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We provide an online framework for analyzing data recorded by smart
watches during running activities. In particular, we focus on identifying vari-
ations in the behavior of one or more measurements caused by changes in
physical condition, such as physical discomfort, periods of prolonged de-
training, or even the malfunction of measuring devices. Our framework con-
siders data as a sequence of running activities represented by multivariate
time series of physical and biometric data. We combine classical changepoint
detection models with an unknown number of components with Gaussian
state space models to detect distributional changes between a sequence of
activities. The model considers multiple sources of dependence due to the se-
quential nature of subsequent activities, the autocorrelation structure within
each activity, and the contemporaneous dependence between different vari-
ables. We provide an online expectation-maximization (EM) algorithm in-
volving a sequential Monte Carlo (SMC) approximation of changepoint pre-
dicted probabilities. As a byproduct of our model assumptions, our proposed
approach processes sequences of multivariate time series in a doubly-online
framework. While classical changepoint models detect changes between sub-
sequent activities, the state space framework, coupled with the online EM
algorithm, provides the additional benefit of estimating the real-time proba-
bility that a current activity is a changepoint.

1. Introduction. Running is one of the most popular and practiced sports worldwide,
with almost 60 million people having participated in running, jogging, and trail running in
2017 in the United States (Statista (2020a)). Increasingly more runners use smart watches
and devices that record their workouts, allowing for performance analysis and the planning of
future workouts. Worldwide smart watch shipments volume as estimated by Statista (2020b)
were 74 million units in 2018, 97 million units in 2019, 115 million units in 2020, with an
expected growth to over 258 million units by 2025. Apps and wearables are driving the next
digital health and fitness revolution in which intelligent and automatic real-time control and
monitoring tools will become extremely relevant (Statista (2020c)). Indeed, it is expected
that, in the near future and in some cases even now, smart watches may be used as medical
monitoring devices, providing support at an individual level to health-care consumers (Free
et al. (2013), Singh et al. (2018)) and, more importantly, to users with different levels of
health literacy, communication, and data skills (Siqueira do Prado et al. (2019), Vitabile et al.
(2019)). The spectrum of available and potential measurements by smart watches includes
information on movement, heart rate, blood oxygenation and pressure, and glucose (García-
Guzmán et al. (2021), PKvitality (2020)). Our contribution provides a modeling framework
to analyze, in an online fashion, data recorded from smart devices during running activities.
In particular, we focus on identifying variations in the behavior of one or more measurements
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FIG. 1. A sequence of activities performed by one athlete from our dataset.

caused by changes in physical condition, such as physical discomfort, periods of prolonged
detraining, or even the malfunction of measuring devices (Schneider et al. (2018)).

The use of wearable technologies and sensor data for medical problems is gaining increas-
ing interest from the statistical community; see, for example, Du Roy de Chaumaray, Marbac
and Navarro (2020), Huang et al. (2019), Qian et al. (2021). The difficulty in monitoring
performances due to the presence of disturbing factors, such as environmental conditions or
other within-activity sources of variability, is widely accepted; see, for example, Schneider
et al. (2018). A valuable contribution to this field was provided by Frick and Kosmidis (2017),
who developed an R (R Core Team (2020)) package that allows for both basic and advanced
retrospective analysis of data collected from smart devices. Unlike previous works on this
type of data, we focus on online inference because it highlights the important aspect of smart
devices related to the monitoring activities as they are carried out (Bourdon et al. (2017)).

Recent literature in sports science and medicine points out the need to make decisions by
evaluating the personal medical history, the long- and short-term training goals of the athlete,
and the time course of training schedules (Pelliccia et al. (2021), Schneider et al. (2018)). We
address these issues by utilizing data collected as a sequence of activities, where each activity
represents a part of the training session. The relevant measurements that we will consider
in this study are heart rate (bpm, beats per minute) and speed (m/s, meters per second),
whereas other common variables that can be incorporated in our proposed methodology are
cadence (spm, steps per minute) and the runner’s geographical position (latitude, longitude,
and altitude). Figure 1 shows a sample of the data, consisting of 85 consecutive warm-up
activities performed by one athlete during which the heart rate and speed are monitored over
time. For all the activities, after a sudden increase the heart rate curves seem to slowly evolve
around a trend, while the speed levels change slowly during the activity.

For one activity all collected information is represented by a multivariate time series with
complex dependence structures that make the extraction of the underlying signal a nontrivial
statistical problem. Our inferential framework is doubly-online in the following sense. First,
we identify changepoints in a between-online setting in which activities are processed se-
quentially when a new one is fully observed. This permits to divide activities into subsequent
segments and update the information on the unknown parameters at the end of each activity.
We also consider a within-online setting which refers to the online data processing of one
activity. During a run, having information on the behavior difference between the current and
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FIG. 2. An example of the within-online setting. The red dashed lines indicate the current monitored activity,
while gray lines denote previous activities. The vertical line marks the time at which our algorithm provides the
posterior probability that the current activity is a changepoint.

the previous activities may be translated into motivational feedback or a potential alert before
the end of the activity. Figure 2 shows the within-online setting for data collected by one run-
ner in our dataset. The red lines are associated to one new activity, monitored by the athlete
after five minutes of running and characterized by high effort, although the speed behavior
seems to be similar to those in the previous activities (shown in gray). Our algorithm pro-
vides an online probabilistic quantification of the changepoint uncertainty by delivering the
posterior probability of a behavioral change occurrence at any time point of the activity. In
the case of Figure 2, the runner is interested in the behavior change at minute 5 of the current
activity. The instant when the runner monitors the status was chosen for exemplary reasons,
with the aim of showing the interest of the athlete in having information before the end of the
activity. However, this interest may vary and be located in different parts of the activity.

We model the set of observed activities as a multivariate state space model (Durbin and
Koopman (2012), Shumway and Stoffer (2017)), and we adapt to this framework classi-
cal changepoint modeling which allows for the online detection of an a priori unknown set
of changepoints between activities; see Caron, Doucet and Gottardo (2012), Chib (1998),
Fearnhead and Liu (2007), Yildirim, Singh and Doucet (2013). Changepoint detection is a rel-
evant problem in many fields of science, ranging from industrial process control, health mon-
itoring, cybersecurity, and machine learning (see, e.g., Aminikhanghahi and Cook (2017),
Titsias, Sygnowski and Chen (2022), Xie et al. (2021), Haynes, Fearnhead and Eckley
(2017)). Early works on changepoints identification coupled with state space model can be
also found in Kitagawa (1987) and Song (2007). Our approach differs in that we solve a
problem of changepoint signal extraction in which the double sequential nature—between
and within activities—of the data-generating process is preserved. The key idea is that we
leverage the data on the past history of the athlete as a benchmark for identifying standard
behaviors and deviations, providing relevant information about the performance as new data
are collected. In our application, making online inferences on a sequence of activities be-
fore the last one is fully observed is clearly of paramount importance. The literature on the
changepoint detection problem is very large, and alternative approaches have been proposed
for high-dimensional frameworks, mostly based on dimensionality reduction techniques (see,
e.g., Samé and Govaert (2017), Grundy, Killick and Mihaylov (2020)). Such approaches, al-
though potentially usable in the between-online setting in which the observations for identify-
ing changepoints consist of entire activities represented by multiple multivariate time series,
are not directly applicable in the within-online setting in which there is the need to preserve
the dual sequential nature of the data. The literature on online learning is vast and fast in-
creasing, with new contributions and techniques that deal with both high dimensional and
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challenging scientific problems; see, for example, Cappé and Moulines (2009), Denevi et al.
(2019) and Luo and Song (2020). We contribute to this literature by proposing a new state-
space-based algorithm for changepoint detection in a sequence of time series by adopting the
online expectation-maximization (EM) algorithm developed by Yildirim, Singh and Doucet
(2013). The nature of our problem requires taking into account three sources of dependence:
one that inherits the sequential nature of subsequent activities, one that considers the auto-
correlation structure within each activity, and one that models the contemporaneous depen-
dence between variables. As a byproduct of our model assumptions and the online inferential
procedure, our approach processes sequences of data in a doubly-online framework. While
classical changepoint models detect distributional changes in a sequence of activities (i.e.,
multivariate time series), our state space model coupled with the online EM approach pro-
vides the additional benefit of estimating the probability that a single activity is a changepoint
during a run.

The paper is organized as follows. Sections 2 and 3 describe the statistical model and the
algorithm to perform inference, respectively. Section 4 illustrates a small simulation study
that assesses our algorithm performance with synthetic examples, and Section 5 presents the
results of our model using real data collected by an athlete. We conclude with Section 7
which describes the model’s limitations and possible future developments. Proofs and details
on the available dataset are provided in the Supplementary Material (Stival, Bernardi and
Dellaportas (2023)).

2. The model. For each runner we observe the data y1:N,1:T , composed of N ordered
activities that are represented by P -dimensional time series at T time points. An activity can
be thought of as a running session taking place on different days; T defines the duration of
each activity, which is considered, for simplicity, to be equal for all activities, and P denotes
the number of smart device measurements, such as heart rate and speed. Our interest lies in
modeling the data online and identifying changepoints during each activity, using information
on both previous activities and previous recordings during the current activity. We build our
model by first introducing an N -dimensional latent vector S1:N = (S1, . . . , SN) such that S1 =
1 and Sn − Sn−1 = 1 if a changepoint occurs at the nth (n > 2) activity. The vector S1:N =
(S1, . . . , SN) divides the activities into SN contiguous segments in which activities belonging
to different segments are assumed to be independent of each other. The segments S1:N are
modeled using a discrete state space Markov chain with transition probability p(Sn|Sn−1) = λ

if Sn = Sn−1 + 1, for 0 < λ < 1.
Assume that the activity n belongs to segment s. We model its measurements at time t by

a state space representation with measurement equation

(1) yn,t =
[
Z(S)

θ Z(A)
θ

][
α

(s)
t

αn,t

]
+ εn,t ,

with εn,t
iid∼ NP (0,�θ ), and state equation

(2)

[
α

(s)
t+1

αn,t+1

]
=

[
T(S)

θ 0
0 T(A)

θ

][
α

(s)
t

αn,t

]
+

[
η

(s)
t

ηn,t

]
,

with η
(s)
t

iid∼ NM(0,�θ ), ηn,t

iid∼ NK(0,�θ ), and α
(s)
1

iid∼ NM(α̂
(S)
1|0,P(S)

1|0) independent of

αn,1
iid∼ NK(α̂

(A)
1|0 ,P(A)

1|0 ). The subscript θ is used throughout to highlight which parts of the
model depend on, or are a function of, an unknown parameter vector θ ∈ 	 which is the
object of inference in the model. In this part of model specification, both the parameter θ
and the parameter space 	 are deliberately left generic so that a general model that can be
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used with different type of measurements is presented. One could think to θ as the typical
parameter involved in state space models, composed, for example, of autoregressive coeffi-
cients and covariance matrices of disturbances and errors. In the above specification, α

(s)
t are

vectors of dimensions M × 1 that denote the dynamic segment-specific latent features, which

are supposed to be independent of any other α
(s′)
t , for any s �= s′. Together with S1:N , the

segment-specific latent features α
(s)
t account for the dependence between subsequent activ-

ities. The activity-specific latent features αn,t are vectors of dimension K × 1 that capture
temporal dependencies that are unrelated to the performance of the athlete and describe neg-
ligible factors or disturbing aspects associated with the activities. These vectors are assumed
to be independent of α

(s)
t and any other αn′,t , with n′ �= n. The elements α̂

(S)
1|0 , α̂

(A)
1|0 , and

P(S)
1|0 , P(A)

1|0 are the initial means and covariance matrices of the segment-specific and activity-
specific latent features, respectively. With no information on the initial states, we adopt the
diffuse state initialization technique in which these means and covariances are independent of
θ , and the latter are supposed to be large (Durbin and Koopman (2012)). The elements Z(S)

θ ,

Z(A)
θ , T(S)

θ , and T(A)
θ are nonstochastic design matrices with dimensions P × M , P × K ,

M × M , and K × K , respectively. The superscripts (S) and (A) indicate that these matrices
are linked to the segment-specific latent states α

(s)
t and activity-specific latent states αn,t ,

respectively. These matrices are shared across different segments and different activities and
may depend on θ . Their specification is left undefined and depends on the specific application
and behavior of the variables being considered, as it is typical in state space modeling (see,
e.g., Durbin and Koopman (2012)). Coupled with the design matrices, the covariance matri-
ces �θ , �θ , and �θ of dimensions P × P , M × M , and K × K , respectively, capture any
contemporaneous dependencies between different elements of the model, such as the entries
of the error component εn,t of dimensions P × 1 or those of the disturbance vectors η

(s)
t and

ηn,t of dimensions M ×1 and K ×1, respectively. In general, the covariance matrices are full
and unstructured; however, depending on the application, they may have a specific structure
and involve a small number of elements of θ . Note that the design matrices of the model
and the covariance matrices are fixed both with respect to different time instants (i.e., t) and
different activities (i.e., n). Generalizing the model to consider time- or activity-dependent
matrices is possible, conditional on whether these are known or nonstochastic. This aspect,
although it allows to enlarge the number of models that can be considered within the same
framework, is outside the scope of this work, whose central themes are the between and
the within-online settings for online monitoring of sports activities. More details on these
generalizations, however, can be found in Section 7 and in the Supplementary Material (Sec-
tion S5). In the next subsection, we derive some alternative model formulations that are useful
both from a computational point of view and for obtaining the model likelihood.

2.1. Working model and likelihood. Let α1:N
1:T = (α1:N,1:T ,α

(1:SN)
1:T ) be a vector storing

both the segment-specific and the activity-specific latent features. It is possible to write the
augmented likelihood for the model, which has the conditional independence structure

pθ

(
y1:N,1:T ,α1:N

1:T , S1:N
) = pθ

(
y1:N,1:T |α1:N

1:T , S1:N
)
pθ

(
α1:N

1:T |S1:N
)
p(S1:N),(3)

where pθ (α
1:N
1:T |S1:N) = pθ (α

(1:SN)
1:T |S1:N)pθ (α1:N,1:T ). To obtain the likelihood of the ob-

served process, we need to integrate out both α1:N
1:T and S1:N . To do so, we first note that,

conditional on S1:N , it is possible to consider SN independent segments that are described by
SN independent segment-specific state space models. More specifically, consider the model
specified in equations (1) and (2) and condition on S1:N . Assume also that the sth segment
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ranges between the js th and the ks th activity so that its length is ms = ks − js + 1. Under our
model assumptions, the segment s can be modeled using the following equations:

⎡⎢⎢⎢⎣
yjs ,t

yjs+1,t

...

yks ,t

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
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θ Z(A)
θ 0 . . . 0
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θ 0 Z(A)

θ 0
...

...
... 0

. . . 0
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θ 0 . . . 0 Z(A)
θ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
α

(s)
t
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(s)
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αjs+1,t
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⎤⎥⎥⎥⎥⎥⎥⎦ +
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η

(s)
t

ηjs ,t

ηjs+1,t
...

ηks,t

⎤⎥⎥⎥⎥⎥⎥⎦(5)

for εjs :ks,t = (ε′
js ,t

, ε′
js+1,t , . . . , ε

′
ks,t

)′ iid∼ NmsP (0, Ims ⊗ �θ ), ηjs :ks ,t
= (η′

js ,t
,η′

js+1,t . . . ,

η′
ks ,t

)′ iid∼ NmsK(0, Ims ⊗ �θ ), η
(s)
t ∼ NM(0,�θ ), and αjs :ks ,1 = (α′

js ,1
,α′

js+1,1 . . . ,α′
ks ,1

)′

∼NmsK(1ms ⊗ α̂
(A)
1|0 , Ims ⊗ P(A)

1|0 ), α
(s)
1 ∼ NM(α̂

(S)
1|0,P(S)

1|0), independent of each other and with
fixed hyper-parameters.

Conditional on segments S1:N , equations (4) and (5) specify a state space model such that
both the segment-specific and activity-specific latent features can be integrated out by means
of a Kalman filter routine. By integrating out these latent features in equation (3), we obtain
the contribution of the sth segment to the likelihood conditional on S1:N given by

(6) logpθ (yjs :ks,1:T |Sjs :ks ) = −1

2

T∑
t=1

(
msP log(2π) + log |Fs,t | + υ ′

js :ks,t
(Fs,t )

−1υjs :ks,t

)
,

where both the innovations vectors υjs :ks ,t and their respective covariance matrices Fs,t are
outputs of the Kalman filter routine, reviewed in the Supplementary Material (Section S3).
Thus, the likelihood is conditional on the segments but no longer on the segment- and activity-
specific latent features. The conditional likelihood depends clearly on the unknown parameter
θ through υjs :ks,t and Fs,t , which are functions of the data, the design matrices, and the
covariance matrices involved in the state space model for which the subscript θ has been
omitted for simplicity of notation. While the model specification above is intuitively driven by
the mechanism that generates the data, it is useful to connect it with the way Yildirim, Singh
and Doucet (2013) specified a model because we will adopt their inferential strategy in the
next section. Specifically, instead of S1:N , we can define a latent vector D1:N = (D1, . . . ,DN)

such that Dn represents the delay of from the last changepoint defined through the following
recursion:

Dn|Dn−1 =
{
Dn−1 + 1 if Sn = Sn−1,

1 if Sn = Sn−1 + 1,

with D1 = 1, and we note the information equivalence between D1:N and S1:N . We can then
express the conditional likelihood of the observed process as

pθ (y1:N,1:T |D1:N) =
N∏

n=1

GD
θ,n(Dn),(7)
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where the potentials are defined as

GD
θ,n(Dn) = pθ (yn,1:T |D1:n,y1:(n−1),1:T ) =

⎧⎪⎨⎪⎩
pθ (yj :n,1:T |Dn)

pθ (yj :(n−1),1:T |Dn−1)
if Dn = Dn−1 + 1,

pθ (yn,1:T |Dn) if Dn = 1,

with j = n − Dn + 1. Notice that the potential GD
θ,n(Dn) is nothing more than the individual

contribution of activity n to the conditional likelihood of the observed process, provided that
the first n − 1 activities have already been observed and the index of the last changepoint is
known by means of Dn. The likelihoods involved in the potentials can be easily calculated
through the use of Kalman filter routines, as in equation (6), in which, for activity n, the
activities to be considered in the respective segment are determined by Dn. Knowing either
D1:N or S1:N is equivalent, while if we consider only the marginal Dn instead of Sj :n with
j = max(1, Sn − Dn + 1), we lose the information on the number of the segment the nth
activity belongs to. We do not consider the random variable Ds

n which highlights both the
delay with respect to the last changepoint and the segment to which the activity belongs. Since
our primary interest is the early changepoint detection, all the provided results rely on an
underlying exchangeability assumption between segment-specific features which simplifies
the mathematical treatment.

The likelihood of the observed process is given by pθ (y1:N,1:T ) = Eθ [∏N
n=1 GD

θ,n(Dn)]
where the expectation is taken with respect to D1:N . This likelihood represents the target to
maximize for obtaining an estimate of the unknown parameter θ which drives the behavior
of the observed process. The parameter θ is involved in the model specification of both the
segments-specific and the activity-specific temporal dynamics during the activities.

3. Estimation and changepoint detection.

3.1. From batch to online EM algorithms. Our interest lies in θ̂ =
arg maxθ∈	[pθ (y1:N,1:T )] via the EM algorithm introduced by Dempster, Laird and Ru-
bin (1977). An exact online EM algorithm for linear and Gaussian state space models was
introduced by Elliott, Ford and Moore (2002). Here we review and adapt to our setting the
online EM algorithm by Yildirim, Singh and Doucet (2013), involving a Sequential Monte
Carlo (SMC) approximation step, developed for a large class of changepoints models.

Let θ̂ it be the the estimate of the maximizer at the it th iteration of the EM algorithm. At
iteration it + 1, the expectation step of the offline EM algorithm computes

Q1:N(θ , θ̂ it )
(8)

= E
θ̂ it

[
logpθ

(
y1:N,α1:N

1:T ,D1:N
)|y1:N,1:T

]
= E

θ̂ it

[
logp(D1:N) + E

θ̂ it

[
logpθ

(
y1:N,α1:N

1:T |D1:N
)|D1:N,y1:N,1:T

]|y1:N,1:T
]
.(9)

The expected value in equation (8) is computed with respect to both D1:N and the latent fea-
tures α1:N

1:T , considered jointly, and involves the log-density augmented for both latent vari-
ables. Equation (9) involves an external and an internal expectation, which are computed with
respect to the random variables D1:N and α1:N

1:T |D1:N , respectively, given the entire set of data

y1:N,1:T . The subscript 1:N in Q1:N(θ, θ̂ it ) indicates that all the observations up to activity N

are used. Moreover, Q1:N(θ , θ̂ it ) depends on θ through the functional form of the augmented
likelihood pθ (y1:N,α1:N

1:T ,D1:N). The true parameter θ is substituted by its estimate θ̂ it when
the expected values are computed at iteration it + 1. Once this expectation is computed, the
maximization step solves

θ̂ it+1 = arg max
θ∈	

[
Q1:N(θ , θ̂ it )

] = �(Q1:N)(10)
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with � : Q1:N → 	, and Q1:N being the r-dimensional set of sufficient statistics. The two
steps are repeated until a set of stopping rules are satisfied, which allows to iteratively grow
the function Q1:N(θ , θ̂ it ) and, consequently, the likelihood of the observed process. The of-
fline EM algorithm requires the ability to compute both the E-step in equation (8) and the
M-step in equation (10) in closed form or through the use of a finite set of elementary opera-
tions, involving the expectation of the set of r sufficient statistics Q1:N .

To adapt the EM algorithm to the online setting, we define the individual contribution of
activity n to Q1:n(θ , θ ′) as

ιθ ′(yn,1:T ) := logp(D1:n) − logp(D1:(n−1))

+ Eθ ′
[
logpθ

(
y1:n,1:T ,α1:n

1:T |D1:n
)|y1:n,1:T ,D1:n

]
− Eθ ′

[
logpθ

(
y1:(n−1),1:T ,α

1:(n−1)
1:T |D1:(n−1)

)|y1:(n−1),1:T ,D1:(n−1)

]
,

with ιθ ′(y1,1:T ) = I(D1 = 1) + Eθ ′ [logpθ (y1,1:T ,α1
1:T |D1)|y1,1:T ,D1], for any value θ ′ ∈ 	.

The expression for ιθ ′(yn,1:T ) is nothing else but the difference between the argument of
the external expected value in equation (9) computed using the observations up to activity n

and the same argument calculated using with observations up to activity n − 1 in which the
expectations are taken with respect to the latent features α1:n

1:T and α
1:(n−1)
1:T involved in the

respective state space models. Although not easy to interpret, the construction of ιθ ′(yn,1:T )

mimics the definition of the conditional likelihood in terms of the potentials in equation
(7) and allows to write the expression of Q1:N(θ, θ ′) as the expected value with respect to
D1:N of a sum of N functionals, that is, Q1:N(θ , θ ′) = Eθ ′ [∑N

n=1 ιθ ′(yn,1:T )|y1:N,1:T ], and,
therefore, its sequential evaluation as new activities are observed.

We adopt the stochastic approximation, proposed by Yildirim, Singh and Doucet (2013),
based on a forward smoothing technique; see, for example, Kantas et al. (2015). By setting
T1(D1, θ) = ιθ (y1,1:T ) and defining

Sn

(
D1:n, θ ′) :=

n∑
j=1

ιθ ′(yj,1:T ),

Tn

(
D1:n, θ ′)

:= ∑
D1:(n−1)∈D1:(n−1)

Sn

(
D1:n, θ ′)pθ (D1:(n−1)|y1:(n−1),1:T ,Dn)(11)

= ∑
Dn−1∈Dn−1

[
Tn−1

(
D1:(n−1), θ

′) + ιθ ′(yn,1:T )
]
pθ (Dn−1|y1:(n−1),1:T ,Dn),

we are able to evaluate Tn(D1:n, θ ′) sequentially. It can also be shown that

Q1:n
(
θ , θ ′) =Eθ ′

[
n∑

j=1

ιθ ′(yj,1:T )|y1:n,1:T
]

= ∑
Dn∈Dn

Tn

(
D1:n, θ ′)pθ (Dn|y1:n,1:T )

allowing, subject to knowing Tn(D1:n, θ ′) and pθ (Dn|y1:n,1:T ), to also obtain Q1:n(θ, θ ′)
sequentially for any activity n that has been fully observed.

Let γn be a step-size decreasing function such that 0 < γn < 1,
∑∞

n=1 γn = ∞,
∑∞

n=1 γ 2
n <

∞. The stochastic approximation of equation (11) proposed by Yildirim, Singh and Doucet
(2013) becomes

Tγ,n(D1:n; θ̂n−1) = ∑
Dn−1∈Dn−1

[
(1 − γn)Tγ,n−1(D1:(n−1); θ̂n−2)

+ γnιθ̂n−1
(yn,1:T )

]
p

θ̂1:(n−1)
(Dn−1|y1:(n−1),1:T ,Dn),

(12)
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which leads to

Qn = ∑
Dn∈Dn

Tγ,n(D1:n; θ̂n−1)pθ̂1:(n−1)
(Dn|y1:n,1:T ),

which is used for obtaining θ̂n in substitution of Q1:N in equation (10). The algorithm
requires the ability to compute online the approximations p

θ̂1:(n−1)
(Dn−1|y1:(n−1),Dn) and

p
θ̂1:(n−1)

(Dn|y1:(n−1),1:T ), obtained here by an SMC approximation, as described in the next
subsection. The algorithm is listed in the Supplementary Material, together with details re-
garding the computations (Sections S1 and S3).

3.1.1. SMC approximation of the predicted probabilities. The between-online setting
processes activity the data sequentially, whenever an activity has been fully observed. The
purpose of the between-online setting is to leverage existing proposals in the literature for
online parameter estimation and changepoint identification which is useful both for retrospec-
tive performance analysis and as an analysis tool in the within-online setting. We review here
the principles underlying the algorithm proposed by Yildirim, Singh and Doucet (2013) and
derive the computations that lead to our algorithm for changepoint detection, details of which
are given in the Supplementary Material (Section S1). Suppose that pθ (Dn−1, |y1:(n−1),1:T )

is known. The quantity

pθ (Dn, |y1:(n−1),1:T ) = ∑
Dn−1∈Dn−1

pθ (Dn,Dn−1|y1:(n−1),1:T )

= ∑
Dn−1∈Dn−1

p(Dn|Dn−1)pθ (Dn−1|y1:(n−1),1:T )
(13)

can be used to derive exactly

pθ (Dn−1|Dn,y1:(n−1),1:T ) = pθ (Dn,Dn−1|y1:(n−1),1:T )∑
D′

n−1∈Dn−1
pθ (Dn,D

′
n−1|y1:(n−1),1:T )

,

= pθ (Dn|Dn−1)Gθ ,n(Dn−1)pθ (Dn−1|y1:(n−2),1:T )∑
D′

n−1∈Dn−1 pθ (Dn|D′
n−1)Gθ,n(D

′
n−1)pθ (D

′
n−1|y1:(n−2),1:T )

,

and

pθ (Dn|y1:n,1:T ) = GD
θ ,n(Dn)pθ (Dn|y1:(n−1),1:T )∑

D′
n∈Dn

GD
θ ,n(Dn)pθ (D

′
n, |y1:(n−1),1:T )

,

where GD
θ ,n(Dn) = pθ (yn,1:T |Dn,y1:(n−1),1:T ). It is important to note that, although the in-

volved quantities can be obtained exactly, computing equation (13) has complexity O(n), as
p(Dn|Dn−1) �= 0 for 2(n − 1) combinations of (Dn,Dn−1). Hence, the online exact compu-
tation for a large panel of activities may be impractical in many situations, as the complexity
increases with new activities.

Let ηB
n−1(Dn−1) be a particle approximation of pθ (Dn−1|y1:(n−2),1:T ), composed of B

particles with support DB
n−1 = {d1

n−1, . . . , d
B−1
n−1 , dB

n−1} composed by the particles themselves.
Consider then the augmented support DB�

n of dimension 2B , defined as

DB�
n = {(

1, d1
n−1

)
,
(
d1
n−1 + 1, d1

n−1
)
, . . . ,

(
1, dB

n−1
)
,
(
dB
n−1 + 1, dB

n−1
)}

.

An approximation of pθ (Dn|y1:(n−1),1:T ) can be obtained by sampling B independent
particles from DB�

n with weight W(Dn,Dn−1) ∝ p(Dn|Dn−1)G
D
θ,n−1(Dn−1)η

B
n−1(Dn−1)

and then marginalizing with respect to Dn−1. Let DB
(n,n−1) = {(d1

n, d1
n−1), . . . , (d

B
n , dB

n−1)}
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be the B sampled particles. The approximation of pθ (Dn|y1:(n−1),1:T ) is ηB
n (Dn) =∑B

b=1 δDn(d
b
n, db

n−1), with support DB
n = {d1

n . . . , dB
n }, where δDn(d

b
n, db

n−1) = 1, if Dn = db
n ,

and 0 otherwise. Moreover, pθ (Dn−1|Dn,y1:(n−1),1:T ) is approximated by

p
θ̂1:(n−1)

(Dn−1|y1:(n−1),1:T ,Dn)

=
p(Dn|Dn−1)G

D

θ̂n−1,n−1
(Dn−1)η

B
n−1(Dn−1)∑

D′
n−1∈DB

n−1|n
p(Dn|Dn−1)G

D

θ̂n−1,n−1
(D′

n−1)η
B
n−1(Dn−1)

,

and pθ (Dn|y1:n,1:T ) by

(14) p
θ̂1:(n−1)

(Dn|y1:n,1:T ) =
∑

Dn−1∈DB
n−1

GD

θ̂n−1,n
(Dn)p(Dn|Dn−1)η

B
n−1(Dn−1)∑

(D′
n,D′

n−1)∈DB
(n,n−1)

GD

θ̂n−1,n
(D′

n)p(D′
n|D′

n−1)η
B
n−1(D

′
n−1)

,

over the supports DB
(n,n−1) and DB

n , respectively, where the index θ̂1:(n−1) highlights the fact
that the approximations are obtained via a sequence of parameter’s updates.

3.1.2. Maximization step and inner expectations. The maximization step in equation
(10) that attempts to solve ∂Q1:N(θ ,θ ′)

∂θ = 0 requires the computation of the derivative with re-

spect to the elements Z(S)
θ , Z(A)

θ , T(S)
θ , T(A)

θ , �θ , �θ , and �θ , before applying the chain rule
to obtain the derivative with respect to θ . These computations involve a finite set of elemen-
tary operations and the knowledge of both the inner and the outer expectations in equation
(9). In the online setting, the SMC approximation allows to compute the outer expectation
conditional on the available data, while the inner expectation can be obtained by considering
that, conditioned on S1:n, the model for the sth segment in equations (4) and (5) is a linear
Gaussian state space model.

These quantities can be generally obtained by standard Kalman recursions, such as the
Kalman smoother and the lagged smoother proposed, for example, by Durbin and Koopman
(2012) and Shumway and Stoffer (2017). Indeed, let us condition on S1:n or, equivalently, on
the sequence of delays D1:n. By the independence assumption between activities of different
segments, it can be shown that ιθ (yn,1:T ) depends only on the activities that belong to the
last segment. Let us define Lθ ′(yj :n,1:T ) = Eθ ′ [logpθ (yj :n,1:T ,α

j :n
1:T |Dn)|yj :n,1:T ,Dn], with

j = max(1, n − Dn + 1). The quantity ιθ ′(yn,1:T ) is exactly

ιθ ′(yn,1:T ) =
{

1 − λ + Lθ ′(yj :n,1:T ) − Lθ ′(yj :(n−1),1:T ) if j = max(1, n − Dn + 1) < n,

λ + Lθ ′(yj :n,1:T ) if j = max(1, n − Dn + 1) = n,

where Lθ ′(yj :n,1:T ) depends on the expectations Eθ ′ [αj :n
t |Dn,yj :n,1:T ], Eθ ′ [(αj :n

t )(α
j :n
t )′|

Dn,yj :n,1:T ], and Eθ ′ [(αj :n
t+1)(α

j :n
t )′|Dn,yj :n,1:T ], which are computed using the standard

Kalman filtering, smoothing, and lagged smoothing routines (see, e.g., Shumway and Stoffer
(2017), Durbin and Koopman (2012)), reviewed also in the Supplementary Material (Sec-
tion S3).

3.1.3. Computational cost in the between-online setting. The computational complex-
ity for obtaining the SMC approximation is linear with respect to the number of particles
B , as we may need to evaluate at most B distinct quantities in the numerator of equation
(14). Furthermore, since B is fixed during the estimation procedure, the complexity of our
changepoint identification method is also linear with respect to the number of activities N .
This is one of the main benefits of adopting approaches based on the SMC approximations
for changepoint identification, as they allow to lower the computational complexity of the
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procedure, which otherwise increases quadratically with N (see, e.g. Yildirim, Singh and
Doucet (2013), Fearnhead and Liu (2007), Adams and MacKay (2007)). The evaluation of
GD

θ̂n−1,n
(Dn) in equation (14) represents another possible bottleneck for online changepoint

identification. Indeed, to obtain GD

θ̂n−1,n
(Dn), the evaluation of the likelihood in equation (6)

by means of a Kalman filter routine whose complexity depends on the system considered, the
delay Dn, the number of measurements P , and the length T of the activities is required. This
computation has linear cost with respect to T but requires the inversion of the matrix Fs,t

for each time points t which has O(P 3D3
n) complexity. It is worth noting also that, when the

number of measurements is large, the computational burden of the proposed method can be
further reduced by observing that our specification for the dynamic evolution of the multiple
time series is enough general to nest factor models (in the spirit of Durbin and Koopman
(2012)) and related efficient computation techniques, such as the reduction by transformation
technique by Jungbacker and Koopman (2008). Nevertheless, we aware that, in practice, the
number of measurements collected by current smartwatches is typically limited, as it involves
no more than 10 variables (see Bourdon et al. (2017)). On the contrary, the magnitude of Dn

is a random quantity and depends on how much the observed process is segmented by dis-
tinct changepoints. A more segmented process leads to lower delays Dn and, consequently,
to a lower computational cost. In general, improvements and speed-ups can be achieved by
linear algebra tricks or by considering ad hoc techniques for linear state space models (see,
e.g., the univariate treatment of multivariate time series in Durbin and Koopman (2012)). Fi-
nally, the complexity of the maximization step is strongly related on the considered model
specification model considered. Since the computation of the computing the overall compu-
tational cost for the online EM algorithm also involves random quantities (such as the number
of distinct particles and delays), we also investigate these aspects by performing additional
simulation, reported in the Supplementary Material (Section S2) accompanying the paper.

3.2. Monitoring new activities in the within-online setting. The ability to monitor the
presence of a changepoint during activity n is given by the need of computing, on the fly,
pθ (Dn|yn,1:t ,y1:(n−1),1:T ) for any t < T . Note that the activities y1:(n−1),1:T have already
been observed completely, yn,1:t is the nth activity that is being observed, and the interest
resides in checking whether Dn = 1 or not. This allows knowledge of the status of the athlete
during an activity, while also accounting for their already observed past. The direct use of the
Bayes formula gives

pθ (Dn|yn,1:t ,y1:(n−1),1:T )

= pθ (yn,1:t |Dn,y1:(n−1),1:T )pθ (Dn|y1:(n−1),1:T )∑
D′

n∈Dn pθ (yn,1:t |D′
n,y1:(n−1),1:T )pθ (D

′
n|y1:(n−1),1:T )

.
(15)

An approximation of the predicted probability pθ (Dn|y1:(n−1),1:T ) is given by the SMC ap-
proach used by our algorithm so that we now consider the element pθ (yn,1:t |Dn,y1:(n−1),1:T ).
We note that

pθ (yn,1:t |Dn,y1:(n−1),1:T ) =
⎧⎪⎨⎪⎩

pθ (yn,1:t ,yj :(n−1),1:T |Dn)

pθ (yj :(n−1),1:T |Dn)
if Dn > 1,

pθ (yn,1:t |Dn) if Dn = 1,

(16)

where j = max(1, n − Dn + 1), can be computed by means of Kalman filters evaluations.
Indeed, if Dn > 1,

pθ (yn,1:t ,yj :(n−1),1:T |Dn) = pθ (yj :n,1:t |Dn)pθ (yj :(n−1),(t+1):T |Dn,yj :n,1:t ),
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where pθ (yj :n,1:t |Dn) is evaluated by a filtering routine up to time t with data of activities
with indices that range between j and n, and pθ (yj :(n−1),(t+1):T |Dn,yj :n,1:t ) is evaluated
going forward with Kalman filters that treat the element yn,(t+1):T as missing. The need
to evaluate pθ (yj :(n−1),(t+1):T |Dn,yj :n,1:t ) at any time point requires the ability to perform
T − t step ahead Kalman filter evaluations, highlighting the potential computational problem
of evaluating the likelihood for long time series (large T ) and early stages (small t). One
simple solution is to approximate equation (16) with

pθ (yn,1:t |Dn,y1:(n−1),1:T ) ∝
⎧⎪⎨⎪⎩

pθ (yn,1:t ,yj :(n−1),1:(t+k)|Dn)

pθ (yj :(n−1),1:(t+k)|Dn)
if Dn > 1,

pθ (yn,1:t |Dn) if Dn = 1,

(17)

with k = min(T − t, k�) and k� ≥ 0 known, assuming that

pθ (y1:(n−1),(t+k+1):T |y1:n,1:t ,y1:(n−1),(t+1):(t+k),Dn)

pθ (y1:(n−1),(t+k+1):T |y1:(n−1),1:(t+k),Dn)
∝ 1

for any Dn and k fixed in advance. This means that whenever a new activity is observed, one
needs to simply use a finite number of competing Kalman filters with fixed parameters, where
their number is given by the number of different unique particles in the SMC approximation
of pθ (Dn|y1:(n−1),1:T ).

In principle, the role of k� is to go forward with Kalman filters and to evaluate information
that is subsequent to time t but that has already been observed before the nth activity. How-
ever, choosing a large k� implies the need to proceed with Kalman filter evaluations, even
many instants after t . This could be a problem for contexts in which it is necessary to obtain
real-time feedback quickly. A large k� allows to go very far ahead with Kalman filter evalu-
ations, thereby slowing down the computations. Setting k� = 0 is a practical choice to avoid
slow-downs in computations. It is interesting to note that although the information regarding
observations after t for activities prior to the nth are not considered by the Kalman filters,
they are used in the derivation of ηB

n (Dn).

3.2.1. Computational cost in the within-online setting. The interest of the within-online
is to monitor the posterior probability of changepoint in equation (15) while the activity is
being carried out. In the practical context, there is a trade-off between feasibility of the ap-
proach and accuracy of the results obtained. Given the possible limitations of current devices
in storing and managing intense routines, it is worth highlighting some strategies that can
help their computing power management.

We first distinguish between quantities that can be calculated before a new activity starts
and those that must be necessarily calculated while the new activity is being performed.
The former are those quantities that do not involve any data of the new activity yn,1:T , that
is, the predicted probability in equation (15) obtained by means of the SMC approximation
ηB

n (Dn) and the denominator of equation (16) when Dn > 1. In our treatment the evaluation
of both these quantities is done with θ held fixed and setting θ to θ = θ̂n−1 as a by-product
of the online EM in the between-online setting. In this sense the between-online setting can
be considered as a stepping stone for monitoring activities in the within-online setting, as it
reduces and simplifies the quantities to be calculated while a new activity is collected.

The quantities that need to be calculated with a new activity are the numerator in equa-
tion (16), that is, pθ (yn,1:t ,yj :(n−1),1:T |Dn), when Dn > 1, and pθ (yn,1:t |Dn) if Dn = 1. The
number of distinct elements to be evaluated is at most B , that is the number of particles
used to approximate pθ (Dn|y1:(n−1),1:T ). In practice, the presence of ties among the particles
permits the evaluation of only B̃ ≤ B of these elements, that can be evaluated with separate
routines, also allowing for naive parallel computing. It is worth pointing out that the SMC
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approximation in the between-online setting plays another important role in our approach, as
it determines the number of activities that are required to be stored in the devices. Indeed,
when evaluating pθ (yn,1:t ,yj :(n−1),1:T |Dn), only the last Dn activities are used for the com-
putation so that we may need to store the data of, at most, d̄B

n = max(DB
n ) activities, where

DB
n is the support of ηB

n (Dn), highlighting an additional benefit of adopting the approach by
Yildirim, Singh and Doucet (2013).

A final computational complexity aspect is related to the evaluation of the numera-
tor pθ (yn,1:t ,yj :(n−1),1:T |Dn) in equation (17). For a given system of equations (1) and
(2), this complexity depends on, among other factors, t , T , P , and Dn. While the same
reasoning of the between-online setting applies for Dn and P , we note that evaluating
pθ (yn,1:t ,yj :(n−1),1:T |Dn) from scratch requires T Kalman filter steps, as we may need to
run a Kalman filter up to time t with data of both the past activities and the new one to
obtain pθ (yj :n,1:t |Dn) and then to continue up to time T with only past activities to get
pθ (yj :(n−1),(t+1):T |Dn,yj :n,1:t ). In practice, while pθ (yj :n,1:t |Dn) can be obtained once per
time instance t , the quantity pθ (yj :(n−1),(t+1):T |Dn,yj :n,1:t ) needs to be updated every time
a new observation is present. In the within-online setting, not stopping earlier Kalman fil-
ter evaluations implies quadratic complexity in T , as T + ∑T

t=1(T − t) = T + T (T − 1)/2
Kalman step evaluations are used. By adopting the proposed strategy, this complexity be-
comes linear in T (precisely T + k�(T − k� − 1)+ k�(k� + 1)/2 Kalman step evaluations are
used).

4. Simulation studies: Abilities in identifying changepoints. We investigate here the
performance of our proposed changepoint detection algorithm for the between- and within-
online settings via a series of simulated data scenarios. In particular, we illustrate that, be-
yond changepoint identification and unlike other potentially competitive alternatives (see,
e.g., Xie et al. (2021)), our methodology can monitor online the probability of a changepoint
during the activities. We fixed N = 1000, T = 60,120,200, P = 2, S = 50 randomly cho-
sen changepoints and variances σ 2

ε = 1, σ 2
α = 0.05, σ 2

d = 5, and ρ = 0.8. With α
(s)
0 = 02P ,

�0 = [ 1/3 0.5
0.5 1

]
, and αn,0 = 0P , we generated the shared states for each segment, according to

α
(s)
t+1 = IP ⊗ [ 0.95 1

0 0.90

]
α

(s)
t + ξ

(s)
t , ξ

(s)
t ∼ N2P (02P ,σ 2

α(IP ⊗ �0)), and the activity-specific
states according to αn,t+1 = ρ · αn,t +ξn,t , ξn,t ∼ NP (0P ,σ 2

d IP ). We then generated the

observations yn,t = [
IP ⊗

[
1 0

]
IP

][
α

(s)
t

αn,t

] + εn,t , εn,t ∼ NP (0P ,σ 2
ε IP ).

We set λ = 0.5 and estimated θ = (σ 2
ε , σ 2

α , σ 2
d , ρ). In addition, we set k� = 0 since using a

small k� is a necessary practical choice when T is large. As k� increases, the proposed algo-
rithm for the within-online setting becomes infeasible for large T . Alternative specifications
of k� are investigated in the Supplementary Material together with alternative specifications
of λ (Section S4).

We estimate (i) the changepoints in the between-online setting by utilizing equation (14)
and testing p

θ̂1:(n−1)
(Dn = 1|y1:n,1:T ) > δ for some threshold δ and (ii) the probability of

activity n of being a changepoint before it ends in the within-online setting according to
p

θ̂1:(n−1)
(Dn = 1|yn,1:t ,y1:(n−1),1:T ). Figure 3 depicts the behavior of sensitivity and speci-

ficity, as the length of the time series increases, leaving the remaining elements of the models
unchanged. We deal with the usual trade-off between sensitivity and specificity by noting
that in our application, maximizing sensitivity—which is minimizing the number of activi-
ties that are wrongly classified as negative—is more important, as it may indicate possible
activity problems. This is naturally controlled by the threshold δ; see Figure 3. It is reassuring
that our algorithm maintains high levels of specificity as δ changes, regardless of the length
of the time series. In contrast, the sensitivity seems to decrease significantly as δ increases,
particularly for T = 60 and T = 120, although it remains stable for T = 240.
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FIG. 3. Medians and 90% confidence intervals of sensitivity and specificity (y-axis), as a function of the thresh-
old level δ (x-axis), obtained for 20 synthetic examples using our model for T = 60,120, and 240.

The within-online setting allows to monitor online the probability of an activity change-
point, providing information on the athlete’s behavior with respect to the past. Figure 4 shows
two instantiations of this: the filtered probability p̂

θ̂1:(n−1)
(yn,1:t |Dn,y1:(n−1),1:T ), depicted in

the bottom row, is estimated online as new observations are collected for the two simulated
activities (top two rows). Each panel shows the current (dashed red line) and previous (solid
gray) activities since the last changepoint. In the within-online setting, the changepoint detec-
tion is performed by estimating changepoint probabilities for various values of δ and t in 20
replications of the experiment. Figure 5 depicts the results of the simulation study in terms of
sensitivity and specificity for different values of δ and t . As expected, the sensitivity drops as
δ increases and as t decreases. Since all time series were simulated with initial values around
zero, it is hard to achieve an early (at t = 40) changepoint detection, although the detection
after having observed 2/3 of the time series (at t = 80) seems to be satisfactory.

5. Application. We consider a set of 85 warm-up running activities on flat routes con-
sisting of the first 10 minutes of running of a well-trained athlete. The difference between the
maximum and minimum altitude reached during each activity was less than 10 meters, and

FIG. 4. Two instantiations of our simulation with different activities and the respective filtered probabilities
of changepoints. Red dashed line: activity that is being monitored; gray lines: previous activities since the last
changepoint.
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FIG. 5. Medians and 90% confidence intervals of sensitivity and specificity (y-axis), as a function of the thresh-
old level δ (x-axis), evaluated for 20 synthetic examples using our model in the within-online setting.

the activities were measured every second by a Polar v800 smart watch and a Polar H10 heart
rate monitor. Warm-up activities are extremely relevant in several sports because they prepare
athletes for specific training sessions, influence sports performance, and reduce the risk of in-
jury. Moreover, they inform on the training status of an athlete just before the training session,
so early decisions can be made. In the sports science literature, the choice of the relevant in-
dicators for monitoring the health status and training loads with emphasis on the importance
of pre-training analysis is well documented; see, for example, Buchheit (2014). In general,
heart rate is the most evaluated variable, as it provides insights into oxygen consumption and
the physical response to the external stimuli of the exercise (Dong (2016), Schneider et al.
(2018)). Heart rate levels during exercise are also influenced by the intensity at which the
exercise is performed, represented by the speed of running, which is why we have collected
data for both heart rate and speed. Let yhr,n,t be the heart rate in beats per minute and ysp,n,t

be the speed, equal to the difference between the cumulative distances at time t and t − 1 for
activity n. We specify a state space model with the measurement equation

[
yhr,n,t

ysp,n,t

]
=

[
1 0 0
0 0 1

]⎡⎢⎢⎣
α

(s)
hr,1,t

α
(s)
hr,2,t

α
(s)
sp,t

⎤⎥⎥⎦ +
[
1 0
0 1

][
αhr,n,t

αsp,n,t

]
+

[
υhr,n,t

υsp,n,t

]
,

[
υhr,n,t

υsp,n,t

]
∼ N2(0,�),

segment-specific state equations⎡⎢⎢⎣
α

(s)
hr,1,t+1

α
(s)
hr,2,t+1

α
(s)
sp,t+1

⎤⎥⎥⎦ =
⎡⎣1 1 0

0 1 0
0 0 1

⎤⎦
⎡⎢⎢⎣
α

(s)
hr,1,t

α
(s)
hr,2,t

α
(s)
sp,t

⎤⎥⎥⎦ +

⎡⎢⎢⎣
ξ

(s)
hr,1,t

ξ
(s)
hr,2,t

ξ
(s)
sp,t

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
ξ

(s)
hr,1,t

ξ
(s)
hr,2,t

ξ
(s)
sp,t

⎤⎥⎥⎦ ∼ N3(0,�),

and activity-specific state equations[
αhr,n,t+1
αsp,n,t+1

]
=

[
1 0
0 ρsp

][
αhr,n,t

αsp,n,t

]
+

[
ξhr,n,t

ξsp,n,t

]
,

[
ξhr,n,t

ξsp,n,t

]
∼ N2(0,�),

with α
(s)
1 = (α

(s)
hr,1,1, α

(s)
hr,2,1, α

(s)
sp,1)

′ ∼ N3((75,0,0)′,diag(100,10,30)), αn,1 = (αhr,n,1,

αsp,n,t )
′ ∼ N2(0,diag(50,10)), �, � , and � are full covariance matrices, and ρsp is an au-

toregressive coefficient.
The segment-specific latent states that describe the physical condition and skills of the

athlete were chosen to be modeled by a linear trend model that captures the segment-specific
global trends for the heart rate and by a local level model for the speed. The local linear
trend for the heart rate variable is composed by two latent states: the trend α

(s)
hr,1,t and the
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FIG. 6. Segmentation of warm-up activities in the between-online setting for an athlete. The segmentation of the
activities was obtained defining the changepoint as those activities for which the filtered distribution at the end of
the activity is p̂

θ̂1:(n−1)
(Dn = 1|y1:n,1:T ) > 0.5.

drift α
(s)
hr,2,t . The trend describes how heart rate evolves over time if no disturbing aspects

are present during the activities (activity-specific latent states). The drift α
(s)
hr,2,t determines

how trend direction evolves over time. Indeed, if α
(s)
hr,2,t is constant over time, then the trend

is exactly linear (see, e.g., Durbin and Koopman (2012)). The presence of positive drift is
in the heart rate variable is typically observed and discussed in sports science, particularly
for prolonged efforts (see, e.g., Souissi et al. (2021)). In this work we assume the drift to be
stochastic to capture changes in directions of the trend due to different phases of the activities.
The local level model for the speed variable allows to consider behaviors that locally evolve
over time, a typical characteristic of warm-up activities that involve continuous running. The
activity-specific states are modeled by a random walk process for the heart rate and using an
AR(1) process for the speed. Once the variables are detrended, the heart rate moves slowly
over time, as it does not vary abruptly in healthy conditions, although speed may do so due
to, for example, street obstacles. The random walk to describe the heart rate variable allows
to capture variations from the segment-specific trend that may persist over time. The AR(1)
process for the speed, on the contrary, describes variation from the speed level that are then
reabsorbed over time. Considering AR process with different lags to describe the activity-
specific behaviors is possible, at the cost of increasing the number of parameters and the
complexity of the state space model.

We set λ = 0.5, and, following the guidelines of Yildirim, Singh and Doucet (2013),
we estimated the parameters of the model θ = {�,�,�, ρsp} by repeating the EM algo-
rithm 50 times in order to reach convergence. Figure 6 provides an instantiation of our
results. We depict segments in the between-online setting, obtained according to the rule
p̂

θ̂1:(n−1)
(Dn = 1|y1:n,1:T ) > 0.50. The estimated number of changepoints is 39, of which 24

involve activities with a single activity segment. This finding highlights the large variability
between successive activities. Of these 24 changepoints with a single activity segment, 18
are located in the last 42 activities and should be attributed not only to changes in the state
of the athlete but also to the presence of systematic measurement errors, probably due to a
device problem. The obtained results are robust with respect to different choices of λ and
k� that sligthly modify the changepoint probabilities computed in the within online setting.
With a threshold of δ = 0.5, however, the obtained segmentation at the end of the activities
(i.e., in the between online setting) is robust with respect to different choices of these hyper-
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FIG. 7. Selected activities in which the changepoint probability is being monitored. The gray lines
in the background represent activities since the last changepoint, obtained according to the rule
p̂

θ̂1:(n−1)
(Dn = 1|y1:n,1:T ) > 0.5 and k� = 0.

parameters. Varying the threshold δ has a slight effect on the number of estimated change-
points, ranging from 39 (δ = 0.01) to 38 (δ = 0.99). These additional aspects are reported in
greater detail in the Supplementary Material. Note that, although the threshold δ has an effect
on the results obtained, in terms of retrospective changepoint identification, it is not involved
in the sequential monte Carlo approach used to calculate the changepoint probabilities in our
methodology and thus has no effect in the process leading to the estimation of changepoint
probabilities. This is particularly relevant to the purpose of the proposed approach, where the
primary interest is in quantifying the uncertainty one has about changes in the behavior of
variables, as opposed to a retrospective analysis of performance.

Figure 7 shows four instantiations of the within-online setting by presenting heart rate,
speed, and changepoint probability p̂

θ̂1:(n−1)
(Dn = 1|y1:n,1:T ) for the monitored activity

(dashed red line) and for all activities subsequent to the previous changepoint (solid gray
lines) for δ = 0.5. In particular, activity 6 was identified as a changepoint because a differ-
ent behavior was detected due to a lower heart rate during most of the activity, accompanied
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FIG. 8. Medians and 90% confidence intervals of sensitivity and specificity (y-axis), as a function of the thresh-
old level δ (x-axis), evaluated for 20 synthetic examples using the bivariate method and the pragmatic approach,
for T = 240. In the simulation studies, the changepoints can affect one or two variables, randomly chosen.

with a speed behavior that seems to be slightly lower with respect to the previous activities.
Activity 21 was identified as a changepoint, because a suboptimal behavior was detected due
to a higher heart rate (with similar speed behavior), compared with the previous activities.
The bottom-left panel shows activity 32, for which the changepoint probability is nearly zero
during the entire activity, highlighting that the athlete is behaving as in the previous activi-
ties and that no changes are identified. Finally, the bottom-right panel shows activity 39 for
which heart rate is lower with respect to previous activities (with a similar speed behaviour),
corresponding to the athlete which is putting in less effort. Note the ability of the algorithm to
provide information about changepoint probabilities much before the end of the warm-ups,
allowing an early identification of changes. A general discussion on the changepoints and on
use of the model, its strengths and weaknesses, is reported in the next section.

6. Justification of the multivariables changepoint model. Our model development has
emerged by the sports science perspective in which it is typically of interest jointly consider
the so-called internal load variables that measure the physiological responses of the body
to stimuli and the external load variables which are physical measures of the intensity of
the exercise (see, e.g. Bourdon et al. (2017)). From a statistical point of view, a relevant
question is to inquire whether our model: (i) performs better than independent single-variable
change point models and (ii) performs well in situations in which changepoints affect only
one variable. Clearly, our model can be immediately applied to single variable changepoint
scenarios, so we have considered a simulation exercise to investigate these questions.

First, we simulated random changepoints that randomly affect one or two variables, and we
compared the sensitivity and specificity of our bivariate method with those of a “pragmatic”
approach in which we consider two separate single variable procedures that use the maximum
between the respective filtered probabilities as a surrogate of the changepoint probability. We
report the results of the proposed approach, for T = 240, in terms of sensitivity and specificity
in Figure 8 in which we show how our joint approach might lead to a loss of sensitivity when
changes do not affect both the variables as well. This is expected since our model assumes a
different data generation mechanism. In a similar scenario in which the changepoints truly af-
fect both the variables the corresponding results, depicted in Figure 9, our multiple-variables
model dramatically outperforms the single variables model in terms of specificity. These re-
sults suggest how our model can be useful also for obtaining interesting insights regarding the
activities. For a given threshold (δ = 0.5 in our explanation), activities which are recognized
as changepoints by both univariate and bivariate routines can be interpreted as activities that
manifests strong changes in both the variables; in the real-data application, just two activities
were recognized as such. Similarly, when a changepoint is identified by just one univariate
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FIG. 9. Medians and 90% confidence intervals of sensitivity and specificity evaluated for 20 synthetic examples
using our procedure with the two variables considered jointly, the pragmatic approach, or using our algorithm
with just one variable, for T = 240. In the simulation studies, the changepoints affect both the variables.

algorithm and by the bivariate one, the activity can be interpreted as one activity in which
changes are mainly related to one variable but are strong enough to be recognized also by the
bivariate model; in the application 10 activities registered this kind of behavior with the vari-
able heart rate and 15 with the variable speed. Activities that are classified as changepoints
only by the bivariate model are those activities that do not show strong deviations if single
variable models are considered but that actually are characterized by large deviations when
these are considered jointly. We recognize this aspect as one of the main benefits of having
developed a multivariate model, as also the pragmatic approach would fail in recognizing this
behavior. In the real data, 12 activities were recognized as such. Finally, activities recognized
as changepoint by only one univariate algorithm can be interpreted as activities in which there
are present changes in one variable, but they are not so strong to be recognized as such also
by the bivariate model. In the data six activities are affected by this behavior for the variable
speed.

To conclude, it is worth asking how real-time identification of changes can be used in
real monitoring environments. Such an answer is not simple at all, given the high variability
shown by the activities and the high number of factors coaches and athletes should take into
account to make decisions. For example, extreme deviations in both the variables can suggest
that the athlete is not behaving as expected, and knowing it before the activity ends would
permit to adjust such behaviors. In the practical example, an extreme fatigue (the heart rate is
too high) accompanied with an higher speed would imply that the warm-up is too demanding,
an aspect that would lead to underperformance during the subsequent training. In a similar
way, a warm-up activity which is too soft (e.g. speed and heart rate are too slow) would imply
an inadequate preparation for training, an aspect considered relevant both for obtaining better
performances and for avoiding the risk of injuries. Softer changepoints reveal aspects of the
activities which are harder to identify and that can be related to different health status of
the athlete. Recognizing that the heart rate is too high, despite that the speed level can be
assumed similar to previous activities, allows to identify a suboptimal status of the athlete,
and the gained time in knowing it before the activity ends would permit, on the one side,
to try to adopt running strategies to reduce the fatigue and on the other side to investigate
the athlete’s physical conditions and to adapt the training according to them. Finally, this
aspect also highlights the importance of choosing a threshold for determining which activities
are changepoints, a choice which is strongly related to the use of this tools by runners and
coaches. As first, it is relevant to highlight, that the choice of such a threshold does not
affect the SMC approximation that allows for obtaining changepoint probabilities, but simply
permits to obtain classification of the activities based on their behavior. In general, a higher
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threshold helps in recognizing less changepoints; in such a way, only extreme changes are
recognized as such. This is useful in cases in which it is important to detect only strong
deviations and has the advantage that the interpretation of the changepoint is easier to derive.
In contrast, lower thresholds allow to better capture the variability of activities but has the
drawback that interpretation of the results becomes more challenging.

7. Conclusion and future developments. Motivated by the need to develop an online
probabilistic inference framework for runners who collect data using smart devices, we have
proposed a new model for changepoint detection in a doubly-online framework. Our focus
lies on the early detection of distributional changes between a set of repeated running ac-
tivities. The proposed model combines and leverages tools from the classical changepoint
model by Yildirim, Singh and Doucet (2013) and the linear and Gaussian state space model
(Durbin and Koopman (2012), Shumway and Stoffer (2017)). The former allows the use of
an SMC approach with constant complexity in a between-online framework, while the lat-
ter provides the user with updated information on the activity as new data are observed by
means of Kalman filter routines. We adopted a linear and Gaussian state space model which
is a general family of models that allows us to include many standard modeling specifications
used in time series analysis.

We considered design matrices that are fixed with respect to both t and n and potentially
preclude time-dependent and activity-specific covariates. It is probably reasonable to assume
that covariates, such as different types of terrain or changes in elevations, could affect heart
rate or speed. This limitation can be easily overcome by modifying the Kalman recursions
appropriately without a substantial change in the remaining methodology.

We also assumed that activity-specific elements do not interact with segment-specific la-
tent states by imposing a block-diagonal structure on both the transition matrix and the co-
variance matrix of disturbances in equation (5). One possible generalization could assume
that the block transition matrix in equation (5) is a block matrix in which the elements out-
side the diagonal of the first column block are nonzero. This generalization also requires
a modification of the Kalman recursions without a substantial change in the methodology,
also allowing for activity-specific states determined by some segment-specific states, such
as the autoregressive process with segment-specific coefficients. Details are provided in the
Supplementary Material (Section S5).

To simplify the exposition, we have only considered time series with the same length T .
The case of different length activities Tn < T = max(T1, . . . , TN) for some n can be readily
considered; see the Supplementary Material (Section S2). Activities with shorter lengths are
simply treated as activities in which the last T − Tn observations are missing. In a real-world
wearable data collection settings, activities will clearly have different lengths, but from a
sport science perspective, input data analyzed by the algorithm should be of the same type of
exercise and, typically, of similar time length, so the physical and physiological responses to
stimuli are expected to be comparable.

The changepoint prior probability λ can be modeled as λθ = λθ ,n = λθ (Xn) depending on
a set Xn of time-invariant activity-specific covariates. The set Xn may represent the meteoro-
logical condition during the activity or health-related measures taken prior to the activity, such
as heart rate variability in the morning or the number of hours of sleep. This generalization
requires the computation of sufficient statistics and a maximization step that is dependent on
the specification of the link function. Both developments are generally related to the standard
methods used for the binomial model; see Yildirim, Singh and Doucet (2013) for details.

A particularly appealing possible future development that requires additional methodolog-
ical effort is to consider nonlinear and non-Gaussian state space models. This might be of
interest in contexts in which the use of smart devices allows for the collection of varied data
(Bourdon et al. (2017)), violating the common Gaussian assumptions.
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