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ABSTRACT 

Autonomous vehicle fleets, consisting of self-driving vehicles, are at the forefront of transportation 

innovation. The appearance of autonomous vehicles (AVs) provides a new solution for traffic 

problems and a new market for transportation network companies such as DiDi and Uber. 

Conducting simulations in the present is indeed crucial to prepare for the eventual operation of 

autonomous vehicles, as their widespread adoption is expected to occur in the near future. This 

research adopts an Agent-Based Modelling (ABM) approach to understand and optimize the 

performance of autonomous vehicle systems. Moreover, Geographic Information System (GIS) 

technology also plays a crucial role in enhancing the effectiveness and accuracy of the simulation 

process. GIS enables the representation and manipulation of geospatial data, such as road networks, 

land-use patterns, and population distribution. The combination of ABM and GIS allows for the 

incorporation of real-world geographic data, providing a realistic and geographically accurate 

environment for the agents in the virtual environment. In this thesis, the multi-agent spatiotemporal 

simulation is conducted by the GAMA platform. The model simulates the behaviour and 

interactions of individual agents, which are fleet agents and commuters, to observe the emergent 

behaviour of the entire system. Within the experiment, different scenarios are considered for both 

people and fleets to explore a range of approaches and strategies. These scenarios aim to evaluate 

the effectiveness of various approaches in meeting dynamic commute needs and optimizing fleet 

operations. By simulating these different scenarios and analyzing their outcomes, the study aims 

to provide insights into the improvement of fleet size and deployment in autonomous vehicle 

systems. The ultimate goal is to identify effective strategies that lead to optimized fleet size in 
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different scenarios, reduced idling time and emission, improved traffic management, and overall 

more efficient and sustainable autonomous vehicle systems. 
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND 

Transportation systems play a vital role in modern cities, which service millions of individuals 

each day. The operation of the transportation system conducts all human activities. However, 

urban transportation systems are facing many complex challenges nowadays, such as traffic 

congestion, limited parking availability, loss of public space, negative environmental impacts, 

and issues of transport equity. These challenges impact cities on a global scale that has never 

happened before, adversely affecting city development and human life. Furthermore, it is 

important to note that these challenges are not independent entities; instead, they interact and 

influence one another. The lack of parking availability and traffic congestion are two of the most 

pressing issues that need to be mitigated promptly, which are prevalent in areas with high 

population densities with limited infrastructure. Congestion can result in an increased rate of 

accidents, reduced productivity, and prolonged commute times. In addition, the congestion 

increases the vehicle's idling time, which can result in increased air pollution and greenhouse gas 

emissions. Another common problem in the current urban transportation system is the lack of 

parking spaces, which causes more idling time and raises air pollution. Indeed, the shortage of 

parking places and traffic congestion are interconnected problems that mutually influence and 

exacerbate each other. The limited availability of parking spaces leads to a constant search for 

parking, resulting in increased traffic volume and congestion. This, in turn, worsens the 

congestion problem by reducing the flow of traffic and increasing travel times. The continuous 

circulation of vehicles searching for parking spaces creates a vicious cycle, further intensifying 

the congestion and parking shortage. Therefore, addressing these issues requires a 
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comprehensive approach that considers both the availability of parking infrastructure and 

effective traffic management strategies to break this cycle and improve the overall transportation 

system's efficiency. 

The usage of autonomous vehicles should be encouraged to address the issues of urban 

transportation. As stated in (Maciejewski & Bischoff, 2018), autonomous vehicle fleet services 

have the potential to significantly reduce the number of vehicles needed and address the 

challenges associated with extensive parking spaces. By promoting the use of autonomous 

vehicles, traffic congestion can be reduced because autonomous vehicles can communicate with 

one another and enhance the efficiency of routes. People who use autonomous vehicles as their 

commute choice do not need to worry about finding a parking spot. In addition, autonomous 

vehicles can also help reduce the negative impacts of climate change by using hybrid or electric 

powertrains. Since the transportation system is a complex system, and many factors are 

interconnected, the deployment of the autonomous vehicle fleet should be tested through the 

transportation planning process.  

Transportation planning plays a crucial role in shaping the future of urban mobility and ensuring 

efficient and sustainable transportation systems. Informed decision-making is a key component 

of effective transportation planning, as it relies on accurate data, comprehensive analysis, and a 

deep understanding of the complex dynamics of transportation networks. In order to test and 

make informed decisions for the deployment of the autonomous vehicle fleet accurately, the 

simulation of the deployment is required. It allows transportation planners and decision-makers 

to create virtual environments that mimic real-world conditions and dynamics. Simulations offer 

the ability to input diverse parameters like fleet size, demand patterns, operational strategies, and 
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infrastructure configurations, which allows for the generation of insights and the evaluation of 

performance across different deployment scenarios. 

1.2 RESEARCH AND OBJECTIVES 

The emergence of autonomous vehicles (AVs) has the potential to provide a new solution for 

traffic problems and create a new market for transportation network companies. By addressing 

the root cause of bad driving behaviour, AVs can potentially reduce the required total vehicle 

fleet size (Boesch et al., 2016). Moreover, AVs can provide increased accessibility for people 

who cannot drive, including disabled individuals, older adults, and unlicensed individuals (Jing 

et al., 2020). According to a study by (Bösch et al., 2018), the shared autonomous vehicle fleet 

has drastically reduced costs per passenger-kilometer compared to the conventional taxi fleet. 

These advantages increase accessibility and lower cost, which make autonomous vehicle fleets a 

viable alternative to current commute options. While widespread adoption of AVs may be some 

ways off, simulations need to be carried out to prepare for the future operation of autonomous 

vehicle fleets, which can help reduce operating costs and test different operational strategies to 

meet dynamic commuting needs. Optimizing the fleet size and deployment based on demand 

changes is one of the solutions that can significantly reduce operational costs and minimize the 

idling time of individual vehicles. With all cars being autonomous, idle vehicles can be 

deactivated and removed from the system until needed again. Such an operation strategy can 

directly reduce emissions and traffic congestion. By analyzing the dynamics of demands on 

various spatial and temporal scales, the model can demonstrate the autonomous vehicle fleet’s 

size variation trends. This simulation can help operators better allocate and manage resources to 

meet the changing needs of commuters, ultimately leading to a more sustainable and efficient 

transportation system. 
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The use of agent-based modelling (ABM) is a valuable technique in generating a bottom-up 

simulation of a system to understand better the output of interactions between individual agents 

and the dynamic environment. ABM is composed of three key elements, as Figure 1 illustrates: 

agents, agent relationships and methods of interaction, and the agent’s environment (Macal & 

North, n.d.). Agents in the ABM framework represent the micro-level entities and engage in 

interactions based on their relationships and prescribed methods. The collective behaviour and 

relationships of these individual agents give rise to macro-level outcomes within the 

environment. In the context of transportation systems, the intricate interplay of spatial and 

temporal parameters, along with evolving commuter demands, necessitates a simulation 

approach that extends beyond the limitations of mathematical equations alone. The ABM offers a 

suitable methodology to understand the underlying mechanisms governing these complex 

interactions and behaviours, allowing for a more comprehensive analysis of transportation 

scenarios. By capturing the emergent behaviour resulting from agent interactions, the ABM 

enables researchers to study the dynamics of transportation systems in a realistic and informative 

manner. 
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Figure 1 GAMA Platform contexts: the agents, agent relationships and method of interactions 

and the environment 

Figure 2 showcases the utilization of an agent-based model (ABM) to simulate the operation of a 

taxi fleet at a city scale. The simulation incorporates essential modelling parameters, including 

car speed, service area, and maximum taxi capacity, within a framework of a road network and 

buildings. The ABM consists of two agent types: taxi cars and people. Taxi cars are responsible 

for meeting the demands generated by the people agents. As taxi agents navigate the road 

network to transport people to their desired destinations, they interact with the simulated world 

and adhere to constraints such as speed limits. This simulation offers valuable insights into the 

dynamics of taxi fleet operations within a city, enabling experimentation with different 

parameters to optimize efficiency and alleviate congestion. 
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Figure 2 City of Ann Arbor Autonomous Taxi Simulation: the road network, people and vehicle 

Source: Adapted from (Lu et al., 2018) 

The agent-based model (ABM) was chosen as the preferred methodology for this research due to 

its modular and flexible nature, which allows for testing various scenarios and objectives. This 

thesis aims to assess the effectiveness of different fleet sizes and deployment strategies in 

reducing operational costs, minimizing idling time, and mitigating emissions and traffic 

congestion. The simulation incorporates a virtual environment, people agents, and vehicle agents. 

Once the virtual world is constructed and the foundational parameters are established, different 

types of fleet operations and demand generation can be simulated and evaluated using the same 

environment settings. This can be achieved by adjusting the parameters of the people and vehicle 

agents within the environment. Furthermore, the simulation can be assessed by keeping the agent 
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settings constant while varying the world parameters, such as the waiting time constraints for 

vehicles during different time periods. The ABM approach excels in capturing spatiotemporal 

characteristics, enabling the generation of a diverse population of agents and simulating 

variations in travel demand among various regions in different times of the day. 

1.3 THESIS ORGANIZATION 

The remaining sections of this thesis are organized into four main chapters. Chapter two provides 

a comprehensive literature review, examining the topics of agent-based modelling, geographic 

information systems, and autonomous vehicles. It synthesizes existing research and identifies the 

key insights and gaps in the literature. 

Chapter three delves into the construction of the agent-based model, presenting the proposed multi-

agent model in detail. It outlines the platforms and data sources utilized in this thesis, highlighting 

their specific roles and the Overview, Design, Details (ODD) protocol. Additionally, this chapter 

explores the architecture of the model, discussing the attributes, species, and behaviours 

incorporated into the simulation. 

Chapter four centers around the case study and experiments conducted using the developed model. 

It showcases processes of data cleaning and editing and the results obtained from various 

experiments designed to test and evaluate the implementation of the fleet under different 

operational strategies. The chapter provides an analysis and interpretation of the outcomes, 

offering valuable insights into the performance and effectiveness of the simulated scenarios. 

Lastly, chapter five concludes the thesis by summarizing the key findings and contributions of the 

research. It also includes a discussion of the limitations encountered during the study and outlines 

potential avenues for future research and development in this field. This final chapter serves as a 
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reflection on the research journey and offers recommendations for further exploration and 

improvement. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 AGENT-BASED MODEL 

Agent-based modelling (ABM) has emerged as a powerful tool for understanding and simulating 

complex systems, including social, economic, and ecological phenomena. Unlike traditional 

approaches that rely on aggregated data, ABM focuses on individual entities (agents) and their 

interactions with each other and the environment to represent real-world dynamics. By capturing 

the behaviour of autonomous agents and the environment, ABM offers unique insights into system-

level patterns and emergent phenomena. As stated in (Macal & North, n.d.), agent-based modelling 

is motivated by its capacity to capture emergence, where complex behaviours arise from simple 

rules and local interactions among agents. Even in basic models with deterministic rules and 

limited information, agents can self-organize and exhibit behaviour that was not explicitly 

programmed.  

The typical structure of Agent-Based Models (ABMs) has three key elements: 

 Agents: The individual unit in the environment with defined attributes and behaviours. 

 Agent relationships and methods of interaction: An underlying topology of connectedness 

defines how and with whom agents interact. 

 The environment: The space that all agents live in. This is the place where all interaction 

happens. The agents interact with the environment and other agents. 

In agent-based modelling (ABM), an agent refers to an individual entity that possesses certain 

characteristics, behaviours, and decision-making capabilities. An agent can represent any creature 

with any autonomy. Individuals, structures, vehicles, land parcels, water droplets, and insects are 
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among the examples (Crooks, 2018). During the simulation, a group of heterogeneous agents are 

placed in their own space within an artificial world, which forms the environment. The agents are 

able to interact with other agents or the environment. Through their interactions, the agents can 

share knowledge or concepts, which may create new ideas or knowledge. With new ideas or 

knowledge, the agents may make new decisions and try to achieve their goals through other 

approaches.  

The core feature of ABM is attempting to replicate the behaviour of individuals within a system 

by defining agents, their attributes, and rules for interaction and placing them in realistic 

environments. Agent-based modelling enables the study of their interactions with each other and 

their surroundings (Crooks, 2018). Agents, as flexible problem solvers, operate in dynamic 

environments with limited control and observability. Therefore, interactions need to be handled 

flexibly, allowing agents to make runtime decisions and initiate unforeseen interactions. In many 

cases, agents act to accomplish goals within an organizational setting, either on behalf of specific 

people or as part of a larger effort to solve problems. This context defines the relationship between 

agents and influences their behaviour, such as whether they are peers collaborating in a team or if 

one agent serves as the manager of others (Jennings, 2000). Additionally, the use of agent-based 

modelling allows for the representation of individual behaviours in a spatial and temporal context. 

In the study of (Heppenstall et al., 2006), individual petrol stations were represented as agents in 

a Java-based model. These agents were equipped with information about their initial starting prices, 

production costs, and the prices of neighbouring stations within a defined radius. The agents had 

the ability to observe the prices of neighbouring stations and adjust their own prices based on a set 

of rules. The model ran iteratively, with each iteration representing a day, and the stations adjusting 

their prices based on their competitors' prices.  
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2.1.1 ODD PROTOCOL AND BDI MODEL 

Agent-based models have been established on solid methodological foundations. However, the 

flexibility they offer to researchers in terms of model design has sometimes led to a lack of 

standardization in design, analysis, and presentation (Leombruni et al., n.d.). Furthermore, the 

implementation details of agent-based simulations are often insufficiently documented, making 

replication difficult or even impossible (Leombruni et al., n.d.). As mentioned by (Grimm et al., 

2006), compared with traditional analytical models, Agent-Based Models (ABMs) are more 

challenging to understand, analyze, and convey because of the complexity of the structure. To 

enhance transparency and reproducibility in ABM, the ODD (Overview, Design concepts, Details) 

protocol should be considered. ODD provides a structured framework for documenting the 

essential aspects of an ABM study. The standardized protocol, such as ODD, for describing Agent-

Based Models (ABMs) would simplify reading and understanding. Meanwhile, the problem of 

lengthy verbal descriptions, which hinder information extraction for understanding and 

implementing the model, can be addressed (Grimm et al., 2006). The structure of ODD protocol 

is illustrated in Table 1 below: 

Overview 

Purpose 

Entities, state variables and scales 

Process overview and scheduling 

Design concepts Design concepts 

Details 

Initialization 

Input 

Submodels 

Table 1 The Three Major Blocks with Seven Elements of the ODD Protocol 
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The overview section includes the purpose, state variables and scales, and process overview and 

scheduling (Grimm et al., 2006). The initial step in developing a model is to state its purpose 

clearly. This is crucial as it enables readers to comprehend why certain aspects of reality are 

included while others are disregarded. Declarations of entities, state variables and scales include 

low-level entities and high-level entities. The term ‘low-level entities’ refers to individual agents 

in the model, and the state variables of individual agents include basic attributes such as age, sex, 

social rank, and location. The high-level entities, for example, the population of one species or a 

community consisting of populations (Grimm et al., 2006). Additionally, the scale of the model 

should be stated. It includes indicating the length of time steps and the overall time horizon, the 

size of habitat cells (if the model is grid-based), and the extent of the model world (if the model is 

spatially explicit). The rationale behind selecting these scales should be briefly explained since the 

choice of scale significantly influences the design of the entire model (Grimm et al., 2006). Finally, 

the element named ‘Process overview and scheduling’ answers the following questions:  

 Who (i.e., what entity) does what, and in what order? 

 When are state variables updated?  

 How is time modelled as discrete steps or a continuum over which continuous processes 

and discrete events can occur? 

The design concepts section outlines the key components, including emergence, adaptation, fitness, 

prediction, sensing, interaction, stochasticity, collectives, and observations (Grimm et al., 2006): 

 Emergence: Which system-level phenomena actually result from individual attributes, and 

which ones are merely imposed? 
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 Adaptation: What adaptable characteristics do the model subjects possess that, either 

directly or indirectly, can increase their prospective fitness in response to changes in either 

their own self or their environment? 

 Fitness: Does the model explicitly model fitness-seeking behaviour, or is it modelled 

implicitly? If it is explicitly modelled, how do individuals calculate their fitness, or in other 

words, what is the measure of fitness used? 

 Prediction: How can agents anticipate the future circumstances they will encounter when 

calculating the effects of their decisions? 

 Sensing: What internal and external state factors are agents supposed to "sense" or "know" 

and take into account while making adaptive decisions? 

 Interaction: What types of interactions between agents are presupposed? 

 Stochasticity: Is stochasticity incorporated into the model?  

 Collectives: Are agents organized into a collective, such as a social group? 

 Observations: How are ABM data gathered for use in testing, comprehension, and analysis? 

The details section provides more in-depth information on initialization, data input and submodels. 

The initialization focuses on the creation of the environment and individuals at the beginning of a 

simulation run in an agent-based model (ABM). It addresses questions about the initial values of 

state variables, whether the initialization is consistent or varied across simulations, and whether 

the initial values were chosen arbitrarily or based on data. The environmental conditions are 

considered as the "inputs" that affect specific state variables in the model. It is essential for readers 

to know the details of the input data, which answers the questions about how they were generated 

and how they can be obtained or reproduced. In the submodels section, all the submodels that 

represent the processes mentioned in the "Process overview and scales" are presented and 
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explained in a comprehensive manner. This includes providing detailed information about the 

parameterization of the model and specifying how the various components and interactions are 

modelled and calibrated.  

The Belief-Desire-Intention (BDI) software model is a cognitive framework used to describe and 

develop intelligent agents, which is a popular approach used in ABM.  It is based on the 

philosophical concept of beliefs, desires, and intentions as fundamental elements of agent 

behaviour. In the BDI model, agents possess beliefs about their environment, desires or goals they 

wish to achieve and intentions which represent their planned courses of action. In other words, 

beliefs are typically stored in a database system, representing the agent's understanding of the 

world. Desires are expressed as goals that the agent wants to achieve. Plan rule templates are stored 

in a plan library and are instantiated at runtime based on the agent's beliefs and goals. The 

intentions of the agents are represented by the plan instances (Singh et al., 2016). In 2012, 

(Taillandier et al., n.d.) proposed a new BDI architecture based on belief theory. When an agent 

receives new information either through its own perception or from another agent's message, it 

updates its belief base accordingly. If the agent does not currently have any chosen intention, it 

evaluates each plan in its plan base based on its desires and beliefs. Through a multicriteria 

decision-making process, the agent selects a plan that best aligns with its goals and beliefs and 

adds it to its intention base. The agent then continuously selects actions from the chosen plan based 

on its context, determined by its beliefs and desires. At each simulation step, the plan can be deleted 

or updated through a plan execution control process, allowing the agent to adapt its actions based 

on the changing circumstances (Taillandier et al., n.d.). However, according to (Taillandier et al., 

2017), this architecture was closely tied to its application context, which had limitations in 

representing the agent's beliefs formally and lacked the capability to handle complex plans with 
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sub-objectives. A simple BDI architecture was proposed by (Caillou et al., 2017) in 2017, which 

is easy to understand and applicable to different research fields. With a reactive agent model, the 

agent's behaviour is determined by simple reflexes which react to immediate events. A cognitive 

model considers the agent's desires and goals. The agent has a cognitive process that determines 

what it wants to achieve and how to achieve it. For example, the agent may have the desire to find 

fires and extinguish them. It plans its actions based on these desires, such as patrolling to find fires, 

extinguishing the fire, and refilling water when needed (Caillou et al., 2017). To summarize, the 

BDI architecture enables agents to make autonomous decisions based on their internal states and 

external stimuli. By incorporating BDI into ABM, researchers can capture the cognitive aspects of 

agent behaviour and simulate realistic decision-making processes. 

2.1.2 PLATFORMS AND APPLICATIONS 

Nowadays, Agent-based simulations are widely used to carry out research for complex systems. 

Several software platforms facilitate ABM development, each with its own strengths and 

limitations. The table below provides a comparison of various Agent-Based Modeling (ABM) 

platforms and software. NetLogo offers a user-friendly interface and a large library of pre-built 

models, while AnyLogic supports multiple modelling paradigms and advanced visualization. 

Repast and GAMA provide flexible and extensible frameworks with high-performance computing 

capabilities. Mason and SWARM focus on lightweight and efficient ABM frameworks with 

support for spatial modelling. FAME and MESA offer agent-based modelling frameworks with 

modular designs and support for Java and Python programming. Table 2 also highlights the model 

scale and GIS capability of each platform. However, it's important to consider the specific 

requirements of a modelling project and consult the official documentation for a more 

comprehensive understanding of each platform's capabilities and limitations. 
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ABM 
Platform 

Features Limitations 
Model 
Scale 

GIS Capability 
Programming 

Language 

NetLogo 

- User-friendly interface 
and modelling 
environment 
-Large library of pre-
built models 
- Graphical visualization 
- Supports agent 
interactions and complex 
behaviours 

- Limited scalability for 
large-scale models 
- Limited support for 
advanced statistical 
analysis 
- Steeper learning curve 
for advanced 
customization 

Small to 
Medium 

Limited GIS 
capability, can 

import GIS data 
but lacks 

advanced GIS 
analysis 

NetLogo 

AnyLogic 

- Multi-paradigm 
modelling (ABM, 
discrete event, system 
dynamics 
- Supports Java 
programming 
- Visual modelling with 
drag-and-drop 
components 
- Advanced visualization 
and animation 
capabilities 

- High computational 
resource requirements 
- Requires knowledge 
of Java programming 
for advanced 
customization 
- Expensive commercial 
license for advanced 
features 

Small to 
Large 

Supports GIS 
data import and 

analysis 
through the GIS 

module 

Java 

Repast 

- Flexible and 
customizable modelling 
framework 
- Supports Java 
programming 
- Modular design for 
easy integration of 
external libraries 
- High-performance 
computing capabilities 

- Steeper learning curve 
for beginners 
- Requires 
programming skills for 
model development 
- Limited graphical 
interface compared to 
other platforms 

Small to 
Large 

Supports GIS 
data import and 

analysis 
through 
external 

libraries/plugins 

Java (RepastS, 
RepastJ); 
Python 

(RepastPy); 
Visual 

Basic, .Net, 
C++, J#, C# 
(Repast.net) 

GAMA 

- Supports multiple 
modelling paradigms 
(ABM, cellular 
automata, system 
dynamics 
- Graphical interface 
with drag-and-drop 
components 
- Multi-level and multi-
scale modelling 
capabilities 
- Open-source and 
extensible 

- Limited user 
community and 
documentation 
- Less mature compared 
to other platforms 
- Less support for 
advanced statistical 
analysis 

Small to 
Medium 

Built-in GIS 
capabilities for 
spatial analysis 

and 
visualization 

GAML (GAma 
Modeling 

Language) for 
simulations, 

Java for 
extensions 

Mason 

- Lightweight and 
efficient ABM 
framework 
- Supports Java 
programming 

- Limited graphical 
interface for model 
development 

Small to 
Large 

Supports GIS 
data import and 

limited GIS 
analysis 

capabilities 

Java 
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- High-performance 
computing capabilities 
- Modular design for 
easy customization 

- Requires 
programming skills for 
model development 
- Less user-friendly for 
beginners 

SWARM 

- Designed specifically 
for ABM 
- Built-in support for 
spatial and network 
modelling 
- Supports Objective-C 
and Python 
programming 
- Scalable and efficient 
simulations 

- Limited graphical 
interface for model 
development 
- Requires 
programming skills for 
model development 
- Less active 
development 
community compared 
to other platforms 

Small to 
Large 

Supports GIS 
data import and 
spatial analysis 

capabilities 

Objective-C, 
Java 

FAME 

- Agent-based modelling 
framework 
- Supports Java and 
Python programming 
- Parallel and distributed 
computing capabilities 
- Modular design for 
easy customization 

- Steeper learning curve 
for beginners 
- Requires 
programming skills for 
model development 
- Limited user 
community compared 
to other platforms 

Small to 
Large 

Supports GIS 
data import and 

limited GIS 
analysis 

capabilities 

Java, Python 

MESA 

- Python-based ABM 
framework 
- Supports object-
oriented programming 
- Easy model 
construction and 
experimentation 
- Extensive 
documentation and 
tutorials 
- Active development 
community 

- Limited graphical 
interface for model 
development 
- Less mature compared 
to some other platforms 
- Less support for 
advanced statistical 
analysis compared to 
specialized platforms 

Small to 
Large 

Supports GIS 
data import and 

analysis 
through Python 

libraries 

Python 

Table 2 A comparison of various Agent-Based Modeling (ABM) platforms and software 

Agent-Based Modeling (ABM) has a wide range of applications across various fields. In social 

sciences, ABM is used to study social phenomena such as opinion formation, crowd behaviour 

(Chunlin He et al., 2010), and the spread of infectious diseases (Cuevas, 2020). Agent-Based 

Modeling (ABM) provides a way to simulate and analyze individual behaviours and interactions 

within social networks, offering insights into collective dynamics and social patterns. For example, 

in the paper of (Cuevas, 2020), an agent-based model for evaluating the transmission risks of 

COVID-19 in various facilities is presented. The model incorporates spatial patterns and infection 
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conditions that influence agent interactions and transmission dynamics. Each agent has an 

individual profile that defines their social characteristics and health conditions, shaping their 

behaviour during interactions. By simulating various scenarios, the model enables the exploration 

of different coexistence conditions and identifies effective measures to mitigate transmission risks. 

In economics, ABM is utilized to model complex economic systems, including markets, financial 

systems, and consumer behaviour. It enables researchers to explore the effects of different 

economic policies, trade scenarios, and market structures on macroeconomic outcomes. As 

mentioned in (Negahban & Yilmaz, 2014), unlike conventional tools, agent-based modelling and 

simulation (ABMS) offer several advantages for marketing research. Firstly, ABMS adopts a 

bottom-up approach by representing individual agents with heterogeneous attributes and decision-

making processes, addressing population heterogeneity in marketing. Secondly, it allows for 

explicit modelling of the consumer social network, enabling the study of the impact of social 

influences on market dynamics. Finally, ABMS has the capability to explain complex non-linear 

marketing patterns by capturing emergent phenomena resulting from the micro-level behaviour of 

consumers and their interactions. These features make ABMS a valuable tool for investigating and 

understanding the dynamics of marketing systems. ABM is also valuable in ecology, where it helps 

study ecological systems, wildlife populations, ecosystem dynamics, and the spread of invasive 

species. For instance, the study (Marley et al., 2017) focuses on the interactions between urban 

areas and bears and the impact of bear dietary choices on both humans and bears. An agent-based 

model was utilized to examine the effects of educating humans about waste management and bear 

deterrence methods on the frequency of bear incursions into urban areas. A study investigates the 

long-term effects of releasing captive-born individuals with varied life histories into the wild for 

conservation purposes using forward-time, agent-based models (Willoughby & Christie, 2019). 



CHAPTER 2: LITERATURE REVIEW 

19 
 

Four species were examined: coho salmon, golden lion tamarin, western toad, and Whooping 

Crane. The study measured the impacts of supplementation by comparing population size and 

genetic diversity in supplemented populations to unaltered populations after 100 years. To 

summarize, by simulating individual organisms and their interactions with the environment, ABM 

provides insights into the emergence of ecological patterns, species coexistence, and the impacts 

of environmental changes. Additionally, ABM is also utilized in disaster management to simulate 

evacuation processes (Zhang et al., 2014) and assess the resilience of critical infrastructure 

(Thompson et al., 2019). In the field of organizational management, ABM allows the study of 

workforce dynamics, team collaboration, and the emergence of organizational behaviour.  In 

transportation, ABM is applied to transportation planning and traffic management. It allows 

researchers to model individual travellers. The decision-making processes and interactions 

between commuters and the transportation network can be unrevealed, which enables the 

evaluation of different transportation policies, the optimization of traffic flows, and the assessment 

of infrastructure improvements. These applications are just a few examples of the diverse 

implementation of ABM in transportation. The application of ABM in transportation will be 

discussed mainly in the following sections. In summary, the ability to represent and simulate 

complex systems at the individual level makes the agent-based model a valuable tool for studying 

and understanding various phenomena in fields such as sociology, economics, ecology, and 

transportation. 

2.1.3 INTEGRATION WITH GIS 

As stated in (Crooks, 2018), the integration of geographic information systems (GIS) and agent-

based modelling enables the incorporation of intelligent agents within a realistic environment. 

The integration of agent-based modelling and geographical data can be visualized through a 
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Geographic Information System. The world’s complexity is represented by layers, including the 

physical and built environment. These layers establish a simulation world boundary where agents 

can operate. ABM (Agent-Based Modeling) and GIS (Geographic Information System) are 

distinct software tools that can be utilized to address different types of inquiries, and they share 

methodological elements that place them within the broader framework of geo-computation 

(Davies et al., 2019). The similarities between these two platforms are obvious. ABMs often 

employ a gridded world composed of attribute-carrying "patches," similar to raster data in GIS, 

which can also represent polygon-like data through rasterization. Agents in ABMs are attribute-

carrying objects, typically zero-dimensional and akin to point-like GIS data. In an ABM, a time 

step corresponds to rule-based calculations in GIS that update feature attributes. From a GIS 

perspective, an agent-based model can be viewed as a layer capable of leveraging raster and 

vector datasets, transforming both itself and the underlying data (Davies et al., 2019). There is an 

architecture consisting of advanced ABM, GIS, and external modules proposed by (Guo et al., 

2008); the agent-based modelling approach allows for the integration of parameter values, rule-

based models, and interactions with the environment. GIS provides geospatial information, 

including topography, land cover, zoning, transportation, and social factors, to confine the agents' 

behaviour within the study area. External modules encompass user interface, simulator, 

visualization, and analysis tools. The user interface enables parameter settings through a 

graphical interface, facilitating sensitivity testing. The simulator sets up and executes external 

simulation models to carry out various tasks. Visualization and analysis tools support the 

examination and investigation of system outcomes. The architecture allows for the incorporation 

of additional auxiliary tools by modifying internal parameters or the ABM model and leveraging 
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different spatial information (Guo et al., 2008). In general, most of the ABM software which is 

integrated with GIS uses a similar architecture. 

2.1.4 LIMITATIONS 

However, ABM also has certain limitations. Developing an ABM requires careful calibration of 

agent rules and parameters to ensure their realism and accuracy. Nevertheless, many of ABM 

involve human agents that bring soft factors into the model and make it difficult to quantify and 

calibrate (Bonabeau, 2002). Validating and verifying complex ABMs can be challenging, 

especially when dealing with large-scale systems. Additionally, ABMs can be computationally 

intensive, requiring substantial computational resources and time for simulations. For instance, 

(Balbi & Giupponi, 2009) examined ABMs in the field of climate change adaptation and 

discovered that due to the level of model abstraction, which hinders model testing, half of the 

assessed papers did not involve validation and verification. 

In conclusion, agent-based modelling (ABM) offers a promising approach to understanding and 

simulating complex systems. By focusing on individual agents and their interactions, ABM 

provides a microscopic lens through which system-level patterns and emergent phenomena can be 

observed. While ABM has advantages in capturing heterogeneity and exploring "what-if" 

scenarios, it also has limitations in terms of calibration, validation, and computational requirements. 

Adhering to protocols such as ODD enhances transparency and reproducibility in ABM studies. 

Additionally, incorporating frameworks like the BDI architecture adds cognitive aspects to agent 

behaviour. With the availability of ABM platforms like NetLogo, Repast, and GAMA, researchers 

and practitioners have diverse tools to develop and analyze agent-based models. As ABM 

continues to evolve, it holds great potential for addressing complex challenges in various domains 

and guiding evidence-based decision-making. 
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2.2 AGENT-BASED MODEL IN TRANSPORTATION 

The four-step travel model is a widely used tool for forecasting transportation demand and 

performance at a regional scale. It is primarily designed for evaluating large-scale infrastructure 

projects and comparing alternative interventions. However, it may not be suitable for capturing the 

complexities of managing existing infrastructure or implementing policies that directly influence 

travel behaviour (McNally, n.d.). The application of travel forecasting models is an ongoing 

process that requires continuous data collection, model estimation, and forecasting. However, 

limited time is available for systematically validating the accuracy of these models after their 

implementation. Additionally, as stated in (McNally, n.d.), the four-step model requires a lot of 

data to characterize the activity and transportation systems. It focuses more on the transportation 

planning side and provides a macroscopic view of the system. The four-step model relies on 

assumptions and aggregations that may not fully capture the complexity of individual travel 

behaviours. In contrast, the data needed for an agent-based model simulation focuses more on 

attributes and behaviour data at the individual agent level to simulate commuters in the real world. 

Agent-based models provide a platform for meeting the need of modern transportation simulation 

as they are capable of modelling real-world complexity through their modularity and flexibility, 

integrating different transportation-related models as required into a single framework. The 

incorporated transportation-related models might include models of land use changes, activity 

schedules, commercial location choice, housing location choice, mode choice, car ownership, road 

pricing, etc. (Kagho et al., 2020). In particular, with the introduction of new modes of 

transportation and technologies like autonomous vehicles, urban air mobility, route guidance 

technology, mobility as a service (MaaS) applications, and others, the focus has shifted from 

increasing transportation infrastructure to the present-day focus on travel demand management 
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(Kagho et al., 2020). Due to the autonomy of the agent in the simulation, even two agents from the 

same species might make different decisions when they face the same situation. This feature makes 

the agent-based model more suitable for modelling different travel demands with varying modes 

of transportation. The summary of the advantages of using agent-based modelling in transportation 

compared to conventional approaches are listed below (Bazzan & Klügl, 2014): 

 It allows for the representation of heterogeneous and variable structures in both the agent 

population (such as individual drivers with different characteristics) and the transportation 

network (where links can be dynamically created or deleted). This flexibility enables a 

more realistic representation of the system. 

 An agent-based approach enables the modelling of complex information processing and 

decision-making processes. Agents can consider multiple factors, anticipate future events, 

exhibit group behaviour, and adapt and learn from their experiences. This feature allows 

for a more comprehensive and dynamic representation of decision-making processes in 

transportation. 

 An agent-based approach facilitates the integration of behavioural constraints throughout 

different levels and phases of the decision-making process. This means that the model can 

capture the influence of various factors on individual and collective behaviour, resulting in 

a more realistic simulation of traffic dynamics. 

There are many choices of simulation platforms for ABM in transportation, and each of them has 

its advantages. As discussed by (Kagho et al., 2020), creating a multi-agent simulation for an agent-

based model involves creating a transport network, introducing agents, and giving them rules on 

how to behave on the network based on real-life scenarios. In this work, several transportation 

simulation frameworks were described, which include TRANSIMS, MATSim, SimMobility, and 
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Polaris. TRANSIMS is a Los Alamos National Institute project and is used for disaggregating 

modelling of travel behaviour on large-scale transport networks. MATSim is a mesoscopic traffic 

flow simulator used for dynamic traffic assignment. SimMobility provides a multi-scale simulation 

platform that covers interactions of land use, transportation, and communication, modelling 

millions of agents. POLARIS provides a plug-and-play system for legacy software in its 

framework.  

The application of agent-based modelling (ABM) in transportation at a city scale offers a versatile 

approach to analyzing and addressing various aspects of urban mobility. ABM can be utilized to 

understand and simulate travel demand, capturing the complex interactions between individuals, 

their activities, and the transportation system. There is a research focus on the travel demand 

dynamics during the hurricane evacuation process (Yin et al., 2014). This paper introduces an 

agent-based travel demand model system designed for simulating hurricane evacuation scenarios. 

The system incorporates various decision-making processes related to evacuation, such as 

determining whether to evacuate or stay, selecting accommodation type and destination, choosing 

transportation modes and vehicles, and deciding departure times. In order to model households' 

travel demand during the evacuation process, an agent-based approach was employed. It considers 

the travel demand is driven by the goal of seeking safety and engaging in various activities related 

to the evacuation (Yin et al., 2014). In other words, the decision-making process is involved in 

achieving these goals and participating in activities that form the various travel demands. These 

agents' behaviours were described using a set of interconnected econometric or statistical models, 

which allowed for a comprehensive representation of the decision-making processes and 

behaviours of households during the evacuation. Additionally, ABM enables the examination of 

traffic flow dynamics on the macro level, which includes congestion patterns, bottlenecks, and the 
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effects of infrastructure changes. For example, an Agent-Based Model (ABM) is developed to 

simulate traffic patterns in San Francisco. The model uses a detailed road network and captures 

realistic variations in traffic conditions (Zhao et al., 2019). This paper presents an agent-based 

macroscopic traffic simulation model for San Francisco, aiming to create a city-scale infrastructure 

resiliency tool. The simulation balances abstraction and detail to enable efficient analysis. Traffic 

is simulated through interactions between individual vehicle agents, incorporating complex human 

behaviour. Agent mobility is simplified based on the volume-delay relationship for efficient real-

time modelling and decision-making. The model is trip-based but can be adapted for activity-based 

simulations in the future, given the detailed network representation and fast simulation speed 

(Zhao et al., 2019). ABM also facilitates the study of mode choice behaviours and the impact of 

transportation policies on modal shift and travel behaviour. For example, in (Zou et al., 2016), an 

agent-based model that focuses on travellers' choices of mode and departure time to address traffic 

congestion was proposed. This model considers the decision-making process based on imperfect 

information and bounded rationality. Individuals accumulate travel experience by monitoring 

performance information of the road network and other relevant conditions such as traffic 

management policies and strategies. Through a Bayesian learning process, travellers gain spatial 

and temporal knowledge. Meanwhile, the model incorporates the theory of search gain and search 

cost with imperfect information to determine when a traveller will initiate or stop searching before 

travel mode and departure time are defined. After the decision making whether the agent sticks 

with the current mode or searches for an alternative mode, the travel mode and departure time can 

be determined. Furthermore, ABM can be employed to assess the effectiveness of intelligent 

transportation systems, such as traffic signal control algorithms, dynamic route guidance, and ride-

sharing services. For instance, in the research (Han et al., 2015), a multi-agent traffic simulation 
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system implemented based on the NetLogo platform was developed. The system represents urban 

traffic elements such as vehicles, road sections, and intersections as agent models. Each agent 

possesses essential capabilities of knowledge acquisition, autonomy, interaction, and 

communication. The road agent model incorporates traffic flow forecasting to influence the actions 

of vehicle agents and assist intersection agents in traffic signal control. Intersection agents serve 

as abstract models of signal controllers and monitor the traffic situation at intersections. The signal 

control function within each intersection agent model analyzes real-time and predicted traffic flow 

data obtained from interactions with related road agents. In conclusion, by incorporating spatial 

and temporal dimensions, ABM provides a holistic understanding of transportation systems, aiding 

in the development of efficient, sustainable, and resilient urban transportation strategies. 

In Agent-Based Modeling (ABM) within the context of transportation, the concept of origin and 

destination (OD) plays a crucial role in simulating travel behaviours and understanding 

transportation patterns. Origin refers to the starting point of a traveller's journey, while the 

destination is the endpoint. The interaction between origins and destinations shapes the overall 

transportation network and influences travel choices. There are several examples to generate or 

define origins and destinations in the transportation ABM. In the work of (Lu et al., 2018), the 

office and residential buildings are used to represent the trip origin and destination since this work 

puts more focus on the peak period traffic. The study (Chen et al., 2016) utilized 1413 traffic 

analysis zones (TAZs) within the 5-county region, along with individual trip tables categorized by 

the origin and destination zones. Research from (Kloppel et al., 2019) initially assembled the 

information from an extensive travel survey conducted in 2008 to represent the travel demand in 

Munich accurately. The data obtained from the public travel survey provides a precise depiction 
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of the travel patterns and behaviours exhibited by the residents of Munich. This data is instrumental 

in defining both the starting points and destinations of their journeys. 

2.2.1 FLEET MANAGEMENT  

Agent-based modelling (ABM) has emerged as a valuable approach for vehicle fleet management. 

ABM allows for the simulation and analysis of complex interactions and decision-making 

processes among individual vehicles within a fleet. In this context, each vehicle is represented as 

an autonomous agent with its own unique characteristics, including location, destination, and 

operational constraints. Research from (Martinez et al., 2015) introduces a novel concept of urban 

shared-taxi services aimed at utilizing traditional taxi capacity more efficiently. The system 

operates on a sharing basis, where passengers agree to share the vehicle with others who have 

compatible trips. An agent-based simulation model is proposed and tested, incorporating rules for 

matching requests with shared taxis based on space and time criteria. The simulation model focuses 

on replicating a typical working day in a city and includes a road network where taxis operate, and 

clients are generated based on trip generation indicators. The model incorporates a dispatcher 

system that centrally manages the assignment of taxis to clients using information such as the 

location of shared taxi vehicles, their occupancy rate, and client locations. The model also accounts 

for the possibility of hailing a taxi on the street or going directly to a taxi stand. The structure of 

the model allows for multiple taxi-owning companies with different fleet sizes, which can be 

connected to various phone dispatching companies or operate independently. The model 

emphasizes the interaction between clients and taxis, simulating their connection and service 

provision. While the model does not include a dynamic traffic model, it assumes a fixed traffic 

model due to the focus on the taxi market changes rather than their impact on traffic conditions. In 

the simulation model, the road network includes link attributes that represent travel time for 
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different periods of the day, capturing the dynamic nature of traffic in the urban system. The model 

assumes that taxi drivers are experienced and have knowledge of the road network, enabling them 

to choose the fastest route to their destination. To compute the fastest route, Dijkstra's algorithm is 

employed. It is important to note that the model assumes the variation in the number of taxis in 

service does not impact the predefined travel speeds on the network links. The simulation 

experiment used Lisbon as the case study area, which demonstrates the potential of shared taxis in 

improving mobility management, with significant fare and travel time savings for passengers while 

minimizing the impact on taxi revenues. After two years, there is another research that uses Lisbon 

as the case study area to assess the impacts of deploying a shared self-driving urban mobility 

system (Martinez & Viegas, 2017). This research focuses on analyzing the potential effects of 

implementing a shared and self-driving fleet of vehicles in a mid-sized European city. The study 

investigates two distinct self-driving vehicle concepts: the Shared Taxi and the Taxi-Bus. The 

Shared Taxi concept resembles a traditional taxi service where passengers are willing to take small 

detours and share their rides with others. The Taxi-Bus concept involves minibuses that operate as 

a dynamic bus service, requiring customers to pre-book their rides in advance and walk short 

distances to designated stops. The dispatch system is responsible for collecting and processing 

real-time information necessary for creating and monitoring trips. When a user requests a ride, the 

Dispatcher determines the most suitable car or minibus to match with the user's request. In making 

this decision, the Dispatcher considers a time-minimization principle that aims to minimize travel 

time not only for the requesting user but also for the existing passengers already in the vehicle. 

(Heinrichs et al., 2017) presents an integrated approach to modelling car sharing as a new mode 

within a travel demand model. The approach utilizes disaggregated car fleets with car-specific 

attributes to represent the car-sharing service. The necessary parameters for mode choice are 
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estimated from various surveys and integrated into an existing multinomial logit model. The 

proposed approach is then applied to simulate the travel demand of a synthetic population in Berlin, 

Germany. A synthetic population is generated for Berlin by combining statistical data and using 

the Iterative Proportional Fitting (IPF) approach. This approach estimates joint distributions of 

household and person attributes to match real-world socio-demographic characteristics closely. 

The population is spatially distributed based on population density, and each individual is assigned 

specific socio-demographic attributes. The resulting synthetic population is stored in a database 

for simulating different scenarios (Heinrichs et al., 2017). 

2.2.2 AUTONOMOUS FLEET  

Agent-based modelling (ABM) can be utilized in the context of autonomous vehicle fleets to 

simulate and study their behaviour and impacts. This approach allows for the examination of how 

different factors and variables, such as fleet size, dispatching algorithms, pricing schemes, and 

mobility patterns, influence the performance of the autonomous vehicle fleet. In the virtual world, 

the movement of fleet agents can involve various factors, including passenger demand, traffic 

conditions, road infrastructure, and fleet management strategies. In other words, each autonomous 

vehicle agent might have its own rules and objectives, such as picking up passengers, navigating 

the road network, and optimizing its route.  

When examining the implementation of agent-based modelling (ABM) in the context of 

autonomous vehicle (AV) fleets, a comprehensive framework can be followed. Firstly, the model 

should accurately represent the dynamics of the AV fleet system, considering factors such as 

vehicle behaviour, passenger demand, and traffic conditions. The agents in the model, representing 

individual vehicles, passengers, and infrastructure components, should possess realistic attributes, 

behaviours, and decision-making capabilities. The model should incorporate various interactions, 
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including vehicle-to-vehicle communication, passenger-vehicle interactions, and interactions with 

the surrounding environment. In the developed autonomous vehicle (AV) fleets agent-based model 

(Lu et al., 2018), each commuter is characterized by their home and workplace locations, 

representing residential and office buildings, respectively. The population density is determined 

by the spatial distribution of commuters' home locations at the start of the simulation. Commuters 

travel between their homes and workplaces on weekdays, typically starting their commute between 

6:00 and 9:00 a.m. in the morning and returning home around 4:00-6:00 p.m. in the evening. The 

departure times from home and workplace follow a normal distribution. The 20,000 commuters in 

the model have the choice between using a personal car or an autonomous taxi (aTaxi) for their 

transportation needs. At the beginning of the simulation, idle aTaxis are randomly distributed 

throughout the city. During the simulation, aTaxis park directly at the last passenger's destination 

if they are not assigned to the next trip. They pick up commuters from their homes and transport 

them to their workplaces or vice versa. The maximum capacity of an aTaxi is set to four passengers. 

Only passengers with the same trip starting hour have the potential to share a vehicle. In the work 

of (Lu et al., 2018), the travel speed of the vehicles in the model varies based on the time of day 

and the number of vehicles on the road. This variation is used to simulate realistic traffic congestion 

during peak hours. The travel speed depends on the number of vehicles on the road and the road 

capacity. To optimize the route, the aTaxi aims to deliver all onboard passengers to their respective 

destinations using the shortest distance. The optimized route is determined based on the highest 

speed coefficient that allows all passengers to reach their destinations efficiently.  

Additionally, the ABM framework should account for the spatial and temporal aspects of the AV 

fleet, simulating realistic movement patterns and trip schedules. To ensure the model's validity, the 

ABM should be calibrated and validated using real-world data to capture the characteristics of the 
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AV fleet system accurately. For example, in the research of (Kloppel et al., 2019), the simulation 

model utilizes the BeeZero booking data as input and is validated by comparing the simulation 

results with the original booking data. The validation process ensures the accuracy and reliability 

of the simulation. Out of the 394 bookings in the original dataset, 374 were successfully simulated. 

For the 374 successfully conducted bookings, the simulation model accurately calculated the price, 

including the application of the price packages based on the "best-price-guarantee" policy. In the 

work of (Lu et al., 2018), the behaviour model of the commuting simulation was calibrated and 

validated using real-world data, which enhances the credibility and trustworthiness of the agent-

based model and its results. The validation process focused on three key components: commute 

speed, commute time, and commute trips by time of day. Data from an Ann Arbor commuting 

survey were utilized to validate the model. Meanwhile, data from the 2009 National Household 

Travel Survey (NHTS) were used to validate the commute trips by time of day. Meanwhile, the 

framework should also allow for the exploration of different scenarios, enabling the assessment of 

the fleet's performance under various conditions and the evaluation of potential interventions or 

policies. In the study of (Chen et al., 2016), several scenarios are considered to assess the 

sensitivity of fleet operation metrics in different conditions. The first scenario is a non-electric 

shared autonomous vehicle (SAV) with a 400-mile range and a 15-minute refuelling time, serving 

as a reference case for comparison. The second scenario focuses on shared autonomous electric 

vehicles (SAEVs) with an 80-mile range and a 4-hour recharge time, similar to current models of 

electric vehicles on the market. The third scenario introduces fast charging for SAEVs which 

reduces the recharge time to 30 minutes. However, the range is limited to 64 miles to protect battery 

capacity. The last two scenarios explore the use of long-range SAEVs with a 200-mile range (4-

hour recharge time) and with a 160-mile range (30-minute fast charge time). These scenarios allow 
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for a comprehensive analysis of the impact of vehicle range and charging infrastructure on fleet 

operations. 

Finally, the outputs of the ABM simulation should be analyzed and interpreted to provide valuable 

insights into the behaviour and impacts of the AV fleet, aiding in the decision-making process for 

fleet management and policy development. For example, (Chen et al., 2016) presents an agent-

based modelling (ABM) approach to examine the operations of a fleet of shared autonomous 

electric vehicles (SAEVs) in a medium-sized metropolitan area. As discussed by (Chen et al., 

2016), based on the analysis of trip distance and time-of-day distributions, the results show that 

fleet size is influenced by battery recharge time and vehicle range. An 80-mile range SAEV can 

replace 3.7 privately owned vehicles, while a 200-mile range SAEV can replace 5.5 vehicles with 

Level II charging. With Level III fast-charging infrastructure, these ratios increase to 5.4 vehicles 

for the 80-mile range SAEV and 6.8 vehicles for the 200-mile range SAEV. In conclusion, by 

following the comprehensive framework mentioned above, ABM can serve as a powerful tool for 

understanding and optimizing autonomous vehicle fleet operations. 

  



CHAPTER 3: MODEL CONSTRUCTION 

33 
 

CHAPTER 3: MODEL CONSTRUCTION 

3.1 PROPOSED MULTI-AGENT MODEL 

The study utilizes agent-based modelling to simulate the operation of the autonomous vehicle fleet. 

It analyses the potential of using autonomous vehicles (AVs) as a transportation mode for people’s 

daily commuting demands. While human drivers in taxi services are focused on maximizing their 

own profits, they might neglect the optimization of the entire fleet, which can result in poor 

utilization of resources, congestion, and inefficient routing. In contrast, autonomous cars can be 

operated as a fleet owned by one business, which can be managed and optimized depending on 

certain conditions, such as the availability of vehicles, the volume of demand, and the times of the 

day. Then, better coordination of operations and efficiency can be achieved. As mentioned by 

(Loeb et al., 2018), one of the benefits of fleet automation is the ability of vehicles in the system 

to respond to all ride requests immediately upon receiving them. This ensures prompt and efficient 

service for passengers. In this thesis, the demand-responsive operation strategy is the major 

research topic. The demand-responsive operations allow autonomous taxis to adjust their 

schedules and dispatch locations depending on the demand of people agents. The AV in the fleet 

can then be dispatched to areas experiencing high demand or placed in regions with low demand 

to ensure that the whole fleet is operated effectively and efficiently. Additionally, optimizing the 

fleet size and deployment based on demand change can cut the operation cost and reduce idling 

time for the individual vehicle, as well as minimize emissions and traffic load. 

As discussed in the previous chapters, agent-based modelling (ABM) is a powerful modelling 

technique that enables the creation of more realistic representations of agents and the environment 

in a system. It is crucial to employ methods that can effectively capture and recreate the 



CHAPTER 3: MODEL CONSTRUCTION 

34 
 

characteristics of complex systems to comprehend the intricacies of our world. Modelling is an 

invaluable tool for understanding complex systems, which provides a theoretical description of 

how a system or process operates (Crooks, 2018). A transportation system is complex and dynamic, 

with numerous participators with varying preferences and behaviours. With the help of ABM, the 

interactions between individuals in the system can be depicted in a way that is close to realistic 

and flexible, which makes it an ideal tool for transportation planning and analysis. The observers 

are able to build and investigate the various decision-making processes and behaviours of 

individuals and groups in a transportation system. The ability to create complex representations of 

the interaction between individual agents and the dynamic transportation system is enabled by 

defining the parameters and rules of behaviour for agents and the environment properly. After 

proper definition, the agents in the ABM are driven by rational behaviour by themselves to 

simulate real-world conditions and interactions. In other words, there are no complicated 

mathematical equations to define the behaviour of the agents and the parameters of the 

environment, which is the most different feature that ABM has compared to the traditional 

modelling technique.  

For conducting the simulation-based case study in this thesis, the geospatial data for the target area 

needs to be acquired and form the base layers of the simulation. Geospatial data in this research 

refers to the information that can be collected and analyzed about a city’s road network, 

neighbourhood area, and land use. A road network is composed of information about the 

connectivity, layout, and attributes of a city’s roads and highways, such as intersections, road 

segments and hierarchy. It can also be used to improve the efficiency of a city’s transportation 

management. The boundaries, characteristics, and spatial extent of each district or neighbourhood 

within a city are included in the neighbourhood data. This data may encompass demographic 
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statistics and other relevant data that can provide insight into the community. The land use data 

includes information about the types, spatial distribution, and attributes of various land uses within 

a city, such as industrial, commercial, residential, and parks. By combining all the geospatial data 

and importing them into the ABM platform, the base layer of the simulation world can be 

assembled completely. 

The framework of this simulation is formed by the city environment, people agents and fleet agents. 

Figure 3 illustrates a systematic framework for this thesis. As discussed in the previous paragraph, 

the city in the simulation consists of the road network, land use data and neighbourhood boundaries. 

The road network layer of the simulation incorporates the speed limit of each road segment, 

obtained from the city's data, as an attribute. The boundaries of the neighbourhoods define different 

statistical zones within the model. In this simulation, fleet agents are responsible for providing 

transportation services to the people agents who need to travel across the road network to reach 

destinations in various land-use areas for different purposes. When a person places a request, one 

of the fleet agents responds and fulfills the demand. The fleet agent picks up the person at the 

location of the request and drives them to their desired destination. In order to generate realistic 

demand patterns, data from the Transportation Tomorrow Survey (TTS) is utilized, capturing 

people's demand in different locations and during different time periods throughout the day. 

Additionally, the simulation dynamically adjusts the fleet size and deployment to reflect changes 

in demand. 
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Figure 3 Simulation Model Framework 

3.2 PLATFORMS 

ABM platforms are software tools that provide researchers with the capability to develop, 

implement, and analyze agent-based models, such as model execution, data visualization and 

analysis. The integration of Geographic Information Systems (GIS) with Agent-Based Modeling 

(ABM) platforms allows spatial interactions and dynamics involved in the simulation and analysis 

of autonomous fleet operations. There are three major software tools that are involved in this thesis: 

Python GeoPandas, QGIS, and GAMA platform. 

The open-source Python library GeoPandas is designed to help users work with spatial data, which 

includes information such as geographical coordinates and boundaries. It extends the Pandas 

library’s capabilities to handle spatial data, which makes it easy to perform various tasks related 

to spatial data, such as spatial join and network analysis. In this thesis, GeoPandas is involved in 

raw data processing and cleaning tasks to make the raw geospatial data ready for simulation use. 

It performs major spatial data editing tasks. 
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The QGIS (Quantum Geographic Information System) software (https://www.qgis.org/) is a 

widely used open-source GIS program that can be applied for spatial analysis, mapping, and 

visualization. Users can create, manage, and export geodata in different formats, such as CSV, 

shapefiles, and geodatabases. It also lets users manage spatial relationships and attribute data. 

QGIS has a wide range of tools for performing various spatial analysis tasks, which include 

geoprocessing, spatial queries, and buffers. These tools can help users extract insights from the 

data. After data cleaning procedures in this work, QGIS visualizes the spatial data and performs 

minor spatial data editing tasks.  

The GAMA (Geographically and Agent-Based Modeling Architecture) platform is an open-source 

model and simulation framework that enables creating and analyzing agent-based models with 

spatial or geographic components. It supports the integration of various spatial and geographic 

data sources into its models, such as shapefiles, OSM files and Geotiff, which allows users to 

perform analysis and modelling of processes in a spatial environment (Taillandier et al., 2019). As 

stated by (Taillandier et al., 2019), the GAMA framework utilizes a dynamic quadtree structure 

that updates according to the agent’s movement. It can also improve the spatial query and the 

shortest paths on graphs by implementing various algorithms such as the Dijkstra algorithm and 

the Floyd Warshall algorithm. The GAMA platform is the primary software that is employed in 

this work and carries out the experiment. 

3.3 ODD PROTOCOL 

3.3.1 OVERVIEW 

Purpose: The purpose of this study is to investigate the improvement of fleet size and deployment 

in autonomous vehicle systems based on demand fluctuations. The research aims to explore how 

adjusting the fleet size according to real-time demand can lead to cost savings, reduced idle time, 
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emission reduction, and improved traffic management. By analyzing the dynamics of demand on 

spatial and temporal scales, the study seeks to provide insights into the variation of the fleet size 

required to meet evolving transportation needs. The research aims to contribute to the development 

of more efficient, sustainable, and accessible autonomous vehicle systems. Furthermore, the ability 

to deactivate idle vehicles contributes directly to the reduction of emissions and the alleviation of 

traffic congestion. As inactive vehicles are taken out of circulation, the overall carbon footprint 

decreases, promoting a cleaner and greener environment. By strategically managing the fleet's 

deployment, traffic load can be efficiently distributed, preventing overcrowding on certain routes 

and minimizing delays for passengers. 

Entities, state variables and scales: There are five types of species in this model: neighbourhoods, 

buildings, road networks, vehicles, and people. The entities and their related state variables are 

listed in the appendix. In this model, the people species has five objectives, which are “Home,” 

“Work,” “School,” “Discretionary,” and “Non-home based.” These five objectives indicate the 

purpose of travelling and the location of the people. The fleet species also has five objectives: "not 

in service," "searching," "pickup," "commuting," and "arrived." These objectives describe the 

different states of the vehicles in the simulation. The time step can be determined by users through 

the user interface. The default time step setting for this model is 1 minute, and the simulation time 

starts from 0 a.m. The virtual world in the model is constructed using imported shapefiles, which 

define the neighbourhoods, road networks, and buildings. The size of the virtual world depends on 

the size of the imported shapefiles, providing a realistic and customizable environment for the 

simulation. 

Process overview and scheduling: According to TTS, people generate travelling demand at 

different times of the day. For example, there are 24% of travelling demand in a day happens in 
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the morning rush hour, which means a specific number of people agents are generated during 

that period. The exact request hour and minute during this period for each people agent are 

randomly assigned once they are generated. Furthermore, the objectives of the people agent are 

assigned according to the different destinations. When the simulation time matches a people 

agent's request time, their boolean value “request” is set to true, indicating an active travel 

request. At this point, the fleet agents on the map detect the presence of active requests. The 

closest available fleet agent or the designated fleet agent is then assigned to the corresponding 

people agent. The matched fleet agent approaches the location where the active request is, and its 

objective changes to "pick up" at the same time. Once the fleet agent reaches the people agent 

and begins heading towards the people agent's destination, its objective changes to "commuting." 

Upon reaching the destination, the fleet agent's objective is updated to "arrived." The next 

objective for the fleet agent could be "searching" or "not in service," depending on the 

availability of new travel requests.  

3.3.2 DESIGN CONCEPT 

Emergence: The model aims to simulate the emergence of a dynamic autonomous vehicle (AV) 

system within a virtual environment. By simulating the interactions between people agents and 

fleet agents, emergent behaviour emerges as a result of their collective actions and decision-

making processes. The model captures the dynamic nature of travel demand, fleet availability, 

and objective-driven interactions, leading to emergent patterns and outcomes. 

Sensing: Both people agents and fleet agents have sensing capabilities within the simulation. 

People agents sense the current simulation time to determine if it matches their request time, 

triggering their travel demand. Furthermore, people agents are assigned a patience value once 

their travel request becomes active. The patience value represents their tolerance for waiting and 
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influences the triggering of their decision to leave. People agents continuously sense and monitor 

the elapsed waiting time and patience value. If the waiting time or the patience value exceeds 

their threshold, they may choose to leave and seek alternative transportation options. The 

interplay between patience, waiting time, and the decision to leave adds a realistic and dynamic 

element to the model, capturing the varying levels of tolerance among individuals in the 

simulation. Fleet agents sense the presence of active travel requests and their proximity to these 

requests. Additionally, fleet agents can sense the status of their current objective, allowing them 

to transition to the next objective when certain conditions are met. Each fleet agent can sense the 

number of active members and compare it to the base population. As the fleet operates as a 

collective entity, fleet agents can communicate and share information with each other. By 

considering the constraints of searching time and idling time, as well as the base population 

setting, each fleet agent can make informed decisions and determine its objective. In addition, 

the model updates the information regarding potential high-demand areas based on different time 

periods. This information is then used to inform the fleet agents' decision-making process, 

enabling them to strategically allocate their resources and adjust their plans accordingly. As a 

result,  the fleet agents can optimize their operations and adapt their behaviour based on the 

current demand and resource availability. The interaction and exchange of information among 

fleet agents contribute to the overall efficiency and effectiveness of the fleet management 

system. 

Interaction: Interaction occurs between people agents and fleet agents in a coordinated manner. 

When an active travel request is detected, the closest available fleet agent or the designated fleet 

agent interacts with the corresponding people agent to provide transportation services. This 

interaction involves fleet agents approaching the pick-up location, picking up the people agent, 
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and commuting toward the destination. The interaction between the two agent types is essential 

for fulfilling travel demands efficiently and effectively.  

3.3.3 DETAILS 

Initialization: The model follows an initialization phase to set up the virtual world and initialize 

the entities within it. This phase involves importing shapefiles to define the spatial elements of 

the simulation, such as neighbourhoods, road networks, and buildings. These shapefiles serve as 

the foundation for creating a realistic and geographically accurate environment. During this 

phase, the fleet agents and people agents are also initialized. They are assigned their initial 

attributes and states, such as objectives, destinations, and initial positions. This allows for the 

simulation to start with a predefined configuration of fleet agents and people agents, ready to 

interact and operate within the virtual world. The initialization phase ensures that the simulation 

begins with a well-defined and consistent state, providing a starting point for the subsequent 

simulation steps. The model establishes the foundation for the emergent behaviours and 

interactions that will unfold throughout the simulation by properly setting up the virtual world 

and initializing the entities within it. 

Input: The model relies on input data to simulate the dynamics of the system. This input 

comprises shapefiles that define the spatial characteristics of the neighbourhood, road network, 

and buildings within the virtual world. These shapefiles serve as the foundation for creating an 

accurate and realistic environment for the simulation. Furthermore, the model incorporates TTS 

data, which provides essential information on travel patterns and demand at different times of the 

day. By utilizing this data, the model can generate travel demand in a proportional manner, 

accurately reflecting the real-world distribution of travel activities throughout the day. This 

ensures that the simulation captures the variability and patterns of travel demand based on 
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temporal dynamics. By integrating both spatial and temporal data, the model creates a 

comprehensive representation of the transportation system, enabling the exploration and analysis 

of various scenarios and strategies. This input-driven approach enhances the accuracy and 

realism of the simulation, facilitating insightful observations and informed decision-making in 

transportation planning and management. 

Submodels: The model consists of several interconnected submodels that simulate different 

aspects of the transportation system: 

 People Generation: This submodel generates people agents based on the TTS and assigns 

them objectives and destinations according to their travel purposes (e.g., home, work, 

school). The request time for each person is randomly assigned within the corresponding 

demand period. 

 Fleet Allocation & Distribution: This submodel manages the allocation of fleet agents to 

active requests and the distribution of fleet agents. When a request becomes active, fleet 

agents evaluate their proximity to the request location and their availability status. The 

closest available fleet agent or the designated fleet agent is assigned to the corresponding 

people agent, and their objectives are updated accordingly (e.g., from "searching" to 

"pick up"). The submodel also maintains the supply of fleet agents based on the average 

supply density in different neighbourhoods. By periodically updating the supply 

information, the submodel ensures that fleet agents are appropriately distributed to meet 

the demand in each area. 

 Demand and Supply Management: This submodel tracks the demand and supply 

dynamics within the system. The fleet agents communicate and share information with 

each other to collectively manage the available supply. Based on constraints such as 
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searching time limitation and base supply population, the fleet agents make decisions 

regarding their objectives and resource allocation. 

3.4 MODEL 

Building an agent-based model (ABM) from the ground up involves several steps, which are listed 

below: 

 Defining the problem: The definition of the problem involves identifying the model’s 

objectives and system. It also entails identifying the environment, the agents and their 

behaviours. 

 Implementing the model: The model should be implemented using a suitable programming 

language. As the previous section compared, a wide range of ABM platforms are available, 

such as GAMA, NetLogo, and AnyLogic. In this thesis, the GAMA platform was chosen.  

 Testing the model: The model should be tested to ensure that it performs as expected. This 

process may involve parameter improvement, model validation, and sensitivity analysis. 

 Experiments and analyzing the results: The analysis of the results should be carried out to 

interpret the model’s findings and draw conclusions about its operation. This may involve 

scenario analysis, statistical analysis, or visualizations. 

The following steps need to be followed to build an ABM on the GAMA platform specifically: 

 A new project needs to be created. 

 Defining the global environment for the model involves declaring the global environment 

parameters and defining the environment’s behaviour and any external factors that may 

affect the agents. 
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 The species in the environment are described by specifying agent attributes, behaviours, 

and interactions with other agents or environments. Inside a species, the specie level 

parameters need to be declared at the beginning and then can be implemented in the agent 

behaviours and interactions. 

 The initial conditions for the environment and species are defined by importing data or 

initial parameter settings. Before running the simulation, the user interface and display 

settings need to be settled.  

 The GAMA’s simulation engine runs the model and analyzes the results by using built-in 

analysis tools or exporting data to an external program for further analysis. 

3.4.1 GLOBAL  

As the steps listed in the previous section, the global environment needs to be defined at the 

beginning of the simulation. After data preparation, the shapefiles are ready to import into the 

model, which forms the buildings, roads, neighbourhoods, and boundaries in the simulation 

environment. The shapefile of city roads also defines the graph for the road network in the 

simulation, which declares the data type (graph) of the road network in the global environment. 

Time and date variables are defined, including steps for the model (time interval between two 

simulation cycles), starting date, and boolean variables for different time periods (AM peak, mid-

day, PM peak, evening, and early morning). The AM peak starts from 7 to 10, and the PM peak 

begins from 16 to 19. Mid-day is defined as between 10 to 16. After the PM peak till 0 a.m. is the 

evening, and from 0 a.m. to the start of AM peak is the early morning. The day and night boolean 

variables are also declared. Meanwhile, all of the global variables are declared before initiation, 

such as agent population and some of the agent behaviour variables. 
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The 'init' statement in the GAML language serves as the initialization step for the simulation. It is 

responsible for defining the initial values of environment elements and agents that are necessary 

for the simulation process. In this simulation, the 'init' statement is used in the global environment 

to create the initial species of the model. Specifically, it generates the species for neighbourhoods, 

buildings, and the road network. Additionally, the statement randomly deploys the initial fleet 

agents on the road network. In order to ensure that the fleet agents choose the shortest path when 

transporting the people agents to their destinations, the A-star algorithm (Hart et al., 1968) is 

defined and applied to the road network in the model during the initial stage. Each road segment 

is assigned a weight based on its perimeter, allowing for efficient path selection by the fleet agents. 

In the GAML, behaviours, also known as reflexes, are sets of statements that agents execute at 

each step of the procedure. The "when" method, a facet of the behaviour, allows the reflex to be 

executed only when a specific boolean expression evaluates to true. This capability simplifies the 

specification of agent actions and decision-making processes (Taillandier et al., 2019). In this 

particular simulation, the vehicle agents represent the supply side, while the people agents 

represent the demand side. The simulation records the number of vehicles in service and the 

number of waiting people. Additionally, it calculates metrics such as the average wait time for 

people and the number of waiting people within a specific period. To determine the speed of 

vehicles, the "speed_coeff" and "speed" reflexes are utilized. These reflexes adjust the speed of 

vehicles based on the type of road and the time of day. The speed coefficient is assigned a different 

random value within a specified range depending on the time of day, allowing for realistic 

variations in vehicle speeds.  

The supply side of the simulation involves defining the base populations of vehicles for different 

times of the day. The "base_supply_needed" reflex determines whether the current number of 
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vehicles is sufficient to meet the base population requirements of the in-service fleet. Figure 4 

presents a flow chart illustrating the workflow of the reflexes responsible for maintaining the 

supply number and dispatching supply to different areas. The average number of vehicles per 

square kilometer in each neighbourhood is calculated. Three list variables are declared in the global 

environment to facilitate this process. These variables are used to monitor and collect information 

about neighbourhoods with zero supply, as well as those with supply above or below the average 

number. The "maintain_supply" and "dispatch_supply" reflexes play a crucial role in ensuring that 

the number of vehicles in service matches the base population requirements. These reflexes work 

together to dispatch standby vehicles from neighbourhoods with an above-average supply to those 

experiencing a shortage of supply. This mechanism helps balance the distribution of vehicles 

across different areas. On the demand side, the behaviours appear to define the generation of 

weekday demand for different periods of the day based on the type of travelling (home base and 

non-home-based) and percentage of people interested in different activities (e.g., work, school, 

and discretionary). The data is extracted from the Transportation Tomorrow Survey (TTS). There 

is an example of data that is represented in Figure 5. In this table, the rush hour data is detailed, 

and the percentage of the rush hour trips in total trips in 24 hours is indicated. The trip purpose has 

two major types, which are home-based trips and non-home-based trips. Based on the destination 

of the home base trip, they are classified into three types: home base to work, home base to school 

and home base to discretionary places. 
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Figure 4 The three major behaviours to maintain the base supply number and dispatching.  

 

Figure 5 The total trips, the percentage of trips in a day, and their purposes. 
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In this thesis, the simulation focuses on the weekday travel demand. Due to the lack of precise 

data for other times of the day, the trip data for the rush hour in the afternoon is duplicated from 

the rush hour in the morning. Same as the percentage of the total trip in the morning rush hour, 

24% of the trip in a day is assigned to the afternoon rush hour. The rest of the trip is distributed 

to the other three times of the day rationally: 24% of trips happen in the mid-day, 20% in the 

evening, and 8% in the early morning. Since the total trip and each percentage of trip purposes in 

24 hours are known, the different trip purposes are distributed to the mid-day, early morning and 

evening according to their percentage of the total trip. In order to create some randomness for the 

demand generating, each demand in a certain period of the day is assigned a random request time 

in the period. It means the vehicle agents can only detect the demand when the simulation time 

matches the request time of the demand exactly. As Figure 6 shows, each time of the day has 

assigned a certain number of people according to the calculation based on 2016 TTS data. The 

origin and destination of people are defined based on 2016 TTS data as well. As discussed above, 

every single people agent at a time of the day has a random request time. When the simulation 

time matches the request time of the people agent, the request turns true request and can be 

detected by the vehicle agents. 

The last behaviour of the global environment is updating the high-demand or potential high-

demand neighbourhoods. A reflex is created and intended to identify high-demand areas (“hot 

areas”) in a model. There are three main conditions that determine which buildings or 

neighbourhoods are considered “hot areas”: 

 If it is during the AM peak hour, the “hot buildings” are defined as all residential 

buildings. 
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 If it is during the PM peak hour, the “hot buildings” are defined as all commercial, 

employment, or mixed-use buildings (they are all generally workplaces). 

If it is during any other time of day (is_early_morning, is_mid_day, or is_evening), the reflex 

considers each neighbourhood in the model. If a neighbourhood has active demands for more 

people greater than or equal to 10% of the total number of people in the period of the day, then 

that neighbourhood is considered “hot.” If a neighbourhood has the potential to have more 

people greater than or equal to 1% of the total number of people in the period of the day, then 

that neighbourhood is also considered “hot.” 

 

Figure 6 The generation process of the people agent (demand). 
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3.4.2 SPECIES  

In GAML (Generative Agent-based Modeling Language), a species defines the attributes and 

behaviours of a group of agents. It serves as a blueprint for creating multiple instances of agents 

with similar properties and capabilities. A species can have various features in GAML. The main 

types of species’ features are attributes and behaviours. The former defines the agent’s 

characteristics, and these can be expressed using data such as integers, strings, and lists. On the 

other hand, the latter defines the actions of the entity. For instance, base elements can represent the 

creature’s physical appearance, while a reflex aspect can specify its responsiveness to certain 

situations. The “neighbourhood” species is defined by the keyword ‘species’ declaration that 

represents a geographical area. The species contains several attributes, such as the area name, area 

square kilometers, and neighbourhood demand number. There are two reflexes defined in the 

species: “update_demand_number” and “update_supply_number.” The former reflex updates the 

neighbourhood demand number and potential number by counting the number of people inside the 

neighbourhood with true and false requests, respectively. The latter reflex updates the 

neighbourhood supply number and supply square kilometers number by counting the number of 

fleet objects inside the neighbourhood with the objective “not in service.” The building species has 

four attributes:  

 type: a string that represents the building type (e.g., residential, commercial, employment, 

mixed-use, etc.). 

 area_name: a string that represents the name of the neighbourhood where the building is 

located. 

 move_id: an integer that represents the movement ID of the building. 

 colour: an RGB colour that represents the colour of the building types in a visualization. 
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The building species is helpful in modeling the built environment in the simulation, as they play 

an essential role in determining the origin and destination of the travelling. Similar to building 

species, the definition of the road species is simple, and it has only one attribute called “type.” 

According to different types of road segments, the speed limit is signed for each of them. 

  

Figure 7 Example of the code of defining a species in GAML. 

The people species defines a type of agent that can make requests for transportation services and 

ask fleet species to come and pick up. The people have various properties such as request time, 

current fleet, objective, and patience. The code includes reflexes that trigger certain actions based 

on specific conditions. For example, when a request is made, the reflexes update the area and fleet, 

calculate wait times, and set triggers for leaving the system if there is no match, or the patience 

value threshold is exceeded. Additionally, in the aspect statement, different colours are used to 

indicate whether a request is active or not. There are five different objectives that describe the state 
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of each people agent: “Home,” “Work,” “School,” “Discretionary,” and “Non-Home-Based.” 

These five objectives represent the purpose of the trip. Figure 8 is the flowchart that represents the 

workflow of people species. When the system time matches the request time of a people agent, 

this people’s request turns active. After a certain time period, the patience value is decreasing in 

every minute, and the people agent has limited waiting time for different times of the day. In the 

AM or PM rush hour, the waiting time limit is shorter than at other times. Either the patience value 

is not enough or the waiting time limit is exceeded, the people agent will check if a fleet agent 

matches it and whether the distance between itself and the fleet agent is within 1 kilometer. If there 

is no fleet agent matches with the people agent, or there is a fleet agent matches with the people 

agent, but the distance between these two agents is more than 1 kilometer, the people agent will 

leave the system. As a result, this active demand will count as unfilled demand and will be 

displayed in the chart. On the other hand, if the fleet agent is close enough to the people agent, 

then the people agent will keep waiting for pick-up even if the patience value and waiting time 

limit have exceeded the threshold. The code that defines fleet species includes a set of skills that 

the species of fleet possess, such as searching (which is implemented using a series of actions and 

reflexes), navigating, and commuting. The fleet agents are able to pick up and transport people 

(defined by the “people” species) and have a set of rules that govern their behaviour in certain 

situations, such as maintaining a larger fleet size during peak travel times or dispatch to specific 

hotspots (defined by the “hot_building” and “hot_neighbourhood” variables). There are five 

different objectives that describe the state of each fleet agent: “not in service,” “searching,” 

“pickup,” “commuting,” and “arrived.” A typical workflow that was tested in the simulation is 

illustrated in Figure 9. The fleet agent keeps searching for customers in the high-demand area if it 

is not matched with a customer. Every time the fleet agent matches with a people agent, the search 
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time will be renewed. However, if the searching time and the number of fleets in service are larger 

than the optimization time and the base population of the fleet in service, while the objective of 

the fleet agent is “searching,” the optimization behaviour will be conducted. Fleet agents who meet 

the criteria will park along the local road in a high-demand area and turn the objective to “not in 

service,” which means it is optimized out of the system and wait for active again by designated 

demand. 

 

Figure 8 Flowchart of the working process of people species 
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Figure 9 Flowchart of the working process of fleet species 
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3.4.3 EXPERIMENT INTERFACE 

The GAMA platform integrated development environment (IDE) provides a graphical user 

interface (GUI) that allows users to monitor the simulation while it’s running. The functions 

include adjusting model parameters, visualizing simulation results, and interacting with the 

simulation during runtime, which shows in Figure 10.  

 

Figure 10 GAMA Platform graphical user interface (GUI) 

The GAMA platform’s GUI contains various panels that show different sections of the simulation 

and model, such as the input section and output sections. Firstly, it provides a comprehensive 

model console, which is the left part of the interface in Figure 10. Users can easily adjust 

parameters in the ABM world through the user inputs panel, such as time steps, agent initial 

population and speed coefficient, and see the updates in the console. Error! Reference source not 

found. is the screenshot of the model console. 
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Figure 11 Model console 

To monitor the simulation in real-time, the GAMA platform offers model monitors, which is the 

second part of this interface. The detailed screenshot is referred to in Figure 12. This allows us to 

observe the dynamic of agents and the environment. The monitor panel tracks various parameters 

related to the simulation, such as the current time, the number of vehicles in service, and the 

average wait times for customers in this simulation.  
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Figure 12 Model monitors 

The third part of this GUI is a powerful model display feature. The visual representation enhances 

the understanding of the model and facilitates a more intuitive exploration of the simulated system. 

The display panel represents the geographical location of the agents and the simulation 

environment. The charts in the chart display panel show the distribution of people’s and fleet’s 

objectives and the fleet size and demand over time.  Figure 13 and Figure 14 represent one of the 

charts from the chart display panel and model visualization. 

 

Figure 13 Fleet size and demand chart 
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Figure 14 Model visualization and charts 
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CHAPTER 4: CASE STUDY AND EXPERIMENT 

4.1 DATA 

The City of Toronto, located in Ontario, Canada, is the study case in this thesis. Through its Open 

Data program, Toronto allows the public to access various datasets about its services and 

infrastructure. The neighbourhood boundaries and road network data can be acquired from the City 

of Toronto Open Data Portal. However, due to the lack of land use data (shapefile) in the Open 

Data Portal, this thesis uses the dataset named “Toronto Land Use Spatial Data - parcel-level - 

(2019-2021)” (Fortin, 2022) in the Map & Data Library Dataverse from the University of Toronto.  

The raw data for neighbourhood boundaries and road networks, provided by the City of Toronto, 

contains various categories and attributes to cater to different usage requirements. Before 

importing the data into the GAMA platform for simulation purposes, the data attribute table 

undergoes a cleaning and editing process. This step focuses on addressing incompleteness and 

correcting any mistakes present in the dataset. As described in the research by (Fortin, 2022), the 

resulting layer, named "LanduseParcelsMergedv0120220106," undergoes a dissolution process 

based on the "Class_name" attribute. This operation combines land use areas with the same land 

use class name into multi-polygons representing the same category. This dissolved dataset serves 

as the raw data for land use in this thesis. To ensure the imported data in the GAMA platform is 

relevant and devoid of uncorrelated or duplicate attributes, additional data cleaning and fusion 

steps are performed. Specifically, the speed limit for each road segment in the road network dataset 

is assigned, and the original attribute table retains only the hierarchical attributes. Similarly, the 

neighbourhood boundaries data is modified to keep only one attribute column named "area_name" 

and includes a new column indicating the area of each neighbourhood in square kilometers. The 
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land use data is reduced to two attribute columns: land use type and the name of the neighbourhood 

to which the building belongs. Overall, the data cleaning and editing processes are crucial to 

prepare the raw data for accurate and efficient utilization within the GAMA platform for simulation 

purposes. 

4.1.1 DATA ACQUISITION AND CLEANING 

At the stage of data acquisition, the QGIS is used to visualize the data and check the integrity and 

quality of the data. The OSM (Open Street Map) for the Province of Ontario was considered. After 

clipping to the research area and dropping the unnecessary attribute column, there is a lot of ‘Null’ 

value for the type of building. As Figure 15 illustrates that only small parts of the buildings in the 

city have the building type attribute data. Additionally, the zoning map that is published by the 

City of Toronto was considered as well. However, the data integrity cannot meet the requirements 

of this thesis since there is a large area of zoning spaces without any data that exist in the dataset. 

As a result, the building data is based on the dataset discussed in previous sections, which is 

“Toronto Land Use Spatial Data - parcel-level - (2019-2021)”. 

The dataset of “Toronto Parcel-Level Land Use Spatial Data” has 495,875 rows of data in the 

attribute table, and all parcels that have the same land use type are aggregated. The spatial analysis 

function in QGIS named “Multipart to Single part” was applied to the aggregated dataset, and the 

total rows of data were reduced to 21,873 rows. Meanwhile, there are some issues that exist in the 

dataset. Firstly, the connections between some land use areas and others have not been corrected. 

Secondly, the classification of some land use areas has been misclassified, which can lead to 

inaccurate decision-making and data analysis. Several solutions were implemented to address 

these issues. One solution involves manually splitting features and editing attributes to ensure that 

land use areas are connected correctly and classified accurately. Another solution involves deleting 
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extra parts that are not relevant to the analysis. Additionally, based on the dataset named ‘Property 

Boundaries’ that was downloaded from the City of Toronto open data portal, it is possible to create 

a new polygon for the misclassified area to ensure that it is properly classified and analyzed. Finally, 

the tool name “Check Validity” in QGIS was employed to guarantee the integrity of the dataset. It 

is a geoprocessing tool in QGIS that allows users to check the validity of a layer’s geometry, which 

highlight errors that can affect spatial analysis, such as self-intersections and invalid shapes. After 

the processing, the geometry of the building layer was ready to import into the GAMA platform. 

 

Figure 15 OSM building data with building type is not ‘Null’ 

The neighbourhood data was acquired from the City of Toronto open data portal. These files 

contain information about the neighbourhood’s unique identifier, name, and other attributes. 

During the cleaning process, some unnecessary attribute columns were dropped. The road 

centreline data of the City of Toronto is the primary resource for generating road network data. It 

provides the details about the name, hierarchy of each road segment and other attributes. The 

unnecessary attribute columns were also dropped during the cleaning process. 
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4.1.2 DATA MERGING AND EDITING 

Spatial join is a common technique used in GIS to combine data from two different layers based 

on their spatial relationships. In this case, the goal is to join the land use dataset with the 

neighbourhoods dataset to assign each land use polygon to its corresponding neighbourhood. 

However, there are some challenges with performing a general spatial join in QGIS or GeoPandas. 

For example, some land use areas may fall within two neighbourhoods, and performing an overlap 

spatial join may not be possible based on the largest overlap area. One approach to address this 

challenge is using GeoPandas to get each polygon’s centroid in the land use dataset. These 

centroids can then be spatially joined with the neighbourhoods dataset while keeping the original 

geometry column for the land use dataset. After the spatial join is completed, the centroids can be 

dropped, and the geometry column can be recovered in the land use dataset. This approach allows 

for a more accurate assignment of land use areas to neighbourhoods, even when overlaps or 

multiple neighbourhoods are involved. 

Road network dataset editing was done based on the City of Toronto Road Classification System 

(City of Toronto, n.d.), which provides information on the hierarchy of roads and their maximum 

speeds. Matching the maximum speed with the hierarchy of the road can provide real-world 

settings to the simulation environment and increase the accuracy of the simulation. As Figure 16 

illustrates, the maximum speed assignment was realized by using Python code in Jupyter 

Notebooks in the Anaconda environment. 
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Figure 16 The code that extracts and assigns the max speed to each hierarchy of the road in 

Jupyter Notebook in the Anaconda environment. 

 

Figure 17 The final dataset that is imported into the GAMA platform 
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4.2 EXPERIMENT 

4.2.1 COMPUTATIONAL SETTINGS 

The processor of machine that was used to perform the experiments is AMD Ryzen 7 3700X eight-

core processor. AMD Ryzen 7 3700X is a processor with eight cores. It is part of the third-

generation Ryzen series from AMD and is based on the Zen 2 architecture. The Ryzen 7 3700X 

offers excellent performance for productivity tasks due to its high core count and efficient 

architecture. It has a base clock speed of 3.6 GHz and can boost up to 4.4 GHz. With its multi-

threading capabilities, it can handle demanding tasks and applications with ease. The display 

adapter of this machine is NVIDIA GeForce GTX 1660. The NVIDIA GeForce GTX 1660 is a 

graphics card designed for gaming and multimedia purposes. It belongs to the GTX 16 series from 

NVIDIA and is based on the Turing architecture. The GTX 1660 offers a good balance between 

performance and affordability. It features 6GB of GDDR5 memory and has a base clock speed of 

1530 MHz. 

Updating the movement of fleet agents on a road network can be computationally demanding, 

especially when using real-world data in agent-based modelling (ABM) platforms. The road 

network data, derived from the real world, often consists of a large number of road segments and 

complex connectivity patterns. Each fleet agent's movement needs to be continuously updated 

based on the current state of the road network, including factors such as traffic conditions, speed 

limits, and route choices. The computational demand arises from the need to calculate and update 

the optimal routes for each fleet agent, considering the dynamic nature of the road network. This 

involves performing pathfinding algorithms, such as the A-star algorithm that is used in this model, 

to determine the shortest or fastest paths between locations. The complexity increases further when 

considering factors like congestion, traffic flow, and real-time updates of road conditions.  
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For example, in this simulation, the speed coefficients are periodically updated for different 

hierarchies of road segments to mimic real-world traffic conditions. As a result, in this case study, 

the run time of the simulation varies based on the fleet agent population. With a fleet agent 

population of 150, the simulation takes approximately 17 minutes to simulate a 24-hour period. 

However, when the fleet agent population is increased to 200, the run time of the simulation 

extends to around 20 minutes. 

To address these computational challenges, GAMA platforms employ various optimization 

techniques and algorithms. These techniques aim to optimize the efficiency of route calculations 

and update processes, such as utilizing data types as graphs to represent the road network. 

Additionally, parallel computing or distributed computing approaches can be employed to 

distribute the computational workload across multiple processors or systems. Meanwhile, high-

performance computing (HPC) is one of the alternative approaches for tackling computational 

challenges. The various approaches mentioned above need to be explored and invested in for future 

advancements. 

4.2.2 OBJECTIVES, VARIABLES AND EVALUATION 

The objective of this experiment is to assess the efficacy of various fleet size and deployment 

strategies in lowering operational expenses and idling time while also mitigating emissions and 

traffic congestion. Given the presence of a base population and limitations on searching time, it is 

crucial to design a dynamic fleet size that can adapt to changing demands and optimize resource 

allocation. 

The independent variables in this experiment encompass fleet size, the base population percentage 

of the fleet agent, limitations on searching time, demand wait-time variations and deployment 

strategies. Fleet size serves as a fundamental parameter to be manipulated, allowing for a 
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comparative analysis of different fleet configurations. The base population of the fleet agents is 

adjusted based on the percentage required to maintain a specific number of vehicles in service. 

This percentage varies according to different times of the day. Additionally, limitations on 

searching time are imposed to restrict the maximum idling time for each fleet agent. Demand wait-

time variations, such as peak hours and regular times, simulate realistic variations in travel patterns 

and requirements. Moreover, deployment strategies include options such as random fixed location 

and dynamic allocation, which determine how fleet agents are positioned and allocated across the 

simulation environment.  

To assess the performance and outcomes of the simulation, several dependent variables have been 

identified as evaluation metrics. These metrics offer insights into the effectiveness and efficiency 

of fleet size and deployment strategies. The following evaluation metrics are utilized: 

 Unfilled Demand: Measure the number of unmet travel requests that were not serviced by 

the fleet. By examining the extent of unfilled demand, the efficiency of the fleet 

deployment strategy in meeting passenger needs can be gauged. A lower number of unfilled 

demands indicates a more efficient fleet deployment strategy. 

 Wait Time: The average wait time experienced by people agents before being picked up by 

a fleet agent serves as a critical evaluation metric. It measures the responsiveness and 

promptness of the fleet deployment strategy in meeting travel requests. Lower wait times 

indicate more efficient fleet management, minimizing passenger waiting and enhancing 

overall customer satisfaction. The wait time is evaluated by the average wait time in rush 

hour and the average wait time in regular time. 

 Active Fleet Agent: Monitoring the number of fleet agents actively engaged in serving 

travel requests at any given time provides an indication of fleet utilization. This metric 
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reflects the efficiency of the deployment strategy in effectively allocating and dispatching 

fleet agents to meet the demand. Optimizing the number of active fleet agents contributes 

to efficient resource utilization. 

By evaluating these metrics in the context of various fleet sizes and deployment strategies, valuable 

insights into the strengths and limitations of each approach can be gained. This comprehensive 

assessment will contribute to the development of optimized fleet management strategies that 

achieve cost reduction, minimize idle time, reduce emissions, and alleviate traffic congestion while 

providing a satisfactory user experience for passengers. 

4.2.3 EXPERIMENT CONFIGURATION 

The in-service fleet size is designed to be dynamic, taking into account the base population of the 

fleet and limitations on searching time to capture the dynamics of demand. The independent 

variables in this experiment include fleet size, the base population of the fleet agent, limitations 

on searching time, customer wait-time limitation and deployment strategies. By analyzing the 

collected data and comparing the results based on the evaluation metrics, conclusions about the 

effectiveness of different fleet sizes and deployment strategies in optimizing fleet operations and 

meeting the specified objectives can be drawn.  

The baseline experiment utilizes spatial data from Old Toronto, including its population and 

transportation information. According to TTS, the number of trips made by residents of Old 

Toronto in a 24-hour period is 1,610,100. To simplify calculations and alleviate computational 

load, the experiment scales down this number to 1,610, representing the total travel demand 

generated by Old Toronto residents in a single simulation. The temporal scale of the experiment 

is defined as one weekday spanning 24 hours. The experiment always starts at 0 am on a given 
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day and ends at 0 am on the following day. In the baseline condition, the parameter of patience 

value is not active. The other baseline experiment settings are listed below: 

 Agent Population: 

o People: The number of people agents remains constant at 1610 throughout the 

experiment. 

o Fleet: The number of fleet agents also remains constant at 200 throughout the 

experiment. 

 Fleet Base: 

o AM-Mid-PM: The fleet base population is calculated as 24% of the fleet size, 

which means there is 24% of the fleet maintains the status of in-service during 

AM peak, Mid-day, and PM peak. 

o Early Morning: The fleet base population is calculated as 8% of the fleet size. 

o Evening: The fleet base is calculated as 20% of the fleet size. 

 Fleet Opt: 

o Rush: The fleet searching time (idling status) limit is 1800 seconds. 

o Early Morning, Mid-day, Evening: The fleet searching time (idling status) limits 

are set at 450s for Early Morning, 900s for Mid-day, and 900s for Evening. 

 Demand: 

o No match leave - Rush: The limit of wait time for a people agent during the rush 

time, who does not match with a fleet agent, is set at 180 seconds. 

o No match leave - Regular: The limit of wait time for a people agent during regular 

time, who does not match with a fleet agent, is set at 300 seconds. 
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o Leave - Rush: The limit of wait time for a people agent during the rush time, who 

matches with a fleet agent, is set at 300 seconds. 

o Leave - Regular: The limit of wait time for a people agent during regular time, 

who matches with a fleet agent, is set at 600 seconds. 

 Results: 

o Wait Time Average – Rush: The average wait time experienced by people agents 

during rush time. 

o Wait Time Average – Regular: The average wait time experienced by people 

agents during the non-rush time. 

o Unfilled Demand: The number of unmet travel requests that were not serviced by 

the fleet. 

In the context of the experiment, there are different scenarios for both people and fleets. 

Regarding the people scenarios, two approaches are considered. On the other hand, the fleet 

scenarios encompass three distinct strategies. 

 People (Matching Strategies) 

o Approach 1 involves reaching out to any fleet located within a 1/3/5 km radius of 

the people's location.  

o Approach 2 prioritizes fleets within a 3 km radius with “searching” objectives, 

followed by "not in service" fleets within the same radius, and finally includes all 

other fleets within a 5 km radius, excluding "commute" and "pick up" fleets.  

 Fleet (Dispatching Strategies) 

o Strategies 1 focuses on fleets with a searching objective, specifically targeting hot 

areas.  
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o Strategies 2, also with a searching objective, prioritizes the neighbourhoods that 

have low-density of fleet agents.  

o Strategies 3 adopts a strategy of equal distribution across the neighbourhoods 

without actively engaging in searching activities. 

In summary, Strategy 1 maintains the traditional behaviour of taxi drivers in fleet operations, 

where part of the fleet agents roams freely in search of customers. This approach relies on the 

assumption that high-demand areas will naturally attract more fleet agents. On the other hand, 

Strategy 2 adopts a more targeted approach by allocating fleet agents with “searching” objectives 

to neighbourhoods with lower fleet agent density. This strategy aims to address underserved 

areas and improve overall customer satisfaction by reducing wait times in those neighbourhoods. 

In contrast, Strategy 3 takes a different approach by discarding the "searching" feature altogether. 

Instead, it focuses on maintaining a balanced distribution of fleet agents across different 

communities. The goal is to ensure equitable access to transportation services for all residents, 

regardless of their location. By strategically allocating fleet agents based on the area of the 

neighbourhood, this strategy aims to optimize service coverage and reduce disparities in service 

availability. 

After conducting the baseline experiment, the combinations of people's approach and fleet 

strategy that resulted in lower customer wait times or fewer unfilled demands will be further 

tested under different conditions. These conditions may include smaller fleet size, a different 

percentage of the active fleet base population or turning on the patience value system. By testing 

these selected combinations in various scenarios, the researchers aim to determine their 

performance and effectiveness in different operational settings. This iterative process allows for 

the identification of optimized approaches and strategies that can potentially minimize wait times 
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and reduce the number of unfulfilled customer demands, leading to improved overall service 

quality. 

4.2.4 ANALYSIS AND INSIGHT 

The experiment involved testing different scenarios for both people and fleets while maintaining 

consistent settings for agent populations, base populations of in-service fleet agents, searching 

time limit, and the wait time limit of people agents. Each combination of people’s approach and 

fleet strategies is run three times. The results of these runs are presented in Table 3. The average 

wait time for demand in rush hours shows variation across different scenarios in Table 1Table 3. 

It ranges from a minimum of 60 seconds (in simulation 3) to a maximum of 122 seconds (in 

simulation 5). The overall average wait time for demand in rush hours is 87.6 seconds. In Figure 

18, the average wait time for demand in the rush hours across the simulations ranges from a 

minimum of 63 minutes (Simulation 3) to a maximum of 118 minutes (Simulation 5). The 

average wait time generally remains relatively high, indicating potential delays for demand in 

rush hours in all scenarios. The average wait time for regular demand also exhibits variation 

among the different scenarios. It ranges from a minimum of 48 seconds to a maximum of 102 

seconds. 

During the simulations, it was observed that implementing stricter wait time limits resulted in a 

higher number of unfulfilled demands. The table above lists five simulations that utilized wait 

time limits of 300 seconds during rush hour and 600 seconds during regular times. If a people 

agent did not find a matching fleet agent within 180 seconds and 300 seconds, respectively, they 

would leave the system before reaching the wait time limit. While the time settings were 

generated based on common sense, future studies should incorporate realistic data to achieve 

more comprehensive and accurate results.  
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Results 1 2 3 4 5 

Wait-Time Average 

- Rush 
64 69 71 74 74 70 68 62 60 117 114 116 117 115 122 

Wait-Time Average 

- Regular 
55 55 54 56 56 56 50 48 48 102 100 99 99 102 100 

Unfilled Demand 3 5 7 10 11 10 6 2 6 6 4 7 10 12 16 

People Approach 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 

Fleet Strategy 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 

Table 3 Baseline experiment: people = 1610, fleet = 200 

The optimization time of fleet agents has an impact on simulations utilizing any fleet strategies 

except for Strategies 3. In these simulations, a shorter optimization time, indicating a more 

restrictive time limit on idling, resulted in better outcomes. To explore this further, a simulation 

was conducted using half the optimization time compared to the other scenarios. The comparison 

simulation run with half the optimization time resulted in fewer instances of unfilled demand and 

reduced customer wait times. These outcomes suggest that a shorter optimization time for fleet 

agents contributes to improved performance in terms of meeting customer demands and 

minimizing wait times. 

The simulation outcomes indicate that both the people approach (matching strategies) and the 

fleet strategies (dispatching strategies) have an impact on the results. Simulation 1 and 2, which 

employed Matching Strategies 1, exhibited lower average customer wait times compared to 

Simulation 4 and 5. On the other hand, Simulation 1 and 4, utilizing Fleet Strategies 1, 

demonstrated a lower number of instances of unfilled demand. These findings suggest that the 
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choice of matching strategies can influence customer wait times, while the selection of fleet 

strategies can affect the number of unfilled demands in the simulation.  

 

Figure 18 Baseline simulation results 

Simulation 3, where people agents use Approach 1 (reaching out to any fleet located within a 1/3/5 

km radius of the people's location.) and fleet agents employ Strategy 3 (a strategy of equal 

distribution across the neighbourhoods without actively engaging in searching activities), stood 

out as the most promising combination with better results. The settings of Simulation 3 are 

presented in Table 4. Figure 19 illustrates the dynamics of the in-service fleet, people demand and 

unfilled demand in one of the iterations. 
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Fleet Base    
AM-Mid-PM N/A 

EarlyMorning N/A 
Evening N/A 

Fleet Opt   
Rush N/A 

EarlyMorning N/A 
Mid N/A 

Evening N/A 
Demand   

No match leave - Rush 180 
No match leave - NoRush 300 

Leave - Rush 300 
Leave - NoRush 600 

Scenarios   
People Scenario 1 

Fleet Scenario 3 
Table 4 Experiment settings for simulation 3 

 

Figure 19 One iteration in simulation 3 
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a fleet size of 150, the results were found to be acceptable. During rush hour, the average wait 

time experienced by customers was 76 seconds, while it decreased to 60 seconds during regular 

hours. These results indicate a relatively efficient service provided by the fleet. Moreover, the 

number of unfilled demands, representing unmet customer requests, was recorded as 9, which is 

relatively low and suggests that the fleet could cater to most of the travel demands. When 

comparing the result from the same conditions with a fleet size of 200, it was observed that there 

was only a slight increase of around 10 seconds in the wait time. Figure 20 presents a column 

chart that illustrates the comparison between two different fleet sizes: 200 and 150. It provides a 

clear visualization of the impact of reducing the fleet size to 150 on the performance of the 

system. 

 

Figure 20 Simulation 3 results comparison between fleet size 200 vs 150. 
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However, when the fleet size was further reduced to 100, the results took a downturn and became 

unfavourable. During rush hour, the average wait time experienced by customers significantly 

increased to 125 seconds, indicating a substantial delay in obtaining transportation. Even during 

regular hours, the average wait time reached 77 seconds, which is still considerably high. 

Additionally, the number of unfilled demands surged to 41, reflecting a significant number of 

unattended travel requests and a decrease in service quality. These findings highlight the 

importance of maintaining an adequate fleet size to ensure timely service and minimize customer 

wait times. The optimal fleet size seems to be around 150, where the system can efficiently 

handle a substantial portion of the travel demands. Reducing the fleet size to 100 adversely 

affects service performance, leading to prolonged wait times and a significant increase in unmet 

travel demands. 

Results Patience 

Wait-Time Average - Rush 64 65 63 

Wait-Time Average - Regular 46 51 50 

Unfilled Demand 12 19 17 

People Approach 1 1 1 

Fleet Strategy 3 3 3 

Table 5 Results from the simulations that introduced patience value 

By incorporating the patience value, an element of randomness in customers' decision-making 

process is introduced to the system. The patience value represents the tolerance level of 

customers for waiting, and it influences their choices regarding whether to wait for a vehicle or 

seek alternative transportation options. This randomness adds a realistic aspect to the simulation, 

as real-life customers may exhibit varying levels of patience and make different decisions based 
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on their individual preferences and circumstances. As illustrated in Table 5, with a fleet size of 

200, the wait time during rush hour and regular time remains the same as in previous 

simulations’ results. However, what becomes apparent is the impact of the patience value on the 

average unfilled demand. In this case, with the inclusion of the patient value, the average unfilled 

demand across the three iterations increases to 16. This is 11 higher than the average result 

obtained from previous simulations that did not incorporate the patience value, as is shown in 

Figure 21. The higher unfilled demand suggests that some customers, due to their patience level, 

may choose to forego waiting for a vehicle and seek alternative transportation options, resulting 

in a greater number of unmet demands. This highlights the influence of customer behaviour and 

preferences on the overall performance of the fleet system. 

 

Figure 21 Comparison of the simulation without the patience value setting vs. the simulation 

with the patience value setting 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

5.1 CONCLUSIONS AND LIMITATIONS 

The rise of autonomous vehicles (AVs) fleet presents a promising solution to address traffic 

challenges and unlock new possibilities in the transportation industry. AV fleets operate without 

human drivers, whereas traditional taxi fleets rely on drivers to operate the vehicles. This driverless 

characteristic of AVs eliminates the need for driver wages, enables 24/7 operation, and reduces the 

likelihood of human errors. Additionally, AV fleets have the potential to be more cost-efficient 

compared to traditional taxi fleets. Through strategic deployment based on demand patterns, AVs 

can optimize vehicle utilization and minimize idling time. In other words, each fleet member can 

focus on maximizing the entire fleet's profit and customer experience. In this thesis, autonomous 

vehicles fleet allow for efficient deactivation and removal of idle vehicles from the system until 

they are required again. This operational strategy not only directly contributes to the reduction of 

emissions but also helps alleviate traffic congestion. Through the analysis of demand dynamics at 

different spatial and temporal scales, the simulation model enables the identification of size 

variation trends for autonomous vehicle fleets. This valuable insight empowers operators to 

allocate and manage resources more effectively, ensuring they align with the evolving needs of 

commuters. Ultimately, these efforts paved the way for a more sustainable and efficient 

transportation system. 

The key finding of this thesis is that the strategy of equal distribution across neighbourhoods 

without actively engaging in searching activities showed promising results. Specifically, when the 

fleet size was optimized at 150 vehicles, the average wait time during rush hour was 76 seconds, 

and during regular hours it was 60 seconds. These results indicate that the strategy effectively 
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managed customer wait times within the specified limits (180 seconds during rush hour and 300 

seconds during regular hours) when the total demand was scaled down to 1610. This finding 

suggests that by distributing resources evenly across neighbourhoods, without relying on active 

searching activities, it is possible to achieve efficient and balanced service provision, resulting in 

improved customer satisfaction and reduced wait times. The findings of this thesis have several 

implications for the operation and management of autonomous vehicle fleets in the context of 

transportation services. Firstly, the strategy of equal distribution across neighbourhoods without 

active searching activities presents a viable approach to optimize fleet deployment. Secondly, the 

identified optimal fleet size of 150 vehicles offers insights into resource allocation. Operating a 

fleet of this size allows for efficient utilization of vehicles while meeting the demand requirements 

during both rush hour and regular hours. This information might guide fleet operators in 

determining the appropriate size of their autonomous vehicle fleets. 

While this study provides valuable insights into the operation and management of autonomous 

vehicle fleets, it is important to acknowledge its limitations. These limitations highlight areas for 

further research and improvement in future studies. Firstly, the number of experiment iterations 

and scenarios conducted in this study was limited due to the computational resources required. 

Running extensive simulations with larger sample sizes and a broader range of scenarios would 

provide more robust and comprehensive results. However, the time-consuming nature of the 

computations imposed constraints on the scope of the study. Furthermore, the study focuses on a 

specific geographical area, namely Old Toronto, rather than examining the entire city or multiple 

cities. This limitation arises from the lack of sufficient computational power to simulate and 

analyze larger-scale urban environments. Consequently, the findings may not fully capture the 

complexities and dynamics of transportation systems in larger or different urban contexts. Future 
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research should consider expanding the study to include a broader geographical scope for more 

representative and generalizable results. Another limitation is the lack of real-world data 

integration. For example, because precise spatiotemporal traffic flow data is unavailable, the speed 

of the fleet agent is determined solely by the maximum speed attributes associated with each road 

segment. In other words, the speed of the fleet agent remains unaffected by real-time traffic flow 

conditions. This limitation prevents the simulation from accurately reproducing real-world 

situations like traffic congestion during peak hours. While the study employed simulation models 

to mimic the behaviour of autonomous vehicle fleets and capture demand patterns, real-world data 

would provide more accurate and reliable insights. Incorporating actual data, such as historical 

travel patterns, traffic flows, and demand variations, could also enhance the validity and 

applicability of the findings. Despite these limitations, the study provides valuable insights into 

the improvement of fleet size and deployment strategies for autonomous vehicle fleets. By 

acknowledging these limitations and building upon the study's findings, future research can 

address these gaps and further advance our understanding of autonomous vehicle fleet 

management in more comprehensive and realistic ways. 

5.2 FUTURE WORK 

The conducted experiments have provided valuable insights into optimizing the performance of 

the transportation system by exploring different combinations of people's approaches and fleet 

strategies. Building on the findings mentioned previously, and there are several areas of future 

work that can be explored to further improve the accuracy, responsiveness, and overall quality of 

the transportation multi-agent model. First of all, the neighbourhood layer is able to involve more 

attributes. More attributes, such as demographic information and historical travel data, enable the 

design of fleet distribution, dispatch, and searching algorithms that take into account multiple 
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factors. It enables the simulation to incorporate more intelligent and context-aware decision-

making processes. Secondly, there is one promising avenue for future work is the integration of 

shared mobility services into this transportation simulation model. Shared mobility refers to the 

concept of sharing transportation resources among multiple users. By incorporating shared 

mobility options, the efficiency and sustainability of transportation systems can be enhanced while 

providing convenient and cost-effective travel solutions. There are several aspects that can be 

explored. Firstly, research can delve into the development and testing of more sophisticated 

dispatching algorithms that leverage real-time data and optimization techniques. These algorithms 

can take into account various factors such as passenger demand, traffic conditions, vehicle 

availability, and time of the day to make intelligent dispatching decisions. Furthermore, developing 

intelligent matching algorithms and platforms that facilitate the seamless matching of passengers 

with available shared vehicles can greatly improve the utilization of shared mobility services. 

These algorithms can consider factors such as passenger preferences, trip routes, and time 

constraints to optimize matching and enhance user experience. Additionally, integrating shared 

mobility with existing public transit networks in the simulation can create a comprehensive and 

interconnected transportation ecosystem. These approaches allow modellers to obtain a 

comprehensive understanding of the entire transportation system, considering the interconnectivity 

of various modes. As a result, the outcomes of these modelling efforts can provide valuable insights 

for transportation planners, empowering them to make more informed and effective decisions 

when devising strategies. Another area of future work with substantial potential is the integration 

of advanced demand prediction techniques into agent-based modelling. By incorporating 

sophisticated algorithms and data analytics, the model can accurately forecast travel demand 

patterns and trends, taking into account various factors such as time, weather conditions, events, 
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and user behaviour. This integration would enhance the predictive capabilities of the model, 

enabling better anticipation of transportation needs and facilitating more efficient resource 

allocation and planning. Moreover, by continuously updating and refining the demand prediction 

models based on real-time data, the simulation can adapt to dynamic changes in travel patterns, 

ensuring its relevance and effectiveness in guiding decision-making processes for transportation 

planners.  
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APPENDIX 

State Variables – Neighbourhood: 

Attribute Description 

area_name The name of the area or neighbourhood 

uber_name The name of the neighbourhood in the Uber system 

move_id The ID associated with the neighbourhood 

area_sqm The size of the neighbourhood in square meters 

area_sqkm The size of the neighbourhood in square kilometers (derived 

from area_sqm) 

neighbourhood_demand_num The number of people inside the neighbourhood making 

requests 

neighbourhood_potential_num The number of people inside the neighbourhood not making 

requests 

neighbourhood_supply_num The number of vehicles in the fleet that are not in service 

within the neighbourhood 

neighbourhood_supply_sqkm_num The number of vehicles per square kilometer of the 

neighbourhood (derived from neighbourhood_supply_num 

and area_sqkm) 

 

State Variables – Building: 

Attribute Description 
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type The type or category of the building 

area_name The name of the area where the building is located 

move_id The ID associated with the building 

color The color of the building in RGB format 

 

State Variables – Road: 

Attribute Description 

type The type or category of the road skills 

 

State Variables – People: 

Attribute Description 

request_time_hour The hour at which the request is made 

request_time_min The minute at which the request is made 

request Indicates whether a request has been made (initially set to false) 

initial_time The initial request time for the person 

target_building The building that the person intends to reach 

purpose The purpose of the person's travel 

objective The objective of the person's travel 

area_update The updated geometry of the area where the person is located 

area_name The name of the area where the person is located 

move_id The ID associated with the person's location 
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current_fleet The current fleet the person is associated with 

patience_val The initial level of patience for the person 

patience_val_loss The amount of patience lost over time 

patience_lose Indicates whether the person has lost patience 

wait_time The time the person has waited 

leave_trig Indicates whether the person triggers leaving 

no_wait_trig Indicates whether the person triggers no waiting 

wait_for_pickup Indicates whether the person is waiting for pickup 

wait_dist The distance the person is willing to wait for pickup (default: 

1.00 km) 

 

State Variables – Fleet: 

Attribute Description 

area_update_neighbour A list of updated geometries of neighboring areas 

area_neighbour_union The union of geometries of neighboring areas 

target_building The building the fleet is targeting 

objective The objective of the fleet's movement 

current_ppl The person currently associated with the fleet 

check_access Indicates whether access is being checked 

target The target point the fleet is moving towards 

target_ppl The target point associated with a person in the fleet 

target_des The target point associated with a destination in the fleet 
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dep_time The departure time of the fleet 

arr_time The arrival time of the fleet 

total_time The total time taken by the fleet for the movement 

searching_timer The timer used for searching 

start_searching_time The time when the searching starts 

end_searching_time The time when the searching ends 

view_dist The viewing distance of the fleet 

 

 


