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Abstract: Multistate modelling is becoming increasingly popular due to the availability of richer longitu-
dinal health data. When the times at which the events characterising disease progression are known, the
modelling of the multistate process is greatly simplified as it can be broken down in a number of tradi-
tional survival models. We propose to flexibly model them through the existing general link-based additive
framework implemented in the R package GIJRM. The associated transition probabilities can then be ob-
tained through a simulation-based approach implemented in the R package mstate, which is appealing
due to its generality. The integration between the two is seamless and efficient since we model a transfor-
mation of the survival function, rather than the hazard function, as is commonly found. This is achieved
through the use of shape constrained P-splines which elegantly embed the monotonicity required for the
survival functions within the construction of the survival functions themselves. The proposed framework
allows for the inclusion of virtually any type of covariate effects, including time-dependent ones, while
imposing no restriction on the multistate process assumed. We exemplify the usage of this framework
through a case study on breast cancer patients.
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1 Introduction

When considering multistate processes for the modelling of life-history data, a particularly advanta-
geous setting is that in which transition times are known exactly, that is, the process is continuously
observed. In this case, in fact, the overall model likelihood can be decomposed into the product of
likelihoods referring to each specific transition only. Estimation then becomes equivalent to fitting
one standard survival model for each transition, considering only the subset of the data relevant to
that transition and including left-truncation times if the transition at hand can only happen once
another has occurred. This is referred to as separate estimation (Putter et al., 2007; Putter, 2011;
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Crowther and Lambert, 2017). An important practical implication of this is that existing tools can be
used to fit the transition-specific models. In particular, we propose to model each transition intensity
through the general link-based additive modelling framework by Eletti et al. (2022), implemented in
the R package GJRM (Marra and Radice, 2023). This modelling framework allows for the inclusion of
virtually any type of covariate effects (including time-dependent effects) using any type of smoother
(e.g., thin plate and cubic splines, and tensor products). Importantly, the use of shape constrained
P-splines (SCOPs) to model time effects permits to approach the multiple univariate survival mod-
els directly on the survival scale, rather than on the hazards scale (which would require expensive
numerical integration), while retaining a high degree of modelling flexibility. Specifically, SCOPs, de-
veloped by Pya and Wood (2015), extending the penalised B-splines discussed in the seminal work
of Eilers and Marx (1996), elegantly embed the monotonicity required for the survival functions
within the construction of the survival functions themselves, thus enabling very efficient parameter
estimation. The exploration of different forms of dependence on past history also becomes consid-
erably easier when the exact transition times are known. Indeed, assuming a semi-Markov process,
the most common relaxation considered in the literature, rather than a Markov process, the most
commonly made assumption, implies no further methodological difficulty.

When dealing with life-history data, one is often interested in assessing the effects of specific
risk-factors on the probability of transitioning between states. When the process is assumed to be
time-dependent and/or not-Markov, the computation of the transition probabilities is a nontrivial
task. Two main approaches can be identified in the literature to address this problem and are detailed
in Supplementary Material A. We adopt a simulation-based approach which allows one to compute
the transition probabilities by simulating a number of paths through the assumed multistate process
and counting the number of individuals experiencing each transition (Iacobelli and Carstensen,
2013; Touraine et al., 2016). This is appealing due its aptness at supporting any type of multistate
process and was proposed in Fiocco et al. (2008) and implemented, amongst others, in the R package
mstate (Putter et al., 2020), whose tools can be seamlessly integrated with the estimation approach
implemented in the R package GJRM.

The remainder of the article is organised as follows. In Section 2, the mathematical setting of
multistate survival processes is described, while Section 3 introduces the modelling framework. Sec-
tions 4, 5 and 6 discuss model estimation, the extraction of the transition probabilities and infer-
ence respectively. In Section 7, the Rotterdam Breast Cancer Study is introduced to exemplify the
proposed framework. Finally, Section 8 provides some concluding remarks alongside directions of
future work.

2 Mathematical setting of multistate survival processes

A continuous-time discrete-state stochastic process is a family of random variables {Z(¢),t € T}
with some indexing set given by 7 = [0, co) in the survival setting. The set of all values that the
processtakes S := {z: Z(t) = z,t € T} € {0, 1, 2, ...} is called the state space, where Z(¢) denotes the
state occupied at time 7. A p x 1 vector of left-continuous, time-dependent covariates is represented
by X(#). The history of the process, including the evolution of the covariates vector, is denoted by
Fr ={Zu), X(u),0 < u < t}. The transition intensities and the transition probabilities are then the
two key quantities associated with the process. The former represent the rates of transition to a state
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s for an individual who is currently in another state r, formally

. P(Zt+ At =s5|Zt)=rFr)
(s) )=
gt | Fro) iltrﬁ) A7 . T #ES,

with ¢"9(¢ | F,-) = 0 if r is an absorbing state and ¢""(¢ | Fr-) = — > ¢"9(¢ | F;-). The matrix
SFEr

with (r, 5) element given by ¢"*)(¢ | F;-) for every r, s € S is called transition intensity matrix or
generator matrix and we will denote it by Q(¢ | F;-). Similarly, we define the transition probability
matrix associated with the time interval [u, ¢] as the matrix with (r, 5) element given by P(Z(t) = s |
Z(u) =r, F,-) and denote this by P(u, ¢t | F,-). It is common to simplify the dependence on past
history and time by assuming either a Markov or a semi-Markov process. The former implies that
the probability of being in a given state at a given future time only depends on the current state
occupied (Ross et al., 1996). The latter assumes that the future state only depends on the history
of the process through the current state and through time since entry to the current state (Pyke,
1961; Yang and Nair, 2011). Exact knowledge of the transition times, as in our setting, allows for
both assumptions to be modelled in an equally straightforward manner. The time for intermediate
transitions will just need to be re-defined to be the time from entry to the current state.

3 Flexible transition-specific modelling

When a multistate process is continuously observed, each transition time can be viewed as a stan-
dalone time-to-event and can thus be modelled through traditional survival analysis. It is well know
that survival analysis can be undertaken on different scales. One such option is to model transfor-
mations of the survival function using generalised survival models, a class that was first introduced
by Younes and Lachin (1997). Subsequent works further developed this approach (e.g., Royston and
Parmar, 2002; Liu et al., 2018), each allowing for more modelling flexibility and ensuring the mono-
tonicity of the survival function in different ways. More recently Marra and Radice (2020) proposed
a generalised survival modelling framework which elegantly embeds the monotonicity of the sur-
vival function within the model design matrix by exploiting the properties of P-splines (see Section
3.2). We adopt this approach and thus describe it in the following in the context of transition-specific

modelling.
Let A={(r,s)|r #seS, q" () # 0} be the set of transitions and N represent the sam-
ple size. For observation i = 1,...,n and for (r,s) € A, let H"9(-) be the cumulative transition-

ti
specific hazard defined in terms of the transition intensity ¢"9(-) as H"(t; | x;; 879) = [ ¢ (u |
0

x;; B")du. Then we will have a conditional survival function denoted by SU9(z | x;; %) =
exp {—H(”)(ti | X;; /3(”))} € (0, 1), where x; represents a generic vector of patient characteristics that

has an associated regression coefficient vector 8% € R*, where w is the length of 8. A link-based
additive transition-specific survival model can then be written as

g [5( "t | Xi;ﬁ(”))} =0 (6, ;3 £(B")), (.1)
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Table 1 Functions implemented in GJRM. ® and ¢ are the cumulative distribution and density functions of a
univariate standard normal distribution. Note: the desired link-function can be specified by setting the
argument margin of the function gamlss() in GJRM to the values within brackets; for example, margin = ‘PH’.

Model Link g( S Inverse Link g~ '(n) = Gl(n) G'(n)
Prop. hazards or log-log (‘PH?) log {—log(S)} exp {—exp(n)} —G(n)exp(n)
Prop. odds or logit (‘P0”) —log Q%S) 1?;‘;((‘;(2),,) —G2(n) exp(—n)
Probit (‘probit’) (9 o(—n) —¢(—n)

where g:(0,1) > R is a monotone and twice continuously differentiable link function
with bounded derivatives, hence invertible, which determines the scale of the analysis,
171(.”)(1,-, x;; f(B7)) € R is an additive predictor which includes a baseline function of time and sev-
eral types of covariate effects and f(8"*) is a vector function of %) through which the mono-
tonicity required for the survival functions is imposed (see Section 3.2). Rearranging (3.1) yields
St | xi; B = G [n,(-”) (t, Xi: f(ﬁ(”)))}, where G is an inverse link function. Note that modelling
directly on the survival scale implies a considerable advantage in this context (see Section 5). The cu-
mulative transition-specific hazard is then H9(s; | x;; %) = — log[ { (”)(t,, x,,f(ﬁ(“)))}] and
the transition intensity function is defined as

i U TR A8

(rs) - grs)y —
q (ll | Xl'a ﬂ ) -
G a)] %

(3.2)

where G’ [nﬁ”’(zi, xi;f(ﬂ(”)))] =93G [nﬁ”’(zi, xi;f(ﬂ(”)))] /0" (4, x;:§(B7?)). Table 1 displays the
functions g, G and G’ available in the R package GJRM.

3.1 Additive predictor

Dropping the dependence on covariates and on parameters for the sake of simplicity, the additive
predictor is defined as

K09

" = (”’+Zs(”>(zk, i=1,....n, (3.3)

where ,3(”) € R is an overall intercept, z;; denotes the k™ sub-vector of the complete vector z;

and the K9 functions s,((”)(zk,-) denote effects which are chosen according to the type of covari-
ate(s) considered. These functions can be expressed as a linear combination of basis functions

bi(zi) = (b(”)(zk,) . ;:jk)(zk,))T and regression coefficients 15(”’(/355” =( f,f”)(ﬂ,(('f)), e,
f,f;}f)(ﬁ,(fji)))T e R%, that is s () = br(z) 1V (BYY) (e.g., Wood, 2017). We can then write
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(3.3) compactly as " = Zgr‘v)TW“)(ﬁ(”)), where ng) =(1,bi(z1))7, ..., bgen(zges;)NT and

i
£(8") = (87 A7V (BY )T, A (B )DT. Observe that 9" (6, x;:£79(8")) /01, s re-

quired in (3.2). This can be expressed as Zﬁm)(zi, x;) T{"9(B"9) where, depending on the type of
U (t4e,x0)—Z (t—e,x

spline basis employed, Z;(#, x;) = lim Z (e, ‘)st‘ (=8 X:)
E—>

0
difference method or analytically. Each 8" has an associated quadratic penalty A" g/ TD{* g
used in fitting, whose role is to enforce specific properties on the k”* function, such as smoothness,

with matrix D(k”) depending only on the choice of the basis functions. The smoothing parameter

can be calculated either by a finite-

>

)L(kf's) € [0, oo) controls the trade-off between fit and smoothness, and hence determines the shape
of the estimated smooth function. The overall penalty can be defined as /3<”>Ts<kﬂf_3) B9, where

SU2) = diag(0, 47D, . A% DY)

the k" penalty, and where A" = ()»(1”), e )»(I?f,.)”)T is the transition-specific overall smoothing
parameter vector. Depending on the types of covariate effects one wishes to model, several defini-
tions of basis functions are possible, for example, thin plate, cubic and P- regression splines, tensor
products, Markov random fields, random effects, Gaussian process smooths. These are handled
automatically within the software proposed. We refer the reader to Section 7 for practical examples
of the effects mentioned above and to Wood (2017) for the other available options.

,) is a block diagonal matrix where each block is given by

3.2 Imposing monotonicity by means of SCOPs

When modelling life-history data through multistate processes, one is often interested in making
statements in terms of the probabilities of transitioning from one state to another for specific com-
binations of risk-factors. In Section 5, it will be shown that we compute these by first extracting the
transition-specific cumulative hazards at various time points. Direct modelling of the survival func-
tions thus allows us to obtain the transition probabilities more cheaply, as we drop the intermediate
step of having to first integrate the transition intensities. The only caveat is that one needs to ensure
the survival functions are monotonically decreasing. Liu et al. (2018) propose to do this by means
of a penalty applied to the hazard function such that the associated coefficient is iteratively doubled
until the estimated hazard functions of all individuals are not negative. We employ a more theoreti-
cally founded approach. Indeed, in the proposed framework the properties of P-splines are exploited
to elegantly embed the monotonicity within the construction of the survival functions themselves,
while allowing for the flexible modelling of the time effect.

Let s"9(1;) = Z,J(:; f}(”)(ﬂg"”)b;’”(z,-), where the b(j”)(-) are B-spline basis functions of at least

second order built over the interval [a, b], based on equally spaced knots, and the f;rs)(ﬂ_/)(”)
are spline coefficients. Given the link functions listed in Table 1, we need s () > 0. Eilers and
Marx (1996) combined B-spline basis functions with discrete penalties in the basis coefficients
to produce the popular P-spline smoothers. Then Pya and Wood (2015) proposed shape con-
strained P-splines through a mildly nonlinear extension of these P-splines, with corresponding
novel discrete penalties, thus allowing the development of efficient and stable model estimation
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frameworks, such as the one proposed. In particular, a sufficient condition for s (#;) > 0 over
[a, b] is that f;”)(ﬂ;”)) > f;'fl)(ﬂyf)l),\v’j. Indeed, given a function n(x) =ao+ Y, @, B;(x, q),
where B;(x, ¢) are the bases for a (¢ + 1) order B-spline, m is the number of basis functions,
on(x)/ox = % Z;'-’:_ll (@ajq1 —aj)Bj(x,q —1) with h the distance between equally spaced
knots and so aj41 >a; implies 9n(x)/dx <0 since Bj(x,q —1)>0 (Leitenstorfer and
Tutz, 2007). Such condition can be imposed by defining the vector function f'¥(B"%)=

X
) {ﬁ{r‘v),exp(ﬁg‘v)),...,eXp(ﬁ(Jr(f.‘)} } , where X[i1,0]=0 if 1y <t and X[, 0]=1 if >0,

with ¢ and 1> denoting the row and column entries of ¥, and g7 = (,85”), ,Bgs), e ,B(Jrf))) is the
parameter vector to estimate. Crucially, in practice X is absorbed into the design matrix containing
the B-spline basis functions Z, hence allowing the constraint to be elegantly embedded within the
construction of the model design matrix itself. Finally, in a smoothing context, we are interested
in having a penalty on the smooth function to control its ‘wiggliness’. Eilers and Marx (1996)
introduced the notion of directly penalising the difference in the basis coefficients of a B-splines
basis, which is used with a relatively large number of basis functions to avoid underfitting. The
adaptation to the shape-constrained case is straightforward as it implies penalising the squared
differences between adjacent ,BEVS), starting from Y, using D™ = D"*TD* where D" is a
(JU9 —2) x J matrix made up of zeros except that DU [, 1 4+ 1] = =D"[1, . +2] =1 for
t=1,..., J" — 2. The penalty is zeroes when all the ,B(jrs) after ,BYS) are equal so that the f](”) (,BYS))
form a uniformly increasing sequence and s"*)(#;) is an increasing straight line. As a result, the
proposed penalty shares the basic feature of smoothing towards a straight line, but in a manner
that is computationally convenient for constrained smoothing.

4 Estimation

Since each likelihood contribution refers to a specific transition only and every transition is ex-
actly observed if and only if it occurs, it can be shown (see Supplementary Material B) that the
overall model log-likelihood can be broken down into the sum of the log-likelihoods associated
with each transition, which are functions only of the parameters relating to that transition, that is,
UO) =" en (BT, where 8 = {B" | (r, s) € A} is an overall model parameter vector. Re-
writing the log-likelihood in this way, rather than as a sum of contributions associated with each
observation time, is more convenient as it breaks down the estimation task into a number of tradi-
tional survival problems, one for each transition. It is precisely to each of these transition-specific
models that the framework developed in Eletti et al. (2022) is applied. Briefly, as the model allows
for a high degree of flexibility, to prevent over-fitting, the log-likelihood is augmented with a penalty
term €57 (B79)) = 0BT — ! ﬂ("‘)TS;ff) B where S(;(?) is an overall penalty term defined in Sec-
tion 3. The estimation framework then combines a carefully structured trust region algorithm which
uses the analytical expressions of the gradient and Hessian of the log-likelihood and properly chosen
starting values with a general automatic multiple smoothing parameter selection algorithm based
on an approximate AIC measure.
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5 Prediction on the transition probabilities scale

While estimation can be carried out entirely by-passing the computation of the transition probabil-
ities, one is often interested in making statements in terms of the probability of transitioning from
one state to another given a specific combination of risk-factors. We choose the simulation-based
approach proposed in Fiocco et al. (2008), which we briefly describe in the following. Let r be the
starting state, entered at time . = 0, and #y,x the maximum follow-up time. Then

e Let 5 be the set of states that can be reached from state r. If 55 is empty, stop. Otherwise, for
s € B,let H"9)(¢) be the cumulative transition-specific hazard function for transition » — s and

H")(t) = Y H")(¢) refer to the event of leaving state r.
seB

¢ Sample ¢* from H")(¢) — H")(t,). This refers to the conditional distribution of leaving state r
given that the process is known to be in state r until time #. thus ensuring that the sampled time
> t.

o Ift* > 1,4, select the next state s with probability d H"*)(¢*)/d H")(¢*), which provides a weight
for the specific transition r — s out of state r for each s € B at the given time ¢*, and set the
new starting points for the next iteration, 7 = s and 7, = #*. Otherwise, stop: a full path through
the process was obtained.

This is repeated to obtain M paths through the multistate model and to compute the transition
probabilities by counting the number of paths for which each event occurred. This approach is im-
plemented in the function mssample () of the R package mstate and is straightforward to use given
the estimated transition-specific cumulative hazards for both Markov and semi-Markov models.

6 Inference

One view of the smoothing process is that the penalty employed during fitting imposes the belief that
the true function is more likely to be smooth than wiggly. This belief can be expressed in a Bayesian

manner through the form of a prior distribution on g%, that is, S o< exp { — ﬁ(r“)TS(;(f?,ﬁ s) /2}.

This leads to the Bayesian large sample approximation B ~ N (E(”),Vﬁu.\-)), where
Ve = —Hp(ﬁ(”))‘l; using Vge gives close to across-the-function frequentist coverage prob-

abilities because it accounts for both sampling variability and smoothing bias, a feature that
is particularly relevant at finite sample sizes (Wood et al., 2016). Following Pya and Wood

(2015), we then consider the Taylor series expansion of f*)(87¥) around i("s)(ﬁ(”)). This gives

rs rs rs), 730 : rs rs %(s) rs . rs rs
(BT — £7(B") ~ diag(E") (8 — B"”), where ECV[k;]=1 if f7(B{") =By, and
exp(ﬁl(cr,»:)) otherwise, showing that f"(8"*) — i‘”)(B(”)) is approximately a linear function of
B9, Combining this with the result above we have that f"9(8") ~ N/ (im)(ﬁ(”)

Vi gy = diag(E("S))Vﬁ(m diag(E"?), since linear functions of normally distributed random vari-
ables follow normal distributions. Confidence intervals for linear functions of the model coefficient

), Vieog09y) Where
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can then be obtained using this result. P-values for the smooth components in the model are
derived by adapting the result discussed in Wood (2017) and using Vg as covariance matrix.
For nonlinear functions of the model coefficients, for example, the transition-specific cumulative
hazard functions, instead, the intervals can be conveniently obtained by posterior simulations,
hence avoiding computationally expensive parametric bootstrap or frequentist approximations, for
mstance.

7 Primary breast cancer modelling case study

To illustrate what the proposed approach adds compared to the existing literature, we consider the
case study described in Crowther and Lambert (2017) which is based on data from 2892 patients
with primary breast cancer for which the time to relapse and/or the time to death is known. See,
for example, Sauerbrei et al. (2007) for further details on the Rotterdam Breast Cancer Study from
which the data originated. The code used to produce this analysis can be found in the public reposi-
tory https://github.com/AlessiaEletti/ContinObsMultistateProcesses. All patients begin in the
initial post-surgery state, 1518 patients experience relapse, 195 die without relapse and 1075 die
after experiencing relapse. A Markov illness-death model (IDM, see Figure 5 in Supplementary
Material C) will thus be used to model the data. As an aside, note that an attempt assuming semi-
Markovianity was also made but this was not supported by the data according to the AIC values
found for the fitted models. As there are three transitions in the assumed IDM, three survival models
will be fitted. For transitions which can occur only given that another transition has already taken
place, that is, the transition 2 — 3 in this case, one must account for the fact that the patient is at risk
only after entering the new starting state, that is, state 2. As long as this is done, each transition can be
treated as a separate survival problem. The time at which the individual entered state 2 thus becomes
the left-truncation time for the new transition 2 — 3. To clarify how the separate estimations are
carried out, recall that longitudinal survival data are characterised by multiple observations through
time of at least one quantity of interest for the same individual. Typically the data are formatted in
the so-called stacked (or long) form, that is, each row represents a single time point per subject. In
particular, each subject will have at least v rows, where v is the number of possible transitions exiting
the initial state. Here, v = 2 as there are two ways of exiting state 1, that is, going in state 2 or 3. A
start and a stop time will then indicate, respectively, the first time after which the patient becomes
at risk of the given transition and the time at which the transition itself occurred. The start time for
transitions exiting the first state is 0, as is usually the case here. If the patient transitions to an in-
termediate state, u rows will be added, where u is the number of transitions exiting the intermediate
transition state reached. Here, u = 1, as the only possible transition out of state 2 is 2 — 3, where 3
is an absorbing state. When estimating ¢'?(-), all of the rows relating to this transition are included
in the estimation. Since every patient will at least have one row for each transition exiting the first
state, this implies that the entire population is included. The same is true for ¢'3(.), for which the
rows relating to the 1 — 3 transition will be used for estimation. The two resulting separate datasets
can then be treated as traditional survival data with uncensored and right-censored observations
and with the event of interest given by the transition to the new state, that is, state 2 for the former
and state 3 for the latter. When estimating ¢>3(-), only individuals who have transitioned to state 2
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at some point are included in the estimation. The data are then treated as traditional survival data
with left-truncated uncensored and left-truncated right-censored observations and where the event
of interest is the transition to the absorbing state 3. We refer the reader to Supplementary Material
D for further details on the format of the data in this setting.

The dataset contains information on the age of the patient at primary surgery (in years), tumour
size (divided into 3 classes: < 20, 20 — 50 and > 50 mm), number of positive nodes, progesterone
levels (in fmol/L) and whether or not the patient was on hormonal therapy. These are all included
as covariates. We then include a time-dependent effect for the progesterone level, as this has been
found to be relevant in the reference paper, and include age, the progesterone level and the number of
positive nodes nonlinearly, as supported by existing literature. Importantly, our chosen framework
allows for the exploration of these effects in a more general and flexible manner than previously
possible in the literature thanks to the use of splines. In contrast, for instance, Sauerbrei and Royston
(1999) modelled the number of positive nodes nonlinearly by using fractional polynomials with the
degrees set heuristically. Similarly, in Crowther and Lambert (2017) the time-dependant effect is
captured by a single interaction coefficient between time and the progesterone level. In particular,
for (r, s) € {(1, 2), (1, 3), (2, 3)}, we specify the transition-specific models

1, x5 8B)) = BYY + 55 (log(t) + B Tise, 2050 + BY Tsize ~50 + B hormon;

+ SYS) (age;) + sgs) (nodes;) + sgrs) (pr;) + sf‘r‘v)(log(ti), pr;),

(rs)
0

where s, ' (log(t;)) is a monotonic P-spline of the logarithm of time which ensures the monotonic-

ity of the survival function associated with this transition, as explained in Section 3.2; s%r‘v)(age,-),
sV (nodes;) and s\ (pr;) are thin-plate splines, while s{’(log(t;), pr;) is a pure smooth interaction
between time and the progesterone level, that is, a time-dependent effect. In regard to the penalty
associated with a nonlinear term, for example, s1(age;), this takes the form of the quadratic penalty
defined above with Dy, given by the integrated square second derivative of the basis functions, that
is, [ di(ze)di(zk) Tdz with the j{" element of di(zx) defined as 8%by;,(z4)/0z;. The penalty associated
with the time-dependent effect is, instead, more complex as it entails combining two penalties (see
Wood, 2017, Chapter 5). Finally, note that for parametric effects the spline representation simpli-
fies to s*)(hormon;) = Y hormon,. No penalty is typically assigned to parametric effects, hence
the associated quadratic penalty is D = 0. Note that in cases such as those in which the categorical
variable has many levels with some with few observations, it may be advisable to set the penalty as
the identity matrix. In this way, a ridge penalty is imposed and it may help avoid that the parameters
associated with the more sparse categories are weakly or nonidentified.

The estimated covariate effects for each transition are reported in Table 2. For the first transi-
tion, for instance, they are all significant and in line with our expectations: the larger the size of the
tumor the higher the risk of experiencing relapse, while hormonal therapy has a beneficial effect. In
Figure 1 we report the estimated transition intensities with their 95% confidence intervals as func-
tions of time for a 54 year old patient with tumour size > 50 mm, 10 positive nodes, progesterone
level of 3 and under hormonal therapy. We find, for instance, that the risk of experiencing relapse for
this profile increases for approximately 2.5 years after surgery, then it decreases and plateaus over
time. In Figure 2 we report the plots of the smooths and of the tensor interaction for the transition
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Figure 1 Fitted transition intensities and 95% confidence intervals (Cls) for a 54 year old patient under
hormonal therapy with tumour size > 50 mm, 10 nodes and progesterone level of 3, over 20 years. The vertical
dashed line marks the smallest observed time: the transition intensities estimated at smaller times are
extrapolations, thus explaining the wide Cls in the first section of the third plot. The width of the Cls in the
final portion of the middle plot can be explained by the scarcity of observations in the final times, as shown by
the rug plot. The width of the confidence intervals should also be related to the different range of values in

each plot.
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progesterone level (bottom right) for the transition health — relapse.
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Table 2 Model estimates, standard errors and p-values for the three transitions.

Estimate Std. Error Pr(> |2])

Transition 1 — 2 (Intercept) —10.630 1.198 <le—4
size20-50 0.284 0.059 <le—4

size>50 0.477 0.089 <le—4

hormon —-0.318 0.085 2e—4

Transition 1 — 3 (Intercept) —12.543 2.585 <1le—4
size20-50 0.153 0.162 0.344

size>50 0.390 0.236 0.098

hormon -0.135 0.236 0.567

Transition 2 — 3 (Intercept) —-2.915 1.023 0.004
size20-50 0.139 0.072 0.053

size>50 0.259 0.101 0.010

hormon —0.015 0.098 0.881

health — relapse. These show that the data particularly support nonlinear effects for the age and
the number of positive nodes. For instance, the latter exhibits an increasing trend up to about 12
nodes, followed by a plateau. The time-dependence of the progesterone level effect is also clear from
the surface representing the smooth interaction, with low levels of progesterone associated with a de-
creasing risk of experiencing relapse over time and, conversely, high levels of progesterone associated
with an increasing trend for the risk of experiencing relapse over time. Any additional complexity
not supported by the data is then suppressed automatically through the estimation of the smooth-
ing parameter, rather than requiring the user to make restrictive and potentially arbitrary choices
a priori. This can be seen in the plots of the smooths of the remaining two transitions, reported in
Figures 6 and 7 of Supplementary Material C. The plot of the smooth of age for the health —
death transition, for instance, shows that the data actually supported a linear effect for this
term.

As mentioned above, interest usually lies in making statements in terms of the probabilities of
transitioning between states thus, in Figure 3, we report stacked transition probability plots. Repre-
senting the probabilities in this stacked manner is a common way of quickly providing an overview
of how risk evolves over time, however the uncertainty of the estimates cannot be easily portrayed.
For this reason, in Figure 4, we report the predicted probabilities with their 95% confidence intervals
for the individual corresponding to the top-left panel, that is, a 54 year old patient under hormonal
therapy, progesterone level of 3, 20 positive nodes and tumour size < 20 mm. Note that the com-
putation of the transition probabilities already entails a simulation, thus the process of obtaining
confidence intervals for it will result in two nested simulations. The computational burden of this
is not prohibitively high, however. Here, they are obtained by using 100 simulated cumulative haz-
ards for each of the three transitions, over 100 distinct time points, and M = 10 000 simulated paths
through the process, which is a larger number of paths than typically needed. This required approx-
imately 37 minutes using a laptop with Windows 10 (2.20 GHz processor, 16 GB RAM, 64-bit).
Details on this, on how the model fitting is carried out and how the plots reported in this section
were obtained can be found in Supplementary Material C.
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considered in a 54 year old patient under hormonal therapy with progesterone level of 3.
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8 Discussion

In this work we show how one can use existing tools to flexibly model multistate survival pro-
cesses relating to continuously observed life-history data. In particular, we consider the survival
estimation framework described in Eletti et al. (2022) and implemented in the R package GJRM
which allows us to model virtually any type of covariate effect, including time-dependent ones. Di-
rect modelling of the survival functions implies a considerable gain in efficiency when it comes to
computing the transition probabilities of interest, which in turn are obtained through a simulation-
based approach able to support any type of multistate process. Efficient modelling on the survival
scale is achieved through shape constrained P-splines, developed by Pya and Wood (2015), build-
ing upon the work done in Eilers and Marx (1996). We exemplify our approach on data from the
Rotterdam Breast Cancer Study and provide the code used for the analysis in the public repository
https://github.com/AlessiaEletti/ContinObsMultistateProcesses.

With regard to directions of future work, we are interested in integrating the computation of
the transition probabilities and the extraction of its confidence intervals directly within the GJRM
package, so as to minimise the amount of user-written code needed and thus further simplify the
use of these models by the practitioner. Similarly, for the visualisation tools available for the esti-
mated transition probabilities. As the Markov assumption is quite common, we are also interested
in implementing the method based on the numerical solution of the differential equations tying the
transition probabilities to the intensities as well as to implement our own simulation-based approach
within the GJRM package, so that the user has all necessary instruments in the same place and the
need for user-written code is reduced to the minimum.

Acknowledgements

In October 2009, the last two authors attended, as PhD students, the short course ‘Splines, Knots,
and Penalties: The Craft of Smoothing’, in Galway delivered by Paul H. C. Eilers and Brian D.
Marx. Although at that time they had just started learning about splines, the words used by Brian
D. Marx to explain P-splines inspired them and always echoed and tormented their minds until they
could appreciate their simplicity and versatility in the context of survival analysis.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship and/or
publication of this article.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or
publication of this article: AE was supported by the UCL Departmental Teaching Assistantship
Scholarship. GM and RR were supported by the EPSRC grant EP/T033061/1.

Statistical Modelling xxxx; xx(x): 1-15



14 Alessia Eletti et al.

Supplementary materials

Supplementary materials for this article are available online.

References

Clements M, Liu XR and Christoffersen B
(2021) rstpm2: Smooth survival models,
including generalized survival models. URL
https://cran.r-project.org/package=rstpm2.
R package version 1.5.1.

Crowther MJ and Lambert P (2016) MUL-
TISTATE: Stata module to perform
multistate  survival analysis.  Statistical
Software Components, Boston College
Department of Economics. URL https://
ideas.repec.org/c/boc/bocode/s458207.html.

Crowther MJ and Lambert PC (2017) Paramet-
ric multistate survival models: flexible mod-
elling allowing transition-specific distribu-
tions with application to estimating clinically
useful measures of effect differences. Statis-
tics in Medicine, 36, 4719-4742.

DeWreede LC, Fiocco M and Putter H (2010) The
mstate package for estimation and prediction
in non-and semi-parametric multi-state and
competing risks models. Computer Meth-
ods and Programs in Biomedicine, 99, 261—
274.

Eilers PH and Marx BD (1996) Flexible smoothing
with b-splines and penalties. Statistical Sci-
ence, 11, 89-121.

Eletti A, Marra G, Quaresma M, Radice R and
Rubio FJ (2022) A unifying framework for
flexible excess hazard modelling with appli-
cations in cancer epidemiology. Journal of the
Royal Statistical Society: Series C ( Applied
Statistics). URL https://rss.onlinelibrary.
wiley.com/doi/abs/10.1111/rssc.12566.

Fauvernier M, Roche L and Remontet L (2020)
survPen: Multidimensional penalized splines
for survival and net survival models. URL
https://cran.r-project.org/package=survPen.
R package version 1.5.1.

Fiocco M, Putter H and van Houwelingen HC
(2008) Reduced-rank proportional hazards
regression and simulation-based prediction

Statistical Modelling xxxx; xx(x): 1-15

for multi-state models. Statistics in Medicine,
27, 4340-4358.

Tacobelli S and Carstensen B (2013) Multiple
time scales in multi-state models. Statistics in
Medicine, 32, 5315-5327.

Jackson C (2021) flexsurv: Flexible parametric
survival and multi-state models. URL
https://cran.r-project.org/package=flexsurv.
R package version 2.0.

Leitenstorfer F and Tutz G (2007) Generalized
monotonic regression based on B-splines
with an application to air pollution data. Bio-
statistics, 8, 654-673.

Liu XR, Pawitan Y and Clements M (2018) Para-
metric and penalized generalized survival
models. Statistical Methods in Medical Re-
search, 27, 1531-1546.

Marra G and Radice R (2020) Copula link-based
additive models for right-censored event time
data. Journal of the American Statistical As-
sociation, 115, 886-895.

Marra G and Radice R (2023) GJRM: Gen-
eralised joint regression modelling. URL
https://CRAN.R-project.org/package=
GJRM. R package version 0.2-6.4

Putter H (2011) Tutorial in biostatistics: Compet-
ing risks and multi-state models analyses us-
ing the mstate package. Companion file for
the mstate package.

Putter H, Fiocco M and Geskus RB (2007) Tutorial
in biostatistics: competing risks and multi-
state models. Statistics in Medicine, 26, 2389
2430.

Putter H, de Wreede LC and Fiocco M (2020)
mstate: Data preparation, estimation and
prediction in multi-state models. URL
https://cran.r-project.org/package=mstate.
R package version 0.3.1.

Pya N and Wood S (2015) Shape constrained ad-
ditive models. Statistics and Computing, 25,
543-559.



A spline-based framework for multistate survival modelling 15

Pyke R (1961) Markov renewal processes: Defi-
nitions and preliminary properties. The An-
nals of Mathematical Statistics, 32, 1231—
1242.

Ross SM, Kelly JJ, Sullivan RJ, Perry WJ, Mer-
cer D, Davis RM, Washburn TD, Sager EV,
Boyce JB and Bristow VL (1996) Stochastic
processes, volume 2. Wiley New York.

Royston P and Parmar MK (2002) Flexible
parametric ~ proportional-hazards  and
proportional-odds models for censored
survival data, with application to prognostic
modelling and estimation of treatment
effects. Statistics in Medicine, 21, 2175-
2197.

Sauerbrei W and Royston P (1999) Building mul-
tivariable prognostic and diagnostic models:
transformation of the predictors by using
fractional polynomials. Journal of the Royal
Statistical Society: Series A (Statistics in So-
ciety), 162, 71-94.

Sauerbrei W, Royston P and Look M (2007) A new
proposal for multivariable modelling of time-
varying effects in survival data based on frac-

tional polynomial time transformation. Bio-
metrical Journal, 49, 453-473.

Titman AC (2011) Flexible nonhomogeneous
Markov models for panel observed data.
Biometrics, 67, 780-787.

Touraine C, Helmer C and Joly P (2016) Predictions
in an illness-death model. Statistical Methods
in Medical Research, 25, 1452-1470.

Wood SN (2017) Generalized additive models: An
introduction with R, 2nd ed. Chapman &
Hall/CRC, London.

Wood SN, Pya N and Séfken B (2016) Smooth-
ing parameter and model selection for gen-
eral smooth models. Journal of the American
Statistical Association, 111, 1548-1563.

Yang Y and Nair VN (2011) Parametric inference
for time-to-failure in multi-state semimarkov
models: A comparison of marginal and pro-
cess approaches. Canadian Journal of Statis-
tics, 39, 537-555.

Younes N and Lachin J (1997) Link-based mod-
els for survival data with interval and con-
tinuous time censoring. Biometrics, 53, 1199—
1211.

Statistical Modelling xxxx; xx(x): 1-15



