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Abstract

Diamond has been proven to be a particularly useful material for implementing quantum

technologies due to the various defects known as color centers. These color centers can be

coupled to both photons and phonons; therefore, they enable the realization of a hybrid quan-

tum system that consists of spins, photons, and phonons. Cavity optomechanics provides a

platform to increase the interaction time between photons and phonons. By increasing the

average number of photons and phonons, the coupling rates will be enhanced, and better

control over the system could emerge as a result. This is integral to quantum technologies

such as quantum networks, computers, and sensors.

Cavity optomechanical systems are inherently nonlinear systems, which can be easily

seen when the number of photons and phonons increases. This work studies nonlinear

cavity optomechanics in diamond as we explore relatively under-studied dynamical regimes

of optomechanical systems by increasing the number of phonons.
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Preface

This thesis presents my research on quantum nanophotonics conducted at the University

of Calgary under the supervision of prof. Paul Barclay. The work presented here aims

to increase our knowledge about diamond cavity optomechanics as a powerful platform for

implementing quantum technologies.

The research described in this thesis has been a challenging and rewarding journey. It

has allowed me to explore new ideas and develop my skills as a researcher. I am grateful for

the opportunity to have worked on this project and for the support I have received along

the way.

I started my MSc journey in September 2021, after one and a half years of struggling

with COVID-19. I began my work by helping with setting up the new ambient setup. For

this, I drew some sketches of the tools that we needed for the setup using SolidWorks. We

also ordered many parts to finalize the setup. After this, we had to pull a fiber taper for

coupling light into the devices that we intended to measure. The fiber I pulled was good

enough with hBN microdisks but not good enough for diamond optomechanical crystals.

My first set of measurements involved hBN microdisks. This was my first encounter with

cavity optomechanics. Unfortunately, the search for mechanical modes in these devices was

unsuccessful. This concludes my first six months in the lab.

In the next six months, I was involved in the feedback-enhanced phonon lasing project.

I spent the first two months designing the experiment as well as developing the theory. The

rest was spent on doing the experiment and writing the observations that resulted in the
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following publication:

Peyman Parsa, Prasoon Kumar Shandilya, David P. Lake, Matthew E. Mitchell,

Paul E. Barclay, “Feedback Enhanced Phonon Lasing of a Microwave

Frequency Resonator,” Manuscript submitted for publication.

This work is presented in Chapter 3.

In the past year, I was mostly working on nonlinear cavity optomechanics. This involved

doing different experiments on the diamond microdisk devices in order to gain a better

understanding of the nonlinear effects that arise from optomechanical interactions. These

results are presented in Chapter 4, and they will be published soon as the following article:

Peyman Parsa, Paul E. Barclay, “Room-temperature multi-phonon pro-

cesses in cavity optomechanics,” In preparation.
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Chapter 1

Introduction

1.1 Diamond

Diamond hosts a large variety (over 200 [1]) of optically active defects. These defects are

called color centers, and some examples include Nitrogen-Vacancy (NV) [2], Silicon-Vacancy

(SiV) [3], and tin-Vacancy (SnV). Color centers can occur naturally in diamond; however, in

order to gain control of their concentration, they are often created in the lab. Furthermore,

diamond has a large Debye temperature (Θd ≈ 2000 K [4]), and therefore, a low thermal

phonon population at room temperature. All this, together with the large separation between

the energy levels of color centers, results in coherent single-photon emission. This makes

diamond a great platform for room-temperature solid-state qubits.

The quality of state transfer between the photons and phonons is typically measured by

a quantity called optomechanical cooperativity defined as Com = 4g
2
0ncav/κΓm, where g0 is

the optomechanical coupling rate, ncav is the number of photons in the cavity, κ is the decay

rate of the cavity, and Γm is the mechanical damping rate. The values of g0, κ, and Γm

are set by the geometry, material, and the quality of the device fabrication. For a sideband-

resolved system where the cavity decay rate is much lower than the mechanical frequency, the

transfer rate of photons and phonons is equal to 4g
2
0ncav/κ [5]. On the other hand, the rate of
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mechanical decoherence is equal to Γm(nth+1), where nth is the thermal phonon population.

The condition Com > nth + 1 implies that the state transfer between light and mechanics

is faster than the mechanical decoherence for a sideband-resolved system [5]. Similarly, the

state transfer would be faster than the optical decoherence when g0
√
ncav > κ/2.

In order to achieve this condition, one needs to increase the number of photons in the

cavity. However, in most semiconductor materials, this is hindered by two-photon absorption

(TPA) [6, 7]. TPA occurs when an electron from the valence band is excited to the conduction

band via two photons instead of one. This type of absorption increases quadratically with

the number of photons since it is a second-order nonlinear process. The absorption reduces

the quality factor of the device and increases the decay rate of the cavity [6]. Another

consequence of nonlinear (as well as linear) absorption is heating that, in turn, results in

thermo-optic effect, which shifts the resonance frequency of the cavity and, at high powers,

it could even prevent access to the red side of the cavity (frequencies that are lower than the

resonance frequency of the cavity) [8].

Unlike most semiconductors, diamond is a wide-bandgap semiconductor with a bandgap

energy of 5.47 eV, and an indirect bandgap type [9]. This means diamond exhibits extremely

low linear and nonlinear absorption rates at telecom wavelengths (1260-1625nm) compared to

some materials like silicon that is widely used in photonics field. Therefore the larger number

of photons is not limited by these processes in diamond. Other examples of wide-bandgap

materials include SiO2 [10, 11], Si3N4 [12, 13], SiC [14], and GaP [15].

1.2 Radiation Pressure

Light carries momentum (both linear and angular) and energy. The transfer of the momen-

tum to the mechanical objects gives rise to radiation pressure forces. Kepler first introduced

this concept in the 17th century to explain his observation that the tail of a comet points

away from the Sun. James Clerk Maxwell postulated that electromagnetic waves have mo-
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mentum, and they transfer the momentum upon the surfaces exposed to them. This was

proved experimentally by Lebedew [16] and separately by Nichols and Hull [17] in 1901.

The average radiation pressure force acting on a mirror can be calculated using the

conservation of momentum. For a totally reflecting mirror, the transferred momentum of a

single photon is ∆p = 2p = 2h/λ. For a telecom photon (wavelength between 1260 - 1675

nm), this momentum transfer is on the order of 10
−27

kg.m/s, which is completely negligible

for a single photon. One way of increasing the radiation pressure force is to increase the

number of photons in a short period of time. For instance, for a laser beam with 10 mW

power, the radiation pressure force is on the order of tens of pN. Although this force is very

small, it is sufficient to be detected via nanophotonic devices [18].

Another way (somehow equivalent) of increasing the force is to trap light by putting a

second mirror so that the photons can reflect multiple times between these mirrors. This will

increase the rate of the photons hitting the mirror. This configuration is called an optical

cavity. Optical cavities are resonators that produce standing light waves. They can take

various forms, all of which the light is confined in a relatively small volume. Some of these

forms include (but are not limited to) Fabry-Perot cavities [19], microdisks [20, 21], and

photonic crystals [22, 12].

1.3 Diamond Microdisks

A diamond microdisk is a small, disk-shaped structure made of diamond that is typically

less than 100 micrometers in diameter (Figure 1.1). It is used in a variety of applications,

including as a platform for quantum computing and photonics [23].

Diamond microdisks are typically fabricated using a process called chemical vapour de-

position, in which a diamond film is grown on a substrate and then etched to form the disk

shape. The resulting structure has a high-quality factor, which means that it can trap light

and photons for long periods of time, making it useful for photonics applications [24].
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a) b)

Figure 1.1: a) Scanning Electron Microscopy (SEM) image of a diamond microdisk. b) SEM
image of the chip containing different microdisks with different sizes. “Reprinted (adapted)
with permission from Behzad Khanaliloo, Matthew Mitchell, Aaron C. Hryciw, and Paul E.
Barclay. High-q/v monolithic diamond microdisks fabricated with quasi-isotropic etching.
Nano Letters, 15(8):5131–5136, 2015. PMID: 26134379. Copyright 2015 American Chemical
Society.”

In quantum technologies, diamond microdisks can be used to manipulate solid-state

qubits such as those obtained from the color centers. The diamond material is particularly

useful for this application because it has a property called spin coherence (of the solid-state

qubits obtained from the color centers), which allows it to maintain a quantum state for

longer periods of time than other materials [25, 26].

Overall, diamond microdisks have a wide range of potential applications in fields such as

quantum computing, photonics, and sensing, and they are the subject of ongoing research

and development [27, 24].

1.4 Motivation

Large cooperativities can induce self-sustained mechanical oscillations when the laser is blue-

detuned from the cavity. These oscillations occur due to the inherently nonlinear interactions

between the optical cavity and mechanical resonator. More precisely, the nonlinearity in the

system arises due to the dynamical back-action. The stronger the mechanical oscillations
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are, the larger the back-action is; therefore, the system behaves completely nonlinearly.

Studying these nonlinear systems is of great significance as they appear to be the in-

evitable consequence of the coherent interactions between photons and phonons. Particularly

in diamond, the coherent interactions of photons and phonons are an essential part of the

spin-mechanical coupling in color centers [28]. The mechanical oscillations create a strain in

the material that couples to the color centers. Even though this regime of optomechanics is

greatly understudied compared to the linear one, there are still some pioneering works done

in this area.

Marquardt et al. [29] and Ludwig et al. [30] developed the classical theory of self-induced

oscillations in optomechanical systems. In [31] Vahala derived the optomechanical self-

oscillator’s linewidth. In [32], a full discussion of the linewidth narrowing in optomechanical

oscillators can be found. If the input power is excessively large, the dynamics of the system

become chaotic, as shown in [33] and [34].

In this work, we hope to contribute to the understanding of nonlinear optomechanical

systems and investigate their possible role in implementing quantum technologies. This

thesis is structured as follows:

Chapter 2 provides the necessary background knowledge of cavity optomechanics. Phonon

lasing is described in this chapter which is the basis for nonlinear cavity optomechanics.

Chapter 3 proposes a novel approach for increasing the number of phonons inside a

resonator. This would be beneficial to any application that requires a large number of

phonons.

In Chapter 4, we discuss the cascaded multi-phonon processes that arise in nonlinear

cavity optomechanics. At the end of this chapter, we propose a force sensor based on a

phonon laser.

Finally, Chapter 5 discusses the summary of the presented works as well as some future

outlooks in the design and fabrication of optomechanical devices.
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Chapter 2

Cavity optomechanics

In this chapter, we will discuss the necessary background knowledge related to cavity op-

tomechanics.

2.1 Introduction

Cavity optomechanics is a growing field that focuses on the interaction between light and

mechanical resonators. This field explores the interaction between electromagnetic radiation

and nanomechanical or micromechanical motion [5]. The radiation-pressure force mediates

the mutual optomechanical interaction. Cavity optomechanics has many applications rang-

ing from quantum technologies [35, 36] to gravitational wave observatories such as LIGO

and VIRGO [37].

2.2 Decoherence mechanisms in cavity optomechanics

In quantum mechanics, decoherence is the undesired interactions of the system with itself

and/or its surroundings. This is usually modeled by a thermal bath that the system has

interaction with. The rate at which the system interchanges energy with the bath is often

recognized as the decay rate. In cavity optomechanics, there are two interacting systems
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(optics and mechanics), each of which interacts with its own bath.

2.2.1 Decoherence in optics

The losses associated with the cavity contribute to the photon lifetime. The longer coherence

time (the time that the system remains coherent) is necessary as decoherence is the number

one problem in implementing quantum technologies. There are two main loss channels in the

cavity; one is intrinsic loss (κin), and the other one is external loss (κex) due to the coupling

between the cavity and the waveguide
1
. The total cavity decay rate (κ) is, therefore, the

sum of extrinsic and intrinsic decay rates κ = κex + κin. Different sources of loss contribute

to the intrinsic loss of the cavity, as discussed briefly below:

• Scattering loss

This is mainly due to the surface roughness and imperfections that are made during

the fabrication process. The roughness causes the light to scatter off the surface.

Improving the fabrication techniques results in smoother surfaces and hence lowers the

rate of this type of loss.

• Radiation loss

The radiation loss is the leakage of light out of the cavity. In microdisk cavities, this

is due to the curved interface of the disk, in which the total internal reflection can not

be done perfectly.

• Surface absorption loss

The light can be absorbed by the cavity dielectric material
2
and/or the surrounding

medium. The losses through this mechanism can potentially heat the device.

• Parasitic loss

1
Here, the waveguide is the fiber taper.

2
Pure diamond has no absorption at telecom wavelengths.
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The parasitic loss becomes prominent when the fiber taper is extremely close to the

cavity. In this case, some of the light can couple into undesired higher order modes of

the fiber. This type of loss is different from other mechanisms since the amount of loss

depends on the position of the waveguide.

2.2.2 Decoherence in mechanics

Similar to the photon lifetime, phonon lifetime is also affected by mechanical losses. The

mechanical damping rate (Γm) consists of various loss mechanisms listed below:

• Viscous damping

Also known as air damping, it is caused by the interaction of the resonator with the

surrounding gas.

• Clamping loss

Clamping loss is due to the propagation of the elastic waves into the substrate through

the clamping points.

• Fundamental anharmonic effects

These can be caused by thermo-elastic damping and phonon-phonon scattering.

• Material loss

It is caused by the defect states that are sensitive to the strain. They can be found in

the bulk or surface of the resonator.
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2.3 Hamiltonian formulation of cavity optomechanics

Now that the loss mechanisms are introduced in the previous section, we can construct the

complete Hamiltonian. The Hamiltonian of an optomechanical system can be written as

H = HFree +HInteraction +HDrive +HBath. (2.1)

Hfree is the free Hamiltonian consisting of both mechanical and optical parts (Hfree = Hcav +

Hm). Hcav is the Hamiltonian of the quantized field inside a cavity and it can be written as

Hcav = h̵ωcava
†
a, where ωcav is the optical mode’s frequency, a is the Bosonic annihilation

operator, and a
†
is the Bosonic creation operator. In a similar manner, one can construct

the Hamiltonian part of the mechanical resonator Hm as Hm = h̵ωmb
†
b, where b and b

†
are

the mechanical counterparts of a and a
†
.

HInteraction is the interaction Hamiltonian between the mechanical resonator and the op-

tical cavity mediated through radiation pressure. The cavity frequency depends on the me-

chanical deformation of the device; thus, it can be written as ωopt(x) = ωcav+
∂ωopt

∂x

»»»»»»»»x=0
x+ ...,

with G = −
∂ωopt

∂x

»»»»»»»»x=0
being the optomechanical coupling coefficient. It is immediately seen

that the interaction Hamiltonian takes the form

HInteraction = −h̵Ga
†
ax = −h̵ (Gxzpf) a†

a (b + b
†) = −h̵g0a

†
a (b + b

†) , (2.2)

with optomechanical coupling rate g0. xzpf is the zero point fluctuation displacement defined

as xzpf =

√
h̵

2meffωm
.

HDrive is the term associated with the input to the cavity. For a coherent drive, it reads

HDrive = −ih̵
√
κexαin(a − a

†), where ∣αin∣2 is the rate of number of photons provided by

the drive. HBath is the bath Hamiltonian, which includes all the decoherence mechanisms

associated with the device.

Using input-output theory, developed by Gardiner and Collett in 1984 [38], the quantum

9



Heisenberg–Langevin equations of motion can be written as

ȧ = −
κ

2
a + i[−ωcav + g0(b + b

†)]a + √
κexαin +

√
κexain(t) +

√
κinfin(t)

ḃ = −
Γm

2
b − iωmb + ig0a

†
a +

√
Γmbin(t),

(2.3)

where ain(t) and fin(t) represent the quantum noise operator associated with the extrinsic

and intrinsic damping of the optical cavity, respectively. bin(t) represents the quantum noise

operator of the mechanical resonator. These noise operators are assumed to be wide-sense

stationary (WSS) stochastic processes. Since the number of thermal photons is much less

than 1 for the optics part (since the frequency is high relative to the temperature), ain(t)

and fin(t) are only due to the quantum fluctuations. However, for the mechanics part, the

number of thermal phonons cannot be ignored at room temperature. Therefore bin(t) is

mostly due to the Brownian motion of the resonator. The correlation functions of these

noise operators are as follows:

⟨a†
in(t)ain(t

′)⟩ = 0

⟨ain(t)a†
in(t

′)⟩ = δ(t − t
′)

⟨b†in(t)bin(t
′)⟩ = nthδ(t − t

′)

⟨bin(t)b†in(t
′)⟩ = (nth + 1)δ(t − t

′).

(2.4)

And all the other correlators are zero. It is worth noting that all the noises are white

noises. The output noise operator describes the output field in input-output formalism as

aout = αin + ain −
√
κexa. In the experiment, this gives the reflected field of a Fabry-Perot

cavity and the transmitted field of an evanescently coupled whispering gallery mode to the

fiber taper [39].

Now, suppose the drive term is strong enough, and some strong oscillations are associated

with the mechanical resonator. In that case, one can safely ignore the noise terms and use

the classical equations of motion by taking the mean value of these operators and making a

10



series of approximations. The classical equations of motion as described in [5] are

α̇ = −
κ

2
α + i(∆ +Gx)α +

√
κexαin (2.5)

ẍ + Γmẋ + ω
2
mx =

h̵G
meff

∣α∣2. (2.6)

Moreover, the output field reduces to αout = αin −
√
κexα. Due to their simplicity, these

equations are the starting point of many phenomena in cavity optomechanics, especially for

considering nonlinear effects. Note that we have moved to a reference frame which is moving

with the laser. The detuning is defined as ∆ = ωL − ωcav.

2.4 Dynamical Backaction

The radiation pressure acting on the resonator exerts a force that causes the resonator to

move. This induces a shift in the optical resonance frequency. The shift in the cavity will

change the intensity of the circulating light and therefore changes the radiation pressure force

accordingly. This process could be thought of as feedback which is called backaction. The

finite decay rate of the cavity means that the light takes some time to complete this feedback

loop. Therefore, there is a delay associated with this process which is why it is known as

“dynamical backaction” [5]. This kind of retardation introduces two crucial effects on the

mechanical damping rate and frequency known as optomechanical damping/anti-damping

effect and spring effect, respectively.

The simplest method to explore these effects is to utilize the linearized classical theory

of optomechanics, where all the noise terms are averaged out as shown in equations 2.5

and (2.6). We employ the frequency domain version of these equations to find the effective

mechanical susceptibility as a result of the backaction. This modification appears as an

added term Σ(Ω) to the original susceptibility (χ
−1
m (Ω) = meff [(ω2

m − Ω
2) − iΓmΩ]) [5]:

χ
−1
m, eff (Ω) = χ

−1
m (Ω) + Σ(Ω), (2.7)
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where Σ(Ω) can be written as

Σ(Ω) = 2meffωmg
2 { 1

(∆ + Ω) + iκ/2 +
1

(∆ − Ω) − iκ/2} . (2.8)

For a high-quality mechanical resonator where Γm ≪ κ, Σ(Ω) is almost constant around

Ω = ωm. It is instructive to write Σ(ωm) as

Σ(ωm) = 2meffωm [δωm − i
Γopt

2
] , (2.9)

where Γopt and δωm are the corrections to the damping rate and the mechanical frequency,

respectively.

2.4.1 Optical spring effect

δωm is obtained using δωm = R {Σ(ωm)} /(2meffωm):

δωm = g
2 ( ∆ + ωm

κ2/4 + (∆ + ωm)2
+

∆ − ωm

κ2/4 + (∆ − ωm)2
) . (2.10)

The spring effect modifies the mechanical frequency by δωm, which can be positive or nega-

tive. The name “spring effect” is given due to this frequency shift. We know that when the

spring is softened, the mechanical frequency will decrease, and when the spring is hardened,

the frequency will increase.

2.4.2 Optomechanical damping/anti-damping effect

Γopt is obtained using Γopt = −I {Σ(ωm)} /(meffωm):

Γopt = g
2 ( κ

κ2/4 + (∆ + ωm)2
−

κ

κ2/4 + (∆ − ωm)2
) . (2.11)
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Γopt can take both positive (damping) and negative (anti-damping) values. The effective

damping rate is, therefore, the sum of the intrinsic mechanical and optomechanical damping

rate (Γeff = Γm + Γopt). According to the linear theory, the damping effect happens for

∆ < 0 (red detuned laser), and the anti-damping effect happens for ∆ > 0 (blue detuned

laser). However, this is not completely correct if one considers the nonlinear description as

the anti-damping effect could also happen on the red side of the cavity. A great example of

this has been experimentally shown in [40].

The system’s stability implies Γeff ≥ 0; otherwise, the amplitude of the mechanical oscil-

lation will diverge, which is not physically possible. In other words, the minimum effective

damping rate (excluding the phase noise) is zero [31]. This region is where self-oscillations
3

are allowed to happen, and the linear approximation starts to become invalid. This is where

the nonlinear dynamics of the optomechanical system become crucial.

Sideband cooling of the resonator is a direct consequence of the optomechanical damping

effect. Increasing the effective damping rate Γeff reduces the number of thermal phonons,

which effectively implies that the resonator’s temperature is decreased. Even though side-

band cooling has proven to be an effective way to cool down the resonator, reaching the

quantum ground state is challenging via this technique. This is mainly due to the laser phase

noise [41, 42, 43, 44], and cavity frequency noise [45] that hinders the ground-state cooling

via radiation pressure. Figure 2.1 indicates the damping/anti-damping and spring effects as

a function of detuning for different cavity decay rates (κ). The value g
2/(Γmωm) = 0.315 is

considered to be constant for all of these plots. The regime where Γeff is zero is the regime

where dynamical instability (phonon lasing) is observed. The linear approximation breaks

down in this regime, and one must utilize the nonlinear model to predict the exact behaviour

of the system.

3
Mechanical oscillations that are caused by constant input power. It is also known as phonon lasing.
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Figure 2.1: The effective damping rate Γeff and frequency shift δωm as a function of detuning
for different κ/ωm.

2.5 In-phase and quadrature components

A bandpass signal x(t) with a center frequency ω can be rewritten as x(t) = XI(t) cos(ωt)+

XQ(t) sin(ωt) = R{(XI(t) + iXQ(t)) e−iωt}. XI(t) andXQ(t) are called in-phase and quadra-

ture components of the mentioned signal, respectively. These components can be combined

in a complex number to form the I/Q data X(t) = XI(t) + iXQ(t). X(t) is consequently

a baseband signal. The phasor X(t) can be decomposed into the amplitude and phase as
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Figure 2.2: Thermal Brownian Motion. a) I/Q data histogram as a phase space distribution
of the oscillator. The colours represent the probability density function (PDF). The (2D)
Gaussian distribution is seen for the thermal noise as expected. b) The Power Spectral
Density (PSD) of the thermal mechanical motion versus frequency Ω.

X(t) = A(t)eiϕ(t).

In relation to the mechanical motion, XI(t) and XQ(t) are proportional to the mechan-

ical displacement and momentum, respectively. This means that the phase space of the

mechanical oscillator can be roughly reconstructed using I/Q data measurement.

2.6 Brownian motion

Due to the finite temperature of the environment, the nanomechanical resonator undergoes

thermal fluctuations (Brownian motion), which are random. This randomness can be seen

on the timescale Γ
−1
m (inverse of the mechanical damping rate) in the amplitude and phase

of the oscillator. These thermal fluctuations are an immediate result of the fluctuation-

dissipation theorem. This theorem states that when a system has a loss channel (a channel

through which decoherence can happen), the system inevitably experiences random fluctua-

tions [46]. The power of these fluctuations is related to the temperature of the environment
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Figure 2.3: Phonon Lasing. a) I/Q data histogram as a phase space distribution of the
oscillator. The yellow circle is due to the phase noise. b) The Power Spectral Density (PSD)
of the phonon laser.

as well as the frequency of those oscillations. Note that due to the Heisenberg uncertainty

principle, we are always limited by quantum fluctuations (vacuum fluctuations), even if the

effective temperature of the system is zero. This theorem can also be seen in the theory of

open quantum systems, especially in input-output formalism, where there are noise opera-

tors corresponding to different decoherence channels. Figure 2.2 indicates the phase space

distribution and power spectral density [47] of the Brownian motion of the device.

2.7 Phonon lasing

Phonon lasing is a phenomenon in condensed matter physics where a large number of phonons

(quantized vibrations of atoms or molecules in a crystal lattice) are stimulated to oscillate

in phase and generate coherent radiation, similar to the way that atoms in a laser generate

coherent light. This coherent radiation can have applications in fields such as quantum com-

puting and sensing. Phonon lasing can be achieved by coupling the phonons in a crystal to a

resonant cavity or waveguide, which can provide feedback to amplify the phonon oscillations
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and achieve a population inversion, leading to phonon lasing. Phase space distribution and

PSD of the phonon lasing motion is indicated in figure 2.3.

This section is dedicated to the theory of phonon lasing. In order to do this, we follow [29].

This theory is developed for a classical picture of optomechanics. A fully quantum approach

requires solving the master equation with numerical methods. An analytical approach (in

quantum regime) to phonon lasing theory is still to be worked out.

2.7.1 Derivation of phonon lasing equations

Consider the classical equations of motion:

α̇ = −
κ

2
α + i(∆ +Gx)α +

√
κexαin, (2.12)

ẍ + Γmẋ + ω
2
mx =

h̵G
meff

∣α∣2. (2.13)

We start by the assumption that the displacement follows sinusoidal oscillations as x(t) =

x0+A cos(ωt). This approximation breaks down for very high powers in which chaotic motion

may result [33]. x0 is the average displacement, A is the amplitude of the oscillations, and

ω is the frequency of these oscillations that is slightly different from ωm due to the spring

effect (ω − ωm = δωm). The exact analytical solution for α(t) is derived in Appendix A as

α(t) = e
iβ sin(ωt)∑∞

n=−∞ αne
−inωt

, where β = GA/ωm is the optomechanical modulation index,

and

αn ≈

√
κexαinJn(β)

κ

2
− i(∆ + nωm)

, (2.14)

where Jns are the Bessel functions of the first kind.

For a harmonic oscillator (with the mentioned ansatz for x(t)) time average of a few

quantities plays an important role in the dynamics. For instance, ⟨x⟩ = x0 (average dis-

placement), ⟨ẋ⟩ = 0 (average momentum), ⟨ẍ⟩ = 0 (average net force), and ⟨ẍẋ⟩ = 0
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(average total power)
4
. Utilizing these facts and the equation (2.14), we get the followings:

meffω
2
m⟨x⟩ = h̵G ⟨∣α∣2⟩

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
F̄

, (2.15)

Ptotal = 0 = h̵G ⟨∣α∣2ẋ⟩
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Prad

−meffΓm ⟨ẋ2⟩
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Pfric

. (2.16)

Equation (2.15) expresses the average (constant) force acting on the resonator. Equation

(2.16) demonstrates that vanishing total time-averaged power is a necessary condition for

stable attractors. Using equation (2.14), we are able to evaluate F̄ = h̵G∑n=∞
n=−∞ ∣αn∣2,

Prad = h̵GωmA∑n=∞
n=−∞ I{αnα

∗
n+1}, and Pfric =

1

2
meffω

2
mA

2
Γm. Finally, we get the following

results:

Gx0 =
2g

2
0

ωm

n=∞

∑
n=−∞

∣αn∣2, (2.17)

β

2
Γm =

2g
2
0

ωm

n=∞

∑
n=−∞

I{αnα
∗
n+1}. (2.18)

2.7.2 Amplitude equation of motion

In order to determine the slow dynamics of the amplitude A, we can use the fact that the

change in the total energy of the resonator E =
1

2
meffω

2
mA

2
is equal to the net power:

dE

dt
= Ptotal = Prad − Pfric

⟹
dA

dt
=

1

meffω
2
mA

Ptotal = −
Γm

2meffω
2
m

∂U(A)
∂A

.
(2.19)

4
Note that these are not the only important relations. For example, other useful relations are ⟨x2⟩ =

x
2
0 +

1
2
A

2
≈

1
2
A

2
, and ⟨ẋ2⟩ = 1

2
ω
2
A

2
. The energy of a harmonic oscillator can be given as ⟨E⟩ = 1

2
m⟨ẋ2⟩ +

1
2
mω

2
m⟨x2⟩ ≈ 1

2
mω

2
mA

2
≈ mω

2
m⟨x2⟩. This example can also give a relation for the spring effect as derived in

appendix A.
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Figure 2.4: a) Effective potential U(A) versus detuning ∆ and mechanical amplitudeGA/ωm.
The white contours correspond to the local minima of the potential. b) Effective damping
rate Γeff versus detuning ∆ and mechanical amplitude GA/ωm.

In equation (2.19), U(A) is the effective potential for A which takes the form

U(A) = 1

2
meffω

2
mA

2
−

2

Γm
∫

A

0

Prad(A′)dA
′

A′ . (2.20)

U(A) exhibits several local minima, which correspond to stable oscillators (dynamical attrac-

tors). Figure 2.4 demonstrates an example of the effective potential U(A) for the amplitude.

The white contour indicates the local minima of U(A). These points construct a dynamical

attractor where the oscillator can be found.

2.7.3 Stochastic dynamics and Boltzmann distribution

Equation (2.19) was derived without considering the noise sources. The most important

noise source for mechanical resonators is the thermal Brownian motion (or Langevin force).

In order to include this in equation (2.19), we add a noise term n(t) to the right hand side

of (2.19) with correlation function ⟨n(t)n(t′)⟩ = ΓmkBT

meffω
2
m
δ(t − t

′), where kB is the Boltzmann

constant, and T is the ambient temperature. This will result in the following Langevin
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equation:

λ
dA

dt
= −

∂U

∂A
+ η(t), (2.21)

with λ = (2meffω
2
m)/Γm and ⟨η(t)η(t′)⟩ = 2λkBTδ(t − t

′). From this, one can recover the

Boltzmann distribution

p(A) ∝ exp(−U(A)
kBT

). (2.22)

Figure 2.5 shows the Boltzmann distribution of a phonon laser for different detunings.

In order to have a clear visualization of the distribution, the temperature is exaggeratedly

assumed to be high. In reality, at room temperature, the thermal noise contribution to the

amplitude is so small (less than 1 percent) that one can assume that the amplitude is found

deterministically. In other words, amplitude noise will play a minimal role in the lineshape

of the oscillator, and the phase noise determines the lineshape of the oscillator.

As T approaches zero, the oscillator can only be found at the minimum of U(A) when

reaching thermal equilibrium. This means the uncertainty due to thermal noise is removed

which is what we expect.

2.8 Phase noise of an optomechanical self-oscillator

Consider an oscillator with the following signal

x(t) = A(1 + ϵ(t)) cos(ωmt + φ(t)), (2.23)

where A is the amplitude, ωm is the frequency, ϵ(t) is the amplitude noise, and φ(t) is the

phase noise. Note that both ϵ(t) and φ(t) are stochastic processes. Typically ϵ(t) is very

small (ϵ(t) ≪ 1), and it does not have any significant contribution to the signal’s attributes.

Phase noise, however, has a notable contribution to the linewidth of the oscillator, as we

shall discuss in this section.
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Figure 2.5: Boltzmann distribution of a phonon laser. Temperature is assumed to be 23
MK.

2.8.1 Linewidth of an optomechanical self-oscillator

Consider the mechanical displacement

x(t) = x0 + A cos(ωmt + φ(t)). (2.24)

The governing equation of motion reads

meff[ẍ(t) + Γmẋ(t) + ω
2
mx(t)] = Frad(t) + FLangevin(t), (2.25)

where Frad(t) is the radiation pressure force acting on the resonator, and FLangevin(t) is the

Langevin force due to the thermal noise. The Langevin force has a Gaussian probability
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distribution with a correlation function

⟨FLangevin(t)FLangevin(t′)⟩ = 2meffΓmkBTδ(t − t
′). (2.26)

Note that this correlation function is only true when nth ≫ 1. The correlation function shows

that the thermal noise is white in the spectrum. For lower temperatures, the correlation

functions of the quantum noise operators become relevant [5]. In our experiments, which are

done at room temperature, the number of thermal phonons is large enough (nth ≈ 2800) to

make this approximation. By Plugging the ansatz (2.24) into (2.25), we will get

−meffA{[φ̇(t)2+2ωmφ̇(t)] cos(ωmt+φ(t))+[φ̈(t)+Γmφ̇(t)+Γmωm] sin(ωmt+φ(t))}+meffω
2
mx0

≈ Frad(t) + FLangevin(t). (2.27)

For a stable self-oscillator, the frequency fluctuations are significantly smaller than the me-

chanical frequency, meaning φ̇(t) ≪ ωm. Furthermore, the rate of these changes is also very

low compared to the mechanical damping rate, meaning that φ̈(t) ≪ Γmωm. Therefore,

equation (2.27) can be approximated as

−2meffωmA[φ̇(t) cos(ωmt+φ(t))+(Γm

2
) sin(ωmt+φ(t))]+meffω

2
mx0 ≈ Frad(t)+FLangevin(t).

(2.28)

φ(t) can be written as the sum of the phase shift δωmt due to the spring effect (ω = ωm+δωm)

and a stochastic process Φ(t) due to the thermal noise, i.e. φ(t) = δωmt+Φ(t). The radiation

pressure force Frad for a self-oscillating resonator is derived in (A.5). The final equation for

the phase noise is given as

(−2meffωmA)Φ̇(t) cos (ωt + Φ(t)) ≈ FLangevin(t). (2.29)
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Following the works in [48] and [31], Φ̇(t) is approximated as white Gaussian noise with the

power spectral density of

SΦ̇Φ̇(Ω) ≈ Γm

nth

2nc
. (2.30)

nth and nc are thermal and coherent (while self-oscillating) numbers of phonons, respectively.

One can extract the phase noise spectrum from the frequency noise spectrum as SΦΦ =

SΦ̇Φ̇(Ω)/Ω2
. The phase noise spectrum due to the optomechanical oscillations is, therefore,

proportional to 1/f 2
. Since SΦ̇Φ̇(Ω) is flat in the vicinity of the origin, the line shape of

the self-oscillator becomes a Lorentzian with linewidth ∆Ω = SΦ̇Φ̇(0) [31]. Therefore, the

linewidth of the self-oscillator becomes

∆Ω ≈ Γm

nth

2nc
. (2.31)

We can infer from this discussion that the 1/f 2
phase noise spectrum is associated with the

Lorentzian lineshape of the self-oscillator, and it determines the linewidth due to the back-

action limit [49, 50, 51, 31]. Note that this analysis did not consider the quantum fluctuations

due to the high number of thermal phonons. One can easily derive the quantum version of

equation (2.31) in sideband resolved regime following [31]. This is especially important when

the temperature is extremely low and the number of thermal phonons becomes much less

than 1.

Equation (2.31) shows that the linewidth of the self-oscillator becomes significantly nar-

rower than the unpumped mechanical linewidth by the improvement factor of 2nc

nth
. It is

worth noting that by taking into account the amplitude noise as well, a correction term will

appear in the linewidth due to the spring effect that is discussed in [31]. This causes the

improvement factor to be slightly reduced. Figure 2.6 shows the simulated results for the

improvement factor based on the parameters of our system.

The improvement factor is on the order of 10
7−10

8
for this system which is a significantly

large number. This means that for our system, the linewidth of the self-oscillator should
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Figure 2.6: Improvement factor 2nc/nth for the linewidth of a self-oscillator versus detuning.

be much less than 1Hz. However, the linewidth cannot be measured using the spectrum

analyzer due to the flicker phase noise (1/f 3
), which arises from the cumulative effects of all

the environmental noise processes [51]. This noise is responsible for the long-term dynamics

of the system since it is relatively slow compared to 1/f 2
noise. The complicated nature

of flicker noise perplexes the exact physical interpretation of this noise in the context of

optomechanics. However, due to its dependence on the power [51], it is speculated that it

originates from the thermorefractive noise in the device. This type of noise is mainly due to

local thermal fluctuations that change the dielectric properties of the cavity [45]. This, in

turn, will induce a relatively slow cavity frequency noise. Therefore, high-precision linewidth

measurement requires doing phase noise analysis of the system [50].
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Figure 2.7: a) Phase noise spectrum. b) Allan Deviation.

2.8.2 Phase Noise Analysis

In order to perform phase noise analysis of the system, the time series data of the self-

oscillation is obtained for 180 seconds, and then the phase of the signal is extracted. This

phase data is used to compute the phase noise spectrum as well as the Allan variance [52]

shown in figure 2.7. Figure 2.7a indicates the phase noise spectrum of the phonon laser, and

figure 2.7b shows the Allan deviation versus integration time.

From figure 2.7a, we can compute the linewidth of the oscillator due to the phase noise

caused by the fundamental optomechanical interactions. The linewidth is computed by

∆Ω = 4π
2
f
2×10

L(f)/10
where f is the frequency in which the dominant noise is the spectrum

is 1/f 2
noise. Unfortunately, due to the large white noise coming from the instruments, the

1/f 2
noise is below the noise level of the white noise, and we do not have access to the values

of this type of noise. However, since it is smaller than the white noise in figure 2.7a, we can

certainly say that the linewidth is well beyond 1Hz, as expected from theory.
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2.9 Room temperature quantum optomechanics

In order to be able to do quantum optomechanics at room temperature, one needs to re-

solve the decoherence problem. The decoherence rate of the mechanical resonator for the

ground state is Γmnth. This is the rate at which the resonator heats out of the ground

state. The decoherence rate for a single phonon is almost three times this value [53]. The

decoherence rate of the optical cavity for a single photon is κ. We have considered that the

number of thermal photons for telecom wavelengths is negligible. Note that by making this

approximation, there is no decoherence rate associated with the ground state of the optical

field.

One figure of merit is to have mechanical oscillations faster than the decoherence rate of

the resonator ωm ≫ Γmnth. Another figure of merit is to have a photon-phonon coupling

rate greater than both the optical and mechanical decoherence rates g0 ≫ {Γmnth, κ}. These

conditions are necessary for single photon-phonon quantum optomechanics.

By using the approximation nth = kBT/(h̵ωm) (which is valid for large nth), the first

condition reduces to

ωm ≫ Γm

kBT

h̵ωm
=

kBT

h̵Qm
, (2.32)

where Qm is the mechanical quality factor. Equation (2.32) gives the requirement for Qm.fm

product in order to be able to neglect the decoherence of the mechanical oscillations.

Qm.fm ≫
kBT

h
. (2.33)

For room temperature Qm.fm product should be larger than 10
13

in order to have coherent

mechanics. This condition is marginally fulfilled in our devices investigated in this work.

The g0 for our devices are on the order of tens of kHz while both the decoherence rates

are on the order of several GHz. Hence, the second condition is unfortunately not fulfilled

and prevents us from doing quantum optomechanics experiments. This condition is greatly

restrictive, and unfortunately, there are no practical photonic devices as of now with this
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condition fulfilled.

2.10 Conclusion

In this chapter, we started with the Hamiltonian formulation and then derived two of the

most common phenomena in cavity optomechanics. We learned about phonon lasing and its

differences with the Brownian motion of the resonator. Finally, we discussed some necessary

conditions in cavity optomechanics in order to have coherent interactions. These conditions

are crucial for decoupling the system from the thermal bath. Being able to do this would

open the doors toward quantum nonlinear optomechanics.
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Chapter 3

Feedback enhanced phonon lasing of a

microwave frequency resonator

The amplitude of self-oscillating mechanical resonators in cavity optomechanical systems is

typically limited by nonlinearities arising from the cavity’s finite optical bandwidth. We

propose and demonstrate a feedback technique for increasing this limit. By modulating the

cavity input field with a signal derived from its output intensity, we increase the amplitude of

a self-oscillating GHz frequency mechanical resonator by 22% (increase in coherent phonon

number of 50%) limited only by the achievable optomechanical cooperativity of the system.

This technique will advance applications dependent on high dynamic mechanical stress,

such as coherent spin-phonon coupling, as well as implementations of sensors based on self-

oscillating resonators.

3.1 Introduction

Feedback is a key element of many classical and quantum technologies ranging from control

of quantum systems [54], implementations of mechanical sensors such as atomic force mi-

croscopes [55], and highly coherent optical sources [56, 57]. Cavity optomechanical systems

[5] commonly use various forms of feedback [58, 59, 60, 61] to damp mechanical motion of
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resonators interacting with an optical cavity and cool them to their quantum ground state.

Feedback can also be used to amplify mechanical motion in these systems to probe the

limits of nanomechanical sensors [62, 63, 64, 65, 66], generate frequency combs [67] and rf

and microwave oscillators [68, 69, 70, 71, 72, 73], and study nonlinear dynamics [74]. Self-

oscillating phonon lasers have also played a role in optomechanically driving electronic spin

qubits associated with defects in materials such as diamond [28].

By localizing optical fields near or within a mechanical resonator, cavity optomechanical

systems provide coupling between optical and mechanical degrees of freedom that is essential

for using feedback to control resonator dynamics. The presence of a delay in the system’s

optical response to resonator displacement–dynamical optomechanical backaction–allows the

optomechanical coupling to modify the resonator’s effective mechanical dissipation [5]. Both

internal feedback from the cavity mode’s delayed optical response to changes in resonator

geometry [75, 10, 76], and delayed external feedback derived from the measured [77, 78] or

re-circulated [61] cavity field have been used to cool mechanical resonators. Similarly, exci-

tation of coherent resonator motion through these forms of feedback has been demonstrated

[68, 66, 77]. Cavity-less optomechanical systems can also harness feedback: for example,

adaptive control has been employed for cooling levitated mechanical objects [79], and pho-

tothermal optmoechanical coupling allows modification of resonator dynamics by microscope

field gradients [80] without the aid of a cavity.

Although phonon lasing typically increases the resonator amplitude by several orders of

magnitude, its maximum displacement is clamped by nonlinear optomechanical effects arising

when the mechanically induced change in cavity frequency exceeds the cavity linewidth [81],

limiting its potential for many of the applications discussed above. Enhancing the dynamics

of self-oscillating resonators by modulating the continuous wave field that parametrically

excites their mechanical motion has been demonstrated in studies of frequency injection

locking [82]. Here we examine whether modulation of the drive field allows the self-oscillation

amplitude to be increased. We show that the amplitude of a self-oscillating optomechanical
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resonator can be enhanced with the aid of linear external feedback that complements the

cavity’s internal backaction and compensates for the optomechanical nonlinearities limiting

the oscillation amplitude. This external feedback is similar to linear velocity feedback used

in Ref. [79] for nanoparticle levitation, and is applied here to control the self-oscillations of

a GHz frequency diamond microdisk cavity optomechanical device. After being driven into

phonon lasing, the measured mechanical motion of the resonator is amplified, phase shifted,

and input into a phase modulator that modulates the input laser frequency so that it follows

the optical cavity frequency set by the mechanical displacement. This process effectively

reduces dynamical backaction and enables the self-oscillating resonator to accumulate a

higher number of phonons for a given input power.
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Figure 3.1: (a,b) Temporal evolution of the optical cavity (blue) and laser (red) frequencies
for an oscillating cavity optomechanical system, with and without external feedback used to
shift the laser frequency so that it follows the instantaneous optomechanical frequency shift.
(c) Experimental system used to implement the laser frequency feedback scheme.
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3.2 Theory of feedback enhanced of parametric op-

tomechanical driving

Modification of mechanical resonator dynamics through coupling to an optical cavity driven

by a continuous wave laser arises when the displacement of the resonator by the cavity field

modifies the cavity mode frequency, which in turn affects the field built up in the cavity.

If the delay set by the cavity bandwidth is comparable to or longer than the mechanical

oscillation period, this optomechanical backaction results in damping (Γom > 0) or anti-

damping (Γom < 0) of the resonator motion depending on whether the laser is red (∆ <

0) or blue (∆ > 0) detuned from the cavity mode. The mechanical resonator is driven

into self-sustained oscillation when the energy transfer rate Γom between the cavity field

and the resonator is equal to the resonator’s internal dissipation rate Γm [29], and in a

linearized theory of optomechanics, modifies the resonator’s phonon number from its thermal

occupation nth to n = nthΓm/(Γm + Γom). This expression reveals the divergence of n and

onset of self-oscillation when Γom = −Γm, a regime that is most efficiently accessed when

∆ = ωm so that the parametric process of scattering a laser photon into the lower frequency

cavity mode while generating a phonon is resonant.

In practice, the amplitude of a self-oscillating resonator is clamped when the instanta-

neous optomechanical frequency shift δom(t) = Gx(t) of the cavity mode frequency induced

by the oscillations is comparable to the cavity linewidth, as determined by the optomechan-

ical coupling coefficient G = −dωo/dx and the oscillation amplitude A. This is illustrated

in Fig. 3.1(a), which shows how a laser nominally blue detuned ∆ = ωm to maximize anti-

damping is shifted away from this detuning by δom(t) when A is large. Previous numerical

studies have explored how varying the cavity optomechanical system’s parameters affects A

[81]. Here we explore an alternative concept: whether A can be enhanced using feedback to

dynamically compensate for δom(t) by modulating the input laser frequency.

This approach is illustrated in Fig. 3.1(b): given knowledge of x(t), the laser frequency ωl
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is constantly adjusted by δl(t) to reduce its deviation away from ∆ = ωm. Our experimental

implementation of this scheme is shown in Fig. 3.1(c). A weak laser input to an optical cavity

through an optical waveguide provides readout of x(t) via photodetection of its transmission.

This electronic signal is fed back to an electro-optic modulator that dynamically shifts the

phase of a strong field α input to a second cavity mode that parameterically drives the cavity’s

mechanical resonance into self-oscillation for sufficient optical power ∣α∣2 and appropriate

detuning ∆. In the experiment described below, a diamond microdisk whispering gallery

mode cavity evanescently coupled to a fiber taper waveguide is used. This system is described

by equations of motion,

α̇ = −
κ

2
α + i(∆ +Gx)α +

√
κexαine

+ifGx(t−τ)/ωm , (3.1)

ẍ + Γmẋ + ω
2
mx =

h̵G
meff

∣α∣2, (3.2)

with feedback captured by the time varying shift fGx(t − τ)/ωm in the phase of the input

field α, where τ is the delay of an electronic feedback line and f is the feedback strength,

which are controlled by a variable phase shifter and a variable gain amplifier, respectively.

Here κex is the coupling rate between the cavity and the input waveguide, and meff is the

resonator mode’s effective mass.

The nonlinear dynamics of this system can be analyzed by generalizing the theory of

Marquardt et al. [29] to include external feedback. In steady state, the power scattered into

the resonator from optical radiation pressure is equal to the resonator’s dissipated power, so

that ⟨ẍẋ⟩ = 0. This leads to,

2ωm

κCom
≈

1

∣z0∣2
∞

∑
j=−∞

Jj(β)Jj+1(β)
β/2 Im{zjz∗j+1(1 − fe

iφ)}, (3.3)

where β = GA
√
1 + f 2 − 2f cos(φ)/ωm is the effective optomechanical modulation index,

zj =
√
κexαin/[κ/2 − i(∆ + jωm)] is the cavity mode response at sideband frequency ωl+jωm,
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∣z0∣2 is the intracavity photon number before the onset of self-oscillations, and Com =

4g
2
0∣z0∣2/κΓm is the optomechanical cooperativity before the onset of self-oscillations. Phys-

ically, Eq. (3.3) compares Γm to the sum of the phonon generation rates associated with

optomechanical scattering between the j + 1 and j optical sidebands.

Feedback manifests in the term (1−feiφ) in Eq. (3.3) and a modification of β, affecting the

optomechanical scattering rates between sidebands. As written, Eq. (3.3) can be conveniently

solved numerically for mechanical amplitude A as a function of Com, allowing the influence

of f and φ to be studied for a given κ/ωm. Figure 3.2(a) shows the result of this calculation

for κ/ωm = 0.8 and Com = 2.73, chosen since they correspond to operating conditions of

the cavity optomechanical system studied experimentally below. We see that the oscillation

amplitude, expressed in terms the phonon occupation of the mechanical resonator mode

n ∝ (GA/ωm)2, possesses a maximum that is ∼ 1.5× larger than the amplitude n0 in

absence of feedback (f = 0). The dependence of n/n0 on f and φ is consistent with the

behaviour of optomechanical damping: dynamical back-action is responsible for phonon

lasing [5], but also limits the oscillation amplitude [81]. It is worth noting that the points

where the ratio is zero indicate that the system is not self-oscillating and the number of

coherent phonons is zero. Note that for all of these calculations ∆ = ωm, and that the input

field strength α and coupling rate κ do not need to be specified in this analysis.

To further explore the feedback’s behavior, we solve Eq. (3.3) for varying cooperativity,

optimizing the feedback parameters at each Com to maximize n. Figure 3.2(b) shows the

result. This clearly indicates that in absence of feedback (f = 0), as Com increases, which for

a given set of cavity parameters corresponds to increasing the number of intracavity drive

photons ncav, the resonator amplitude saturates. Conversely, when feedback is used, n grows

as Com increases. One can show that at the optimal point, A is linearly proportional to the

cooperativity GA/ωm ∝ Com with the proportionality constant to be maximized over f and

φ. This is seen in Fig. 3.2(b) where (GA/ωm)2 scales quadratically with Com. This shows that

adding feedback allows the phonon number to be enhanced by orders of magnitude, limited in
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practice by the experimentally achievable Com. We also note that self-oscillation is possible

using feedback for Com < 1, as shown in the inset to Fig. 3.2(b). Figures 3.2(c) and 3.2(d)

illustrate the impact of device parameters on the feedback enhancement. For κ/ωm = 0.08

(Fig. 3.2(c)) corresponding to increasing Qo or ωm by an order of magnitude, the maximum

phonon occupation is not significantly affected if Com is kept constant. However, note that

higher Qo allows achieving higher Com for a given ncav. When Com is increased to 20 while

κ/ωm remains constant (Fig. 3.2(d)), the maximum phonon occupation increased by nearly

an order of magnitude.

-100 0 100
φ (Degrees)

0

0.4

0.8

1.2

1.6

2

Fe
ed

ba
ck

 ra
tio

 (f
)

0

1.5
n/n0

0 15 20 25
Cooperativity (Com)

0

200

400

600
(G

A
/ω

m
)2

 Feedback o�
Feedback on

0

5

10

105

1 2 30

(a) (b)

-100 0 100
φ (Degrees)

0

0.4

0.8

1.2

1.6

2

Fe
ed

ba
ck

 ra
tio

 (f
)

0

1.4
n/n0(c)

-100 0 100
φ (Degrees)

0

0.4

0.8

1.2

1.6

2

Fe
ed

ba
ck

 ra
tio

 (f
)

0

20
n/n0(d)

κ/ωm=0.8
Com = 2.73

κ/ωm=0.08
Com = 2.73

κ/ωm=0.8
Com = 20

Figure 3.2: (a) Theoretically predicted phonon occupation of the mechanical resonance as
a function of feedback parameters, normalized by the number of phonons during pure self-
oscillation (f = 0) for the device parameters used in this work (κ/ωm = 0.8) and an optimally
blue detuned drive field with intensity corresponding to Com = 2.73. Dashed lines correspond
to parameter ranges studied experimentally below. (b) Predicted normalized phonon occu-
pation for varying Com with optimized feedback parameters (red) and feedback turned off
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3.3 Experimental Demonstration

We next experimentally demonstrate feedback enhanced optomechanical self-oscillation. The

cavity optomechanical system used here consisted of a diamond microdisk previously used for

coherent photon–phonon coupling [83, 84] and spin–optomechanics [28]. This device supports

a ωm/2π = 2.1GHz radial breathing mode mechanical resonance that interacts strongly with

optical whispering gallery modes of the device. A fiber taper waveguide evanescently couples

to optical modes used for driving and probing the mechanical motion of the microdisk. The

drive mode (wavelength λd = 1563.4 nm) has quality factor Qo,d = 1.1 × 10
5
sufficiently

high to place it near the sideband resolved regime, while the probe mode (λp = 1509.5 nm)

has lower Qo,p = 1.1 × 10
4
, allowing its field to instantaneously respond to the motion of

the mechanical resonator. Coherent photon–phonon coupling between the drive mode and

the radial breathing mode can achieved thanks to their high optomechanical coupling rate

g0/2π = 25 kHz, the mechanical resonance’s high quality factor Qm = ωm/Γm = 4, 300,

and diamond’s ability to support high intensity fields before the cavity exhibits heating

instability and nonlinear absorption. In the measurements presented below, a drive field of

approximately ncav = 0.9 × 10
6
photons (1.4 mW dropped power) is used to realize photon-

enhanced Com ≈ 2.73. In all measurements, the probe laser power is sufficiently low for it to

have no effect on the mechanical resonance dynamics.

To implement the feedback scheme, the RF component of the photodetected probe field

signal is amplified, delayed, and input to an electro-optic modulator (EOM) that shifts the

phase of the drive field. At the fiber taper input the probe and drive fields are combined

using a 90:10 fiber coupler, and at the output they are separated using a wavelength division

multiplexer (Montclair Fiber MFT-MC-51-30-AFC/AFC-1). The transmitted probe field is

monitored using a fast photoreceiver (Thorlabs RXM25AA) whose output is filtered near

ωm (passband 2.0-2.3 GHz, Mini Circuits VBFZ-2130-S+) and measured using an RF power

detector (Mini Circuits ZX47-50LN-S+) to generate the signal input to the feedback circuit.

Two amplifiers (Mini Circuits ZKL-33ULN-S+ & ZX60-83LN-S+) and a variable attenuator
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(Mini Circuits ZX73-2500-S+) realize a variable gain amplifier that varies f and a phase

shifter (Mini Circuits JSPHS-2484+) that varies τ . The resulting signal is used to drive the

EOM (EOSPACE PM-5S5-20-PFA-PFA-UV-UL).
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Figure 3.3: Experimental demonstration of feedback enhanced optomechanical self-
oscillation. (a) Power spectral density of the photodetected signal showing the self-oscillation
of the microdisk radial breathing mode with and without electronic feedback turned on. The
signal is measured from the probe laser transmission through the fiber taper waveguide when
it is tuned near resonance with the probe cavity mode, and the drive laser is detuned by ωm

from the drive mode. In (b) and (c) the dependence of the area under the self-oscillation
resonance is plotted for varying f and φ, respectively, and compared with theoretical pre-
dictions. In each plot the non-varying feedback parameter is fixed at its optimal value.

Figure 3.3 shows the measured power spectral density with and without feedback when

the device is excited into self-oscillation by the blue detuned drive laser. The area under the

peak is a measure of the mechanical power and corresponding phonon occupation and oscil-

lation amplitude. An increase in mechanical power corresponding to n/n0 ≈ 1.5 is obtained

when feedback is on and the feedback parameters are optimized. Figures 3.3(b) and 3.3(c)

show the dependence of n/n0 on these parameters, revealing a clear maxima at f ≈ 0.5 and
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φ ≈ 20
◦
. A cooperativity of Com ≈ 2.73 is estimated for these measurements by referencing

the drive field input power to its value at the onset of self-oscillations (corresponding to

Com = 1).

Also shown in Figs. 3.3(b) and 3.3(c) is the theoretically predicted dependence of n/n0 on

the feedback parameters. Each of these plots are slices through the parameter space shown in

Fig. 3.2(a), with the non-varying feedback parameter fixed at its optimal setting. When gain

is varied in Fig. 3.1(b), we see that, as discussed in Sec. 3.2, the number of phonons initially

increases with increasing f , until reaching a maximum at f = 0.5. For larger f the phonon

number decreases, and for f > 0.75 we find that the number of coherently generated phonons

becomes zero, meaning that there is no self-oscillation and that the effective cooperativity

becomes less than one. When the feedback’s phase shift is varied, as shown in Fig. 3.1(c),

we see that the enhancement decreases gradually on either side of its maxima. Comparing

both sets of measurements with the theoretically predicted values of n/n0 we find excellent

agreement, including the observed asymmetry of n/n0 with respect to φ, which is found to

be due to the non-zero cavity linewidth κ.

3.4 Discussion and Conclusion

The enhancement in phonon occupation demonstrated here is not limited by fundamental

mechanisms. Rather, as discussed above, n is predicted to increases quadratically with

Com, in contrast to its behaviour in conventional phonon lasing where n saturates due to

dynamical back-action. Increasing Com beyond the value demonstrated here can be achieved

most directly through operating at higher laser input power. However, in practice this is

limited by residual heating of the diamond device that can lead to thermal instability of the

optical mode [85]. Alternatively, Com can be increased by improving the device parameters.

Reducing its mechanical dissipation is particularly desirable since the scattering processes

governing the dependence of n on Com in Eq. (3.3) are not affected by Γm. For example,
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increasing Qm to 9,000 observed in Ref. [86] would immediately offer a further 2× increase in

phonon occupation. Implementing the feedback scheme using optomechanical crystals [12],

which have been demonstrated with Qm > 10
10

[87] would offer orders of magnitude higher

enhancement.

The increase in mechanical self-oscillation amplitude accessible using this feedback scheme

will enable more efficient optomechanical driving [28] of electronic spin systems such as

diamond nitrogen vacancy (NV) and silicon vacancy (SiV) color centers, enabling spin–

optomechanical control to enter the regime of coherent spin-phonon coupling [88]. Enhanced

self-oscillation amplitude will also provide access to rich nonlinear optomechanical dynamics

[74] and assist in observing nonlinear nanomechanical effects [89] of interest for applications

such as generating squeezed states [90]. Implementing this scheme using high signal to noise

homodyne detection may allow excitation of thermal states into self-oscillation.
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Chapter 4

Room-temperature multi-phonon

processes in cavity optomechanics

In this work, we investigate the nonlinear cavity optomechanics in diamond due to the

phonon lasing. We observe a bistable regime where the oscillator can be found in different

attractors depending on the initial conditions. Sideband generation due to large mechanical

amplitude is shown, and the possibility of two-phonon emission is explored. Finally, we

propose a force-sensing scheme using the phonon laser, which is able to generate a signal

that is amplified up to two orders of magnitude compared to the original signal.

4.1 Introduction

Cavity optomechanics has proven to be of interest for sensing [74, 91], gravitational wave

detection [92, 93], and quantum technologies [94]. Diamond cavity optomechanics provides a

platform for hybrid quantum systems involving optical cavities, mechanical resonators, and

color centers [95]. Spin defects can be coupled to mechanical resonators via strain coupling,

enabling spin-mechanical control, as demonstrated in [28]. Therefore, complete control over

the mechanical resonator is of great importance to this field.

The optomechanical interaction Hamiltonian takes the form Hint = −h̵g0a
†
a (b + b

†),
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where g0 is the single photon-phonon coupling rate, and the annihilation operators for optical

and mechanical oscillators are represented by a and b. This Hamiltonian is cubic in operators,

which leads to nonlinear Heisenberg equations of motion. However, in most cases, a linear

approximation is employed to get the linearized description of optomechanical interactions.

The linearized approach is sufficient in order to explain many properties of optomechanical

systems in both quantum and classical regimes, such as the spring effect [12], damping/anti-

damping effect [96], and optomechanically induced transparency [85].

The linear treatment of optomechanical interactions breaks down when the mechanical

oscillations are large, which, for instance, is the case for phonon lasing. These nonlinear

dynamics can potentially be useful for sensing, multi-phonon emission, and generally for any

application that requires a large number of phonons, such as spin-mechanical interactions.

One consequence of the nonlinear dynamics is the optomechanical multistability [29]

mediated by radiation pressure. The existence of these mechanical bistabilities has been ex-

perimentally shown in [40]. Another outcome of nonlinear radiation pressure is the sideband

generation due to the high amplitude mechanical oscillations. The sideband generation can

be particularly useful for optical comb generation, as shown in [67]. Phonon lasers have been

previously employed as sensitive force sensors [63, 65].

In this work, we explore the nonlinear optomechanical dynamics of diamond devices. We

experimentally validate the attractor diagrams and show the mechanical bistability as well

as the thermo-optically induced bistability. The optical spectrum of the transmitted field is

measured in order to verify the sideband generation due to the coherent mechanical motion.

Using the phonon laser, we propose a slow force-sensor with 40 dB amplification. This type

of sensor can be potentially valuable for gravitational wave detection, where the frequency

of the signals is very low [92].
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4.2 Device & Setup

The device used for this work is a diamond microdisk supporting several Whispering Gallery

Modes (WGM) in the telecom range. Our setup consists of two lasers; one for pumping

photons into the cavity and the other for probing the mechanics. The power of the probe

laser is chosen to be small in order to minimize its effects on the mechanical resonator.

Furthermore, to reduce the nonlinear transduction effects, the optical mode used for probing

the mechanics exhibits a linewidth much larger than the frequency modulation induced

by mechanical oscillations. The mode used for pumping is a doublet at λpump ≈ 1543nm

with Qsymmetric ≈ Qasymmetric ≈ 70, 000. The input power of the pump mode is Pin ≈ 32

mW. The mechanical mode studied in this work is a Radial Breathing Mode (RBM) at

ωm/2π ≈ 2.31GHz with Qm ≈ 9, 000.

4.3 Phonon Lasing

As mentioned, in the context of cavity optomechanics, phonon lasing is referred to as a

phenomenon in which the dynamical backaction results in stable mechanical limit cycles [40].

Previous experiments have shown that in the systems with optomechanical cooperativities

greater than unity (Com =
4g

2
0ncav

κΓm
> 1), stable mechanical self-oscillations appear with the

help of a blue-detuned laser [33, 97, 98, 40].

Following the theory developed for phonon lasing in Chapter 2, the effective potential

U(A) exhibits several local minima, which correspond to stable oscillators (dynamical at-

tractors). Figure 4.1b demonstrates an example of the effective potential U(A) for the

amplitude. The white contour indicates the local minima of U(A). These points construct

dynamical attractors where the oscillator can be found. Figure 4.1c indicates the effective

potential for ∆eff = 4ωm. There are two local minima in this potential, revealing that the

self-oscillator can experience bistability depending on the initial conditions.
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Figure 4.1: a) Optical spectrum of the intra-cavity field. The red and blue arrows demon-
strate a phonon scattering (due to the optomechanical interactions) where a phonon is emit-
ted and absorbed, respectively. b) The effective potential U(A) as a function of detuning
and amplitude. The white contours represent the minima of the effective potential. c) U(A)
for ∆ = 4ωm. d) The effective detuning as a result of the thermo-optic effect.

4.4 Bistability

As depicted in figure 4.2b, the transmission is different when the laser wavelength is swept

ascending (forward) or descending (backward) due to the thermo-optic and mechanical bista-

bilities. As a result of the thermo-optic effect, we can introduce an effective detuning rather

than the original detuning of the laser as ∆eff = ∆ + γTOncav where γTO is the frequency

shift per photon due to thermo-optic effect, and ncav is the average number of photons in the

cavity. Figure 4.1d indicates a hysteresis-like effect that depends on the direction of the laser

sweep, as also shown in [99]. As demonstrated in figure 4.1d, there are two regions where
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Figure 4.2: a) PSD of the phonon laser as a function of various detunings for backward and
forward sweeps. b) Optical transmission. c) Mechanical amplitude. d) Spring effect shift.

the bistability can be seen. In order to avoid confusion, we discuss each of these regions

separately.

Region 1: The bistability in this region is due to the mechanical bistability explained

in the previous section. Due to the different mechanical amplitudes of the forward and

backward sweep, the average number of photons in the cavity is also different. This causes
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bistability in ∆eff since it depends on ncav when the thermo-optic effect is present.

Region 2: In this region, bistability is primarily due to the thermo-optic bistability

as explained in [99]. As shown in figure 4.1d, the forward sweep stays on the blue side

for a larger range compared to the backward sweep. This behaviour is depicted using the

star (⭐) and diamond (♢) symbols at the boundaries of the effectively blue-detuned laser

detunings for forward and backward sweeps, respectively. This kind of bistability induces

another bistability in A since the forward sweep stays blue-detuned for a larger range and,

therefore, it self-oscillates up to point ⭐ while the backward sweep only self-oscillates up to

point ♢ as also shown in figure 4.2c.

Figures 4.2a show the power spectral density of the phonon laser versus various wave-

lengths. Figure 4.2b, 4.2c, and 4.2d indicate the transmission, mechanical amplitude, and

spring effect for different detunings, respectively.

4.5 Multi-phonon Processes

In section 4.3, the steady state solution for the intracavity field was derived. This solution

shows equally-spaced sidebands with spacing Ωm as demonstrated in 4.1a. Figure 4.3 indi-

cates the optical spectrum of the transmitted field for different detunings across the cavity.

The spectrum is particularly shown for three different detunings, along with the theoretical

predictions. Figure 4.3b and 4.3c show the optical spectrum for near resonance and far blue-

detuned phonon lasing, respectively. Figure 4.3d shows the optical spectrum outside the

cavity, which is equal to the laser spectrum. It is worth noting that the laser exhibits phase

noise sidebands at ≈ 2.3 GHz, which almost coincides with our mechanical frequency [41].

The interactions between the sidebands are only limited to the neighbouring sidebands.

The reason for this is that the rate at which two-phonon transitions happen scales with the

second power of g0/ωm. In our work (and most of the optomechanical devices), g0 ≪ ωm

and this causes the rate of the multi-phonon processes to be very low. However, if a device
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Figure 4.3: a) The optical spectrum of the output field as a function of different detunings.
b,c,d) The optical spectrums for different sections shown in a). The experimental measure-
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is able to fulfill g0 ∼ ωm, observing two-phonon emission can become possible.

In the absence of direct multi-phonon processes, each photon in the cavity can emit

(absorb) a phonon and result in another photon with a frequency lower (higher) than the

initial frequency by Ωm. Through this mechanism, each sideband couples to the adjacent

sidebands. They result in cascaded interactions of different sidebands.

45



4.6 Force Sensing
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Figure 4.4: Gain of the Sensor (dB) vs Detuning

Suppose that the force Fex(t) acting on the resonator is much slower than the mechanical

frequency. Such a force modifies the effective detuning by δ∆(t) ≈
G

mω2
m
Fex(t) (∆

new
eff =

∆
old
eff + δ∆). For simplicity, we assume that the force induces a small change (δ∆ ≪ ωm).

Furthermore, it is assumed to be much slower than the mechanical damping rate
1
. The

mechanical amplitude A(t) follows these changes adiabatically due to the slow nature of this

force. Therefore one can write:

δ(GA)(t) = (∂(GA)
∂∆eff

) δ∆(t), (4.1)

where δ(GA)(t) is the change in the amplitude due to Fex(t). This will appear as sidebands

in the phonon laser power spectral density, with the spacing being the same as the force’s

1
If the force is not slower than the mechanical damping rate, the gain will be reduced by a factor of

(1 + (Ω/ΓA)2)
−1
. With Ω being the force frequency and ΓA =

Γm

2meffω
2
m

∂
2
U(A)
∂A2 .
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frequency. The gain in the signal obtained by this configuration can be calculated as

η = (∂(GA)
∂∆eff

)
2

.

. The gain η has a considerable value near the transition points of the attractor, as shown

in figure 4.4. A phonon laser operated near the resonance of the cavity amplifies the signal

up to 100 times.

4.7 Conclusion

In summary, we investigated the nonlinear optomechanical effects in diamond microdisks.

The phonon laser attractor diagram was experimentally verified, and the mechanical and

thermo-optic bistabilities were discussed. Moreover, sideband generation due to the high

amplitude mechanical motion is studied.

We proposed a force-sensing scheme with 40 dB amplification. The slow force sensor

discussed in this work is based on a phonon laser operated near the resonance. The external

force modifies the effective detuning of the cavity, and thus it generates sidebands around

the mechanical frequency that is amplified compared to the original signal.

The auto-correlation of a phonon laser in the linear regime has been previously studied

in [100]. However, the cross-correlation of different sidebands remained unexplored. With

the stabilization of the laser frequency, it is possible to use narrow bandwidth fabry-perot

band-pass filters to select each sideband independently. Subsequently, two of these sidebands

are passed into two single-photon detectors to measure the coincidence rates and, therefore,

the correlation.

Furthermore, fabricating a device in the g0 ∼ ωm regime would enable observing multi-

phonon emission. Similar to quantum photon sources, this can be potentially useful as

phonon sources.
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Chapter 5

Conclusion

5.1 Summary

In this work, we studied the nonlinear optomechanical effects arising from finite amplitude

mechanical oscillations in diamond microdisks. The coherent mechanical oscillations emerge

as the optomechanical anti-damping rate matches the intrinsic mechanical damping rate.

At this stage, there is no damping involved with the dynamics and therefore, the phonons

start to add up. The high-amplitude mechanical motion brings the system into the nonlinear

regime. The optomechanical nonlinearities prevent the ever-increasing number of phonons

by modifying the interaction between the resonator and the cavity. They determine the

amplitude and, therefore, all other properties, including the optical spectrum. These co-

herent oscillations have applications in spin-mechanical coupling [28], optomechanical comb

generation [67], and sensing [63, 65].

Feedback enhanced phonon lasing proved to be an effective way of increasing the ampli-

tude of mechanical oscillations required for some applications that rely on stronger mechanics.

In this method, a feedback circuit is used to manipulate the phase of the input light to the

cavity in order to increase the number of phonons.

Multi-phonon processes were explored at room temperature for diamond microdisks,
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where optomechanical combs are generated as a result of these types of interactions. It was

shown that the number of teeth in a comb and their intensity depends on the amplitude of

mechanical oscillations. Large amplitudes are found in the far blue-detuned region where

optomechanical bistability exists that depends on the initial conditions. Finally, a sensor

based on phonon lasers is proposed which is able to amplify the slow dynamics up to two

orders of magnitude.

5.2 Outlook

One crucial fact that needs mentioning is that the optomechanical nonlinear dynamics that

have been experimentally shown up to date are in the classical regime. This is mainly due to

the poor performance of the devices. In other words, in order to enter the nonlinear regime,

one needs to have a high number of photons in the cavity because the single photon coupling

rate is typically very weak. This means that a single photon - single phonon interaction

is impossible, even in state-of-the-art devices. A true quantum nonlinear optomechanical

device requires a revolution in design and fabrication. We briefly mention some of the vital

properties for realizing these devices.

Optomechanical coupling rate: In order to displace the resonator by more than the

zero-point fluctuation displacement (xzpf) using a single photon, one needs g0 > ωm.

Sideband Resolution: Photon lifetimes shall be much longer than mechanical oscilla-

tions period. This translates into κ ≪ ωm, also known as the good cavity limit.

Qm.fm product: As explained in Chapter 2, in order to have coherent mechanics de-

coupled from the thermal bath, one needs to fulfill Qm.fm ≫ kBT/h.

The first condition ensures that direct multi-phonon transitions are possible. The second

requirement ensures that the photon lifetimes are long enough for coherent interactions. The

third requirement is to decouple the mechanical resonator from the thermal bath.

The last two requirements are achieved in many optomechanical devices [76, 101, 102]
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1
. The first requirement was fulfilled in [103]. However, all three requirements are not

simultaneously achieved in any optomechanical devices up to date.

Overcoming this problem would open the doors to true hybrid quantum systems con-

sisting of photonic and phononic parts. For example, a single photon can be converted to

a phonon, and then the information processing can be done on the phonon and vice versa.

This means a thorough knowledge of nonlinear cavity optomechanics is necessary to control

and predict these quantum systems.

1
Devices shown in [101, 102] do not exhibit coherent mechanics at room temperature. However, they are

effectively decoupled from the thermal bath at cryogenic conditions.
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[11] Stefan Weis, Rémi Rivière, Samuel Deléglise, Emanuel Gavartin, Olivier Arcizet, Al-

bert Schliesser, and Tobias J. Kippenberg. Optomechanically induced transparency.

Science, 330(6010):1520–1523, 2010.

[12] Matt Eichenfield, Jasper Chan, Ryan M. Camacho, Kerry J. Vahala, and Oskar Painter.

Optomechanical crystals. Nature, 462(7269):78–82, Nov 2009.

[13] Yuxiang Liu, Marcelo Davanço, Vladimir Aksyuk, and Kartik Srinivasan. Electromag-

netically induced transparency and wideband wavelength conversion in silicon nitride

microdisk optomechanical resonators. Phys. Rev. Lett., 110:223603, May 2013.

[14] Xiyuan Lu, Jonathan Y. Lee, Steven D. Rogers, and Qiang Lin. Silicon carbide double-

microdisk resonator. Opt. Lett., 44(17):4295–4298, Sep 2019.

[15] Matthew Mitchell, Aaron C. Hryciw, and Paul E. Barclay. Cavity optomechanics in

gallium phosphide microdisks. Applied Physics Letters, 104(14):141104, 2014.

[16] Peter Lebedew. Untersuchungen über die druckkräfte des lichtes. Annalen der Physik,
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Favero. Force sensing with an optomechanical self-oscillator. Phys. Rev. Appl.,

14:024079, Aug 2020.

[64] Tomás Manzaneque, Murali K. Ghatkesar, Farbod Alijani, Minxing Xu, Richard A.

Norte, and Peter G. Steeneken. Resolution limits of resonant sensors. Physical Review

Applied, 19(5):054074, may 2023.

[65] Zhichao Liu, Yaqi Wei, Liang Chen, Ji Li, Shuangqing Dai, Fei Zhou, and Mang Feng.

Phonon-laser ultrasensitive force sensor. Phys. Rev. Appl., 16:044007, Oct 2021.

[66] F. Bemani, O. Černot́ık, L. Ruppert, D. Vitali, and R. Filip. Force sensing in an

optomechanical system with feedback-controlled in-loop light. Phys. Rev. Applied,

17:034020, Mar 2022.

58



[67] Yong Hu, Shulin Ding, Yingchun Qin, Jiaxin Gu, Wenjie Wan, Min Xiao, and Xiaoshun

Jiang. Generation of optical frequency comb via giant optomechanical oscillation. Phys.

Rev. Lett., 127:134301, Sep 2021.

[68] M. Hossein-Zadeh and K.J. Vahala. An optomechanical oscillator on a silicon chip.

IEEE Journal of Selected Topics in Quantum Electronics, 16(1):276–287, 2010.

[69] Mani Hossein-Zadeh and Kerry J. Vahala. Photonic RF down-converter based on

optomechanical oscillation. IEEE Photonics Technology Letters, 20(4):234–236, feb

2008.

[70] Wei C. Jiang, Xiyuan Lu, Jidong Zhang, and Qiang Lin. High-frequency silicon op-

tomechanical oscillator with an ultralow threshold. Optics Express, 20(14):15991, jun

2012.

[71] Xu Han, Chi Xiong, King Y Fong, Xufeng Zhang, and Hong X Tang. Triply resonant

cavity electro-optomechanics at x-band. New Journal of Physics, 16(6):063060, jun

2014.

[72] Yongjun Huang, Jaime Gonzalo Flor Flores, Ziqiang Cai, Mingbin Yu, Dim-Lee Kwong,

Guangjun Wen, Layne Churchill, and Chee Wei Wong. A low-frequency chip-scale

optomechanical oscillator with 58 kHz mechanical stiffening and more than 100th-order

stable harmonics. Scientific Reports, 7(1), jun 2017.
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Appendix A

Optomechanical equations of motion

with measurement-based feedback

The Hamiltonian of an optomechanical system in the frame rotating with the laser frequency

is described in A.1.

H = HFree +HInteraction +HDrive +HBath

HFree = −h̵∆a
†
a + h̵ωmb

†
b

HInteraction = −h̵g0a
†
a(b + b

†)

HDrive = −ih̵
√
κexαin(ae−ifGX(t−τ)/ωm − a

†
e
+ifGX(t−τ)/ωm)

(A.1)

Where X(t) is the estimated mechanical displacement, τ is the delay of the feedback line,

and f is the feedback strength. The delay in the feedback line will result in the phase shift

φ = ωmτ in the signal X. This phase shift is controlled using a phase shifter. The feedback

strength f is also controlled via a variable gain amplifier.

In order to have a reliable estimation of the mechanical displacement, a weak probe

laser is used to suppress the nonlinear effects arising from the nonlinear transduction of the

system. If the estimation is reliable, we can use the approximation X(t) ≈ x(t) = xzpf⟨b+b
†⟩.

Note that X(t) is a stochastic process even if the measurement is ideal since quantum noises
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hinder the estimation. If the signal is large enough, one can ignore all these noises and rely

on the fact that X(t) is almost a deterministic signal.

Using input-output theory, the quantum equations of motion can be written as

ȧ = −
κ

2
a + i[∆ + g0(b + b

†)]a + √
κexαine

+ifGX(t−τ)/ωm +
√
κexain(t) +

√
κinfin(t)

ḃ = −
Γm

2
b − iωmb + ig0a

†
a +

√
Γmbin(t).

(A.2)

The output noise operator describes the output field in input-output formalism as aout =

αine
+ifGX(t−τ)/ωm + ain −

√
κexa.

The classical equations of motion as described in [5] are

α̇ = −
κ

2
α + i(∆ +Gx)α +

√
κexαine

+ifGx(t−τ)/ωm

ẍ + Γmẋ + ω
2
mx =

h̵G
meff

∣α∣2.
(A.3)

Moreover, the output field reduces to αout = αine
+ifGx(t−τ)/ωm −

√
κexα.

For a high-quality resonator, the mechanical displacement follows the ansatz x(t) =

x0 + A cos(ωt) where x0 is the average displacement, A is the amplitude of the oscillations,

and ω is the frequency of these oscillations that is slightly different from ωm due to the

spring effect (ω − ωm = δωm). By plugging this ansatz into the equation A.3, α(t) is found

to have the steady state solution α(t) = e
iβom sin(ωt) ∑∞

n=−∞ αne
−inωt

, where βom = GA/ωm is

the optomechanical modulation index. αns are obtained using the following:

∞

∑
n=−∞

[κ
2
− i(∆ + nωm)]αne

−inωt
≈
√
κexαine

+ifβom cos(ωt−φ)
e
−iβom sin(ωt)

=
√
κexαine

−iβomu sin(ωt+θ)
=

∞

∑
n=−∞

√
κexαinJn(βomu)e−inθe−inωt

⟹ αn ≈

√
κexαinJn(β)e−inθ
κ

2
− i(∆ + nωm)

.

(A.4)
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We have used the approximation Gx0, δωm ≪ ωm, which is typically valid for small optome-

chanical coupling rate (κ, ωm ≫ g0). In equation A.4, β = βomu is the effective optomechan-

ical modulation index, where u and θ are defined in such a way that ue
−iθ

= 1 − fe
i(φ−π/2)

.

αns are the optical sidebands created by the mechanical oscillations. The stronger the

mechanical oscillations are, the stronger the sidebands will be. Note that in order to

calculate the sidebands, an important relation known as Jacobi-Anger expansion is used

(e
iz sin θ

= ∑∞
n=−∞ Jn(z)einθ). This relation is useful in physics, as well as other disciplines

(e.g. in signal processing to describe FM signals). Now that the sidebands are all calculated,

α(t) is plugged back into the mechanical equation of motion to calculate A, x0, and δωm.

Frad/meff =
h̵G
meff

∣α∣2 = h̵G
meff

∞

∑
m=−∞

α
∗
mαm +

2h̵G
meff

∞

∑
n=1

R{
∞

∑
m=−∞

α
∗
mαm+ne

−inωt}

≈
2h̵G
meff

[1
2

∞

∑
m=−∞

α
∗
mαm +R{

∞

∑
m=−∞

α
∗
mαm+1} cos(ωt) + I{

∞

∑
m=−∞

α
∗
mαm+1} sin(ωt)]

(A.5)

Note that the only sidebands that are considered in the approximation correspond to n =

−1, 0, 1 since we have considered harmonic oscillations for the resonator. This is the rotating

wave approximation (RWA), and it is valid as long as the mechanical quality factor is large.

By using this force term in A.3, we get three equations that are used for calculating A, x0,

and δωm:

Gx0 ≈
2g

2
0

ωm

∞

∑
n=−∞

Jn(β)2z∗nzn, (A.6)

−2δωm ≈
2g

2
0

ωm

∞

∑
n=−∞

Jn+1(β)Jn(β)
β/2 R{z∗nzn+1(1 − fe

i(φ−π/2))}, (A.7)

−Γm ≈
2g

2
0

ωm

∞

∑
n=−∞

Jn+1(β)Jn(β)
β/2 I{z∗nzn+1(1 − fe

i(φ−π/2))}, (A.8)

where zn = (√κexαin)/(κ/2− i(∆+ nωm)) corresponds to the different sidebands. Equation

A.8 is used to calculate β and βom = β/(
√
1 + f 2 − 2f sinφ). This is then used to calculate

x0 and δωm in equations A.6 and A.7, respectively. It is also worth noting that the time-
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averaged number of photons in the cavity ncav can be calculated as ncav = ∑∞
n=−∞ Jn(β)2z∗nzn.

In the limit β ≪ 1, we know that J0(β) ≈ 1 and J1(β) = −J−1(β) ≈ β/2 and all the other

Bessel functions are proportional to (β/2)n with n ≥ 2 that is negligible. In this limit, one

can retrieve the familiar results for the number of photons, spring effect and optomechanical

damping/anti-damping effect as the linearized theory of optomechanics suggests [5]:

ncav =
κex∣αin∣2

(κ/2)2 +∆2
, (A.9)

δωm = g
2 ( ∆ + ωm

κ2/4 + (∆ + ωm)2
+

∆ − ωm

κ2/4 + (∆ − ωm)2
) , (A.10)

Γopt = g
2 ( κ

κ2/4 + (∆ + ωm)2
−

κ

κ2/4 + (∆ − ωm)2
) , (A.11)

where we have considered there is no feedback (f = 0).

Now let us go back to the equations A.4, A.6, A.7, and A.8. Together with the ansatz

of mechanical displacement, they construct the steady-state solutions of an optomechanical

system. However, the full (quantum) solution requires considering the fluctuations that arise

due to dissipation and quantum uncertainties. The next section is dedicated to deriving a

linear quantum model of optomechanics in the case of large mechanical oscillations.

A.1 Linearized quantum optomechanics

From here on, we assume that there is no feedback (f = 0). We define new quantum operators

as a
new

= a
old−α(t) and b

new
= b

old−
√
nce

−iωt
, where nc is the number of coherent phonons,

and it is related to β through β ≈ (2g0/ωm)
√
nc. It is clear that the commutation relations

between the new operators are the same as before. By plugging these new operators in A.2,

we get a new set of equations as

ȧ = −
κ

2
a + i[∆ + βωm cos (ωt)]a + ig0α(t)(b + b

†) + √
κexain(t) +

√
κinfin(t) (A.12)

ḃ = −
Γm

2
b − iωmb + ig0(α(t)a†

+ α
∗(t)a) +

√
Γmbin(t). (A.13)
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Figure A.1: Cascaded multi-phonon transitions in a phonon lasing resonator.

The output of the cavity is aout(t) = ain(t) −
√
κexa. The linearized Hamiltonian could be

achieved from this set of equations as

Hlin = −h̵ [∆ + βωm cos (ωt)] a†
a+ h̵ωmb

†
b− h̵g0 (α(t)a†

+ α
∗(t)a) (b+ b

†)+Hbath. (A.14)

The interaction part of this Hamiltonian reveals that similar to the case of no self-oscillation,

there are four processes associated with a
†
b, ab

†
, a

†
b
†
, and ab for each sideband. Figure A.1

depicts these processes for a typical self-oscillating system.

Figure A.1 indicates that each sideband will only interact with the adjacent sidebands.

In other words, there are no direct multiphonon transitions as there are no terms such as ab
2

or a
†
b
†2

in the Hamiltonian to cause these types of transitions. This is because these terms

are scaled with (g0/ωm)2, and for small optomechanical coupling rates, the probability of

these transitions is negligible.
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Appendix B

Laser phase noise

Semiconductor lasers are widely used in many applications, including telecommunications

[104, 105], sensing [106, 107], and spectroscopy. However, one limitation of semiconductor

lasers is their susceptibility to phase noise, which can affect their performance in certain

applications such as laser cooling in cavity optomechanics [41].

Phase noise in a laser refers to the fluctuations in the optical phase of the laser output,

which can cause instability and noise in the laser’s frequency and intensity. These fluctuations

can be caused by a variety of factors, including the laser’s temperature, current, and external

perturbations [108, 109].

One of the main contributors to phase noise in semiconductor lasers is the spontaneous

emission of photons within the laser cavity. This spontaneous emission can cause fluctuations

in the laser’s output, which can lead to phase noise. Another factor that can contribute

to phase noise is the presence of external perturbations, such as mechanical vibrations or

electromagnetic interference [108, 109]. These noise sources mainly determine the laser

linewidth, which is around a few hundred kHz for external-cavity diode lasers [41].

In 1983, Daino et al. found that in addition to slow acoustic fluctuations, high-frequency

(> 1 GHz) relaxation oscillations occur in diode lasers that result in sidebands in the optical

spectrum of the laser [110]. Figure B.1 shows the optical spectrum of a diode laser. This
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Figure B.1: Optical spectrum of the laser. The sidebands represent the phase noise due to
the relaxation oscillations.

reveals that there are sidebands with 2.95 GHz spacing which correspond to the frequency

of relaxation oscillations.

The lineshape deviates from a perfect coherent laser due to the intensity and phase

fluctuations. Although, the intensity noise plays a role in the laser’s lineshape
1
, the signal’s

attribute is mostly due to the phase noise.

B.1 Theory

As a first step, let us ignore the relaxation oscillations. Consider the laser input field a(t) =

α exp {−i (ωLt + ϕ(t))}. Here the ϕ(t) is a stochastic process which demonstrates the laser

phase noise. One can similarly define another important process ϕ̇(t), which is the frequency

1
For instance, Vahala et al. showed that the sideband asymmetry is due to the correlation between the

intensity noise and the phase noise [42].
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noise (note that it is the time derivative of the phase noise). The frequency noise ϕ̇(t) is a

white noise Gaussian WSS process with the correlation function ⟨ϕ̇(t)ϕ̇(s)⟩ = ΓLδ(t − s),

where ΓL is the laser linewidth. As a result, ϕ(t) is a Wiener process with correlation function

⟨ϕ(t)ϕ(s)⟩ = ΓLmin(s, t).

The optical spectrum can be derived as follows:

Saa(ω) = F{Raa(µ)}, Raa(µ) = ⟨a(t + µ)a∗(t)⟩ . (B.1)

Raa(µ) is the auto-correlation function of the field a(t) and it is calculated as follows:

Raa(µ) = ⟨∣α∣2 exp {−i (ωLt + ωLµ + ϕ(t + µ))} exp {+i (ωLt + ϕ(t))}⟩

= ∣α∣2e−iωLµ ⟨exp {−i∆ϕ(t)}⟩ . (B.2)

We have defined ∆ϕ(t) = ϕ(t + µ) − ϕ(t). Since ϕ(t) is Gaussian, ∆ϕ(t) is also Gaussian.

The quantity ⟨exp {−i∆ϕ(t)}⟩ is related to the characteristic function of a random variable,

and for a Gaussian variable with zero mean and variance σ∆ϕ is ⟨exp {−i∆ϕ(t)}⟩ = e
− 1

2
σ
2
∆ϕ .

Now the problem reduces to finding σ∆ϕ:

σ
2
∆ϕ = ⟨∆ϕ(t)∆ϕ(t)⟩ = ⟨ϕ(t + µ)ϕ(t + µ)⟩ + ⟨ϕ(t)ϕ(t)⟩ − 2 ⟨ϕ(t)ϕ(t + µ)⟩ , (B.3)

σ
2
∆ϕ = ΓL [(t + µ) + (t) − 2min(t + µ, t)] = ΓL∣µ∣. (B.4)

Finally Raa(µ) = ∣α∣2e−iωLµe
−ΓL

2
∣µ∣

and hence the spectrum becomes:

Saa(ω) ∝
1

(ω − ωL)2 + (ΓL

2
)2
. (B.5)

Equation B.5 indicates that the lineshape of the laser is Lorentzian with linewidth ΓL.

Now let us consider the relaxation oscillations as well. In order to do so, another term
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like β cos(ωRt) should be considered in the phase of the signal, where ωR is the relaxation

frequency and β is the modulation index (which in this case is very small). Therefore we

define the field aR(t) = a(t)eiβ cos(ωRt)
. This term will result in sideband generation with

spacing ωR.

B.2 Laser noise in Mach-Zehnder interferometer

Consider a Mach-Zehnedr interferometer whose one arm is slightly longer than the other

arm, and this causes a delay τ in one arm. Consider the input field from the laser as

ain(t) = α exp {−i (ωLt + ϕ(t)))}. Note that we have not considered the relaxation os-

cillations in this analysis; however, these oscillations will result in the harmonic gener-

ation of the original signal as seen in figure B.2b. The output field will therefore be

aout(t) = 1

2
(ain(t) + ain(t − τ)).

aout(t) =
1

2
αe

−iωLte
−iϕ(t) [1 + e

iωLτe
iϕ(t)−iϕ(t−τ)] . (B.6)

The detector is not sensitive to the phase of the signal, and the output signal V (t) is

proportional to the light’s power:

V (t) ∝ ∣aout(t)∣2 ∝
»»»»»1 + e

iωLτe
iϕ(t)−iϕ(t−τ)»»»»»

2
∝ 1 +R{eiωLτe

iϕ(t)−iϕ(t−τ)}. (B.7)

Similar to the previous section, we define ∆ϕ(t) = ϕ(t) − ϕ(t − τ). We found that ∆ϕ(t) is

a random Gaussian variable with mean zero and variance ΓLτ . As long as the delay is kept

small such that ΓLτ ≪ 1 (for semiconductor lasers, the length difference should be less than

10m), the variable ∆ϕ(t) will be small as well, and one can make use of the approximation

e
i∆ϕ(t)

≈ 1 + i∆ϕ(t):

V (t) ∝ 1 + cos(ωLτ) − sin(ωLτ)∆ϕ(t). (B.8)
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Figure B.2: a) Mach-Zehnder interferometer with unequal arms. b) PSD of the output of
the Mach-Zehnder interferometer.

The spectrum of the detected signal will be

SV V (f) ∝ (1 + cos(ωLτ))2δ(f) + sin
2(ωLτ)S∆ϕ∆ϕ(f), (B.9)

which requires the spectrum of ∆ϕ(t). After some lengthy calculations, one can find that

S∆ϕ∆ϕ(f) = τ
2
ΓL sinc

2(fτ), and finally it is found that

SV V (f) ∝ (1 + cos(ωLτ))2δ(f) + τ
2
ΓL sin

2(ωLτ) sinc
2(fτ). (B.10)

The inset of figure B.2b clearly demonstrates the behaviour of the sinc function.
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Appendix C

Permissions

Figure C.1: Permission for the figure 1.1.

75


