the target resolution to the feature. The minimum distance from a cell to the feature is defined

as the minimum distance from a representative point of the cell to the feature. Like Figure 3.1,

this representative point can naturally be the centroid of the cell, but any other interior point

would work with our algorithm too. The objective is to compute such a distance for all of the

cells of the region at the target resolution to form a distance field.

To exploit the hierarchical nature of a DGGS, our algorithm starts at a coarse resolution
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which has few cells and does not require many distance calculations. When refining the grid,

we make use of the calculations on the coarse resolution to reduce the number of distance

calculations at the target resolution. We accomplish this by introducing and proving Theorem 1,

which allows us to iteratively reduce the search space when traversing to higher resolutions.

Figure 3.2: An example of a bounding space (green circle).

Before describing the theorem, let us first establish some notations and a simple illustration

provided in Figure 3.2. Let 𝑝 be the representative point of cell𝐶 , and 𝑟𝑝 be the distance of 𝑝

to the feature 𝐹 . As demonstrated in Figure 3.2, 𝑟𝑝 = |𝑝 − 𝑓𝑝 | where 𝑓𝑝 is the closest point of

feature 𝐹 to representative point 𝑝 . During the hierarchical traversal of cells, we must evaluate

𝑟𝑞 where 𝑞 is the representative point of a descendant cell of𝐶 . Obviously, the closest point 𝑓𝑞

can be different from 𝑓𝑝 . However, when 𝑝 and 𝑞 are close, the search space of 𝑓𝑞 becomes a

small subset of 𝐹 . Theorem 1 reduces the search space of the 𝑓𝑞 by providing a bound for this
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space.

Theorem 1. Given an arbitrarily shaped cell𝐶 , its representative point 𝑝 , its distance to feature

𝑟𝑝 , and 𝑞 , the representative point of a descendant cell of𝐶 , the search space of 𝑓𝑞 is all the edges

of the F inside of a circle centred at 𝑝 with radius 𝑟𝑝 + 2𝑑 , where 𝑑 is the distance of the farthest

possible 𝑞 to 𝑝 .

Based on the Theorem 1, it is guaranteed that the closest point 𝑓𝑞 to any point in the

highlighted triangle in Figure 3.2, is inside the bounding circle (the green circle).

Proof of Theorem 1. Based on the definition of the 𝑟𝑞 and 𝑓𝑞 we have (see Figure 3.2):

min
𝑓 ∈𝐹
| 𝑓 − 𝑞 | = 𝑟𝑞 ⩽ | 𝑓𝑝 − 𝑞 | (3.1)

Otherwise, 𝑓𝑝 is closer to 𝑞 than 𝑓𝑞 , and it contradicts the assumption that 𝑓𝑞 is the closest point

of the feature to 𝑞 . Using triangle inequality we have:

| 𝑓𝑝 − 𝑞 | ⩽ 𝑟𝑝 + |𝑝 − 𝑞 | (3.2)

Therefore using (3.1) and (3.2) and the definition of 𝑑 , we obtain:

𝑟𝑞 ⩽ 𝑟𝑝 + |𝑝 − 𝑞 | ⩽ 𝑟𝑝 + 𝑑 (3.3)

To find the search space of 𝑓𝑞 in respect to 𝑝 , using triangle inequality, we have:

| 𝑓𝑞 − 𝑝 | ⩽ 𝑟𝑞 + |𝑝 − 𝑞 | (3.4)

and then using (3.3) we obtain:

| 𝑓𝑞 − 𝑝 | ⩽ 𝑟𝑝 + 𝑑 + |𝑝 − 𝑞 | ⩽ 𝑟𝑝 + 2𝑑 (3.5)

□

28



(a) (b)

Figure 3.3: Two types of triangle 1 to 4 refinements with appropriate d.

Figure 3.3 shows examples of 𝑑 in triangular grids with congruent refinements with the

assumption that 𝑝 is the centroid of the shapes. When 𝑑 is a small value, the search space is

smaller and the resulting algorithm becomes faster. The value of 𝑑 depends on the shape of

the cell and the refinement used in DGGS. In general, 𝑑 = max
𝑞∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝐶 )

|𝑝 − 𝑞 | = |𝑝 − 𝑞𝑚 |. For

congruent refinements, d can simply be determined using the parent cell’s geometry (i.e. 𝑞𝑚 is

a point on the boundary of the cell𝐶 ). For non-congruent refinements, 𝑑 can be determined

with a similar method using the footprint of the cell𝐶 . For example, Kevin Sahr [65] provides

such a footprint for a non-congruent aperture 3 hexagonal tree system. Based on [65], the 𝑟

shown in Figure 3.4 covers the entire footprint of the ancestor cell. Therefore, this radius can be

used as 𝑑 .
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Figure 3.4: The gray cells are the footprint of the large black hexagon at 4 resolutions higher.
Image taken from [65]1.

3.2 An Algorithm to Calculate Distance Transform on DGGS

This section introduces two algorithms that calculate a distance transform on a DGGS grid.

The basic idea is presented in the first algorithm and the second algorithm is a modification of

the first algorithm which repeats the first algorithm to gain more efficiency. Wemake use of

Theorem 1 to describe the first algorithm as follows.
1Reprinted from Computers, Environment and Urban Systems, 32, Sahr, K., Location coding on icosahe-

dral aperture 3 hexagon discrete global grids, 186, Copyright 2023, with permission from Elsevier (Licence No.
5612350087487). The copyright is attached in the appendix.
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Single Stepping from Base to Target Resolution

To calculate DT on a DGGS, we start from a coarse resolution (i.e., base resolution). Once in

this resolution, computing distance using the exhaustive search algorithm becomes very quick.

Therefore, for each cell, we check the distance to all edges of the feature and find the minimum.

After finding DT in the base resolution, we compute the bounding circle for each cell in it. We

then find and store all the edges of the feature that are within this circle; we call this list of edges

the “candidate list” of the cell. Based on Theorem 1, we refine the grid to the target resolution

and use the stored candidate lists for DT computation of child (or descendant) cells. So in

the target resolution, we simply need to check the distance from each cell to the edges of the

feature that are stored in their parents’ (or ancestors’) candidate list. This process is presented

in Algorithm 2. The pseudocode shows how this algorithm can be implemented in three steps:

1) calculating the bounding circles and the candidate lists in the base resolution (lines 1-5), 2),

refining the base cells to get the target cells with a jump from the base resolution to the target

resolution (lines 6-9), and 3) calculating the distances in the target resolution based on the

candidate lists (lines 10-13).
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Algorithm 2 Compute Distance Transform
Input: grid, feature, baseRes, targetRes
Output: distanceField
1: baseCells← getCoveringCellsAtResolution(feature, baseRes)
2: for each 𝑐𝑒𝑙𝑙 in 𝑏𝑎𝑠𝑒𝐶𝑒𝑙𝑙𝑠 do
3: distance← computeDistance(cell, feature)
4: cell.candidateList← computeCandidateList(cell, distance, feature)
5: end for
6: targetCells← new List()
7: for each 𝑐𝑒𝑙𝑙 in 𝑏𝑎𝑠𝑒𝐶𝑒𝑙𝑙𝑠 do
8: targetCells.add(refineToRes(cell, targetRes) )
9: end for
10: for each 𝑐𝑒𝑙𝑙 in 𝑡 𝑎𝑟 𝑔𝑒𝑡𝐶𝑒𝑙𝑙𝑠 do
11: candidateList← cell.ancestor.candidateList
12: distanceField.add(cell, computeDistance(cell, candidateList) )
13: end for
14: return 𝑑𝑖𝑠𝑡 𝑎𝑛𝑐𝑒𝐹𝑖𝑒𝑙𝑑

Based on Theorem 1, the candidate list calculated in the base resolution is valid for all

descendants of the base resolution. This enables us to jump from the base resolution to the

target resolution. However, in the next section, we show how it is preferable to refine the mesh

one resolution at a time in order to fully exploit the hierarchy. Algorithm 3 and Algorithm 4 show

the details of the 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 subroutines, respectively.

The implementation of the 𝑝𝑜𝑖𝑛𝑡𝑇 𝑜𝐺𝑟𝑒𝑎𝑡𝐶𝑖𝑟𝑐𝑙𝑒𝐴𝑟𝑐𝐷𝑖𝑠𝑡 𝑎𝑛𝑐𝑒 subroutine is given in 2.3.
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Algorithm 3 Compute Candidate List
Input: cell, distanceToFeature, edgeList
Output: candidateList
1: representative← getRepresentativePoint(cell)
2: d← getD(cell)
3: candidateList← new List()
4: for each 𝑒𝑑𝑔𝑒 in 𝑒𝑑𝑔𝑒𝐿𝑖𝑠𝑡 do
5: distance← pointToGreatCircleArcDistance(representative, edge)
6: if distance < distanceToFeature + 2d then
7: candidateList.add(edge)
8: end if
9: end for
10: return 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡

Algorithm 4 Compute Distance
Input: cell, edgeList
Output: distance
1: representative← getRepresentativePoint(cell)
2: distance←+∞
3: for each 𝑒𝑑𝑔𝑒 in 𝑒𝑑𝑔𝑒𝐿𝑖𝑠𝑡 do
4: arcDistance← pointToGreatCircleArcDistance(representative, edge)
5: distance←min(distance, arcDistance)
6: end for
7: return 𝑑𝑖𝑠𝑡 𝑎𝑛𝑐𝑒

Iterative Refinement

In section 3.2, we discussed how this algorithm is done in a single step from the base

resolution to the target resolution. However, this process can be repeated iteratively between

the base and the target resolutions to make the candidate lists smaller (i.e., reduce the search

space) step-by-step. The algorithm for this modification is presented in Algorithm 5. The basic

idea is to go through the grid from the base resolution and refine the grid one resolution at

a time to reach the target resolution. This way, we can refine the candidate lists iteratively in

each step. Line 2 of Algorithm 5 is the main loop that controls iterations of the algorithm. Lines
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3-20 of this algorithm are similar to Algorithm 2 with a small difference in Algorithm 2’s first

step. To calculate the candidate lists, if it’s the first time we are calculating, there is no previous

candidate list and no previous distance field (Lines 4-6). The next times, we use the previous

candidate list and filter this list to make smaller lists for the next resolution (Lines 7-10).

Algorithm 5 Compute Distance Transform with Iterative Refinement
Input: grid, feature, baseRes, targetRes
Output: distanceField
1: coarseCells← getCoveringCellsAtResolution(feature, baseRes)
2: for 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑠 ← 𝑐𝑜𝑎𝑟 𝑠𝑒𝑅𝑒𝑠 + 1 to 𝑡 𝑎𝑟 𝑔𝑒𝑡𝑅𝑒𝑠 step 1 do
3: for each 𝑐𝑒𝑙𝑙 in 𝑐𝑜𝑎𝑟 𝑠𝑒𝐶𝑒𝑙𝑙𝑠 do
4: if isFirstTime then
5: distance← computeDistance(cell, feature)
6: cell.candidateList← computeCandidateList(cell, distance, feature)
7: else
8: distance← distanceField.getDistance(cell)
9: cell.candidateList ← computeCandidateList(cell, distance,

cell.parent.candidateList)
10: end if
11: end for
12: fineCells← new List()
13: for each 𝑐𝑒𝑙𝑙 in 𝑐𝑜𝑎𝑟 𝑠𝑒𝐶𝑒𝑙𝑙𝑠 do
14: fineCells.add(refineToRes(cell, currentRes) )
15: end for
16: distanceField.clear()
17: for each 𝑐𝑒𝑙𝑙 in 𝑓 𝑖𝑛𝑒𝐶𝑒𝑙𝑙𝑠 do
18: candidateList← cell.parent.candidateList
19: distanceField.add(cell, computeDistance(cell, candidateList) )
20: end for
21: coarseCells← fineCells
22: end for
23: return 𝑑𝑖𝑠𝑡 𝑎𝑛𝑐𝑒𝐹𝑖𝑒𝑙𝑑
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Chapter 4

Distance Transform Results and

Discussion

The proposed DT algorithm works with any DGGS grid regardless of the shape of the cells.

To test and benchmark the algorithm, we have implemented it on a Disdyakis Triacontahedron

DGGS [31]. The cells of this DGGS are triangular cells with one-to-four congruent refinement

as shown in Figure 2.4. First we show some visualizations of the output of DT. Then we describe

some tests to evaluate the correctness and performance of our algorithm.

Figure 4.1 shows a visualization of DT for Ontario at different target resolutions and Fig-

ure 4.2 shows a visualization for three other provinces or territories of Canada. Figure 4.3 shows

the result of DT for two smaller scale features, the border of the city of Calgary and a farm field

in Alberta.
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(a) (b) (c)

Figure 4.1: Distance transform for the border of Ontario at target resolution (a) 7 (Avg. cell size:
1037.3 𝑘𝑚2), (b) 9 (Avg. cell size: 64.8 𝑘𝑚2), (c) 12 (Avg. cell size: 1.0 𝑘𝑚2).

(a) (b) (c)

Figure 4.2: Distance transform for the border of (a) Mainland British Columbia and (b) Nunavut
at target resolution 11 (Avg. cell size: 4.0 𝑘𝑚2), and (c) Price’s Edward Island at target resolution
15 (Avg. cell size: 0.016 𝑘𝑚2).
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(a) (b)

Figure 4.3: Distance transform for the border of (a) the city of Calgary at target resolution 15
(Avg. cell size: 0.016 𝑘𝑚2) and (b) a farm field in Alberta at target resolution 19 (Avg. cell size:
61.8𝑚2).

4.1 Correctness Analysis

In sections 3.2 and 3.2, we discussed the correctness of Algorithm 2 and Algorithm 5, which

both rely on Theorem 1 to reduce the search space by using the hierarchical properties of a

DGGS. In this section, we introduce an empirical test which provides further evidence for the

correctness of Algorithm 2 and 5. As the ground truth we use the result of the “Generate Near

Table” tool from the proximity tools of ArcGIS Pro with the geodesic distance option. To use this

tool, we output two pieces of information from our software, (1) the midpoints of the cells used

for our DT calculations, and (2) the feature (or boundary) from which the distance is measured.

Our system considers line segments of the feature as great-circle arcs, while this is not the case

for ArcGIS Pro. To address this issue, we construct a high resolution sampling from the features’

line segments (i.e., 10 meter distance between sample points). At this scale, there is practically

no difference between a great-circle arc and a straight line. We then import these two pieces of

information into ArcGIS Pro with the spatial reference system EPSG:4047 to match our DGGS
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earth model. We repeated this test for features at three different scales which are shown in

Figure 4.4.

(a) (b)

(c)

Figure 4.4: Distance transform sample points and corresponding boundaries imported into
ArcGIS Pro for (a) the province of Ontario, (b) the city of Calgary, and (c) a farm field in Alberta.
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The “Generate Near Table” tool outputs the geodesic distance from each point to the

boundary. Using this data, we calculate the difference from the distances we calculated for

these points using Algorithm 2 and Algorithm 5. Table 4.1 presents the extents of the calculated

difference.

Difference Min (mm) Max (mm) Mean (mm) Std. Deviation (mm)

Ontario (Algorithm 2) 0.0 0.0 0.0 0.0
Calgary (Algorithm 2) -1.3 1.8 0.0 0.1
Farm field (Algorithm 2) -6.4 11.4 0.1 0.6
Ontario (Algorithm 5) 0.0 0.0 0.0 0.0
Calgary (Algorithm 5) -1.3 1.8 0.0 0.1
Farm field (Algorithm 5) -6.4 11.4 0.1 0.6

Table 4.1: Difference in millimeters between the ArcGIS Pro calculated geodesic distances and
ours.

Table 4.1 shows the accuracy of our algorithms and demonstrates that our main algorithms,

implementation of all subroutines, and results are correct. It also shows that when identical

points are given, both Algorithm 2 and Algorithm 5 produce the exact same distance. The small

difference between ArcGIS Pro and our algorithmmight be caused by boundary resampling or

floating point errors.

4.2 Performance Analysis

To analyze performance, we use the boundary of the province Ontario of Canada as the

input feature which has 449 edges. In the process of this algorithm, DGGS operations are used

to obtain the vertex positions of a cell (used to find representative point of a cell and also to

calculate 𝑑), and children of a cell. Also, operations to project a point from the polyhedral

domain of a DGGS to the spherical domain (used in lines 1-3 of Algorithm 1). The aim of the

proposed algorithm is to be efficient with the assumption that DGGS operations are efficient.
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In other words, this algorithm tries to be efficient by minimizing the number of distance calcu-

lation operations needed to compute the distance field. Therefore, to evaluate the algorithm

independent of the efficiency of DGGS operations, we calculate and report the number of

distance calculation operations performed for each run of the algorithm.

The distance calculation operation or Algorithm 1, calculates the minimum spherical

distance from a point to a great circle arc. This is the unit of work and our algorithm tries to

minimize the number of occurrences of this operation. The baseline is that we do not exploit

the hierarchy of the DGGS and directly use the target resolution to calculate the distance. To

achieve this, for each cell in target resolution, we check the distance from the cell to all of the

feature edges. So the total number of operations is the number of cells in target resolution

times the number of edges of the feature. In theory, the ideal scenario is that for each cell in the

target resolution, we know exactly which edge is the closest and compute the distance of the

cell only to that edge. In this case, the total number of operations is only the number of cells

in target resolution. Figure 4.5 showcases the dramatic improvement in the performance of

our algorithms explained in 3.2 and 3.2 compared to the baseline which makes it possible to

calculate DT for higher resolutions.
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Figure 4.5: The number of distance operations in different target resolutions for the boundary
of Ontario.

The graphs in Figure 4.5 are exponential because the number of target cells grows expo-

nentially with the target resolution. To better understand the efficiency of our algorithm, we

can slightly change our metric. Figure 4.6 shows the performance of the algorithms in another

metric, reporting the total number of operations per target cell. The domain of this metric is

between one (being our ideal scenario of knowing the closest edge to each cell exactly) and the

number of edges of the feature (449 for the border of Ontario). The closer this number is to one,

the better the performance.
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Figure 4.6: The number of distance operations in different target resolutions for the boundary
of Ontario.

Interestingly, this metric is a constant for the baseline algorithm due to us checking every

edge of the feature for each cell at the target resolution. What’s more is that as we observe

higher resolutions we can better exploit the hierarchy and get closer to the ideal of 1 operation

per target cell.

Based on the analysis presented in this section, the iterative algorithm outperforms the first

algorithm. For the boundary of the province of Ontario and the target resolution of 12, the best

number of operations per target cell we could achieve using the first algorithm is 17.7. However,

using the iterative algorithm with the same inputs, we can achieve 6.9 operations per target

cell, which is considerably lower.
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4.3 Discussion

For a specific target resolution, the base resolution is an input to our algorithm that doesn’t

affect the result but gives us greater freedom of choice. We previously discussed that this should

be a coarse resolution, but a concrete number has not been stated. Figure 4.7 shows the number

of operations used to calculate DT in resolution 12 using the iterative algorithm from different

base resolutions. We observe that the number of operations almost strictly increases with

increasing the base resolution. However, there is no considerable difference between the base

resolutions 3 to 7 (minimum of 6.9 operations and maximum of 7.5 operations). It is clear

that if the resolution of the base is very close to the target resolution, we do not gain a large

improvement. Also, our algorithm is not sensitive to this input as long as a coarse resolution is

chosen.

Figure 4.7: The effect of the base resolution on the performance of the iterative algorithm for
the target resolution 12.

The single-step algorithm calculates the candidate lists only in the base resolution first and

then jumps to the target resolution. The iterative algorithm on the other hand, after calculating

the candidate lists in the base resolutions, refines the candidate lists in every resolution in
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between. These two algorithms act as extremes, meaning other options are also possible. We

have investigated all the combinations possible to reach from the base resolution to the target

resolution. We found that always visiting every resolution in between, as the iterative algorithm

does, is always the most efficient.

4.4 Comparison

Distance transformmethodsused in traditionalGIS that are basedon image space introduce

distortions. Figure 4.8a shows the distance transform computed in ArcGIS Pro software using

image-based methods, and the distortions can be clearly seen. Figure 4.8b and Figure 4.8c

shows a visualization calculated on the DGGS with our method.
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(a)

(b) (c)

Figure 4.8: Distance transform from Yellowknife using (a) ArcGIS and planar distance calcula-
tions, (b, c) DGGS and our method.

To quantify the amount of distortion caused by traditional GIS (i.e., flat map projections),

we performed a test which is similar to Section 4.1. We use the same features as Figure 4.4,
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but we switch to the planar distance option within the “Generate Near Table” tool. To use the

planar distance calculations, we first project the boundary and the sample points to the planar

domain using the Universal Transverse Mercator (UTM) coordinate system. Each zone in the

UTM coordinate system is a cartesian coordinate system with meter units. Table 4.2 shows the

comparison between the ArcGIS Pro planar distance calculation and the distances produced

by Algorithm 5. As we expect, significant distance distortion is present in the planar setting

and it reduces to smaller amounts as the scale decreases. In this test, if the feature was not

contained in a single UTM zone, we projected all points to the zone that contains the largest

portion of the feature. Specifically, we used UTM zone 17N for Ontario, 11N for Calgary, and

12N for the farm field.

Difference Min (m) Max (m) Mean (m) Std. Deviation (m)

Ontario -85.9256 3268.89 431.938 581.674
Calgary 0.0068 32.80 6.301 6.725
Farm field -0.0058 1.80 0.307 0.359

Table 4.2: Difference in meters between the ArcGIS Pro calculated planar distances and the
distances from Algorithm 5.

To compare the MMP algorithm [35] for general meshes with our method, there are two

aspects to consider. First, the MMP algorithm gives the exact geodesic distance on the mesh. In

the case of a DGGS, the mesh is an approximation of a sphere, and points must be projected

from the sphere onto the face of the mesh. The MMP algorithm does not consider the effects of

the projection and thus its geodesic calculations will not be the same as those calculated on the

sphere. However, for higher resolutions of the DGGS, where the mesh is closer to the surface

of the sphere, the MMP algorithm becomes a closer approximation to the spherical geodesic

distances. Second, theMMP algorithm is less efficient than our algorithm for higher resolutions.

For this comparison, we have used the border of Ontario to benchmark the algorithms. The

process of which is done on a computer with an Intel Core i7-6700 CPU with both algorithms
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being tested under the same conditions using the Google Benchmark tool. Figure 4.9 then

compares the execution time of the two algorithms, and Table 4.3 lists the number of target

cells at different resolutions next to their respective execution times. In resolutions lower than

9, theMMP algorithm is faster (though it is less accurate), but the difference is negligible. As we

go to higher resolutions and greater numbers of target cells, the MMP algorithm takes more

time than our method by a wide margin.

Figure 4.9: Execution time of our algorithm and the MMP algorithm at different resolutions for
the border of Ontario.
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Target resolution # of Target cells Our algorithm (ms) MMP (ms)

5 208 74.0 0.8
6 464 66.6 1.6
7 1488 113.3 5.7
8 5952 159.6 33.9
9 19392 273.9 240.7
10 69696 719.7 2474.8
11 260480 2200.3 40178.0
12 1041920 7541.7 946192.2

Table 4.3: Execution time of our algorithm andMMP algorithm along with the number of target
cells for the border of Ontario.
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Chapter 5

Application of Distance transform in

Soil Sampling
1

To evaluate our proposed DT algorithm in a real-world case study, we chose the problem

of selecting benchmark sites in agricultural fields. As discussed in section 2.7, benchmark

sampling is a superior soil sampling technique, and MZ delineation provides a basis for it. The

main challenge of benchmark sampling is selecting a benchmark site within each MZ that is a

proper representative of that MZ. The criteria for the representative area of the MZ depend on

the method used for delineating the MZs. In general, the following criteria are important:

1. Being close to themedian of the performance function used forMZ delineation within each

MZ : Median is statistically considered a good representative of a data set because it is a

robust measure describing the central tendency of the data. Therefore, it is desired to

select the benchmark site in a place where its performance function value is close to the

median of its MZ. Figure5.1a shows a visualization for this criterion for only oneMZ in
1This chapter is addressing a real-world problemderived from aMitacs project fromDecisive Farming Company

(part of Telus Agriculture).
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which blue regions have a smaller absolute difference to the median.

2. Being far from the boundary of the MZ : Areas close to the MZ boundaries are more

sensitive to input changes or year-to-year variation. To obtain more robust benchmark

sites, it is better to find areas away from the boundaries of eachMZ. Figure5.1b shows

this criterion for one MZ; locations with darker blue are farther from the boundary.

3. Being close to the previously sampled points: To be able to perform a benchmark sampling,

if any previously sampled points are available, it is better to select the new benchmark

site close to the previously sampled points.

4. Steepness: The nutrient levels at steep areas may vary a lot from year to year. Moreover, if

an area is steep, it may not be accessible for the sampling truck. Therefore, it is desired to

select benchmark sites away from steep regions.

5. Avoiding headlands: Headlands are areas of the farm field where heavy agricultural ma-

chines, such as combine harvesters, take turns. These areas might be affected by denser

soil and overlapping application of fertilizer. Hence, these areas are not representative of

the entire field and should be avoided.

6. Avoiding inaccessible areas: Inaccessible areas should be avoided so that sampling trucks

can collect samples.

7. Avoiding the proximity of benchmark sites in other MZs: The selected benchmark sites

in different MZs should be far away from each other to ensure the benchmark sites do

not all come from a small region of the field. Figure5.1c shows an example of benchmark

sites that are concentrated in a small area versus benchmark sites that are distanced from

each other.

In various scenarios, all or a subset of these criteria must be satisfied.

50



(a) (b) (c)

Figure 5.1: Criteria for MZ representative area. (a) absolute difference to the median value of
the underlying function for MZ 2 (the numbers are in the unit of the performance function),
and (b) distance to the boundaries of MZ 2 have been shown using a cool-warm colour map
(in meters). (c) blue diamonds are benchmark sites concentrated in the lower right part of the
field, while green circles are benchmark sites that are distanced from each other.

The process of selecting benchmark sites based on the criteria is cumbersome requiring

integrating various datasets andmanually comparing different values. Therefore, the challenge

is how to automatically satisfy all criteria and constraints using the available datasets. We pro-

pose a framework that offers an automated and algorithmic approach that integrates various

data inputs such as MZs, Digital ElevationModel, and field boundary into a multi-objective

and multi-constraint optimization model. By solving this optimization model, the framework

generates benchmark sites that meet specific needs. In this framework, for eachMZ, several

distance metrics are calculated and combined into a single weighted error function. By mini-

mizing this error function, the optimal area for placing benchmark sites is determined. In cases

where MZs are not available, any given performance function, typically time-varying remote

sensing measurements, can be used instead. MZs can then be determined using a flexible

thresholding technique.

In this case study, DGGS helps us to support integrating different inputs, calculating vari-

ous distances (e.g., to the MZ boundaries) efficiently, solving the optimization problem, and

automatically repeating this process for various regions. Recently, DGGS has been selected as
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an effective GIS platform used for data integration and analysis of remote sensing data [12] and

congruent geography applications [10], which provides more confidence in selecting DGGS for

this task.

This case study proposes an algorithmic framework that effectively automates the process of

selecting benchmark sites for a field, based on its georeferenced shape file and remote sensing

measurements in time. The framework is highly adaptable and can easily incorporate different

measurements and site selection criteria. Compared to the conventional GIS process, which

typically takes several days with the involvement of GIS technicians, our automatic process

of generating benchmark sites using the proposed algorithmic framework takes only a few

seconds. We also provide a comprehensive evaluation and analysis of the resulting benchmark

sites to confirm that our optimization model works as expected. Furthermore, we demonstrate

how our framework can be leveraged to incorporate different criteria that are not considered in

this work, making it a highly adaptable tool for selecting benchmark sites for fields.

5.1 Benchmark Site Selection Framework

The criteria for a representative area of a field is formulated into a framework as a con-

strained multi-objective optimization problem. Criteria that specify areas to avoid are our

constraints and criteria that we want to optimize for are objectives. The main input data,

which are performance function (usually comes from satellite imagery or sensor measure-

ment) and DEM, come in discrete space; hence, objective functions are naturally calculated

in discrete space too. Consequently, we need a common discretization of space to store input

data, calculate the objective functions, and solve the optimization problem. We exploit the

multi-resolution property of a DGGS to choose a resolution as a discrete space.

Our automated process of selecting benchmark sites for a field is presented in Figure 5.2

in six steps. The process starts by loading the boundary of the field in step 1. In step 2, the
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performance function and DEM are loaded either by downloading them or loading them from

a local cache. Step 3, constructs the MZs from the performance function for step 4. The main

contribution of this case study is in steps 4 and 5. In step 4, first, MZs, performance function,

and DEM data are resampled into DGGS cells at the target resolution, which means for each

DGGS cell we know what the MZ, performance function value, and elevation are. This data

integration using a DGGS allows additional datasets such as different satellite imagery (e.g.,

thermal imagery or radar data), aerial imagery, and wetlandmaps, to be integrated with the

algorithm in the future as needed. Next, we compute all of the objectives and constraints and

store them back in the DGGS cells. All of the objectives are computed on the centroid of DGGS

cells. In step 5, the objectives are normalized and combined in a single error function to solve

the optimization problem. A complete search in DGGS cells finds the optimum benchmark

site. Lastly, in step 6, the selected benchmark sites are saved in a GeoJSON2 format.
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Figure 5.2: The flowchart of selecting benchmark sites for a new field.

In section 5.2, we explain the specific MZ delineation method used in our framework (step
2GeoJSON is a format designed for representing geographical features based on the JSON (JavaScript Object

Notation) format.
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3 of flowchart) and in section 5.3 we define a set of objectives and constraints and explain how

our framework is built to satisfy the objectives and constraints (step 4 and 5 of flowchart).

5.2 FromData to Management Zone

The performance function is the key to delineating the field to MZs. There are several

choices for performance function. For example, Georgi et al. used the average historical

satellite imagery as a performance function [47]. We use a similar method to construct the

performance function from the Normalized Difference Vegetation Index (NDVI) as an indicator

for plant health [30]. Moreover, a recent study shows that both soil electrical conductivity

and NDVI are correlated to soil nutrient [66]. This performance function is called Fertility

Index. The fertility index serves as a proxy measure to approximate the fertility of the soil by

monitoring the historical growth of plants. Higher fertility index values indicate better growing

conditions (i.e., soil fertility), as plants have historically grown well in those areas. Similarly, in

the final delineatedMZs, lower MZs are regions of the field that perform poorly while higher

MZs correspond to better-performing regions. This delineation process uses satellite imagery

data in three following steps:

1. Selecting images: One image as a good representative for each growing season is selected

from the recent years (e.g. 3 to 6 years). The criteria for selecting this image are that it

should be cloud and haze free and be near the time of the harvest to better show the

potential of the soil. This image represents the variation in soil fertility through the visual

growth of plants. Figure 5.3 presents an example of the selected images for a given field.

Note that, although these images are displayed in RGB colours, red and near-infrared

(NIR) bands are used in calculating performance function.

2. Calculating Performance function - Fertility Index (F-Index): Normalized Difference
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Vegetation Index (NDVI) is calculated for each of the selected images using red and NIR

bands which is an indicator for the health of plants [67]. While the range of the NDVI is

between [−1, 1], for the selected images the range of values is usually around [0.2, 0.95]

with themeanaround0.8. Then, theNDVI values of each image are normalized and scaled

in a way that the mean value𝑀 is a fixed number in the range [0, 255] (e.g.,𝑀 = 100).

Finally, the normalized NDVI values are averaged and the resulting averaged normalized

values are referred to as F-Index (see Figure 5.4).

3. Thresholding: To finally delineate the F-Index into MZs, the next step is to divide the

entire range of F-Index into a certain number of bins B (e.g. B=6). The F-Index thresholds

are selected in a way that the area of the MZs forms a normal distribution. The resulting

map after thresholding is called F-Map (see Figure 5.4).

Figure 5.3: An example of selected satellite images for delineation process.
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Figure 5.4: An example of an F-index, F-Map, the histogram of F-Index, and the associated
thresholds.

Figure 5.4 presents an illustrative example of an F-Index and F-Map along with a histogram

of the F-Index and the thresholds used in the process. The histogram of F-Index (see Figure 5.4

right) depicts the distribution of the performance function across the field. Upon examining

the histogram, we observe that roughly 70% of this field has F-Index values between 95 and 105.

As a result, dividing the range of the F-Index values into equal-length bins would yield MZs

with a very small area. Likewise, If the field is divided into equal-area MZs, someMZs will have

a substantial variation in F-Index while some other MZs will have a very narrow range of values.

To address this issue, the threshold values are selected in a way that the areas of MZs follow a

normal distribution.

5.3 OptimizationModel

Once we have evaluated MZs (i.e. F-Map), the next question is how to identify the optimal

benchmark sites within eachMZ. As discussed at the beginning of this chapter, there are several

objectives and some constraints that a site must meet to be considered a good representative

point of an MZ. We chose the following criteria and constraints in building our framework:
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Objective 𝐹1, close to the value of median F-Index: The F-Index of the benchmark site

should be close to the median F-index of the MZ.

Objective 𝐹2, away fromMZ boundaries: The benchmark site should be located away

fromMZ boundaries.

Objective 𝐹3, close to previously sampled points: The benchmark site should be situated

close to previously sampled points (if available).

Objective 𝐹4, belong to flatter regions: The benchmark site should be on a flat area of the

field.

Constraint 𝑔1, avoid certain regions: In practice, it is desired to avoid locating the bench-

mark sites in certain regions (e.g. inaccessible and unrepresentative areas). Normally, the

benchmark site should be at least𝐷𝐻 meters (e.g., 30 meters) away from any headlands

(headland condition).

Constraint 𝑔2, avoid the proximity of benchmark sites in other MZs: The benchmark site

should not be in close proximity to other selected benchmark sites from the other MZ to

ensure getting samples from a larger region.

We formulate these requirements as a constrained multi-objective optimization problem. The

objective functions 𝐹1 to 𝐹4 must be optimized together in consideration with constraints

𝑔1 and 𝑔2. The objectives are distance-based and we aim to minimize all of them as best as

possible. The two constraints are binary concepts that must be adhered to within the feasible

space of site locations. However, some of the objectives can also be considered as constraints.

For example, we canmaximize the distance to the MZ boundaries as an objective (𝐹2), or we

can set a constraint that the benchmark site must be at least 𝑛 meters away from any MZ

boundary. Although “being away from the boundary with a certain distance" is sufficient, to
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keep our optimization model flexible and avoid adding another parameter, we consider this

property as a distance-based objective. The same thing can be said about the steepness and

distance to previously sampled points. If we set thresholds, we transform our objectives into

constraints that exclude any space that does not meet the threshold. However, it’s important to

note that some of these spaces may still be valuable in terms of other objectives and finding

good thresholds to not end up with empty search spaces is difficult.

Computing the Objective Functions

The first step towards solving the optimization problem is calculating the values of objective

functions. In this section, we discuss how each of the objective functions 𝐹1 to 𝐹4 are calculated.

The resolution of satellite data (and F-Map) is 10 m (10 m x 10 m square pixels), while the DEM

data comes in 12 m resolution. Thus, we use resolution 19 of disdyakis triacontahedron DGGS

[31], as the target resolution in which DGGS cells (Avg. cell size = 61.8𝑚2) are a bit smaller than

the input data sources. Then, the F-Index, F-Map, and DEM data are resampled into DGGS

cells at the target resolution. Next, we compute all of the objectives and store them back in the

DGGS cells.

Close to the Value of Median F-Index (𝐹1)

Thefirst objective is tominimize the distance between the F-Index values of theMZcells and

𝑀𝑍 , the median of the management zone 𝑍 . Let’s denote the DGGS cells of 𝑍 by 𝑐1, 𝑐2, . . . , 𝑐𝑛

and their respective F-Index values by 𝑓1, 𝑓2, . . . , 𝑓𝑛 . This objective is defined as:

𝐹1(𝑐𝑖 ) = | 𝑓𝑖 −𝑀𝑍 |.

Figure 5.5 shows a visualization of this objective function. The blue colours in this visualiza-

tion show the less absolute difference between each cell’s F-Index and the median F-Index.

58



Figure 5.5: Visualization of absolute difference to median F-index for MZ 3.

Away fromMZ Boundaries (𝐹2)

We use the distance transform operator on top of the DGGS to compute the geodesic dis-

tance of each cell 𝑐𝑖 to 𝑆 , the spatial boundary of management zone 𝑍 . The distance transform

efficiently calculates the geodesic distance of all cells in a region to a given vector feature (i.e.,

the MZ boundaries). The second objective 𝐹2 is to maximize this distance

𝐹2(𝑐𝑖 ) = 𝐷𝑆 (𝑐𝑖 )

where𝐷𝑆 denotes the geodesic distance of 𝑐𝑖 to 𝑆 . Figure 5.6 shows a visualization of this objec-

tive function. The cooler the colours (darker blue) the farther the cell is from the boundaries.
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Figure 5.6: Visualization of distance to boundaries of MZ 3. The farthest cell from the boundary
is 87 m away from the boundaries.

Close to Previously Sampled Points (𝐹3)

Let 𝑃𝑧 represent the sampled point of management zone 𝑍 from previous years. Again

using distance transform, we determine the geodesic distance from the previously sampled

point 𝑃𝑧 to the centroid of all cells within 𝑍 . The third objective 𝐹3 is to minimize this distance

𝐹3(𝑐𝑖 ) = 𝐷𝑃𝑧 (𝑐𝑖 )

where𝐷𝑃𝑧 denotes the geodesic distance of 𝑐𝑖 to previously sampled point 𝑃𝑧 . Figure 5.7 shows

a visualization of this objective function. The cooler the colours (darker blue) the closer the cell

is to the previously sampled point.
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Figure 5.7: Visualization of distance to previously sampled point for MZ 3. The farthest cell
from this previously sampled point is 1533 m away from it.

Belong to Flatter Regions (𝐹4)

The steepness of the cell 𝑐𝑖 (denoted by 𝑆 (𝑐𝑖 )) is calculated from the DEM of the field by

calculating the gradient vector. The gradient vector ®𝐺 (𝑐𝑖 ) shows the direction of change of

elevation, which is approximated using the difference in elevation between neighbouring cells.

Steepness is then determined by:

𝐹4(𝑐𝑖 ) = 𝑆 (𝑐𝑖 ) =
𝜋

2 − arccos(
®𝐺 (𝑐𝑖 ) · ®𝑁 (𝑐𝑖 ))

where ®𝑁 (𝑐𝑖 ) is the normal vector of the cell 𝑐𝑖 . Figure 5.8 shows a visualization of this objective

function. The cooler the colours (darker blue) the cell is in a flatter region.
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Figure 5.8: Visualization of the steepness for MZ 3. The legend shows the steepness in degrees.
The steepest point of this MZ is 7.8 degrees steep.

Computing the Constraints

In this section, we discuss how to determine the feasible space of the optimization by

calculating constraints for each cell inside the field.

Avoid Certain Regions (𝑔1)

We trivially exclude any cells from the inaccessible and unrepresentative regions by sub-

tracting these regions from the entire field. For the headland condition, we use the distance

transform operation of DGGS to calculate a buffer of𝐷𝐻 meters from the boundary of the field

to avoid the areas under the headland. Figure 5.9 shows the areas of the farm avoided due to

headland.
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Figure 5.9: The extracted headland of the farm field (𝐷𝐻 = 50𝑚).

Avoid the Proximity of Benchmark Sites in Other MZs (𝑔2)

Our goal is to select benchmark sites that are from a larger region of the field to better

represent the entire field. To achieve this, we set a minimum radius 𝐷𝑅 between the sites

(see Figure 5.10). This global constraint is unique compared to other criteria that are local to

their respective MZs. We begin by selecting a benchmark site in one MZ and then limiting the

areas in other MZs that are within the specified radius of this site. We continue this process

iteratively until we have chosen benchmark sites for all MZs. To do this, we remove 𝑐𝑖 from

the search space if𝐷𝑡 (𝑐𝑖 ) ≤ 𝐷𝑅 for all already selected sites 𝑡 (see Figure 5.10). We easily use

the distance transform of DGGS to calculate the distance of all points in the farm to already

selected benchmark sites in each step.

By using this method, the benchmark sites selected earlier have an advantage over the ones

chosen later, as the latter are subject to more constraints. If𝐷𝑅 is small, the change of order
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has a minimal impact. However, for larger𝐷𝑅 , it makes sense to prioritize MZs according to

their level of importance. Therefore, we start with the most important MZ in order to find a

more optimal benchmark site for it, and then we continue to select benchmark sites for less

important MZs. The most important MZ is the one that best represents the entire field. Hence,

the most important MZ is the one with its median F-Index closest to that of the entire field.

We sort the MZs based on the distance of their median F-Index to the median F-Index of the

entire field. The radius mentioned above can be dynamically changed, but the default is set to

be 15% of the field’s diameter. Figure 5.10 shows how we use this radius to force the selected

benchmark sites to be at a reasonable distance from each other.

Figure 5.10: The forced distancing between selected benchmark sites. 𝑡1 and 𝑡2 are already
selected benchmark sites. When deciding for point 𝑐𝑖 in the nextMZ, we only check the distance
to 𝑡1 and 𝑡2.
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Solving the Optimization Problem

With all objective functions and constraints ready, we need to optimize them together. To

satisfy constraint 𝑔2, we solve theoptimization for eachMZseparately in theorder of importance

discussed in Section 5.3. For each MZ, to accommodate the constraints, we remove DGGS cells

under constraint from our feasible search space. This not only ensures that no point under

constraint will ever be selected as a benchmark site but also makes the optimization more

efficient by reducing the search space. Next, to solve the multi-objective optimization problem

we use a scalarization method which is a commonmethod that transforms a multi-objective

optimization problem into a single-objective optimization problem [62]. Because we have

calculated all of our objectives and constraints in the discrete space of a DGGS (resolution 19 of

disdyakis triacontahedron DGGS. Avg. cell size = 61.8𝑚2 [31]), for a 200-hectare field, the total

unconstrained search space will have roughly 32,400 cells. This is a very small search space and

modern personal computers can evaluate the objective functions for the entire space within a

fraction of a second. Hence, to efficiently find the global minimum of the objective function,

we perform an efficient complete search on the feasible search space (i.e. comparing objective

functions on 𝑐1, 𝑐2, . . . , 𝑐𝑛).

To transform ourmulti-objective optimization problem into a single-objective optimization

with a scalarization method, we use aweighted squared summethod. A weighted squared sum

enables us to control the effect of each objective function relative to each other and also

to penalize large errors. With this, we combine all of the objectives into a global objective

function or an Error Function. Before combining, we first normalize all the individual objective

functions. Without normalization, objectives with large values may overpower and dominate

the optimization process. To map objective function 𝐹𝑗 into the range [0, 1], we use a simple

linear mapping:
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𝐹𝑗 =
𝐹𝑗 −𝑚𝑖𝑛 (𝐹𝑗 )

𝑚𝑎𝑥 (𝐹𝑗 ) −𝑚𝑖𝑛 (𝐹𝑗 )
.

Next, we define an error function 𝐸𝑗 for each of the objectives as follows:

𝐸𝑗 =


𝐹𝑗 if objective needs to be minimized (e.g. distance to median F-Index)

1 − 𝐹𝑗 if objective needs to be maximized (e.g. distance to MZ boundaries).

Now we have a vector of error functions. In order to scalarize these errors into a single error

function, we combine them using weighted squares sum:

𝐸𝑇 (𝑐𝑖 ) =
𝑚∑︁
𝑗=1

𝑤𝑗𝐸
2
𝑗 (𝑐𝑖 )

where𝑤𝑗 is the weight of the objective 𝐹𝑗 , and𝑚 is the number of objectives (𝑚 = 4 in our

case). Figure 5.11 shows the visualization of the error function and the yellow star is the location

of the minimum of this function. Note that for illustrative purposes, the constraints are not

removed from the search space in this figure.
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Figure 5.11: Visualization of the error function for MZ 3. All weights are set to 1 (𝑤𝑗 = 1,
𝑗 = 1, 2, 3, 4) in this figure. 𝐸𝑇 at the optimal point (denoted by the star) is 0.0279.

Figure 5.12 shows the final error function only for feasible search space considering con-

straints for all MZs. The order of MZ optimization in this figure is MZ 4, MZ 3, MZ 5, MZ 2, MZ

6, and lastly MZ 1. The areas under the headland constraint (𝑔1) and distribution constraint

(𝑔2) are marked with pink.

67



Figure 5.12: Visualization of the final error function for the entire field. All weights are set to 1
in this figure.
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Chapter 6

Use Case Results and Evaluation

The process of selecting benchmark sites within a field takes multiple days for a GIS techni-

cian to complete. The primary objective of this work is to provide a framework to automate this

process by avoiding typicalmanual GIS processes like integrating different layers of information

and manually comparing the values of objectives for selected points. The method is imple-

mented in C++ programming language and uses OpenGL for rendering the graphical interface.

The application provides two interfaces: a Graphical User Interface (GUI) for illustration and

debugging purposes and a Command Line Interface (CLI) to fully automate the process. The

CLI version only takes a few seconds for a relatively large field (see Table 6.1) and only needs the

boundary of the field as input with a few additional settings. To demonstrate the repeatability

of this automatic approach, and to show that our algorithm works for different fields, we chose

5 different fields of varying sizes across the Canadian provinces of Alberta, Saskatchewan, and

Manitoba. The list of the fields and the execution time of our algorithm is given in Table 6.1.
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Table 6.1: The list of fields used for evaluation. Total execution time captures the entire process
including loading data from the local cache (tested on a computer with an Intel Core i7-6700
CPU).

Field
number

Field
shape

Location Area
(hectare)

Number
of MZs

𝐷𝑅

(meter)
Total ex-
ecution
time
(sec-
ond)

Steps 4
and 5
time
(sec-
ond)

1 Southern
Alberta

198.2 6 350 22.91 13.82

2 Southern
Saskatchewan

102.3 6 269 13.76 7.37

3 Southern
Saskatchewan

59.1 5 218 8.22 3.20

4 Southern
Mani-
toba

43.9 5 169 7.88 3.16

5 Western
Alberta

36.5 4 141 8.87 3.13

Figure 6.1 shows the selected benchmark sites for each field. To generate these results, six

years of satellite imagery is used for MZ delineation, the headland (𝐷𝐻 ) is set to 30 m, the𝐷𝑅

for each field is given in Table 6.1, and the objective weights𝑤𝑗 are all set to 1. The effect of

different weights on optimization is discussed later in the next subsection. To demonstrate

the correctness of the optimization, we calculated the statistics of the objectives for eachMZ

for all fields. The statistics for field 1 are reported in Table 6.2 and the same statistics for

other fields are presented in the appendix. Each row of these tables includes the mean and

the range of each objective across the MZ along with the best value for that objective, the

objective value at the selected benchmark site, and the percent improvement relative to the
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mean (𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑠𝑖𝑡𝑒−𝑚𝑒𝑎𝑛
𝑚𝑒𝑎𝑛

× 100).

The alternative to benchmark sampling in theMZs is MZ composite sampling. If composite

sampling is done properly, the objectives of the composite sample should be close the themean

of the objectives of the MZ. Hence, by reporting these statistics in tables 6.2 to 6.6 we show that

the objectives of the selected benchmark sites are improved in comparison to the composite

sampling. This enables the farm manager to track the nutrient changes. In all the fields we

evaluated, the objective for the selected benchmark site is always better than the mean of all

the cells of the MZ except for a couple of cases in fields 1 and 3 that are slightly worse. In both

these cases, the problematic benchmark sites are in the first and last MZs which represent

the smallest area of the field (see Figure 5.4). Selecting good benchmark sites for the middle

MZs—which represent the majority of the area of the field—at the cost of slightly worse than

mean benchmark sites for the first and last zones is reasonable. The presented statistics show

that in the middle MZs (i.e. MZ 3 and 4 out of the six total), the objectives at the benchmark

sites are significantly better than the mean.

Overall, our algorithm produces better benchmark sites than a composite sample according

to our criteria. Note that the Objective 𝐹3 (being close to previously sampled points) is excluded

from our objectives because we did not have previously sampled points for any of the fields.

Moreover, we excluded cells under constraint from our mean and range calculations to get a

fair comparison. Lastly, our optimization constraints 𝑔1 and 𝑔2 are satisfied; no benchmark

sites are selected in headland (𝐷𝐻 ) or in proximity (𝐷𝑅 ) to other benchmark sites. Constraint

𝑔2, in combination with objective 𝐹2, will result in a relatively good covering of the field by

benchmark sites which can be visually verified by looking at Figure 6.1.
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(a) (b) (c)

(d) (e)

Figure 6.1: Selected benchmark sites for the field (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5.
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Table 6.2: Range and the average of the objectives compared to the objectives of selected benchmark sites for Field 1.

MZ Objective Benchmark
site

Mean of all
cells

Percent
improvement

Best Range

1 Median
F-Index

1.359 1.966 30.9% 0.126 [0.126, 3.563]

Distance To
Boundary

23.910 7.916 202.1% 24.560 [1.238, 24.560]

Steepness 0.085 0.725 88.3% 0.007 [0.007, 1.826]
2 Median

F-Index
1.125 2.342 52.0% 0.001 [0.001, 8.562]

Distance To
Boundary

63.797 17.337 268.0% 77.104 [1.238, 77.104]

Steepness 0.358 1.234 71.0% 0.015 [0.015, 5.319]
3 Median

F-Index
0.037 1.586 97.7% 0.001 [0.001, 3.891]

Distance To
Boundary

80.167 19.285 315.7% 87.775 [1.238, 87.775]

Steepness 1.126 1.230 8.5% 0.010 [0.010, 5.179]
4 Median

F-Index
0.045 0.707 93.6% 0.000 [0.000, 1.715]

Distance To
Boundary

125.790 24.736 408.5% 141.578 [1.238,
141.578]

Steepness 0.943 0.953 1.0% 0.002 [0.002, 4.336]
5 Median

F-Index
0.038 0.899 95.8% 0.001 [0.001, 4.604]

Distance To
Boundary

81.755 14.912 448.3% 83.902 [1.238, 83.902]

Steepness 0.934 0.994 6.1% 0.004 [0.004, 4.322]
6 Median

F-Index
4.046 3.351 -20.7% 0.000 [0.000, 18.670]

Distance To
Boundary

29.766 12.167 144.6% 43.304 [1.238, 43.304]

Steepness 0.797 1.123 29.1% 0.015 [0.015, 3.804]
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Table 6.3: Range and the average of the objectives compared to the objectives of selected benchmark sites for Field 2.

MZ Objective Benchmark
site

Mean of all
cells

Percent
improvement

Best Range

1 Median
F-Index

13.393 18.202 26.4% 0.000 [0.000, 47.910]

Distance To
Boundary

27.535 16.483 67.0% 48.759 [1.263, 48.759]

Steepness 2.207 2.843 22.4% 1.395 [1.395, 4.932]
2 Median

F-Index
2.920 4.453 34.4% 0.017 [0.017, 18.161]

Distance To
Boundary

40.850 9.775 317.9% 43.235 [1.263, 43.235]

Steepness 1.010 3.405 70.3% 0.021 [0.021, 10.844]
3 Median

F-Index
0.013 1.550 99.2% 0.000 [0.000, 4.431]

Distance To
Boundary

56.517 12.870 339.1% 56.517 [1.259, 56.517]

Steepness 1.046 2.700 61.3% 0.006 [0.006, 11.680]
4 Median

F-Index
0.140 1.075 87.0% 0.000 [0.000, 2.610]

Distance To
Boundary

55.644 12.011 363.3% 59.418 [1.259, 59.418]

Steepness 1.173 2.040 42.5% 0.003 [0.003, 9.167]
5 Median

F-Index
0.720 1.000 28.0% 0.002 [0.002, 2.917]

Distance To
Boundary

29.709 10.057 195.4% 41.810 [1.259, 41.810]

Steepness 1.863 2.226 16.3% 0.013 [0.013, 10.052]
6 Median

F-Index
3.272 3.351 2.4% 0.000 [0.000, 13.995]

Distance To
Boundary

23.627 9.387 151.7% 33.618 [1.259, 33.618]

Steepness 2.146 3.095 30.7% 0.108 [0.108, 8.438]
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Table 6.4: Range and the average of the objectives compared to the objectives of selected benchmark sites for Field 3.

MZ Objective Benchmark
site

Mean of all
cells

Percent
improvement

Best Range

1 Median
F-Index

4.590 2.883 -59.2% 0.126 [0.126, 8.487]

Distance To
Boundary

23.519 11.948 96.8% 27.191 [1.298, 27.191]

Steepness 2.163 3.028 28.6% 0.260 [0.260, 6.357]
2 Median

F-Index
0.681 2.145 68.3% 0.000 [0.000, 6.899]

Distance To
Boundary

44.390 18.374 141.6% 60.355 [1.291, 60.355]

Steepness 0.868 2.521 65.6% 0.031 [0.031, 8.747]
3 Median

F-Index
0.268 1.939 86.2% 0.000 [0.000, 4.174]

Distance To
Boundary

86.394 18.537 366.1% 91.327 [1.291, 91.327]

Steepness 1.759 2.137 17.7% 0.026 [0.026, 9.368]
4 Median

F-Index
0.344 1.834 81.2% 0.000 [0.000, 5.624]

Distance To
Boundary

48.860 13.752 255.3% 53.131 [1.291, 53.131]

Steepness 1.863 2.167 14.0% 0.002 [0.002, 9.731]
5 Median

F-Index
0.144 1.805 92.0% 0.022 [0.022, 3.604]

Distance To
Boundary

17.555 6.031 191.1% 18.800 [1.295, 18.800]

Steepness 1.158 2.205 47.5% 0.849 [0.849, 4.675]
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Table 6.5: Range and the average of the objectives compared to the objectives of selected benchmark sites for Field 4.

MZ Objective Benchmark
site

Mean of all
cells

Percent
improvement

Best Range

1 Median
F-Index

1.450 1.861 22.1% 0.000 [0.000, 4.030]

Distance To
Boundary

24.923 11.987 107.9% 34.016 [1.305, 34.016]

Steepness 0.917 1.132 19.0% 0.115 [0.115, 2.264]
2 Median

F-Index
1.341 1.829 26.7% 0.019 [0.019, 6.067]

Distance To
Boundary

34.657 11.745 195.1% 53.336 [1.302, 53.336]

Steepness 0.163 1.116 85.4% 0.023 [0.023, 3.109]
3 Median

F-Index
0.149 1.326 88.8% 0.000 [0.000, 3.028]

Distance To
Boundary

44.455 12.907 244.4% 49.212 [1.298, 49.212]

Steepness 0.280 1.125 75.1% 0.018 [0.018, 3.517]
4 Median

F-Index
0.003 1.398 99.8% 0.003 [0.003, 4.184]

Distance To
Boundary

30.103 9.557 215.0% 34.657 [1.302, 34.657]

Steepness 0.737 1.093 32.6% 0.014 [0.014, 3.374]
5 Median

F-Index
0.034 0.626 94.6% 0.034 [0.034, 1.158]

Distance To
Boundary

15.860 5.758 175.5% 18.325 [1.302, 18.325]

Steepness 0.318 0.899 64.7% 0.043 [0.043, 2.574]
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Table 6.6: Range and the average of the objectives compared to the objectives of selected benchmark sites for Field 5.

MZ Objective Benchmark
site

Mean of all
cells

Percent
improvement

Best Range

1 Median
F-Index

2.340 5.078 53.9% 0.294 [0.294, 14.785]

Distance To
Boundary

18.382 10.907 68.5% 32.534 [1.216, 32.534]

Steepness 0.451 0.665 32.3% 0.029 [0.029, 1.712]
2 Median

F-Index
2.361 2.469 4.4% 0.000 [0.000, 10.209]

Distance To
Boundary

85.619 22.106 287.3% 87.502 [1.216, 87.502]

Steepness 0.510 0.934 45.4% 0.010 [0.010, 4.003]
3 Median

F-Index
0.168 1.441 88.4% 0.000 [0.000, 3.680]

Distance To
Boundary

105.288 26.053 304.1% 109.590 [1.212,
109.590]

Steepness 0.347 0.857 59.5% 0.004 [0.004, 3.446]
4 Median

F-Index
0.101 3.439 97.1% 0.000 [0.000, 16.610]

Distance To
Boundary

27.363 13.264 106.3% 44.053 [1.216, 44.053]

Steepness 0.861 1.045 17.7% 0.050 [0.050, 3.369]
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To comprehensively summarize these tables, for each field we are reporting the mean

percent improvement over all MZs of the field. The mean percent improvement is reported

in Table 6.7 for each objective. This aggregated result emphasizes how the representative site

objectives are improved in comparison to composite sampling.

Table 6.7: The mean percent improvement of the selected benchmark sites.

Field number Median F-index
(𝐹1)

Distance to
boundary (𝐹2)

Steepness (𝐹4)

1 58.2% 297.9% 34.0%
2 46.2% 239.1% 40.6%
3 53.7% 210.2% 34.7%
4 66.4% 187.6% 55.4%
5 60.9% 191.6% 38.7%

6.1 Modularity and Extendability

One important flexibility of our framework is modularity and extendability. Although we

chose a specific performance function, a specific MZ delineation method, and a specific set

of criteria to demonstrate our optimization model, our algorithmic framework is flexible and

defines a mathematical structure to be used in other scenarios as well.

Our framework gets an MZmap as input which can be constructed from any performance

function. Apparent soil electrical conductivity (EC) is a particular performance function that

is proven to highly correlate with soil nutrients and is useful for MZ delineation [66, 68]. To

demonstrate that our framework works for other performance functions as well, we used a

real EC dataset for a field in Selbitz (Elbe), Germany [69]. For simplicity, we used the same

thresholdingmethod to delineateMZs fromEC data. The left column in Figure 6.2 shows the EC

data and the F-Index for this field in Germany and the right column is the selected benchmark
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sites along with the delineated MZs. This figure demonstrates that our framework is general

and works for an arbitrary performance function.

Figure 6.2: Using apparent soil electrical conductivity map as performance function.

Similar to the performance function and MZs, the representative site criteria can be ex-

tended in both forms of objectives and constraints. For example, new constraints to avoid

power lines, pipelines, and other barriers are just another region to avoid and can be treated the

same as headland in 𝑔1. Additionally, more objectives can be added or the existing objectives

can be swapped with another one. For example, instead of 𝐹1, one may want to use the first

quantile and third quantile along with the median. In this case, one can easily swap the 𝐹1 to

another objective which calculates the difference of F-Index to another value (e.g., first or third

quantile or mean). Figure 6.3 demonstrates the application of first and third quantiles along

with the median (second quantile) as a new objective which shows that our framework can be

used to satisfy new criteria.
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(a) (b) (c)

Figure 6.3: A visualization of the difference of the F-Index of each cell with (a) first quantile, (b)
second quantile (median), and (c) third quantile of the F-index of each MZ.

6.2 Discussion

Our automatic benchmark site selection method is flexible in various aspects. Specifically,

the relative importance of the objectives and the number of MZs are tunable. The following

subsections discuss and demonstrate each of these flexibilities of our method.

OptimizationWeights

One flexibility of our method is defining the importance of objectives relative to each other

by means of weights. The weights are available as a simple interface for the end user to adjust if

necessary. For example, if a field is very flat, assigning a lower weight for steepness can help the

algorithm to optimize better for other criteria. Looking at Table 6.8, we observe that a lower

weight for steepness helped the model lower the difference to the median F-Index by 1.124

units. Recalculating the error 𝐸𝑇 after changing the weights is instant, which means that the

user can quickly and efficiently test different configurations to get the desired results.
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Table 6.8: The effect of weights in objectives. This table is based onMZ 2 on field 1.

Objective Median F-index
(𝐹1)

Distance to
boundary (𝐹2)

Steepness (𝐹4)

Range [0.001, 8.562] [1.238, 77.104] [0.015, 5.319]
Best 0.001 77.104 0.015

Mean of all cells 2.342 17.337 1.234
𝑤1 = 1,𝑤2 = 1,

𝑤4 = 1
1.125 63.797 0.358

𝑤1 = 1,𝑤2 = 1,
𝑤4 = 0.5

1.143 64.655 0.766

𝑤1 = 1,𝑤2 = 0.5,
𝑤4 = 0.5

0.933 61.139 0.535

𝑤1 = 1,𝑤2 = 0.25,
𝑤4 = 0.01

0.446 48.915 0.867

𝑤1 = 1,𝑤2 = 0.01,
𝑤4 = 0.01

0.001 38.603 0.289

𝑤1 = 0.5,𝑤2 = 1,
𝑤4 = 0.1

1.460 66.111 1.353

Number of MZs

The number of MZs is usually set based on the area of the field. However, our automated

method is adjustable and can delineate a field to any number of MZs. For example, if one wants

to take 20 samples of a smaller field, one can set the number of MZs to 20, and the algorithm

finds a test point for each MZ. This is practical when a deep understanding of the variability of

the soil of a field is needed. Figure 6.4 shows an example of a varying number of MZs on a field.

Table 6.9 demonstrates that our method remains fast and performant when the number of

MZs increases. We intentionally decreased the𝐷𝑅 for the higher number of MZs, because more

benchmark sites have to be fit in the same area. Moreover, for the results presented in Table 6.9,

the𝐷𝐻 is set to 0, because in the higher number of MZs, the lower MZ ends up completely in
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the headland. In practice, the MZs with very tiny areas are not worth sampling.

(a) (b) (c) (d)

Figure 6.4: Delineating a field into (a) 6, (b) 12, (c) 20, and (d) 30MZs results in the same number
of selected benchmark sites.

Table 6.9: The mean percent improvement for field 1 when the number of MZs varies between
6 to 30 MZs.

Number of MZs 𝐷𝑅 (meter) Execution time
(second)

Mean percent
improvement

6 350 22.54
Median F-index 62.9%
Distance To Boundary 337.2%
Steepness 36.2%

12 320 28.74
Median F-index 74.8%
Distance To Boundary 326.0%
Steepness 38.0%

20 215 32.75
Median F-index 77.2%
Distance To Boundary 355.8%
Steepness 47.6%

30 165 37.61
Median F-index 67.9%
Distance To Boundary 354.1%
Steepness 32.4%

Concluding Remarks

Our proposed site selection framework, with the help of the DGGS and DT algorithm, is

capable of incorporating arbitrary criteria for choosing a representative area of a field. The
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framework is shown to be invariant to The MZ delineation method, the objectives and con-

straints, and the number of MZs. The importance of the objectives can also be controlled with

themeans of weights. This framework is shown to produce better results than anMZ composite

sampling, and it runs within a few dozen seconds.

83



Chapter 7

Implementation

Our DT algorithm is implemented as a templated pure function using C++ Programming

language. In order to visualize, test, and benchmark the DT algorithm, a visual driver program

is implemented using C++ and OpenGL for rendering. The case study of the DT algorithm is

implemented using C++ programming language as well which intersects with a project for Telus

Agriculture company. In this chapter, we explain the details of our implementation in three

sections.

7.1 DT Operation as a Function

For themost flexibility, theDT algorithm is implemented as a function that is templated over

the DGGS and index type of the DGGS cells. This allows our implementation to be independent

of the DGGS and work with any potential DGGS. The inputs to the DT function are an instance

of a DGGS, a polygon to calculate the DT for, a base and a target resolution, and finally a step

size. The step size is by default −1, indicating the single jump from base to target resolution.

The step size of 1 can be passed in which case this function will be equivalent to the iterative

algorithm. The output of the function is a standard map from the DGGS cell index to a double
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number indicating the distance of that cell to the input polygon in meters. The signature of the

DT function is as follows:

template <typename DGGST, typename IndexT, typename IndexListT>

std::map<IndexT, double, dggs::IndexComparator> calculateDistanceField(

DGGST const &dggs,

Polygon const &polygon,

Resolution const baseRes, Resolution const targetRes

int stepSize = -1,

);

The algorithm that extracts the borders between a field’s MZs, doesn’t output a single

contiguous polygon for eachMZ, it rather outputs a list of noncontiguous edges which together

form the complex boundaries for MZs. To make the DT function flexible in accepting this kind

of input, we have overloaded the DT function. The signature for the overloaded function is as

follows:

template <typename DGGST, typename IndexT, typename IndexListT>

std::map<IndexT, double, dggs::IndexComparator> calculateDistanceField(

DGGST const &dggs,

Polygon const &polygon,

EdgeList const &edgeList,

Resolution const baseRes, Resolution const targetRes

int stepSize = -1,

);

Note that this function received an additional input edge list, as well as the polygon. In this

case, the polygon is only used to determine the initial set of DGGS cells at the base resolution
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to be refined.

There are four important data structures used to implement the DT function. One is

IndexListT parentCellswhich holds a list of ancestor cells in each step of refinement. Sec-

ond, std::map<IndexT, double> distances, which holds the distance of all cells to the poly-

gon (or edgeList) in the current resolution. After the last iteration of the algorithm, it will contain

the output of the algorithm in the target resolution. Third, std::vector<EdgeList> buffer

(equivalent to candidateList in Algorithm 5), which contains a list of the edges of the polygon

for each parent cell, that are within the 2𝑑 of the parent cell. In other words, the buffer holds the

reduced search space for each parent cell. Finally, std::vector<IndexListT> refinedCells

contains the descendent of each parent cell, in the next level of refinement.

The first step of the algorithm is to get an initial set of cells that are covering the input

polygon in base resolution. This forms the initial parentCells which refines to the target

resolution step by step. To get the set of initial cells we use a rasterization algorithm for DGGS

[70]. Because the rasterization is done on a coarse resolution, it is efficient. The implementation

of the body of the DT algorithm is a C++ implementation of Algorithm 5.

7.2 DT Visualizer and Tester Program

To test the DT function, an implementation of a DGGS is needed. We have used the GIV

Digital Earth software package which contains the implementation for Disdyakis Triacontahe-

dron DGGS [31]. The GIV Digital Earth software package is the result of a collaboration of a

number of different individuals in the University of Calgary GIV lab. We have implemented a

set of tools as a scene using GIV Digital Earth software which is depicted in Figure 7.1.

86



Figure 7.1: The scene implemented for visualizing and testing the DT algorithm that shows a
panel of tools.

A user interface (UI) is integrated into this test scene that controls all the inputs to the DT

algorithm, including the feature, base and target resolution, and step size. For the input feature,

the boundary of all Canadian provinces and territories are available as well as the boundary

of the city of Calgary and a farm field in Alberta to be able to test the algorithm with features

with different scales. The output of the algorithm is visualized by both a gray-scale colour

visualization and by writing the distances in km on DGGS cells as labels (see Figure 7.1). There

also are options to show/hide each visualization.

To compare our DT algorithm with the MMP algorithm, we have integrated an implemen-

tation of the MMP algorithm from the libigl library into this scene[71]. Google Benchmark

tool is used to benchmark both our algorithm and the MMP algorithm. A water-tight indexed
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mesh is constructed from the set of covering cells at target resolution to be passed to the MMP

algorithm. A list of face indices is passed to the MMP algorithm as the source and the resulting

distances are written in another vector passed in with reference.

Last but not least, to be able to use the ArcGIS Pro software to analyze the correctness and

the distortion of our algorithm, we have implemented a couple of utility functions to export

the distance field and feature as GeoJson files. The distance field is exported as a collection

of Point data with distance as properties. The feature, however, is exported as a GeoJson

with a LineString type. To get an exact representation of the feature in ArcGIS Pro, we have

sub-sampled each edge of the feature in 10-meter distances.

7.3 Case Study

The case study of this thesis is also implemented as a scene on theGIVDigital Earth software

package. Figure 7.2 shows this scene along with all the options for controlling the inputs and

weights, visualizations, and exporting the final points. All the visualizations shown in Chapter 6

are exported from this scene. The main input for the benchmark site selection algorithm is

stored in a variable called farmData which has the following form:

struct CellData {

Point centeroid;

unsigned short zone;

double Findex;

};

using FarmData = std::map<dggs::Index, CellData, dggs::IndexComparator>;

which is getting initialized from the F-Map data. The optimization objectives and constraints

are implemented using C++ struct as follows:
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Figure 7.2: The benchmark site selection scene which shows the UI to control the optimization
process.

using OptimizationObjective = std::map<dggs::Index, double, dggs::IndexComparator>;

using OptimizationConstraint = std::map<dggs::Index, bool, dggs::IndexComparator>;

struct OptimizationParameter {

OptimizationObjective distanceToBoundary;

OptimizationObjective distanceToMedianFindex;

OptimizationObjective distanceToPrevPoint;

OptimizationObjective steepness;

OptimizationConstraint isHeadland;

OptimizationObjective error;

};

The optimization objective stores a standard map from each DGGS cell in farmData to the
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value of the objective, while the constraint is a standard map to a boolean indicating whether

the cell is under a constraint. The calculation of each of these objectives is detailed in Chapter 5.

To be able to use the DT algorithm, we need to construct a vector feature for the boundaries

of the MZs. To do this, we iterate over all cells in farmData, then we get the neighbours of each

cell and test whether the neighbour is in the sameMZ. If not, the edge between the cell and

the neighbour is a part of the boundary, so we store it in a list. Later, we pass the list to the DT

function. Oncewehave all the objectives and constraints ready in the OptimizationParameter

struct, calculating the error is straightforward. We combine all of the objectives using a squared

sum and we find the minimum of this new objective (i.e., error).
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Chapter 8

Conclusion and Future Directions

With the immense amount of data becoming available, distance transform as a tool to

analyze such data is important. The problem of distance transform is a solved problem in

image processing, but for the geospatial data, image-basedmethods are unfit. The fast-growing

new approach of GIS, DGGS, as a tool to better integrate and analyze such data, needs dis-

tance transform. To this end, we have proposed a complete and comprehensive method for

efficiently calculating the distance transform on top of a DGGS grid. Our approach properly

accommodates any potential DGGS regardless of the shape of the grid cells and the congruency

of the refinement scheme. We have discussed how to fine-tune the parameters of our algorithm

to get the best results for the border of Ontario as an input feature. We have also compared our

method with the image-basedmethods and general meshmethods. The comparison shows

that our method is superior in terms of accuracy and efficiency for large datasets.

Additionally, we introduced an automated framework to solve the problem of selecting

benchmark sites as a real-world case study for our efficient DT algorithm. We showed how

DT can be used to calculate the distance-based objectives of ”away from MZ boundaries“

and ”close to previously sampled points“, and distance-based constraints of ”avoiding certain
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regions“ like headlands and ”avoiding the proximity of benchmark sites in other MZs“. We

showed that this time-consuming process can be efficiently solved and automated on a DGGS

using DT and the produced benchmark sites are better than a MZ composite sample. The

repeatability of the method is shown by testing the automated method on five different fields.

This method takes only a few seconds for a new field in comparison to the manual process by

the GIS technician which takes days. We discussed that our method is general and flexible. We

showed that different performance functions including EC and different delineation methods

as well as new criteria can be used within our framework. To the best of your knowledge, this

work is the first automated method for selecting benchmark sites within an agricultural field.

There is still some important future work to be done. First of all, one easy improvement for

our DT algorithm is parallelization. As the calculation of DT for each DGGS cell is completely

independent of the other cells, the DT algorithm can be parallelized over the coarse cells

easily. However, further analysis is required to understand the performance gains of such

parallelization.

Second, Our DT algorithm calculates the distance based on a spherical great-circle arc

calculation. Despite most of the DGGSs that use a sphere for their reference model of the earth,

some other DGGSs use an oblate spheroid to provide a more accurate representation. We

suspect that our method is applicable to such DGGSs if one can define an efficient distance

calculation method for the ellipsoid. However, further research is required to prove this claim.

Lastly, another interesting active branch of DGGS research is 3D DGGSs. There exist some

works that aim to build a 3D DGGS or extend current 2D DGGSs to 3D DGGS [72, 73]. For this

work, we have assumed a 2D DGGS, but the same idea might be able to be reimplemented for a

3D DGGS. The initial idea is to prove Theorem 1 for 3D shapes using a bonding sphere instead

of a bounding circle and use this new theorem to build the algorithm. However, more research

is required to evaluate this idea andmake any potential necessary changes to the algorithm.
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