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SOLVING ELLIPTIC PROBLEMS WITH SINGULAR SOURCES
USING SINGULARITY SPLITTING DEEP RITZ METHOD*
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Abstract. In this work, we develop an efficient solver based on neural networks for second-
order elliptic equations with variable coefficients and a singular source. This class of problems covers
general point sources, line sources, and the combination of point-line sources and has a broad range
of practical applications. The proposed approach is based on decomposing the true solution into a
singular part that is known analytically using the fundamental solution of the Laplace equation and
a regular part that satisfies a suitable modified elliptic PDE with a smoother source and then solving
for the regular part using the deep Ritz method. A path-following strategy is suggested to select the
penalty parameter for enforcing the Dirichlet boundary condition. Extensive numerical experiments
in two- and multi-dimensional spaces with point sources, line sources, or their combinations are
presented to illustrate the efficiency of the proposed approach, and a comparative study with several
existing approaches based on neural networks is also given, which shows clearly its competitiveness
for the specific class of problems. In addition, we briefly discuss the error analysis of the approach.

Key words. variable coefficient Poisson equation, singular source, deep Ritz method, penalty
method, neural networks
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1. Introduction. Partial differential equations (PDEs) represent a very impor-
tant class of mathematical models that plays a vital role in physics, science, and engi-
neering. Traditional numerical methods for solving PDEs include the finite difference
method (FDM), the finite element method (FEM), the finite volume method (FVM),
the boundary element method (BEM), etc. These methods have been maturely devel-
oped over the past few decades, and efficient implementations and rigorous theoretical
guarantees, e.g., error estimates, are also readily available. In recent years, neural net-
works (NNs) have emerged as a promising way to solve PDEs [43], motivated by their
great successes in computer vision, speech recognition, natural language processing,
etc. A large number of neural PDE solvers have been developed, including physics
informed neural networks (PINNs) [55], the deep Ritz method (DRM) [71], the deep
Galerkin method (DGM) [61], the weak adversarial network (WAN) [72], and the
deep least-squares method [10], to name just a few. Compared with more traditional
methods, deep learning solvers have demonstrated very encouraging results in several
direct and inverse problems [39, 21, 38, 14].
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A2044 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

Note that in all these approaches, one uses NNs as ansatz functions to approxi-
mate the solutions to the PDEs. According to the existing approximation theory of
NNs [18], the convergence rates of these methods depend heavily on the regularity of
the solution (as well as the stability of the mathematical formulation). A direct appli-
cation of these methods might be ineffective or even fail spectacularly when dealing
with challenging scenarios [68, 42], e.g., convection-dominated problems, transport
problems, high-frequency wave propagation, problems with geometric singularities
(cracks/corner singularity), and singular sources. Note that all these settings lead to
either strong directional behavior or weak solution singularities or highly oscillatory
behavior, which are challenging for physics-agnostic NNs to capture effectively.

1.1. Mathematical formulation. This work deals with one challenging class of
boundary value problems, i.e., second-order elliptic problems of divergence form with
singular sources. Let \Omega be an open bounded domain in \BbbR d (d \geq 2) with a smooth
boundary \partial \Omega . Without loss of generality, consider the following variable coefficient
second-order elliptic equation in the divergence form with a singular source:

 - \nabla \cdot (\kappa \nabla u) = S + g in \Omega ,(1.1)

where the scalar-valued diffusion coefficient \kappa \in C2(\Omega ) satisfies uniform ellipticity, i.e.,
\kappa (x)\geq m, for some fixed constant m> 0, and S and g denote a singular and smooth
source, respectively. Here the singular source S can be expressed in terms of the Dirac
delta function and covers both point and line sources. Specifically, let \delta (x) denote the
Dirac delta function concentrated at the origin, defined in the sense of distribution,
i.e., \langle \delta , v\rangle = v(0) for all v \in C(\Omega ). Likewise, with \Lambda being a line/line segment in the
domain \Omega , let \delta \Lambda be a Dirac measure concentrated on \Lambda , such that \langle \delta \Lambda , v\rangle =

\int 
\Lambda 
v ds

for all v \in C(\Omega ). Then the singular source S can take the form

S(x) =

Np\sum 
i=1

ci\delta (x - xi) +

NL\sum 
j=1

fj\delta \Lambda j (x),

where \{ (ci,xi) : ci \in \BbbR ,xi \in \Omega \} Np

i=1 denotes a collection of Np Dirac point sources in
the domain, concentrated at xi with a strength ci, and \{ (fj ,\Lambda j) : fj \in C(\Omega ), \Lambda j \subset 
\Omega \} NL

j=1denotes a collection of NL line sources, supported on the line segment \Lambda j with
the corresponding density fj . The proposed approach can be adapted to surface
sources, etc. Singular sources supported on high-dimensional sets induce a weaker
singularity in the solution than point sources.

This class of problems has a broad range of practical applications. For example,
a point source can describe a pulse exciting the electric field in electromagnetic simu-
lation [24, 63] or volume injection in an acoustic wave equation [50]. In practice, the
source can concentrate not only on points but also on lines, curves, or surfaces, and
the latter arises naturally in biological modeling. For example, the works [30, 57, 49]
discuss blood flow in the vascularized tissue of the brain, and the works [12, 17] stud-
ied drug delivery through microcirculation and tissue perfusion. In these applications,
the resulting mathematical models are PDEs with line source(s). Hence, it is also of
great interest to develop efficient numerical solvers for these problems.

Elliptic problems with point sources have been extensively studied in the con-
text of classical numerical PDE solvers, and there are several different approaches
to handle the singularity. In some situations, traditional solvers, mostly FEMs, can
be applied directly but require careful interpretation, and several (weighted) L2(\Omega )
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SINGULARITY SPLITTING DEEP RITZ METHOD A2045

error estimates have been obtained (see, e.g., [7, 5, 16, 41]). Due to the limited so-
lution regularity, there is no error estimate in the H1 norm. Alternatively, one may
regularize the Dirac function with a smooth function (e.g., Gaussians or Taylor ex-
pansion technique) or approximate the solution in weighted Sobolev spaces (with a
weight vanishing at the singularity) so that the singularity of the solution plays a less
prominent role (see [34, 22, 45] and references therein). Once the source singularity
is regularized, the problem can then be solved using any stand-alone techniques, e.g.,
FDM or FEM. There are also several alternative approaches taking into account the
problem structures, e.g., mesh grading [5], generalized FEM [26], and singularity re-
construction [11]. In particular, these approaches build the analytical insights into the
construction of the numerical procedures directly in order to achieve better compu-
tational efficiency. So far most studies are concerned with point sources. The case of
line sources is far less studied. The few exceptions include D'Angelo and Quarteroni
(see [17, 16]), which gave the existence of a solution to the variational formulation (in
weighted Sobolev spaces) and studied its finite element approximation, and Gjerde
et al. (see [28, 27]), where a novel singularity splitting technique was suggested and
investigated within the context of the Galerkin and mixed formulations. In particular,
the singularity splitting technique [28, 27] enjoys improved approximation properties:
it yields optimal convergence rates for lowest-order elements and removes the pollution
around the line source [28].

NN-based solvers have not been extensively studied for this class of problems. Due
to the low regularity of the source term, the standard PINN or deep Ritz formulations
cannot be applied directly. Indeed, the corresponding mathematical formulations are
not always well-defined, and this is also clearly manifested in the numerical experi-
ments. See section 2 for detailed discussions on this aspect of the challenges. It is
worth pointing out that due to the persistent optimization error, none of existing
neural PDE solvers can exhibit a steady and consistent convergence rate in practical
computation, which is in stark contrast to classical PDE solvers, e.g., FEM and FDM.
See the recent works [2, 15] for detailed discussions on this important issue.

1.2. The contributions of this work and organization. In this work, we
propose a modification of the DRM [71], called singularity splitting DRM (SSDRM),
that can be applied effectively for the numerical solution of second-order elliptic PDEs
with singular sources. Our approach is inspired by [28, 53]: we split the solution into
a singular and a regular part and then approximate only the regular part using NNs.
The singular part is explicitly expressed in terms of the fundamental solution \Phi to the
Laplace equation, and the regular part is smoother and satisfies a modified elliptic
PDE that can be effectively solved using the DRM. Due to the improved regularity
of the regular part, NNs are effective for the numerical approximation, as indicated
by the approximation theory of NNs [70, 32]. The overall approach is as easy to
implement as the original DRM, but significantly improves the accuracy of the ap-
proximation by carefully exploiting the known analytic structure of the underlying
exact solution, which follows closely the current paradigm of building physical in-
sights into machine learning techniques for problems in computational science and
engineering.

The extensive numerical experiments in two- and multi-dimensions in section 4
show clearly the efficiency and accuracy of the proposed SSDRM; especially, extracting
the solution singularity can greatly enhance the approximation accuracy. The com-
parative study shows that it significantly outperforms existing NN-based approaches
in terms of accuracy. In addition, we also briefly discuss the associated theoretical
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A2046 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

issues of the approach, which provide guidelines on the choice of the penalty param-
eter and the NN architecture. More precisely, our contributions can be summarized
as follows:

(i) We develop a novel singularity splitting based technique for problem (1.1) to
enable the use of DRM.

(ii) We provide relevant theoretical underpinning of SSDRM, including both
penalization and generalization errors.

(iii) We carry out extensive numerical examples in two- and multi-dimensions,
with one or multiple singularities to illustrate the flexibility and accuracy of
SSDRM.

(iv) We conduct a comparative study with several state-of-the-art NN-based PDE
solvers.

The rest of the paper is organized as follows. In section 2, we review existing NN-
based PDE solvers and discuss challenges associated with their applications to problem
(1.1). In section 3, we propose the numerical method, based on the idea of singularity
splitting. Then in section 4 we present extensive numerical experiments to illustrate
the accuracy and efficiency of the approach. Finally, we discuss relevant theoretical
issues in section 5, and conclude the paper with a short conclusion. Throughout, we
denote by (\cdot , \cdot ) and (\cdot , \cdot )L2(\partial \Omega ) the L

2(\Omega ) and L2(\partial \Omega ) inner products, respectively. The
notation | \cdot | and \cdot denote, respectively, the usual Euclidean norm and inner product
on \BbbR d.

2. Challenges for NN-based solvers. The presence of a singular source in
the model (1.1) poses big challenges to its efficient numerical approximation. This
is particularly severe for NN-based approaches, which tend to approximate smooth
solutions well due to their implicit structural bias [62, 67, 68] but not weakly singular
solutions as arising in problem (1.1). Below we illustrate the inherent computational
challenges for three existing NN solvers, i.e., PINN, DRM, and WAN, for solving a
model version of problem (1.1) with a Dirichlet boundary condition\Biggl\{ 

 - \nabla \cdot (\kappa \nabla u) = \delta (x - x0) + g in \Omega ,

u= h on \partial \Omega 
(2.1)

(i.e., with a point source \delta (x  - x0), x0 \in \Omega ) in their continuous formulations. In
practice, all these solvers approximate the PDE solution u directly using NNs, which
are then discretized properly.

A physics informed neural network (PINN) is based on PDE residual minimiza-
tion. When applying PINN to solve problem (2.1) directly, the loss function L(u) is
commonly taken to be

min
u\in H1(\Omega )

L(u) =Lr(u) + \lambda Lb(u),(2.2)

where \lambda > 0 is a penalty parameter to approximately enforce the Dirichlet boundary
condition in (2.1), and the physical loss Lr(u) and boundary loss Lb(u) are given,
respectively, by

Lr(u) = \|  - \nabla \cdot (\kappa \nabla u) - \delta (x - x0) - g\| 2L2(\Omega ) and Lb(u) = \| u - h\| 2L2(\partial \Omega ).

Note that the point source \delta (x  - x0) does not belong to the space L2(\Omega ) but only
the space of Radon measures, and thus the standard PINN loss Lr(u) with the L2(\Omega )
norm of the PDE residual is not well defined. Hence, one cannot apply PINN di-
rectly to problem (2.1), and this is also confirmed by numerical experiments. Indeed,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

1/
23

 to
 1

93
.6

0.
23

8.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



SINGULARITY SPLITTING DEEP RITZ METHOD A2047

when applying PINN loss to solve (2.1) naively, there are pronounced errors near the
singularity [56, 50]. This calls for proper modification of the original PINN in order
to obtain good approximations, e.g., self-adaptive PINN described below. There are
alternative formulations of PINNs, in the spirit of the weak formulation for PDEs,
e.g., variational PINNs [40], that can partly alleviate the regularity requirement on
the solution.

Next, we describe the deep Ritz method (DRM) [71], which is based on the Ritz
formulation. For problem (2.1), it is given by

min
u\in H1(\Omega )

1
2 (\kappa \nabla u,\nabla u) - u(x0) +

\lambda 
2 \| u - h\| 2L2(\partial \Omega ).(2.3)

Here, using the definition of \delta (x - x0), we eliminate the singularity in the source
formally. By the Sobolev embedding theorem [1], the loss is well-posed in the one-
dimensional case, but it is ill-defined when d\geq 2, since the point evaluation u(x0) is
not defined for a function u \in H1(\Omega ) when d \geq 2. Numerically, it does not perform
well for problem (1.1), which is also confirmed by the numerical experiments below.

The weak adversarial network (WAN) [72] is based on the Galerkin weak formu-
lation. For problem (2.1), it is derived as follows. Let v \in H1

0 (\Omega ) be any test function.
Then, by integration by parts,\int 

\Omega 

(\kappa \nabla u \cdot \nabla v - \delta (x - x0)v - gv)dx= 0.(2.4)

Thus, the weak solution u solves the following min-max problem:

min
u\in H1(\Omega ):Tu=h

max
v\in H1

0 (\Omega )

\int 
\Omega 
(\kappa \nabla u \cdot \nabla v - \delta (x - x0)v - gv)dx\Bigl( \int 

\Omega 
| \nabla v| 2dx

\Bigr) 1/2 .(2.5)

Zang et al. [72] proposed to employ two NNs for the trial function u and test function
v. Due to its reliance on the weak formulation on H1(\Omega )\times H1

0 (\Omega ), WAN suffers from
the same issue as DRM, since it is not well-defined on the space H1(\Omega ) \times H1

0 (\Omega ).
Additionally, since the resulting min-max problem involves two optimization steps,
the training is often more delicate.

To address these challenges, several strategies have been proposed. One recent
proposal is self-adaptive NNs [48]. In this approach, each term in the loss function is
given a weight, and these weights are then adjusted to balance the effect of each term
on the objective. This idea was recently employed to treat the influence brought by
the singularity in PINN [35], and the resulting method is called SAPINN. Specifically,
one modifies the loss function into

L(u) = \lambda 1Lr1(u) + \lambda 2Lr2(u) + \lambda 3Lb(u),

where the three terms are given, respectively, by

Lr1(u) = \|  - \nabla \cdot (\kappa \nabla u) - \delta H(x - x0) - g\| 2L2(B(x0,H)),

Lr2(u) = \|  - \nabla \cdot (\kappa \nabla u) - g\| 2L2(\Omega \setminus B(x0,H)), and Lb(u) = \| u - h\| 2L2(\partial \Omega ),

and \lambda i, i = 1,2,3, are positive weights to be adjusted, and \delta H(x  - x0) is a smooth
approximation to the Dirac delta function \delta (x - x0) in a small ball B(x0,H) (a ball of
radius H, centered at x0). In this work, we follow [34] and choose the approximation
\delta H to be
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A2048 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

\delta H(x) =

\left\{     
12

\pi Hd

\Biggl( 
5

\biggl( 
| x| 
H

\biggr) 2

 - 8
| x| 
H

+ 3

\Biggr) 
, | x| \leq H,

0, | x| >H.

The partition of the domain \Omega into two disjoint parts with different penalty parameters
allows better compensation for the singular behavior, in a manner similar to weighted
Sobolev spaces. The experimental results in [35] indicate that this method can improve
the accuracy of the solution by PINN to some extent, but the increase in the number
of hyperparameters (i.e., \lambda is) also complicates the optimization process, due to the
need for self-adaptation during training, which in turn makes the overall training
lengthier; see section 4 for a detailed comparison.

3. Singularity splitting deep Ritz method. In this section, we propose a
novel numerical method for solving the elliptic problem (1.1). In practice, in addi-
tion to the Dirichlet boundary condition (2.1), equation (1.1) may also be equipped
with a Neumann or Robin one (possibly different conditions on different parts of the
boundary \partial \Omega ):

\kappa 
\partial u

\partial n
= h on \partial \Omega ,(3.1a)

\alpha u+ \kappa 
\partial u

\partial n
= h on \partial \Omega ,(3.1b)

with the boundary data h \in L2(\partial \Omega ) or its subspace, and \alpha > 0. Below we focus
the discussion on the pure Dirichlet and Neumann boundary conditions, since the
Robin case can be treated similarly. In the Neumann case, one additionally needs to
impose the compatibility condition

\int 
\Omega 
(f\delta + g)dx +

\int 
\partial \Omega 

hdS = 0, so that a solution
does exist. Then the solution is only unique up to an arbitrary constant, and to have
uniqueness, one can normalize the solution, e.g.,

\int 
\Omega 
udx = 0 or

\int 
\partial \Omega 

udS = 0, or just
specify the value of the solution at one point in the domain/on the boundary. All
these considerations have to be incorporated into the loss function.

3.1. Solution splitting. First we develop the singularity splitting technique for
point and line sources. One key challenge in the numerical solution of problem (1.1)
lies in the low solution regularity, and thus a direct approximation of the solution
u via NNs can be inefficient. In order to overcome the challenge, we exploit ana-
lytic properties of the solution u, or more specifically extract the solution singularity
directly and employ it in the solution procedure. Note that incorporating analytic
insights into numerical procedures is a well-established computational paradigm, espe-
cially prominent in many analytic/semi-analytic methods. Notable examples include
locally refined meshes [5], singular function enrichment [25], singularity reconstruc-
tion [11], and generalized FEM [26]. This work continues along this long established
tradition and applies the idea in the context of neural PDE solvers for solving elliptic
PDEs with singular sources.

First we describe the key analytic insights into the problem. Recall that the
fundamental solution \Phi (x) of the Laplace equation is given by [24, p. 22]

\Phi (x) =

\left\{     
 - 1

2\pi 
ln | x| , d= 2,

1

d(d - 2)\alpha (d)| x| d - 2
, d\geq 3,
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SINGULARITY SPLITTING DEEP RITZ METHOD A2049

where \alpha (d) = \pi 
d
2

\Gamma ( d
2+1)

denotes the volume of the unit ball in \BbbR d. Note that \Phi is smooth

away from the singularity at the origin. By definition, \Phi (x) satisfies

 - \Delta \Phi (x - x0) = \delta (x - x0) in \BbbR d \setminus \{ x0\} ,

where \delta (x - x0) denotes the Dirac delta function concentrated at the point x0 \in \BbbR d.

3.1.1. Singularity reconstruction for point sources. Using the fundamen-
tal solution \Phi (x), we can split the solution u to problem (1.1) with one point source
S(x) = c0\delta (x - x0) into

u= c0\kappa 
 - 1\Phi + v,(3.2)

where \Phi is an abbreviation of \Phi (x - x0). The extension of the approach and the
discussion below to the case of multiple Dirac functions is straightforward. In the
splitting (3.2), the term c0\kappa 

 - 1\Phi captures the leading singularity of the solution u
near the point source x0 and v is the regular part. Since the fundamental solution
\Phi (x - x0) \not = 0 when x \in \partial \Omega , the boundary condition and the source term have to
be modified accordingly. For example, for the Dirichlet problem, by substituting the
splitting (3.2) into (1.1), we get the following governing equation for the regular part
v: \Biggl\{ 

 - \nabla \cdot (\kappa \nabla v) = F in \Omega ,

v= h - c0\kappa 
 - 1\Phi on \partial \Omega ,

(3.3)

with the modified source F given by

F = g - c0\kappa 
 - 1[\Delta \kappa \Phi +\nabla \kappa \cdot \nabla \Phi ] + c0\kappa 

 - 2| \nabla \kappa | 2\Phi .(3.4)

Next, we state the Ritz variational formulation for the regular part v, on which
DRM is based. Let \~h= h - c0\kappa 

 - 1\Phi in the Dirichlet case, and let \~h= h - c0\kappa \partial n(\kappa 
 - 1\Phi )

in the Neumann case be the modified boundary data. Then the Ritz variational
formulation is posed on H1(\Omega ) and given by

L(v) =

\Biggl\{ 
1
2 (\kappa \nabla v,\nabla v) - (F,v), Dirichlet,

1
2 (\kappa \nabla v,\nabla v) - (F,v) - (\~h, v)L2(\partial \Omega ), Neumann.

(3.5)

Let T be the trace operator. Then we have the following well-known result [24].

Proposition 3.1. If F \in (H1(\Omega ))\prime and \~h \in H
1
2 (\partial \Omega ) and \~h \in (H

1
2 (\partial \Omega ))\prime in the

Dirichlet and Neumann cases, respectively, then the regular part v is a minimizer of
the functional L(v) defined in (3.5) over the set \{ v \in H1(\Omega ) : Tv = \~h\} and H1(\Omega ) in
the Dirichlet and Neumann cases, respectively.

The regularity assumptions on F and \~h will be analyzed in section 3.1.2 below.
Note that in the Neumann case, a solution u exists only under suitable compatibility
conditions and to achieve the uniqueness, one may specify the value of the solution
u at a selected point x\ast \in \Omega , e.g., u(x\ast ) = a. Then it has to be supplied with the
condition v(x\ast ) = \~a \equiv a  - \kappa (x\ast ) - 1c0\Phi (x

\ast ), which is then used as a constraint in
minimizing the functional L(v).
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A2050 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

3.1.2. Well-posedness of the modified problem (3.3). Note that in the
presence of a point source, the solution u contains the singularity of the fundamental
solution \Phi , which belongs only to W 1,p(\Omega ) for p < d

d - 1 [31, Theorem 1.1, p. 3], and
as the dimension d grows, the Sobolev regularity of \Phi deteriorates. In particular, it
does not have the H1(\Omega ) regularity when d \geq 2, and thus the standard Ritz-type
formulation fails to make sense. Next, we discuss the smoothness of the regular part
v. This depends on the regularity of \kappa and g and that of the coefficient \kappa . Below we
discuss the regularity of the modified source F and the regular part v for one single
point source. The next result summarizes the regularity of F . The special case of \kappa 
being locally constant in the neighborhood of the singularities is common in practice,
e.g., the standard Poisson equation, which is arguably the most widely studied case
for elliptic PDEs with point sources [7, 59, 41]. The analysis also sheds interesting
insights into regularity restriction and the impact of the dimension d.

Proposition 3.2. Fix d \geq 2. Let \kappa \in W 2,r(\Omega ) with r \geq 2, and let g \in L2(\Omega ).
Then there holds that

F \in Ls(\Omega ), with

\left\{       
s <

d

d - 1
, r\geq d, d\geq 2,

s <min

\biggl( 
dr

(d - 2)r+ d
,

dr

(d - 2)r+ 2(d - r)

\biggr) 
r < d, d\geq 3.

Further, if \kappa is locally constant in the neighborhood of the singularity at x0, then
F \in L2(\Omega ).

Proof. The assertion follows from direct computation with the standard Sobolev
embedding theorem [1, Theorem 4.12, p. 85]. It is known that \Phi \in W 1,p(\Omega ) for any
p < d

d - 1 [31, Theorem 1.1, p. 3]. Meanwhile, by the Sobolev embedding theorem,

W 1,r(\Omega ) \lhook \rightarrow Lr\ast (\Omega ), with

\left\{       
r\ast =\infty , r > d,

r\ast <\infty , r= d,

r\ast =
dr

d - r
, r < d.

(3.6)

Using the embedding (3.6) and the regularity \Phi \in W 1,p(\Omega ) with p < d
d - 1 [31, Theorem

1.1, p. 3], we have

\Phi \in Lp\ast 
(\Omega ), with

\left\{   
p\ast <\infty , d= 2,

p\ast <
d

d - 2
, d\geq 3.

(3.7)

In view of the expression (3.4) of F , it suffices to analyze the three terms \Phi \Delta \kappa ,
\nabla \kappa \cdot \nabla \Phi , and | \nabla \kappa | 2\Phi . By H\"older's inequality, we deduce

\Phi \Delta \kappa \in Ls(\Omega ), with

\left\{   
s < r, d= 2,

s <
dr

(d - 2)r+ d
, d\geq 3.

Similarly, for the term \nabla \kappa \cdot \nabla \Phi (noting the condition r\geq 2), we have

\nabla \kappa \cdot \nabla \Phi \in Ls(\Omega ), with

\left\{       
s <

d

d - 1
, r\geq d, d\geq 2,

s <
dr

(d - 2)r+ d
, r < d, d\geq 3.
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SINGULARITY SPLITTING DEEP RITZ METHOD A2051

Last, it follows from the embeddings (3.6) and (3.7) and the generalized H\"older in-
equality that

| \nabla \kappa | 2\Phi \in Lq(\Omega ), with

\left\{           
q <\infty , d= 2,

q <
d

d - 2
, r\geq d, d\geq 3,

q <
dr

(d - 2)r+ 2(d - r)
, r < d, d\geq 3.

Now combining the preceding three results yields the first assertion. The remaining
assertion follows from direct computation.

Based on the regularity result of the modified source F in Proposition 3.2, we
can discuss the well-posedness of the Ritz variational formulation of problem (3.3),
which lays the foundation for applying DRM. For a general variable coefficient \kappa , when
d= 2,3, the formulation is indeed well-posed. Then, by the standard elliptic regularity
theory, we have v \in H1(\Omega ), whereas the regularity of the solution u to problem (1.1)
with a point source is inherently limited to u\in W 1,p(\Omega ) for any p < d

d - 1 . One can also
deduce the precise Sobolev regularity of the regular part v: in the two-dimensional
case, v belongs to W 2,s(\Omega ) for any s < 2, just falling short of H2(\Omega ), whereas in the
three-dimensional case, v can at most have a regularity W 2, 32 (\Omega ) (when r=\infty ). This
shows the benefit of singularity splitting for problem (1.1). When d \geq 4, it may be
ill-defined, except the special case of \kappa being locally constant. In the latter case, v
does belong to H2(\Omega ) for any d\geq 2, and thus the regular part v indeed enjoys much
better regularity than the solution u.

Corollary 3.3. Let \kappa \in W 2,r(\Omega ), with r \geq d, h \in H
1
2 (\partial \Omega ), and g \in L2(\Omega ).

Then problem (3.3) has a weak solution v \in H1(\Omega ) for d= 2,3. Further, if \kappa is locally
constant in a neighborhood of x0, then it has a weak solution v \in H1(\Omega ) for any d\geq 2.

Proof. First, since the singularity point x0 \in \Omega , we have \kappa  - 1\phi \in H
1
2 (\partial \Omega ), and

hence \~h\in H 1
2 (\partial \Omega ). By Sobolev embedding (3.6), we have

H1(\Omega ) \lhook \rightarrow Ls(\Omega ), with

\left\{   
s <\infty , d= 2,

s=
2d

d - 2
, d\geq 3.

Therefore, by duality, we have

Ls\ast (\Omega ) \lhook \rightarrow (H1(\Omega ))\prime , with

\left\{   
s\ast > 1, d= 2,

s\ast =
2d

d+ 2
, d\geq 3.

Then, for d = 2, r \geq 2, clearly F \in Ls(\Omega ) for any s < 2. Similarly, for d = 3, r > 2,
we have F \in Ls(\Omega ), with s < 3r

r+3 and 3r
r+3 > 2d

d+2 . Meanwhile, for d = 4, r > 4,

we have F \in Ls(\Omega ) for any s < 4
3 = 2d

d+2 . Thus, for sufficiently smooth g, we have
F \in (H1(\Omega ))\prime for d= 2,3 only. Meanwhile, if \kappa is locally constant in a neighborhood
of the singularity at x0, then F \in L2(\Omega ) \lhook \rightarrow (H1(\Omega ))\prime for any d\geq 2.

3.1.3. Singularity splitting for line sources. Next, we discuss the case of
line sources. We describe the procedure for a line source supported on a line segment
in \BbbR d, d\geq 3. The construction below follows the procedure in [28], which also contains
a detailed construction of the singularity \Phi L in \BbbR 3. Nonetheless, to the best of our
knowledge, the resulting expressions appear to be new, since the numerical approxi-
mation of high-dimensional PDEs has not received the due attention. Specifically, we
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A2052 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

parameterize the line segment \Lambda \subset \Omega connecting two points a,b\in \Omega by y= a+ t\bfittau for
t\in (0,L), with L= | b - a| and \bfittau = (b - a)/L the unit tangent vector of \Lambda . Consider
the elliptic problem (1.1) with \delta being replaced with \delta \Lambda . Then we seek a function \Phi L

so that

 - 
\int 
\Omega 

\Delta \Phi Lv dx=

\int 
\Lambda 

v ds \forall v \in C(\Omega ).

A natural candidate for \Phi L is the convolution of \delta \Lambda and \Phi , i.e.,

\Phi L(x) =

\int 
\Omega 

\delta \Lambda (y)\Phi (x - y)dy=

\int L

0

1

d(d - 2)\alpha (d)
| x - (a+ \bfittau t)|  - (d - 2) dt.

So it suffices to evaluate the integral I :=
\int L

0
| x  - (a + \bfittau t)| 2 - ddt. Note that in \BbbR 3,

with ra = | x - a| and rb = | x - b| , we can compute directly [28, p. 1722]

I = ln
rb +L+ \bfittau \cdot (a - x)

ra + \bfittau \cdot (a - x)
.

For d \geq 4, by first setting \alpha 2 = r2a  - ((a - x) \cdot \bfittau )2, and then substituting t = \alpha tans,
we have

I =

\int L

0

[t2 + 2(a - x) \cdot \bfittau t+ r2a]
1 - d

2 dt=

\int L

0

(t+ (a - x) \cdot \tau )2  - ((a - x) \cdot \tau )2 + r2adt

=

\int (a - x)\cdot \bfittau +L

(a - x)\cdot \bfittau 
(t2 + \alpha 2)1 - 

d
2 dt=

1

\alpha d - 3

\int arctan
(\bfa  - \bfx )\cdot \bfittau +L

\alpha 

arctan
(\bfa  - \bfx )\cdot \bfittau 

\alpha 

cosd - 4 sds.

Then using the integral identities [29, 2.513, p. 153]\int 
cos2n xdx=

1

22n

\biggl( 
2n

n

\biggr) 
x+

1

22n - 1

n - 1\sum 
k=0

\biggl( 
2n

k

\biggr) 
sin(2n - 2k)x

2n - 2k
,

\int 
cos2n+1 xdx=

1

22n

n\sum 
k=0

\biggl( 
2n+ 1

k

\biggr) 
sin(2n - 2k+ 1)x

2n - 2k+ 1
,

we obtain

I =
1

\alpha d - 3

\left\{                                                         

arctan
(a - x) \cdot \bfittau +L

\alpha 
 - arctan

(a - x) \cdot \bfittau 
\alpha 

, d= 4,

1

2d - 5

m - 3\sum 
i=0

\biggl( 
d - 4

i

\biggr) 

\cdot 
sin[(d - 4 - 2i) arctan (a - x)\cdot \bfittau +L

\alpha ] - sin[(d - 4 - 2i) arctan (a - x)\cdot \bfittau 
\alpha ]

d - 4 - 2i

+
1

2d - 4

\biggl( 
d - 4

m - 2

\biggr) \biggl[ 
arctan

(a - x) \cdot \bfittau +L

\alpha 
 - arctan

(a - x) \cdot \bfittau 
\alpha 

\biggr] 
,

d= 2m\geq 6,

1

2d - 5

m - 2\sum 
i=1

\biggl( 
d - 4

i

\biggr) 

\cdot 
sin[(d - 4 - 2i) arctan (a - x)\cdot \bfittau +L

\alpha ] - sin[(d - 4 - 2i) arctan (a - x)\cdot \bfittau 
\alpha ]

d - 4 - 2i
,

d= 2m+ 1\geq 5.
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SINGULARITY SPLITTING DEEP RITZ METHOD A2053

Combining these identities yields an explicit expression for \Phi L(x). Using the function
\Phi L(x), we can split the solution u to problem (1.1) into

u= \kappa  - 1f\Phi L + v.(3.8)

In the splitting (3.8), the term \kappa  - 1f\Phi L captures the leading singularity of the solution
u near the line sources and v is the regular part. Since the fundamental solution
\Phi L(x) \not = 0 when x \in \partial \Omega , the boundary condition and the source term have to be
modified accordingly. For example, for the Dirichlet problem, by substituting the
splitting (3.8) into (1.1) we can get the following governing equation for the regular
part v: \Biggl\{ 

 - \nabla \cdot (\kappa \nabla v) = F in \Omega ,

v= h - \kappa  - 1f\Phi L on \partial \Omega ,
(3.9)

with the modified source F given by

F=g+\Delta f\Phi L+2\nabla f \cdot \nabla \Phi L - \kappa  - 1[\Delta \kappa f\Phi L+f\nabla \kappa \cdot \nabla \Phi L+\Phi L\nabla \kappa \cdot \nabla f ]+\kappa  - 2| \nabla \kappa | 2f\Phi .
(3.10)

Note that the regularity of the regular part v to problem (3.9) can also be analyzed
similarly as in section 3.1.2, under suitable regularity assumption on the density f .
Indeed, line sources can be obtained by taking the Laplacian of a lower-dimensional
fundamental solution in the high-dimensional ambient space. Similar to Corollary 3.3,
generally there is still a restriction on the dimension d (i.e., d = 2,3,4 only) in the
presence of line sources, in order for the variational problem to be well-posed, but again
the restriction disappears when f and \kappa are locally constant in the neighborhood of
singularity support, i.e., the line segment. See also the work [28] for some insightful
discussions on weighted Sobolev regularity in the three-dimensional case. We leave
a precise regularity analysis, including in weighted Sobolev spaces, to a future work.
Using the convolution strategy, one can also derive the expression for more general
singularities, e.g., singularities on squares / cubes in high-dimensional space. Due to
the complexity of the resulting expressions, we do not further pursue the issue below.

3.2. Deep Ritz method. Now we describe the deep Ritz method (DRM) [71]
for approximating the regular part v and the details about the practical implementa-
tion. First we discuss the Dirichlet case, and will comment on the Neumann case at
the end, which only requires minor changes. The energy functional of problem (3.3)
requires minimizing the functional L(v) in (3.5) over the set \{ v \in H1(\Omega ) : Tv = \~h\} .
However, due to the global nature of NNs, it is highly nontrivial to construct an NN
function that satisfies the Dirichlet boundary condition Tv= \~h exactly, although the-
oretically this is highly desirable for improving the error estimates of the method [52].
In order to enforce the Dirichlet boundary condition Tv = \~h, we adopt the standard
penalty formulation

L\sigma (v) =
1
2 (\kappa \nabla v,\nabla v) - (F,v) + \sigma 

2 \| v - \~h\| 2L2(\partial \Omega ), v \in H1(\Omega ),(3.11)

where \sigma > 0 is the penalty parameter. This choice is standard in the current practice
of NN- based PDE solvers [55, 71]. Intuitively, as the penalty parameter \sigma increases
to infinity, the equality constraint representing the Dirichlet boundary condition is
better satisfied; see Theorem 5.3 and the remark thereafter for precise statements.

Now we describe NNs for approximating the regular part v, which is the central
component of DRM. We employ standard fully connected feed forward NNs, i.e.,
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A2054 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

functions f\theta : \BbbR d \rightarrow \BbbR , with the network parameter \theta . Specifically, it is defined
recursively by

x0 = x,

x\ell = \rho (A\ell x\ell  - 1 + b\ell ), \ell = 1,2, . . . ,L - 1,

f\theta (x) =ALxL - 1 + bL,

where A\ell \in \BbbR n\ell \times n\ell  - 1 ,b\ell \in \BbbR n\ell , \ell = 1,2, . . . ,L. Clearly, we fix n0 = d and nL = 1. In
the construction, the nonlinear function \rho :\BbbR \rightarrow \BbbR is called the activation function, and
it is applied componentwise to a vector. L is called the depth, and W :=max\{ n\ell , \ell =
0,1, . . . ,L\} is called the width of the network. The set of parameters of the NN, i.e.,
A\ell , b\ell (\ell = 1,2, . . . ,L), are trainable and are often stacked into a large vector \theta . The
training is carried out by minimizing a suitable loss function, which will be specified
below. In the construction, x0 is called the input layer, x\ell , \ell = 1,2, . . . ,L  - 1, are
called the hidden layer, and f\theta (x) is the output layer, where the subscript \theta explicitly
indicates the dependence of the NN on the parameter vector \theta . The total number of
parameters in the NN f\theta is

\sum L
\ell =1 n\ell (n\ell  - 1 + 1).

For the activation function \rho , there are many possible choices. The most fre-
quently used one in computer vision is the rectified linear unit (ReLU), defined by
\rho (x) = max(x,0) [44]. However, it is not smooth enough for the use in (SS)DRM,
since the formulation requires twice differentiability of the activation function \rho : one
spatial derivative, and the optimizer requires another derivative in the NN parameter
\theta . In the context of neural PDE solvers, hyperbolic tangent \rho (x) = ex - e - x

ex+e - x and logistic

\rho (x) = 1
1+e - x are frequently used [55, 14]. In the numerical experiments, we employ

the hyperbolic tangent as the activation function. Note that under fairly generous
conditions on \rho , the set of NN functions can approximate any Lp(\Omega ) function arbitrar-
ily well, as the width W and/ or depth L tend to infinity, a property commonly known
as universal approximation property. Furthermore, quantitative estimates on the ap-
proximation error in various norms have also been derived in recent years [70, 32].
Below we denote the collection of NN functions of depth L, with the total number of
nonzero parameters N\theta , and each parameter being bound by R, with the activation
function \rho by \scrN \rho (L,N\theta ,R), i.e.,

\scrN \rho (L,N\theta ,R) = \{ v\theta : v\theta has a depth L, | \theta | 0 \leq N\theta , | \theta | \ell \infty \leq R\} ,(3.12)

where | \cdot | \ell 0 and | \cdot | \ell \infty denote the number of nonzero entries in and the maximum norm
of a vector, respectively. Below we also use the shorthand notation \scrA to denote this
collection of functions (with a fixed architecture).

In a neural PDE solver, we use an element v\theta from the set \scrA to approximate the
minimizer v\sigma \in H1(\Omega ) of the functional L\sigma (v), i.e.,

\theta \ast = argmin
\theta 

L\sigma (v\theta ),

and then set v\theta \ast \in \scrA as an approximation to v\sigma . Since the parameter \theta is finite-
dimensional and lives on a compact set (due to the \ell \infty bound | \theta | \ell \infty \leq R), for a smooth
activation function \rho , the loss L\sigma (v\theta ) is continuous in \theta , which directly implies the
existence of a global minimizer \theta \ast . Note that the loss L\sigma (v\theta ) involves potentially high
dimensional integrals (i.e., in \Omega and on \partial \Omega ), and thus direct computation is likely still
intractable. Instead, in practical computation, we approximate the integrals using
quadrature, often by means of Monte Carlo, especially in the high-dimensional case.
Specifically, we rewrite the loss L\sigma as
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SINGULARITY SPLITTING DEEP RITZ METHOD A2055

L\sigma (v\theta ) = | \Omega | \BbbE X\sim U(\Omega )

\Bigl[ \kappa (X)| \nabla v\theta (X)| 2

2
 - F (X)v\theta (X)

\Bigr] 
(3.13)

+
\sigma | \partial \Omega | 
2

\BbbE Y\sim U(\partial \Omega )

\bigl[ 
| v\theta (Y ) - \~h(Y )| 2

\bigr] 
,

where U(\Omega ) and U(\partial \Omega ) denote the uniform distributions on the domain \Omega and the
boundary \partial \Omega , respectively, and \BbbE U(\Omega ) denotes taking expectation with respect to the
uniform distribution U(\Omega ). This consideration leads to the following empirical loss:

\widehat L\sigma (v\theta ) =
| \Omega | 
Nr

Nr\sum 
i=1

\biggl[ 
\kappa (Xi)| \nabla v\theta (Xi)| 2

2
 - F (Xi)v\theta (Xi)

\biggr] 
+
| \partial \Omega | 
Nb

\sigma 

2

Nb\sum 
j=1

(v\theta (Yj) - \~h(Yj))
2,

(3.14)

where the sampling points \{ Xi\} Nr
i=1 and \{ Yj\} Nb

j=1 are identically and independently
distributed (i.i.d.) random variables, distributed uniformly on the domain \Omega and the
boundary \partial \Omega , respectively, i.e., \{ Xi\} Nr

i=1 \sim U(\Omega ) and \{ Yj\} Nb
j=1 \sim U(\partial \Omega ). Note that

the distributions are taken to be uniform according to the continuous loss (3.13).
In practice, it is also possible to use nonuniform distributions, which corresponds to
solving the PDEs in suitable weighted spaces and can be beneficial for certain prob-
lems; see [69, 65] for numerical studies along this direction. Note that the resulting
optimization problem in \theta reads as\widehat \theta \ast = argmin

\theta 

\widehat L\sigma (v\theta ),(3.15)

with v\widehat \theta \ast \in \scrA being the NN approximation. The continuous loss L\sigma (v\theta ) and empirical

loss \widehat L\sigma (v\theta ) have different minimizers, due to the introduction of additional quadrature
errors. We shall discuss this issue briefly in section 5.

The final optimization problem (3.15) is highly nonconvex, due to the nonlinearity
of the NN v\theta in the NN parameter \theta . Therefore, it is very challenging to find a global
minimizer of the loss \widehat L\sigma (v\theta ). Nonetheless, in practice, simple optimization algorithms,
e.g., stochastic gradient descent and its variants (e.g., ADAM and AdaGrad) [8], seem
to work fairly well, as testified by the great empirical successes [14]. In the numerical
experiments, we will employ the limited memory BFGS algorithm [9] to minimize the
empirical loss \widehat L\sigma (v\theta ), which has been a very popular choice for NN-based PDE solvers
[55, 14].

In the Neumann case, the empirical loss \widehat L\sigma (v\theta ) takes a similar form:

\widehat L\sigma (v\theta ) =
| \Omega | 
Nr

Nr\sum 
i=1

\biggl[ 
1

2
\kappa (Xi)| \nabla v\theta (Xi)| 2  - F (Xi)v\theta (Xi)

\biggr] 
 - | \partial \Omega | 

Nb

Nb\sum 
j=1

\~h(Yj)v\theta (Yj)

+
\sigma 

2
| v\theta (x\ast ) - \~a| 2,

where the last term is to approximately enforce the point value evaluation v(x\ast ) = \~a
(with x\ast \in \Omega ).

In practice, the choice of the penalty parameter \sigma in the objective is important,
since it balances several competing effects: the larger is the value of \sigma , the smaller
is the error due to penalization, but the larger is the approximation error on the
boundary, as indicated by Theorem 5.6. Thus, a good tradeoff between these different
sources of errors is needed in order to deliver high-quality NN approximations to the
solution u of the PDE (1.1). We have followed a simple path-following procedure, a
well-established procedure in optimization [3, 36]: we start with a small value \sigma 1, and
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Algorithm 3.1 The penalty method for SSDRM.
Set \sigma 1 > 0, increasing factor \eta > 1
while Stopping condition not met do

Minimize the loss function \widehat L\sigma k
(v\theta ), initialized to \widehat \theta \ast k - 1, and find the optimal \widehat \theta k

\sigma k+1\leftarrow \eta \sigma k, and k\leftarrow k+ 1

then after each loop we update \sigma geometrically: \sigma k+1 = \eta \sigma k for some fixed \eta > 1.
By updating \sigma k, the minimizer \widehat \theta \ast k of the loss \widehat L\sigma k

(v\theta ) also approaches the solution of
problem (3.3), and the path-following strategy allows enforcing this progressively. The
overall procedure is shown in Algorithm 3.1. The use of the path-following strategy
requires the training for multiple \sigma values, which can potentially be time consuming
if done naively. Fortunately, the parameter \theta of the \sigma k+1-problem (i.e., minimizing\widehat L\sigma k+1

(v\theta )) can be initialized to the converged parameter \widehat \theta \ast k of the \sigma k-problem in order
to warm start the optimization process. This ensures that for each fixed \sigma k (except
\sigma 1), the initial parameter configuration is close to the optimal one, so the training loop
only requires relatively few iterations to reach convergence. This is also confirmed by
the numerical experiments below.

4. Numerical experiments and discussions. In this section, we present sev-
eral numerical experiments to illustrate the performance of the proposed SSDRM.
Although it works for all three types of boundary conditions, we present results
mostly for the Dirichlet problem, and we use f to denote the singularity strength
for point sources/density for line sources (and thus omit ci for singularity strength)
and x = (x1, . . . , xd) \in \BbbR d. In the training, Nr = 10,000 points in the domain \Omega and
Nb = 400 points on the boundary \partial \Omega are randomly selected to form the empirical loss\widehat L\sigma (v\theta ), unless otherwise specified. In the path-following strategy for determining the
penalty parameter \sigma , we take the initial penalty parameter \sigma 1 = 20 and an increasing
factor \eta = 1.5. All the numerical experiments were carried out on a personal lap-
top (operating system: Windows 10, with RAM 8.0GB, Intel Core i7-10510U CPU,
2.3GHz), with Python 3.9.7, with the popular software framework PyTorch. The
gradient of the NN output with respect to the input x (i.e., spatial derivatives) and
that of the empirical loss with respect to the NN parameter vector \theta are computed
via automatic differentiation, as implemented by torch.autograd. The empirical
loss \widehat L\sigma (v\theta ) is minimized using the off-the-shelf optimizer limited memory BFGS [9],
as implemented in the SciPy library, with the default setting (tolerance=1.0e-9, no
box constraint) and a maximum of 2500 iterations. To measure the accuracy of an
approximation \^v of the regular part v\ast , we use the standard relative L2(\Omega )-error e
defined by e= \| v\ast  - \^v\| L2(\Omega )/\| v\ast \| L2(\Omega ). The stopping condition is set to e < 1.00e-3
and \sigma k \leq 1200. The first condition ensures that the approximation can achieve the
desired accuracy, and the second one is to terminate the iteration after a finite number
of loops. The PyTorch source code for reproducing all the numerical experiments will
be made available at the github link https://github.com/hhjc-web/SSDRM.git.

First, we showcase the approach on the case with one point source.

Example 4.1. The domain \Omega is \Omega = ( - 1,1)2, diffusion coefficient \kappa = | x| 2 +
1, a point source at x0 = (0,0) with strength f = 2(| x| 2 + 1), source g = (| x| 2 +
1)
\bigl( 
2x2 sinx1e

x1x2 + (1 - x2
1 + x2

2)e
x1x2 cosx1

\bigr) 
+ 2

\pi  - 4x1x2 cosx1e
x1x2+2x1 sinx1e

x1x2 ,
and the Dirichlet boundary condition h= - 1

\pi ln | x| +ex1x2 cosx1. The analytic solution
u is given by u= - 1

\pi ln | x| + ex1x2 cosx1.
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Fig. 1. The dynamics of the training process: (a) the error e versus the penalty parameter \sigma ,
(b) the decay of the loss function L over iteration index i with \sigma = 1153.3, and (c) the required
iteration number i\sigma for each \sigma k-problem during the path-following strategy.

In the splitting, the regular part v is given by v = ex1x2 cosx1 and has to be
learned using NNs. The used NN has three hidden layers, and each layer has 20
neurons. The second condition is satisfied for \sigma 11 = 1153.3. First we examine the
convergence of the path-following strategy. We report the variation of the error e
with respect to the penalty parameter \sigma in Figure 1(a). It is observed that as the
parameter \sigma gets larger, the error e drops rapidly during the first few loops (i.e., \sigma <
400), after which the decay becomes much slower. The decay plot roughly obeys the
exponential law, which is consistent with the theoretical analysis in section 5. Indeed,
Theorem 5.6 indicates that as the value of \sigma increases, the (mean squared) error due
to penalization decreases to zero at a rate O(\sigma  - 2), but the approximation error and
the statistical error increase linearly with \sigma , which is also clearly observed in Figure 1.
Thus, there is an optimal \sigma which minimizes the total error. This plot shows also
that one can terminate the iteration earlier without compromising much the accuracy
of the NN approximation. The empirical loss \widehat L\sigma decreases throughout the path-
following procedure (cf. Figure 1(b)), exhibiting a steady convergence behavior of the
optimizer. Note that the empirical loss for (SS)DRM is not necessarily positive (but it
is bounded below by a constant). Further, the number of iterations required for each
\sigma k-problem (k \geq 2) is indeed much smaller than that for the \sigma 1-problem, confirming
the effectiveness of the path-following strategy for warm starting the optimization for
\sigma k-problems.

The numerical approximations by SSDRM and three existing NN-based PDE
solvers, i.e., SAPINN, DRM, and WAN, are shown in Figure 2, where the employed
NN networks, the number of sampling points taken in the domain \Omega and on the
boundary \partial \Omega , and the optimizer are identical for all the methods in order to ensure
a fair comparison. The pointwise error of the SSDRM approximation is very small,
and the accuracy around the singularity at the origin is excellent, indicating a highly
accurate approximation. The results show that a direct application of DRM fails
to yield satisfactory results: the error is very large everywhere. This is not surpris-
ing, since the corresponding continuous loss function L\sigma (v) is actually ill-defined in
the space H1(\Omega ), as pointed out in section 2. Similar to DRM, WAN also does not
perform well, since it suffers from exactly the same issue. In contrast, SAPINN can
indeed yield much more accurate approximations than DRM and WAN, but the error
around the singularity dominates the overall error. Intuitively, this concurs with the
worse approximation property of NNs to singular functions [18]. Table 1 shows the
quantitative comparison of these methods for Example 4.1 in terms of computing time
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Fig. 2. The numerical approximations of Example 4.1 by the proposed SSDRM, SAPINN,
DRM, and WAN. From top to bottom: analytic solution, neural network approximation, and abso-
lute error.

Table 1
The comparison between DRM, WAN, SAPINN, and the proposed SSDRM for Example 4.1.

Method Time (in secs) e

SSDRM 252 4.85e-3

SAPINN 3433 7.82e-2
DRM 3 1.02e-1

WAN 32 1.38e-1

(in seconds) and error e. Note that the computing time should be interpreted indica-
tively only due to its sensitivity with respect to the setting and implementation, etc.
The results fully confirm the qualitative results in Figure 2: DRM and WAN perform
very poorly on the example, and SAPINN does yield an acceptable approximation to
the true solution u, but it is less accurate and computationally more expensive than
SSDRM. It is worth mentioning that the accuracy of neural PDE solvers tends to
stagnate at a level of 10 - 2 \sim 10 - 3, as for both SSDRM and SAPINN, but not much
lower. This behavior has been widely observed for neural PDE solvers [55, 71, 72, 14],
and it differs markedly from more traditional solvers, e.g., the finite element method,
for which one can make the error arbitrarily small by taking a sufficiently refined
mesh. Also the computing time is relatively long, given the two-dimensional nature
of the problem, indicating the imperative need for an accelerated training process,
e.g., pretraining or meta-learning, in order for the method to be competitive with
more traditional methods in the low-dimensional setting. We refer interested readers
to [54, 58] for detailed discussions on the pros and cons of neural PDE solvers and
more classical approaches.
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Fig. 3. The numerical approximations of Example 4.2, with an error e= 3.18e - 2.

The next example is about the Poisson problem with a Neumann boundary
condition.

Example 4.2. The domain \Omega is the square \Omega = ( - 1,1)2, diffusion coefficient \kappa \equiv 1,
a point source at x0 = (0,0) with strength f \equiv 1, source g= \pi 2(cos(\pi x1) + cos(\pi x2)),
and the Neumann boundary condition h = \partial \Phi 

\partial n . The analytic solution u is given by
u= 1

2\pi ln | x| + cos(\pi x1) + cos(\pi x2).

In the splitting, the regular part v(x) = cos(\pi x1) + cos(\pi x2) solves the standard
Poisson problem with a source F (x) = \pi 2(cos(\pi x1) + cos(\pi x2)) and a zero Neumann
boundary condition. The value of the solution v at a point x\ast on the boundary \partial \Omega is
specified to ensure the uniqueness of the exact solution. We employ an NN that has
three layers and each layer has eight neurons. The obtained NN approximation after
about 2500 iterations is shown in Figure 3 with an error e= 3.18e-2. The observations
from Example 4.1 are fully confirmed.

Now we give a three-dimensional problem with a single point source.

Example 4.3. The domain \Omega is the cube \Omega = ( - 1,1)3, diffusion coefficient \kappa =
| x| 2 + 1, a point source at the origin x0 = (0,0,0) with strength f = | x| 2 + 1, source
g= (| x| 2 +1)(| x2

1 + x2
2 +1) sin(x1x2 + x3) - (4x1x2 +2x3) cos(x1x2 + x3) +

1
2\pi | x| , and

the Dirichlet boundary condition h= 1
4\pi | x| + sin(x1x2 + x3). The exact solution u is

given by u= 1
4\pi | x| + sin(x1x2 + x3).

In the splitting, the regular part v is given by v = sin(x1x2 + x3). The used NN
v\theta has three layers and each layer has five neurons, and the error e of the SSDRM
approximation is e = 8.14e-3. The numerical approximation is shown in Figure 4,
with the two slices at x3 =  - 1 and x3 = 0. The former illustrates the accuracy of
boundary fitting, whereas the latter shows that the approximation is of high quality
near the singularity. The plots indicate that the pointwise error near the boundary
\partial \Omega tends to be slightly larger than that in the interior of the domain \Omega .

The variation of the error e of the NN approximation as the penalty parameter
\sigma increases is shown in Figure 5. In fact, as the penalty parameter \sigma increases, the
statistical and approximation errors of the boundary term increase, whereas the error
due to the penalization decreases. Thus, it is necessary to find a suitable value for
\sigma so as to achieve the optimal error of the NN approximation to the PDE (1.1).
Figure 5 indicates that one may choose \sigma = 1200 to realize a good balance between
difference sources of errors. Throughout, the value of the empirical loss \widehat L\sigma decays
steadily to a limit. Also, we have tested different numbers of sampling points and
different architectures (layers, width) of the NN. The numerical results (i.e., the error
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rorre)c(MRDSS)b(tcaxe)a(

Fig. 4. The neural network approximation for Example 4.3, with two slices at x3 =  - 1 (top)
and x3 = 0 (bottom).

(a) e vs σ (b) L vs i

Fig. 5. The convergence of the path-following strategy for Example 4.3, with three different

NNs: (a) the error e versus \sigma and (b) the empirical loss \widehat L\sigma versus the iteration index i for \sigma =
1153.3.

e and the training time in seconds) are shown in Table 2. The results indicate that
in order to achieve the best approximation with an optimal complexity, one needs a
suitable balance between these different parameters. Increasing the size of the NN or
the number of sampling points alone does not necessarily lead to a smaller error for
the approximation. This is also observed earlier in [38]. Thus, in the experiments,
we have chosen the NN of the setting 3-5-5-1 (with Nb = 600 and Nr = 10000) to
examine the training dynamics of the optimization method. Figure 5 also indicates
one peculiar but very common behavior of PDE solvers based on NNs: the accuracy
of the NN approximation does not exhibit a steady decrease of the error as the NN
width and depth increase, unlike the more traditional methods, e.g., finite element
approximation, for which the error does decrease steadily to zero as the mesh size
tends to zero. In sharp contrast, it appears that none of the existing neural PDE
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Table 2
The variation of the training time (in seconds) and error with respect to sampling points in the

domain Nr and on the boundary Nb.

Nb Nr Layer Neurons Time e

400 10000 3 3 45 2.86e-2

400 10000 3 5 80 1.70e-2

400 10000 3 10 130 9.66e-3

400 10000 5 3 51 2.25e-2

400 10000 5 5 104 8.63e-3

400 10000 5 10 327 1.79e-2

600 10000 3 3 47 3.45e-2
600 10000 3 5 83 8.14e-3

600 10000 3 10 132 9.60e-3

400 15000 3 3 58 5.95e-2

400 15000 3 5 86 1.10e-2
400 15000 3 10 138 1.63e-2

Fig. 6. The evolution of the error versus the iteration index i and the time t, respectively, for
Example 4.3, with SSDRM, SAPINN, DRM, and WAN.

solvers can exhibit a steady and consistent convergence rate in practical computation.
The figure indicates that the iteration will stop at different functional values (with
same penalty parameter \sigma ) for the three NNs. For the 3-3-3-1 NN, the error is
larger than the other two NNs, and the loss value cannot stabilize at a lower level.
This is generally attributed to the optimization error associated with finding a global
minimizer to the empirical loss \widehat L\sigma (v\theta ): instead the (stochastic) optimizer generally
may find an approximate minimizer, due to the highly nonconvex landscape of the
empirical loss function \widehat L\sigma . The optimization error appears to be dominating for
many DNN solvers [38], and its precise mathematical characterization is still largely
open. We refer interested readers to [15, 2] for detailed discussions on the persistent
optimization error.

Now we compare the proposed SSDRMwith three existing NN-based PDE solvers.
See Figure 6 for the error e versus the iteration index i and the computing time t (in
seconds). The proposed SSDRM significantly outperforms all existing approaches,
and SAPINN beats both DRM and WAN by a large margin, since the latter two fail
spectacularly to yield reasonable approximations. This is attributed to the presence
of strong solution singularity, as discussed in section 2. These observations again fully
confirm that from Example 4.1.
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The next example on a line source is taken from [28, Example 5.2].

Example 4.4. The domain \Omega is the unit cube \Omega = (0,1)3, diffusion coefficient
\kappa \equiv 1, a line source supported on the line segment connecting x1 = (0,0,0.2) and
x2 = (0,0,0.8) with strength f = x3, and g = 0, with a Dirichlet boundary condition

h = x3

4\pi ln | x - x2|  - (x3 - 0.8)
| x - x1|  - (x3 - 0.2)  - (| x  - x1|  - | x  - x2| ). The exact solution u is given by

u= x3

4\pi ln | x - x2|  - (x3 - 0.8)
| x - x1|  - (x3 - 0.2)  - (| x - x1|  - | x - x2| ).

In this example, we have to construct a function \Phi L whose Laplacian is a line
source \delta \Lambda (supported on a line segment \Lambda ). See the construction of \Phi L in section 3.1.
Note that the singularities (lines) are actually placed on the boundary \partial \Omega of the
domain \Omega . Then we split the solution into a singular part and a regular part v and
approximate v by an NN v\theta . In the experiment, we have employed an NN v\theta with four
layers, each layer having 10 neurons. The stopping criterion is met by the penalty
factor \sigma = 8000, and the corresponding error is e= 2.03e-2. Two slices at x3 = 0 and
x3 = 1/2 of the NN approximation are shown in Figure 7. The slice at x3 = 0 lies on
the boundary \partial \Omega of the domain \Omega . The error on the boundary \partial \Omega is larger than that
in the interior of the domain \Omega , but overall the result is still quite satisfactory. From
the slice at x3 = 1/2, one can clearly identify the location of the line source (origin),
and SSDRM can also yield good results around the singular point.

To examine the influence of the numbers of sample points (i.e., Nr and Nb)
and the NN architecture on the convergence behavior of the training process (in the
sense of optimization), we have experimented with different settings. The results are
presented in Figure 8, where the penalty parameter \sigma is fixed at \sigma = 8000. The
training of SSDRM converges robustly for all settings: the loss value decreases very
steadily, and for all the settings the approximations exhibit very much comparable
accuracy and achieve similar loss values. Although not presented, it is noted that
the training may suffer from ``overfitting,"" where the error e starts to increase after

rorre)c(MRDSS)b(tcaxe)a(

Fig. 7. The numerical approximation for Example 4.4, slice at x3 = 0 (top), and x3 = 1/2
(bottom).
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(a) architecture 3-10-10-1

(b) architecture 3-10-10-10-1

Fig. 8. The evolution of the error e and empirical loss \widehat L\sigma during the SSDRM training of
Example 4.4 with different numbers (i.e., Nr and Nb) of samples in the domain \Omega and on the
boundary \partial \Omega for two NN architectures.

some initial iterations, when the penalty parameter \sigma is much smaller, e.g., \sigma = 2000,
Nb = 400, and Nr = 10000 for the architecture 3-10-10-10-1. This agrees with previous
discussions that one needs to choose the penalty parameter \sigma properly in order to
achieve the best possible approximation.

The proposed SSDRM extends straightforwardly to the more complex case in-
volving more than one singularity, or a combination of point and line sources. The
next three-dimensional example contains a line source and two point singularities.

Example 4.5. The domain \Omega is \Omega = ( - 1,1)3, diffusion coefficient \kappa = ex3 ,
with a line segment source \{ (0,0, x3) :  - 1 \leq x3 \leq 1\} with two endpoints x1 =
(0,0, - 1), x2 = (0,0,1), and two point sources concentrated at x3 = (0, 12 ,0) and
x4 = (0, - 1

2 ,0) and f = ex3 and g =  - (x1x2 + x2
1x

2
2 + x2

2x
2
3 + x2

3x
2
1)e

x1x2x3+x3 +
x3e

x3

4\pi | x - x3| 3 + x3e
x3

4\pi | x - x4| 3 + ex3

4\pi ( 1
| x - x2|  - 

1
| x - x1

| ), and the Dirichlet boundary condition

h = 1
4\pi ln | x - x\bftwo |  - (x3 - 1)

| x - x\bfone |  - (x3+1) +
1
4\pi 

1
| x - x3| +

1
4\pi 

1
| x - x4| + ex1x2x3 . The analytic solution u is

given by u= 1
4\pi ln | x - x\bftwo |  - (x3 - 1)

| x - x\bfone |  - (x3+1) +
1
4\pi 

1
| x - x3| +

1
4\pi 

1
| x - x4| + ex1x2x3 .

The NN architecture for this example is taken to be 3-6-6-1. The training ter-
minates at e = 4.37e-3 and \sigma = 1730. The NN approximation is shown in Figure 9,
with the two slices at x3 =  - 1 and x3 = 0, respectively. The results confirm pre-
vious observations: the singular part is exactly resolved, and the regular part v is
well-approximated so that SSDRM can produce an excellent approximation to the
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(a) exact (b) SSDRM (c) error

Fig. 9. The NN approximation for Example 4.5, slices at x3 = - 1 (top), and x3 = 0 (bottom).

exact solution. This example shows clearly the flexibility of the proposed approach
for elliptic problems with multiple singularities.

The next example further shows the flexibility of the proposed SSDRM for resolv-
ing singular sources living on high-dimensional subspaces, as mentioned in section 3.1.

Example 4.6. This example is a five-dimensional Poisson equation, with the
domain \Omega = ( - 1,1)5, surface sources at x\prime 

1 = ( 12 ,
1
2 ), x\prime 

2 = (0, 12 ), x\prime 
3 = ( - 1

2 ,
1
2 ),

x\prime 
4 = ( 12 ,0), x\prime 

5 = (0,0), x\prime 
6 = ( - 1

2 ,0), x\prime 
7 = ( 12 , - 

1
2 ), x\prime 

8 = (0, - 1
2 ), and x\prime 

9 =
( - 1

2 , - 
1
2 ) (with x\prime = (x1, x2)), f \equiv 1, and g =  - 10. The Dirichlet boundary con-

dition h =
\sum 9

i=1 - 
1
2\pi ln | x\prime  - x\prime 

i| + | x| 2. The analytic solution u is given by u =\sum 9
i=1 - 

1
2\pi ln | x\prime  - x\prime 

i| + | x| 2.
The singularity is understood to be supported on three-dimensional affine sub-

space through the bounded region \Omega , similar to Gjerde et al. [28]. Then the corre-
sponding singularity function capturing the source term \delta (x\prime 

1, x
\prime 
2) in five-dimensional

space is given by \Phi (x\prime ) = - 1
2\pi ln | x\prime  - x\prime 

i| . The NN for approximating the regular part
v has two layers, and each hidden layer has 10 neurons. The loop terminates at the
penalty factor \sigma = 1922, and the error e of the NN approximation is e= 8.14e-3 in the
domain. One slice of the approximation at x3 = x4 = x5 = 0 is shown in Figure 10.
The numerical results show again that the singularities are accurately resolved with
a small pointwise error.

5. Error analysis. Now we discuss the error analysis for SSDRM. Due to the
use of singularity splitting, the issue boils down to the analysis of the standard DRM
for smooth solutions, which has been carried out independently in several recent works
under different problem settings and architectures [47, 19, 20, 33, 51, 46]. Below we
summarize relevant theoretical results for the Dirichlet case, to provide theoretical
underpinnings of the SSDRM and also shed valuable insights into the influence of
various algorithmic parameters (e.g., penalty parameter \sigma and NN width and depth).
The Neumann case is simpler (since there is no error associated with the penalization)
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(a) exact (b) SSDRM (c) error

Fig. 10. The NN approximation for Example 4.6, slice at x3 = x4 = x5 = 0.

and can be treated similarly. Throughout the discussion, the domain \Omega is assumed to
be smooth.

5.1. Error estimate of the penalty method. First, we discuss the error
incurred by the penalty method, i.e., how the error decreases as the penalty parameter
\sigma \rightarrow \infty . We denote the minimizer of L\sigma (v) by v\sigma and the solution of problem (3.3) by
v\ast . The next result shows that v\sigma actually can be viewed as a Robin approximation
to the Dirichlet problem.

Proposition 5.1. Let v\sigma \in H1(\Omega ) be the minimizer of L\sigma (v). Then v\sigma is the
weak solution of the following Robin boundary value problem:\left\{    - \nabla \cdot (\kappa \nabla v) = F in \Omega ,

v+
\kappa 

\sigma 

\partial v

\partial n
= \~h on \partial \Omega .

(5.1)

Proof. Since v\sigma \in H1(\Omega ) is the minimizer of L\sigma (v), for every \phi \in H1(\Omega ) we have
L\sigma (v\sigma )\leq L\sigma (v\sigma + \lambda \phi ), \lambda \in \BbbR . Let f(\lambda ) =L\sigma (v\sigma + \lambda \phi ). Direct computation gives

f \prime (\lambda ) = \lambda 
\bigl( 
(\kappa \nabla \phi ,\nabla \phi ) + \sigma (\phi ,\phi )L2(\partial \Omega )

\bigr) 
+ (\kappa \nabla v\sigma ,\nabla \phi ) - (F,\phi ) + \sigma (v\sigma  - \~h,\phi )L2(\partial \Omega ).

The minimizing property of v\sigma implies f \prime (0) = 0, and consequently

f \prime (0) = (\kappa \nabla v\sigma ,\nabla \phi ) - (F,\phi ) + \sigma (v\sigma  - \~h,\phi )L2(\partial \Omega ) = 0 \forall \phi \in H1(\Omega ).(5.2)

This is the variational formulation of (5.1). So v\sigma is the weak solution of problem
(5.1).

The penalization is a type of singular perturbation. It has been studied under
various situations [13, 6]. To derive error bounds, we recall a regularity result for the
Robin boundary value problem essentially due to Costabel and Dauge [13].

Lemma 5.2. Let \kappa \in C2(\Omega ). Fix \epsilon > 0, and let z\epsilon be the solution to the Robin
boundary value problem \left\{    - \nabla \cdot (\kappa \nabla z

\epsilon ) = 0 in \Omega ,

\epsilon \kappa 
\partial z\epsilon 

\partial n
+ z\epsilon = g on \partial \Omega .

(5.3)

Then, for any t \in [0,3/2] and t\leq s\leq t+ 1, there exists some C > 0 independent of \epsilon 
such that

\| z\epsilon \| H1+s(\Omega ) \leq C\epsilon t - s\| g\| 
H

1
2
+t(\partial \Omega )

.
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Proof. The proof follows closely the argument of [13, Lemma 2.1 and Corollary
2.2] for the Laplacian, but it is adapted to the case of a variable coefficient. The proof
utilizes the Dirichlet-to-Neumann map: for a given g \in H

1
2 (\partial \Omega ), let \Lambda \kappa g = \kappa 

\partial wg

\partial n

\bigm| \bigm| 
\partial \Omega 

,
where wg \in H1(\Omega ) solves \Biggl\{ 

 - \nabla \cdot (\kappa \nabla wg) = 0 in \Omega ,

wg = g on \partial \Omega .
(5.4)

Let T :Hs(\Omega )\rightarrow Hs - 1
2 (\partial \Omega ) be the trace operator. Then Tz\epsilon can be represented as

Tz\epsilon = (\epsilon \Lambda \kappa + I) - 1g.(5.5)

Then it suffices to show the (uniform in \epsilon ) boundedness of the operator (\epsilon \Lambda \kappa + I) - 1

in Hs(\partial \Omega ) with s\geq 0. Note that for any g \in H 1
2 (\partial \Omega )

((\epsilon \Lambda \kappa + I)g, g)L2(\partial \Omega ) = \epsilon \| 
\surd 
\kappa \nabla wg\| 2L2(\Omega ) + \| g\| 

2
L2(\partial \Omega ) \geq \| g\| 

2
L2(\partial \Omega ).

Therefore, the operator \epsilon \Lambda \kappa + I is positive definite in L2(\partial \Omega ) and

\| (\epsilon \Lambda \kappa + I) - 1\| L2(\partial \Omega )\rightarrow L2(\partial \Omega ) \leq C,

where the constant C is independent of \epsilon . To show the uniform bound of the operator
inHs(\partial \Omega ), let (x\prime , xn) be a local coordinate near a point x0 \in \partial \Omega so that the boundary
is given by xn = 0. The function \lambda \kappa (x

\prime , \xi ) denotes the symbol of \Lambda \kappa in this coordinate.
Then the following asymptotic expansion holds (see, e.g., [66, Theorem 4.1] and [64,
Theorem 0.1]):

\lambda \kappa (x
\prime , \xi \prime ) = \kappa (x\prime ,0)| \xi \prime | + a0(x

\prime , \xi \prime ) + r(x\prime , \xi \prime ),

where \kappa (x\prime ,0)| \xi \prime | denotes a classical pseudodifferential operator of order 1, a0(x
\prime , \xi \prime )

is homogeneous of degree 0 in \xi \prime , and the residue r(x\prime , \xi \prime ) is a classical symbol of order
 - 1. Hence, for any s\geq 0

\| (\epsilon \Lambda \kappa + I) - 1g\| Hs(\partial \Omega ) \leq C\| (\Lambda \kappa + I)s(\epsilon \Lambda \kappa + I) - 1g\| L2(\partial \Omega )

=C\| (\epsilon \Lambda \kappa + I) - 1(\Lambda \kappa + I)sg\| L2(\partial \Omega ) \leq C\| (\Lambda \kappa + I)sg\| L2(\partial \Omega ) \leq C\| g\| Hs(\partial \Omega ),

since \Lambda \kappa is self-adjoint and semipositive definite, and (\epsilon \Lambda \kappa + I) - 1 commutes with
(\Lambda \kappa + I)s. Then, by the defining identity (5.5), we obtain

\| Tz\epsilon \| Hs(\partial \Omega ) \leq C\| g\| Hs(\partial \Omega ).

Now the smoothing property of the Dirichlet problem implies

\| z\epsilon \| H1+t(\Omega ) \leq C\| Tz\epsilon \| 
H

1
2
+t(\partial \Omega )

\leq C\| g\| 
H

1
2
+t(\partial \Omega )

\forall 0\leq t\leq 3
2 .(5.6)

Meanwhile, the Robin problem (5.3) can be rewritten as\left\{    - \nabla \cdot (\kappa \nabla z
\epsilon ) = 0 in \Omega ,

\kappa 
\partial z\epsilon 

\partial n
+ z\epsilon = \epsilon  - 1(g - (1 - \epsilon )z\epsilon ) on \partial \Omega .

(5.7)

Then the smoothing property for the Robin boundary value problem leads to [23,
Theorem 3.10 (iii)]

\| z\epsilon \| 
H

3
2
+t(\Omega )

\leq C\epsilon  - 1\| g - (1 - \epsilon )Tz\epsilon \| 
H

1
2
+t(\partial \Omega )

\leq C\epsilon  - 1(\| g\| 
H

1
2
+t(\partial \Omega )

+ \| Tz\epsilon \| 
H

1
2
+t(\partial \Omega )

)\leq C\epsilon  - 1| | g| | 
H

1
2
+t(\partial \Omega )

,
(5.8)
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SINGULARITY SPLITTING DEEP RITZ METHOD A2067

where the last step is due to the estimate (5.6). Then interpolating between (5.6) and
(5.8) gives the desired result.

Now we can state a bound on the error v\sigma  - v\ast , arising from approximating the
Dirichlet problem with a Robin one.

Theorem 5.3. Let F \in Ht(\Omega ), and let \~h \in Ht+ 3
2 (\partial \Omega ), with t \in [ - 1,0]. Then,

for any t\leq s\leq t+ 1, the following error bound holds:

\| v\sigma  - v\ast \| H1+s(\Omega ) \leq C\sigma s - t - 1(\| F\| Ht(\Omega ) + \| \~h\| Ht+3
2 (\partial \Omega )

).

Proof. Note that w\sigma = v\sigma  - v\ast satisfies\left\{    - \nabla \cdot (\kappa \nabla w\sigma ) = 0 in \Omega ,

\sigma  - 1\kappa 
\partial w\sigma 

\partial n
+w\sigma = - \sigma  - 1\kappa 

\partial v\ast 

\partial n
on \partial \Omega .

Then, by Lemma 5.2 and the trace theorem, there holds for t\leq s\leq t+ 1 that

\| w\sigma \| H1+s(\Omega ) \leq C\sigma s - t
\bigm\| \bigm\| \bigm\| \sigma  - 1\kappa 

\partial v\ast 

\partial n

\bigm\| \bigm\| \bigm\| 
H

1
2
+t(\partial \Omega )

=C\sigma s - t - 1
\bigm\| \bigm\| \bigm\| \kappa \partial v\ast 

\partial n

\bigm\| \bigm\| \bigm\| 
H

1
2
+t(\partial \Omega )

\leq C\sigma s - t - 1\| v\ast \| H2+t(\Omega ).

Meanwhile, by the standard elliptic regularity theory, we have

\| v\ast \| H2+t(\Omega ) \leq C
\Bigl( 
\| F\| Ht(\Omega ) + \| \~h\| H 3

2
+t(\partial \Omega )

\Bigr) 
.

Combining the preceding two estimates completes the proof the theorem.

Remark 5.1. Theorem 5.3 indicates that under suitable regularity assumptions on
the solution v\ast , the error due to penalization decays (sub)linearly. The error bound
in Theorem 5.3 is known in various special forms. For example, in both [20] and [51],
the following error bound was derived for the case of \~h\equiv 0 and F \in L2(\Omega ):

\| v\ast  - v\sigma \| H1(\Omega ) \leq C\sigma  - 1\| F\| L2(\Omega ).

It was derived for a strongly coercive bilinear form in the space H1(\Omega ) in [20], using
an energy argument. In [51, Theorem 9], it was derived using the theory of the
Steklov eigenvalue problem (see [6] and references therein). In contrast to existing
results, Theorem 5.3 gives the bound for a broader range of regularity conditions on
the problem data F and \~h.

Under the a priori assumption v\ast \in H1(\Omega ) only, it can be proved that

\| v\sigma  - v\ast \| L2(\Omega ) \leq C(\kappa )(\| F\| 
(H

1
2 (\Omega ))\prime 

+ \| \~h\| 
H

1
2 (\Omega )

)\sigma  - 1
2 .

See [51, Lemma 17] for a detailed proof when \~h \equiv 0, and the case \~h \not \equiv 0 follows
similarly. One can also show convergence in H1(\Omega ) but without a rate, using a
standard compactness argument from calculus of variations, i.e.,

lim
\sigma \rightarrow \infty 

\| v\ast  - v\sigma \| H1(\Omega ) = 0.

Further discussions on the convergence of the penalization under even weaker regu-
larity assumption for the homogeneous Laplace equation (i.e., F \equiv 0), including very
weak solutions with Dirichlet boundary data \~h\in Hs(\Omega ) with 0< s< 1

2 , can be found
in [6, section 7]

\| v\sigma  - v\ast \| L2(\Omega ) \leq C\sigma  - s\| \~h\| Hs(\partial \Omega ).

See [6, Theorem 7.1] for the precise statement.
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A2068 TIANHAO HU, BANGTI JIN, AND ZHI ZHOU

5.2. Generalization error analysis. In practical computation, we use an em-
pirical loss \widehat L\sigma (v\theta ) instead of the continuous loss L\sigma (v\theta ), due to the use of the Monte
Carlo method to approximate the integrals. Let \widehat v\sigma be a (global) minimizer of the
empirical loss \widehat L\sigma (v\theta ) over the set \scrA of NN functions (with a fixed architecture, e.g.,
depth, number of nonzero parameters, and maximum bound on the parameter vec-
tors). Now we bound the error between \widehat v\sigma and v\sigma . This kind of analysis is commonly
known as the generalization error in statistical learning theory [4, 60]. For the dis-
cussion below, we assume the modified source F \in L\infty (\Omega ), \~h \in L\infty (\partial \Omega ), which holds
for \kappa , f \in W 2,\infty (\Omega ) and h \in L\infty (\partial \Omega ) and being locally constant in a neighborhood
of the singularity \delta . This assumption is due to the limitation of the proof technique
using Rademacher complexity. The next lemma gives an error decomposition into the
quadrature error and approximation error.

Lemma 5.4. Let \scrA be a set of NN functions of fixed depth, width, and upper
bound on the parameters. Let \widehat v\sigma be the minimizer of \widehat L\sigma (v) over \scrA . Then

\| \nabla (\widehat v\sigma  - v\sigma )\| 2L2(\Omega ) + \sigma \| \widehat v\sigma  - v\sigma \| 2L2(\partial \Omega ) \leq C(\kappa )(sup\widehat v\in \scrA 
| L\sigma (\widehat v) - \widehat L\sigma (\widehat v)| (5.9)

+ inf\widehat v\in \scrA 
\sigma \| \widehat v - v\sigma \| 2H1(\Omega )).

Proof. This result follows from direct computation. For every \widehat v \in \scrA , by the
minimizing property \widehat L\sigma (\widehat v\sigma )\leq \widehat L\sigma (\widehat v), we have

L\sigma (\widehat v\sigma ) - L\sigma (v\sigma ) = [L\sigma (\widehat v\sigma ) - \widehat L\sigma (\widehat v\sigma )] + [\widehat L\sigma (\widehat v\sigma ) - \widehat L\sigma (\widehat v)]
+ [\widehat L\sigma (\widehat v) - L\sigma (\widehat v)] + [L\sigma (\widehat v) - L\sigma (v\sigma )]

\leq 2 sup\widehat v\in \scrA 
| L(\widehat v) - \widehat L\sigma (\widehat v)| +L\sigma (\widehat v) - L\sigma (v\sigma ).

Taking the infimum over \widehat v \in \scrA gives

L\sigma (\widehat v\sigma ) - L\sigma (v\sigma )\leq 2 sup\widehat v\in \scrA 
| L\sigma (\widehat v) - \widehat L\sigma (\widehat v)| + inf\widehat v\in \scrA 

[L\sigma (\widehat v) - L\sigma (v\sigma )].(5.10)

For any \widehat v \in \scrA , and w= \widehat v - v\sigma , we deduce

L\sigma (\widehat v) - L\sigma (v\sigma ) =
1

2
(\kappa \nabla w,\nabla w) + (\kappa \nabla v\sigma ,\nabla w) +

\sigma 

2
\| w\| 2L2(\partial \Omega )

+ \sigma (v\sigma  - \~h,w)L2(\partial \Omega )  - (F,w)

=
1

2
(\kappa \nabla w,\nabla w) + \sigma 

2
\| w\| 2L2(\partial \Omega ),

where the last step is due to the weak formulation of v\sigma , i.e.,

(\kappa \nabla v\sigma ,\nabla w) + \sigma (v\sigma  - \~h,w)L2(\partial \Omega ) = (F,w).

Upon substituting the identity into (5.10) and applying the trace theorem, we obtain
the desired bound.

The error decomposition in Lemma 5.4 provides interesting insights into the to-
tal error of the NN approximation \widehat v\theta : The two terms sup\widehat v\in \scrA | L\sigma (\widehat v)  - \widehat L\sigma (\widehat v)| and
inf\widehat v\in \scrA \sigma | | \widehat v  - v\sigma | | H1(\Omega ) respectively represent the statistical error, due to the use of
the Monte Carlo method to approximate the integral, and the approximation error,
due to the use of NNs to approximate the function v\sigma .

Note that in the analysis, we have assumed that a global optimizer \widehat v\sigma of the
empirical loss \widehat L\sigma (v\theta ) can be numerically realized, which is unfortunately generally
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SINGULARITY SPLITTING DEEP RITZ METHOD A2069

not the case in practice. Indeed, the landscape of the empirical loss \widehat L\sigma (v\theta ) is highly
nonconvex (see [42] for graphical illustrations of PINN), due to the nonlinearity of the
activation function \rho , and there is no guarantee that an optimizer will find a global
minimizer \widehat \theta . Instead only an approximate minimizer \~\theta can be expected in practice.
This leads to an additional source of error, known as optimization error in the litera-
ture. It is often observed to be dominating in many neural PDE solvers [68, 42, 38].
Up to now, it is still completely open to rigorously analyze the optimization error and
thus is often ignored from the analysis.

Below we bound the approximation error and the statistical error. This kind of
analysis has been pursued in several recent works [47, 19, 37, 51, 46] under different
assumptions on the activation function \rho and NN architecture. Under the assumption
F \in L\infty (\Omega ), the work [37] provides relevant estimates on the quadrature error by
means of the Monte Carlo method using Rademacher complexity and the approxima-
tion error of the penalized solution with NNs using the approximation theory from
[32].

Lemma 5.5. For \~h \in H
3
2 (\partial \Omega ) and F \in L2(\Omega ), the solution v\sigma (of the penalized

problem (5.1)) satisfies

\| v\sigma \| H2(\Omega ) \leq C(\| \~h\| 
H

3
2 (\partial \Omega )

+ \| F\| L2(\Omega )).

Proof. The given conditions on \~h and F and the standard elliptic regularity theory
imply

\| v\ast \| H2(\Omega ) \leq C(\| \~h\| 
H

3
2 (\partial \Omega )

+ \| F\| L2(\Omega )).

Meanwhile, z = v\sigma  - v\ast satisfies problem (5.3) with \epsilon = \sigma  - 1 and g =  - \epsilon \kappa \partial v\ast 

\partial n . Then
applying Lemma 5.2 and the trace theorem yields

\| v\ast  - v\sigma \| H2(\Omega ) \leq C\epsilon  - 1\| \epsilon \kappa \partial v\ast 

\partial n \| H 1
2 (\partial \Omega )

\leq C\| v\ast \| H2(\Omega ).

Then the triangle inequality shows the desired assertion.

The next result gives an error bound on the NN approximation \widehat v\sigma , by suitably
adapting the estimates given in [37, Theorems 4.1 and 5.13], and the a priori regularity
on v\sigma in Lemma 5.5. The expectation \BbbE \{ Xi\} N

i=1,\{ Yj\} N
j=1

[\cdot ] is taken with respect to the

random sampling points \{ Xi\} Ni=1 and \{ Yj\} Nj=1 in the domain \Omega and on the boundary
\partial \Omega . We recall also the set \scrN \rho (D,N\theta ,R) of NN functions (of a fixed architecture)
defined in (3.12).

Theorem 5.6. Let F \in L\infty (\Omega ) and \~h\in H 3
2 (\partial \Omega )\cap L\infty (\partial \Omega ). Let N be the number

of training samples on the domain \Omega and the boundary \partial \Omega , and let \rho be logistic
function 1

1+e - x or tanh function ex - e - x

ex+e - x . Then, for any tolerance \epsilon > 0 and \mu \in (0,1),
there exists a parameterized NN function class

\scrA =\scrN \rho 

\Bigl( 
C ln(d+ 1),C(d)\epsilon  - 

d
1 - \mu ,C(d)\epsilon  - 

9d+8
2 - 2\mu 

\Bigr) 
such that with the number of samples N = O(\epsilon  - C

d \mathrm{l}\mathrm{n}(d+1)
1 - \mu ) both in the domain \Omega and

on the boundary \partial \Omega , the NN approximation \widehat v\sigma \in \scrA satisfies

\BbbE \{ X\} N
i=1,\{ Yj\} N

j=1

\Bigl[ 
\| \nabla (\widehat v\sigma  - v\sigma )\| 2L2(\Omega ) + \sigma \| \widehat v\sigma  - v\sigma \| | 2L2(\partial \Omega )

\Bigr] 
\leq C(\Omega , \kappa ,F,\~h)\sigma \epsilon 2.(5.11)

Thus, for the NN approximation \widehat u\sigma = \kappa  - 1f\Phi +\widehat v\sigma by SSDRM, there holds that

\BbbE \{ Xi\} N
i=1,\{ Yj\} N

j=1

\Bigl[ 
\| \widehat u\sigma  - u\ast \| 2H1(\Omega )

\Bigr] 
\leq C(\Omega , \kappa ,F,\~h)\sigma \epsilon 2 + c(F,\~h)\sigma  - 2.(5.12)
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Proof. The stated result follows from several known estimates from [37] and relies
on estimating the approximation error and statistical error separately. We sketch
the proof for the convenience of readers. First, we bound the approximation error
inf\widehat v\in \scrA \| \widehat v - v\sigma \| H1(\Omega ) by Lemma 5.5:

inf\widehat v\in \scrA 
\| \widehat v - v\sigma \| H1(\Omega ) = \| v\sigma \| H2(\Omega ) inf\widehat v\in \scrA 

\bigm\| \bigm\| \bigm\| \bigm\| \widehat v
\| v\sigma \| H2(\Omega )

 - v\sigma 
\| v\sigma \| H2(\Omega )

\bigm\| \bigm\| \bigm\| \bigm\| 
H1(\Omega )

= \| v\sigma \| H2(\Omega ) inf\widehat v\in \scrA 

\bigm\| \bigm\| \bigm\| \bigm\| \widehat v - v\sigma 
\| v\sigma \| H2(\Omega )

\bigm\| \bigm\| \bigm\| \bigm\| 
H1(\Omega )

\leq C
\bigl( 
\| \~h\| 

H
3
2 (\partial \Omega )

+ \| F\| L2(\Omega )

\bigr) 
inf\widehat v\in \scrA 

\bigm\| \bigm\| \bigm\| \bigm\| \widehat v - v\sigma 
\| v\sigma \| H2(\Omega )

\bigm\| \bigm\| \bigm\| \bigm\| 
H1(\Omega )

.

By [37, Theorem 4.1] (or [32, Proposition 4.8]), there exists an NN function v\rho \in \scrA =

\scrN \rho (C ln(d+ 1),C(d)\epsilon  - 
d

1 - \mu ,C(d)\epsilon  - 
9d+8
2 - 2\mu ) such that\bigm\| \bigm\| \bigm\| \bigm\| v\rho  - v\sigma 
\| v\sigma \| H2(\Omega )

\bigm\| \bigm\| \bigm\| \bigm\| 
H1(\Omega )

\leq \epsilon .

Consequently, we get

inf\widehat v\in \scrA 
\| \widehat v - v\sigma \| 2H1(\Omega ) \leq C(\Omega , F,\~h)\epsilon 2.(5.13)

To bound the statistical error sup\widehat v\in \scrA | L\sigma (\widehat v)  - \widehat L\sigma (\widehat v)| , we customarily split it into
three terms:

sup\widehat v\in \scrA 
| L\sigma (\widehat v) - \widehat L\sigma (\widehat v)| 
\leq sup\widehat v\in \scrA 

\bigm| \bigm| \bigm| \bigm| \bigm| | \Omega | \BbbE X\sim U(\Omega )
\kappa (X)| \nabla \widehat v(X)| 2

2
 - | \Omega | 

N

N\sum 
i=1

\kappa (Xi)| \nabla \widehat v(Xi)| 2

2

\bigm| \bigm| \bigm| \bigm| \bigm| 
+ sup\widehat v\in \scrA 

\bigm| \bigm| \bigm| \bigm| \bigm| | \Omega | \BbbE X\sim U(\Omega )\widehat v(X)F (X) - | \Omega | 
N

N\sum 
i=1

\widehat v(Xi)F (Xi)

\bigm| \bigm| \bigm| \bigm| \bigm| 
+

\sigma 

2
sup\widehat v\in \scrA 

\bigm| \bigm| \bigm| \bigm| \bigm| | \partial \Omega | \BbbE Y\sim U(\partial \Omega )[T\widehat v(Y ) - \~h(Y )]2  - | \partial \Omega | 
N

N\sum 
j=1

[T\widehat v(Yj) - \~h(Yj)]
2

\bigm| \bigm| \bigm| \bigm| \bigm| .
Then, by applying [37, Theorem 5.13] (with the following setting of the theorem
statement: the depth \scrD = C ln(d + 1), the number of nonzero parameters n\scrD =

C(d)\epsilon  - 
d

1 - \mu , and the upper bound B\theta =C(d)\epsilon  - 
9d+8
2 - 2\mu on each parameter) to the above

three terms, we obtain

\BbbE \{ Xi\} N
i=1,\{ Yj\} N

j=1

\Bigl[ 
sup\widehat v\in \scrA 
| L\sigma (\widehat v) - \widehat L\sigma (\widehat v)| \Bigr] \leq C(\Omega , \kappa )\sigma \epsilon 2,(5.14)

when the number N of sampling points in the domain \Omega and on the boundary \partial \Omega is set

to N = C(d,\Omega )\epsilon  - C
d \mathrm{l}\mathrm{n}(d+1)

1 - \mu . This estimate was proved using Rademacher complexity
and Lipschitz continuity of the NN output with respect to the NN parameter vector \theta .
Last, substituting the estimates (5.13) and (5.14) into Lemma 5.4 yields the desired
estimate (5.11). The other estimate (5.12) is direct from the construction of the
approximation \widehat u\sigma , the Poincar\'e inequality, and Theorem 5.3.
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Note that, generally, the approximation \widehat u\sigma and the true solution u\ast do not nec-
essarily belong to the space H1(\Omega ), and thus an error estimate in the H1(\Omega ) norm
cannot be expected. Nonetheless, the error \widehat u\sigma  - u\ast does converge in H1(\Omega ), since
the singularity splitting technique extracts the leading singularity directly. The pen-
alty parameter \sigma is updated using the path-following strategy, and it is increased
geometrically by a factor \eta > 1 in every outer loop. Thus, as k increases, \sigma k grows
exponentially so the error due to the penalization method decays exponentially fast
to zero; cf. Theorem 5.3. However, this comes at the price of increasing the general-
ization error, as evidenced by the factor \sigma in the first term of the error bound. This
error can be partially offset by \epsilon , which is in turn controlled by the number of sample
points (in the domain and on the boundary), and the complexity of the NN (width,
depth, and weights). This short analysis clearly indicates that there might be an op-
timal value for the penalty parameter \sigma to balance the trade-off between the different
sources of the errors. Of course this analysis has left out one very important point
in the analysis: it assumes that a global minimizer \widehat v\sigma to the empirical loss \widehat L\sigma (v\theta )
can be found, which is generally not true, due to the highly complex landscape of the
empirical loss \widehat L\sigma (v\theta ).

6. Conclusions. In this work, we have investigated the efficient NN solution
of the variable coefficient second-order elliptic problems with singular sources, which
include point sources, line sources, and their combinations. The presence of the
singular source prevents a direct application of the standard NN-based solvers, e.g.,
PINNs, the deep Ritz method, and weak adversarial networks. We have proposed a
simple modification of the standard deep Ritz method (which is based on the Ritz
variational formulation) by splitting the solution into a regular part and a singular
part, where the singular part is expressed analytically using the fundamental solution
to the Laplace equation. Extensive numerical experiments clearly confirm its efficiency
and accuracy, when compared with existing NN-based approaches. Furthermore, we
have discussed relevant theoretical issues.

Although the idea of singularity splitting has only been illustrated on the deep
Ritz method, it applies equally well to other NN-based approaches, e.g., PINNs and
weak adversarial networks, and potentially can also be very promising for solving
elliptic problems with singular sources, due to the much improved regularity of the
regular part of the splitting. These generalizations and related issues, e.g., evolution
equations, will be explored in future works.
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