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Abstract

How does reliable computation emerge from networks of noisy neurons? While individ-

ual neurons are intrinsically noisy, the collective dynamics of populations of neurons taken as

a whole can be almost deterministic, supporting the hypothesis that, in the brain, computation

takes place at the level of neuronal populations.

Mathematical models of networks of noisy spiking neurons allow us to study the effects of

neuronal noise on the dynamics of large networks. Classical mean-field models, i.e., models

where all neurons are identical and where each neuron receives the average spike activity of

the other neurons, offer toy examples where neuronal noise is absorbed in large networks,

that is, large networks behave like deterministic systems. In particular, the dynamics of these

large networks can be described by deterministic neuronal population equations.

In this thesis, I first generalize classical mean-field limit proofs to a broad class of spiking

neuron models that can exhibit spike-frequency adaptation and short-term synaptic plasticity,

in addition to refractoriness. The mean-field limit can be exactly described by a multidimen-

sional partial differential equation; the long time behavior of which can be rigorously studied

using deterministic methods.

Then, we show that there is a conceptual link between mean-field models for networks of

spiking neurons and latent variable models used for the analysis of multi-neuronal record-

ings. More specifically, we use a recently proposed finite-size neuronal population equation,

which we first mathematically clarify, to design a tractable Expectation-Maximization-type

algorithm capable of inferring the latent population activities of multi-population spiking

neural networks from the spike activity of a few visible neurons only, illustrating the idea that

latent variable models can be seen as partially observed mean-field models.

In classical mean-field models, neurons in large networks behave like independent, identically

distributed processes driven by the average population activity – a deterministic quantity, by

the law of large numbers. The fact the neurons are identically distributed processes implies a

form of redundancy that has not been observed in the cortex and which seems biologically

implausible. To show, numerically, that the redundancy present in classical mean-field models

is unnecessary for neuronal noise absorption in large networks, I construct a disordered

network model where networks of spiking neurons behave like deterministic rate networks,

despite the absence of redundancy.

This last result suggests that the concentration of measure phenomenon, which generalizes
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Chapitre 0

the “law of large numbers” of classical mean-field models, might be an instrumental principle

for understanding the emergence of noise-robust population dynamics in large networks of

noisy neurons.

Keywords: spiking neurons, nonlinear Hawkes processes, mean-field approximations, spike-

frequency adaptation, short-term synaptic plasticity, nonlocal transport equation, finite-size

fluctuations, latent variable model, disordered systems, concentration of measure
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Résumé

Comment est-ce des computations fiables peuvent-elles émerger de réseaux de neurones

aléatoires? Bien que les neurones, pris individuellement, soient aléatoires, la dynamique col-

lective de populations de neurones peut être quasi déterministe, ce qui soutient l’hypothèse

que dans le cerveau, les computations ont lieu à l’échelle de populations neuronales.

Les modèles mathématiques de réseaux de neurones aléatoires nous permettent d’étudier

l’effet du bruit neuronal sur la dynamique de grands réseaux. Les modèles classiques de champ

moyen, où tous les neurones sont identiques et où chaque neurone reçoit la moyenne de

l’activité de tous les autres neurones, nous offrent des exemples simples où le bruit neuronal

est absorbé dans les grands réseaux, c’est-à-dire où les grands réseaux se comportent comme

des systèmes déterministes. En particulier, la dynamique de grands réseaux peut être décrite

par des équations de population neuronale.

Dans cette thèse, je commence par généraliser les résultats classiques de limite de champ

moyen à une large classe de modèles de neurone à impulsion pouvant manifester de l’adapta-

tion ou de la plasticité synaptique à court terme, en plus d’une période réfractaire. La limite

de champ moyen peut être exactement décrite par une équation aux dérivées partielles mul-

tidimensionnelle dont nous étudions le comportement en temps long en employant des

méthodes déterministe.

Ensuite, nous montrons qu’il existe un lien conceptuel entre les modèles de champ moyen

pour les réseaux de neurones à impulsion et les modèles à variable latente utilisés pour l’ana-

lyse d’enregistrements multi-neuronaux. Plus spécifiquement, nous nous appuyons sur une

équation de population neuronale pour population finie, récemment proposée, que nous com-

mençons par clarifier mathématiquement, pour concevoir un algorithme de type espérance-

maximisation capable d’inférer l’activité populationnelle de réseaux multi-population de

neurones à impulsion, à partir de l’activité de quelques neurones visibles seulement, illustrant

l’idée que les modèles à variable latente peuvent être vus comme des modèles de champ

moyen partiellement observables.

Dans les modèles classiques de champ moyen, les neurones se comportent comme des pro-

cessus indépendents et identiquement distribués, entraînés par l’activité moyenne de la

population, une quantité déterministe par la loi des grands nombres. Le fait que les neurones

soient identiquement distribués implique une forme de redondance qui n’a pas été obser-

vée expérimentalement et qui semble peu plausible. Pour montrer numériquement que la
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redondance des modèles classiques de champ moyen n’est pas nécessaire à l’absorption du

bruit neuronal dans les grands réseaux, je construis un exemple de réseau désordonné où les

réseaux de neurones à impulsion se comportent comme des réseau de neurones à taux de

décharge déterministes, en dépit de l’absence de redondance.

Ce dernier résultat suggère que la concentration de la mesure, qui peut être vue comme une

généralisation de la “loi des grands nombres” des modèles classiques de champ moyen, peut

être un principe clé pour comprendre l’émergence de dynamique de population robuste dans

les grands réseaux de neurones aléatoires.

Mots clés : neurone à impulsion, processus de Hawkes nonlinéaire, approximation de champ

moyen, adaptation, plasticité synaptique à court terme, équation de transport nonlocale,

flucutations, modèle à variable latente, système désordonné, concentration de la mesure
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1 Introduction

1.1 Reliable computation in networks of unreliable neurons

On tour, a concert pianist can perform a dozen of recitals with the same program – the same

sequence of pieces – in different towns over the course of several weeks. A recital contains

around one and a half hour of music; the total number of notes, that is, the sum of the number

of notes of each piece, can amount to tens of thousands. In each town, the sound of the piano,

the weight of its keys, and the acoustics of the hall will differ but the experienced musician

will manage to adjust his touch to these variations to produce the best possible sound. The

fact that he can reliably play the same recital, by heart, in a dozen of towns – memory slips,

while possible, are rare events – is an undeniable example of reproducible, complex behavior.

While each performance is unique, they are far from being random, quite the contrary. At the

beginning of a concert, we can all predict what is going to happen on stage over the next hour

or two: the musician will follow the program.

The neuroscientist in the audience can not help but be astonished by the reproducibility of

the behavior she is witnessing. She knows that if she buys a ticket for the next concert in the

next town, it will be the same program, the same sequence of notes, and maybe even the

same phrasing, the same dynamic contrasts. The reproducibility of this complex behavior

implies reliable and precise brain computations. The neuroscientist is puzzled because this

manifestation of reliable and precise computation by the brain seems incompatible with the

messy, chaotic-looking, hardly reproducible neuronal activity observed in the brain. Where is

the order – the crystalline performance – in the apparent disorder of brain activity?

Neurons in the brain communicate with each other by sending short pulses of electrical

activity called spikes. A neuron integrates the signals it receives from other neurons and,

depending on the received signals and its own past spike activity, it can either emit a spike

(send a signal to other neurons) or stay silent. The chaotic aspect of neuronal activity reflects,

in part, the fact that the neurons are intrinsically random. Even if we know exactly the signals

a neuron receives, we can not perfectly predict the signals (the spikes) it will emit. This is

not due to a lack of understanding of how neurons work but to their “imperfect” biological
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Chapter 1 Introduction

machinery. How can the brain perform reliable computation with its unreliable wetware is the

general question motivating this – mostly mathematical – thesis. Mathematics can help to

address this question by articulating the “how” of hypothetical answers to the question: how

can large networks of noisy neurons perform reliable and complex computation. The “how”,

whatever it is, can probably not hold in a few sentences or a simple schematic diagram.

In this thesis, I construct and analyse mathematical models of networks of neurons where

the randomness of single neurons is “averaged out” at the network level, continuing a long

line of work in theoretical and mathematical neuroscience. The models I consider neglect

some important biological details and are therefore far from being perfect. However, they offer

enlightening examples where the “how” can be rigorously reduced to principles of probability

theory.

1.1.1 The mechanics of computation in the brain

Information processing in the brain is not centralized; there is no “central processing unit”

(CPU). Instead, information is represented, transformed and stored in a highly distributed

fashion over large numbers of neurons, even larger numbers of synaptic connections, and

across multiple brain regions. The seminal papers of Hopfield (Hopfield 1982, 1984) on

associative memory in neural networks provide an important conceptual example of how the

brain could perform computation in a decentralized fashion. Without going into the details

of the original Hopfield model (Hopfield 1982, 1984), I briefly recall here the general point of

view on brain computation that this model inspired (Amit 1989). At each time point, the brain

is in a certain state, a network state; the evolution over time of the network state depends on

neuronal characteristics and on the synaptic connections between neurons; sensory inputs

can influence the state and the state determines motor actions. This dynamical systems point

of view may sound innocent, but it is what is absent from it that makes it nontrivial: there is no

need for a central processing unit; in particular, there is no need for a homunculus – a fallacious

“little man” inside the brain, reading neuronal activity and making decisions. Hopfield showed

that decentralized computation was possible in dynamical systems representing networks

of (abstract) neurons, and argued that this type of computation could be understood as an

emergent behavior (Hopfield 1982, 1984), an idea that led to major theoretical results in

statistical physics (Amit, Gutfreund, and Sompolinsky 1985a,b, 1987; Gardner 1988; Gardner

and Derrida 1988).

Following the general principles of the Hopfield model (see also Amari (1977) and Cohen

and Grossberg (1983)) and adding biological realism, theorists have proposed models of

networks of spiking neurons, i.e., where neurons communicate via discrete spikes, capable of

approximating continuous dynamical systems performing computations related to associative

memory (Gerstner and van Hemmen 1992) and perceptual decision making (Wang 2002; Wong

and Wang 2006) (see the forth part of Gerstner, Kistler, et al. (2014) for an overview). In parallel,

researchers analyzing in vivo multi-neuronal recordings have provided converging evidence

2



Introduction Chapter 1

that populations of neurons approximate computation-performing, continuous dynamical

systems (Mante et al. 2013; Shenoy, Sahani, Churchland, et al. 2013; Vyas et al. 2020). The

motivating question of this thesis is: How can noise-robust dynamics supporting reliable

computation emerge from networks of noisy neurons? As I explain in the following, neurons

are intrinsically noisy and neuronal noise has to be tamed, or “averaged out,” at the network

level.

1.1.2 The problem of spike time variability

Before focusing on neuronal noise, we first need to discuss the broader question of spike time

variability. To do so, let us consider a famous example given by Shadlen and Newsome (1994).

When the spike activity of a neuron of the visual cortex (area MT) is recorded over repeated

presentations of the exact same time-varying visual stimulus (moving dots), the spike times of

the neuron varies from one repetition to the other, although the average spike activity over

repetitions, the peristimulus time histogram (PSTH), clearly follows the time-varying stimulus.

The authors therefore argue that the spike times of a cortical neuron are not reproducible.

Adopting a dynamical systems point of view, we can distinguish three possible sources of spike

time variability.

First, although the stimulus is exactly the same across repetitions, the brain can be in a

different state at the beginning of each repetition, meaning that the “initial conditions” of

brain dynamics can vary across repetitions (Arieli et al. 1996). Second, inputs coming from

cortical regions unrelated to vision can vary across repetitions; repeating the same visual

stimulus is not sufficient to fully control the inputs received by a neuron in the visual cortex

(Stringer et al. 2019). Finally, the biophysics of the neuron may be intrinsically noisy. Neurons

in the mammalian brain are indeed intrinsically noisy (Faisal, Selen, and Wolpert 2008) and

this represents a source of noise the brain needs to manage, one way or another, in order to

guarantee reliable computation.

Neuronal noise

To isolate neuronal noise – the intrinsic noise due to neuronal biophysics – from the other

sources of variability, an experiment similar to that described above can be performed in

vitro, replacing the time-varying visual stimulus by the injection of a time-varying current

directly into the soma of the neuron, thereby fully controlling the input received by the neuron.

While these in vitro experiments show reduced spike time variability compared to the in vivo

experiment mentioned above, spike times are still not fully reproducible (Bryant and Segundo

1976; Harsch and Robinson 2000; Mainen and Sejnowski 1995; Schreiber et al. 2004), indicating

the presence of neuronal noise. The main source of neuronal noise, at least in these in vitro

experiments where the input is fully controlled, is channel noise: the stochastic opening

and closing of voltage-gated ion channels. These channels maintain the resting membrane

potential of neurons (the membrane potential between spikes) and, as was famously shown

3
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Figure 1.1: Schematic drawing of neuronal noise. Voltage-gated ion channels (red) on the cell
membrane (black) of a neuron. Arrows indicate the flow of information in a neuron, arriving at
the dendrites (incoming arrows) to sent out through the axon (outgoing arrow). (Bottom-left
panel) Stochastic opening and closing of a voltage-gated ion channel (channel noise) seen
in single-channel recordings. (Bottom-right panel) Membrane potential fluctuations seen in
whole-cell recordings.

by Hodgkin and Huxley, the kinetics of these channels explains the shape of spikes (Hodgkin

and Huxley 1952). Later, single-channel recordings (Sakmann and Neher 1984) revealed the

stochastic nature of these channels; they randomly switch between both open and closed

states, the transition probabilities between these two states being modulated by the membrane

potential (White, Rubinstein, and Kay 2000) (Fig. 1.1, bottom-left pannel). In contrast with the

giant axon of the squid studied by Hodgkin and and Huxley where the effect of channel noise

could be neglected because of the large number of channels, in the mammalian brain, neurons

are smaller and have therefore fewer channels (White, Klink, et al. 1998), leading to finite-

size fluctuations of the membrane potential significant enough to trigger spikes (Chow and

White 1996; Schneidman, Freedman, and Segev 1998; Strassberg and DeFelice 1993) (Fig. 1.1,

bottom-right pannel). Given the nonlinearity of single-neuron membrane potential dynamics

– numerical simulations of the deterministic Hodgkin-Huxley model show chaotic membrane

dynamics (Aihara, Matsumoto, and Ikegaya 1984; Chay and Rinzel 1985; Guckenheimer and

Oliva 2002) – one can easily understand how even a small amount of channel-noise-induced

membrane potential fluctuations can make the spike times of a neuron unreproducible.
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Channel noise is most likely a serious biophysical constraint shaping the design of neural

circuits. For example, channel noise imposes a theoretical lower bound on the diameter

of unmyelinated axons below which reliable information transmission becomes impossible

(Faisal, White, and Laughlin 2005). While the effect of channel noise on the membrane can

theoretically vanish when the number of channels tends to infinity (Pakdaman, Thieullen,

and Wainrib 2010), the number of channels per neuron is probably constrained by their

metabolic cost: the more channels, the more ions cross the membrane, which then need to be

transported back across the membrane via energy-consuming sodium-potassium exchanging

pumps (Laughlin, Ruyter van Steveninck, and Anderson 1998). In addition to channel noise,

there are other important sources of noise in the brain (Faisal, Selen, and Wolpert 2008), like

synaptic noise, but they will not be considered in this thesis, the important point being that

neurons are, to a certain extent, unreliable because their intrinsically noisy biophysics. In

this thesis, we will not work with detailed biophysical models of neuronal noise; instead, we

will consider simpler, phenomenological models which are much easier to manipulate in the

context of our main question: how can neuronal noise be tamed in large networks?

1.1.3 Noise-robust dynamics as an emergent behavior

Our working hypothesis is that reliable computation, supported by noise-robust dynamics,

is an emergent behavior in networks of noisy neurons. To understand how noise-robust

dynamics can emerge from noisy networks, our strategy is to propose tractable mathematical

models of networks of neurons where this idea of emergent noise-robust dynamics can be

clearly articulated.

1.2 Mathematical framework

Deterministic biophysical models of single-neuron membrane dynamics, like the Hodgkin-

Huxley model, can be approximated by deterministic threshold models (Brette and Gerstner

2005; Jolivet, Lewis, and Gerstner 2004; Kistler, Gerstner, and van Hemmen 1997) (see also

Gerstner, Kistler, et al. (2014, Chapters 4 and 5)), which are mathematically more tractable.

Roughly speaking, in deterministic threshold models, e.g., the leaky integrate-and-fire neuron

model (Knight 1972a,b; Stein 1965), a neuron emits a spike, whose shape is approximated

by a Dirac pulse, when its membrane potential reaches a threshold; just after the spike, the

membrane potential can be reset to another value, introducing a discontinuous jump (see

Gerstner, Kistler, et al. (2014, Chapter 5)). There are then two approaches for adding neuronal

noise stemming from channel noise to these deterministic models:

• (Membrane noise) Noise can be added to the membrane potential dynamics, in the

form of diffusive noise for example (see Tuckwell (1988)).

• (“Escape noise”) The hard threshold of the neuron can be replaced by a soft threshold:

spike emission is probabilistic and the instantaneous probability for a neuron to emit a

5
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spike at a given time (its “escape rate”) is given by a monotonically increasing function

of its membrane potential, this function representing the “soft threshold” (see Gerstner,

Kistler, et al. (2014, Chapter 9)).

Membrane noise should not be confused with “input noise,” i.e., the membrane potential

fluctuations caused by the (stochastic) inputs the neuron receives, which can also be modeled

as diffusive noise (Brunel 2000; Brunel and Hakim 1999; Tuckwell 1988) but is not intrinsic

neuronal noise (see also Gerstner, Kistler, et al. (2014, Chapter 8)). The diffusive noise of

membrane (or input) noise can be mapped to “escape noise,” but this involves solving difficult

first-passage-time problems (see Plesser and Gerstner (2000), Sacerdote and Giraudo (2013),

and Schwalger (2021) and references therein). In this thesis, all the models considered will

directly use escape noise which is mathematically more tractable and which will allow us to

focus our efforts on the effects of neuronal noise in large networks and avoid first-passage-time

problems.

Spiking neuron models with escape noise are nothing but history-dependent, intensity-based

point processes, as I will explain next. These neuron models have different names in the

literature for they are at the crossroads of several branches of neuroscience. In theoretical

neuroscience, spiking neuron models with escape noise are accurate yet tractable models

of in vitro single-neuron spike activity (Jolivet, Rauch, et al. 2006; Pozzorini et al. 2015). As

such, they can be seen as effective simplifications of biophysical models (see Gerstner and

Kistler (2002) and Gerstner, Kistler, et al. (2014)). In statistical neuroscience, the same models

where proposed, under the name of Generalized Linear Model-Point Processes, as statistical

models of neuronal spike activity in vivo (Paninski 2004; J. W. Pillow et al. 2008; Truccolo

et al. 2005). Hence, these models are both mechanistic models of single-neuron dynamics

and convenient statistical models of multi-neuronal spike activity. Finally, in mathematical

neuroscience, these models have rigorous probabilistic constructions, which greatly facilitates

their mathematical analysis, as I will review below.

1.2.1 Modeling neuronal noise with Poisson random measures

Poisson random measures (Kingman 1992) are somewhat abstract mathematical objects –

little-known in the computational neuroscience community – which turn out to be very conve-

nient for formulating and studying models of networks of spiking neurons with escape noise.

Because common confusions about spiking neurons with escape noise can be avoided once

they are formulated in terms of stochastic processes driven by Poisson random measures, I give

here a brief and very informal introduction to Poisson random measure for non-probabilists.

A Poisson process on R2 (the two-dimensional Euclidean space) with unit intensity can be

informally defined as a collection of random points in R2 satisfying the following properties.

Let π be a “function” which takes, as inputs, rectangles in R2 (see S and S′ in Fig. 1.2) and

returns the number of points contained in the rectangle, for any realization of the Poisson

process. A collection of random points in R2 is a Poisson process with unit intensity if

6
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S

S′￼

x

y

Figure 1.2: A realization of a Poisson process in R2.

1. For any rectangle S in R2, the number of points contained in the rectangle, π(S), has the

same law as a Poisson random variable with mean given by the area of the rectangle S,

i.e.,

π(S) ∼ Pois(Area(S)).

2. For any finite collection of pairwise disjoint rectangles S,S′, . . . in R2, the random vari-

ables π(S),π(S′), . . . are independent.

This two-dimensional Poisson process allows us to define a Poisson random measure on R2

(with unit intensity) which is nothing but π. The Poisson random measure π is said to have

unit intensity (or Lebesgue intensity measure) because, for any rectangle S ∈R2,

E[π(S)] =
∫
R×R

1(x,y)∈S d xd y.

The formal definition of Poisson random measures, which can be found in (Kingman 1992),

involves some measure theory jargon, which is probably the reason why this probabilistic

object is almost unknown in computational neuroscience. The informal definition given

above has the advantage of avoiding jargon, and is sufficient, at least at the intuitive level,

to understand the formulation of the network models we will consider. In the following, I

will show how Poisson random measures enable us to write down equations defining spiking

neuron models with escape noise.
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As previously mentioned, spiking neuron models with escape noise have different names

in different fields, which complicates the integration of theoretical results. To address this

nomenclature problem and to highlight the equivalence of models behind different names, in

the titles of the following subsections, I first write the theoretical neuroscience name, followed,

in parenthesis, by the mathematical name of the model. Since this thesis is interested in

large networks of neurons, I will directly present the neuron models as elements of recurrent

networks.

Linear-Nonlinear-Poisson neurons (or nonlinear Hawkes processes)

Let us consider a network of N interacting Linear-Nonlinear-Poisson neurons (Chichilnisky

2001; Ostojic and Brunel 2011; Simoncelli et al. 2004) or, equivalently, nonlinear Hawkes

processes (Brémaud and Massoulié 1996). The model is parametrized by two sets of func-

tions. First, each neuron i = 1, . . . , N has an intensity function φi :R→R+, a positive-valued,

monotonically increasing, nonlinear function.I Second, the effect of a spike of neuron j ̸= i

on neuron i is captured by the interaction function hi j : R+ → R.II Let {πi }i be a collection

of independent Poisson random measures with unit intensity as defined above. Then, we

can describe the stochastic dynamics of the recurrent network as the solution of a system of

stochastic integral equations: for all i = 1, . . . , N ,

X i
t =

∫ t

0

∑
j ̸=i

hi j (t − s)d Z j
s , (1.1a)

Z i
t =

∫
[0,t ]×R+

1z≤φi (X i
s−)π

i (d s,d z). (1.1b)

In Eq. (1.1b), X i
s− is a shorthand for the left limit, limu→s

u<s
X i

u . The compact expression (1.1)

contains all the information necessary to define the network model. The variable Z i
t counts

the number of spikes of neuron i in the time interval ]0, t ] and the (instantaneous) probability

for neuron i to emit a spike in the infinitesimal interval ]t , t +d t ] is φi (X i
t )d t , i.e,

P(Z i
t+d t > Z i

t |past until time t ) =φi (X i
t )d t .

In theoretical neuroscience, it is common to represent the spike activity of a neuron by a sum

of Dirac δ-functions, called the spike train (see (Gerstner, Kistler, et al. 2014, Chapter 1)). The

spike train of neuron i is written Si (t) =
∑

k δ(t − t k
i ) where the {t k

i }k are the spike times of

neuron i . Then, formally, we have that

Si (t ) =
d Z i

t

d t
,

which links the “probabilist” notations of Eq. (1.1) to the “physicist” notations of theoretical

neuroscience. For physicists, the meaning of the integral on the right hand side of Eq. (1.1a)

Iwhich we can assume to be bounded and Lipschitz continuous
IIwhich we can assume to be continuous and integrable

8
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should become clear once it is replaced by
∫ t

0
∑

j ̸=i hi j (t − s)Si (s)d s. One important advantage

of the probabilist notations (1.1) over the traditional physicist notations is that it allows to

formulate recurrent networks models in terms of simple stochastic equations, which facilitates

the mathematical analysis of the models.

The name “Linear-Nonlinear-Poisson neuron” comes from the fact that in Eq. (1.1), X i
t is a

linear function of spike activity of the other neurons, X i
t defines the firing rate (the intensity) of

the neuron through the nonlinear functionφi , andφi (X i
t ) is the time-varying rate (intensity) of

an inhomogeneous, one-dimensional Poisson process. Networks of Linear-Nonlinear-Poisson

neurons are probably the simplest models for studying the effect of neuronal noise on the

dynamics of large networks. However, they lack realistic single-neuron dynamics. For example,

they neglect the effect of a neuron’s past spike history on its own spike activity. In particular,

real neurons exhibit refractoriness: after spiking, a neuron has to recover before it can emit

another spike. Below, I present two closely related models which include refractoriness,

extending the Linear-Nonlinear-Poisson model.

Spike Response Model-0 neurons (or age-dependent nonlinear Hawkes processes)

The effect of refractoriness can be included if, for each neuron, we keep track of its age, i.e., the

time-elapsed since its last spike. The age variable Ai
t of neuron i can then influence the neu-

ron’s firing rate (intensity), e.g., the firing rate of neuron i can be given by the positive-valued

function fi (Ai
t , X i

t ) =φi (ηi (Ai
t )+X i

t ), where the function ηi :R+ →R defines the refractoriness

of neuron i (and φi is defined as in Sec. 1.2.1). Using the same formalism as in Sec. 1.2.1, we

get: for all i = 1, . . . , N ,

d Ai
t = d t − Ai

t−d Z i
t , (1.2a)

X i
t =

∑
j ̸=i

∫ t

0
hi j (t − s)d Z j

s , (1.2b)

Z i
t =

∫
[0,t ]×R+

1z≤ fi (Ai
s−,X i

s−)π
i (d s,d z). (1.2c)

Equation (1.2) defines a network of Spike Response Model-0 neurons (Gerstner 2000), also

called age-dependent Hawkes processes in the probability theory literature (Chevallier 2017;

Raad, Ditlevsen, and Löcherbach 2020). Equation (1.2a) simply means that the age variable

Ai
t grows linearly with time and is reset to 0 at each spike of neuron i . The sum ηi (Ai

t )+ X i
t

in φi (ηi (Ai
t )+X i

t ) can now be interpreted as the membrane potential of neuron i (Gerstner

1995) and the nonlinear function φi can be accurately estimated from in vitro, single-neuron

experiments (Jolivet, Rauch, et al. 2006). The Spike Response Model-0 is closely related, but

not exactly equivalent, to integrate-and-fire models, as shown below.

9
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Leaky Integrate-and-Fire neurons with escape noise (or Galves-Löcherbach neurons)

Inspired by the early work of Lapique (1907), leaky integrate-and-fire models were introduced

by Stein (1965) and Knight (1972a,b) (see Brunel and Van Rossum (2007) for a short historical

note) and escape noise was added to these models by Gerstner (1995, 2000). Motivated by the

goal of giving a rigorous probabilistic construction of a network model with an infinite number

of stochastic spiking neurons, Galves and Löcherbach (2013) proposed a infinite-dimensional,

discrete-time model, later generalized to continuous time (Galves and Löcherbach 2016),

which can be seen as an infinite network of leaky integrate-and-fire neurons with escape

noise.

In networks of Leaky Integrate-and-Fire neurons with escape noise, the membrane potential

(or voltage) U i
t of neuron i integrates, with some leakage, the inputs it receives from other

neurons until it emits a spike; after each spike of neuron i , the potential U i
t is reset to some

fixed value, forgetting all previously integrated inputs. The firing rate (the intensity) of neuron

i is again defined by the membrane potential U i
t via the nonlinear intensity function φi . Each

time neuron j ̸= i emits a spike, the membrane potential U i
t of neuron i makes a jump of

height Ji j , which can either be positive (for an excitatory synapse) or negative (for an inhibitory

synapse). For a finite network of N neurons, the model reads: for all i = 1, . . . , N ,

dU i
t =

µi −U i
t

τi
d t −U i

t−d Z i
t +

∑
j ̸=i

Ji j d Z j
t , (1.3a)

Z i
t =

∫
[0,t ]×R+

1z≤φi (U i
s−)π

i (d s,d z). (1.3b)

The parameters µi ∈ R and τi > 0 are, respectively, the resting potential and the membrane

time constant of neuron i . On the right hand side of Eq. (1.3a), the term
µi−U i

t
τi

d t is the leaky

part of the membrane dynamics and term −U i
t−d Z i

t resets the membrane potential to 0 after

each spike.

Note that the voltage-dependent model Eq. (1.3a) can be translated into an age-dependent

model (Gerstner 1995, 2000). Indeed, solving the differential equation Eq. (1.3a), we get: for all

i = 1, . . . , N ,

d Ai
t = d t − Ai

t−d Z i
t , (1.4a)

U i
t =µ

(
1−e

− Ai
t

τi

)
+∑

j ̸=i

∫ t

t−Ai
t

e
− t−s

τi Ji j d Z j
s , (1.4b)

Z i
t =

∫
[0,t ]×R+

1z≤φi (U i
s−)π

i (d s,d z). (1.4c)

From the single-neuron modeling point of view, the main difference between the Spike Re-

sponse Model-0 (1.2) and the Leaky Integrate-and-Fire model with escape noise (1.4) is that

in the latter, a neuron forgets all the spike activity of the other neurons which has occurred

before its last spike time (see the integral on the right hand side of Eq. (1.4b)).
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1.2.2 Neuronal population equations

To study the effect of noise in large networks, the stochastic network models of the previous

sections are particularly interesting because they all have exact mean-field limits where the

dynamics of large networks can be described by deterministic neuronal population equations.

Moreover, the convergence of the dynamics of large networks to neuronal population equation

can be rigorously proven using techniques from interacting particle systems (Sznitman 1991).

These exact mean-field limit results were conjectured in theoretical neuroscience (Gerstner

1995, 2000; Gerstner and van Hemmen 1992; Wilson and Cowan 1972) and were later proven

in a series mathematical papers (Chevallier 2017; Chevallier, Duarte, et al. 2019; De Masi

et al. 2015; Delattre, Fournier, and Hoffmann 2016; Fournier and Löcherbach 2016; Cristóbal

Quiñinao 2016).

Networks of Linear-Nonlinear-Poisson neurons have the simplest mean-field limits. For

example, let us assume that all the neurons in Eq. (1.1) are identical, i.e., φi =φ for all i , and

that the interactions are homogeneous and scaled by 1/N , i.e., hi j = 1
N h for all i ̸= j . Then,

when N tends to infinity, all the variables X i
t concentrate around a single value x(t) which

solves the simple neuronal population equation:

x(t ) =
∫ t

0
h(t − s)φ (x(s))d s. (1.5)

Importantly, Eq. (1.5) is deterministic which means, in a certain sense, that the dynamics of

the microscopic system (1.1), taken as a whole becomes deterministic in the mean-field limit

N →∞. This constitutes an elementary example of how neuronal noise can be tamed in large

networks. Equation (1.5) is what is called a neural mass equation. These equations have a long

history in theoretical neuroscience (Jansen and Rit 1995; Wilson and Cowan 1972) and are

widely used in neuroimaging to model the dynamics of populations of neurons (Breakspear

2017; Coombes 2010; Deco et al. 2008). The convergence of the microscopic system (1.1) to the

mean-field limit (1.5) was proved by Delattre, Fournier, and Hoffmann (2016), who showed

how the coupling method of Sznitman (1991) could be applied to systems of interacting point

processes. Building on this rigorous result, Chevallier, Duarte, et al. (2019) proved that when

the network Eq. (1.1) is spatially structured, it converges, in the mean-field limit, to the neural

field equation of Wilson and Cowan (1973) (see (Chevallier and Ost 2020) for the analysis of

the limit fluctuations).

In the case of networks of Spike Response Model-0 neurons, the mean-field limit neuronal

population equation is richer than the neural mass equation (1.5). Again, let us assume that

all the neurons in Eq. (1.2) are identical, i.e., fi = f and for all i , and that the interactions are

homogeneous and scaled by 1/N , i.e., hi j = 1
N h for all i ̸= j . As in the previous example, when

N tends to infinity, all the variables X i
t concentrate around a single value x(t ). By contrast, the

age variables Ai
t do not concentrate and have to be described with a density ρt (on R+). In the

11
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mean-field limit N →∞, the system Eq. (1.2) can be described by the age-structured equation

∂tρt (a)+∂aρt (a) = − f (a, x(t ))ρt (a)+ r (t )δ(a), (1.6a)

r (t ) =
∫ ∞

0
f (a, x(t ))ρt (a)d a, (1.6b)

x(t ) =
∫ t

0
h(t − s)r (s)d s, (1.6c)

ρ0(a) = ν0(a), (1.6d)

where ν0 is the initial age density at time 0. The partial differential equation (1.6) is known

under the names of refractory density equation (Dumont, Pérez-Cervera, and Gutkin 2022;

Gerstner, Kistler, et al. 2014; Schwalger and Chizhov 2019) and time-elapsed neuron network

model (Pakdaman, Perthame, and Salort 2010, 2013, 2014). The convergence of the micro-

scopic system (1.2) to the mean-field limit (1.6) was proved in Chevallier (2017) and Cristóbal

Quiñinao (2016) (see Chevallier et al. (2017) for the analysis of the limit fluctuations). The

long time behavior of this nonlinear equation has been rigorously analysed in Cañizo and

Yoldaş (2019), Mischler, Cristobal Quiñinao, and Weng (2018), Mischler and Weng (2018), and

Pakdaman, Perthame, and Salort (2010, 2013) (see also Torres, Perthame, and Salort (2022) for

a recent generalization of the model Eq. (1.6)).

In the case of networks of Leaky Integrate-and-Fire neurons with escape noise, we obtain, in

the mean-field limit, a neuronal population equation which is similar to Eq. (1.6). Again, if

all the neurons in Eq. (1.3) are identical, i.e., φi =φ and τi = τ for all i , and if the interactions

are homogeneous and scaled by 1/N , i.e., Ji j = 1
N J for all i ̸= j , then, in the mean-field limit

N →∞, the voltage variables U i
t can be summarized by a density ρt (on R) solving the voltage-

structured equation

∂tρt (u)+∂u

((µ−u

τ
+ Jr (t )

)
ρt (u)

)
= −φ(u)ρt (u)+ r (t )δ(u), (1.7a)

r (t ) =
∫
R
φ(u)ρt (u)du, (1.7b)

ρ0(u) = ν0(u), (1.7c)

where ν0 is the initial voltage density at time 0. The convergence of the microscopic sys-

tem (1.3) to the mean-field limit (1.7) was proved in De Masi et al. (2015) and Fournier and

Löcherbach (2016) (see Löcherbach (2022) for the analysis of the limit fluctuations). The long

time behavior of this nonlinear equation, including the emergence of oscillations, has been

rigorously studied in Cormier (2020) and Cormier, Tanré, and Veltz (2020, 2021).

While Eq. (1.6) is age-structured whereas Eq. (1.7) is a voltage-structured, these two nonlin-

ear partial differential equations are relatively similar, as the voltage-to-age transformation,

Eq. (1.4) shows. Actually, both the age-structured equation (1.6) and the voltage-structured

equation (1.7) can be rewritten as a nonlinear integral equation for the population activity

12
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(i.e., average firing rate of the population) r (t ) (Gerstner 2000):

r (t ) = H r (t )+
∫ t

0
λr (t |s)Sr (t |s)r (s)d s, with Sr (t |s) = exp

(
−

∫ t

s
λr (s′|s)d s′

)
, (1.8)

where, in the case of Spike Response Model-0 neurons, Eq. (1.6), we have

H r (t ) =
∫ ∞

0
f (a + t , x(t ))e−

∫ t
0 f (a+s,x(s))d s ν0(a)d a,

λr (t |s) = f (t − s, x(s)),

x(t ) =
∫ t

0
h(t − s)r (s)d s,

whereas, in the case of Leaky Integrate-and-Fire neurons with escape noise, Eq. (1.7), we have,

H r (t ) =
∫
R
φ

(
ue−

t
τ +u(t |0)

)
e
−∫ t

0 φ
(
ue− s

τ +u(s|0)
)
d s
ν0(u)du,

λr (t |s) =φ(u(t |s)),

u(t |s) =µ
(
1−e−

t−s
τ

)
+ J

∫ t

s
e−

t−s′
τ r (s′)d s′.

The integral equation (1.8) clearly reveals the renewal-type structure (Cox 1962) of the both

the age-structured model (1.6) and the voltage-structured model (1.7).

1.2.3 Alternative approach: membrane noise

At the beginning of Sec. 1.2, I have mentioned two different ways to model the effects of

channel noise on spike time variability: membrane noise and escape noise. For fully connected

networks of Leaky Integrate-and-Fire neurons with diffusive membrane noise, there are also

exact mean-field neuronal population equations (see Delarue et al. (2015b) and Inglis and

Talay (2015) for the proof of the mean-field limit), which are special cases of the Nonlinear

Noisy Leaky Integrate-and-Fire model (NNLIF) (Caceres and Perthame 2014; Cáceres, Carrillo,

and Perthame 2011; Carrillo, González, et al. 2013; Carrillo, Perthame, et al. 2015; Delarue et al.

2015a), which itself comes from the heuristic theory of Brunel and Hakim (1999) and Brunel

(2000) for sparsely connected networks of deterministic neurons. There is a potential source of

confusion here since the NNLIF population equation can be either seen as an exact mean-field

limit or a heuristic approximation, depending on what microscopic system it is supposed to

model: for fully connected networks of neurons with membrane noise (intrinsic neuronal

noise), the NNLIF population equation is exact in the mean-field limit (Delarue et al. 2015b;

Inglis and Talay 2015); on the contrary, for sparsely connected networks of deterministic

neurons, the NNLIF population equation is only a heuristic approximation (Brunel 2000;

Brunel and Hakim 1999).III

IIIAdding somewhat to the confusion, the fully connected network model studied in Delarue et al. (2015b) and
Inglis and Talay (2015) was originally proposed by Ostojic, Brunel, and Hakim (2009) as a model for electrically
coupled neurons via gap junctions.
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1.2.4 A note on sparsely connected networks

To my knowledge, exact mean-field limit results for sparsely connected networks, such as the

models of Brunel and Hakim (1999) and Brunel (2000), have remained elusive. Here is a likely

explanation for the current lack of exact results. In sparsely connected networks, the limit

weight of some synapses can be nonzero as N →∞. As a consequence, a single spike of a

presynaptic neuron can have some effect on a postsynaptic neuron, even when N →∞. This

prevents neurons from behaving like independent processes as in large networks (propagation

of chaos), an essential property for deriving exact neuronal population equations.

1.3 Summary of the thesis

In Chapter 2 (Mean-field limit of age- and leaky memory-dependent Hawkes processes), I

generalize the mean-field convergence proofs for networks of renewal-type neurons – neurons

whose memory of their own past spike activity is restricted to their last spike time (e.g., the

Spike Response Model-0, Section 1.2.1, and the Leaky Integrate-and-Fire model with escape

noise, Section 1.2.1) – to the case where neurons have a memory of their own spike activity

going beyond their last spike. This extended memory is necessary to model the effects of

spike-frequency adaptation and short-term synaptic plasticity. I propose a general neuron

model, the age- and leaky memory-dependent Hawkes process, which encompasses many

existing models in the computational neuroscience literature. I prove that in the mean-field

limit, large networks of age- and leaky memory-dependent Hawkes processes can be described

by a multidimentional, nonlinear, nonlocal transport equation. This partial differential equa-

tion (PDE) generalizes the Time Elapsed Neuron Network Model, Eq. (1.6), of Pakdaman,

Perthame, and Salort (2010) (an example a refractory density equation (Gerstner and Kistler

2002; Schwalger and Chizhov 2019)) and it cannot, in general, be reduced to a scalar nonlinear

integral equation such as Eq. (1.8).

The proof builds on the work of Chevallier (2017), who used the coupling method of Sznitman

(1991) adapted to interacting point processes by Delattre, Fournier, and Hoffmann (2016).

The important message of this chapter is that even when single neurons have a multi-timescale

memory of their own activity, in the mean-field limit (when neurons are identical and when

the interactions between neurons are homogeneous and scaled by 1/N ), the neuronal noise

is absorbed as in the simpler renewal-type models of Section 1.2.2, namely, the dynamics of

large networks can be described a deterministic neuronal population equation – the neuronal

population equation is simply more complicated.

In Chapter 3 (Long time behavior of and age- and leaky memory-dependent neuronal

population equation), with Claudia Fonte, we show that, despite its complicated appearance,

the neuronal population equation derived in Chapter 2 can be rigorously analyzed from a

deterministic, PDE point of view. We focus on the two-dimensional case (each neuron has

an age variable and a single leaky memory variable), which is sufficient to model the effect
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of spike-frequency adaptation or short-term synaptic depression. We prove that in the weak

connectivity regime and for general initial conditions, the neuronal population equation

converges to a unique stationary solution, at exponential speed.

The proof combines methods from Cañizo and Yoldaş (2019) and Mischler and Weng (2018),

the general strategy being to use recent deterministic versions of Doeblin-Harris/Meyn-

Tweedie-type theorems for the stability of Markov processes (Cañizo and Mischler 2021).

While, in the weak connectivity regime, the network is in an asynchronous state, we also show

numerically that for stronger connectivity, the equation can exhibit self-sustained population

bursts, a long time behavior that remains to be rigorously studied.

In Chapter 4 (On a finite-size neuronal population equation), with Eva Löcherbach and

Tilo Schwalger, we study the heuristic stochastic neuronal population equation for finite-

size networks of renewal-type neurons derived by Schwalger, Deger, and Gerstner (2017).

While not exact, this heuristic stochastic equation is very useful for the design of efficient

simulation algorithms and, more importantly, data analysis algorithms, as we will show in

Chapter 5. A crucial empirical feature of this stochastic equation is that it is stable over long

simulation times but the reason for this stability was not theoretically studied in the original

paper of Schwalger, Deger, and Gerstner (2017).

After establishing the well-posedness of the stochastic equation, we prove, on a slightly simpli-

fied version of the model, that the finite-size neuronal population equation is indeed stable.

The proof involves arguments for the stability of Markov processes (taking values in the space

of positive measures) and techniques introduced by Brémaud and Massoulié (1996) for the

stability analysis of nonlinear Hawkes processes.

In Chapter 5 (Mesoscopic modeling of hidden spiking neurons), with Shuqi Wang, we show

that mean-field models can be linked to latent variable models (or hidden Markov models)

used to infer latent population dynamics from multi-neuronal recordings. In particular, we

show, on synthetic data, that the finite-size neuronal population equation of Chapter 4 can

be used design a tractable Expectation-Maximization-type algorithm capable of inferring

the latent population activities of multi-population spiking neural networks from the spike

activity of a few visible neurons only.

A link between mean-field models and latent variable models in neuroscience is, in hindsight,

not surprising because both kinds of models are motivated by the hypothesis that the brain

performs computation via the collective dynamics of populations of neurons approximating

continuous dynamical systems (Gerstner, Kistler, et al. 2014; Vyas et al. 2020). In particu-

lar, both kinds of models share the idea that under the visible noisiness of single neuron

spike activities, there are much less noisy latent variables driving the collective dynamics of

populations of neurons.

In classical mean-field models, neurons in large networks behave like independent, identically
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distributed processes driven by the average population activity – a deterministic quantity, by

the law of large numbers. The fact the neurons are identically distributed processes implies a

form of redundancy that has not been observed in the cortex and which seems biologically

implausible. To show numerically that the redundancy present in classical mean-field models

is unnecessary for neuronal noise absorption in large networks, in Chapter 6 (Convergence of

redundancy-free spiking neural networks to rate networks), I construct a disordered network

model where networks of spiking neurons behave like deterministic rate networks, despite the

absence of redundancy. An informal argument then suggests that the mechanism responsible

for noise absorption in these networks is the concentration of measure phenomenon, which

quite naturally generalizes the “law of large numbers” of classical mean-field models. Based

on these numerical results and an informal argument, I argue that the dual phenomena

of propagation of independence (cf. Jabin, Poyato, and Soler (2021)) and concentration of

measure in large networks might explain neuronal noise absorption, and thereby noise-robust

population dynamics, in many situations beyond classical mean-field models.

The writing style and the level of mathematical rigor varies across chapters:

Chapters 2, 3, and 4 present rigorous mathematical results and are written for a mathematics

audience; Chapter 5 is written for a machine learning audience; and Chapter 6 is written for a

physics audience and contains several claims which are not supported by rigorous proofs.
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Abstract

We propose a mean-field model of interacting point processes where each process has a memory of
the time elapsed since its last event (age) and its recent past (leaky memory), generalizing Age-dependent
Hawkes processes. The model is motivated by interacting nonlinear Hawkes processes with Markovian
self-interaction and networks of spiking neurons with adaptation and short-term synaptic plasticity.

By proving propagation of chaos and using a path integral representation for the law of the
limit process, we show that, in the mean-field limit, the empirical measure of the system follows a
multidimensional nonlocal transport equation.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Keywords: Hawkes process; Mean-field approximation; Nonlocal transport equation; Propagation of chaos; Erlang
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1. Introduction

The dynamics of many interacting particle systems can be approximated, when the size
of the system tends to infinity, by a partial differential equation (PDE) [26]. This not only
links microscopic and macroscopic scales but also stochastic and deterministic models. For
mean-field models, one can prove this type of results by exploiting the propagation of chaos
phenomenon, i.e. for i.i.d. initial conditions, particles become asymptotically independent in
the mean-field limit [31,47].

Propagation of chaos arguments have been applied to the study of interacting point
processes [9,15,29,30]. This has been particularly important for the field of theoretical neu-
roscience as it has provided a rigorous footing to the population density formalism, where the
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dynamics of a population of neurons is described by a PDE (see [22, Part III]). An example
of population density equation is the refractory density (or age-structured) equation [18,20–22,
36,37,46], which has recently been proved to be exact in the mean-field limit [4,8,42].

The models considered in [4,8,42] all assume that the point processes are ‘renewal’ (in some
loose sense), i.e. each process has a memory of its past that is restricted to the time elapsed since
its last event. The fact that, in the ‘renewal’ case, the mean-field limit can by characterized by
relatively simple deterministic equations has long been recognized in theoretical neuroscience
and has led to a large body of work [18,19,46,52]. In contrast, the case where point processes
are not ‘renewal’ is much less understood. In particular, even though some heuristic population
density equations have been proposed for the ‘non-renewal’ case [33,38,48], their exactness in
the mean-field limit has not been proved. The aim of this work is therefore to propose a general
framework for relating interacting ‘non-renewal’ point processes with PDEs, in the mean-field
limit. This framework relies on the definition of an abstract interacting point process model,
which generalizes Age-dependent Hawkes processes [4,43].

1.1. Interacting age and leaky memory dependent Hawkes processes

Consider a system of N interacting point-processes, interacting through a common variable
X N

t . Each point process i is associated with 1 + d variables (for d a positive integer): an
age variable Ai,N

t which represents the time elapsed since the last event of process i and a
d-dimensional vector of leaky memory variables Mi,N

t which models the effect of the recent
past of process i . The point process i has stochastic intensity ( f (Ai,N

t− ,Mi,N
t− , X N

t−))t∈R+
where

f : R+ × Rd
× R → R+ is the intensity function. Intuitively, this means that if we

write (Z i,N
t )t∈R+

the counting process associated with the point process i , the instantaneous
probability for Z i,N to jump in ]t, t + dt], given the past Ft , is

P(Z i,N
t+dt > Z i,N

t |Ft ) = f (Ai,N
t ,Mi,N

t , X N
t )dt.

Between events (jumps) of process i , the age variable Ai,N
t grows linearly with time whereas

the leaky memory variables Mi,N
t drift following the vector field b : Rd

→ Rd .
At each event of process i , its age Ai,N

t is reset to 0 and its leaky memory Mi,N
t jumps to

Mi,N
t + Γ (Mi,N

t ), where Γ : Rd
→ Rd is the jump function. The fact that the variables Mi,N

t
are not reset to a fixed value at each event allows them to accumulate the effect of successive
events.

Finally, the time-dependent effect of an event of point process i on point process j is
determined by the interaction function h : R+ × R+ × Rd

→ R which depends on A j,N
t

and M j,N
t . Since the function h is the same for all i and j , the interaction is said to be of

mean-field type.
The model can be described by a system of stochastic integral equations: for i = 1, . . . , N ,

Ai,N
t = Ai

0 + t −

∫ t

0
Ai,N

s− d Z i,N
s , (1a)

Mi,N
t = Mi

0 +

∫ t

0
b(Mi,N

s )ds +

∫ t

0
Γ (Mi,N

s− )d Z i,N
s , (1b)

Z i,N
t =

∫
[0,t]×R+

1z≤ f (Ai,N
s− ,Mi,N

s− ,X N
s−)π

i (ds, dz), (1c)
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with

X N
t =

1
N

N∑
j=1

H j
t +

1
N

N∑
j=1

∫ t

0
h(t − s, A j,N

s− ,M j,N
s− )d Z j,N

s . (1d)

The collection {π i
}i∈N∗ is a sequence of independent Poisson random measures on R+ × R+

with Lebesgue intensity measure. We work on the filtered probability space (Ω ,F, (Ft )t∈R+
,P)

where {π i
}i∈N∗ is independent of F0 and Ft = F0 ∪ σ

(
{π i ([0, t], B)}i∈N∗,B∈B(R+)

)
. For

all i ∈ N∗, Ai
0 and Mi

0 are F0-measurable random variables taking values in R+ and Rd

respectively and (H i
t )t∈R+

is a F0-measurable C(R+) random function. The 1/N scaling in (1d)
will allow us to take the mean-field limit N → ∞.

If f does not depend on the leaky memory variables M and h does not depend on the age
A nor M, (1) reduces to a system of interacting Age-dependent Hawkes processes [4,43]. If,
in addition, f does not depend on A, the model further reduces to a mean-field system of
interacting nonlinear Hawkes processes (with vanishing self-interaction) [9,10]. The model (1)
has two motivations: first, it is general enough to encompass several concrete examples from
the theory of nonlinear Hawkes processes and neuroscience (see below); second, its mean-field
limit can be characterized by a PDE.

1.2. Motivating examples

Hawkes processes [23] provide a flexible and intuitive model for point processes with
dependence on the past. They have found applications in finance [1,24], seismology [35], social
systems [6], genomics [45] and neuroscience [17,28,41,44,49,50], among other fields. Neuro-
science research has mainly focused on nonlinear Hawkes processes [2] since they are closely
related to well-established neuron models such as the Spike Response Model [19,21,22,25]
and the Recursive Linear-Nonlinear Poisson Model [41], both variations of Generalized Linear
Models (see [22] Part II and references therein). However, the models differ from the nonlinear
Hawkes processes considered in [9,10] in that, even when N is large, self-interaction (the effect
of process i on itself) does not vanish. Self-interaction vanishes in [9,10] because it is scaled
by 1/N . Let us now consider the case where self-interaction h can be different from hetero-
interaction h (the effect of a process on the other processes) and only hetero-interaction is
scaled by 1/N : for i = 1, . . . , N ,

Z i,N
t =

∫
[0,t]×R+

1
{z≤ f (X i,N

s− )}π
i (ds, dz), (2a)

X i,N
t (i) = Hi

t +
1
N

∑
j ̸=i

H j
t +

∫ t

0
h(t − s)d Z i,N

s +
1
N

∑
j ̸=i

∫ t

0
h(t − s)d Z j,N

s , (2b)

where f : R → R+ is monotonically increasing and {(Ht (i))t∈R+
}i=1,...,N are F0-measurable

random C(R+) functions. The model (2) is a mean-field system of interacting nonlinear Hawkes
processes with non-vanishing self-interaction. In the context of neuroscience, (2) can be seen
as a mean-field network of Generalized Linear Model/Spike Response Model neurons.

Let us now assume that h is an Erlang kernel, i.e. there exists d ∈ N∗ such that

h(t) = ce−αt td−1

(d − 1)!
,
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for some c ∈ R and α > 0. Self-interaction can then be translated into a ‘Markovian cascade
of memory terms’ [10,11]: adjusting the initial conditions, (2) can be equivalently written: for
i = 1, . . . , N ,

Z i,N
t =

∫
[0,t]×R+

1
{z≤ f (Mi,N

s− (1)+X i,N
s− )}π

i (ds, dz), (3a)

Mi,N
t = Mi

0 +

∫ t

0
AMi,N

s ds + cZ i,N
t , (3b)

X i,N
t =

1
N

∑
j ̸=i

H j
t +

1
N

∑
j ̸=i

∫ t

0
h(t − s)d Z j,N

s , (3c)

where Mi,N
s− (1) denotes the first element of the vector Mi,N

s− . The d-by-d matrix A has all
diagonal terms equal to −α, all superdiagonal terms equal to 1, and all other terms equal
to 0; the d dimensional vector c is defined by c(k) = 1k=dc. This is equivalent to setting
b(m) = Am and Γ (m) = (0, . . . , 0, c) in (1b). The fact that there are N distinct variables X i,N

t
instead of a common shared variable X N

t as in (1) does not affect the mean-field limit since
the difference between X N

t and X i,N
t is of order 1/N (see [4]).

The generalization of (3) to the case where h is a sum of Erlang kernels is straightforward.
Of course, a sum of Erlang kernels can simply be a sum of exponential kernels, which is more
common in neuroscience [22,33,34,48]. Notably, taking one exponential kernel with c < 0 is
enough to model the effects of neuronal refractoriness and spike-frequency adaptation [33].

In the example (3), the leaky memory variables M influence the intensity function f but does
not influence the interaction function h. However, in the general model (1), h can depend on M.
In the context of neuronal modeling, this dependence can be used to account for the effects of
short-term synaptic plasticity (STP) [53]. Using the notation of the general model (1), we can
describe a network of spiking neurons with refractoriness and ‘Tsodyks–Markram’ STP [51].
The Tsodyks–Markram model [51] captures the interplay between synaptic depression and
facilitation and has been used to model working memory [32], chaotic dynamics [5] and
learning in hierarchical circuits [39]. Taking d = 2, the leaky memory variables (the STP
variables of the Tsodyks–Markram model) follow, for initial conditions Mi

0 supported in
[U, 1] × [0, 1] with U ∈ ]0, 1[,

Mi,N
t = Mi

0 +

∫ t

0
b(Mi,N

s )ds +

∫ t

0
Γ (Mi,N

s− )d Z i,N
s , (4a)

with the vector field

b
(
m(1),m(2)

)
=

(
U − m(1)

τF
,

1 − m(2)
τD

)
, (4b)

where τF > 0 and τD > 0 are the facilitation and depression timescales respectively, and with
the jump function

Γ
(
m(1),m(2)

)
=
(
U (1 − m(1)),−m(1)m(2)

)
. (4c)

It is easy to verify that the leaky memory variables Mi,N
t then take values in [U, 1] × [0, 1].

Finally, we take f independent of the leaky memory variables and h of the form h(t, a,m) =

m(1)m(2)h̄(t). The model we just described generalizes interacting Age-dependent Hawkes
processes [4,43] and is more detailed than the model with purely facilitating synapses and
without refractoriness studied in [16].
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These two motivating examples are clearly special cases of the general model (1). The fact
that in both examples, the variables Mi,N

t relax to some fixed value in the absence of jumps
motivates the name ‘leaky memory’. Importantly, both examples satisfy the main assumptions
we will use in this work (see Section 2).

1.3. Methods and relation to previous work

To prove propagation of chaos in the mean-field limit, we use the method of coupling
à la Sznitman [47]: to show the convergence of the time-marginals, we follow Fournier
and Löcherbach [14] (see also [16]); to show the convergence of the processes, we use the
method of Delattre, Fournier and Hoffmann [9] (later used by Chevallier [4] and Ditlevsen
and Löcherbach [10]). Our approach for relating the limit process with the limit PDE differs
from previous work [4] for it relies on a path integral representation. This representation turns
an earlier heuristic method from Naud and Gerstner [34] into a rigorous argument. Contrarily
to [4] where PDE solutions in measure space are considered, our method treats PDE solutions
in L1 space and does not involve the semigroup theory results of [3]. More importantly, the
path integral method allows us to derive a representation formula for the solution to the PDE.
The limit PDE we obtain is a generalization of the Time Elapsed Neuron Network Model of
Pakdaman, Perthame and Salort [36] and of the refractory density equation [18,20,22] to the
case of neurons with adaptation and short-term synaptic plasticity.

1.4. Plan of the paper

The main results of this work, namely propagation of chaos (Theorem 1) and the charac-
terization of the mean-field limit by a PDE (Theorem 2), are presented in Section 2, together
with the assumptions required. The proof of Theorem 1 is presented in Section 3. In Section 4,
we show that under more restrictive assumptions, we can get a propagation of chaos result
analogous to that of [4,9,10]. Finally, the proof of Theorem 2 is presented in Section 5.

2. Assumptions and main results

General notations. The uniform and Euclidean norms are denoted by ∥·∥ ∞ and ∥·∥ respec-
tively. We write

Γ∞ := supm∈Rd

Γ (m)
. We use C,CT and CT,0 to denote positive constants

(that can change from line to line) where the subscript T signals the dependence on time and
the subscript 0 the dependence on the law of

(
A1

0,M1
0, (H 1

t )t∈R+

)
.

In this work, we always assume that the functions f , h, b and Γ satisfy:

Assumption 1.

(i) The functions f , h and Γ are bounded.
(ii) There exists a bounded, strictly increasing and continuously differentiable function

ψ : R+ → R+ with ψ(0) = 0 and satisfying

|ψ ′(a) − ψ ′(a∗)| ≤ κ|ψ(a) − ψ(a∗)|, ∀a, a∗
∈ R+,

for some κ > 0, such that, for all (a,m, x, a∗,m∗, x∗) ∈ (R+ × Rd
× R)2, and for all

t ∈ R+,

| f (a,m, x) − f (a∗,m∗, x∗)| ≤ L f (|ψ(a) − ψ(a∗)| +
m − m∗

+ |x − x∗
|),

|h(t, a,m) − h(t, a∗,m∗)| ≤ Lh(|ψ(a) − ψ(a∗)| +
m − m∗

),

for some L f and Lh > 0.
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(iii) The vector field b and jump function Γ are Lipschitz continuous.

The fact that f is bounded guarantees the well-posedness of the system (1) and a path-wise
unique càdlàg strong solution to (1) can be constructed using a standard thinning procedure.
(i i) says that f and h are Lipschitz continuous with respect to a ψ-modified metric on the age
variable. An example of possible function is ψ(a) = 1 − exp(−aκ). The ψ-modified Lipschitz
continuity of f implies that the effect of a on f saturates for large a. Note that in the STP
example (4), since the leaky memory variables take values in the compact [U, 1] × [0, 1], the
jump function (4c) is effectively Lipschitz.

To prove propagation of chaos, we need some assumptions on {(A0(i),M0(i),
(Ht (i))t∈R+

)}i∈N:

Assumption 2.

(i) The 3-tuples {(A0(i),M0(i), (Ht (i))t∈R+
)}i∈N are i.i.d.

(ii) The random function (H 1
t )t∈R+

is such that (E[H 1
t ])t∈R+

∈ C(R+).
(iii) For all T > 0, there exists CT,0 > 0 such that supt∈[0,T ] Var[H 1

t ] ≤ CT,0.

A condition similar to (i i i) is used in [4]. Note that in [4], Chevallier considers i.i.d. random
interaction functions instead of a deterministic function h, common to all the point processes.
As he proved that, under some square integrability condition, the randomness in the interaction
functions averages out in the mean-field limit, we focus here on the fixed h case.

The first main result of this work is a quantified propagation of chaos theorem:

Theorem 1. Grant Assumptions 1 and 2. For all T > 0, there exists CT,0 > 0 such that

sup
t∈[0,T ]

E
[
|ψ(A1,N

t ) − ψ(A1
t )| + ∥M1,N

t − M1
t ∥ + |X N

t − xt |

]
≤ CT,0 N−1/2, (5)

where (A1
t ,M1

t , xt )t∈R+
(the limit process) is given by the path-wise unique càdlàg strong

solution to

A1
t = A1

0 + t −

∫ t

0
A1

s−d Z1
s , (6a)

M1
t = M1

0 +

∫ t

0
b(M1

s )ds +

∫ t

0
Γ (M1

s−)d Z1
s , (6b)

Z1
t =

∫
[0,t]×R+

1z≤ f (A1
s−,M

1
s−,xs )π

1(ds, dz), (6c)

xt = E[H 1
t ] +

∫ t

0
E[h(t − s, A1

s ,M1
s ) f (A1

s ,M1
s , xs)]ds. (6d)

Furthermore, for all t ∈ [0, T ], writing L
(
ψ(A1

t ),M1
t

)
the law of (ψ(A1

t ),M1
t ), there exists

C ′

T,0 > 0 such that

sup
t∈[0,T ]

E

⎡⎢⎣W1

⎛⎝ 1
N

N∑
i=1

δ(ψ(Ai,N
t ),Mi,N

t ),L
(
ψ(A1

t ),M1
t

)⎞⎠
⎤⎥⎦ ≤ C ′

T,0 N−1/2, (7)

where W1 denotes the 1-Wasserstein distance.

It directly follows from Theorem 1 and the Continuous mapping theorem that for all t > 0,
the empirical measure of the system (1) at time t converges in probability to the time-marginal
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of the law of the limit process:

1
N

N∑
i=1

δ(Ai,N
t ,Mi,N

t ,X N )
P

−−−→
N→∞

L
(

A1
t ,M1

t , xt

)
. (8)

The second main result relates the time-marginals L
(

A1
t ,M1

t , xt
)

of the law of the limit
process with the solution to a nonlocal transport equation. To formulate the transport equation,
we define the jump mapping γ (m) = m + Γ (m) and we write ∇· the divergence operator
in Rd . To stay within the standard framework of (mass-conservative) transport equation with
solutions in L1 [40], we need:

Assumption 3.

(i) The vector field satisfies b ∈ C1(Rd ,Rd ) and ∇ · b ∈ C1(Rd ,Rd ).
(ii) The jump mapping γ is a proper local C1-diffeomorphism.

Theorem 2. Grant Assumptions 1 and 3. Further assume that the law of the initial condition
(A1

0,M1
0) is the absolutely continuous probability measure u0(a,m)dadm and (E[Ht ])t∈R+

=

(H̄ 1
t )t∈R+

∈ C(R+). Then, the time-marginals ρt ⊗ δxt := L
(

A1
t ,M1

t , xt
)

of the law of the limit
process (6) correspond to the unique weak solution to

∂tρt (a,m) + ∂aρt (a,m) + ∇ ·
(
b(m)ρt (a,m)

)
= − f (a,m, xt )ρt (a,m), (9a)

ρt (0, ·) = γ∗

(∫
R+

f (a, ·, xt )ρt (a, ·)da

)
, (9b)

xt = H̄t +

∫ t

0

∫
Rd

∫
R+

h(t − s, a,m) f (a,m, xs)ρs(a,m)dadmds, (9c)

ρ0(a,m) = u0(a,m), (9d)

(where ∇· denotes the divergence on the variables m and γ∗(. . . ) denotes the pushforward
measure by γ ) in the sense that (ρ, x) ∈ C(R+, L1(R+ × Rd )) × C(R+) and, for all G ∈

C∞
c (R+ × R+ × Rd ),

0 =

∫
Rd

∫
R+

G(0, a,m)u0(a,m)dadm +

∫
R+

∫
Rd

∫
R+

{
[∂t + ∂a + b(m) · ∇]G(t, a,m)

+(G(t, 0, γ (m)) − G(t, a,m)) f (a,m, xt )
}
ρt (a,m)dadmdt, (10)

where ∇ denotes the gradient operator on the variables m.

Assumption 3 (ii) guarantees that for all m ∈ γ (Rd ), the preimage γ−1(m) is a finite set of
points and (9b) can be more explicitly written

ρt (0,m) = 1γ (Rd )(m)
∑

m′∈γ−1(m)

1
| det(Jγ (m′))|

∫
R+

f (a,m′, xt )ρt (a,m′)da, (11)

where det(Jγ (m′)) denotes the determinant of the Jacobian matrix Jγ (m′).
All the results and proofs can be adapted to the simpler case where the system is not

age-dependent, as in the Erlang kernel example (3). For this example, the limit PDE (9)
becomes

∂tρt (m) + A∇ ·
(
mρt (m)

)
= f (m(1) + xt )ρt (m − c) − f (m(1) + xt )ρt (m),
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xt = H̄t +

∫ t

0
h(t − s)

∫
Rd

f (m(1) + xs)ρs(m)dmds,

ρ0(m) = u0(m).

For the STP example (4), the limit PDE reads

∂tρt (a,m) + ∂aρt (a,m) + ∇ ·
(
b(m)ρt (a,m)

)
= − f (a, xt )ρt (a,m),

ρt (0,m) = 1γ (D)(m)
1

1 − m(1)

∫
R+

f (a, xt )ρt (a, γ−1(m))da,

xt = H̄t +

∫ t

0
h̄(t − s)

∫
Rd

∫
R+

m(1)m(2) f (a, xs)ρs(a,m)dadmds,

ρ0(a,m) = u0(a,m),

where D =]U, 1[×]0, 1[ and γ (m) =
(
U + [1 − U ]m(1), [1 − m(1)]m(2)

)
.1

Theorems 1 and 2 have two important implications for neuronal modeling: first, they provide
a rigorous footing to multidimensional population density equations, which could be simulated
using mesh-based methods described in [7,27,33]; second, they confirm that, not only in the
simple ‘renewal’ cases, the PDE point of view can be used to study the nonlinear dynamics of
large networks of spiking neurons [12].

3. Proof of Theorem 1 (Propagation of chaos)

The approach here is standard. We use a fixed-point argument to show that the limit
process (6) is well-defined. Then, we use the coupling method [47] to prove that a typical
particle converges to the limit process.

3.1. Well-posedness of the limit process

Proposition 1. Grant Assumption 1 and assume that (E[H 1
t ])t∈R+

∈ C(R+). There exists a
path-wise unique càdlàg strong solution (A1

t ,M1
t , xt )t∈R+

taking values in R+ ×Rd
×R to (6).

Furthermore, (xt )t∈R+
∈ C(R+).

Proof. For all y ∈ C(R+), let us write (Ay
t ,My

t , x y
t )t∈R+

the càdlàg strong solution to

Ay
t = A1

0 + t −

∫ t

0
Ay

s−d Z y
s ,

My
t = M1

0 +

∫ t

0
b(My

s )ds +

∫ t

0
Γ (My

s−)d Z y
s ,

Z y
t =

∫
[0,t]×R+

1z≤ f (Ay
s−,M

y
s−,ys )π

1(ds, dz).

Then, we set

x y
t = E[H 1

t ] +

∫ t

0
E[h(t − s, Ay

s ,My
s ) f (Ay

s ,My
s , ys)]ds.

Since f and h are bounded, by dominated convergence, we have that (x y
t )t∈R+

∈ C(R+).
Thus, for all T > 0, we can define the operator

ΦT : C([0, T ]) → C([0, T ]), (yt )t∈[0,T ] ↦→ (x y
t )t∈[0,T ].

1 Using (11), a simple calculation gives det(Jγ (γ−1(m))) = 1 − m(1).
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The solution (Ay
t ,My

t , x y
t )t∈[0,T ] is a solution to (6) on [0, T ] if and only if (yt )t∈[0,T ] =

(x y
t )t∈[0,T ], or equivalently, if and only if (yt )t∈[0,T ] is a fixed point of ΦT . We are going to

show that for T small enough, ΦT is a contraction for the uniform norm.
For all y and y∗

∈ C([0, T ]), by triangular inequality and using the Lipschitz continuity and
the boundedness of f and h, we have, for all t ∈ [0, T ],⏐⏐⏐⏐⏐

∫ t

0
E[h(t − s, Ay

s ,My
s ) f (Ay

s ,My
s , ys)]ds

−

∫ t

0
E[h(t − s, Ay∗

s ,My∗

s ) f (Ay∗

s ,My∗

s , y∗

s )]ds

⏐⏐⏐⏐⏐ ≤ C
∫ t

0
∆sds,

where

∆s := E
[
|ψ(Ay

s ) − ψ(Ay∗

s )| + ∥My
s − My∗

s ∥ + |ys − y∗

s |

]
.

By Itô’s formula for jump processes,

ψ(Ay
t ) = ψ(A1

0) +

∫ t

0
ψ ′(Ay

s )ds −

∫
[0,t]×R+

ψ(Ay
s−)1z≤ f (Ay

s−,M
y
s−,ys )π

1(ds, dz).

Whence,

E[|ψ(Ay
t ) − ψ(Ay∗

t )|] ≤ E

⎡⎣⏐⏐⏐⏐⏐
∫ t

0
ψ ′(Ay

s ) − ψ ′(Ay∗

s )ds

⏐⏐⏐⏐⏐
⎤⎦

+E

⎡⎣⏐⏐⏐⏐⏐
∫

[0,t]×R+

ψ(Ay
s−)1z≤ f (Ay

s−,M
y
s−,ys ) − ψ(Ay∗

s−)1
z≤ f (Ay∗

s−,M
y∗

s−,y
∗
s )
π1(ds, dz)

⏐⏐⏐⏐⏐
⎤⎦ .

Notice that by Assumption 1, |ψ ′(Ay
s ) − ψ ′(Ay∗

s )| ≤ κ|ψ(Ay
s ) − ψ(Ay∗

s )|. Then, by triangular
inequality and using the Lipschitz continuity and the boundedness of f and ψ , we easily get

E[|ψ(Ay
t ) − ψ(Ay∗

t )|] ≤ C
∫ t

0
∆sds;

similarly, using the Lipschitz continuity of b, Γ and f and the boundedness of Γ and f , we
get E[∥My

t − My∗

t ∥] ≤ C
∫ t

0 ∆sds. Thus, for all t ∈ [0, T ],

∆t ≤ C
∫ t

0
∆sds +

y − y∗


∞,

and by Grönwall’s lemma, ∆t ≤
y − y∗


∞ exp(Ct). Whence,ΦT (y) − ΦT (y∗)


∞ ≤ C ′T exp(CT )

y − y∗


∞.

For T small enough, ΦT is a contraction and has a unique fixed point by Banach’s fixed-point
theorem. The fixed point gives the unique solution to (6) on [0, T ]. Since the constants C and
C ′ do not depend on T nor on the law of (A1

0,M1
0, (H 1

t )t∈R+
), we can iterate the argument

above on successive time intervals of length T to obtain the solution to (6) on R+. □

3.2. Convergence

Proof. The proof of the convergence (5) follows the same general strategy as in [9, Theorem 7].
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For all i = 1, . . . , N , we define the coupled limit process (Ai
t ,Mi

t , Z i
t )t∈R+

as the path-wise
unique càdlàg strong solution to

Ai
t = Ai

0 + t −

∫ t

0
Ai

s−d Z i
s,

Mi
t = Mi

0 +

∫ t

0
b(Mi

s)ds +

∫ t

0
Γ (Mi

s−)d Z i
s,

Z i
t =

∫
[0,t]×R+

1z≤ f (Ai
s−,M

i
s−,xs )π

i (ds, dz),

xt = E[H 1
t ] +

∫ t

0
E[h(t − s, A1

s ,M1
s ) f (A1

s ,M1
s , xs)]ds.

The process (Ai
t ,Mi

t , Z i
t )t∈R+

is coupled to (Ai,N
t ,Mi,N

t , Z i,N
t )t∈R+

in the sense that it shares
the same (Ai

0,Mi
0, (H i

t )t∈R+
) and the same Poisson random measure π i . The variable xt has

no index i as it the same for all i ; it can be interpreted as the deterministic time-varying ‘mean
field’ which acts uniformly on all the individual processes. Importantly, the limit processes
{(Ai

t ,Mi
t , Z i

t )t∈R+
}

N
i=1 are i.i.d. For all t ≥ 0, let us define

∆1,N
t := E

[
|ψ(A1,N

t ) − ψ(A1
t )| + ∥M1,N

t − M1
t ∥ + |X N

t − xt |

]
.

Arguing as in the proof of Proposition 1, we get

E
[
|ψ(A1,N

t ) − ψ(A1
t )| + ∥M1,N

t − M1
t ∥

]
≤ C

∫ t

0
∆1,N

s ds.

It remains to control the term E
[
|X N

t − xt |
]
:

Fix T > 0. For all t ∈ [0, T ], by triangular inequality,

E
[
|X N

t − xt |

]
≤ E

[⏐⏐⏐⏐ 1
N

N∑
i=1

H i
t − E[H 1

t ]
⏐⏐⏐⏐]

+ E
[⏐⏐⏐⏐ 1

N

N∑
i=1

∫
[0,t]×R+

h(t − s, Ai,N
s− ,Mi,N

s− )1z≤ f (Ai,N
s− ,Mi,N

s− ,X N
s−)π

i (ds, dz)

−
1
N

N∑
i=1

∫
[0,t]×R+

h(t − s, Ai
s−,Mi

s−)

× 1z≤ f (Ai
s−,M

i
s−,xs )π

i (ds, dz)
⏐⏐⏐⏐]

+ E
[⏐⏐⏐⏐ 1

N

N∑
i=1

∫
[0,t]×R+

h(t − s, Ai
s−,Mi

s−)1z≤ f (Ai
s−,M

i
s−,xs )π

i (ds, dz)

−

∫ t

0
E[h(t − s, A1

s ,M1
s )

× f (A1
s ,M1

s , xs)]ds
⏐⏐⏐⏐]

=:QN
t + RN

t + SN
t . (12)
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By Cauchy–Schwarz inequality and Assumption 2,

QN
t ≤

(
Var[H 1

t ]
N

)1/2

≤ CT,0 N−1/2.

By exchangeability, triangular inequality and by the Lipschitz continuity and boundedness of
f and h,

RN
t ≤ C

∫ t

0
∆1,N

s ds.

By Cauchy–Schwarz inequality,

SN
t ≤E

[(
1
N

N∑
i=1

∫
[0,t]×R+

h(t − s, Ai
s−,Mi

s−)1z≤ f (Ai
s−,M

i
s−,xs )π

i (ds, dz)

−

∫ t

0
E[h(t − s, A1

s ,M1
s )

× f (A1
s ,M1

s , xs)]ds
) 2 ] 1/2

=Var

[∫
[0,t]×R+

h(t − s, A1
s−,M1

s−)1z≤ f (A1
s−,M

1
s−,xs )π

1(ds, dz)

]1/2

N−1/2.

However, writing π̃1(ds, dz) := π1(ds, dz) − dsdz the compensated Poisson random
measure, we have, by Itô isometry for compensated jump processes,

Var

[∫
[0,t]×R+

h(t − s, A1
s−,M1

s−)1z≤ f (A1
s−,M

1
s−,xs )π

1(ds, dz)

]

= E

⎡⎣(∫
[0,t]×R+

h(t − s, A1
s−,M1

s−)1z≤ f (A1
s−,M

1
s−,xs )π̃

1(ds, dz)

)2
⎤⎦ ≤ T ∥h∥

2
∞

 f


∞.

Hence, SN
t ≤ CT N−1/2. Gathering the bounds, we get

E
[
|X N

t − xt |

]
≤ C

∫ t

0
∆1,N

s ds + CT,0 N−1/2.

Finally,

∆1,N
t ≤ C

∫ t

0
∆1,N

s ds + CT,0 N−1/2, ∀t ∈ [0, T ],

and by Grönwall’s lemma,

∆1,N
t ≤ CT,0 exp(CT T )N−1/2, ∀t ∈ [0, T ], (13)

which concludes the proof of (5).
By exchangeability,

E

⎡⎢⎣W1

⎛⎝ 1
N

N∑
i=1

δ(ψ(Ai,N
t ),Mi,N

t ),L
(
ψ(A1

t ),M1
t

)⎞⎠
⎤⎥⎦

≤ E
[
|ψ(A1,N

t ) − ψ(A1
t )| + ∥M1,N

t − M1
t ∥

]
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+E

⎡⎢⎣W1

⎛⎝ 1
N

N∑
i=1

δ(ψ(Ai
t ),Mi

t ),L
(
ψ(A1

t ),M1
t

)⎞⎠
⎤⎥⎦ .

Then, we simply use (13) and a result on the convergence of the empirical measures in
Wasserstein distance [13, Theorem 1] to get (7). □

4. Alternative propagation of chaos result

Theorem 1 guarantees the convergence of the time-marginals (see (8)), which is sufficient
for relating the empirical measure of the system (1) with the PDE (9). However, under more
restrictive assumptions on the vector field b and the jump mapping γ , it is possible to get the
convergence of the processes, as in [4,9,10].

Assumption 4.

(i) Writing (Bt )t∈R+
the flow associated with the vector field b, for all t ≥ 0, Bt is

1-Lipschitz for the Euclidean distance.
(ii) The jump mapping γ is 1-Lipschitz for the Euclidean distance.

Theorem 3. Grant Assumptions 1, 2 and 4. For all T > 0, there exists CT,0 > 0 such that

E

[
sup

t∈[0,T ]
|ψ(A1,N

t ) − ψ(A1
t )| + ∥M1,N

t − M1
t ∥

]
≤ CT,0 N−1/2, (14)

where (A1
t ,M1

t )t∈R+
is given by the path-wise unique strong solution to (6).

Proof. The well-posedness of the limit process (A1
t ,M1

t , xt )t∈R+
has already been proved in

Proposition 1. For the convergence, we follow the same strategy as in [9, Theorem 8] (see
also [4, Theorem IV.1] and [10, Theorem 1]).

Let {(Ai
t ,Mi

t , Z i
t )t∈R+

}
N
i=1 be the same coupled limit process as in Section 3.2. The integral∫ t

0 |d(Z1,N
s − Z1

s )| counts the number of times one counting process jumps whereas the other
does not, on the time interval [0, t]. We define

δN
t := E

[∫ t

0
|d(Z1,N

s − Z1
s )|

]
=

∫ t

0
E[| f (A1,N

s ,M1,N
s , X N

s ) − f (A1
s ,M1

s , xs)|]ds.

The key observation is that Assumption 4 guarantees

E

[
sup

s∈[0,t]
|ψ(A1,N

s ) − ψ(A1
s )| + ∥M1,N

s − M1
s ∥

]
≤ CδN

t : (15)

Clearly, sups∈[0,t] |ψ(A1,N
s ) − ψ(A1

s )| ≤
ψ∞ · 1∫ t

0 |d(Z1,N
s −Z1

s )|>0 ≤
ψ∞

∫ t
0 |d(Z1,N

s − Z1
s )|,

which implies that E[sups∈[0,t] |ψ(A1,N
s ) − ψ(A1

s )|] ≤
ψ∞δ

N
t . On the other hand, by

Assumption 4(i), in a time interval with no jumps in Z1,N nor Z1, ∥M1,N
t −M1

t ∥ cannot increase.
If both Z1,N and Z1 jump at time t , by Assumption 4(ii), ∥M1,N

t − M1
t ∥ ≤ ∥M1,N

t− − M1
t−∥.

Hence, the only way to have ∥M1,N
t −M1

t ∥ > ∥M1,N
t− −M1

t−∥ is if Z1,N jumps at time t but not
Z1 or vice versa. However, in these cases, the increase is bounded by

Γ∞. In summary, we
have that sups∈[0,t] ∥M1,N

s − M1
s ∥ ≤

Γ∞

∫ t
0 |d(Z1,N

s − Z1
s )|, which concludes the verification

of (15).
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We now have to control δN
t . Using (15), we have that

δN
t ≤ L f

∫ t

0
E
[
|ψ(A1,N

s ) − ψ(A1
s )| + ∥M1,N

s − M1
s ∥ + |X N

s − xs |

]
ds

≤ L f

∫ t

0
CδN

s + E[|X N
s − xs |]ds.

Fix T > 0, for all s ∈ [0, T ], we can bound E[|X N
s − xs |] as in the proof of Theorem 1 (see

(12)):

E[|X N
s − xs |] ≤ QN

s + RN
s + SN

s .

with the same variance bounds QN
s +SN

s ≤ CT,0 N−1/2. By exchangeability, triangular inequality
and using (15), we have

RN
s ≤∥h∥ ∞δ

N
s +

 f


∞Lh

∫ s

0
E[|ψ(A1,N

u ) − ψ(A1
u)| − ∥M1,N

u − M1
u∥]du ≤ CT δ

N
s .

Gathering the bounds, we get

δN
t ≤ CT

∫ t

0
δN

s ds + CT,0 N−1/2, ∀t ∈ [0, T ],

and we conclude using Grönwall’s lemma. □
By exchangeability, (14) implies that for all T > 0, there exists C ′

T,0 > 0 such that

E

[
sup

t∈[0,T ]
|ψ(A1,N

t ) − ψ(A1
t )| + ∥M1,N

t − M1
t ∥ + |ψ(A2,N

t ) − ψ(A2
t )| + ∥M2,N

t − M2
t ∥

]
≤ C ′

T,0 N−1/2.

By standard arguments on the Skorokhod metric and the Continuous mapping theorem, we
have the weak convergence(

A1,N
t ,M1,N

t , A2,N
t ,M2,N

t

)
t∈R+

w
−−−→
N→∞

(
A1

t ,M1
t , A2

t ,M2
t

)
t∈R+

.

Since (A1
t ,M1

t )t∈R+
and (A2

t ,M2
t )t∈R+

have the same law, by [47, Proposition 2.2], we have the
convergence in probability of the empirical measure of the system (1) to the law of the limit
process:

1
N

N∑
i=1

δ(Ai,N
t ,Mi,N

t )t∈R+

P
−−−→
N→∞

L
(

(A1
t ,M1

t )t∈R+

)
in P(D(R+,R+ × Rd )), (16)

where P(D(R+,R+ ×Rd )) denotes the space of probability measures on the Skorokhod space
D(R+,R+ ×Rd ) of càdlàg functions R+ → R+ ×Rd and L

((
A1

t ,M1
t

)
t∈R+

)
denotes the law

of the process
(

A1
t ,M1

t

)
t∈R+

.
The convergence (16) is clearly stronger than the convergence of the time-marginals (7) but

it requires the additional Assumption 4, which is somewhat restrictive.

5. Proof of Theorem 2 (Transport equation for the empirical measure)

Here, our aim is to show that if we write (ρt ⊗ δxt )t∈R+
the time-marginals of the law of

the process (6), then (ρt , xt )t∈R+
is a weak solution to (9). To show this, we use the limit
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process to construct a representation formula for ρt . The representation formula is obtained
by making rigorous the heuristic ‘path integral’ method in [34]. We then show that the path
integral representation gives a weak solution to (9). Finally, we prove that weak solution to (9)
is unique.

5.1. Path integral representation for the time-marginals of the law ot the limit process

To formulate the path integral representation, we first need to introduce some notations and
definitions.

Let (xt )t∈R+
be given by the limit process (6) and let us write (A∗

t ,M∗
t )t∈R+

the càdlàg
process following the dynamics (6a) and (6b) given (xt )t∈R+

and the initial condition (a0,m0) ∈

R+ ×Rd . For all t > 0, (A∗
t ,M∗

t ) is deterministic given the initial condition and the jump times
in [0, t]. Hence, for all k ∈ N (the number of jumps in [0, t]) and for all 0 < t1 < · · · < tk ≤ t
(the jump times in [0, t]), we can define, recursively, the mappings θ k

t (t1, . . . , tk) : Rd
→ Rd ,

giving M∗
t as a function of the initial condition m0:

θ0
t := Bt , (17a)

∀k ≥ 1, θ k
t (t1, . . . , tk) := Bt−tk ◦ γ ◦ θ k−1

tk (t1, . . . , tk−1), (17b)

where (Bt )t∈R+
is the flow associated with the vector field b.

For all k ≥ 1, we can now define the mapping

φk
t

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
t1
...

tk−1
tk

m0

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
t1
...

tk−1
t − tk

θ k
t (t1, . . . , tk−1, tk)(m0)

⎞⎟⎟⎟⎟⎟⎟⎠ .

If there are k jumps in the time interval [0, t] and if these jumps occur at times t1, . . . , tk , then
(A∗

t ,M∗
t ) = (t − tk, θ k

t (t1, . . . , tk)(m0)). For k = 0, we simply have

φ0
t

⎛⎝( a0
m0

)⎞⎠ =

(
a0 + t
θ0

t (m0)

)
.

If f is bounded (Assumption 1), we can write ηk(t1, . . . , tk; a0,m0)dt1 . . . dtk the probability
density over the k-first jump times of the process (A∗

t ,M∗
t )t∈R+

having initial condition
(a0,m0). We further define the sub-probability density νk

t (t1, . . . , tk; a0,m0)dt1 . . . dtk :

νk
t (t1, . . . , tk; a0,m0) := 1tk≤t

∫
∞

t
ηk+1(t1, . . . , tk, tk+1; a0,m0)dtk+1.

Note that the mass of νk
t is the probability of having exactly k jumps in the time interval [0, t].

Hence, νk
t /
∫
νk

t can be interpreted as the probability density over the k jump times knowing
that there are exactly k jumps in the time interval [0, t].

Lastly, for all k ≥ 1, we denote by Π k
t1,...,tk ,m and Π k

a,m the projections

Π k
t1,...,tk ,m0

: (t1, . . . , tk, a0,m0) ↦→ (t1, . . . , tk,m0),

Π k
a,m : (t1, . . . , tk−1, a,m) ↦→ (a,m).

52



V. Schmutz Stochastic Processes and their Applications 149 (2022) 39–59

By convention, for k = 0, these projections are the identity.
We have the path integral representation:

Lemma 1. Grant Assumption 1. Let (A1
t ,M1

t , xt )t∈R+
denote the limit process (6) for the initial

condition (A1
0,M1

0) ∼ u0 and (E[Ht ])t∈R+
∈ C(R+). Then, for all t > 0, the time-marginal

ρt := L(A1
t ,M1

t ) is given by the representation formula

ρt =

∞∑
k=0

(Π k
a,m ◦ φk

t ◦ Π k
t1,...,tk ,m0

)∗(νk
t u0). (18)

If we further grant Assumption 3 and if u0 is absolutely continuous, then ρt is also absolutely
continuous.

Proof. Let τk be the time of the kth jump of
(

A1
t ,M1

t , xt
)

t∈R+
. Since

(
A1

t ,M1
t

)
is a function of

the initial conditions
(

A1
0,M1

0

)
and the jump times {τk}k∈N∗ , for any continuous and bounded

test function F on R+ × Rd , we can write E[F(At ,Mt )] as a ‘path integral’:

E[F(A1
t ,M1

t )] = E
[

F(A1
t ,M1

t )1{t<τ1}

]
+

∞∑
k=1

E
[

F(A1
t ,M1

t )1{τk≤t<τk+1}

]
= E

[
F(φ0

t (A1
0,M1

0))1{t<τ1}

]
+

∞∑
k=1

E
[

F(Π k
a,m ◦ φk

t (τ1, . . . , τk,M1
0))1{τk≤t<τk+1}

]
=

∫
Rd

∫
R+

F(φ0
t (a0,m0))ν0

t (a0,m0)u0(da0, dm0)

+

∞∑
k=1

∫
Rd

∫ t

0
· · ·

∫ t

0  
k times

F(Π k
a,m ◦ φk

t (t1, . . . , tk,m0))

×

∫
R+

νk
t (t1, . . . , tk; a0,m0)u0(da0, dm0)  

(Π k
t1,...,tk ,m

)∗(νk
t u0)

dt1 . . . dtk

=

∫
Rd

∫
R+

F(a,m)
( ∞∑

k=0

(Π k
a,m ◦ φk

t ◦ Π k
t1,...,tk ,m0

)∗(νk
t u0)

)
(da, dm),

whence the representation formula (18).
If u0 is absolutely continuous, then vk

t u0 is absolutely continuous for all k ≥ 0. If, in
addition, Assumption 3 is granted, then φk

t is a proper local diffeomorphism and (Π k
a,m ◦ φk

t ◦

Π k
t1,...,tk ,m)∗(νk

t u0) is absolutely continuous for all k ≥ 0. The probability measure ρt is therefore
absolutely continuous. □

5.2. From the limit process to weak solutions

Proposition 2. Grant Assumptions 1 and 3. Further assume that the law of the initial condition
(A1

0,M1
0) is the absolutely continuous probability measure u0(a,m)dadm and (E[Ht ])t∈R+

=

(H̄ 1
t )t∈R+

∈ C(R+). Then, the time-marginals (ρt )t∈R+
of the law of the process (given by the

path integral representation (18)) and (xt )t∈R+
is a weak solution to (9).
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Proof. First, we use the path integral representation (18) to prove that ρ ∈ C(R+, L1(R+×Rd )).
We have to show that for all T > 0, ρ ∈ C([0, T ], L1(R+ × Rd )). Let us take Z1

t from (6c),
which counts the number of events in the time interval [0, t]. For any t ∈ [0, T ] and any l ∈ N,

∞∑
k=l

νk
t u0

 L1 = P(Z1
t ≥ l) ≤ P(Z1

T ≥ l).

Hence, for all t ′, t ∈ [0, T ],ρt ′ − ρt


L1

≤

∞∑
k=0

(Π k
a,m ◦ φk

t ′ ◦ Π k
t1,...,tk ,m0

)∗(νk
t ′u0) − (Π k

a,m ◦ φk
t ◦ Π k

t1,...,tk ,m0
)∗(νk

t u0)


L1

≤

l∑
k=0

(Π k
a,m ◦ φk

t ′ ◦ Π k
t1,...,tk ,m0

)∗(νk
t ′u0) − (Π k

a,m ◦ φk
t ◦ Π k

t1,...,tk ,m0
)∗(νk

t u0)


L1

+2P(ZT > l).

Since P(ZT > l) → 0 as l → ∞, to show that ρ ∈ C([0, T ], L1(R+ ×Rd )), it suffices to show
that for all k ∈ N,(

(Π k
a,m ◦ φk

t ◦ Π k
t1,...,tk ,m0

)∗(νk
t u0)

)
t∈[0,T ]

∈ C([0, T ], L1(R+ × Rd )).

By the density of Cc(R+ ×Rd ) in L1(R+ ×Rd ), for any ϵ > 0, there exists ũ0 ∈ Cc(R+ ×Rd )
such that ∥ũ0 − u0∥ L1 < ϵ

3∥ f ∥k
∞

. For all t ∈ [0, T ],(Π k
a,m ◦ φk

t ◦ Π k
t1,...,tk ,m0

)∗(νk
t ũ0) − (Π k

a,m ◦ φk
t ◦ Π k

t1,...,tk ,m0
)∗(νk

t u0)
 L1

=

νk
t (ũ0 − u0)

 L1

≤
 f
 k

∞
∥ũ0 − u0∥ L1 ≤

ϵ

3
.

Hence, by triangular inequality, it only remains to show that for all ũ0 ∈ Cc(R+ × Rd ),(
(Π k

a,m ◦ φk
t ◦ Π k

t1,...,tk ,m0
)∗(νk

t ũ0)
)

t∈[0,T ]
∈ C([0, T ], L1(R+ × Rd )). (∗)

Since ũ0 is compactly supported, there exists C > 0 such that Supp(ũ0) ⊂ [0,C] × [−C,C]d .
For all t ∈ [0, T ],

(Π k
a,m ◦ φk

t ◦ Π k
t1,...,tk ,m0

)∗(νk
t ũ0) ≤ 1[0,C+T ]×[−C−k∥Γ∥∞,C+k∥Γ∥∞]d ∥ũ0∥ ∞ ∈ L1(R+ ×Rd ).

Therefore, (∗) is verified by dominated convergence. This achieves the proof that ρ ∈

C(R+, L1(R+ × Rd )).
Now, we verify that ρ satisfies (10) for all test functions. For any G ∈ C∞

c (R+ ×R+ ×Rd )
and any T > 0, by Itô’s formula for jump processes,

G(T, A1
T ,M1

T ) = G(0, A1
0,M1

0) +

∫ T

0
[∂t + ∂a + b(M1

t ) · ∇]G(t, A1
t ,M1

t )dt

+

∫
[0,T ]×R+

(
G(t, 0, γ (M1

t−)) − G(t, A1
t−,M1

t−)
)
1z≤ f (A1

t−,M
1
t−,xt )π

1(dt, dz).
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Taking the expectation,

E[G(T, A1
T ,M1

T )] = E[G(0, A1
0,M1

0)] +

∫ T

0
E
[
[∂t + ∂a + b(M1

t ) · ∇]G(t, A1
t ,M1

t )
]

dt

+

∫ T

0
E
[(

G(t, 0, γ (M1
t )) − G(t, A1

t ,M1
t )
)

f (A1
t ,M1

t , xt )
]

dt,

which is equivalent to∫
R+

∫
Rd

G(T, a,m)ρt (a,m)dadm

=

∫
R+

∫
Rd

G(0, a,m)u0(a,m)dadm +

∫ T

0

∫
R+

∫
Rd

{
[∂t + ∂a + b(m) · ∇]G(t, a,m)

+
(
G(t, 0, γ (m)) − G(t, a,m)

)
f (a,m, xt )

}
ρt (a,m)dadmdt. (19)

Since G in compactly supported, the T → ∞ limit of (19) is (10). This concludes the
proof. □

5.3. Uniqueness of weak solutions

Proposition 3. Grant Assumptions 1 and 3. For any (u0, H̄ ) ∈ L1(R+ × Rd ,R+) × C(R+),
the solution to (9) is unique.

Proof. Let (ρ, x) be a weak solution for some (u0, H̄ ) ∈ L1(R+ × Rd ,R+) × C(R+). By
Assumption 3, the border condition (9b) can be written like (11) and the function

(t,m) ↦→ 1γ (Rd )(m)
∑

m′∈γ−1(m)

1
| det(Jγ (m′))|

∫
R+

f (a,m′, xt )ρt (a,m′)da =: pt (m) (20)

is in C(R+, L1(Rd )) since f is bounded and Lipschitz with respect to the third variable.
By the standard theory of transport equations with initial datum in L1 (see [40]) and

treating (20) as a source term, ρ solves

ρt (a,m)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u0(a − t, B−1
t (m)) exp

(∫ t
0 (∇ · b)(B−1

t−s(m))

− f (a − t + s, B−1
t−s(m), xs)ds

)
if a ≥ t,

pt−a(B−1
a (m)) exp

(∫ t
t−a(∇ · b)(B−1

t−s(m))

− f (a − t + s, B−1
t−s(m), xs)ds

)
if 0 < a < t.

(21)

Using (20) and (21), we have the rough bound
ρt


L1 ≤∥u0∥ L1 exp(t
 f


∞):ρt


L1 ≤ ∥u0∥ L1 +

∫ t

0

∫
Rd

pt−a(m)dmda = ∥u0∥L1 +

∫ t

0

∫
Rd

ps(m)dmds

≤ ∥u0∥ L1 +
 f


∞

∫ t

0

∫
Rd

∫
R+

ρs(a,m)dadmds

and the bound is obtained using Grönwall’s lemma.
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Let (ρ∗, x∗) be another weak solution to (9) for the same (u0, H̄ ). In the following, we
derive bounds on the distance

ρt − ρ∗
t


L1 + |xt − x∗

t | and apply Grönwall’s lemma. This is
relatively straightforward since f and h are bounded and f is Lipschitz with respect to the
third variable. For all finite time T > 0 and for all t ∈ [0, T ],ρt − ρ∗

t


L1

≤

∫
Rd

∫
∞

t

⏐⏐⏐⏐u0(a − t, B−1
t (m))

× exp

(∫ t

0
(∇ · b)(B−1

t−s(m)) − f (a − t + s, B−1
t−s(m), xs)ds

)
− u0(a − t, B−1

t (m))

× exp

(∫ t

0
(∇ · b)(B−1

t−s(m)) − f (a − t + s, B−1
t−s(m), x∗

s )ds

) ⏐⏐⏐⏐dadm

+

∫
Rd

∫ t

0

⏐⏐⏐⏐pt−a(B−1
a (m))

× exp

(∫ t

t−a
(∇ · b)(B−1

t−s(m)) − f (a − t + s, B−1
t−s(m), xs)ds

)
− p∗

t−a(B−1
a (m))

× exp

(∫ t

t−a
(∇ · b)(B−1

t−s(m)) − f (a − t + s, B−1
t−s(m), x∗

s )ds

) ⏐⏐⏐⏐dadm

=: Q1 + Q2.

But Q1 ≤ ∥u0∥ L f
∫ t

0 |xs − x∗
s |ds, and by triangular inequality (using the shorthand f (xt ) :=

f (a,m, xt )),

Q2 ≤

(∫ t

0

∫
Rd
ρs(0,m)dmds

)
L f

∫ t

0
|xs − x∗

s |ds +

∫ t

0

∫
Rd

⏐⏐ps(m) − p∗

s (m)
⏐⏐ dmds

=

(∫ t

0

∫
Rd

∫
R+

f (xt )ρs dadmds

)
L f

∫ t

0
|xs − x∗

s |ds

+

∫ t

0

∫
Rd

∫
R+

⏐⏐ f (xt )ρs − f (x∗

t )ρ∗

s

⏐⏐ dadmds

≤
 f


∞

∫ t

0

ρs


L1 ds L f

∫ t

0
|xs − x∗

s |ds + sup
s∈[0,t]

ρs


L1 L f

∫ t

0
|xs − x∗

s |ds

+
 f


∞

∫ t

0

ρs − ρ∗

s

 ds.

By the rough bound on
ρt


L1 established above, we getρt − ρ∗

t


L1 ≤ CT,0

∫ t

0

ρs − ρ∗

s

 L1 + |xs − x∗

s |ds.

On the other hand,

|xt − x∗

t | ≤∥h∥ ∞

∫ t

0

∫
Rd

∫
R+

⏐⏐ f (xs)ρs − f (x∗

s )ρ∗

s

⏐⏐ dadmds,
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which can be bounded as shown above. Whence,ρt − ρ∗

t


L1 + |xt − x∗

t | ≤ CT,0

∫ t

0

ρs − ρ∗

s

 L1 + |xs − x∗

s |ds.

By Grönwall’s lemma,
ρt − ρ∗

t


L1 + |xt − x∗

t | = 0 for all t ∈ [0, T ]. Since this is true for
all T > 0, (ρ, x) = (ρ∗, x∗), which concludes the proof. □
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LONG TIME BEHAVIOR OF AN AGE- AND LEAKY
MEMORY-STRUCTURED NEURONAL POPULATION EQUATION\ast 

CLAUDIA FONTE\dagger AND VALENTIN SCHMUTZ\ddagger 

Abstract. We study the asymptotic stability of a two-dimensional mean-field equation, which
takes the form of a nonlocal transport equation and generalizes the time-elapsed neuron network
model by the inclusion of a leaky memory variable. This additional variable can represent a slow
fatigue mechanism, such as spike-frequency adaptation or short-term synaptic depression. Even
though two-dimensional models are known to have emergent behaviors, such as population bursts,
which are not observed in standard one-dimensional models, we show that in the weak connectivity
regime, two-dimensional models behave like one-dimensional models, i.e., they relax to a unique
stationary state. The proof is based on an application of Harris's ergodic theorem and a perturbation
argument, both adapted to the case of a multidimensional equation with delays.

Key words. long time behavior, nonlocal transport equation, mean-field equation, Doeblin's
and Harris's theorems, piecewise deterministic Markov process, spiking neuron, spike-frequency adap-
tation, short-term synaptic plasticity

MSC codes. 35B40, 35F15, 35F20, 92B20

DOI. 10.1137/21M1428571

1. Introduction. Multidimensional mean-field models in theoretical neuroscience
are challenging to analyze [41, 48, 2, 32], but their study is a necessary step towards
understanding how multiple timescales present at the single-neuron level [40, 45] affect
the dynamics of large networks of neurons.

One-dimensional mean-field equations for populations of spiking neurons with de-
terministic drift and stochastic jumps have been a subject of mathematical studies
since the works of Pakdaman, Perthame, and Salort [35, 36, 37], providing rigorous
foundations for earlier works in theoretical neuroscience [50, 21, 18, 19]. These pop-
ulation equations correspond to the mean-field limit of large networks of interacting
neurons [10, 15, 6]. However, they are derived from spiking neuron models that are of
the ``renewal"" type (with the exception of [37]), which means that, while they capture
the effect of neuronal refractoriness, they neglect slower neuronal timescales, such as
those of spike-frequency adaptation and short-term synaptic plasticity.

To take into account slow neuronal timescales, state-of-the-art phenomenological
spiking neuron models must be multidimensional [28, 45] or kernel-based [46, 38, 39]
(see also [20, Chap. 6.4]). In the following, we consider a class of neuron models that
characterize neuronal refractoriness by an ``age"" variable (the time elapsed since the
last spike) and effects of spike-frequency adaptation or short-term synaptic plasticity
by a ``leaky memory"" variable. For this class of neuron models, the mean-field limit
is characterized by a multidimensional transport equation with a nonlocal boundary
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condition [43]. In this work, we study in the two-dimensional case the long time
behavior of the solutions to the equation proposed in [43].

1.1. The age- and leaky memory-structured model. The population model
we consider describes the evolution of a density \rho t over the state-space (a,m) \in 
\BbbR +\times \BbbR \ast 

+, where a and m are the ``age"" and ``leaky memory"" variables of the neuron,
and \rho t(a,m) represents the density of neurons in state (a,m) at time t.

The nonlinear evolution problem for the density \rho t, for the initial datum u0, reads

\partial t\rho t +\nabla \cdot (b\rho t) =  - f(a,m, \varepsilon xt)\rho t,(1.1a)

\rho t(0,m) = 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| 
\int \infty 

0

f(a, \gamma  - 1(m), \varepsilon xt)\rho t(a, \gamma 
 - 1(m))da,(1.1b)

xt =

\int t

0

\int \infty 

0

\int \infty 

0

h(t - s, a,m)f(a,m, \varepsilon xs)\rho s(a,m)dadmds,(1.1c)

\rho 0 = u0.(1.1d)

The dynamics of the model can be decomposed into three elements: (i) the behavior
of neurons between spikes, (ii) the spike-triggered jumps, and (iii) the interaction
between neurons, which we discuss in turn.

(i) Between spikes, neurons are transported along the vector field b(a,m) =
(1, - \lambda m), with \lambda > 0 (\nabla \cdot denotes the divergence operator over the state-space).

(ii) Neurons spike at rate f(a,m, \varepsilon xt), where f : \BbbR + \times \BbbR \ast 
+ \times \BbbR \rightarrow \BbbR + is the

``firing rate function"" corresponding to the stochastic intensity of the spike generation
process, and \varepsilon \in \BbbR is the connection strength. When a neuron spikes, its age a is
reset to 0, and its leaky memory variable m jumps to \gamma (m), where \gamma : \BbbR + \rightarrow \BbbR \ast 

+ is the
``jump mapping"" and is assumed to be a strictly increasing \scrC 1-diffeomorphism. As a
consequence, the border condition (1.1b) has a simple interpretation: the density of
neurons in state (0,m) at time t is equal to the marginal density of those neurons that
have their leaky memory variable in state \gamma  - 1(m) and spike at time t. The indicator
function 1m>\gamma (0) reflects the fact that m is always strictly positive, and the term\bigm| \bigm| (\gamma  - 1)\prime (m)

\bigm| \bigm| is necessary to guarantee the conservation of the total mass of neurons.
Indeed, formally,

\partial t

\int 
\rho t

=

\int 
1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| 
\int \infty 

0

f(a, \gamma  - 1(m), \varepsilon xt)\rho t(a, \gamma 
 - 1(m))dadm - 

\int 
f(a,m, \varepsilon xt)\rho t=0,

by a change of variable.
(iii) Neurons interact through the ``total postsynaptic potential"" xt, which inte-

grates the past spiking activity of the population, filtered by the ``interaction function""
h : \BbbR + \times \BbbR + \times \BbbR \ast 

+ \rightarrow \BbbR , and which weighted by the connection strength \varepsilon \in \BbbR , in-
fluences the firing rate f . If we write N(t) the population activity (the mean firing
rate)

N(t) :=

\int \infty 

0

\int \infty 

0

f(a,m, \varepsilon xt)\rho t(a,m)dadm,

and if we take h independent of a and m, then xt takes the form

xt =

\int t

0

h(t - s)N(s)ds,
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where h is now a simple delay kernel, as in [21, 18, 19, 35]. In our formulation, h in
(1.1c) allows us to model more general interactions. For example, in subsection 1.2.2,

we show that by choosing h(t, a,m) = \^h(t)(1  - m), we can include the effects of a
classical short-term synaptic plasticity model [47].

1.2. Motivation. The model (1.1) extends the time-elapsed neuron network
model [35] (see also [18, 19]) by the addition of a leaky memory variable which can
accumulate over spikes (as opposed to the age variable which is reset to 0 at each
spike) and hence introduces a slow timescale in the population dynamics. Such a slow
timescale is typically used to account for some form of fatigue mechanism, which can
act on the spiking activity (spike-frequency adaptation) or on synaptic transmission
(short-term synaptic depression). Slow fatigue at the single-neuron level can lead
to nontrivial emergent behaviors at the population level, such as population bursts
[49, 22, 17] (see Figure 1), which have not been observed in the age- or voltage-
structured models of [35] and [10] (but see [37]). Even though some population equa-
tions have been successfully used in the computational neuroscience literature to study
emergent behaviors in networks of neurons with fatigue, these population equations
were obtained at the cost of a timescale separation approximation [22, 17] or a ``mix-
ing"" assumption [33, 44], making them inexact. In contrast, the model (1.1) is the
exact mean-field limit [43] for spiking neuron models with spike-frequency adaptation
or short-term synaptic depression, as we discuss now.

1.2.1. Spike-frequency adaptation. The recent spike history of a neuron can
modulate its firing rate f , leading to spike-frequency adaptation [3]. If h is indepen-
dent of a and m, and if \gamma (m) = m+ \^\Gamma for a fixed \^\Gamma > 0, (1.1) becomes

\partial t\rho t +\nabla \cdot (b\rho t) =  - f(a,m, \varepsilon xt)\rho t,(1.2a)

\rho t(0,m) = 1m>\^\Gamma 

\int \infty 

0

f(a,m - \^\Gamma , \varepsilon xt)\rho t(a,m - \^\Gamma )da,(1.2b)

xt =

\int t

0

h(t - s)
\int \infty 

0

\int \infty 

0

f(a,m, \varepsilon xs)\rho s(a,m)dadmds,(1.2c)

\rho 0 = u0.(1.2d)

If \eta : \BbbR + \rightarrow \BbbR is a bounded function such that lima\rightarrow +\infty \eta (a) = 0 (\eta is the ``refractory
kernel"" [20, sect. 9.3]), we can define f more explicitly as

(1.2e) f(a,m, \varepsilon xt) := \^f(\eta (a) - m+ \varepsilon xt),

where \^f : \BbbR \rightarrow \BbbR + is typically a nondecreasing function. Since m makes jumps
of size \^\Gamma > 0 at each spike and decays exponentially at rate \lambda between spikes, m
accumulates over spikes, which decreases the firing rate f (1.2e), leading to spike-
frequency adaptation [3]. More specifically, (1.2) is a population equation for adaptive
SRM0 (Spike Response Model) neurons [27, 20].

Populations of spiking neurons with spike-frequency adaptation exhibit self-
sustained population bursts when the connectivity strength is sufficiently strong [49,
22, 17]. We call self-sustained population bursts a periodic pattern of activity charac-
terized by an alternation between periods of low population activity and sequences of
population spikes (short time intervals where almost all the neurons in the population
fire). This definition is borrowed from the following definition of single-neuron burst-
ing [26]: ``When neuron activity alternates between a quiescent state and repetitive
spiking, the neuron activity is said to be bursting."" In Figure 1, we show simulations of
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Fig. 1. Depending on the connectivity strength \varepsilon , a population of adaptive SRM0 neurons
can exhibit self-sustained bursts (\varepsilon \gg 0) or relaxation to a stationary state (small \varepsilon ). We show
simulations of a network of 5 \cdot 105 adaptive SRM0 neurons, approximating the mean-field limit
(1.2), with identical parameters (except for \varepsilon ) and identical initial conditions. The raster plots
below the plots for the time-evolution of the total postsynaptic potential xt represent the spikes of
100 randomly selected neurons.

(1.2) for two different connectivity strengths \varepsilon . For large \varepsilon , we observe self-sustained
bursts, whereas for small \varepsilon , we observe relaxation to a stationary state. Note that
the neurons considered here are not intrinsically bursting: if an adaptive SRM0 neu-
ron receives no input (or a constant input), it does not burst. Population bursts are
therefore an emergent behavior of the mean-field model (1.2).

For comparison, in Appendix A we show similar simulations for the time-elapsed
neuron network model [35], where, as expected, we only observe self-sustained oscil-
lations or relaxation to a stationary state.

1.2.2. Short-term synaptic depression. The recent spike history of a presy-
naptic neuron can modulate the synaptic transmission, leading to short-term synap-
tic plasticity [51]. We will consider here the case of depressive synapses and use the
model of [47] (with a change of variable for convenience). In this case, the state-space
is (a,m) \in \BbbR +\times ]0, 1[ . Taking f independent of m, and choosing h and \gamma of the form
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h(t, a,m) := \^h(t)(1 - m) and \gamma (m) := 1 - \upsilon +\upsilon m for a fixed \upsilon \in ]0, 1[ , (1.1) becomes

\partial t\rho t +\nabla \cdot (b\rho t) =  - f(a, \varepsilon xt)\rho t,(1.3a)

\rho t(0,m) = 1m>\gamma (0)
1

\upsilon 

\int \infty 

0

f(a, \varepsilon xt)\rho t(a, \gamma 
 - 1(m))da,(1.3b)

xt =

\int t

0

\^h(t - s)
\int 1

0

\int \infty 

0

(1 - m)f(a, \varepsilon xs)\rho s(a,m)dadmds,(1.3c)

\rho 0 = u0.(1.3d)

Note that the term 1
\upsilon on the right-hand side of (1.3b) simply comes from the fact

that | (\gamma  - 1)\prime (m)| = 1
\upsilon for all m \in ]0, 1[ . Here, at each spike, m makes strictly positive

jumps whose size tends to 0 as m tends to 1 (since \gamma (1) = 1) and decays exponentially
at rate \lambda between spikes. If m is close to 1, synaptic transmission is weak because of
the factor (1 - m) in (1.3c).

As observed in [42], the stationary state of populations of neurons with short-
term synaptic plasticity can be described by a simple formula, which we rederive in
subsection 4.3.

1.3. Assumptions and main results. The main result of this work is the ex-
ponential stability of (1.1) in the weak connectivity regime (Theorem 1.4)---or, more
explicitly, there exists \varepsilon \ast \ast > 0 such that (1.1) is exponentially stable for all connec-
tivity strength \varepsilon \in ]  - \varepsilon \ast \ast ,+\varepsilon \ast \ast [ . Before proving the exponential stability, we first
establish the well-posedness of (1.1) in the appropriate function space (Theorem 1.2)
and show that stationary solutions exist and are unique for sufficiently weak connec-
tivity (Theorem 1.3).

Here, we study the weak solutions to (1.1) for an initial datum in L1
+ := L1(\BbbR +\times 

\BbbR \ast 
+,\BbbR +) and write L1

+(\BbbR \ast 
+) := L1(\BbbR \ast 

+,\BbbR +).

Definition 1.1 (solutions). (\rho , x) \in \scrC (\BbbR +, L
1
+) \times \scrC (\BbbR +) is a solution to (1.1),

for the initial datum u0 \in L1
+, if

(1.4a)

xt =

\int t

0

\int \infty 

0

\int \infty 

0

h(t - s, a,m)f(a,m, \varepsilon xs)\rho s(a,m)dadmds \forall t \geq 0

and if for all \varphi \in \scrC \infty c (\BbbR + \times \BbbR + \times \BbbR \ast 
+),

(1.4b) 0 =

\int \infty 

0

\int \infty 

0

u0(a,m)\varphi (0, a,m)dadm

+

\int \infty 

0

\int \infty 

0

\int \infty 

0

\rho t(a,m)
\Bigl\{ 
[\partial t + \partial a  - \lambda m\partial m]\varphi + (\varphi (t, 0, \gamma (m))

 - \varphi (t, a,m))f(a,m, \varepsilon xt)
\Bigr\} 
dadmdt.

To prove the well-posedness of (1.1), we need some simple assumptions on the
firing rate function f and the interaction function h.

Assumption 1. f is bounded and Lf -Lipschitz, i.e.,

| f(a,m, x) - f(a\ast ,m\ast , x\ast )| \leq Lf (| a - a\ast | +| m - m\ast | +| x - x\ast | ),

and h is bounded and continuous.
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Since we want to apply Harris's theorem, the well-posedness in L1 (which is
treated in [43]) is not enough, and we need the well-posedness in a weighted L1 space
(where the weight satisfies a Lyapunov condition [29]) with a global-in-time estimate
in the weighted L1 norm.

Using the weight function

w : \BbbR + \times \BbbR + \rightarrow [1,\infty [ , (a,m) \mapsto \rightarrow 1 +m,

we define the function space

L1
+(w) :=

\biggl\{ 
g \in L1(\BbbR + \times \BbbR \ast 

+,\BbbR +)
\bigm| \bigm| \bigm| \| g\| L1(w) :=

\int \infty 

0

\int \infty 

0

g(a,m)w(a,m)dadm <\infty 
\biggr\} 
.

To obtain a global-in-time estimate in the L1
+(w) norm, we further require the jump

sizes of \gamma to be bounded.

Assumption 2. There exists a bounded function \Gamma : \BbbR \ast 
+ \rightarrow \BbbR \ast 

+ such that for all
m \in \BbbR \ast 

+, \gamma (m) = m+ \Gamma (m).

Theorem 1.2 (well-posedness). Grant Assumption 1. For any initial datum
u0 \in L1

+, there exists a unique weak solution (\rho , x) to (1.1). This solution satisfies
(i) (L1-stability) \| \rho t\| L1 =\| u0\| L1 for all t > 0.
(ii) (Global bound in L1

+(w)) If, in addition, Assumption 2 holds and u0 \in 
L1
+(w), then

(1.5) \forall t > 0, \| \rho t\| L1(w) \leq \| u0\| L1(w) e
 - \alpha t +

b

\alpha 
(1 - e - \alpha t)\| u0\| L1

for some constants \alpha > 0 and b \in \BbbR .
In contrast to [43], the well-posedness proof presented here does not involve any

probabilistic argument. The proof consists of two consecutive applications of Banach's
fixed-point theorem, where a first fixed-point gives the unique solution to a linearized
version of (1.1) which is then used in a second fixed-point treating the nonlinearity
of (1.1).

The second step towards the exponential stability proof is the study of the exis-
tence and uniqueness of the stationary solutions to (1.1). For this step, we require
the following assumption.

Assumption 3. nothing
(i) There exist \Delta abs > 0 and \sigma > 0 such that

f(a,m, x) \geq \sigma \forall (a,m, x) \in [\Delta abs,+\infty [\times \BbbR \ast 
+ \times \BbbR .

(ii) There exists C\gamma \in ]0, 1] such that C\gamma \leq \gamma \prime \leq 1.
(iii) \=h(a,m) =

\int \infty 
0
h(t, a,m)dt is bounded.

The first point of Assumption 3 sets a lower bound on the firing rate function f for
any a \geq \Delta abs while allowing neurons to have an absolute refractory period \Delta abs > 0,
i.e., a period of time following a spike during which f can be 0 (which is an important
neurodynamical feature [20, sect. 1.1]). This assumption is also used in [5].

In the second point of Assumption 3, the lower bound 0 < C\gamma \leq \gamma \prime guarantees that
\gamma is strictly increasing, which reflects the idea that m is a ``leaky memory"" variable
of the past neuronal activity. On the other hand, the upper bound \gamma \prime \leq 1, which can
be rewritten in terms of the jump size function \Gamma as \Gamma \prime \leq 0, prevents the variable m
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from growing too fast and allows for a potential saturation of the memory, as in the
example with short-term synaptic plasticity (1.3). The third point of Assumption 3
reflects the fact that a single spike has a finite impact on the neuron that receives it.

We emphasize that the two examples shown above---spike-frequency adaptation
(1.2) and short-term synaptic depression (1.3)---satisfy Assumption 3.

Theorem 1.3 (stationary solutions). Grant Assumptions 1--3.
(i) There exists a stationary solution to (1.1).
(ii) There exists \varepsilon \ast > 0 such that for all \varepsilon \in ] - \varepsilon \ast ,+\varepsilon \ast [ , the stationary solution

to (1.1) is unique.

Over the course of this work, we obtained the existence of the stationary solu-
tion by two different approaches. The first approach is based on the Doeblin--Harris
method [23] and is similar to that of [5]. First, we show that when xt is fixed and
time-invariant in (1.1) (neurons are noninteracting), the system satisfies a Harris
condition---this constitutes a key result of this work---and we can use Harris's the-
orem to get the stationary solution. Then, we use the Lipschitz continuity of the
stationary solutions with respect to the fixed x to prove the existence of a stationary
solution for arbitrary connectivity strengths \varepsilon . Finally, for \varepsilon small enough, we also
get the uniqueness of the stationary solution by Banach's fixed-point theorem.

The second approach relies on the fact that the stationary solutions solve an inte-
gral equation, for which we can show that a solution exists by Schauder's fixed-point
theorem. In the process, we get several estimates on the stationary solutions, namely
that they are continuous, bounded, and exponentially decaying in m. However, this
approach does not give uniqueness.

As mentioned above, the application of Harris's theorem requires us to consider
solutions in the weighted space L1(w). However, in the case where the state-space
of the leaky memory variable m is bounded, the situation is simpler: we can use
Doeblin's theorem in L1. The following assumption guarantees that m stays in a
bounded state-space.

Assumption 4. There exists G > 0 such that for all m \in \BbbR \ast 
+, \gamma (m) < G.

Note that this assumption is satisfied in the example with short-term synaptic
plasticity (1.3), with G = 1.

Finally, to study the exponential stability of (1.1), we need an exponential decay
on h.

Assumption 5. There exists h, Ch > 0 such that h(t, a,m) \leq Che
 - ht for all

(t, a,m) \in \BbbR + \times \BbbR + \times \BbbR \ast 
+.

By a perturbation argument similar to that of [30], we obtain our main result.

Theorem 1.4 (exponential stability in the weak connectivity regime). Grant
Assumptions 1--3 and 5. For any W > 0, there exists \varepsilon \ast \ast W > 0 such that for \varepsilon \in 
] - \varepsilon \ast \ast W ,+\varepsilon \ast \ast W [ , there exist C \geq 1 and cW > 0 such that for all initial data u0 \in L1

+(w)
with \| u0\| L1 = 1 and \| u0\| L1(w) \leq W , the solution (\rho , x) to (1.1) satisfies

(1.6) \| \rho t  - \rho \infty \| L1(w) + | xt  - x\infty | \leq Ce - cW t
\Bigl( 
\| u0  - \rho \infty \| L1(w) + 1

\Bigr) 
\forall t \geq 0,

where (\rho \infty , x\infty ) is the unique stationary solution given by Theorem 1.3(ii).
If, in addition, we grant Assumption 4, then there exists \varepsilon \ast \ast > 0 such that for all

\varepsilon \in ] - \varepsilon \ast \ast ,+\varepsilon \ast \ast [ , there exist C \prime \geq 1 and c > 0 such that for all initial data u0 \in L1
+
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with \| u0\| L1 = 1,

(1.7) \| \rho t  - \rho \infty \| L1 + | xt  - x\infty | \leq C \prime e - ct
\bigl( 
\| u0  - \rho \infty \| L1 + 1

\bigr) 
\forall t \geq 0.

From the neuronal modeling point of view, this result is not surprising: when the
connection strength is weak enough, neurons do not synchronize, and the population
activity converges to a stationary state. This was already proved for simpler one-
dimensional models (see below), and the addition of a leaky memory variable carrying
the effect of spike-frequency adaptation or short-term synaptic plasticity does not
change this behavior.

1.4. Discussion of the methods. The asymptotic stability of the age-structured
model of [35] in the weak connectivity regime has been studied using entropy methods
(assuming that f is a step-function) [35, 36], spectral analysis of semigroups in Banach
spaces [31, 30], and Doeblin's theorem [5]. For treatments of the strong connectivity
regime, we refer the reader to [35, 36, 30].

The asymptotic stability of the closely related voltage-structured model of [10]
in the weak connectivity regime has also been studied by Cormier, Tanr\'e, and Veltz
[8] using Laplace transform techniques. In addition, the same authors have analyzed
the nonlinear stability of the stationary solutions [7] (see also [12]) and proved the
existence of periodic solutions [9].

Doeblin's theorem has also been used in [14] in the case of the ``threshold crossing""
neuronal population equation of [34]. Note that closely related methods have been
used by probabilists to study the ergodicity of single-neuron models [25, 13].

Our approach combines strategies from [31] and [5], even though [5] uses Doeblin's
instead of Harris's theorem. On the one hand, our proof is based on the application
of Harris's theorem for the linear problem, which simplifies the proof of [31]. On the
other hand, we use an argument from [31] to deal with delay effects, which are not
considered in [5]. Note that our model is two-dimensional (by the addition of the leaky
memory variable), whereas the aforementioned works only considered one-dimensional
models.

1.5. Plan of the paper. The proof of Theorem 1.2 (well-posedness) is pre-
sented in section 2. In section 3, we prove the exponential stability of (1.1) in the
noninteracting case \varepsilon = 0 using Harris's or Doeblin's theorem. The proof of The-
orem 1.3 (stationary solutions) is presented in section 4 which is divided into three
parts: in the first part, we present a proof which uses the exponential stability of
the noninteracting case; in the second part, we present an alternative proof for the
existence of stationary solutions which does not involve the Doeblin--Harris method;
and in the last part, we present a proof for the formula of [42] in the case of short-term
synaptic plasticity (1.3). Finally, section 5 is dedicated to the proof of Theorem 1.4
(exponential stability in the weak connectivity regime).

2. Well-posedness. This section is dedicated to the proof of Theorem 1.2,
which we decompose into several lemmas. First, we verify the a priori L1-stability of
the solutions to (1.1), a technical result we use later in the proof. Then, we introduce
a linearized version of (1.1) and show that it is well-posed by an application of Ba-
nach's fixed-point theorem. Another application of Banach's fixed-point theorem is
used to treat the nonlinearity of (1.1) and concludes the proof of the well-posedness
in L1. Finally, we prove the global bound in L1

+(w) (Theorem 1.2(ii)), which we will
use to apply Harris's theorem in the next sections.
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Lemma 2.1 (a priori L1-stability). Grant Assumption 1. If (\rho , x) is a weak
solution to (1.1) for the initial datum u0 \in L1

+, then

\| \rho t\| L1 =\| u0\| L1 \forall t > 0.

Proof. By a standard cut-off in time argument, we have that for all T > 0 and
for all \varphi \in \scrC \infty c (\BbbR + \times \BbbR + \times \BbbR \ast 

+),

\int \infty 

0

\int \infty 

0

\rho T (a,m)\varphi (T, a,m)dadm - 
\int \infty 

0

\int \infty 

0

u0(a,m)\varphi (0, a,m)dadm

=

\int T

0

\int \infty 

0

\int \infty 

0

\rho t(a,m)
\Bigl\{ 
[\partial t + \partial a  - \lambda m\partial m]\varphi + (\varphi (t, 0, \gamma (m))

 - \varphi (t, a,m))f(a,m, \varepsilon xt)
\Bigr\} 
dadmdt.

Let \chi be a function in \scrC \infty c (\BbbR + \times \BbbR \ast 
+,\BbbR +) such that

\chi (a,m) = 1 \forall a2 +m2 \leq 1.

For all n \in \BbbN \ast , we write \widetilde \varphi n \in \scrC \infty (\BbbR + \times \BbbR + \times \BbbR \ast 
+), the classical solution to the

transport equation

\partial t \widetilde \varphi n(t, a,m) + \partial a \widetilde \varphi n(t, a,m) - \lambda m\partial m \widetilde \varphi n(t, a,m) = 0,(2.1a)

\widetilde \varphi n(0, a,m) = \chi (a/n,m/n).(2.1b)

Because of the finite speed of propagation of the transport equation, for all n,
there exists a function \varphi n \in \scrC \infty c (\BbbR + \times \BbbR + \times \BbbR \ast 

+) such that \varphi n(t, a,m) = \widetilde \varphi n(t, a,m)
for all (t, a,m) \in [0, T ]\times \BbbR + \times \BbbR \ast . Hence, for all n \in \BbbN \ast ,

\int \infty 

0

\int \infty 

0

\varphi n(T, a,m)\rho T (a,m)dadm - 
\int \infty 

0

\int \infty 

0

\varphi n(0, a,m)u0(a,m)dadm

=

\int T

0

\int \infty 

0

\int \infty 

0

\biggl\{ 
\partial t\varphi 

n + \partial a\varphi 
n  - \lambda m\partial m\varphi n +

\bigl( 
\varphi n(t, 0, \gamma (m))

 - \varphi n(t, a,m)
\bigr) 
f(a,m, \varepsilon xt)

\biggr\} 
\rho t(a,m)dadmdt.

As \varphi n is a solution to (2.1a) on time [0, T ], we get

\int \infty 

0

\int \infty 

0

\varphi n(T, a,m)\rho T (a,m)dadm - 
\int \infty 

0

\int \infty 

0

\varphi n(0, a,m)u0(a,m)dadm

=

\int T

0

\int \infty 

0

\int \infty 

0

\biggl\{ \bigl( 
\varphi n(t, 0, \gamma (m)) - \varphi n(t, a,m)

\bigr) 
f(a,m, \varepsilon xt)

\biggr\} 
\rho t(a,m)dadmdt.

For all (t, a,m) \in [0, T ] \times \BbbR + \times \BbbR \ast 
+, \varphi 

n(t, a,m)  -  -  -  - \rightarrow 
n\rightarrow \infty 

1, since the initial datum

tends to 1 as n\rightarrow \infty (2.1b) and by finite speed of propagation. Thus, by dominated
convergence, we get

(2.2)

\int \infty 

0

\int \infty 

0

\rho T (a,m)dadm - 
\int \infty 

0

\int \infty 

0

u0(a,m)dadm = 0.

Since \rho is nonnegative, this concludes the proof.
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Lemma 2.1 will allow us to prove the well-posedness of (1.1) by means of fixed-
point arguments. Let us first introduce a linearized version of (1.1): for all x \in \scrC (\BbbR +),
we consider the linear evolution problem

\partial t\rho t +\nabla \cdot (b\rho t) =  - f(a,m, \varepsilon xt)\rho t,(2.3a)

\rho t(0,m) = 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| 
\int \infty 

0

f(a, \gamma  - 1(m), \varepsilon xt)\rho t(a, \gamma 
 - 1(m))da,(2.3b)

\rho 0 = u0.(2.3c)

We can see (2.3) as the Kolmogorov forward equation of a time-dependent Markov
process. Indeed, we can rewrite (2.3a) and (2.3b) as

(2.4) \partial \rho t = \scrL t\rho t,
where, for all suitable test functions \phi : \BbbR + \times \BbbR \ast 

+ \rightarrow \BbbR ,

(2.5) \scrL \ast 
t\phi (a,m) = b(a,m) \cdot \nabla \phi (a,m) + [\phi (0, \gamma (m)) - \phi (a,m)]f(a,m, \varepsilon xt).

\scrL \ast 
t is the time-dependent generator of a piecewise deterministic Markov process with

degenerate jumps.
The linearized equation (2.3) will play a special role in the following sections and

therefore deserves its own proposition.

Proposition 2.2 (well-posedness of the linearized equation (2.3)). Grant As-
sumption 1. For any initial datum u0 \in L1

+ and any x \in \scrC (\BbbR +), there exists a unique
weak solution \rho x \in \scrC (\BbbR +, L

1
+) to (2.3). Furthermore, \rho x satisfies the following:

(i) For all t > 0 and for all m \in \BbbR \ast 
+,

\rho xt (0,m) = 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| 
\int \infty 

0

f(a, \gamma  - 1(m), \varepsilon x)\rho xt (a, \gamma 
 - 1(m))da,

\rho xt (a,m) =\left\{ 
   
   

u0(a - t, e\lambda tm) exp
\Bigl( 
\lambda t - 

\int t
0
f(a - t+ s, e\lambda (t - s)m, \varepsilon x)ds

\Bigr) 
if a \geq t,

\rho xt - a(0, e
\lambda am) exp

\Bigl( 
\lambda a - 

\int t
t - a f(a - t+ s, e\lambda (t - s)m, \varepsilon x)ds

\Bigr) 
if 0<a<t.

(ii) For all t > 0 and for all \phi \in \scrC \infty c (\BbbR + \times \BbbR \ast 
+),

(2.6) \langle \rho xt , \phi \rangle = \langle u0, \phi \rangle +
\int t

0

\langle \rho xs ,\scrL \ast 
s\phi \rangle ds.

Proof. Fix x \in \scrC (\BbbR +). For all p \in \scrC (\BbbR +, L
1
+(\BbbR \ast 

+)) and u0 \in L1
+, we know from

the standard theory of transport equations that there is a unique weak solution to

\partial t\rho t +\nabla \cdot (b\rho t) =  - f(a,m, \varepsilon xt)\rho t,
\rho t(0,m) = pt(m),

\rho 0 = u0,

which we denote by \rho x,p, and it is given by the representation formula,

\rho x,pt (a,m) :=

\left\{ 
   
   

u0(a - t, e\lambda tm) exp
\Bigl( 
\lambda t - 

\int t
0
f(a - t+ s, e\lambda (t - s)m, \varepsilon xs)ds

\Bigr) 
if a \geq t,

pt - a(e\lambda am) exp
\Bigl( 
\lambda a - 

\int t
t - a f(a - t+ s, e\lambda (t - s)m, \varepsilon xs)ds

\Bigr) 
if 0<a<t.
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The solution \rho x,p is in \scrC (\BbbR +, L
1) since

\forall t \in \BbbR +,
\bigm\| \bigm\| \rho x,pt

\bigm\| \bigm\| 
L1 \leq \| u0\| L1 +

\int t

0

\| ps\| L1 ds.

We have
\biggl( 
1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| 
\int \infty 

0

f(a, \gamma  - 1(m), x)\rho x,pt (a, \gamma  - 1(m))da

\biggr) 

(t,m)\in \BbbR +\times \BbbR \ast 
+

\in \scrC (\BbbR +, L
1
+(\BbbR \ast 

+))

since

\forall t \in \BbbR +,

\int \infty 

\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| 
\int \infty 

0

f(a, \gamma  - 1(m), x)\rho x,pt (a, \gamma  - 1(m))dadm

\leq \| f\| \infty 
\bigm\| \bigm\| \rho x,pt

\bigm\| \bigm\| 
L1 \leq \| f\| \infty 

\Biggl( 
\| u0\| L1 +

\int t

0

\| ps\| L1 ds

\Biggr) 
.

Hence, we can define, for any T > 0, the operator \Phi xT :

\scrC ([0, T ], L1
+(\BbbR \ast 

+))\rightarrow \scrC ([0, T ], L1
+(\BbbR \ast 

+))

p \mapsto \rightarrow 
\biggl( 
1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| 
\int \infty 

0

f(a, \gamma  - 1(m), x)\rho x,pt (a, \gamma  - 1(m))da

\biggr) 

(t,m)\in [0,T ]\times \BbbR \ast 
+

.

For any p, q \in \scrC ([0, T ], L1
+(\BbbR \ast 

+)),
\bigm\| \bigm\| \Phi xT (p) - \Phi xT (q)

\bigm\| \bigm\| 
\scrC ([0,T ],L1)

\leq \| f\| \infty sup
t\in [0,T ]

\bigm\| \bigm\| \rho x,pt  - \rho x,qt
\bigm\| \bigm\| 
L1

\leq \| f\| \infty 
\int T

0

\| ps  - qs\| L1 ds

\leq T\| f\| \infty \| p - q\| \scrC ([0,T ],L1) .

Therefore, if 0 < T < \| f\|  - 1
\infty , \Phi xT is a contraction. By Banach's fixed-point theo-

rem, there exists a unique \rho x \in \scrC ([0, T ], L1
+) solving (2.3). Since the choice of the

contracting T does not depend on the initial datum, we can iterate the above argu-
ment on successive time intervals of length T and conclude that there exists a unique
\rho x \in \scrC (\BbbR +, L

1
+) solving (2.3), for which formula (i) is satisfied. Then, (ii) follows from

a standard cut-off-in-time argument.

Now, we can prove the existence and uniqueness of a solution to the nonlinear
problem (1.1) by means of a second application of Banach's fixed-point theorem.

Proof of the well-posedness of (1.1) in L1. For any x \in \scrC (\BbbR +), we take the \rho x

given by Proposition 2.2. We have

\Biggl( \int t

0

\int 

\BbbR +\times \BbbR \ast 
+

h(t - s)f(\varepsilon xs)\rho xs dadmds
\Biggr) 

t\in \BbbR +

\in \scrC (\BbbR +)

since

\forall t \in \BbbR +,

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int t

0

\int 

\BbbR +\times \BbbR \ast 
+

h(t - s)f(\varepsilon xs)\rho xs dadmds
\bigm| \bigm| \bigm| \bigm| \bigm| \leq \| h\| \infty \| f\| \infty 

\int t

0

\| \rho xs\| L1 ds.
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Hence, for any T > 0, we can define the operator

\Psi T : \scrC ([0, T ])\rightarrow \scrC ([0, T ])

x \mapsto \rightarrow 
\Biggl( \int t

0

\int 

\BbbR +\times \BbbR \ast 
+

h(t - s)f(\varepsilon xs)\rho xs dadmds
\Biggr) 

t\in [0,T ]

.

For any x, y \in \scrC ([0, T ]), we have

\bigm\| \bigm\| \Psi T (x) - \Psi T (y)
\bigm\| \bigm\| 
\scrC ([0,T ])

\leq T\| h\| \infty sup
t\in [0,T ]

\int 

\BbbR +\times \BbbR \ast 
+

| f(\varepsilon xt)\rho xt  - f(\varepsilon yt)\rho yt | dadm

\leq T\| h\| \infty sup
t\in [0,T ]

\Bigl( 
\varepsilon Lf | xt  - yt| \| \rho xt \| L1 +\| f\| \infty 

\bigm\| \bigm\| \rho xt  - \rho yt
\bigm\| \bigm\| 
L1

\Bigr) 
.

By Gr\"onwall's lemma, \| \rho xt \| L1 \leq \| u0\| L1 exp(\| f\| \infty t) since

\forall t \in [0, T ], \| \rho xt \| L1 \leq \| u0\| L1 +\| f\| \infty 
\int t

0

\| \rho xs\| L1 ds.

On the other hand, we have, for all t \in [0, T ],

\bigm\| \bigm\| \rho xt  - \rho yt
\bigm\| \bigm\| 
L1 \leq 

\int t

0

\int \infty 

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\rho xs (0,m) exp

\Biggl( 
 - 
\int t

s

f(u - s, e - \lambda (u - s)\gamma (m), \varepsilon xu)du

\Biggr) 

 - \rho ys(0,m) exp

\Biggl( 
 - 
\int t

s

f(u - s, e - \lambda (u - s)\gamma (m), \varepsilon yu)du

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
dmds

\leq \| f\| \infty 
\int t

0

\| \rho xs  - \rho ys\| L1 ds+ t\varepsilon \| f\| \infty Lf\| x - y\| \scrC ([0,T ])

\int t

0

\| \rho xs\| L1 ds.

Hence, by Gr\"onwall's lemma, for all t \in [0, T ],

\bigm\| \bigm\| \rho xt  - \rho yt
\bigm\| \bigm\| 
L1 \leq \varepsilon Lf\| u0\| L1

\bigl( 
exp(\| f\| \infty t) - 1

\bigr) 2

\| f\| \infty 
\| x - y\| \scrC ([0,T ]) .

Gathering the bounds, we get
\bigm\| \bigm\| \Psi T (x) - \Psi T (y)

\bigm\| \bigm\| 
\scrC ([0,T ])

\leq T\varepsilon \| h\| \infty Lf\| u0\| L1 exp(\| f\| \infty T )
\bigl[ 
1 + exp(\| f\| \infty T )

\bigr] 
\| x - y\| \scrC ([0,T ]) .

For T small enough, \Psi T is a contraction and, by Banach's fixed-point theorem, has a
unique fixed-point. Thus, there exists a unique solution (\rho , x) \in \scrC ([0, T ], L1

+). Since,
by Lemma 2.1, \| \rho T \| L1 = \| u0\| L1 , we can iterate this argument on successive time
intervals of length T and conclude that there exists a unique solution in \scrC (\BbbR +, L

1
+).

To conclude the proof of Theorem 1.2, it remains to show the estimate (1.5).
Under Assumption 2, the weight function

w : \BbbR + \times \BbbR + \rightarrow [1,\infty [ , (a,m) \mapsto \rightarrow 1 +m

satisfies w(a,m)\rightarrow \infty when m\rightarrow \infty and the Lyapunov condition on m:

(2.7) \exists \alpha > 0, b \geq 0 such that \scrL \ast 
tw \leq  - \alpha w + b.
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Indeed, for all (t, a,m) \in \BbbR + \times \BbbR + \times \BbbR \ast 
+,

\scrL \ast 
tw(a,m) =  - \lambda m+ \Gamma (m)f(a,m, \varepsilon xt) \leq  - \lambda w(a,m) + \lambda +\| \Gamma \| \infty \| f\| \infty .

Importantly, the constants \alpha and b do not depend on x.

Lemma 2.3 (global bound in L1
+(w)). Grant Assumptions 1 and 2. If the initial

datum u0 is in L1
+(w), then \rho t \in L1

+(w) for all t \geq 0. Moreover,

(2.8) \forall t > 0, \| \rho t\| L1(w) \leq \| u0\| L1(w) e
 - \alpha t +

b

\alpha 
(1 - e - \alpha t)\| u0\| L1 ,

where the constants \alpha and b are taken from the Lyapunov condition (2.7).

Proof. We divide the proof into two steps. First, we prove that the solution is
stable in L1

+(w) with a weaker and time-dependent bound; then we use this first
bound to apply the dominated convergence theorem and obtain (2.8) by Gr\"onwall's
lemma.

Step 1. Fix any T > 0. Let \chi \in \scrC \infty c (\BbbR +,\BbbR +) be a nonincreasing function such
that \chi (x) = 1 if 0 \leq x \leq 1 and \chi (x) = 0 if x > 2. For all n \in \BbbN \ast , let us write
\varphi k(a)\chi n(m) := \chi (a/k)\chi (m/n). We also consider gM (w) a smooth approximation
of w \wedge M , such that \| g\prime \| \infty \leq 1 and M1w\geq M \leq g(w) \leq M . For all n, k, and M ,
gM (w)\chi n\varphi k \in \scrC \infty c (\BbbR + \times \BbbR +,\BbbR +). Hence (by Proposition 2.2(ii)) the solution (\rho , x)
to (1.1) satisfies

\forall n \in \BbbN \ast , \langle \rho T , gM (w)\chi n\varphi k\rangle = \langle u0, gM (w)\chi n\varphi k\rangle +
\int T

0

\langle \rho t,\scrL \ast 
x(gM (w)\chi n\varphi k)\rangle dt,

where

\scrL \ast 
x(gM (w)\chi n\varphi k) = \partial a(gM (w)\chi n\varphi k) - \lambda m\partial m(gM (w)\chi n\varphi k)

+
\bigl( 
gM (w(\gamma (m)))\chi n(\gamma (m))\varphi k(0) - gM (w)\chi n\varphi k

\bigr) 
f

= gM (w)\chi n
1

k
\chi \prime (a/k) - \lambda mgM (w)\varphi k

1

n
\chi \prime (m/n) - \lambda mg\prime M (w)\chi n\varphi k

+
\bigl( 
gM (w(\gamma (m)))\chi n(\gamma (m))\varphi k(0) - gM (w)\chi n\varphi k

\bigr) 
f.

From the L1-stability and the fact that both gM (w)\partial m\chi n and gM (w)\chi n are bounded
and have compact support, we can go to the limit in k by dominated convergence:

\langle \rho T , gM (w)\chi n\rangle = \langle u0, gM (w)\chi n\rangle (2.9)

+

\int T

0

\biggl\langle 
\rho t, - \lambda mgM (w)

1

n
\chi \prime (m/n) - \lambda mg\prime M (w)\chi n

\biggr\rangle 
dt

+

\int T

0

\bigl\langle 
\rho t, (gM (w(\gamma (m)))\chi n(\gamma (m)) - gM (w)\chi n)f

\bigr\rangle 
dt.

On the other hand, from the properties of \chi and gM , we have

\bigm| \bigm| \bigm| \bigm| \lambda mgM (w)
1

n
\chi \prime (m/n)

\bigm| \bigm| \bigm| \bigm| \leq \lambda gM (w)
2n

n
\| \chi \prime \| \infty \leq 2\lambda M\| \chi \prime \| \infty 

and

| \lambda mg\prime M (w)\chi n| \leq \lambda gM (w) \leq \lambda M,
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whence

\langle \rho T , gM (w)\chi n\rangle \leq \langle u0, gM (w)\chi n\rangle 

+

\int T

0

\langle \rho t, \lambda gM (w)\| \chi \prime \| \infty +\lambda gM (w)\rangle dt

+

\int T

0

\langle \rho t, (gM (w(\gamma (m)))\chi n(\gamma (m)) - gM (w)\chi n)f\rangle dt,

and we can take the limit in n by dominated convergence:

\langle \rho T , gM (w)\rangle \leq \langle u0, gM (w)\rangle 

+

\int T

0

\langle \rho t, \lambda gM (w)\| \chi \prime \| \infty +\lambda gM (w)\rangle dt

+

\int T

0

\langle \rho t, (gM (w(\gamma (m))) - gM (w))f\rangle dt.

From the properties of \gamma , we get

w(0, \gamma (m)) \leq w(0,m+\| \Gamma \| \infty ) \leq (1 +\| \Gamma \| \infty )w(a,m)

and

gM (w(0, \gamma (m))) \leq (1 +\| \Gamma \| \infty )gM (w(m)).

This, together with the fact that f is bounded, shows that there exists a constant C,
which does not depend on M , such that

\langle \rho T , gM (w)\rangle \leq \langle u0, gM (w)\rangle + C

\int T

0

\langle \rho t, gM (w)\rangle dt,

and we can apply Gr\"onwall's lemma to obtain

\langle \rho T , gM (w)\rangle \leq \langle u0, gM (w)\rangle eCt.
Finally, it follows from Fatou lemma that \rho T \in L1

+(w).
Step 2. To improve the previous estimate, we come back to (2.9) and use domi-

nated convergence in n and M (domination being guaranteed by Step 1) to show

\langle \rho T , w\rangle = \langle u0, w\rangle +
\int T

0

\langle \rho t,\scrL \ast 
xw\rangle dt.

By the Lyapunov condition (2.7),

\| \rho T \| L1(w) \leq \| u0\| L1(w)  - \alpha 
\int T

0

\| \rho t\| L1(w) dt+ Tb,

and by Gr\"onwall's lemma, we have, for all t \in [0, T ],

\| \rho T \| L1(w) \leq \| u0\| L1(w) e
 - \alpha t +

b

\alpha 
(1 - e - \alpha t).

Since T can be chosen arbitrarily large, this achieves the proof.

Remark 2.4. Following the same steps as in the proof above, we can show that
the bound (2.8) also holds for the linearized equation (2.3) and does not depend on
x or the constants \alpha and b.
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3. Exponential stability in the noninteracting case. If x \in \scrC (\BbbR +) in the
linearized equation (2.3) is time-invariant, i.e., x \equiv \~x for some \~x \in \BbbR , then (2.3) can
be seen as the dynamics of a noninteracting population of neurons. In this section, we
prove the exponential stability in the noninteracting case using Harris's or Doeblin's
theorem. This is the key result of this work and will allow us to prove the existence
and uniqueness of the stationary solution to (1.1) (section 4) and the exponential
convergence towards it (section 5).

For \~x \in \BbbR , u0 \in L1, we denote by \rho \~xt the unique solution to (2.3) for the initial
datum u0 and for x \equiv \~x given by Proposition 2.2. We write, using the semigroup
notation,

(3.1) S\~x
t u0 := \rho \~xt \forall t \geq 0.

To show that the semigroup (3.1) is exponentially stable, we will use Harris's the-
orem in the general case or Doeblin's theorem if Assumption 4 is granted. The original
theorems of Doeblin [11] and Harris [24] have since been refined and extended---see
the well-known works of Meyn and Tweedie [29] and Hairer and Mattingly [23]. More
recently, these theorems have been generalized to stochastic semigroups [16, 5, 1, 4].
Below, we give general statements of Doeblin's and Harris's theorems. For complete-
ness, a short yet enlightening proof of Doeblin's theorem is presented in Appendix B.
A proof of Harris's theorem can be found in the recent work of Ca\~nizo and Mischler
[4].

Let \Omega denote a general state-space, and let (St)t\geq 0 be a stochastic semigroup;
i.e., for all t \geq 0, St is a mass and positivity preserving linear operator on L1(\Omega ); S0

is the identity operator; and for all t, s \geq 0, StSs = Ss+t. We say that \rho \infty \in L1
+(\Omega )

is an invariant probability measure of the semigroup (St)t\geq 0 if \| \rho \infty \| L1= 1 and if, for
all t \geq 0, St\rho \infty = \rho \infty .

Theorem 3.1 (Doeblin). If there exist T > 0 and a nonzero \nu \in L1
+ such that

(3.2) STu0 \geq \nu \| u0\| L1 \forall u0 \in L1
+,

then there exists a unique invariant probability measure \rho \infty , and for all initial data
u0 \in L1

+ with \| u0\| L1 = 1,

(3.3) \| Stu0  - \rho \infty \| L1 \leq Ke - at\| u0  - \rho \infty \| L1 \forall t \geq 0,

with

K =
1

1 - \| \nu \| L1

; a =  - log(1 - \| \nu \| L1)

T
> 0.

We call (3.2) the Doeblin minoration condition. Very loosely speaking, the Doe-
blin minoration condition is best suited for compact state-spaces (but see [16, 5] for
examples on \BbbR +). In the case of unbounded state-spaces, Harris's theorem tells us
that the Doeblin minoration condition can be relaxed to a more local form if there is
a Lyapunov-type localization condition.

Theorem 3.2 (Harris). Let w : \Omega \rightarrow [1,+\infty ) be a measurable weight function.
If there exists T > 0 such that

(i) (operator Lyapunov condition) there exist A \in ]0, 1[ and B \geq 0 such that

(3.4) \| STu0\| L1(w) \leq A\| u0\| L1(w) +B\| u0\| L1 \forall u0 \in L1
+(w);
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(ii) (Harris minoration condition) there exist a nonzero \nu \in L1
+ and R > 0 such

that

(3.5) STu0 \geq \nu 
\int 

\frakC 

u0 \forall u0 \in L1
+, with \frakC = \{ x \in \Omega | w(x) \leq R\} ,

then there exists a unique invariant probability measure \rho \infty such that \rho \infty \in L1
+(w),

1

and there exist K \geq 1 and a > 0 such that for all initial data u0 \in L1
+(w) with

\| u0\| L1 = 1,

(3.6) \| Stu0  - \rho \infty \| L1(w) \leq Ke - at\| u0  - \rho \infty \| L1(w) \forall t \geq 0.

For the model (1.1) considered in the present work, Assumption 3 will be necessary
to show the Doeblin or Harris minoration conditions. We then have to distinguish
two cases: either Assumption 2 holds, and we can use Harris's theorem since the
Lyapunov condition (2.7) implies the operator Lyapunov condition (3.4) by Lemma 2.3
(the constants are then A = e - \alpha T and B = b

\alpha ); or Assumption 4 holds, and we can
simply use Doeblin's theorem. The main technical difficulty is to verify the minoration
conditions, as the jumps of the process described by (2.5) are degenerate, and the
model is two-dimensional. The rest of the section is devoted to the verification of the
minoration condition.

Lemma 3.3 (minoration condition). Grant Assumptions 1 and 3. Fix any x \in \BbbR .
For all R > 0, there exist T > 0 and a nonzero \nu \in L1

+ such that

(3.7) S\~x
Tu0 \geq \nu 

\int 

\BbbR +\times ]0,R]

u0 dadm \forall u0 \in L1
+.

If, in addition, Assumption 4 holds, then there exist T > 0 and a nonzero \nu \in L1
+

such that

(3.8) S\~x
Tu0 \geq \nu \| u0\| L1 \forall u0 \in L1

+.

Proof. We proceed in two steps. First (Step 1), we choose a time T > 0 and
a rectangle [0, \=a] \times [m,m] \subset \BbbR + \times \BbbR \ast 

+ (with nonzero Lebesgue measure) and show
that the density S\~x

Tu0 \in L1 has a lower bound on [0, \=a]\times [m,m] which depends on a
Lebesgue integral in \BbbR 2

+ involving u0. Then (Step 2), we perform a change of variable
to express this lower bound in terms of

\int 
\BbbR +\times ]0,R]

u0 dadm. The proof only relies on the

expression of S\~x
t u0 given by the method of characteristics (see Proposition 2.2), and

this allows treating a typically probabilistic question---the Doeblin/Harris minoration
condition---from a transport point of view. This is possible because S\~x

t is the stochastic
(mass-conservative) semigroup of a piecewise deterministic Markov process.

The constants \Delta abs, \sigma , and C\gamma are taken from Assumption 3.
Step 1. Fix R > 0. Since \gamma (e - \lambda \Delta abs\gamma (0)) > \gamma (0) and \gamma (e - \lambda t\gamma (e - \lambda \Delta absR))\rightarrow \gamma (0)

as t\rightarrow \infty , there exist \=a > 0 and T > \=a+\Delta abs such that

(3.9) m =: \gamma (e - \lambda (T - \=a - \Delta abs)\gamma (e - \lambda \Delta absR)) < e - \lambda \=a\gamma (e - \lambda \Delta abs\gamma (0)) =: m.

Equation (3.9) has the following heuristic interpretation: if we see S\~x
t as the stochastic

semigroup of the piecewise deterministic Markov process defined by the generator

1Note that Harris's theorem does not exclude the existence of an invariant probability measure
with infinite L1(w) norm.
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(2.5), for any initial point (a0,m0) \in \BbbR +\times ]0, R] and any landing point (a,m) \in [0, \=a]\times 
[m,m] at time T , there is a ``possible"" trajectory going from (a0,m0) to (a,m), with
exactly two jumps (spikes). Since the trajectories of the process are determined by
the jump times, we will exploit the fact that these ``possible"" trajectories correspond
to jump times with strictly positive probability density. Below, we take a transport
point of view on this probabilistic argument.

For all (a,m) \in [0, \=a]\times [m,m],

(S\~x
Tu0)(a,m)

\geq 1\{ a<T\} (S
\~x
T - au0)(0, e

\lambda am) exp

\Biggl( 
\lambda a - 

\int T

T - a
f(a - T + s, e\lambda (T - s)m, \~x)ds

\Biggr) 

\geq 1\{ a<T\} e
 - \| f\| \infty T e\lambda a(S\~x

T - au0)(0, e
\lambda am)

\geq 1\{ a<T\} e
 - \| f\| \infty T\sigma e\lambda a

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (e\lambda am)
\bigm| \bigm| \bigm| 
\int \infty 

\Delta abs

(S\~x
T - au0)(a

\prime , \gamma  - 1(e\lambda am))da\prime 

= 1\{ a<T\} e
 - \| f\| \infty T\sigma 

\bigm| \bigm| \bigm| \bigm| 
d

dm
\gamma  - 1(e\lambda am)

\bigm| \bigm| \bigm| \bigm| 
\int \infty 

\Delta abs

(S\~x
T - au0)(a

\prime , \gamma  - 1(e\lambda am))\underbrace{}  \underbrace{}  
( \star )

da\prime .

Above, we went back in time to the last jump time T - a. Let us note that \gamma  - 1(e\lambda am) \geq 
\gamma  - 1(e\lambda am) > 0. We can therefore define

a\ast a,m :=
1

\lambda 

\Bigl( 
log \gamma (0) - log \gamma  - 1(e\lambda am)

\Bigr) 
.

Note that a\ast a,m satisfies \gamma  - 1(e\lambda a
\ast 
a,m\gamma  - 1(e\lambda am)) = 0. In other words, a\ast a,m is the

minimal time between the last and second-to-last jumps for a trajectory landing at
(a,m) at time T . We can easily verify that, by our choice of \{ T, \=a,m,m\} , \Delta abs \leq 
a\ast a,m < T - a - \Delta abs. This guarantees that it is possible to make two jumps in [0, T ] and
land at (a,m) at time T while respecting the absolute refractoriness of the neuron (i.e.,
there needs to be a time interval \geq \Delta abs between jumps). This allows us to go further
back in time to the second-to-last jump as follows: for all a\prime \in [a\ast a,m, T  - a - \Delta abs],

( \star ) \geq 1\{ a\prime <T - a\} e
 - \| f\| \infty T\sigma 

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (e\lambda a
\prime 
\gamma  - 1(e\lambda am))

\bigm| \bigm| \bigm| e\lambda a\prime 

\times 
\int \infty 

\Delta abs

(S\~x
T - a - a\prime u0)(a

\prime \prime , \gamma  - 1(e\lambda a
\prime 
\gamma  - 1(e\lambda am)))\underbrace{}  \underbrace{}  

( \star  \star )

da\prime \prime .

Then, we can go further back to time 0 to get u0:

( \star  \star ) \geq 1\{ a\prime \prime \geq T - a - a\prime \} e
 - \| f\| \infty T e\lambda (T - a - a\prime )

\times u0(a\prime \prime  - (T  - a - a\prime ), e\lambda (T - a - a\prime )\gamma  - 1(e\lambda a
\prime 
\gamma  - 1(e\lambda am))).

Putting all the lower bounds together, we get

(S\~x
Tu0)(a,m) \geq 1\{ a<T\} e

 - 3\| f\| \infty T\sigma 2

\int T - a - \Delta abs

a\ast a,m

\int \infty 

T - a - a\prime 

\bigm| \bigm| \bigm| \bigm| 
d

dm
e\lambda (T - a - a\prime )\gamma  - 1(e\lambda a

\prime 
\gamma  - 1(e\lambda am))

\bigm| \bigm| \bigm| \bigm| 

u0(a
\prime \prime  - (T  - a - a\prime ), e\lambda (T - a - a\prime )\gamma  - 1(e\lambda a

\prime 
\gamma  - 1(e\lambda am)))da\prime \prime da\prime .
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Since \gamma \prime \leq 1 (Assumption 3),

\bigm| \bigm| \bigm| \bigm| 
d

dm
e\lambda (T - a - a\prime )\gamma  - 1(e\lambda a

\prime 
\gamma  - 1(e\lambda am))

\bigm| \bigm| \bigm| \bigm| \geq e\lambda T .

Thus,

(S\~x
Tu0)(a,m) \geq 1\{ a<T\} e

(\lambda  - 3\| f\| \infty )T\sigma 2

\times 
\int T - a - \Delta abs

a\ast a,m

\int \infty 

0

u0(a0, e
\lambda (T - a - a\prime )\gamma  - 1(e\lambda a

\prime 
\gamma  - 1(e\lambda am)))da0da

\prime .
(3.10)

We have obtained that on [0, \=a] \times [m,m], the density (S\~x
Tu0) is lower bounded by a

constant depending on a Lebesgue integral on \BbbR 2
+ involving u0.

Step 2. Now, we want to express the lower bound (3.10) in terms of

\int 

\BbbR +\times ]0,R]

u0 dadm

by a change of variable. Let us define the function \psi Ta,m:

\psi Ta,m : [a\ast a,m, T  - a - \Delta abs]\rightarrow \BbbR +, a\prime \mapsto \rightarrow e\lambda (T - a - a\prime )\gamma  - 1(e\lambda a
\prime 
\gamma  - 1(e\lambda am)).

We verify that (\psi Ta,m)\prime > 0 as follows: for all a\prime \in [a\ast a,m, T  - a],

(\psi Ta,m)\prime (a\prime )

= \lambda e\lambda (T - a - a\prime )
\biggl\{ 
(\gamma  - 1)\prime (e\lambda a

\prime 
\gamma  - 1(e\lambda am))e\lambda a

\prime 
\gamma  - 1(e\lambda am) - \gamma  - 1(e\lambda a

\prime 
\gamma  - 1(e\lambda am))

\biggr\} 
.

(3.11)

As \Gamma > 0 and \gamma \prime \leq 1 (Assumption 3), we have

(\psi Ta,m)\prime (a\prime ) > \lambda e\lambda (T - a - a\prime )
\biggl\{ 
(\gamma  - 1)\prime (e\lambda a

\prime 
\gamma  - 1(e\lambda am))e\lambda a

\prime 
\gamma  - 1(e\lambda am) - e\lambda a\prime \gamma  - 1(e\lambda am)

\biggr\} 

= \lambda e\lambda (T - a)\gamma  - 1(e\lambda am)

\biggl\{ 
(\gamma  - 1)\prime (e\lambda a

\prime 
\gamma  - 1(e\lambda am))\underbrace{}  \underbrace{}  
\geq 1

 - 1
\biggr\} 
\geq 0.

Therefore, \psi Ta,m is a strictly increasing \scrC 1-diffeomorphism from [a\ast a,m, T  - a  - \Delta abs]

to [\psi Ta,m(a\ast a,m), \psi Ta,m(T  - a - \Delta abs)]. We can now rewrite (3.10) as

(S\~x
Tu0)(a,m) \geq e(\lambda  - 3\| f\| \infty )T\sigma 2

\int T - a - \Delta abs

a\ast a,m

\int \infty 

0

u0(a0, \psi 
T
a,m(a\prime ))da0da

\prime 

= e(\lambda  - 3\| f\| \infty )T\sigma 2

\int \psi T
a,m(T - a - \Delta abs)

\psi T
a,m(a\ast a,m)

\int \infty 

0

u0(a0,m0)
\bigm| \bigm| \bigm| ((\psi Ta,m) - 1)\prime (m0)

\bigm| \bigm| \bigm| da0dm0.

Going back to (3.11) and using the fact that there exists C\gamma such that C\gamma \leq \gamma \prime \leq 1
(Assumption 3), we have, for all a\prime \in [a\ast a,m, T  - a - \Delta abs],

(\psi Ta,m)\prime (a\prime ) \leq \lambda e\lambda (T - a - a\prime )C - 1
\gamma e\lambda a

\prime 
\gamma  - 1(e\lambda am) \leq \lambda e\lambda TC - 1

\gamma m.
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Hence,

(S\~x
Tu0)(a,m) \geq e - 3\| f\| \infty T\sigma 2C\gamma 

\lambda m

\int \psi T
a,m(T - a - \Delta abs)

\psi T
a,m(a\ast a,m)

\int \infty 

0

u0(a0,m0)da0dm0.

In addition, by our choice of \{ T, \=a,m,m\} , we have

\psi Ta,m(a\ast a,m) = 0,

\psi Ta,m(T  - a - \Delta abs) = e\lambda \Delta abs\gamma  - 1(e\lambda (T - a - \Delta abs)\gamma  - 1(e\lambda am)) > R.

Therefore,

(S\~x
Tu0)(a,m) \geq e - 3\| f\| \infty T\sigma 2C\gamma 

\lambda m

\int R

0

\int \infty 

0

u0(a0,m0)da0dm0.

Since we have assumed that (a,m) \in [0, \=a]\times [m,m], this concludes the proof of (3.7).
In the case where Assumption 4 also holds, the proof of (3.8) is similar except that

we can simply take R = +\infty and m =: \gamma (e - \lambda (T - \=a - \Delta abs)G) < e - \lambda \=a\gamma (e - \lambda \Delta abs\gamma (0)) =:
m.

In summary, by Harris's theorem, we have the following.

Theorem 3.4. Grant Assumptions 1--3. For all \~x \in \BbbR , there exists a unique
\rho \~x\infty \in L1

+(w) with
\bigm\| \bigm\| \rho \~x\infty 

\bigm\| \bigm\| 
L1 = 1 such that S\~x

t \rho 
\~x
\infty = \rho \~x\infty for all t \geq 0, and there exist

K \geq 1 and a > 0 such that for all initial data u0 \in L1
+(w) with \| u0\| L1 = 1,

(3.12)
\bigm\| \bigm\| \bigm\| S\~x

t u0  - \rho \~x\infty 
\bigm\| \bigm\| \bigm\| 
L1(w)

\leq Ke - at
\bigm\| \bigm\| \bigm\| u0  - \rho \~x\infty 

\bigm\| \bigm\| \bigm\| 
L1(w)

\forall t \geq 0.

Furthermore, by Lemma 2.3, we have that
\bigm\| \bigm\| \rho \~x\infty 

\bigm\| \bigm\| 
L1(w)

\leq b
\alpha , where the constants \alpha and

b are taken from the Lyapunov condition (2.7).

If Assumption 2 is replaced by Assumption 4, we can simply apply Doeblin's
theorem.

Theorem 3.5. Grant Assumptions 1, 3, and 4. For all \~x \in \BbbR , there exists a
unique \rho \~x\infty \in L1

+ with
\bigm\| \bigm\| \rho \~x\infty 

\bigm\| \bigm\| 
L1 = 1 such that S\~x

t \rho 
\~x
\infty = \rho \~x\infty for all t \geq 0, and there exist

K \geq 1 and a > 0 such that for all initial data u0 \in L1
+ with \| u0\| L1 = 1,

(3.13)
\bigm\| \bigm\| \bigm\| S\~x

t u0  - \rho \~x\infty 
\bigm\| \bigm\| \bigm\| 
L1
\leq Ke - at

\bigm\| \bigm\| \bigm\| u0  - \rho \~x\infty 
\bigm\| \bigm\| \bigm\| 
L1

\forall t \geq 0.

Note that both theorems imply the following.

Corollary 3.6. Grant Assumptions 1--3 (or Assumptions 1, 3, and 4). For all
\~x \in \BbbR , there exists a unique \rho \~x\infty \in L1

+(w) (or \in L1
+) with

\bigm\| \bigm\| \rho \~x\infty 
\bigm\| \bigm\| 
L1 = 1 solving

\partial a\rho 
\~x
\infty (a,m) - \lambda \partial m(m\rho \~x\infty (a,m)) =  - f(a,m, \~x)\rho \~x\infty (a,m),(3.14a)

\rho \~x\infty (0,m) = 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| 
\int \infty 

0

f(a, \gamma  - 1(m), \~x)\rho \~x\infty (a, \gamma  - 1(m))da(3.14b)

in the weak sense. Furthermore, we have that \rho \~x\infty \in \scrC (\BbbR +, L
1
+(\BbbR \ast 

+))\cap L\infty (\BbbR +, L
1
+(\BbbR \ast 

+)).
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4. Stationary solutions for arbitrary connectivity strength. In this sec-
tion, we study the stationary solutions to (1.1), namely the solution to

\partial a\rho \infty (a,m) - \lambda \partial m(m\rho \infty (a,m)) =  - f(a,m, \varepsilon x\infty )\rho \infty (a,m),(4.1a)

\rho \infty (0,m) = 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| 
\int \infty 

0

f(a, \gamma  - 1(m), \varepsilon x\infty )\rho \infty (a, \gamma  - 1(m))da,(4.1b)

x\infty =

\int \infty 

0

\int \infty 

0

\=h(a,m)f(a,m, \varepsilon x\infty )\rho \infty (a,m)dadm.(4.1c)

Definition 4.1. (\rho \infty , x\infty ) \in L1
+(w) \cap \scrC (\BbbR +, L

1
+(\BbbR \ast 

+)) \cap L\infty (\BbbR +, L
1
+(\BbbR \ast 

+)) \times \BbbR +

is a stationary solution to (1.1) if \| \rho \infty \| L1 = 1 and if it solves (4.1) in the weak sense.

4.1. Existence and uniqueness using the Doeblin--Harris method. We
present two Lipschitz continuity results, which will allow us to prove the existence
(and the uniqueness when \varepsilon is small) of stationary solutions. The following lemma
plays the same role as Theorem 4.5 in [5].

Lemma 4.2 (Lipschitz continuity at finite T ). Grant Assumptions 1--3. For all
initial data u0 \in L1

+(w) and for all T > 0, there exists a constant CT,\| u0\| L1(w)
> 0

such that

(4.2) \forall \widetilde x1,\widetilde x2 \in \BbbR ,
\bigm\| \bigm\| \bigm\| S\widetilde x1

T u0  - S\widetilde x2

T u0

\bigm\| \bigm\| \bigm\| 
L1(w)

\leq CT,\| u0\| L1(w)
| \widetilde x1  - \widetilde x2| .

Proof. For all t > 0,

\bigm\| \bigm\| \bigm\| S\widetilde x1
t u0  - S\widetilde x2

t u0

\bigm\| \bigm\| \bigm\| 
L1(w)

=

\int \infty 

0

\int \infty 

t

\bigm| \bigm| \bigm| \bigm| u0(a - t, e\lambda tm) exp

\Biggl( 
\lambda t - 

\int t

0

f(a - t+ s, e\lambda (t - s)m,\widetilde x1)ds
\Biggr) 

 - u0(a - t, e\lambda tm) exp

\Biggl( 
\lambda t - 

\int t

0

f(a - t+ s, e\lambda (t - s)m,\widetilde x2)ds
\Biggr) \bigm| \bigm| \bigm| \bigm| w(a,m)dadm

+

\int \infty 

0

\int t

0

\bigm| \bigm| \bigm| \bigm| \rho 
\widetilde x1
t - a(0, e

\lambda am) exp

\Biggl( 
\lambda a - 

\int t

t - a
f(a - t+ s, e\lambda (t - s)m,\widetilde x1)ds

\Biggr) 

 - \rho \widetilde x2
t - a(0, e

\lambda am) exp

\Biggl( 
\lambda a - 

\int t

t - a
f(a - t+ s, e\lambda (t - s)m,\widetilde x2)ds

\Biggr) \bigm| \bigm| \bigm| \bigm| w(a,m)dadm

=: Q1 +Q2.
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Q1 =

\int \infty 

0

\int \infty 

0

u0(a,m)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
exp

\Biggl( 
 - 
\int t

0

f(a+ s, e - \lambda sm,\widetilde x1)ds
\Biggr) 

 - exp

\Biggl( 
 - 
\int t

0

f(a+ s, e - \lambda sm,\widetilde x2)ds
\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
w(a+ t, e - \lambda tm)dadm

\leq 
\int \infty 

0

\int \infty 

0

u0(a,m)

\Biggl( \int t

0

\bigm| \bigm| \bigm| f(a+ s, e - \lambda sm,\widetilde x1)

 - f(a+ s, e - \lambda sm,\widetilde x2)
\bigm| \bigm| \bigm| ds
\biggr) 
w(a+ t, e - \lambda tm)dadm

\leq tLf | \widetilde x1  - \widetilde x2| 
\int \infty 

0

\int \infty 

0

u0(a,m)w(a+ t, e - \lambda tm)dadm

\leq tLf\| u0\| L1(w) | \widetilde x1  - \widetilde x2| ,
where, in the last inequality, we used

(4.3) w(a+ t, e - \lambda tm) \leq w(a,m) \forall a \geq 0,m \geq 0.

Q2 =

\int \infty 

0

\int t

0

\bigm| \bigm| \bigm| \bigm| \rho 
\widetilde x1
t - a(0,m) exp

\Biggl( 
 - 
\int t

t - a
f(a - t+ s, e\lambda (t - s - a)m,\widetilde x1)ds

\Biggr) 

 - \rho \widetilde x2
t - a(0,m) exp

\Biggl( 
 - 
\int t

t - a
f(a - t+ s, e\lambda (t - s - a)m,\widetilde x2)ds

\Biggr) \bigm| \bigm| \bigm| \bigm| w(a, e - \lambda am)dadm.

By changes of variables,

Q2 =

\int \infty 

0

\int t

0

\bigm| \bigm| \bigm| \bigm| \rho \widetilde x1
s (0,m) exp

\Biggl( 
 - 
\int t - s

0

f(u, e - \lambda um,\widetilde x1)du
\Biggr) 

 - \rho \widetilde x2
s (0,m) exp

\Biggl( 
 - 
\int t - s

0

f(u, e - \lambda um,\widetilde x2)du
\Biggr) \bigm| \bigm| \bigm| \bigm| w(t - s, e - \lambda (t - s)m)dsdm

\leq 
\int \infty 

0

\int t

0

\rho \widetilde x1
s (0,m)

\bigm| \bigm| \bigm| \bigm| exp
\Biggl( 
 - 
\int t - s

0

f(u, e - \lambda um,\widetilde x1)du
\Biggr) 

 - exp

\Biggl( 
 - 
\int t - s

0

f(u, e - \lambda um,\widetilde x2)du
\Biggr) \bigm| \bigm| \bigm| \bigm| w(t - s, e - \lambda (t - s)m)dsdm

+

\int \infty 

0

\int t

0

\bigm| \bigm| \bigm| \rho \widetilde x1
s (0,m) - \rho \widetilde x2

s (0,m)
\bigm| \bigm| \bigm| w(t - s, e - \lambda (t - s)m)dsdm

=: Q2,1 +Q2,2.

Q2,1 \leq t\| f\| \infty Lf | \widetilde x1  - \widetilde x2| 
\int t

0

\int \infty 

0

\int \infty 

0

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \rho \widetilde x1
s (a, \gamma  - 1(m))w(t,m)dadmds

\leq t\| f\| \infty Lf | \widetilde x1  - \widetilde x2| 
\int t

0

\int \infty 

0

\int \infty 

0

\rho \widetilde x1
s (a,m)w(t,m+\| \Gamma \| \infty )dadmds

\leq t(1 +\| \Gamma \| \infty )\| f\| \infty Lf | \widetilde x1  - \widetilde x2| 
\int t

0

\bigm\| \bigm\| \bigm\| \rho \widetilde x1
s

\bigm\| \bigm\| \bigm\| 
L1(w)

ds,
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where, in the last inequality, we used

(4.4) w(t,m+\| \Gamma \| \infty ) = 1 +m+\| \Gamma \| \infty \leq (1 +\| \Gamma \| \infty )w(a,m) \forall a \geq 0,m \geq 0.

By Lemma 2.3,

Q2,1 \leq t2(1 +\| \Gamma \| \infty )\| f\| \infty Lf

\biggl( 
\| u0\| L1(w) +

b

\alpha 

\biggr) 
| \widetilde x1  - \widetilde x2| .

Q2,2 \leq \| f\| \infty 
\int t

0

\int \infty 

0

\int \infty 

0

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \rho \widetilde x1
s (a, \gamma  - 1(m)) - \rho \widetilde x2

s (a, \gamma  - 1(m))
\bigm| \bigm| \bigm| w(t,m)dadmds

\leq \| f\| \infty 
\int t

0

\int \infty 

0

\int \infty 

0

\bigm| \bigm| \bigm| \rho \widetilde x1
s (a,m) - \rho \widetilde x2

s (a,m)
\bigm| \bigm| \bigm| w(t,m+\| \Gamma \| \infty )dadmds

\leq (1 +\| \Gamma \| \infty )\| f\| \infty 
\int t

0

\bigm\| \bigm\| \bigm\| S\widetilde x1
s u0  - S\widetilde x2

s u0

\bigm\| \bigm\| \bigm\| 
L1(w)

ds,

where again, in the last inequality, we used (4.4). Fix T > 0. Gathering the bounds
for Q1, Q2,1, and Q2,2 we see that there exist constants C > 0 and C \prime 

T,\| u0\| L1(w)
> 0

such that, for all t \in [0, T ],

\bigm\| \bigm\| \bigm\| S\widetilde x1
t u0  - S\widetilde x2

t u0

\bigm\| \bigm\| \bigm\| 
L1(w)

\leq C
\int t

0

\bigm\| \bigm\| \bigm\| S\widetilde x1
s u0  - S\widetilde x2

s u0

\bigm\| \bigm\| \bigm\| 
L1(w)

ds+ tC \prime 
T,\| u0\| L1(w)

| \widetilde x1  - \widetilde x2| .

By Gr\"onwall's lemma, for all t \in [0, T ],

(4.5)
\bigm\| \bigm\| \bigm\| S\widetilde x1

t u0  - S\widetilde x2
t u0

\bigm\| \bigm\| \bigm\| 
L1(w)

\leq 
C \prime 
T,\| u0\| L1(w)

| \widetilde x1  - \widetilde x2| 
C

\bigl( 
exp(Ct) - 1

\bigr) 
.

Since (4.5) holds for all t \in [0, T ], this achieves the proof.

Lemma 4.3 (Lipschitz continuity at T =\infty ). Grant Assumptions 1--3. Writing
\rho \~x\infty \in L1

+(w), the invariant probability measure given by Theorem 3.2 for any \~x \in \BbbR ,
we see that the function

\Upsilon : \BbbR + \rightarrow \BbbR +, \Upsilon (x) =

\int \infty 

0

\int \infty 

0

\=h(a,m)f(a,m, \varepsilon x)\rho \varepsilon x\infty (a,m)dadm

is Lipschitz, and there exists C > 0 such that

\forall x1, x2 \in \BbbR +, | \Upsilon (x1) - \Upsilon (x2)| \leq | \varepsilon | C| x1  - x2| .

Proof. Since f is Lipschitz in x, we have, for any x1, x2 \in \BbbR +,

| \Upsilon (x1) - \Upsilon (x2)| \leq 
\bigm\| \bigm\| \=h
\bigm\| \bigm\| 
\infty 
\bigl\{ 
\| f\| \infty \| \rho \varepsilon x1

\infty  - \rho \varepsilon x2
\infty \| L1 + Lf | \varepsilon | | x1  - x2| 

\bigr\} 

\leq 
\bigm\| \bigm\| \=h
\bigm\| \bigm\| 
\infty 

\Bigl\{ 
\| f\| \infty \| \rho \varepsilon x1

\infty  - \rho \varepsilon x2
\infty \| L1(w) + Lf | \varepsilon | | x1  - x2| 

\Bigr\} 
,

from where we only need to bound the first term on the right-hand side. We can use
Theorem 3.2 and Lemma 4.2 as follows: for any T \in \BbbR +,

\| \rho \varepsilon x1
\infty  - \rho \varepsilon x2

\infty \| L1(w) = \| S\varepsilon x1

T \rho \varepsilon x1
\infty  - S\varepsilon x1

T \rho \varepsilon x2
\infty + S\varepsilon x1

T \rho \varepsilon x2
\infty  - S\varepsilon x2

T \rho \varepsilon x2
\infty \| L1(w)

\leq Ke - aT \| \rho \varepsilon x1
\infty  - \rho \varepsilon x2

\infty \| L1(w)+CT | \varepsilon | | x1  - x2| ,
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where K and a are the exponential stability constants of Theorem 3.2. Choosing T
such that Ke - aT = 1/2, we get

\| \rho \varepsilon x1
\infty  - \rho \varepsilon x2

\infty \| L1(w) \leq 2CT | \varepsilon | | x1  - x2| .

Gathering the bounds concludes the proof.

Theorem 4.4 (stationary solutions). Grant Assumptions 1--3. We have the fol-
lowing:

(i) There exists a stationary solution to (1.1).
(ii) There exists \varepsilon \ast > 0 such that for all \varepsilon \in ] - \varepsilon \ast ,+\varepsilon \ast [ , the stationary solution

to (1.1) is unique.

Proof. For all \~x \in \BbbR , let us write \rho \~x\infty \in L1
+(w) the unique invariant measure

given by Theorem 3.2, and let us also take the function \Upsilon from Lemma 4.3. By
Corollary 3.6, (\rho \infty , x\infty ) \in L1

+(w)\cap \scrC (\BbbR +, L
1
+(\BbbR \ast 

+))\cap L\infty (\BbbR +, L
1
+(\BbbR \ast 

+))\times \BbbR + is a weak
solution to (4.1) if and only if \rho \infty = \rho \varepsilon x\infty \infty and x\infty is a fixed-point of \Upsilon . Hence, the
study of the existence and uniqueness of stationary solutions is reduced to the study
of the existence and uniqueness of the fixed-point of \Upsilon .

Since for all x \in \BbbR +,\| \rho \varepsilon x\infty \| L1 = 1, we have that for all x \in \BbbR +, \Upsilon (x) \leq 
\bigm\| \bigm\| \=h
\bigm\| \bigm\| 
\infty \| f\| \infty .

Therefore, the set [0,
\bigm\| \bigm\| \=h
\bigm\| \bigm\| 
\infty \| f\| \infty ] (which is compact and convex) is stable by \Upsilon . Then,

the continuity of \Upsilon guarantees the existence of a fixed-point, which proves (i).
To obtain (ii), we observe that the Lipschitz constant of \Upsilon is | \varepsilon | C: if we take

| \varepsilon | < \varepsilon \ast := C - 1, then \Upsilon is a contraction, and we can apply Banach's fixed-point
theorem to conclude the proof.

4.2. Alternative proof for the existence using Schauder's fixed-point
theorem. We include here an alternative proof for the existence of a stationary
solution, which is interesting for two reasons: on the one hand, it does not rely on
the Doeblin--Harris method, and on the other hand, it provides some estimates on the
stationary solutions.

For any (\~u, \~x) \in L1
+(]\gamma (0),+\infty [)\times \BbbR , consider the transport equation

\partial a\varrho (a,m) - \lambda \partial m(m\varrho (a,m)) =  - f(a,m, \~x)\varrho (a,m),

\varrho (0,m) = \~u(m).

It has a unique weak solution \rho \~u,\~x\infty \in \scrC (\BbbR +, L
1
+(\BbbR \ast 

+))\cap L\infty (\BbbR +, L
1
+(\BbbR \ast 

+)) given by the
method of characteristics, i.e., for all (a,m) \in \BbbR + \times \BbbR \ast 

+,

(4.6) \rho \~u,\~x\infty (a,m) = \~u(e\lambda am) exp

\biggl( 
\lambda a - 

\int a

0

f(s, e\lambda (a - s)m, \~x)ds

\biggr) 
.

We can now define the operator \Phi := (\Phi 1,\Phi 2) on L
1
+(]\gamma (0),+\infty [)\times \BbbR , where, for

all (\~u, \~x) \in L1
+(]\gamma (0),+\infty [)\times \BbbR ,

\Phi 1(\~u, \~x)(m) := 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| 
\int \infty 

0

f(a, \gamma  - 1(m), \~x)\rho (\~u,\~x)\infty (a, \gamma  - 1(m))da,(4.7a)

\Phi 2(\~u, \~x) :=

\int \infty 

0

\int \infty 

0

\=h(a,m)f(a,m, \~x)\rho \~u,\~x\infty (a,m)dadm.(4.7b)

A stationary solution (\rho \infty , x\infty ) is a fixed-point of \Phi , and vice versa. Therefore, we
have the following a priori estimates.
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Lemma 4.5. Grant Assumptions 1 and 3. There exists \theta \in ]0, 1[ such that for all
(\~u, \~x) \in L1

+(]\gamma (0),+\infty [)\times \BbbR , we have the following:
(i)
\bigm\| \bigm\| \Phi 1(\~u, \~x)

\bigm\| \bigm\| 
L1 =\| \~u\| L1 .

(ii) For all m \in \BbbR \ast 
+, | \Phi 1(\~u, \~x)(m)| \leq 1m>\gamma (0)

\| f\| \infty 
\lambda \gamma  - 1(m)\| \~u\| L1 .

(iii)

\int \infty 

0

\Phi 1(\~u, \~x)(m)mdm \leq max

\biggl( \int \infty 

0

\~u(m)mdm,
\gamma (0)

1 - \theta \| \~u\| L1

\biggr) 
.

(iv) For all \beta \in ]0, min(f)
\lambda [ ,

\int \infty 

\gamma (0)

\Phi 1(\~u, \~x)(m)

\gamma  - 1(m)\beta 
dm \leq \| f\| \infty 

\lambda \gamma (0)\beta 

\biggl( 
min(f)

\lambda 
 - \beta 

\biggr) 
\| \~u\| L1 .

(v) \Phi 2(\~u, \~x) \leq 
\bigm\| \bigm\| \=h
\bigm\| \bigm\| 
\infty \| \~u\| L1 .

Proof. (i) By changes of variables on m,

\bigm\| \bigm\| \Phi 1(\~u, \~x)
\bigm\| \bigm\| 
L1 =

\int \infty 

0

\int \infty 

0

f(a,m, \~x)\~u(e\lambda am) exp

\biggl( 
\lambda a - 

\int a

0

f(s, e\lambda (a - s)m, \~x)ds

\biggr) 
dadm

=

\int \infty 

0

\~u(m)

\int \infty 

0

f(a, e - \lambda am, \~x) exp

\biggl( 
 - 
\int a

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
da

\underbrace{}  \underbrace{}  
=1 (by Assumption 3(i))

dm.

(ii)

| \Phi 1(\~u, \~x)(m)| \leq 1m>\gamma (0)\| f\| \infty 
\int \infty 

0

\~u(e\lambda a\gamma  - 1(m)) exp(\lambda a)da

= 1m>\gamma (0)
\| f\| \infty 
\lambda \gamma  - 1(m)

\int \infty 

0

\~u(e\lambda a\gamma  - 1(m))\gamma  - 1(m)\lambda exp(\lambda a)da

= 1m>\gamma (0)
\| f\| \infty 
\lambda \gamma  - 1(m)

\int \infty 

\gamma  - 1(m)

\~u(y)dy

\underbrace{}  \underbrace{}  
\leq \| \~u\| L1

,

where, for the last equality, we used the change of variable y = e\lambda a\gamma  - 1(m).
(iii) Performing the same change of variable as for (i) and using the fact that

\gamma (m) \leq \gamma (0) +m for all m \in \BbbR + (since \gamma \prime \leq 1), we have

\int \infty 

0

\Phi 1(\~u, \~x)(m)mdm

=

\int \infty 

0

\~u(m)

\int \infty 

0

\gamma (e - \lambda am)f(a, e - \lambda am, \~x) exp

\biggl( 
 - 
\int a

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
dadm

\leq 
\int \infty 

0

\~u(m)m

\int \infty 

0

e - \lambda af(a, e - \lambda am, \~x) exp

\biggl( 
 - 
\int a

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
da

\underbrace{}  \underbrace{}  
=:\vargamma (m)

dm+\gamma (0)\| \~u\| L1 .

There exists \theta \in ]0, 1[ such that for all m \in \BbbR \ast 
+, \vargamma (m) < 1, as we show in the

D
ow

nl
oa

de
d 

10
/1

1/
22

 to
 8

1.
22

1.
24

1.
13

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

AN AGE- AND LEAKY MEMORY-STRUCTURED POPULATION 4745

following. Fix \epsilon > 0.

\vargamma (m) \leq 
\int \epsilon 

0

f(a, e - \lambda am, \~x) exp

\biggl( 
 - 
\int a

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
da

+

\int \infty 

\epsilon 

e - \lambda \epsilon f(a, e - \lambda am, \~x) exp

\biggl( 
 - 
\int a

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
da

= 1 - (1 - e - \lambda \epsilon )
\int \infty 

\epsilon 

f(a, e - \lambda am, \~x) exp

\biggl( 
 - 
\int a

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
da

= 1 - (1 - e - \lambda \epsilon ) exp
\biggl( 
 - 
\int \epsilon 

0

f(s, e - \lambda sm, \~x)ds

\biggr) 

\leq 1 - (1 - e - \lambda \epsilon ) exp( - \| f\| \infty \epsilon ) =: \theta < 1.

Therefore,

\int \infty 

0

\Phi 1(\~u, \~x)(m)mdm \leq \theta 
\int \infty 

0

\~u(m)mdm+ \gamma (0)\| \~u\| L1 .

To see that

\int \infty 

0

\Phi 1(\~u, \~x)(m)mdm \leq max

\biggl( \int \infty 

0

\~u(m)mdm,
\gamma (0)

1 - \theta \| \~u\| L1

\biggr) 
,

we can distinguish three cases: if
\int \infty 
0

\~u(m)mdm = \infty , the inequality is trivial; if
\gamma (0)
1 - \theta \| \~u\| L1 \leq 

\int \infty 
0

\~u(m)mdm < +\infty , then

\int \infty 

0

\Phi 1(\~u, \~x)(m)mdm \leq 
\int \infty 

0

\~u(m)mdm - (1 - \theta )
\int \infty 

0

\~u(m)mdm+ \gamma (0)\| \~u\| L1

\leq 
\int \infty 

0

\~u(m)mdm;

and, finally, if
\int \infty 
0

\~u(m)mdm < \gamma (0)
1 - \theta \| \~u\| L1 , then

\int \infty 

0

\Phi 1(\~u, \~x)(m)mdm \leq \theta \gamma (0)
1 - \theta \| \~u\| L1 + \gamma (0)\| \~u\| L1 =

\gamma (0)

1 - \theta \| \~u\| L1 .

(iv)
\int \infty 

\gamma (0)

\Phi 1(\~u, \~x)(m)

\gamma  - 1(m)\beta 
dm

=

\int \infty 

0

\int \infty 

0

1

m
f(a,m, \~x)\~u(e\lambda am) exp

\biggl( 
\lambda a - 

\int a

0

f(s, e\lambda (a - s)m, \~x)

\biggr) 
dadm

\leq \| f\| \infty 
\int \infty 

0

\int \infty 

0

1

m\beta 
\~u(e\lambda am) exp

\bigl( 
\lambda a - min(f)a

\bigr) 
dadm.

Making the change of variable y = e\lambda am, we get

=\| f\| \infty 
\int \infty 

0

\int \infty 

m

1

\lambda m1+\beta 
\~u(y) exp

\Biggl( 
 - min(f)

1

\lambda 
ln

\biggl( 
y

m

\biggr) \Biggr) 
dydm

=
\| f\| \infty 
\lambda 

\int \infty 

0

\int \infty 

m

mmin(f)/\lambda  - 1 - \beta \~u(y)y - min(f)/\lambda dydm,
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and, using Fubini's theorem and the fact that min(f)/\lambda  - \beta > 0, we get

=
\| f\| \infty 
\lambda 

\int \infty 

0

\~u(y)y - min(f)/\lambda 

\int y

0

mmin(f)/\lambda  - 1 - \beta dm
\underbrace{}  \underbrace{}  

= ymin(f)/\lambda  - \beta 

min(f)/\lambda  - \beta 

dy

=
\| f\| \infty 
\lambda 

\biggl( 
min(f)

\lambda 
 - \beta 

\biggr) \int \infty 

0

\~u(y)y - \beta dy.

Finally, it is easy to check that
\int \infty 
0

\~u(y)y - \beta dy \leq \gamma (0) - \beta \| \~u\| L1 .
(v) Use (4.7b) and see the proof of (i).

By these estimates, we see that there exists \beta ,C1, . . . , C4 > 0 such that the set
C \times B \subset L1(]\gamma (0),+\infty [)\times \BbbR , where

C :=

\biggl\{ 
u \in L1

+(]\gamma (0),+\infty [)

\bigm| \bigm| \bigm| \bigm| \| u\| L1 \leq 1;

u \leq C1

\gamma  - 1(\cdot ) a.e.;

\int \infty 

0

u(m)mdm \leq C2;

\int \infty 

\gamma (0)

u(m)

\gamma  - 1(m)\beta 
dm \leq C3

\biggr\} 
,

and B := [ - C4,+C4] is stable by the operator \Phi .
In order to apply Schauder's fixed-point theorem, we will need the next lemma.

Lemma 4.6. Grant Assumptions 1 and 3. C is convex, closed, and compact for
the weak topology \sigma (L1, L\infty ).

Proof. It is easy to verify that C is convex. Since C is convex, it suffices to
show that it is strongly closed to show that it is weakly closed. Let un be a sequence
of elements of C which converge strongly to u \in L1(]\gamma (0),+\infty [). By the strong
convergence, \| u\| L1 \leq 1. We can extract a subsequence unk

such that unk
converges

to u a.e. Taking the pointwise limit, we have that u \leq C1

\gamma  - 1(\cdot ) a.e. Furthermore, by

Fatou lemma,

\int \infty 

\gamma (0)

u(m)mdm \leq lim inf
k\rightarrow +\infty 

\int \infty 

\gamma (0)

unk
(m)mdm \leq C2

and

\int \infty 

\gamma (0)

u(m)

\gamma  - 1(m)\beta 
dm \leq lim inf

k\rightarrow +\infty 

\int \infty 

\gamma (0)

unk
(m)

\gamma  - 1(m)\beta 
dm \leq C3.

Hence, C is strongly closed.
To show that C is weakly compact, we will show the following:
(a) supu\in C \| u\| L1 <\infty .
(b) For all \epsilon > 0, there exists R > 0 such that

\int \infty 
R
u(m)dm < \epsilon for all u \in C .

(c) C is equi-integrable, i.e., for all \epsilon > 0, there exists \delta > 0 such that for all
Borel set A \subset \BbbR + with | A| \leq \delta and for all u \in C ,

\int 
A
u(m)dm \leq \epsilon .

Then use the Dunford--Pettis theorem. (a) is clearly verified. (b) is also verified since
for all R > 0,

\int \infty 
R
u(m)dm \leq 1

R

\int \infty 
0
u(m)mdm \leq C2

R . To show (c), let us first observe
that for all \delta 1 > 0,

\int \gamma (0)+\delta 1

\gamma (0)

u(m)dm \leq \gamma  - 1(\gamma (0) + \delta 1)
\beta 

\int \infty 

\gamma (0)

u(m)

\gamma  - 1(m)\beta 
dm \leq \gamma  - 1(\gamma (0) + \delta 1)

\beta C3.
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For any \epsilon > 0, let us choose \delta 1 > 0 such that \gamma  - 1(\gamma (0) + \delta 1)
\beta C3 \leq \epsilon 

2 . Then, for all
Borel set A \subset \BbbR + with | A| \leq \delta ,
\int 

A

u(m)dm \leq 
\int \gamma (0)+\delta 1

\gamma (0)

u(m)dm+

\int 

A\setminus [0,\gamma (0)+\delta 1]
u(m)dm \leq \epsilon 

2
+ \delta 

C1

\gamma  - 1(\gamma (0) + \delta 1)
.

Hence, we can choose \delta = min(\delta 1,
\epsilon \gamma  - 1(\gamma (0)+\delta 1)

2C1
), and (c) is verified. By the Dunford--

Pettis theorem, C is weakly relatively compact. Finally, since C is weakly closed, C
is weakly compact.

We can now give an alternative proof of the existence of stationary solutions to
(1.1) for arbitrary connectivity strength \varepsilon .

Proof of Theorem 1.3(i). We verify that the operator \Phi is weakly continuous: for
any sequence (un, xn)\rightarrow (u, x) in C \times \BbbR and for any \varphi \in L\infty (\BbbR +),

\bigm| \bigm| \bigm| \bigm| 
\int 

(\Phi 1(un, xn) - \Phi 1(u, x))\varphi (m)dm

\bigm| \bigm| \bigm| \bigm| \leq Qn1 +Qn2 +Qn3 ,

where

Qn1 :=

\bigm| \bigm| \bigm| \bigm| 
\int \infty 

0

\int \infty 

0

(un(e
\lambda am) - u(e\lambda am))\varphi (\gamma (m))e\lambda af(a,m, x)e - 

\int a
0
f(\tau ,e\lambda (a - \tau )m,x)d\tau dadm

\bigm| \bigm| \bigm| \bigm| ,

Qn2 :=\| \varphi \| \infty 
\int \infty 

0

\int \infty 

0

un(e
\lambda am)e\lambda a| f(a,m, x) - f(a,m, xn)| e - 

\int a
0
f(\tau ,e\lambda (a - \tau )m,x)d\tau dadm,

Qn3 :=\| \varphi \| \infty 
\int \infty 

0

\int \infty 

0

un(e
\lambda am)e\lambda af(a,m, xn)

\bigm| \bigm| \bigm| e - 
\int a
0
f(\tau ,e\lambda (a - \tau )m,x)d\tau 

 - e - 
\int a
0
f(\tau ,e\lambda (a - \tau )m,xn)d\tau 

\bigm| \bigm| \bigm| dadm.

Making the change of variable ydy = e\lambda amdm in Q1, we get

Qn1 =

\bigm| \bigm| \bigm| \bigm| 
\int \infty 

0

(un(y) - u(y))
\int \infty 

0

\varphi (\gamma (ye - \lambda a))f(a, ye - \lambda a, x)e - 
\int a
0
f(\tau ,e - \lambda \tau y,x)dadm

\bigm| \bigm| \bigm| \bigm| .

Since un converges to u in \sigma (L1, L\infty ) and

\int \infty 

0

\varphi (\gamma (ye - \lambda a))f(a, ye - \lambda a, x)e - 
\int a
0
f(\tau ,e - \lambda \tau y,x)d\tau da

\leq \| \varphi \| \infty 
\int \infty 

0

f(a, ye - \lambda a, x)e - 
\int a
0
f(\tau ,e - \lambda \tau y,x)d\tau da =\| \varphi \| \infty ,

Qn1 converges to 0. On the other hand, since f is bounded and Lipschitz, Qn2 , Q
n
3 \leq 

\| un\| L1C| xn  - x| \leq C| xn  - x| . Therefore, \Phi 1 is a continuous operator with respect to
the weak topology \sigma (L1, L\infty ).

The continuity of \Phi 2 is shown analogously, taking \varphi = h (h is bounded).
Since C is stable by \Phi , convex, and weakly compact (Lemma 4.6), we can apply

Schauder's fixed-point theorem to obtain the existence of a fixed-point, which gives
the existence of a stationary solution.

Corollary 4.7. Grant Assumptions 1 and 3. If f is of class \scrC k, then u(m) is a
function of class \scrC k for all m > \gamma (0). Consequently, the stationary solutions of (1.1)
are of class \scrC k.
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Proof. If (u, \~x) is a fixed-point of \Phi , then

(4.8) u(m) = 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| 
\int \infty 

0

f(a, \gamma  - 1(m), \~x)u(e\lambda a\gamma  - 1(m))

\times exp

\biggl( 
\lambda a - 

\int a

0

f(s, e\lambda (a - s)\gamma  - 1(m), \~x)ds

\biggr) 
da.

Making the change of variable y = e\lambda a\gamma  - 1(m) in a, as in estimate (ii) of Lemma 4.5,
we obtain

u(m) = 1m>\gamma (0)

\bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| 

\lambda \gamma  - 1(m)

\int \infty 

\gamma  - 1(m)

f(g(y,m), y, \~x)u(y)

\times exp

\Biggl( 
 - 
\int g(y,m)

0

f(s, esy, \~x)ds

\Biggr) 
dy,

(4.9)

where g(y,m) = ln y
\lambda (\gamma  - 1(m)) . We conclude with a bootstrap argument: if u is L1,

then the right-hand side of (4.9) is a continuous function of m, meaning that u is
continuous. But if u is continuous, then the right-hand side is of class \scrC 1, etc.

4.3. Formula in the case of short-term synaptic depression. In general,
there is no explicit formula for the invariant probability measure solving (3.14). How-
ever, in the case of short-term synaptic depression (1.3), we can derive an explicit
expression for the total postsynaptic potential

X(\~x) :=

\int \infty 

0

\^h(t)

\int 1

0

\int \infty 

0

(1 - m)f(a, \~x)\rho \~x\infty (a,m)dadmdt

for any \~x \in \BbbR . This fact has been reported in the theoretical neuroscience literature
[42]; we provide here a rigorous and analytic justification for it.

For all \~x \in \BbbR , let us introduce the quantities

I \~x :=

\int \infty 

0

af(a, \~x) exp

\biggl( 
 - 
\int a

0

f(s, \~x)ds

\biggr) 
da =

\int \infty 

0

exp

\biggl( 
 - 
\int a

0

f(s, \~x)ds

\biggr) 
da,

P \~x(\lambda ) :=

\int \infty 

0

e - \lambda af(a, \~x) exp

\biggl( 
 - 
\int a

0

f(s, \~x)ds

\biggr) 
da.

The value I \~x can be interpreted as the mean interspike interval of a neuron receiving
a constant input \~x. The value P \~x(\lambda ) can be seen as the Laplace transform of the
interspike interval distribution of that neuron evaluated in \lambda .

Proposition 4.8. Grant Assumptions 1 and 3. For all \~x \in \BbbR ,

X(\~x) =

\int \infty 

0

\^h(t)dt
1

I \~x

\Biggl\{ 
1 - P \~x(\lambda )

1 - \upsilon P \~x(\lambda )

\Biggr\} 
.

Proof. Using the method of characteristics (i.e., combining (4.6) and (3.14b)), we
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have

1 =

\int 1

0

\int \infty 

0

\rho \~x\infty (a,m)dadm

=

\int 1

0

\int \infty 

0

1e\lambda am<1\rho 
\~x
\infty (0, e\lambda am) exp

\biggl( 
\lambda a - 

\int a

0

f(s, \~x)ds

\biggr) 
dadm

=

\int 1

0

\int \infty 

0

\rho \~x\infty (0,m) exp

\biggl( 
 - 
\int a

0

f(s, \~x)ds

\biggr) 
dadm = I \~x

\int 1

0

\rho \~x\infty (0,m)dm.

Therefore,

\int 1

0

\int \infty 

0

f(a, \~x)\rho \~x\infty (a,m)dadm =

\int 1

0

\rho \~x\infty (0,m)dm =
1

I \~x
.

On the other hand,
\int 1

0

\int \infty 

0

mf(a, \~x)\rho \~x\infty (a,m)dadm

=

\int 1

0

\int \infty 

0

1e\lambda am<1mf(a, \~x)\rho 
\~x
\infty (0, e\lambda am) exp

\biggl( 
\lambda a - 

\int a

0

f(s, \~x)ds

\biggr) 
dadm

=

\int 1

0

\int \infty 

0

e - \lambda amf(a, \~x)\rho \~x\infty (0,m) exp

\biggl( 
 - 
\int a

0

f(s, \~x)ds

\biggr) 
dadm

= P \~x(\lambda )

\int 1

0

m\rho \~x\infty (0,m)dm

and
\int 1

0

m\rho \~x\infty (0,m)dm =

\int 1

0

m1m>1 - \upsilon 
1

\upsilon 

\int \infty 

0

f(a, \~x)\rho \~x\infty 

\biggl( 
a, 1 - 1 - m

\upsilon 

\biggr) 
dadm

=

\int 1

0

(1 - \upsilon + \upsilon m)

\int \infty 

0

f(a, \~x)\rho \~x\infty (a,m)dadm

=
1 - \upsilon 
I \~x

+ \upsilon P \~x(\lambda )

\int 1

0

m\rho \~x\infty (0,m)dm.

Therefore,

\int 1

0

m\rho \~x\infty (0,m)dm =
1 - \upsilon 

I \~x(1 - \upsilon P \~x(\lambda ))

and

\int 1

0

\int \infty 

0

mf(a, \~x)\rho \~x\infty (a,m)dadm =
P \~x(\lambda )(1 - \upsilon )
I \~x(1 - \upsilon P \~x(\lambda ))

.

Finally, we have

X(\~x) =

\int \infty 

0

\^h(t)dt

\Biggl\{ \int 1

0

\int \infty 

0

f(a, \~x)\rho \~x\infty (a,m)dadm - 
\int 1

0

\int \infty 

0

mf(a, \~x)\rho \~x\infty (a,m)dadm

\Biggr\} 

=

\int \infty 

0

\^h(t)dt
1

I \~x

\Biggl\{ 
1 - P \~x(\lambda )(1 - \upsilon )

(1 - \upsilon P \~x(\lambda ))

\Biggr\} 
=

\int \infty 

0

\^h(t)dt
1

I \~x

\Biggl\{ 
1 - P \~x(\lambda )

1 - \upsilon P \~x(\lambda )

\Biggr\} 
.

D
ow

nl
oa

de
d 

10
/1

1/
22

 to
 8

1.
22

1.
24

1.
13

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

4750 CLAUDIA FONTE AND VALENTIN SCHMUTZ

5. Exponential stability in the weak connectivity regime. To study the
long time behavior (1.1) in the weak connectivity regime, we perturb the noninteract-
ing case (3.1), taking \~x = \varepsilon x\infty , where x\infty is given by the unique stationary solution
to (1.1) when \varepsilon \in ]  - \varepsilon \ast ,+\varepsilon \ast [ (\varepsilon \ast is taken from Theorem 1.3(ii)). In this section, we
keep the small \varepsilon fixed, and we work under Assumptions 1--3 and 5. We roughly follow
the same line of argument as in [30, sect. 5].

For convenience, we first rewrite (1.1) in a more formal and compact form,

\partial t\rho t =  - \partial a\rho t + \lambda \partial m(m\rho t) - f(\varepsilon xt)\rho t + \delta a0 (\gamma \circ \Pi )\ast 
\bigl( 
f(\varepsilon xt)\rho t

\bigr) 
,(5.1a)

xt =

\int t

0

\int 
h(t - s)f(\varepsilon xs)\rho s dadmds,(5.1b)

\rho 0 = u0,(5.1c)

where \delta a0 indicates that (singular) mass enters in a = 0,2 \Pi : (a,m) \mapsto \rightarrow m is the pro-
jection on m, and \ast denotes the pushforward measure. To write (5.1) as an evolution
equation, we introduce an auxiliary transport equation on \BbbR + \times \BbbR + \times \BbbR \ast 

+,

\partial t\zeta t =  - \partial s\zeta t + \delta s0f(\varepsilon xt)\rho t,

\zeta 0 = 0,

which solution is given by the method of characteristics,

\zeta t(s) = 1s\leq tf(\varepsilon xt - s)\rho t - s \forall (t, s) \in \BbbR \ast 
+ \times \BbbR +.

Using the auxiliary equation, (5.1) is equivalent to

\partial t(\rho t, \zeta t)

(5.2a)

=
\Bigl( 
 - \partial a\rho t + \lambda \partial m(m\rho t) - f(\varepsilon xt)\rho t + \delta a0 (\gamma \circ \Pi )\ast 

\bigl( 
f(\varepsilon xt)\rho t

\bigr) 
, - \partial s\zeta t + \delta s0f(\varepsilon xt)\rho t

\Bigr) 
,

(\rho 0, \zeta 0) = (u0, 0) ,
(5.2b)

where xt :=
\int \infty 
0

\int 
h(s)\zeta t(s) dadmds.

By Theorem 1.3, for all \varepsilon \in ] - \varepsilon \ast ,+\varepsilon \ast [ , there exists a unique stationary solution
(\rho \infty , x\infty ), and we have

(5.3)  - \partial a\rho \infty + \lambda \partial m(m\rho \infty ) - f(\varepsilon x\infty )\rho \infty + \delta a0 (\gamma \circ \Pi )\ast 
\bigl( 
f(\varepsilon x\infty )\rho \infty 

\bigr) 
= 0.

Now, we write (5.2) as the sum of a linear equation and a perturbation,

\partial t(\rho t, \zeta t) = \Lambda (\rho t, \zeta t) + (Z
(1)
t , Z

(2)
t ),(5.4a)

(\rho 0, \zeta 0) = (u0, 0) ,(5.4b)

2\delta a0 should not be confused with the Dirac distribution \delta 0=a. Using \delta 0=a, by integration by parts
of weak solutions, (5.1a) should read

\partial t\rho t =  - \partial a\rho t + \lambda \partial m(m\rho t)  - f(\varepsilon xt)\rho t + \delta 0=a

\Bigl\{ 
(\gamma \circ \Pi )\ast 

\bigl( 
f(\varepsilon xt)\rho t

\bigr) 
 - \rho t(0, \cdot )

\Bigr\} 
.
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where

\Lambda (\rho t, \zeta t)

:=
\Bigl( 
 - \partial a\rho t + \lambda \partial m(m\rho t) - f(\varepsilon x\infty )\rho t + \delta a0 (\gamma \circ \Pi )\ast 

\bigl( 
f(\varepsilon x\infty )\rho t

\bigr) 
, - \partial s\zeta t + \delta s0f(\varepsilon x\infty )\rho t

\Bigr) 
,

Z
(1)
t := [f(\varepsilon x\infty ) - f(\varepsilon xt)]\rho t + \delta a0 (\gamma \circ \Pi )\ast ([f(\varepsilon xt) - f(\varepsilon x\infty )]\rho t),

Z
(2)
t := \delta s0[f(\varepsilon xt) - f(\varepsilon x\infty )]\rho t.

Let us put \zeta \infty (s) := f(\varepsilon x\infty )\rho \infty for all s \in \BbbR +. Then, using (5.3), by the linearity of
the operator \Lambda and writing \=\rho t := \rho t  - \rho \infty and \=\zeta t := \zeta t  - \zeta \infty , we get

\partial t(\=\rho t, \=\zeta t) = \Lambda (\=\rho t, \=\zeta t) + (Z
(1)
t , Z

(2)
t ),(5.5a)

(\=\rho 0, \=\zeta 0) = (u0  - \rho \infty , - \zeta \infty ) .(5.5b)

Writing (S\Lambda 
t )t\in \BbbR +

the semigroup associated with the operator \Lambda , we have, by
Duhamel's formula,

(5.6) (\=\rho t, \=\zeta t) = S\Lambda 
t (\=\rho 0,

\=\zeta 0) +

\int t

0

S\Lambda 
t - s(Z

(1)
s , Z(2)

s )ds \forall t \geq 0.

Let us define the weighted space

L1
+(\mu ) :=

\biggl\{ 
\zeta \in L1(\BbbR + \times \BbbR + \times \BbbR \ast 

+,\BbbR +)
\bigm| \bigm| \bigm| 
\int \infty 

0

\bigm\| \bigm\| \zeta (s)
\bigm\| \bigm\| 
L1\| h\| \infty e - hsds <\infty 

\biggr\} 
.

Note that, for all t \geq 0,

| xt  - x\infty | =
\bigm| \bigm| \bigm| \bigm| 
\int \infty 

0

\int 
h(s)\zeta t(s) dadmds - 

\int \infty 

0

\int 
h(s)\zeta \infty (s) dadmds

\bigm| \bigm| \bigm| \bigm| 

\leq 
\int \infty 

0

\| h\| \infty e - hs
\bigm\| \bigm\| \zeta t(s) - \zeta \infty (s)

\bigm\| \bigm\| 
L1 ds =

\bigm\| \bigm\| \=\zeta t
\bigm\| \bigm\| 
L1(\mu )

.

Also, we have, for all t \geq 0,
\bigm\| \bigm\| \bigm\| Z(1)

t

\bigm\| \bigm\| \bigm\| 
L1
\leq | \varepsilon | 2Lf\| \rho t\| L1 | xt  - x\infty | \leq | \varepsilon | 2Lf

\bigm\| \bigm\| \=\zeta t
\bigm\| \bigm\| 
L1(\mu )

,(5.7a)
\bigm\| \bigm\| \bigm\| Z(1)

t

\bigm\| \bigm\| \bigm\| 
L1(w)

\leq | \varepsilon | 2Lf\| \rho t\| L1(w) | xt  - x\infty | \leq | \varepsilon | 2Lf
\Bigl( 
\| u0\| L1(w)+ b

\alpha 

\Bigr) \bigm\| \bigm\| \=\zeta t
\bigm\| \bigm\| 
L1(\mu )

,(5.7b)

\bigm\| \bigm\| \bigm\| Z(2)
t

\bigm\| \bigm\| \bigm\| 
L1(\mu )

\leq | \varepsilon | \| h\| \infty Lf\| \rho t\| L1 | xt  - x\infty | \leq | \varepsilon | \| h\| \infty Lf
\bigm\| \bigm\| \=\zeta t
\bigm\| \bigm\| 
L1(\mu )

,(5.7c)

where we have used Theorem 1.2(ii) in the first line and Lemma 2.1 in the second.

Lemma 5.1. Grant 1--3 and 5 and take (\=\rho 0, \=\zeta 0) as in (5.5). There exist K1 \geq 1
and a1 > 0 such that, for all initial data u0 \in L1

+(w) with \| u0\| L1 = 1,

(5.8)
\bigm\| \bigm\| \bigm\| S\Lambda 

t (\=\rho 0,
\=\zeta 0)
\bigm\| \bigm\| \bigm\| 
L1(w)\times L1(\mu )

\leq K1e
 - a1t

\bigm\| \bigm\| (\=\rho 0, \=\zeta 0)
\bigm\| \bigm\| 
L1(w)\times L1(\mu )

\forall t \geq 0.

If in addition we grant Assumption 4, then there exist K2 \geq 1 and a2 > 0 such that,
for all initial data u0 \in L1

+ with \| u0\| L1 = 1,

(5.9)
\bigm\| \bigm\| \bigm\| S\Lambda 

t (\=\rho 0,
\=\zeta 0)
\bigm\| \bigm\| \bigm\| 
L1\times L1(\mu )

\leq K2e
 - a2t

\bigm\| \bigm\| (\=\rho 0, \=\zeta 0)
\bigm\| \bigm\| 
L1\times L1(\mu )

\forall t \geq 0.
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Proof. We write (S\Lambda 
t (\=\rho 0,

\=\zeta 0)
(1), S\Lambda 

t (\=\rho 0,
\=\zeta 0)

(2)) := S\Lambda 
t (\=\rho 0,

\=\zeta 0) the first and second
components of S\Lambda 

t (\=\rho 0,
\=\zeta 0).

By Theorem 3.2, there exist K \geq 0 and a > 0 such that

\bigm\| \bigm\| \bigm\| S\Lambda 
t (\=\rho 0,

\=\zeta 0)
(1)
\bigm\| \bigm\| \bigm\| 
L1(w)

\leq Ke - at\| \=\rho 0\| L1(w) \forall t \geq 0.

Then,

\bigm\| \bigm\| \bigm\| S\Lambda 
t (\=\rho 0,

\=\zeta 0)
(2)
\bigm\| \bigm\| \bigm\| 
L1(\mu )

=

\int t

0

\bigm\| \bigm\| \bigm\| f(\varepsilon x\infty )S\Lambda 
t - s(\=\rho 0, \=\zeta 0)

(1)
\bigm\| \bigm\| \bigm\| 
L1
Che

 - hsds

+

\int \infty 

t

\bigm\| \bigm\| \=\zeta 0(s)
\bigm\| \bigm\| 
L1 Che

 - hsds

\leq Ch
\Biggl\{ 
\| f\| \infty K

\int t

0

e - a(t - s)e - hsds\| \=\rho 0\| L1(w) + e - ht
\bigm\| \bigm\| \=\zeta 0
\bigm\| \bigm\| 
L1(\mu )

\Biggr\} 
.

Gathering the bounds on the two components and observing that the function t \mapsto \rightarrow \int t
0
e - a(t - s)e - hsds decays exponentially, we conclude that there exist K1 \geq 1 and

a1 > 0 such that (5.8) holds.
For (5.9), we use Theorem 3.1 and follow the same argument.

We can now prove our main result.

Proof of Theorem 1.4. By Duhamel's formula (5.6), (5.8) in Lemma 5.1, and the
bounds (5.7), for all t \geq 0,

\bigm\| \bigm\| (\=\rho t, \=\zeta t)
\bigm\| \bigm\| 
L1(w)\times L1(\mu )

\leq 
\bigm\| \bigm\| \bigm\| S\Lambda 

t (\=\rho 0,
\=\zeta 0)
\bigm\| \bigm\| \bigm\| 
L1(w)\times L1(\mu )

+

\int t

0

\bigm\| \bigm\| \bigm\| S\Lambda 
t - s(Z

(1)
s , Z(2)

s )
\bigm\| \bigm\| \bigm\| 
L1(w)\times L1(\mu )

ds

\leq K1e
 - a1t

\bigm\| \bigm\| (\=\rho 0, \=\zeta 0)
\bigm\| \bigm\| 
L1(w)\times L1(\mu )

+K1

\int t

0

e - a1(t - s)
\bigm\| \bigm\| \bigm\| (Z(1)

s , Z(2)
s )
\bigm\| \bigm\| \bigm\| 
L1(w)\times L1(\mu )

ds

\leq K1e
 - a1t

\bigm\| \bigm\| (\=\rho 0, \=\zeta 0)
\bigm\| \bigm\| 
L1(w)\times L1(\mu )

+ | \varepsilon | \~CW
\int t

0

e - a1(t - s)\bigm\| \bigm\| (\=\rho s, \=\zeta s)
\bigm\| \bigm\| 
L1(w)\times L1(\mu )

ds

=: \scrQ (t),

where \~CK is a constant depending on W . We have, for all t \geq 0,

d

dt
\scrQ (t) =  - a1\scrQ (t) + | \varepsilon | \~CW

\bigm\| \bigm\| (\=\rho t, \=\zeta t)
\bigm\| \bigm\| 
L1(w)\times L1(\mu )

\leq 
\Bigl( 
 - a1 + | \varepsilon | \~CW

\Bigr) 
\scrQ (t),

whence, by Gr\"onwall's lemma,

\forall t \geq 0, \scrQ (t) \leq K1

\bigm\| \bigm\| (\=\rho 0, \=\zeta 0)
\bigm\| \bigm\| 
L1(w)\times L1(\mu )

exp

\biggl( \Bigl( 
 - a1 + | \varepsilon | \~CW

\Bigr) 
t

\biggr) 
.

For all t \geq 0, we have

\| \rho t  - \rho \infty \| L1(w) + | xt  - x\infty | \leq 
\bigm\| \bigm\| (\=\rho t, \=\zeta t)

\bigm\| \bigm\| 
L1(w)\times L1(\mu )

\leq \scrQ (t)
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and

\bigm\| \bigm\| \=\zeta 0
\bigm\| \bigm\| 
L1(\mu )

\leq 
\int \infty 

0

\bigm\| \bigm\| f(\varepsilon x\infty )\rho \infty 
\bigm\| \bigm\| 
L1 Che

 - hsds \leq \| f\| \infty Ch
h

.

Therefore, choosing \varepsilon \ast \ast W := a1
\~CW
\wedge \varepsilon \ast , we easily see that there exist C \geq 1 and cW > 0

such that (1.6) holds.
For (1.7), we use (5.9) instead of (5.8) and follow the same argument.

Appendix A. Time-elapsed neuron network model. Here, we compare
simulations of (1.2) with simulations of the time-elapsed neuron network model [35].

If the firing rate function f does not depend on m and if we put

(A.1) f(a, \varepsilon xt) := \^f(\eta (a) + \varepsilon xt),

then (1.2) reduces to the time-elapsed neuron network model

\partial t\rho t(a) + \partial a\rho t(a) =  - f(a, \varepsilon xt)\rho t(a),(A.2a)

\rho t(0) =

\int \infty 

0

f(a, \varepsilon xt)\rho t(a)da,(A.2b)

xt =

\int t

0

h(t - s)
\int \infty 

0

\int \infty 

0

f(a, \varepsilon xs)\rho s(a)dads,(A.2c)

\rho 0(a) = u0(a).(A.2d)

Equation (A.2) is the population equation for nonadaptive SRM0 neurons (or age-
dependent nonlinear Hawkes processes) [6]. As reported previously, (A.2) exhibits
self-sustained oscillations for large \varepsilon or relaxation to a stationary state for small \varepsilon 
(see Figure 2). Note that in the special case where h is a Dirac delta distribution
(``instantaneous transmission""), (A.2) can exhibit elaborate periodic patterns [36],
but these patterns do not fulfill our definition of self-sustained population bursts.

Appendix B. Proof of Doeblin's theorem (Theorem 3.1). We follow [4].
We first observe that for any t \geq 0, St is nonexpansive, i.e.,

(B.1) \| St\mu \| L1\leq \| \mu \| L1 \forall \mu \in L1.

Indeed, writing \mu + and \mu  - the positive and negative parts of \mu , respectively
(\mu = \mu +  - \mu  - and | \mu | = \mu + + \mu  - ),

| St\mu | \leq | St\mu +| + | St\mu  - | = St\mu + + St\mu  - = St| \mu | ,

and we get (B.1) by integrating both sides. The result can then be shown in two
steps.

Step 1. The Doeblin minorization condition (3.2) implies

(B.2) \| ST\mu \| L1\leq (1 - \| \nu \| L1)\| \mu \| L1 \forall \mu \in L1 :

\int 
\mu = 0.

Indeed, the Doeblin minoration condition (3.2) and the fact that \| \mu +\| L1= \| \mu  - \| L1=
\| \mu \| L1/2 imply

| ST\mu | \leq 
\bigm| \bigm| ST\mu +  - \| \mu +\| L1\nu 

\bigm| \bigm| +
\bigm| \bigm| ST\mu  -  - \| \mu  - \| L1\nu 

\bigm| \bigm| = ST | \mu |  - \| \mu \| L1\nu ,
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Fig. 2. Same as Figure 1 but for the time-elapsed neuron network model (A.2). Simulations
of a network of 5 \cdot 105 nonadaptive SRM0 neurons, approximating (A.2), with identical parameters
(except for \varepsilon ) and identical initial conditions. Neuronal parameters are the same as in Figure 1,
except that f is replaced by (A.1). The \varepsilon have also been adapted.

and we get (B.2) by integrating both sides.
Then, by the estimate (B.2), there exists a unique \rho \infty \in L1

+ with \| \rho \infty \| L1= 1 such
that ST \rho \infty = \rho \infty . The existence is obtained by taking a \mu 0 \in L1 with \| \mu 0\| L1= 1
and defining \mu k = ST\mu k - 1 for all k \geq 1. The estimate (B.2) implies that \{ \mu k\} k\geq 1 is
a Cauchy sequence, and passing to the limit, we get that \rho \infty := limk\rightarrow \infty \mu k satisfies
ST \rho \infty = \rho \infty . If \varrho \infty \in L1

+ with \| \varrho \infty \| L1= 1 also satisfies ST \varrho \infty = \varrho \infty , taking \mu =
\rho \infty  - \varrho \infty in (B.2) implies \rho \infty = \varrho \infty , whence the uniqueness.

Step 2. By the semigroup property, for any t > 0 we have

St\rho \infty = StST \rho \infty = STSt\rho \infty ,

and from the uniqueness of the fixed-point of ST , we get that St\rho \infty = \rho \infty . Hence,
\rho \infty is the unique invariant probability measure.

The general estimate (3.3) is obtained by taking \mu = u0  - \rho \infty and writing t =
\lfloor tT \rfloor T+r1 with 0 \leq r1 < T . Indeed, using the semigroup property and nonexpansivity,
we get

\| St\mu \| L1= \| Sr1S\lfloor t
T \rfloor \mu \| L1\leq \| S\lfloor t

T \rfloor T\mu \| L1\leq (1 - \| \nu \| L1)\lfloor 
t
T \rfloor \| \mu \| L1 ,

which implies (3.3) for the given K and a.
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On a finite-size neuronal population equation∗

Valentin Schmutz† , Eva Löcherbach‡ , and Tilo Schwalger§

Abstract. Population equations for infinitely large networks of spiking neurons have a long tradition in theoret-
ical neuroscience. In this work, we analyze a recent generalization of these equations to populations
of finite size, which takes the form of a nonlinear stochastic integral equation. We prove that, in
the case of leaky integrate-and-fire (LIF) neurons with escape noise and for a slightly simplified
version of the model, the equation is well-posed and stable in the sense of Brémaud-Massoulié. The
proof combines methods from Markov processes taking values in the space of positive measures and
nonlinear Hawkes processes. For applications, we also provide efficient simulation algorithms.

Key words. Stability, finite-size fluctuations, nonlinear Hawkes processes, piecewise-deterministic Markov pro-
cesses, Meyn-Tweedie theory, spiking neuron, SPDE’s driven by Poisson random measure.

MSC codes. 60G55 (primary) 60H20, 60K35, 92B20 (secondary)

1. Introduction. Neuronal population equations describe the dynamics of large networks
of neurons in terms of single neuron parameters [31]. As such, they are useful mathematical
abstractions for relating microscopic and large-scale brain signals, and contribute to the bio-
physical interpretation of the latter [17]. Their motivation is twofold: on the one hand, they
enable the theoretical analysis of emergent phenomena, like collective oscillations [7, 30, 14];
on the other hand, from the data analysis point of view, they constitute the basis of ‘forward
models’ of large-scale brain signals [17, 44, 8, 4, 26]. This second motivation requires neuronal
population equations to achieve the right balance between accuracy (the equation faithfully
captures the dynamics of the population of neurons it represents) and usability (the equation
can be efficiently simulated).

An example of such neuronal population equation is the integral equation (or refractory
density equation) for a homogeneous network of spiking neurons (“neuronal population”)
[29, 30, 12, 31, 47]. Contrary to standard neural-mass models [52, 17, 35], the integral equation
captures the effect of neuronal refractoriness on the mean population dynamics [12, 31, 47],
and is exact in the mean-field limit if neurons are modeled as intensity-based renewal point
processes [16, 25, 10]. Specific examples of the integral equation are the time-elapsed neuron
network model [39] (or age-structured model [22]) and the voltage-structured model of [16, 25].

Besides capturing the effect of single neuron dynamics (such as post-spike refractory ef-
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2 V. SCHMUTZ, E. LÖCHERBACH, AND T. SCHWALGER

fects) on the mean population dynamics, there is a second challenge for neuronal population
equations: the proper account of fluctuations. Fluctuations of the average population activity
arise in the case of finite population sizes, and vanish in the mean-field limit of infinitely many
neurons. From a modeling perspective, an important question arises: Are the relevant neu-
ronal populations large enough so that finite-size fluctuations can be neglected? There is no
clear answer to this question but the anatomical and functional organization of the cerebral
cortex into different cortical areas, columns and layers each containing different cell classes
[32, 41, 45, 2] requires a subdivision of a cortical circuit into many, relatively small popula-
tions. For example, at the scale of a cortical column, empirical data from mouse barrel cortex
suggests populations of around 50 to 2000 neurons [36]. For these population sizes, finite-size
fluctuations are non-negligible and this noise may strongly impact the nonlinear population
dynamics [48]. Therefore, modeling cortical circuits at the mesoscopic scale of populations
requires a stochastic description, in marked contrast to the deterministic integral equation.

Rigorous extensions of the integral equations to account for finite-size fluctuations are
subject to an accuracy/usability trade-off. If neuronal refractoriness is neglected, the popula-
tion equation reduces to that of [19, 20] and finite-size noise can be added, by the linear-noise
approximation [33], or granting some Markov embedding, by the diffusion approximation [20],
whose numerical implementation is relatively simple [11]. These approaches fail to reproduce
the non-stationary dynamics of the mean population activity and the temporal correlation
structure of fluctuations for a population of spiking neurons with refractoriness (Figure 1a).
On the other hand, if one does not neglect refractoriness, central limit theorem-based argu-
ments lead to formal SPDE’s [9, 23], which are computationally expensive to simulate, or to
formal integral equations with colored noise [18], for which a simulation algorithm is unknown.

In [48], a heuristic extension of the integral equation with finite-size fluctuations is derived.
It can be easily simulated and takes into account the effects of neuronal refractoriness. While
this extension is not exact, its numerical implementation gives an accurate approximation to
the dynamics of finite-size networks of spiking neurons, such as the broad class of generalized
integrate-and-fire neurons [42, 48] and formal renewal-type neurons [30, 40]. Moreover, since
it takes the form of an intensity-based point process, the likelihood of a population spike train
can be easily computed, which enables efficient data fitting [43, 51]. The intensity function
of this point process exhibits a novel type of nonlinear history dependence that goes beyond
nonlinear Hawkes processes and has not been studied mathematically so far. In particular,
the stability of the process observed in simulations is poorly understood from the theoretical
point of view. Therefore, the aim of this work is to give a rigorous foundation to the model
of [48] and prove its stability.

Below, we briefly give a review of some standard population equations. We then present
the finite-size model of [48] in a slightly simplified form. Finally, we show that the simplified
model, in the case of leaky integrate-and-fire (LIF) neurons with escape noise [30, 27], can be
written as a SPDE driven by Poisson noise, which will be the main object of study in this
work.

1.1. Neuronal population equations. To give a mathematical introduction to the integral
equation formalism, it is useful to consider the special case of LIF neurons with escape noise
[30, 27], which is also the main case we will treat in this work. Let us consider a network of
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N identical neurons that are all-to-all connected with uniform connection strength J/N for
J ∈ R. Each neuron i has a voltage variable U i,N which evolves according to the system of
SDE’s: For all i = 1, . . . , N ,

dU i,N
t =

µt − U i,N
t

τm
dt− U i,N

t− dZi,N
t +

J

N

N∑

j=1

dZj,N
t ,(1.1a)

Zi,N
t =

∫

[0,t]×R+

1
z≤f(U i,N

s− )
πi(ds, dz).(1.1b)

Here, Zi,N
t is the spike counting process of the neuron i and has intensity f(U i,N

t− ), t− de-
noting the left limit. Furthermore, µt comprises the resting potential and the (possibly time-
dependent) external drive, τm is the membrane time constant, f : R → R+ is the intensity
function and {πi}i=1,...,N is a collection of independent Poisson random measures on R+×R+

with Lebesgue intensity measure.
Equation (1.1) is called a microscopic model because the neuronal dynamics is modeled

with single-cell resolution (Figure 1a, top). A drastic reduction of the complexity of the model
can be achieved by coarse-graining over the population of neurons. To this end, we consider
the empirical population activity

(1.2) AN
t,h =

1

N

N∑

i=1

Zi,N
t+h − Z

i,N
t

h
,

where h > 0 is a small time interval determining the temporal resolution (Figure 1a, bottom).
Neuronal population equations are models of such coarse-grained quantitities that describe
the neuronal dynamics at the scale of whole populations. If the population is of finite size
(N <∞), the dynamics is called a mesoscopic model, while the dynamics for an infinitely large
population (N → ∞) is referred to as a macroscopic model. In [16, 25], the authors proved
that in the macroscopic limit N →∞, if the initial conditions {U i

0}i=1,...,N are i.i.d. with law
ν0, the empirical measure of the system (1.1) is characterized by the voltage-structured PDE
(with solutions in the sense of measures [14]): For all u ∈ R and t > 0,

∂tρ(du, t) + ∂u

((
µt − u
τm

+ Jρt[f ]

)
ρ(du, t)

)
= −f(u)ρ(du, t) + ρt[f ]δ0(du),(1.3a)

ρ0 = ν0,(1.3b)

where ρt := ρ(·, t) and ρt[f ] :=
∫
R f(u)ρ(du, t).

The latter can be interpreted as the population activity

(1.4) lim
h↓0

lim
N→∞

AN
t,h = A(t) := ρt[f ].

Furthermore, ρt[1] = 1 for all t > 0 expressing the fact that the number of neurons is conserved.
We now transform (1.3) into an integral equation. For all continuous functions a : R+ → R,

we define the time-dependent vector field ba(t, u) := (µt − u)/τm + Ja(t) and write, for all
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0 ≤ s ≤ t, Φa
s,t(u) the associated flow given by

(1.5) Φa
s,t(u) := ue−

t−s
τm +

∫ t

s
e−

t−r
τm

µr
τm

dr + J

∫ t

s
e−

t−r
τm ardr, ∀u ∈ R.

We can now define, for all 0 ≤ s ≤ t,

(1.6) λa(t|s) := f(Φa
s,t(0)) and Sa(t|s) := exp

(
−
∫ t

s
λa(r|s) dr

)
.

The function λa(t|s), called hazard rate, gives the intensity at time t (i.e. the instantaneous
probability of emitting a spike) as a function of the time of the last spike s and the past
population activity (a(r))s≤r≤t; the membrane potential dynamics of LIF neurons – leaky
integration and spike-triggered reset, (1.1a) – are accounted for in the definition of λa(t|s).
Similarly, the function Sa(t|s), called the survival, gives the probability of not emitting a spike
in the time interval ]s, t[, given that the last spike was emitted at time s. By the method of
characteristics, we get that the population activity A(t) solves the integral equation

(1.7) A(t) = HA(t) +

∫ t

0
λA(t|s)SA(t|s)A(s)ds,

where

(1.8) HA(t) :=

∫

R
f(ΦA

0,t(u))e
−

∫ t
0 f(ΦA

0,r(u))drν0(du).

Equation (1.7) is the integral equation of [52, 29, 30], see also [13]. Note that, traditionally,
the integral equation has no explicit initial condition and therefore requires a normalizing
condition [31, Sec. 14.1]. The integral equation (1.7) is normalized such that

(1.9) H̃A(t) +

∫ t

0
SA(t|s)A(s) ds = 1

for all t > 0, where we defined

(1.10) H̃A(t) :=

∫

R
e−

∫ t
0 f(ΦA

0,r(u))drν0(du).

The normalization, (1.9), expresses the fact that the number of neurons is conserved.1 Note
that the integral equation (1.7) is simply the time derivative of the normalizing condition
(1.9); this fact has been originally used to derive the integral equation [30].

1The conservation of neuronal mass can be understood as follows: At time t, H̃A(t) represents the fraction
of neurons (#neurons divided by N) that had their unique last spike before time 0, while for s ∈ [0, t[ the term
SA(t|s)A(s)ds represents the fraction of neurons that had their unique last spike time in the interval [s, s+ ds[
(here A(s)ds is the fraction of neurons that fired in that interval and SA(t|s) is the probability for one neuron
of not emetting a spike in ]s, t[ given a spike at time s). Therefore,

∫ t

0
SA(t|s)A(s) ds represents the fraction of

neurons that had their unique last spike in [0, t[. Hence, (1.9) states that the fraction of neurons at time t that
had their unique last spike time before time t (either before time 0 or since time 0) is equal to unity. Since this
statement holds for all t > 0 and each neuron has exactly one last spike time before time t, the total number
of neurons must be conserved.
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In the case of LIF neurons with escape noise, the voltage-structured equation (1.3) is
equivalent to the integral equation (1.7) if λA(t|s) is defined by (1.6). However, we could
have chosen a different definition for the hazard rate λA(t|s); the integral equation is therefore
more general than (1.3). In fact, (1.7) can be seen as a renewal equation that holds for any
population of neurons modeled as time-inhomogeneous renewal processes [40]. For example,
the Fokker-Planck equation for neuronal networks with diffusive noise (see [31, Ch. 13]) or
the time-elapsed neuron network model [39] can also be written as an integral equation with
a suitable choice of the hazard rate.

1.2. The finite-size integral equation. In [48], the authors derive a generalization of the
integral equation (1.7) which takes into account finite-size noise. For clarity, we will present
the equation of [48] in the case of LIF neurons with escape noise. Before presenting the model,
we need to extend the definitions (1.6). For all non-decreasing functions z : R+ ∋ t 7→ zt with
bounded variation on finite time intervals, we redefine, for all 0 ≤ s ≤ t,

(1.11) Φz
s,t(u) := ue−

t−s
τm +

∫ t

s
e−

t−r
τm

µr
τm

dr + J

∫

]s,t]
e−

t−r
τm dzr, ∀u ∈ R.

We can now extend the definitions (1.6), (1.8), and (1.10), replacing ΦA by (1.11).
For a finite number of neurons N , the finite-size integral equation of [48] (“mesoscopic

model”) can be written as follows: For all t ≥ 0,

Zt =
1

N

∫

[0,t]×R+

1z≤NĀs−
π(ds, dz),(1.12a)

Āt =


HZ(t) +

∫

[0,t]
λZ(t|s)SZ(t|s)dZs + ΛZ

t

(
1− H̃Z(t)−

∫

[0,t]
SZ(t|s)dZs

)


+

,(1.12b)

ΛZ
t =

GZ(t) +
∫

[0,t] λ
Z(t|s){1− SZ(t|s)}SZ(t|s)dZs

G̃Z(t) +
∫

[0,t]{1− SZ(t|s)}SZ(t|s)dZs

,(1.12c)

where π is a Poisson random measure on R+ × R+ with Lebesgue intensity measure and
[ · ]+ = max(0, ·). The functions GZ and G̃Z are analogous to HZ and H̃Z :

GZ(t) :=

∫

R
f(ΦZ

0,t(u))
{
1− e−

∫ t
0 f(ΦZ

0,r(u))dr
}
e−

∫ t
0 f(ΦZ

0,r(u))drν0(du),

G̃Z(t) :=

∫

R

{
1− e−

∫ t
0 f(ΦZ

0,r(u))dr
}
e−

∫ t
0 f(ΦZ

0,r(u))drν0(du).

The mesoscopic model (1.12) defines a jump process Zt where jumps of size 1/N occur with
intensity NĀt− . The derivation of (1.12), explained in detail in [48, pp. 35–43], involves
heuristic arguments and approximations. Consequently, this mesoscopic model is inexact
(in contrast to the formal SPDE of [9, 23]). However, extensive numerical simulations have
shown that the model is highly accurate in many multiscale modeling applications [48] (see also
Figure 1b). Moreover, it has the advantage of being an intensity-based and history-dependent
point process, and as such, can be efficiently simulated and used for statistical data analysis
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(a)

(c) (e)

(b)

(d) (f)

Figure 1. Mesoscopic population dynamics. (a) Top: Spike-raster plot of a microscopic model of N = 200
uncoupled LIF neurons with escape noise, (1.1) with J = 0. Neurons were initialized in a synchronized state,
i.e. all neurons spiked at time t = 0. Bottom: Empirical population activity measured with temporal bin size
h = 0.001s (black line) and macroscopic population activity predicted by the deterministic integral equation (1.7)
for N → ∞ with ν0 = δ0 (gray line). (b) Comparison of the power spectral densities (as defined in Appendix D,
see also [48]) of the empirical population activities At,h(t) of the microscopic model (black line, exact theory
[31]) and Ât,h(t) of the mesoscopic model (blue line, simulation). (c,d) Āt (1.12b) and mass Mt (1.14) for
simulations of the mesoscopic model (blue line) and the ‘naive’ mesoscopic model with ΛZ

t ≡ 0 (orange line).
For comparison, the macroscopic model and the mesoscopic model with fixed ΛZ

t ≡ 277 Hz (corresponding to
the temporally averaged ΛZ

t of the mesoscopic model) are shown by gray and green lines, respectively. (e,f)
Same as (c,d) but for a longer simulation time. Parameters: τm = 0.02 s, µ = 20 mV, f(u) = ce(u−ϑ)/∆u ,
c = 10 Hz, ϑ = 10 mV, ∆u = 1 mV.
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[43]. A concise derivation of (1.12) is presented in section 4, where we also show that for some
convenient initial condition, the functions HZ , H̃Z , GZ and G̃Z are trivial.

The finite-size analog of the population activity A(t) for infinitely large populations (1.7)
is the distributional derivative of Zt,

Żt =
1

N

∑

k

δ(t− tk),

where tk are the jump times of Zt and δ(·) denotes the Dirac delta distribution.2 We call
Żt the population spike train (sum of δ-pulses at spike times tk). Note that the biologically
relevant quantity is the empirical population activity at a finite time resolution, ÂN

t,h :=

h−1
∫ t+h+

t Żs ds = [Z(t + h) − Z(t)]/h, for some small time interval h > 0. Furthermore,
we will often call the finite-size population model, (1.12), mesoscopic model in contrast to
“macroscopic model” that refers to the case N → ∞. Note that the variables Āt and Zt

describe the neuronal activity of the population as a whole, driven by only one single Poisson
noise π(dt, [0, NĀt− ]). A time discretization of the mesoscopic model permits an efficient
simulation of the neuronal dynamics directly on the population level, without the need to
simulate individual neurons (see section 5 and Algorithm A.1). Importantly, even though the
mesoscopic model is an approximation, it accurately captures the statistics of the population
activity AN

t,h of the original microscopic model. In particular, the fluctuation statistics of

the population activities AN
t,h and ÂN

t,h, as expressed by their power spectral density, are well
matched (Figure 1b, also see [48] for further examples).

A key difference between the macroscopic model for an infinitely large population (1.7)
and the mesoscopic model (1.12) is the ‘correction term’ ΛZ

t (1 − . . . ) in (1.12b) arising due
to finite network size, N < ∞. This correction term may seem unexpected in light of the
following heuristic argument: in (1.7) for infinite N , the fraction of neurons A(s)ds firing in
the past, s < t, contribute to the current activity A(t)dt with probability λA(t|s)SA(t|s)dt.
For finite N , the corresponding fraction of neurons is dZs, and assuming that the probability
to fire their next spike at time t is again given by λA(t|s)SA(t|s)dt, the expected activity
should be given by the much simpler expression Āt,naive = HZ(t)+

∫ t
0 λ

Z(t|s)SZ(t|s)dZs. This
naive finite-size model is obtained by putting ΛZ

t ≡ 0, and thus lacks the ’correction term’.
Numerical simulations of the naive finite-size model indeed reproduce the transient initial
dynamics of the population activity at short times, including damped oscillations caused by
refractoriness (Figure 1c, orange curve). However, longer simulations of the naive model
reveal that the population rate Āt strongly fluctuates and eventually collapses to the silent
solution Āt = 0. In contrast, the mesoscopic model, (1.12) with ΛZ

t > 0, reaches a non-silent,
stationary state consistent with the microscopic model (1.1) (Figure 1e). A completely open
theoretical question is: Why does the ‘correction term’ in (1.12b) ‘stabilize’ the finite-size
neuronal population dynamics?

To address this question mathematically, we focus our analysis on the case where the
modulating factor ΛZ

t is fixed (ΛZ
t ≡ Λ > 0). This is a simplified version of the finite-size

2Formally, Żtdt := dZt, where dZ is the Lebesgue-Stieltjes measure associated with the counting measure
Z.
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integral equation (1.12), for which we can prove a rigorous stability result. Note that fixing
ΛZ
t ≡ Λ > 0 is for mathematical tractability only; for practical modeling, ΛZ

t as defined in
(1.12c) should be preferred (a detailed simulation algorithm is presented in section 5).

Before presenting our main stability result in subsection 1.4, we provide some additional
insights into the mechanisms of the finite-size integral equation (1.12), in particular, why is the
naive model (Λ = 0) expected to fail. First, in subsection 1.2.1, we show a close relationship
between the finite-size integral equation and nonlinear Hawkes processes, for which stability
properties are well known. Second, in subsection 1.2.2, we propose a heuristic argument for the
stability in terms of neuronal mass conservation and an analogy with the Cox-Ingersoll-Ross
process.

1.2.1. Relationship with nonlinear Hawkes processes. If J = 0 (neurons do not interact),
µt ≡ µ (the external drive is constant) and ΛZ

t ≡ Λ, (1.12) reduces to a nonlinear Hawkes
process [5]: For all t ≥ 0,

Zt =
1

N

∫

[0,t]×R+

1z≤NĀs−
π(ds, dz),(1.13a)

Āt =

[
Λ +H0(t)− ΛH̃0(t) +

∫

[0,t]
(λ0(t|s)− Λ)S0(t|s)︸ ︷︷ ︸

=:hΛ(t−s)

dZs

]

+

,(1.13b)

where λ0, S0, H0 and H̃0 correspond to the definitions (1.6), (1.8), and (1.10) when ΦZ (1.11)

is replaced by Φ0
s,t(u) = ue−

t−s
τm +

∫ t
s e

− t−r
τm

µr

τm
dr.

The function hΛ : R+ → R in (1.13b) can be interpreted as the self-interaction kernel of
the nonlinear Hawkes process. The model (1.13) is not particularly useful in practice since
it only approximates the dynamics of a population of non-interacting neurons with constant
external input. Nevertheless it sheds light on the role of Λ on the stability of the mesoscopic
model and it helps to see why the theory of nonlinear Hawkes processes [5] will prove to be
instrumental in this work. It is easy to verify that

∫∞
0 hΛ(t)dt = 1 if Λ = 0 and

∫∞
0 hΛ(t)dt < 1

if Λ > 0. If Λ = 0, (1.13) is a critical Hawkes process and has a nontrivial stationary solution
only if h0 is heavy-tailed [6] (which is not the case for the neuron models considered here). On
the other hand, if Λ > 0, (1.13) is a stable nonlinear Hawkes process with a unique stationary
solution (Theorem 1 in [5] and see also [15]). Hence, in the time-homogeneous (µt ≡ µ) and
non-interacting case (J = 0), Λt ≡ Λ > 0 is a sufficient condition for the stability of (1.13),
in the sense of [5].

To generalize this stability result to the interacting case (J ̸= 0), we will use a Markov
embedding of (1.12) and Meyn-Tweedie theory [37], in addition to standard techniques for
nonlinear Hawkes processes [5].

1.2.2. Approximate conservation of neuronal mass. In contrast to the conservation of
neuronal mass in the macroscopic model, (1.9), such a strict conservation law does no longer
hold for the mesoscopic model, (1.12). However, in analogy to (1.9), we would expect the
neuronal “mass”

(1.14) Mt := H̃Z(t) +

∫

[0,t]
SZ(t|s)dZs
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to stay close to 1. This feature is supported by simulations of the mesoscopic model showing
that Mt fluctuates around unity (Figure 1d,f). Indeed, the number of neurons in the sys-
tem (1.1) being obviously constant, the finite-size population model (1.12) should reflect this
mass conservation principle.

Let us consider the first hitting time τ∗ = inf{t > 0 : Āt = 0}. For 0 < t < τ∗, the
intensity Āt is strictly positive, hence (1.12b) can always be written as

Āt = HZ(t) +

∫

[0,t]
λZ(t|s)SZ(t|s)dZs + ΛZ

t (1−Mt) .

By formal differentiation of (1.14), we obtain for 0 < t < τ∗

dMt = −HZ(t)dt+ dZt −
(∫

[0,t]
λZ(t|s)SZ(t|s) dZs

)
dt = ΛZ

t (1−Mt)dt+ dZ̃t,(1.15)

where Z̃t := Zt−
∫ t

0 Ās ds is the compensated jump process. Equation (1.15) yields some rough
insights into the dynamics of the neuronal mass Mt. For simplicity, let us assume ΛZ

t ≡ Λ to
be constant. First, the conditional mean M̄ c

t := E[Mt|τ∗ > t] can be obtained by averaging
(1.15): dM̄ c

t = Λ(1−M̄ c
t )dt. This equation shows that its solution, M̄ c

t = 1+(H̃Z(0)−1)e−Λt,
is attracted to unity if Λ > 0. Conversely, in the naive model, when Λ = 0, the conditional
mean does not drift towards unity but remains constant, M̄ c

t = H̃Z(0) for all t > 0. Second,
in the naive model (Λ = 0), once Mt hits the boundary 0, it sticks to this boundary forever,
i.e. Mt = 0 for all t > τ∗ (Figure 1f). In fact, if f is upper bounded by ∥f∥∞ < ∞, we have
0 ≤ Āt ≤ ∥f∥∞Mt + Λ(1−Mt). Thus, Mt = 0 and Λ = 0 entails that Āt = 0, and hence the
“noise” dZ̃ in (1.15) vanishes.

Third, if the jumps of Z̃t are small and frequent enough and if the increments of Z̃t are
‘independent’ enough, we may replace dZ̃t by its diffusion approximation

√
Āt/NdWt, where

Wt is a Wiener process. If we further assume that Āt and Mt vary roughly in proportion (as
suggested by Figure 1e,f for the naive model), we expect thatMt behaves like a Cox-Ingersoll-

Ross process, dM̂t = Λ(1 − M̂t)dt + σ
√
M̂tdWt where σ is the volatility parameter. Due to

the drift term, this process fluctuates around its mean E[M̂t] = 1 if Λ > 0, consistent with
simulations of the model (Figure 1d,f). Such drift force is absent in the naive model, Λ = 0,

in which case dM̂t = σ
√
M̂tdWt describes the critical Feller branching diffusion which goes

extinct in the long run (and once it hits 0 remains there forever), with extinction probability

P (M̂t = 0|M̂0 = x) = e−
x

σ2t .

1.3. Markov embedding of the finite-size integral equation. As the voltage-structured
equation (1.3) can be transformed into an integral equation, assuming ΛZ

t ≡ Λ, we can
transform the stochastic integral equation (1.12) back into a voltage-structured SPDE driven
by Poisson noise. DenotingM+ the space of nonnegative finite measures on R, for allM+-
valued random variables ν̂0, the SPDE formally writes:
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For all t > 0 and u ∈ R,

∂tρ(du, t) + ∂u

((
µt − u
τm

+ JŻt

)
ρ(du, t−)

)
= −f(u)ρ(du, t) + Żtδ0(du),(1.16a)

Zt =
1

N

∫

[0,t]×R+

1z≤NĀs−
π(ds, dz) with Āt := [ρt[f ] + Λ(1−∥ρt∥)]+,(1.16b)

ρ0 = ν̂0,(1.16c)

where ∥·∥ denotes the total variation norm, that is, the total mass of the measure.
We will give a precise meaning to the SPDE (1.16) and show that it is equivalent to the

stochastic integral equation (1.12) in section 2 below. The two jump terms ∂u(JŻtρ(du, t
−))

and Żtδ0(du) have the following interpretation. At each jump time of Zt, the current mass
of the solution ρ(du, t) is shifted by J/N and a mass (1/N)δ0 is added to the current value
of the solution (emulating the membrane potential reset of LIF neurons, (1.1a)). Although
the jump intensity NĀt− of Zt is not a priori bounded, we shall prove in Lemma 2.4 below
that almost surely Z has only a finite number of jumps within each finite time interval such
that (1.16) is well-posed as a measure-valued piecewise deterministic Markov process having
càdlàg trajectories.

We say that (1.16) is the Markov embedding of the jump process (1.12) (with ΛZ
t ≡ Λ)

and that Z is the jump process associated with the solution ρ.

1.4. Assumptions and main result. The main result of this work concerns the stability
of (1.16). We use a notion of stability that is close to that of Brémaud and Massoulié [5] for
nonlinear Hawkes processes.

We say that a jump process Z is stationary if, for all τ > 0, the time-shifted process
(Zt+τ − Zτ )t≥0 has the same law as (Zt − Z0)t≥0. Then, we say that a solution ρ̄ to (1.16)
with theM+-valued random initial condition ν̄0 is stationary if the associated jump process
Z̄ is stationary.

Since the noise in (1.16) comes from a Poisson random measure, we can naturally construct
a coupling of two solutions ρ and ρ̃ to (1.16) (for different, possibly random, initial conditions)
on the same probability space, using the same underlying Poisson random measure. Writing
Z and Z̃ the jump processes associated with ρ and ρ̃, we define Tc the coupling time of Z and
Z̃, i.e. the time starting from which Z and Z̃ are identical:

(1.17) Tc := inf
{
τ ≥ 0 : (Zt+τ − Zτ )t≥0 ≡ (Z̃t+τ − Z̃τ )t≥0

}
,

with the usual convention that Tc = +∞ if Z and Z̃ never couple. In other words, Tc is the
time starting from which ρ and ρ̃ have the exact same jump times. By abuse of terminology,
we will say that Tc is the coupling time of ρ and ρ̃ although it is in fact the coupling time of
the associated jump processes. We can now adapt the definition of stability in variation of [5]:

Definition 1.1 (Stability in variation). The voltage-structured SPDE (1.16) is stable in vari-
ation if there exists a stationary process {ρ̄, ν̄0} solving (1.16) such that for all M+-valued
random initial conditions ν̂0, there exists a coupling of ρ̄ and ρ (a solution to (1.16) with
initial condition ν̂0), such that the coupling time Tc of ρ̄ and ρ is almost surely finite.
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In modeling terms, the stability in variation implies that for any (random) initial condition
ν̂0, the population spike train Żt relaxes to a unique stationary process in finite time. More
specifically, for any initial condition ν̂0 ∈ M+, if we draw ν̄0 from a stationary distribution
and if we simulate the two corresponding processes with the same Poisson noise, they cou-
ple in finite time almost surely. In particular, this implies the uniqueness of the stationary
distribution.

To prove that (1.16) is stable in variation, we need

Assumption 1.2. µt ≡ µ ∈ R.

This just means that the external drive is time-homogeneous and it is a natural assumption
to make if we want to show relaxation to a stationary process.

The other important assumption concerns the intensity function f :

Assumption 1.3. f is bounded, i.e. ∥f∥∞ <∞, and infu∈R f(u) =: fmin > 0.

A simple example of a function satisfying the assumption is the shifted sigmoid. Note that
these bounds do not allow taking an exponential function f (or any unbounded function) nor
having an absolute refractory period (short interval of time following a spike during which
an neuron cannot spike). In other terms, neurons can not be forced to spike in a finite time
interval nor forced to stay silent. Nevertheless, since ∥f∥∞ can be arbitrarily large and fmin

can be arbitrarily small, these bounds do not meaningfull alter biological realism.
Finally, to prove that the stationary process exists, we need:

Assumption 1.4. f is differentiable and f ′ is bounded. Furthermore, there exists a positive
constant C such that |uf ′(u)| ≤ C for all u.

This is a purely technical assumption and is rather innocent since f is anyway bounded.
We can now state our main result:

Theorem 1.5. Grant Assumptions 1.2 – 1.4. The voltage-structured SPDE (1.16) is stable
in variation.

The proof is divided into two parts. In the first part, using Meyn-Tweedie theory [37], we
show that the solutions of (1.16) satisfy a certain recurrence property which then allows us to
prove that the associated jump processes couple, using methods from [5] for nonlinear Hawkes
processes. In the second part, we prove the existence of a non-trivial stationary process solving
(1.16).

In simulations, the simplified model with fixed Λ, (1.16), has a qualitatively similar be-
havior (from the stability point of view) as the original model of [48] where ΛZ

t has an explicit
expression in terms of the past Z (see section 4). Hence, the proof of Theorem 1.5 provides
an important understanding of the role of the ‘correction term’ ΛZ

t (1 − . . . ) in the original
model (Figure 1c–f).

1.5. Plan of the paper. First, in section 2, we prove the well-posedness of the SPDE (1.16)
as a measure-valued piecewise deterministic Markov process. The proof of Theorem 1.5 is then
presented in section 3.

In section 4, we present a concise derivation of the finite-size integral equation (1.12) and
a simple simulation algorithm is provided in section 5. A general simulation algorithm for
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multiple interacting populations of generalized integrate-and-fire neurons can be found in the
Appendix.

2. Well-posedness. Although the SPDE (1.16) might look somewhat formal, it can be
rigorously formulated in terms of a piecewise deterministic Markov Process (PDMP) taking
values in the space M+ of all positive measures on R. We endow M+ with the topology of
weak convergence, which makesM+ Polish.

Since Assumptions 1.2 and 1.3 are always imposed in the sequel, we will omit their mention.
In particular, we will always assume that f is bounded.

For all ν ∈ M+, let us write (S(t)ν)t≥0 := (ρ(·, t))t≥0 the solution to the transport
equation

∂tρ(du, t)− ∂u
((

u− µ
τm

)
ρ(du, t)

)
= −f(u)ρ(du, t), ∀(u, t) ∈ R× R∗

+,(2.1)

ρ0 = ν.

With the notation of (1.5), take the flow Φ0
s,t without exterior input, that is, a ≡ 0. Then we

have the explicit representation

(2.2) S(t)ν =

∫

R
δΦ0

0,t(u)e
−

∫ t
0 f(Φ0

0,r(u))drν(du).

(S(t))t∈R+ can be seen as a sub-stochastic C0-semigroup of bounded linear operators onM+.
Moreover, we introduce, for any a ∈ R+ and any ν ∈M+, the shifted measure

∆aν : B(R) ∋ B 7→ ν((B − a)).

Putting ρ0 = ν0, we can construct a path-wise solution to (1.16) following the procedure:
1. We start from an initial value ν0 ∈M+ at time t = 0.
2. We consider the counting process

Z∗
t =

∫

[0,t]×R+

1
z≤N

[
(S(s)ν0)[f ]+Λ(1−∥S(s)ν0∥)

]
+

π(ds, dz),

together with its first jump time τ1 := inf{t ≥ 0 : Z∗
t = 1}.

3. We put ρt := S(t)ν0 for all t < τ1.
4. At time τ1, we update

(2.3) ρτ1 := ∆ J
N

(
S(τ1)ν0

)
+

1

N
δ0

and we return to step 1. replacing ν0 by ρτ1 and time 0 by τ1.

Remark 2.1. This construction provides indeed a PDMP taking values inM+; in between
the successive jumps of Zt only the transport equation acts, and we shall show below that
only a finite number of jumps occurs within each finite time interval. We have the explicit
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representation

ρt =

∫

R
δΦZ

0,t(u)e
−

∫ t
0 f(ΦZ

0,r(u))drν0(du) +

∫

[0,t]
δΦZ

s,t(0)e
−

∫ t
s f(ΦZ

s,r(0))drdZs,(2.4a)

Zt =
1

N

∫

[0,t]×R+

1z≤N [ρt− [f ]+Λ(1−∥ρt−∥)]+π(ds, dz).(2.4b)

In the above formula, the first term on the right hand side of ((2.4)a) corresponds to (2.2),
except that we have to replace the null exterior input by Z such that at each jump of Z, the
original mass is shifted by J/N, according to the jump term ∆ J

N
of (2.3). The second term

corresponds to the source term 1
N δ0 which is added at each jump of Z and then transported

by S(t).
The above notion of solution is actually equivalent to the notion of a mild solution of the

SPDE (1.16) driven by Poisson noise (see [24] and [50]). However, since the only underlying
noise is Poisson, with finite jump intensity, the notion of a PDMP with values inM+ seems
to be more natural in this context.

Remark 2.2. Using the representation (2.4), we can easily make the link between the
SPDE (1.16) and the stochastic integral equation (1.12). Taking the definition of Āt in (1.16b),
we have

Āt = [ρt[f ] + Λ(1−∥ρt∥)]+

=

[∫

R+

f(ΦZ
0,t(u))e

−
∫ t
0 f(ΦZ

0,r(u))drν0(du) +

∫

[0,t]
f(ΦZ

s,t(0))e
−

∫ t
s f(ΦZ

s,r(0))drdZs

+ Λ

(
1−

∫

R+

e−
∫ t
0 f(ΦZ

0,r(u))drν0(du)−
∫

]0,t]
e−

∫ t
s f(ΦZ

s,r(0))drdZs

)]

+

(using (1.6), (1.8), and (1.10))

=

[
HZ(t) +

∫

[0,t]
λZ(t|s)SZ(t|s)dZs + Λ

(
1− H̃Z

t −
∫

[0,t]
SZ(t|s)dZs

)]

+

,

showing that (1.16) and (1.12) are equivalent. Also, since

∥ρt∥ =
∫

R+

e−
∫ t
0 f(ΦZ

0,r(u))drν0(du) +

∫

]0,t]
e−

∫ t
s f(ΦZ

s,r(0))drdZs = H̃Z
t +

∫

[0,t]
SZ(t|s)dZs,

∥ρt∥ is equivalent to the neuronal mass Mt defined in (1.14).

In what follows we study the extended generator L of our process, in the sense of Meyn
and Tweedie [37]. Extended generators are defined by the pointwise convergence and the
fact that a fundamental martingale property reminiscent of the Itô formula is verified. For
the convenience of the reader we recall its definition: We set D(L) the set of all measurable
functions g :M+ → R for which there exists a measurable function h :M+ → R, such that
t 7→ Eν(h(ρt)) is continuous in 0, and such that ∀ν ∈M+, ∀t ≥ 0,
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1. Eν [g(ρt)]− g(ν) = Eν

∫ t
0 h(ρs)ds;

2. Eν [
∫ t

0 |h(ρs)|ds] <∞.
In this case, we write Lg := h.

On a restricted set of test functions, we can explicitly calculate the extended generator L
of the PDMP described above: For all φ ∈ C1

b (R) (bounded and continuously differentiable
functions), for all ν ∈M+ and using the abuse of notation φ(ν) := ν[φ], we have that

(2.5) Lφ(ν) = −
∫

R

u− µ
τm

φ′(u)ν(du)− ν[φf ]

+N
[
ν[f ] + Λ(1−∥ν∥)

]
+

(∫

R
φ

(
u+

J

N

)
ν(du) +

1

N
φ(0)− ν[φ]

)
.

We now show that this process is well-defined. For that sake, let us define, for all K > 0,
the exit time

(2.6) TK := inf{t ≥ 0 : ∥ρt∥ > K}.

Remark 2.3. The TK are well-defined stopping times since the sets {ν ∈ M+ :∥ν∥ > K}
are the pre-image of ]K,+∞[ by the linear form 1 :M+ → R+, ν 7→ ν[1] and we have endowed
M+ with the topology of weak convergence. For a general treatment of the measurability of
hitting times, see [1] and in particular Theorem 2.4 of that article.

Up to time TK , the overall jump intensity of the process is bounded by ∥f∥∞K +Λ, such
that the procedure described above is well-defined up to the explosion time of the process
ζ := limK→+∞ TK . To show that (1.16) is well-defined on R+, we need to prove that the
PDMP defined above is non-explosive in the sense of [37], i.e. ζ = +∞ a. s. We follow the
standard ‘drift condition’-based approach of [37]. Writing V (ν) :=∥ν∥ = ν[1], ∀ν ∈ M+, we
have

Lemma 2.4 (Foster-Lyapunov inequality). There exist K∗ > 0, d > 0 and c > 0 such that

(2.7) ∀ν ∈M+, LV (ν) ≤ d1∥ν∥≤K∗ − c(1 + V )(ν).

Proof. Using (2.5) and V (ν) = ν[1], we have LV (ν) = −ν[f ] +
[
ν[f ] + Λ(1−∥ν∥)

]
+
.

Two cases arise: either
[
ν[f ] + Λ(1 −∥ν∥)

]
+
> 0, in which case LV (ν) = Λ

(
1−∥ν∥

)
=

Λ− ΛV (ν), or
[
ν[f ] + Λ(1−∥ν∥)

]
+
= 0, in which case LV (ν) = −ν[f ] ≤ −fminV (ν).

Whence, LV (ν) ≤ Λ− (fmin ∧ Λ)V (ν). We can adapt the constants to obtain (2.7).

Arguing as in Theorem 2.1 of [37], Lemma 2.4 guarantees that the PDMP is non-explosive.
Hence, we have proved the well-posedness of (1.16):

Proposition 2.5 (Well-posedness). For all ν0 ∈ M+, there exists a M+-valued path-wise
unique solution to (1.16) on R+.

3. Stability.
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3.1. Coupling. More than non-explosion, the ‘drift condition’-based method of [37, 38]
allows us to show that the PDMP (1.16) satisfies a certain ‘recurrence’ property.

For all K > 0, let us write the hitting time tK := inf{t ≥ 0 : ∥ρt∥ ≤ K} and denote by
Eν0 [tK ] the expected hitting time of the PDMP (1.16) starting in state ν0 ∈M+ at time 0.

Lemma 3.1. Take the constant K∗ of Lemma 2.4. For all ν0 ∈ M+ such that ∥ν0∥ > K∗,
Eν0 [tK∗ ] < +∞.

Proof. The proof is standard but we reproduce it here to highlight the fact that it holds
even if the space in which the process evolves is not locally compact.

We use V and the constants of Lemma 2.4. For any t > 0 and any M > K∗, by Dynkin’s
formula (see [37]),

Eν0 [V (ρt∧TM )] = V (ν0) + Eν0

∫ t∧TM

0
LV (ρs)ds ≤ V (ν0) + dt,

where TM is the exit time defined in (2.6) and where d is given in (2.7).
Since V (ρt∧TM ) ≥M1TM≤t, this implies

Pν0(TM ≤ t) ≤
V (ν0) + dt

M
.

Taking M →∞, by monotone convergence, Pν0(ζ ≤ t) = 0, which implies non-explosion.
We now make another use of Dynkin’s formula:

Eν0 [V (ρt∧tK∗∧TM )] = V (ν0) + Eν0

∫ t∧tK∗∧TM

0
LV (ρs)ds

≤ V (ν0)− cEν0

∫ t∧tK∗∧TM

0
(1 + V )(ρs)ds.

Whence,

Eν0

∫ t∧tK∗∧TM

0
(1 + V )(ρs)ds ≤

V (ν0)− Eν0 [V (ρt∧tK∗∧TM )]

c
≤ V (ν0)−K∗

c
.

Taking t,M →∞, we get, by monotone convergence

Eν0

∫ tK∗

0
(1 + V )(ρs)ds ≤

V (ν0)−K∗

c
.

The fact that Eν0 [tK∗ ] ≤ Eν0

∫ tK∗
0 (1 + V )(ρs)ds concludes the proof.

The definition of stability we use involves the notion of coupling of two processes (see
subsection 1.4). For ν0 and ν̃0 ∈M+, a natural way to couple two processes ρ and ρ̃ following
(1.16) with initial condition ν0 and ν̃0 respectively is to construct them with the same Poisson
random measure π. With this coupling, the associated jump processes Z and Z̃t follow, for
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all t ≥ 0,

Zt :=
1

N

∫

[0,t]×R+

1z≤N [ρs[f ]+Λ(1−∥ρs∥)]+π(ds, dz),

Z̃t :=
1

N

∫

[0,t]×R+

1z≤N [ρ̃s[f ]+Λ(1−∥ρ̃s∥)]+π(ds, dz).

For all t ≥ 0, we can now introduce the event

Et := {Zt+s − Zt = Z̃t+s − Z̃t for all s ≥ 0}
on which both jump processes couple after time t. With (Ft)t≥0 denoting the natural filtration
of the coupled process, we have a lower bound on P(Et|Ft):

Lemma 3.2. For any K > 0, there exists a constant ε ∈]0, 1[ such that for all t ≥ 0,

(3.1) P(Et|Ft) ≥ ε1{∥ρt∥+∥ρ̃t∥≤K}.

Proof. We use the shorthand Ā[ν] := [ν[f ] + Λ(1−∥ν∥)]+, ∀ν ∈ M+. Fix any t ≥ 0 such
that ∥ρt∥ +∥ρ̃t∥ ≤ K. Write τ1

t := inf{s > t : (Zs − Zt) + (Z̃s − Z̃t) ≥ 1/N} the next jump
after time t. Noticing that for all t ≤ s < τ1

t , Ā[ρs] ∨ Ā[ρ̃s] ≤ ∥f∥∞K + Λ, we clearly have
that t < τ1

t , that is, there is no accumulation of jumps in finite time.
In what follows, we evaluate the difference Ā[ρs]− Ā[ρ̃s], for t ≤ s.
We start by considering the difference ρs[f ]− ρ̃s[f ], for all t ≤ s < τ1

t . It is clear that, for
all t ≤ s < τ1

t ,

ρs[f ] =

∫

R
ρt(du)f(Φ

0
t,s(u)) exp

(
−
∫ s

t
f(Φ0

t,r(u))dr

)
≤ K∥f∥∞ e−(s−t)fmin ,

where Φ0 is the flow of the transport equation (2.1) and where for the inequality, we used
the bounds of f given by Assumption 1.3. Consequently, for all t ≤ s < τ1

t , |ρs[f ]− ρ̃s[f ]| ≤
2K∥f∥∞ e−(s−t)fmin . Similarly, | ∥ρs∥ −∥ρ̃s∥ | ≤ 2Ke−(s−t)fmin .

At the jump time τ1
t , two cases arise:

• τ1
t is an asynchronous jump, that is, only one of the two processes, say Z, jumps, in

which case ρ is shifted to the right by J/N, and a Dirac mass 1
N δ0 is added (see (2.3)).

Then, for all s ∈ [τ1
t , τ

2
t [, where τ

2
t := inf{s > τ1

t : (Zs − Zτ1t
) + (Z̃s − Z̃τ1t

) ≥ 1/N},
we have

ρs[f ] =

∫

R
ρτ1

t−
(du)f(Φ0

τ1t ,s
(u+ J/N)) exp

(
−
∫ s

τ1t

f(Φ0
τ1t ,r

(u+ J/N))dr

)

+
1

N
f(Φ0

τ1t ,s
(0)) exp

(
−
∫ s

τ1t

f(Φ0
τ1t ,r

(0))dr

)
,

while

ρ̃s[f ] =

∫

R
ρ̃τ1

t−
(du)f(Φ0

τ1t ,s
(u)) exp

(
−
∫ s

τ1t

f(Φ0
τ1t ,r

(u))dr

)
.
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As a consequence,

|ρs[f ]− ρ̃s[f ]| ≤∥f∥∞ e−fmin(s−τ1t )(∥ρτ1
t−
∥+ ∥ρ̃τ1

t−
∥) + ∥f∥∞

N
e−fmin(s−τ1t )

≤ 2K∥f∥∞ e−fmin(s−τ1t )e−fmin(τ1t −t) +
∥f∥∞
N

e−fmin(s−τ1t )

= 2K∥f∥∞ e−fmin(s−t) +
∥f∥∞
N

e−fmin(s−τ1t ).

• τ1
t is a synchronous jump, in which case we obtain similarly that for all s ∈ [τ1

t , τ
2
t [,

|ρs[f ]− ρ̃s[f ]| ≤ 2K∥f∥∞ e−fmin(s−t).

Similar estimates hold for | ∥ρs∥ −∥ρ̃s∥ |. Since the function x 7→ x+ is Lipschitz with
Lipschitz constant 1, this implies that

|Ā[ρs]− Ā[ρ̃s]| ≤ |ρs(f)− ρ̃s(f)|+ Λ| ∥ρs∥ −∥ρ̃s∥ |.

Working iteratively with respect to the successive jump times τnt , n ≥ 2, and using the
above arguments, we deduce that for an appropriate constant C > 0, for all t ≤ s,

(3.2) |Ā[ρs]− Ā[ρ̃s]| ≤ Ce−fmin(s−t)(∥ρt∥+ ∥ρ̃t∥) + C

∫

]t,s]
e−fmin(s−r)dDr

where (Ds)s≥t is the process counting the asynchronous jumps of Z and Z̃. Notice that
(Ds)s≥t has stochastic intensity (N |Ā[ρs]− Ā[ρ̃s]|)s≥t. In particular, the above upper bound
implies that on [t,∞[, (Ds)s≥t is stochastically upper bounded by a linear Hawkes process, say
(Hs)s≥t, with self-interaction kernel h(s) = NCe−fmins and with time inhomogeneous baseline
rate s 7→ NCe−fmin(s−t)(∥ρt∥+ ∥ρ̃t∥).

The rest of this proof follows the arguments given in the proof of Theorem 2 of [5, p. 1581]
together with their Lemma 1. Here are the details of the argument: As a consequence of the
above, we obtain the lower bound

P(Et|Ft) = P
(
D([t,∞[) = 0

∣∣Ft

)
≥ P

(
H([t,∞[) = 0

∣∣Ft

)
,

since D is stochastically upper bounded by N. But by the structure of the Hawkes process,

P
(
H([t,∞[) = 0

∣∣Ft

)
= exp

(
−
∫ ∞

t
NCe−fmin(s−t)(∥ρt∥+ ∥ρ̃t∥)ds

)

= exp
(
−NC(∥ρt∥+ ∥ρ̃t∥)/fmin

)
.

Putting ε := exp
(
−2NCK/fmin

)
concludes the proof.

Theorem 3.3. Let ρ and ρ̃ be the coupled processes defined above for initial condition ν0

and ν̃0 ∈M+, and write E(ν0,ν̃0) for the associated expectation. Then the associated counting

processes Z and Z̃ couple a.s. in finite time, i.e.

P

(
lim sup
t→+∞

{
(Zs)s≥t ̸= (Z̃s)s≥t

})
= 0.
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Moreover, the associated coupling time Tc, defined in (1.17) above, admits exponential mo-
ments, that is, there exists a positive constant λ̄ > 0 such that for all initial conditions ν0 and
ν̃0 ∈M+,

(3.3) E(ν0,ν̃0)[e
λ̄Tc ] < +∞.

Proof. The beginning of the proof of this theorem is similar to the Lemma 5 of [5]. Defining
E∞ := ∪∞t=0Et, (E[1E∞ |Ft])t≥0 is a uniformly integrable martingale and we have E[1E∞ |Ft]→
1E∞ a.s.

However, for all K > 0, we have, by Lemma 3.2,

E[1E∞ |Ft] = P(E∞|Ft) ≥ P(Et|Ft) ≥ ε1{∥ρt∥+∥ρ̃t∥≤K}, ∀t ≥ 0.

We can easily adapt the proofs of Lemma 2.4 and Lemma 3.1 to discrete times n ∈ N and
show that there exists K∗ > 0 such that P(lim supn→∞{∥ρn∥ +∥ρ̃n∥ ≤ K∗}) = 1. Hence,
1E∞ ≥ ε a.s., which in turn implies that P(E∞) = 1. Since the event E∞ is the complement

of the event lim supt→+∞
{
(Zs)s≥t ̸= (Z̃s)s≥t

}
, this concludes the first part of the proof.

The proof of the existence of exponential moments for the coupling time, which is rather
classical, is postponed to Appendix B.

3.2. Existence of the stationary process. We construct a stationary process Z following
the lines of [5]. The main idea is to show that a construction on the whole line R, that
is, starting from t = −∞ is feasible. If it is so, then intuitively the constructed process is
automatically stationary. More precisely, we have the following theorem.

Theorem 3.4. In addition to the usual assumptions, grant Assumption 1.4. Then there
exists a unique stationary process Z solving (1.16).

Proof. We only need to show that a stationary process Z exists - uniqueness follows then
from the coupling property stated in Theorem 3.3 above.

We construct a sequence Z [n] of jump processes in the following way. For any fixed n ≥ 1,
let (ρ[n], Z̃ [n]) be the solution of (1.16) defined on [−n,∞[, starting at time −n from the initial

condition ρ
[n]
−n = 1

N δ0, with

Z̃
[n]
t =

1

N

∫

[−n,t]×R+

1
z≤NĀ

[n]

s−
π(ds, dz), with Ā

[n]
t :=

[
ρ

[n]
t [f ] + Λ(1− ∥ρ[n]

t ∥)
]

+
, ∀t ≥ −n,

and Z̃
[n]
t ≡ 0 for all t ≤ −n.

In order to obtain a standardized sequence of processes, we put

Z
[n]
t := Z̃

[n]
t − Z̃

[n]
0 .

In this way, for all n, Z [n] is an element of the Skorokhod space D(R,R) with Z
[n]
0 = 0. We

shall also consider the associated sequence of processes

X [n]
s := ρ[n]

s [f ]− Λ∥ρ[n]
s ∥,
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such that the stochastic intensity of NZ
[n]
s is λ[n](s) := N [X

[n]
s− + Λ]+.

Step 1. We first show that the family (Z [n], X [n])n≥1 is tight in the Skorokhod space
D(R,R2). To do so, we use the criterion of Aldous, see Theorem VI.4.5 of [34]. It is sufficient
to prove that

(a) for all T > 0, all ε > 0,

lim
σ↓0

lim sup
n→∞

sup
(τ,τ ′)∈Pσ,T

P(|Z [n]
τ ′ − Z [n]

τ |+ |X [n]
τ ′ −X [n]

τ | > ε) = 0,

where Pσ,T is the set of all pairs of stopping times (τ, τ ′) such that −T ≤ τ ≤ τ ′ ≤
τ + σ ≤ T a.s.,

(b) for all T > 0, limK↑∞ supn P(sup−T≤s≤T (|Z [n]
s |+X

[n]
s ) ≥ K) = 0.

To check (a), observe that,

E[|Z [n]
τ ′ − Z [n]

τ |] ≤
1

N
E
∫ τ+σ

τ
λ[n](s)ds ≤ 1

N

√
2Tσ

√
sup

−T≤s≤T
E
[
(λ[n](s))2

]
.

Note that (λ[n](s))2 ≤ C∥ρ[n]
s ∥2 + C ′, for some constants C,C ′ independent of n. By similar

arguments as in the proof of Lemma 2.4, we have that W (ν) :=∥ν∥2 satisfies

(3.4) ∀ν ∈M+, LW (ν) ≤ α− βW (ν),

for suitable constants α, β > 0.2 Then, it is straightforward to show that (3.4) implies

sup
n

sup
−T≤s≤T

E[W (ρ[n]
s )] <∞,

implying (a) for the sequence of processes Z [n].
We now turn to the study of the sequence of processes X [n]. We show how to control

ρ[n][f ]; the control of ∥ρ[n]∥ is obtained similarly by taking f ≡ 1. We fix stopping times

τ < τ ′ and consider the increment ρ
[n]
τ ′ [f ]− ρ

[n]
τ [f ] on the event Z

[n]
τ ′ −Z

[n]
τ = 0. On this event,

ρ
[n]
τ ′ [f ]− ρ[n]

τ [f ] =

∫

R
ρ[n]
τ (du)


f(Φ0

τ,τ ′(u)) exp

(
−
∫ τ ′

τ
f(Φ0

τ,s(u))ds

)
− f(u)


 .

Then,

∣∣∣∣∣∣
f(Φ0

τ,τ ′(u)) exp

(
−
∫ τ ′

τ
f(Φ0

τ,s(u))ds

)
− f(u)

∣∣∣∣∣∣

≤ |f(Φ0
τ,τ ′(u))− f(u)|+ ∥f∥∞

∣∣∣∣∣∣
exp

(
−
∫ τ ′

τ
f(Φ0

τ,s(u))ds

)
− 1

∣∣∣∣∣∣
≤ |f(Φ0

τ,τ ′(u))− f(u)|+ ∥f∥∞(1− e−σ∥f∥∞).

2See Appendix C
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Using that |Φ0
τ,τ ′(u)− u| ≤ (1− e−σ/τm)|u− µ|, Taylor’s formula implies

|f(Φ0
τ,τ ′(u))− f(u)| ≤ |f ′(ξ)|(1− e−σ/τm)|u− µ|,

where ξ ∈ [u,Φ0
τ,τ ′(u)] ∪ [Φ0

τ,τ ′(u), u].
We first produce an upper bound in the case where u ≥ µ and µ ≥ 0. Since |f ′(u)| ≤ C/u

by Assumption 1.4 and since ξ ≥ Φ0
τ,τ ′(u), we have

(3.5) |f(Φ0
τ,τ ′(u))− f(u)| ≤ C(1− e−σ/τm)Cσ,

where

Cσ := sup
u≥µ

1

ue−σ/τm + µ(1− e−σ/τm)
(u− µ).

Moreover, it is clear that, for any σ0 > 0, supσ≤σ0
Cσ <∞.

If µ ≤ 0 and µ < u ≤ 0, we use that f ′(ξ) is bounded on [µ, 0] to obtain (3.5). The case
u < µ is treated analogously.

As a consequence, we get the global upper bound (on the event Z
[n]
τ ′ − Z

[n]
τ = 0):

∣∣∣ρ[n]
τ ′ [f ]− ρ[n]

τ [f ]
∣∣∣ ≤ C(1− e−κσ)∥ρ[n]

τ ∥, with κ := ∥f∥∞ ∨ 1/τm.

We conclude the control of ρ[n][f ], on the event Z
[n]
τ ′ − Z

[n]
τ = 0, using the Foster-Lyapunov

inequality (Lemma 2.4):

E∥ρ[n]
τ ∥ ≤ E∥ρ[n]

0 ∥+ dT, with d from (2.7),

and the fact that supn E∥ρ[n]
0 ∥ <∞.

To deal with the event Z
[n]
τ ′ − Z

[n]
τ > 0, observe that

E
[∣∣∣ρ[n]

τ ′ [f ]− ρ[n]
τ [f ]

∣∣∣1{Z[n]

τ ′ −Z
[n]
τ >0}

]
≤ ∥f∥∞E

[(
∥ρ[n]

τ ′ ∥+ ∥ρ[n]
τ ∥
)
1{Z[n]

τ ′ −Z
[n]
τ >0}

]
.

Moreover, for any stopping time τ taking values in between −T and T, we have

E
[
∥ρ[n]

τ ∥1{Z[n]

τ ′ −Z
[n]
τ >0}

]
≤
√
E∥ρ[n]

τ ∥2
√
P(Z [n]

τ ′ − Z
[n]
τ > 0).

Using similar arguments as above, but now with the Lyapunov function W (ν) = ∥ν∥2, we
obtain

sup
n

E∥ρ[n]
τ ∥2 <∞.

Finally, using the already established control over Z [n], we get that

lim
σ↓0

sup
n

P(Z [n]
τ ′ − Z [n]

τ > 0) = 0,



ON A FINITE-SIZE NEURONAL POPULATION EQUATION 21

which concludes the proof of (a).

(b) Let us first observe that sup−T≤s≤T |Z [n]
s | ≤ Z [n]

T − Z
[n]
−T , and

sup
−T≤s≤T

|X [n]
s | ≤ C sup

−T≤s≤T
∥ρ[n]

s ∥ ≤ C
(
∥ρ[n]

−T ∥+ Z
[n]
T − Z

[n]
−T

)
.

We can then conclude using the moment estimates established above.
Step 2. By tightness we can extract a subsequence nk such that (Z [nk], X [nk]) converges,

in D(R,R2), to a limit process that we shall denote (Z,X).We now show that Z is necessarily
stationary. For that sake, take a test function φ : D(R,R) → R+ which is continuous (with
respect to the Skorokhod topology), bounded, and which does only depend on Z ∈ D(R,R)
within a finite time interval [a, b] ⊂ R+. We have to show that for every t ≥ 0,

E[φ(Z)] = E[φ(θtZ)],

where θtZ is the shifted counting process defined by (θtZ)s = Zt+s − Zt, for all s ≥ 0.
By weak convergence, we have that

E[φ(Z)]− E[φ(θtZ)] = lim
k→∞

E[φ(Z [nk])]− E[φ(θtZ [nk])].

Now we use the coupling property proven in Theorem 3.3 above. For any fixed k and t we
realize Z [nk] and θtZ

[nk] according to the construction used in the proof of Theorem 3.3.
This means the following. Let π(dt, dz) be a Poisson random measure on R × R+ which

has intensity dtdz on R×R+. We construct Z [nk] using the atoms of π within [−nk,∞[×R+,
starting from 1

N δ0 at time −nk. Then we choose, independently of π, a random measure

ρ̃−nk
∼ L(ρ[nk]

−nk+t). Note that this law does not depend on nk; it only depends on t. Finally,

we realize the process θtZ
[nk] letting it start at time −nk from the initial condition ρ̃−nk

and
using the same underlying Poisson random measure π. Let Tnk

coup be the finite coupling time
of the two processes. Notice that once again, L(Tnk

coup) does not depend on nk.
Using this coupling, we obtain

∣∣∣E[φ(Z [nk])]− E[φ(θtZ [nk])]
∣∣∣ ≤ ∥φ∥∞P(Tnk

coup ≥ nk + a) = ∥φ∥∞P(Tcoup > nk + a)→ 0

as nk → ∞, implying that E[φ(Z)] − E[φ(θtZ)] = 0. Since the test functions φ form a
separating-class (see Theorem 1.2 in [3, p. 8]), we have that Z and θtZ have the same law,
whence stationarity.

Step 3. Now, we verify that the process Z, where Z is taken from the stationary limit
process (Z,X) constructed above, is a jump process where jumps of size 1/N occur with
intensity λt := N [Xt− + Λ]+.

To ease the notation, in what follows, we rename the subsequence nk by n. Using the
Skorokhod representation theorem, we may assume that the above weak convergence is almost
sure, for a particular realization of the couples (Z [n], X [n]). Hence, we know that almost surely,
(Z [n], X [n])→ (Z,X) and λ[n] → λ. Moreover, let Z̄ be the process having intensity λ for the
same underlying Poisson random measure as (the realization of) Z. Then, by Fatou’s lemma,
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for any t ≥ 0,

E|Zt − Z̄t| ≤ lim inf
n

E|Z [n]
t − Z̄t| ≤

1

N
lim inf

n
E
∫ t

0
|λ[n](s)− λ(s)|ds = 0,

where we used the uniform integrability of the λ[n], namely that supn sups∈[0,t] E[λ
[n]
s ] < ∞.

The same argument shows that E|Zt − Z̄t| = 0 for all t ≤ 0. Hence Z = Z̄ almost surely,
implying that Z has the limit intensity λ.

Step 4. Finally, we show that the limit process Z has the right dynamic, i.e. its intensity
λt is equal to λ̄t given by

(3.6) λ̄t := N


 ∑

k:Tk<t

1

N
exp

(
−
∫ t

Tk

f(ΦZ
Tk,s

(0))ds

)
(f(ΦZ

Tk,t
(0))− Λ) + Λ




+

, ∀t ∈ R,

where Tk denote the jump times of Z and ΦZ is given in (1.11).
The goal of this step is to show that λ ≡ λ̄. Fix some time t ≥ 0 and a truncation level

K > 1. Since almost surely, Z does not jump at time t nor at time −K for all K ≥ 1,

Proposition VI.2.2.1 of [34] implies that Z
[n]
t − Z

[n]
−K → Zt − Z−K . Therefore, we may choose

nK be such that Z
[n]
t − Z

[n]
−K = Zt − Z−K for all n ≥ nK . By the continuity properties of the

Skorokhod topology, as n → ∞, we have that T
[n]
k → Tk as n → ∞, for all Z−K ≤ k ≤ Zt

(Proposition VI.2.2.1 of [34]). Hence,

∑

k:−K≤T
[n]
k <t

1

N
exp

(
−
∫ t

T
[n]
k

f

(
ΦZ[n]

T
[n]
k ,s

(0)

)
ds

)(
f

(
ΦZ[n]

T
[n]
k ,t

(0)

)
− Λ

)
→

∑

k:−K≤Tk<t

1

N
exp

(
−
∫ t

Tk

f(ΦZ
Tk,s

(0))ds

)
(f(ΦZ

Tk,t
(0))− Λ).

Notice that the expression on the lhs corresponds to the terms contributing to X
[n]
t− , issued

by jumps happening after time −K. Since we know that X
[n]
t converges to Xt for almost all

t, this implies that for all K,

Xt− =
∑

k:−K≤Tk<t

1

N
exp

(
−
∫ t

Tk

f(ΦZ
Tk,s

(0))ds

)
(f(ΦZ

Tk,t
(0))− Λ)

+ lim
n→∞

∑

k:T
[n]
k <−K

1

N
exp

(
−
∫ t

T
[n]
k

f

(
ΦZ[n]

T
[n]
k ,s

(0)

)
ds

)(
f

(
ΦZ[n]

T
[n]
k ,t

(0)

)
− Λ

)
,
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where this last limit is necessarily finite. Letting K →∞ we deduce that

Xt− =
∑

k:Tk<t

1

N
exp

(
−
∫ t

Tk

f(ΦZ
Tk,s

(0))ds

)
(f(ΦZ

Tk,t
(0))− Λ)

+ lim
K→∞

lim
n→∞

∑

k:T
[n]
k <−K

1

N
exp

(
−
∫ t

T
[n]
k

f

(
ΦZ[n]

T
[n]
k ,s

(0)

)
ds

)(
f

(
ΦZ[n]

T
[n]
k ,t

(0)

)
− Λ

)
.

Next, we shall prove that

(3.7) lim
K→∞

lim
n→∞

∑

k:T
[n]
k <−K

1

N
exp

(
−
∫ t

T
[n]
k

f

(
ΦZ[n]

T
[n]
k ,s

(0)

)
ds

)
f

(
ΦZ[n]

T
[n]
k ,t

(0)

)
= 0 a.s.,

a similar argument proving that

lim
K→∞

lim
n→∞

∑

k:T
[n]
k <−K

1

N
exp

(
−
∫ t

T
[n]
k

f

(
ΦZ[n]

T
[n]
k ,s

(0)

)
ds

)
Λ = 0 a.s.,

to obtain that indeed, λt = N [Xt− + Λ]+ = λ̄t.
Let us now prove (3.7). Using Fatou’s lemma, we get

(3.8) E lim
K→∞

lim
n→∞

∑

k:T
[n]
k <−K

1

N
exp

(
−
∫ t

T
[n]
k

f

(
ΦZ[n]

T
[n]
k ,s

(0)

)
ds

)
f

(
ΦZ[n]

T
[n]
k ,t

(0)

)

≤ lim inf
K→∞

lim inf
n→∞

E
∑

k:T
[n]
k <−K

1

N
exp

(
−
∫ t

T
[n]
k

f

(
ΦZ[n]

T
[n]
k ,s

(0)

)
ds

)
f

(
ΦZ[n]

T
[n]
k ,t

(0)

)
.

Using the same arguments as those leading to (3.2), we have

∑

k:T
[n]
k <−K

1

N
exp

(
−
∫ t

T
[n]
k

f

(
ΦZ[n]

T
[n]
k ,s

(0)

)
ds

)
f

(
ΦZ[n]

T
[n]
k ,t

(0)

)
≤ ∥f∥∞∥ρ[n]

−K∥e−min(f)(t+K).

Therefore, the rhs of (3.8) is upper bounded by

∥f∥∞ lim inf
K→∞

lim inf
n→∞

E(∥ρ[n]
−K∥)e−min(f)(t+K) = 0,

since supn supK E(∥ρ[n]
−K∥) <∞. This concludes the proof.

Corollary 3.5. Under the same assumptions as in Theorem 3.4, there exists a unique sta-
tionary process {ρ, ν̂0} solving (1.16).
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Proof. Taking the process Z ∈ D(R,R) constructed in Theorem 3.4 and using the same
notations as in (3.6), the stationary process {ρ̄, ν̄0} corresponding to Z is simply

ν̄0 =
∑

Tk≤0

exp

(
−
∫ 0

Tk

f(ΦZ
Tk,s

(0))ds

)
1

N
δΦZ

Tk,0(0),

and for all t ≥ 0,

ρ̄t =
∑

Tk≤t

exp

(
−
∫ t

Tk

f(ΦZ
Tk,s

(0))ds

)
1

N
δΦZ

Tk,t(0).

4. Background on the finite-size population equation. In this section, we first present a
concise derivation of the stochastic integral equation (1.12), which synthesizes the arguments
of the original derivation [48]. Following the integral equation convention [29, 30] and as in
[48], we formally put the initial condition at time −∞ and (1.12) reads as follows: for all
t ∈ R,

dZt =
1

N
π(dt, [0, NĀt− ]),(4.1a)

Āt =



∫

]−∞,t]
λZ(t|s)SZ(t|s)dZs + ΛZ

t

(
1−

∫

]−∞,t]
SZ(t|s)dZs

)


+

,(4.1b)

where π is a Poisson random measure on R × R+ having Lebesgue intensity and λZ and SZ

are defined by (1.6) with replacement (1.11). Furthermore, the time-dependent modulating
factor ΛZ

t is given by

(4.1c) ΛZ
t =

∫
]−∞,t] λ

Z(t|s){1− SZ(t|s)}SZ(t|s)dZs∫
]−∞,t]{1− SZ(t|s)}SZ(t|s)dZs

.

Note that in the original formulation of the model (see Eqs. (11) and (12) in [48]), the expres-
sion for the time-dependent modulating factor ΛZ

t involved a ‘variance function’ v. Integrating
Eq. (12) in [48] gives v(t|s) = {1− SZ(t|s)}SZ(t|s)Żs. As a consequence, Eq. (11) in [48] can
be written as (4.1c), eliminating v.

To understand the reasoning behind the derivation of (4.1), one needs to keep in mind that
the goal is to obtain an intensity-based and history-dependent point process (i.e. that only
depends on the past Z) approximating the empirical population activity of the microscopic
model (1.1).

Let (Zs)s<t denote the past population activity. In terms of (Zs)s<t, the stochastic in-
tensity of the empirical population activity (of the microscopic model), at time t, can be
expressed as

(4.2) N

∫

]−∞,t[
λZ(t|s)SZ(t|s)dZs,
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where, for all past spike times s, SZ(t|s) denotes the ‘microscopic survival processes’: if there
was a spike at time s, SZ(t|s) = 1 if the neuron which has fired at time s has not fired a spike in
]s, t[, and SZ(t|s) = 0 if it has. We need to approximate (4.2) by an expression which does not
involve the microscopic SZ(t|s), but only the past Z. Writing ∆SZ(t|s) := SZ(t|s)−SZ(t|s),
we have

(4.3)

∫

]−∞,t[
λZ(t|s)SZ(t|s)dZs =

∫

]−∞,t[
λZ(t|s)SZ(t|s)dZs +

∫

]−∞,t[
λZ(t|s)∆SZ(t|s)dZs.

Note that since the number of neurons N is strictly preserved (in the microscopic model),

(4.4)

∫

]−∞,t[
∆SZ(t|s)dZs = 1−

∫

]−∞,t[
SZ(t|s)dZs.

To replace the microscopic ∆SZ(t|s) on the RHS of (4.3), we introduce a family of condition-
ally independent (conditioned on Z) survival processes {(ŜZ(t′|s))t′≥s}s – one for each past
spike time s < t – defined by

ŜZ(t′|s) =
{
1 if t′ < Ts,

0 if t′ ≥ Ts
,

where {Ts}past spike time s<t are accessory random variables satisfying the following conditions:
(i) the variables {Ts}past spike time s<t are conditionally independent given Z and (ii), for all
past spike time s < t, Ts takes values in [s,+∞] and satisfies P(Ts > t′|Z) = SZ(t′|s),
for all t′ ∈ [s, t[ (Ts can therefore be interpreted as a ‘death’ time given by the survival
SZ). Importantly, the processes {(ŜZ(t′|s))t′∈[s,t]}s are close but not exactly equivalent to

the microscopic {(SZ(t′|s))t′∈[s,t]}s, e.g. the conservation equation (4.4) does not hold for

the processes ∆ŜZ(t|s) := ŜZ(t|s) − SZ(t|s). However, the conditional independence of the
processes {(ŜZ(t′|s))t′∈[s,t]}s will allow us to close the system of equations (see below) and
this is the reason why they are introduced.

We do the approximation

(4.5)

∫

]−∞,t[
λZ(t|s)∆SZ(t|s)dZs ≈ ΛZ

t

∫

]−∞,t[
∆SZ(t|s)dZs,

where

ΛZ
t := argmin

Λ
E



(∫

]−∞,t[

(
λZ(t|s)− Λ

)
∆ŜZ(t|s)dZs

)2 ∣∣∣∣∣Z




= argmin
Λ

E

[∫

]−∞,t[

(
λZ(t|s)− Λ

)2
∆ŜZ(t|s)2dZs

∣∣∣∣∣Z
]

= argmin
Λ

∫

]−∞,t[

(
λZ(t|s)− Λ

)2
E
[
∆ŜZ(t|s)2

∣∣Z
]
dZs.(4.6)
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Note that in the definition of ΛZ
t , (4.6), we have used ŜZ(t|s) instead of the microscopic

SZ(t|s), which would have defined the minimum conditional mean squared error of the ap-
proximation (4.5). While this replacement cannot be rigorously justified, it allows us to
approximate the conditional mean squared error and, in particular, the position of its mini-

mum. Since, E
[
∆ŜZ(t|s)2

∣∣Z
]
= {1−SZ(t|s)}SZ(t|s), and taking the derivative with respect

to Λ in (4.6), we get

ΛZ
t =

∫
]−∞,t[ λ

Z(t|s){1− SZ(t|s)}SZ(t|s)dZs∫
]−∞,t[{1− SZ(t|s)}SZ(t|s)dZs

.

We have obtained an approximation of the stochastic intensity (4.2) which only involves the
past Z:

N

∫

]−∞,t[
λZ(t|s)SZ(t|s)dZs

≈ N



∫

]−∞,t[
λZ(t|s)SZ(t|s)dZs + ΛZ

t

(
1−

∫

]−∞,t[
SZ(t|s)dZs

)


+

.

(Taking the positive part on the RHS simply guarantees that the intensity is nonnegative.)
In practice, we can deal with the ill-defined initial condition at time −∞ by assuming

that Zt = 0 for all t < 0 and Z0 = 1 (all neurons spike at time 0). Consistently, we also put
ΛZ

0 = 0. Then, the model (4.1) can be written
For all t > 0,

Zt = 1 +
1

N

∫

]0,t]×R+

1z≤NĀs−
π(ds, dz),(4.7a)

Āt =



∫

[0,t]
λZ(t|s)SZ(t|s)dZs + ΛZ

t

(
1−

∫

[0,t]
SZ(t|s)dZs

)


+

,(4.7b)

ΛZ
t =

∫
[0,t] λ

Z(t|s){1− SZ(t|s)}SZ(t|s)dZs∫
[0,t]{1− SZ(t|s)}SZ(t|s)dZs

,(4.7c)

with the initial condition Z0 = 1 and ΛZ
0 = 0. Assuming that the original model (4.1) has the

same stability property as the simpler model (1.16), this practical choice of initial condition
is acceptable as it will be ‘forgotten’ after some time.

5. Simulation algorithm. Here, we present a simple simulation algorithm for (4.7). The
algorithm presented below can be easily adapted to the more realistic case of multiple inter-
acting populations for generalized integrate-and-fire neurons [48], as we show in Appendix A.

To ease the notation, here, we drop all the superscripts Z. We can rewrite (1.5) and (1.6)
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as the solution of a SDE: for any s > 0,

dS(t|s)
dt

= −λ(t|s)S(t|s)(5.1a)

du(t|s) = µt − u(t|s)
τm

dt+ JdZt(5.1b)

with λ(t|s) = f
(
u(t|s)

)
and initial conditions S(s|s) = 1 and u(s|s) = 0.

Finite history. For all t ≥ 0, let us define the free membrane potential h(t) as the solution
of

(5.2) dht =
µt − ht
τm

dt+ JdZt

with initial condition h0 = 0 (cf. (5.1b)). It is clear that for fixed s > 0, |u(t|s) − ht| → 0
when t→∞. In practice, there exists a sufficiently large time T ≫ τm such that for t−s > T ,
the initial condition for (5.1b) will be forgotten and the membrane potential u(t|s) with last
reset time s can be well approximated by the free membrane potential ht. We call T the
history length. Associated with the free membrane potential is the free hazard rate defined as
λfree(t) := f(ht). The free hazard rate can be interpreted as the firing intensity of neurons that
have fully recovered from refractoriness because the last spike of those neurons happened before
time t− T and thus has been approximately forgotten. For the numerical implementation, it
is useful to consider the slightly modified model, in which we use the above approximation,
i.e. where λ(t|s) is set to λfree(t) if t−s > T . For the sake of notational simplicity, we will use
the same symbols for this approximate model. For 0 < t < T , there is no difference between
the approximate and the original model. Hence, the solution of the approximate model is
governed by (4.7) and (5.1). However, for t > T , the integrals in (4.7b) and (4.7c) do not
need to be evaluated over the whole history from 0 to t but reduce to integrals over ]t−T, t]:

Āt =



∫

]t−T,t]
λ(t|s)S(t|s)dZs + λfree(t)xt + Λt

(
1−

∫

]t−T,t]
S(t|s)dZs − xt

)


+

,(5.3a)

Λt =

∫
]t−T,t] λ(t|s){1− S(t|s)}S(t|s)dZs + λfree(t)zt∫

]t−T,t]{1− S(t|s)}S(t|s)dZs + zt
.(5.3b)

These expressions depend on the additional variables xt :=
∫

[0,t−T ] S(t|s)dZs and zt :=∫
[0,t−T ]{1− S(t|s)}S(t|s)dZs that solve the following SDE’s [48]:

dxt = −λfree(t)xtdt+ S(t|t− T )dZt−T , xT = 0,(5.4a)

dzt = −2λfree(t)ztdt+ {1− S(t|t− T )}S(t|t− T )dZt−T , zT = 0.(5.4b)

Time discretization. The model with finite history length (5.3) with the SDE’s (5.1) and
(5.4) suggests a straightforward update scheme in discrete time. To this end, we consider
an equally-spaced partition of the time-axis with mesh ∆t and time points tt̂ = t̂∆t, t̂ =
0, 1, 2, . . . . Furthermore, we partition the co-moving history frame ]t − T, t] in discrete time
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points sr,t̂ = (t̂ − T + r)∆t, r = 1, . . . , T with T = T/∆t. On the discrete time points, we
define the following quantities:

nr,t̂ := Zsr,t̂+∆t − Zsr,t̂
, Sr,t̂ := S(t̂∆t | sr,t̂), ur,t̂ := u(t̂∆t | sr,t̂),

Pr,t̂ := 1− exp

[
−∆t

2

(
λ(t̂∆t | sr,t̂) + λ((t̂+ 1)∆t | sr,t̂)

)]
,

ht̂ := h(t̂∆t), xt̂ := x(t̂∆t), yt̂ := y(t̂∆t), zt̂ := z(t̂∆t)

P̄t̂ := 1− exp

[
−∆t

2

(
λfree(t̂∆t) + λfree((t̂+ 1)∆t)

)]
.

Using these quantities, the mesoscopic model can be simulated with the following update rule
[48]: For r = 1, . . . , T − 1,

nr,t̂+1 = nr+1,t̂(5.5a)

Sr,t̂+1 =
(
1− Pr+1,t̂

)
Sr+1,t̂(5.5b)

ur,t̂+1 = ur+1,t̂ +

(
µt̂∆t − ur+1,t̂

τm
+ J

nT ,t̂

∆t

)
∆t(5.5c)

ht̂+1 = ht̂ +

(
µt̂∆t − ht̂

τm
+ J

nT ,t̂

∆t

)
∆t(5.5d)

xt̂+1 =
(
1− P̄t̂

)
xt̂ + S1,t̂+1n1,t̂+1(5.5e)

zt̂+1 =
(
1− P̄t̂

)2
zt̂ + Pt̂xt̂ +

(
1− S1,t̂+1

)
S1,t̂+1n1,t̂+1(5.5f)

with boundary conditions ST ,t̂ = 1 and uT ,t̂ = 0 for all t̂ > 0, and

nT ,t̂+1 =
ξt̂
N
, ξt̂ ∼ Binomial(N, n̄t̂),(5.5g)

n̄t̂ = P̄t̂xt̂ +

T∑

r=2

Pr,t̂Sr,t̂nr,t̂ + PΛ,t̂


1− xt̂ −

T∑

r=2

Sr,t̂nr,t̂


 ,(5.5h)

PΛ,t̂ =
P̄t̂zt̂ +

∑T
r=2 Pr,t̂

(
1− Sr,t̂

)
Sr,t̂nr,t̂

zt̂ +
∑T

r=2

(
1− Sr,t̂

)
Sr,t̂nr,t̂

.(5.5i)

The independent, identically distributed binomial random variables ξk
t̂
represent the total

number of neurons that fire in the time interval (t̂∆t, (t̂+1)∆t]. Therefore, the empirical pop-
ulation activity, (1.2), and the corresponding population rate (intensity) are finally obtained
as At̂∆t,∆t = nT ,t̂+1/∆t and Āt̂∆t = n̄t̂/∆t, respectively. A pseudo-code implementation of
the mesoscopic model, (5.5), is given in Algorithm 5.1. A Julia-code implementation of the
extended model (Appendix A, Algorithm A.1) is publicly available at the following GitHub
link: https://github.com/schwalger/mesodyn-LIF.
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Algorithm 5.1 Mesoscopic neuronal population model

Data: External stimulus at grid points µt̂∆t, t̂ = 1, . . . , tsim
Result: Population activities At̂∆t,∆t and rates Āt̂∆t, t̂ = 1, . . . , tsim

1 T = ⌊5τm/∆t⌋+1 x = 0, z = 0, h = 0 nT = 1, n1:T −1 = 0 A0,∆t = 1/∆t S1:T = 1, u1:T = 0
λfree = f(h), λ1:T = f(h);

2 for all times t̂ = 1, . . . , tsim do
3 h ← h + [(µt̂∆t − h)/τm + JA(t̂−1)∆t,∆t]∆t Pλ = Pfire(f(h), λfree) W = Pλx, X = x,

Y = Pλz, Z = z x← x−W z ← (1− Pλ)
2z +W for r = 2, . . . , T do

4 ur−1 = ur+[(µt̂∆t−ur)/τm+JA(t̂−1)∆t,∆t]∆t Pλ, λr−1 = Pfire(f(ur−1), λr) m = Srnr

v = (1− Sr)m W ←W + Pλm; // W :=
∫

[0,t] λ(t|s)S(t|s)dZs

5 X ← X +m; // X :=
∫

[0,t] S(t|s)dZs

6 Y ← Y + Pλv; // Y :=
∫

[0,t] λ(t|s){1− S(t|s)}S(t|s)dZs

7 Z ← Z + v; // Z :=
∫

[0,t]{1− S(t|s)}S(t|s)dZs

8 Sr−1 = (1− Pλ)Sr nr−1 = nr
9 end

10 x← x+S1n1 z ← z+(1−S1)S1n1 if Z > 0: PΛ = Y/Z, else PΛ = 0 n̄ = min(max(0,W+
PΛ(1−X)), 1); // expected spike count Nn̄ = NĀt∆t

11 draw nT = Binomial(N, n̄)/N Āt̂∆t = n̄/∆t At̂∆t,∆t = nT /∆t
12 end

Function Pfire(λ, λold)

1 Pλ = (λ+ λold)∆t/2;
2 if Pλ > 0.01 then Pλ ← 1− e−Pλ ;
3 return Pλ, λ

6. Conclusions. We have proven that a simplified version of the model proposed in [48]
is well-posed and stable in variation in the sense of Brémaud and Massoulié [5]. The simpli-
fied model is a Markov embedding of an intensity-based and history-dependent point process
where the history dependence is, loosely speaking, more ‘nonlinear’ than in nonlinear Hawkes
processes (in the sense that the past filtering function is updated at each jump event such that
even in the argument of the intensity function f(·), the dependence on the past is not linear
any more, that is, not given by convolution over the past events). To deal with this difficulty
in the proofs, we combined arguments for Markov processes taking values in the space of
positive measures and nonlinear Hawkes processes. From this point of view, the finite-size
population equation (1.12) is even more ‘nonlinear’, which makes its mathematical analysis
challenging. The simplified model and the original model of [48] could therefore be seen as ex-
amples of general intensity-based and history-dependent point processes, extending nonlinear
Hawkes processes. Despite their mathematical complexity, these general point processes are
rather practical for applications since they can be efficiently simulated, and, as intensity-based
processes, can be easily fitted to empirical data using likelihood-based methods [43]. We hope
that this work will stimulate further mathematical research on these general intensity-based
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processes, which have already proven to be useful in neuroscience.

Author statement. All authors contributed equally to the present article.

Appendix A. Multi-population model.
The only difference between the neuron model in (1.1) and the Generalized integrate-and-

fire model considered in [48] is the addition of a synaptic filtering kernel ϵ and an absolute
refractory period ∆abs ≥ 0. Accordingly, (1.1a) is replaced by

dU i,N
t =


µt − U

i,N
t

τm
dt− U i,N

t− dZi,N
t +


 J

N

N∑

j=1

∫

]−∞,t]
ϵ(t− s)dZj,N

s


 dt


1T i,N

t >∆abs
,

where T i,N
t is an additional “age”-variable defined by the stochastic dynamics dT i,N

t = dt −
T i,N
t− dZi,N

t , which clocks the time elapsed since the last spike of neuron i. Then, the definitions
for the hazard rate λ and the survival S can be easily adapted replacing Φ in (1.11) by

Φz
s,t(u) := ue−

t−s
τm +

∫ t

s
e−

t−r
τm

(
µr
τm

+ J

∫

]−∞,r]
ϵ(r − s′)dzs′

)
dr, ∀u ∈ R,

and replacing λ in (1.6) by λz(t|s) = f(Φz
s+∆abs,t

(0))1t≥s+∆abs
.

As explained in [48], it is straightforward to generalize (4.7) (with the aforementioned
extensions) to multiple interacting populations. Importantly, the multi-population model
allows to coarse-grain microscopic models of large biological networks of neurons, like a cortical
column.

Again, we will henceforth drop the superscripts Z. Let us consider a system of K inter-
acting (homogeneous) populations, each consisting of N1, . . . , NK neurons, with parameters

{Nk, τkm,∆
k
abs, f

k, ϵk, (µkt )t≥0}k=1...,K

and average connectivity matrix J, where Jkl is the average connection strength from popu-
lation l to population k. The multi-population version of (4.7) is

For all k = 1, . . . ,K and t > 0,

Zk
t = 1 +

1

N

∫

[0,t]×R+

1z≤NĀk
s−
πk(ds, dz),(A.1a)

Āk
t =



∫

[0,t]
λk(t|s)Sk(t|s)dZk

s + Λk
t

(
1−

∫

[0,t]
Sk(t|s)dZk

s

)


+

,(A.1b)

Λk
t =

∫
[0,t] λ

k(t|s){1− Sk(t|s)}Sk(t|s)dZk
s∫

[0,t]{1− Sk(t|s)}Sk(t|s)dZk
s

,(A.1c)

with the initial condition Z1
0 = · · · = ZK

0 = 1 and Λ1
0 = · · · = ΛK

0 = 0, where {πk}k=1,...,K are
independent Poisson random measures on R+ × R+ with Lebesgue intensity measure and
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Sk(t|s) = exp

(
−
∫ t

s
λk(r|s)dr

)
,(A.2a)

λk(t|s) = fk(uk(t|s))1t≥s+∆k ,

uk(t|s) = 1t≥s+∆k

∫ t

s+∆k

e
− t−r

τkm


µkr
τkm

+

K∑

l=1

Jkl

∫

[s,r]
ϵk(r − s′)dZ l

s′


 dr.(A.2b)

For simplicity, we have presented here a version of the multi-population model without spike-
frequency adaptation nor short-term synaptic plasticity but these features can be included
[48, 46].

In the following we choose a delayed expontial synaptic filter ϵk(t) = 1
τks

exp
(
− t−dk

τks

)
1t≥dk ,

where τks is the synaptic decay time constant and dk > 0 denotes the transmission delay
associated with the presynaptic population k. This choice allows us to rewrite (A.2a) and
(A.2b) as the solution of a SDE (with delay): for any s > 0,

dSk(t|s)
dt

= −λk(t|s)Sk(t|s),

τkm
duk(t|s)
dt

= −uk(t|s) + µkt + τkm

K∑

l=1

Jklylt,

τks dy
k
t = −ykt dt+ dZk

t−dk ,

with initial conditions Sk(s|s) = 1, uk(s|s) = 0 and yk0 = 0.
As in the case for a single population (section 5), the infinite history of (A.1) can be

approximated by a finite history. The method is completely analogous to that described
in section 5 except that now, each population k has its own free membrane potential hk(t)
following

τkm
dhk(t)

dt
= −hk(t) + µkt + τkm

K∑

l=1

Jklylt,

with initial condition hk(0) = 0, and its own history length T k ≫ τkm.
For the discrete time dynamics, being also completely analogous to the single population

case, we get the generalized algorithm:
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Algorithm A.1 Mesoscopic multi-population model with ∆k
abs ≥ 0, dk ≥ 0, τks ≥ 0

Data: External stimulus at grid points µk
t̂∆t

, t̂ = 1, . . . , tsim, k = 1, . . . ,K

Result: Population activities Ak
t̂∆t,∆t

and rates Āk
t̂∆t

, t̂ = 1, . . . , tsim, k = 1, . . . ,K

4 for all populations k = 1, . . . ,K do

5 T k = ⌊(5τkm + ∆k
abs)/∆t⌋ + 1, ∆̂k

abs = ⌊∆k
abs/∆t⌋, d̂k = ⌊dk/∆t⌋ xk = 0, yk = 0, zk = 0,

hk = 0 nkT k = 1, nk
1:T k−1

= 0 Sk
1:T k = 1, uk

1:T k = 0 λkfree = f(hk), λk
1:T k = f(hk);

6 end

7 for all times t̂ = 1, . . . , tsim do

8 for all populations k = 1, . . . ,K do Iksyn =
∑K

l=1 J
klyl for all populations k = 1, . . . ,K

do
9 hk ← hk +[(µk

t̂∆t
−hk)/τkm + Iksyn]∆t Pλ, λ

k
free = Pfire(f(hk), λkfree) W = Pλx

k, X =

xk, Y = Pλz
k, Z = zk xk ← xk−W zk ← (1−Pλ)

2zk+W for r = 2, . . . , T k− ∆̂k
abs

do
10 ukr−1 = ukr + [(µk

t̂∆t
− ukr )/τkm + Iksyn]∆t Pλ, λ

k
r−1 = Pfire(fk(ukr−1), λ

k
r ) m = Sk

rn
k
r

v = (1− Sk
r )m W ←W + Pλm; // W :=

∫
[0,t] λ

k(t|s)Sk(t|s)dZk
s

11 X ← X +m; // X :=
∫

[0,t] S
k(t|s)dZk

s

12 Y ← Y + Pλv; // Y :=
∫

[0,t] λ
k(t|s){1− Sk(t|s)}Sk(t|s)dZk

s

13 Z ← Z + v; // Z :=
∫

[0,t]{1− Sk(t|s)}Sk(t|s)dZk
s

14 Sk
r−1 = (1− Pλ)S

k
r nkr−1 = nkr

15 end

16 xk ← xk + Sk
1n

k
1 zk ← zk + (1 − Sk

1 )S
k
1n

k
1 for time points in refractory period r =

T k − ∆̂k
abs + 1, . . . , T k do

17 X ← X + nkr nkr−1 = nkr
18 end
19 if Z > 0: PΛ = Y/Z, else PΛ = 0 n̄ = min(max(0,W + PΛ(1−X)), 1); // expected

spike count Nn̄ = NĀk
t∆t

20 draw nkT k = Binomial(Nk, n̄)/Nk yk ← yke−∆t/τks +
(
1− e−∆t/τks

)
nT k−d̂k/∆t Āk

t =

n̄/∆t Ak
t = nkT k/∆t

21 end

22 end

Appendix B. Exponential moments for Tc (end of the proof of Theorem 3.3). In-
troducing V̄ (ν, ν̃) := 1

2(∥ν∥ + ∥ν̃∥) and L̄ the generator of the coupled processes (ρt, ρ̃t), we
obtain as a direct consequence of (2.7) the control

L̄V̄ (ν, ν̃) ≤ Λ− (fmin ∧ Λ)V̄ (ν, ν̃),

implying that for any 0 < c < fmin ∧ Λ, there exists a suitable constant K∗ such that, with
C := {V̄ ≤ K∗},

(B.1) L̄V̄ ≤ −cV̄ + Λ1C .
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Fix some δ > 0 and introduce the sequence of hitting times

T1(δ) = inf{t ≥ δ : (ρt, ρ̃t) ∈ C}, Tn+1(δ) = inf{t ≥ Tn(δ) + δ : (ρt, ρ̃t) ∈ C}, n ≥ 0.

Adapting the arguments of Theorem 3.1 of [21] to our frame, we deduce from (B.1) that there
exist positive constants c1, λ̄ and c(δ, λ̄), c2(δ) with

E(ν0,ν̃0)[e
λ̄T1(δ)] ≤ c1V̄ (ν0, ν̃0) + c2(δ)

and

E(ν0,ν̃0)[e
λ̄(Tn+1(δ)−Tn(δ))] ≤ c(δ, λ̄) for all n ≥ 1.

Relying on (3.1), we may associate to each Tn(δ) a Bernoulli random variable Un ∼ B(ε),
independent of FTn(δ), such that

Un = 1 implies that at time Tn(δ), the coupling has succeeded.

In particular,

Tc ≤ inf{Tn(δ) : Un = 1}
and

E(ν0,ν̃0)[e
λ̄Tc ] ≤

∞∑

n=1

E(ν0,ν̃0)[e
λ̄Tn(δ)

1{U1=...=Un−1=0}],

for any λ̄ > 0. We are now ready to conclude. Since by monotone convergence,

lim
λ̄→0

E(ν0,ν̃0)[e
λ̄(Tn+1(δ)−Tn(δ))] = 1,

we choose λc > 0 such that for all 0 < λ̄ < λc,

sup
n≥1

E(ν0,ν̃0)[e
2λ̄(Tn+1(δ)−Tn(δ))] · (1− ε) =: κ2 < 1.

Using that, by successive conditioning,

E(ν0,ν̃0)[e
2λ̄Tn(δ)] ≤ E(ν0,ν̃0)[e

2λ̄T1(δ)] ·
(

κ2

1− ε

)n−1

,

this implies, using the Cauchy-Schwarz inequality,

E(ν0,ν̃0)[e
λ̄Tc ] ≤

∞∑

n=1

E(ν0,ν̃0)[e
λ̄Tn(δ)

1{U1=...=Un−1=0}]

≤
∞∑

n=1

√
E(ν0,ν̃0)e2λ̄Tn(δ)(1− ε)(n−1)/2 ≤

√
E(ν0,ν̃0)e2λ̄T1(δ)

∞∑

n=1

κn−1 <∞,



34 V. SCHMUTZ, E. LÖCHERBACH, AND T. SCHWALGER

which concludes the proof.

Appendix C. Proof of (3.4). Using (2.5), we have LW (ν) = −2∥ν∥ ν[f ] +
[
ν[f ] +Λ(1−

∥ν∥)
]

+

(
2∥ν∥+ 1

N

)
. Whenever

[
ν[f ] + Λ(1 −∥ν∥)

]
+
> 0, this yields, for a suitable constant

C,

LW (ν) ≤ −2W (ν) + C(∥ν∥+ 1),

which implies the claim. The easier case
[
ν[f ] + Λ(1 −∥ν∥)

]
+

= 0 follows simply from the

fact that ν[f ] ≥ fmin∥ν∥.
Appendix D. Power spectral density.
In Figure 1b, we have characterized the stationary population activity by the power spec-

tral density (PSD) defined for a wide-sense stationary process X(t) and f > 0 as [28]

(D.1) C̃X(f) := lim
T→∞

|X̃T (f)|2
T

, X̃T (f) :=

∫ T

0
e−2πiftX(t) dt.

For the mesoscopic model, we estimated the PSD from the simulated, empirical population
activity ÂN

t,h(t), (1.2) with h = 0.001 s, using the averaged periodogram (Bartlett’s method
without windowing). Specifically, for the PSD shown in Figure 1, we segmented a 50 s-long
realisation of the empirical population activity (sampled with time step h = 0.001 s) into 50
non-overlapping segments of length T = 1 s, computed the squared absolute values of the fast
Fourier transform for each segment, divided the result by T (as in (D.1)) and averaged the
resulting periodograms over all 50 segments.

For the microscopic model with J = 0 (as in Figure 1), the neuronal population consists of
N independent renewal processes generated by the LIF model with escape noise. Therefore,
the PSD of AN

t,h(t) in the limit h→ 0 is well-known from the renewal formula [49, 18]

(D.2) C̃A(f) =
r

N

1− |P̃ISI(f)|2
|1− P̃ISI(f)|2

.

Here, P̃ISI(f) =
∫
R PISI(t)e

−2πift dt is the Fourier transform of the interspike-interval density

of single neurons PISI(t) = λ0(t|0)S0(t|0)1t≥0 and r =
[∫∞

0 S0(t|0) dt
]−1

is their firing rate.

In Figure 1, these quantities were calculated numerically.
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[43] A. René, A. Longtin, and J. H. Macke, Inference of a mesoscopic population model from population
spike trains, Neural Comput., 32 (2020), pp. 1448–1498.

[44] P. Sanz-Leon, S. A. Knock, A. Spiegler, and V. K. Jirsa, Mathematical framework for large-scale
brain network modeling in the virtual brain, Neuroimage, 111 (2015), pp. 385–430.

[45] M. Schmidt, R. Bakker, K. Shen, G. Bezgin, M. Diesmann, and S. J. van Albada, A multi-scale
layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas, PLoS
Comput. Biol., 14 (2018), p. e1006359.

[46] V. Schmutz, W. Gerstner, and T. Schwalger, Mesoscopic population equations for spiking neural
networks with synaptic short-term plasticity, J. Math. Neurosci., 10 (2020), pp. Paper No. 5, 32.

[47] T. Schwalger and A. V. Chizhov, Mind the last spike—firing rate models for mesoscopic populations
of spiking neurons, Curr. Opin. Neurobiol., 58 (2019), pp. 155–166.

[48] T. Schwalger, M. Deger, and W. Gerstner, Towards a theory of cortical columns: From spiking
neurons to interacting neural populations of finite size, PLoS Comput. Biol., 13 (2017), p. e1005507.

[49] R. L. Stratonovich, Topics in the Theory of Random Noise, vol. 1, Gordon and Breach, New York,
1967.

[50] J. B. Walsh, An introduction to stochastic partial differential equations, in École d’été de probabilités
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Abstract

Can we use spiking neural networks (SNN) as generative models of multi-neuronal
recordings, while taking into account that most neurons are unobserved? Modeling
the unobserved neurons with large pools of hidden spiking neurons leads to severely
underconstrained problems that are hard to tackle with maximum likelihood esti-
mation. In this work, we use coarse-graining and mean-field approximations to
derive a bottom-up, neuronally-grounded latent variable model (neuLVM), where
the activity of the unobserved neurons is reduced to a low-dimensional mesoscopic
description. In contrast to previous latent variable models, neuLVM can be explic-
itly mapped to a recurrent, multi-population SNN, giving it a transparent biological
interpretation. We show, on synthetic spike trains, that a few observed neurons are
sufficient for neuLVM to perform efficient model inversion of large SNNs, in the
sense that it can recover connectivity parameters, infer single-trial latent population
activity, reproduce ongoing metastable dynamics, and generalize when subjected
to perturbations mimicking optogenetic stimulation.

1 Introduction

The progress of large-scale electrophysiological recording techniques [1] begs the following question:
can we reverse engineer the probed neural microcircuit from the recorded data? If so, should we
try to design large spiking neural networks (SNN), representing the whole microcircuit, capable
of generating the recorded spike trains? Such networks would constitute fine-grained mechanistic
models and would make in silico experiments possible. However appealing this endeavor may
appear, it faces a major obstacle – that of unobserved neurons. Indeed, despite the large number
of neurons that can be simultaneously recorded, they add up to a tiny fraction of the total number
of neurons involved in any given task [2], making the problem largely underdetermined. Training
SNNs with large numbers of hidden neurons is challenging because a huge number of possible latent
spike patterns result in the same recurrent input to the recorded neurons, making training algorithms
nontrivial [3–6].

From the perspective of a single recorded neuron, the spike activity of all the other neurons can
be reduced to a single causal variable – the total recurrent input (Figure 1 A). Hence, we argue
that fine-grained SNNs are not necessary to model the inputs from hidden neurons but can be
replaced by a coarse-grained model of the sea of unobserved neurons. One possible coarse-graining
scheme consists in clustering neurons into homogeneous populations with uniform intra- and inter-
population connectivity. With the help of mean-field neuronal population equations [7–10], this
approach enables the reduction of large SNNs to low-dimensional mesoscopic models composed
of neuronal populations interacting with each other [11–13]. Clusters can reflect the presence of
different cell-types [11, 14, 15] or groups of highly interconnected excitatory neurons [16–21]. From
a computational point of view, coarse-grained SNNs offer biologically plausible implementations of
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Figure 1: Training SNNs with large number of hidden neurons: challenge and approaches.
(A) The challenge of modeling the input to the observed neurons (black) coming from the hidden
neurons (white) while only a small fraction of neurons is observed. (B) Modeling strategies for
the input coming from the hidden neurons: SNNs (left) model the fine-grained spike trains of all
hidden neurons; neuLVM (middle) uses a mesoscopic description of the population activity, clustering
neurons into homogeneous populations; classic LVMs (right) model the latent activity with low-
dimensional phenomenological variables (the link to SNNs is lost).

rate coding by ensembles of neurons [22, 23] and ‘computation through neural population dynamics’
[24].

In this paper, we show that, after clustering the unobserved neurons into several homogeneous
populations, the finite-size neuronal population equation of Schwalger et al. [11] can be used to
derive a neuronally-grounded latent variable model (neuLVM) where the activity of the unobserved
neurons is summarized in a coarse-grained mesoscopic description. The hallmark of neuLVM is
its direct correspondence to a multi-population SNN. As a result, both model parameters and latent
variables have a transparent biological interpretation: the model is parametrized by single-neuron
properties and synaptic connectivity; the latent variables are the summed spiking activities of the
neuronal populations. Coarse-graining by clustering therefore turns an underdetermined problem –
fitting a SNN with a large number of hidden neurons – into a tractable problem with interpretable
solutions.

Switching metastable activity patterns that are not stimulus-locked have attracted a large amount of
attention in systems neuroscience [25–27] for their putative role in decision-making [28], attention
[29], and sensory processing [30]. Since generative SNN models of these metastable dynamics
are available [11, 21, 31, 32], metastable networks constitute ready-to-use testbeds for bottom-up
mechanistic latent variable models. Therefore, we propose metastable networks as a new benchmark
for mechanistic latent variable models.

2 Relation to prior work

While many latent variable models (LVM), including Poisson Linear Dynamical Systems (PLDS)
[33] and Switching Linear Dynamical Systems (SLDS) [34–39], have been designed for inferring
low-dimensional population dynamics [40–53], their account of the population activity is a phe-
nomenological one. By contrast, the LVM derived in this work is a true multiscale model, as latent
population dynamics directly stems from neuronal dynamics.

Our method builds on René et al. [54], who showed that the mesoscopic model of Schwalger et al.
[11] enables the inference of neuronal and connectivity parameters of multi-population SNNs via
likelihood-based methods when the mesoscopic population activity is fully observable. Here, for the
first time, we show that mesoscopic modeling can also be applied to unobserved neurons, relating
LVMs to mean-field theories for populations of spiking neurons [7–12]. Our neuLVM approach
towards unobserved neurons differs from the Generalized Linear Model (GLM) approach [55–57]
(and recent extensions [58–60]), which either neglects unobserved neurons or replaces unobserved
neurons by stimulus-locked inputs. Our approach also avoids microscopic simulations of hidden
spiking neurons [3, 4, 6], which scale poorly with the number of hidden neurons.
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3 Background: mesoscopic modeling of the population activity

Biophysical neuron models can be accurately approximated (neglecting the nonlinearity of dendritic
integration) by simple spiking point neurons [61–63], which can be efficiently fitted to neural data
[64–67]. Stochastic spiking neuron models where the neuron’s memory of its own spike history is
restricted to the time elapsed since its last spike (its age) are said to be of renewal-type.2 Examples of
renewal-type neurons include noisy leaky integrate-and-fire and ‘Spike-Response Model 0’ neurons
[9, 10]. The dynamics of a homogeneous population of interacting renewal-type neurons can be
described, in the mean-field limit, by an exact integral equation [7, 9, 10, 12, 69] (see [70–72] for
rigorous proofs). In the case of homogeneous but finite populations, Schwalger et al. [11] derived a
stochastic integral equation which provides a mesoscopic description (i.e. a description including
finite-size fluctuations) of the population dynamics.

For clarity of exposition, in this section and the next, we focus on the case of a single homogeneous
population with no external input. All the arguments presented below can be readily generalized to
the case of multiple interacting populations with external input (Appendices A B C).

Let us consider a homogeneous SNN of N recurrently connected renewal-type spiking neurons. For
T discrete time steps of length ∆t, let y ∈ {0, 1}N×T (aN×T binary matrix) denote the spike trains
generated by the N neurons. The fact that the neurons are of renewal-type implies, by definition,
that the probability for neuron i to emit a spike at time t can be written p(yit = 1|y1:t−1,Θ) =

ρ∆tθi (a
i,
∑
j J

ijyj1:t−1) where ai is the age of neuron i (i.e. the number of time steps elapsed since
the last spike of neuron i), the J ij are the recurrent synaptic weights of the network, and θi are the
parameters of neuron i. The sum

∑
j J

ijyj1:t−1 represents the past input received by neuron i in all
time steps up to t − 1. The superscript ∆t of the function ρ∆tθi indicates that we consider here the
discrete-time ‘escape rate’ of the neuron but the transition to continuous time is possible [10]. The
explicit expression for ρ∆tθi in the case of leaky integrate-and-fire neurons with ‘escape noise’ (LIF) is
given in Appendix A.

A crucial notion in this work is that of ‘homogeneous population’. The SNN described above forms
a homogeneous population if all the recurrent synaptic weights are identical, that is, J ij = J/N
(mean-field approximation) and if all the neurons share the same parameters, that is, θi = θ. In a
homogeneous population, all the neurons share the same past input Jn1:t−1/N , where n1:t−1 =
(n1, n2, . . . , nt−1) denotes the total number of spikes in the population in time steps 1, 2, . . . , t− 1

with nt′ =
∑N
i=1 y

i
t′ being the total number of spikes in the population at time t′. Then, for any

neuron in the population, the probability to emit a spike at time t, given its age a, is

pfiret,a = ρ∆tθ (a, Jn1:t−1/N). (1)

Importantly, Eq. (1) is independent of the identity of the neuron.

In a microscopic description of the spiking activity, the vector yt depends nonlinearly on the past
y1:t−1. A mesoscopic description aims to reduce the high-dimensional microscopic dynamics to
a lower-dimensional dynamical system involving the population activity nt only (in the case of
multiple interacting populations, nt is a vector of dimension K equal to the number of populations,
Appendix A). While an exact reduction is not possible in general (neuron models being nonlinear), a
close approximation in the form of a stochastic integral equation was proposed by Schwalger et al.
[11]. In discrete time, the stochastic integral equation reads

nt ∼ Binomial
(
N, n̄t/N

)
, (2a)

n̄t =

[∑

a≥1

pfiret,a St,a nt−a + Λt

(
N −

∑

a≥1

St,a nt−a

)

︸ ︷︷ ︸
‘finite-size correction’

]

+

. (2b)

The variable n̄t can be interpreted as the expected number of neurons firing at time t. The survival
St,a =

∏a−1
s=0 (1 − pfiret−a+s,s) is the probability for a neuron to stay silent between time t − a and

2Traditional renewal theory in the mathematical literature [68] is restricted to stationary input whereas we
use ‘renewal-type’ in the broader sense that also includes time-dependent input.
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t − 1. The finite-size correction term stabilizes the model by enforcing the approximate neuronal
mass conservation

∑
a≥1 St,a nt−a ≈ N (see [13] for an in-depth mathematical discussion). The

‘modulating factor’ Λt has an explicit expression [11, 13] in terms of pfire, S and n (indices are
dropped here for simplicity, complete formulas are presented in Appendix A, as well as explanations
on how to initialize Eq. (2)). Importantly, for a populations of interacting neurons, pfire, S and
Λ depend on n, which makes the stochastic equation (2) highly nonlinear. While the mesoscopic
model (2) is not mathematically exact, it provides an excellent approximation of the first and second
order statistics of the population activity [11], and is much more tractable than the exact ‘field’
equation [73, 74]. Also, the mesoscopic model (2) can be generalized to the case of non-renewal
neurons with spike-frequency adaptation [11] and short-term synaptic plasticity [75].

Formally, Eq. (2) is reminiscent of the Point Process Generalized Linear Model (GLM) [55–57] for
single neurons, with the notable difference that Eq. (2) contains additional nonlinearities beyond
those of the GLM because pfire, S and Λ all depend on n (Appendix A). Importantly, Equation (2)
readily defines an expression for the probability p(n|Θ) [54], where Θ = {J, θ} denotes the model
parameters. Thus, the mesoscopic model (2) allows us to avoid the intractable sum encountered if
we naively try to derive p(n|Θ) directly from the microscopic description (the intractable sum stems
from the fact that the identity of neurons is lost in the observation nt′ at each time step t′, Figure 1 B).

4 Theoretical result: Neuronally-grounded latent variable model

In this section, we first recall why training SNN with large numbers of hidden neurons via the
maximum likelihood estimator is computationally expensive. Then, we show that the mesoscopic
description, Eq. (2), allows us to derive a tractable, neuronally-grounded latent variable model, which
can be mapped to a multi-population SNNs.

For the sake of simplicity, all the arguments are presented for a single homogeneous population, but
the generalization to multiple interacting populations is straightforward (Appendices B and C). Let us
assume that we observe, during T time steps, the spike trains of q simultaneously recorded neurons
that are part of a homogeneous population of N neurons, with N > q. We split the spike trains
of the entire population y ∈ {0, 1}N×T into the observed spike trains yo (q neurons) and hidden
spike trains yh (N − q neurons). Even for a single population, it is difficult to infer the parameters
Θ = {J, θ} of the SNN from observation yo using the maximum likelihood estimator because, in the
presence of hidden neurons, the likelihood L involves a marginalization over the latent spike trains
yh:

L = p(yo|Θ) =
∑

yh

p(yo,yh|Θ). (3)

While different variants of the Expectation-Maximization (EM) algorithm [76] relying on sampling
yh have been used to maximize the likelihood [3, 4, 6], these algorithms scale poorly with the number
of hidden neurons.

Instead, we exploit the fact that, for a homogeneous population, the fine-grained knowledge of the
latent activity yh is not necessary since all the observed neurons receive at time t the same input Jnt,
where nt =

∑N
i=1 y

i
t is the population activity of Section 3. Hence, we rewrite the likelihood (3) as

L = p(yo|Θ) =
∑

n

p(yo,n|Θ), (4a)

where the probability p(yo,n|Θ) factorizes in T terms of the form

p(yo
t , nt|yo

1:t−1,n1:t−1,Θ) = p(yo
t |yo

1:t−1,n1:t−1,Θ)︸ ︷︷ ︸
given by neuron model, Eq. (1)

p(nt|n1:t−1,Θ)︸ ︷︷ ︸
approx. by meso. model, Eq. (2)

. (4b)

A comparison of Eqs. (3) and (4) shows that the high-dimensional latent activity yh has been
reduced to a low-dimensional mesoscopic description. Importantly, the q observed spike trains
are conditionally independent given the population activity n. While the conditional dependence
structure implied by Eq. (4b) is typical of standard latent variable models of multi-neuronal recordings
[33, 40, 77, 78], in our approach, the latent variable explicitly represents the population activity
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of the generative SNN and the parameters of the model are identical to those of the SNN. As the
latent population dynamics directly stems from neuronal dynamics, we call our LVM the neuronally-
grounded latent variable model (neuLVM).

The nonlinearity and the non-Markovianity of Eq. (2) prevents us from using previous EM algorithms
[33, 40, 77, 78]. Therefore, we fit the neuLVM via the Baum-Viterbi algorithm [79] (also known as
Viterbi training or hard EM [80]), which alternates estimation (E) and maximization (M) step

E-step. n̂n = argmaxn log p(yo,n|Θ̂n−1),

M-step. Θ̂n = argmaxΘ log p(yo, n̂n|Θ).

The estimated parameters Θ̂ and the estimated latent population activity n̂ are the result of many
iterations of E-step and M-step (Appendix C). Note that the computational cost of this algorithm
does not depend on the number of hidden neurons (it only depends on the number of populations).3.

5 Experimental results

5.1 Single homogenous population: SNN with metastable cluster states

Although seemingly simple, homogeneous populations of leaky integrate-and-fire (LIF) neurons
without external stimulation are SNNs with a rich repertoire of population dynamics, including
asynchronous states, synchronous states, and cluster states [7, 9]. In a m-cluster state (with m ≥ 2),
the population activity oscillates at a frequency m times higher than the average neuronal firing
rate: a neuron spikes every m cycles on average; conversely, approximately N/m neurons fire in
each cycle (N being to total number of neurons). Cluster states have therefore been described as
‘higher harmonics’ of the synchronous state (or 1-cluster state) [9, 81–83] where all neurons fire in
synchrony.

In this set of experiments, we always consider the same network of 600 LIF neurons (Figure 2 A),
where only the connectivity parameter J varies. When initialized at time 0 in the same unstable
asynchronous state, the network can spontaneously settle in a m-cluster state, where m depends on
the recurrent connectivity parameter J (Figure 2 B): finite-size fluctuations break the symmetry of the
asynchronous state and the population splits into m groups of synchronized neurons. The cluster state
to which the network converges can be read from the power spectrum of the neuronal spike trains
(Figure 2 B) (the fundamental frequency of the m-cluster state is approximately m times lower than
that of the 1-cluster state). Generating spike trains for 6 observed neurons (1% of the population), we
tested whether neuLVM could recover the connectivity parameter J (neuronal parameters θ were
given), for different J’s in the 1-, 2-, and 3-cluster states range (Figure 2 C, Table S3). The Pearson
correlation between the learned Ĵ and the true J was 0.81 with p-value 2.8e−17, showing that,
statistically, neuLVM could recover the connectivity parameter of the SNN.

To assess how well neuLVM can infer the latent population activity and how neuLVM compares
with the methods assuming full observability (like René et al. [54]), we studied in detail a single trial
showing a transition from a metastable 4-cluster state to a 3-cluster state (Figure 2 D,E). To generate
this trial, we chose J = 60.32 mV and initialized the network in the 4-cluster state. From the spike
trains of only two neurons (red stars in Figure 2 D), neuLVM could infer the ground truth population
activity n∗ during the 4-cluster state, and during the 3-cluster state, and could approximately detect
the transition between the two states (Figure 2 E). While the summed, smoothed spike trains missed
two out of four population activity peaks in the 4-cluster state, and one out of three peaks in the
3-cluster state (purple curve in Figure 2 E), the strong inductive biases contained in neuLVM enabled
the inference of the ‘missing’ peaks (blue curve in Figure 2 E). Finally, neuLVM and a method
assuming full observability (equivalent to a naive application of René et al. [54]) were compared
through their ability to recover the connectivity parameter J , for varying number of observed neurons
(Figure 2 F, Table S4). Since a naive application of the method of René et al. [54] does not take
into account hidden neurons, it led, as expected, to wildly inaccurate estimate Ĵ when the summed
spike train was far from the ground truth population activity (which happened when the number of
observed neurons was small, see Figure 2 E for an example). In contrast, the neuLVM managed to

3Our implementation of the algorithm is published online openly. The repository: TODO

5



Figure 2: Single-population SNN with metastable cluster states. (A) Network architecture (for
visualization purpose, only a few connections are drawn). (B) Spike train power spectrum for different
choices of connectivity parameter J . All simulations start from the same unstable asynchronous
state. The corresponding cluster states are indicated below. The blue region around J = 58 mV
indicates the absence of activity. (C) Connectivity recovered by the neuLVM Ĵ vs ground truth J .
The neuLVM was fitted on one-second single-trials recordings of six neurons (1% of the population).
For each ground truth J value (seven in total), ten different trials were generated: bars indicate the
standard deviations of the recovered Ĵ . The Pearson correlation coefficient between the recovered Ĵ
and J is r = 0.81 and the associated p-value is 2.8e−17 (see Table S3). (D) Spike trains generated by
the ground truth SNN for a trial showing a transition from a metastable 4-cluster state to a 3-cluster
state. The spike trains of two randomly sampled neurons (red stars) formed the training data (for
visualization purpose, only the first 0.6 second of the one-second trial is shown) on which neuLVM
was fitted: (E) the inferred population activity n̂|yo is compared to the ground truth n∗ and the
summed, smoothed spike trains (Gaussian smoothing window with σ = 1.4 ms, Appendix D) of
the two observed neurons. (F) Absolute difference between the recovered Ĵ and the ground truth J
for the neuLVM algorithm and the method of René et al. (2020) for varying numbers of observed
neurons. Using the same trial as in D, for each number of observed neurons, the two methods were
tested on 10 different samples of observed neurons (see Table S4). The marker ‘×’ indicates that the
difference |Ĵ − J | is larger than 30 mV. The median samples are linked with dashed lines to show the
trends.
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recover the connectivity parameter, thanks to the fact that the Baum-Viterbi algorithm of Section 4
also infers the population activity (see Figure 2 E for an example).

5.2 Multiple populations: SNN with metastable point attractors

5.2.1 Latent population activity inference and reproduction of metastable dynamics

As a second benchmark, we tested neuLVM on synthetic data generated by three interacting pop-
ulations with two populations of 400 excitatory LIF neurons and one population of 200 inhibitory
neurons (Figure 3 A). Recurrent connections between these population drive winner-take-all dynamics
with finite-size fluctuations-induced switches of activity between the two excitatory populations
[11, 84] – an example of ‘itinerancy between attractor states’ [25]. The population activities of this
metastable, three-population SNN constitute the ground truth against which different models will be
tested.

Figure 3: Network architecture and example
trial. (A) Architecture of the three-population,
metastable, winner-take-all SNN. (B) Example
trial from the spiking benchmark dataset: 10 sec-
onds recordings of 9 observed neurons (3 neurons
from each of the three populations) and (C) cor-
responding ground truth latent population activity
(for the two excitatory populations).

To build a spiking benchmark dataset, we ran-
domly selected 9 neurons – 3 neurons from each
of the three populations – and considered the
spike trains of these neurons as the observed
data. For simplicity, the correct partitioning of
the 9 neurons into 3 groups is given since it can
be reliably obtained by k-means clustering [85]
using the van-Rossum-Distance [86] between
spike trains. The complete dataset the consists
of 20 trials of 10 seconds. An example trial is
shown in Figure 3 B.

In contrast with the experiments of Section 5.1
where the neuronal parameters were given, here,
neuronal and connectivity parameters are not
given to neuLVM (see Appendix F). We com-
pared the performance of neuLVM with other
generative models of spiking data – PLDS [33],
SLDS [39], and GLM [55–57] – on single tri-
als of the spiking benchmark dataset in two
ways: (i) we measured the Pearson correlation
r between the inferred latent population activity
n̂|yo and the ground truth population activity
n∗ (Table 1 first column); (ii) we assessed how well could the fitted models reproduce metastable
dynamics by counting the occurrences of stochastic switches in free simulations – or in other words,
samples – of the fitted models (Table 1 second column). Tests (i) and (ii) on an example trial are
shown in Figure 4.

The Poisson Linear Dynamical Systems approach (PLDS, [33]) assumes that the recorded spikes can
be explained by point processes driven by a latent linear dynamical system of low-dimension. The
Poisson Switching Linear Dynamical System (SLDS, [34–39]) extends PLDS by allowing the latent
variables to switch randomly between two dynamical systems with distinct parameters. We should
stress that, in PLDS and SLDS, the latent variables are phenomenological representations of neural
population activity which have no direct link with the ground truth population activity n∗. In order to
still make test (i) possible for PLDS and SLDS, we will consider the best linear transformation of the
inferred latent variables which minimizes the mean squared error with the ground truth population
activity n∗.

On test (i), neuLVM gave better estimates n̂|yo of the latent population population activity n∗

(Pearson correlation r = 0.81) than the best linear transformation of the latent activity inferred by
PLDS and SLDS (r = 0.69 and r = 0.73 respectively) (Table 1 first column). The GLM approach
cannot be included in test (i) since it ignores unobserved neurons. Interestingly, the example trial
in Figure 4 A shows the latent population activity n̂|yo inferred by neuLVM is smoother than the
ground truth n∗ before and after the switch (finite-size fluctuations are reduced) but n̂|yo and n∗

closely match around the time of the switch. In contrast, fluctuations are exaggerated for PLDS and
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Figure 4: Three-population SNN with metastable point attractors. (A) Latent population activity
of the two excitatory populations inferred by neuLVM / PLDS / SLDS for one example trial (the
same as in Figure 3). The value r is the Pearson correlation coefficient between the inferred n̂|yo and
the ground truth n∗ population activities. (B-C) Examples of free simulations of the fitted neuLVM /
PLDS / SLDS.

Table 1: Model performance summary (corresponding to Figure 4).

Models Pearson correlation r
between n̂|yo and n∗

Number of switches during 100 seconds free simulations
of the fitted models (10.3± 2.7 for the ground truth SNN)

neuLVM 0.81± 0.02 7.8± 4.1
PLDS (0.68± 0.11) not visible
SLDS (0.73± 0.02) 11.9± 8.9
GLM - not visible

Mean and (±) standard deviation were computed over 20 different trials. Parentheses for PLDS and
SLDS indicate that these results are for the best linear transformation of the inferred latent variables.

SLDS. The population activity estimated by simply summing and smoothing the observed spike
trains (Appendix D) is shown in Figure S6.

On test (ii), neuLVM, fitted on a single trial of 10 seconds, was able to reproduce stochastic switches
similar to that of the ground truth SNN (Table 1 second column): free simulations of the fitted
neuLVM showed 7.8 switches in 100 seconds on average (10.3 switches on average for the ground
truth SNN). To make sure that stochastic switches were the result of parameter learning via the
Baum-Viterbi algorithm, we verified that, before learning, neuLVM did not show any metastable
dynamics (Figure S7). Examples of simulated trial are shown in Figure 4 B. PLDS failed to reproduce
stochastic switches, which is not surprising since winner-take-all dynamics are typically nonlinear.
SLDS could reproduce stochastic switches at the correct mean frequency (11.9 instead of the ground
truth 10.3), but the standard deviation of the simulated switch count, 8.9 (2.7 for the ground truth
SNN), indicates that a single 10 seconds trial was probable not sufficient for SLDS to learn switching
probabilities reliably. Finally, neuronal stochasticity and small network size (9 neurons) did not allow
GLM to produce stochastic switches, even when the training trial was prolonged to 500 seconds.

Taken together, only neuLVM could infer the latent population activity and reliably learn the
metastable dynamics on single trials of 10 seconds, demonstrating the effectiveness of its neuronally-
grounded inductive biases. Of course, these results do not guarantee that the inductive biases of
neuLVM would be effective on real data, since real data is most certainly out-of-distribution for
neuLVM. While applications on real data are beyond the scope of this paper, in Appendix F, we show
that neuLVM is robust, to a certain extent, to within-population heterogeneity and out-of-distribution
data.
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Figure 5: Network responses to perturbations mimicking optogenetic stimulation. (A) Activities
of the excitatory populations when the active population is stimulated (100 trials, ratios indicate the
number of No-switch or Switch trials). (B) Same as A but the silent population is stimulated.

5.2.2 Generalization: towards experimental predictions with neuronally-grounded modeling

Bottom-up, mechanistic models allow us to perform in silico experiments and generate predictions
about neural microcircuits, which can then be tested experimentally. So we wondered: can neuLVM,
fitted on a single trial of spontaneous activity (like in Section 5.2.1), predict the response of the SNN
when an external perturbation is applied? As a preliminary step in that direction, we tested whether an
external stimulation of the fitted model would generate the same response as that of the microscopic
SNN when subjected to the same perturbation.

Using the same multi-population network as in Section 5.2 (Figure 3 A) and neuLVM fitted on a single
trial of spontaneous activity (Figure 3 B), we compared the response of the ground truth SNN with
that of neuLVM when one of the populations was stimulated by a current pulse of 4 ms mimicking the
stimulation of a optogenetically modified population by a short light pulse. We simulated 100 trials
where the momentarily active excitatory population was stimulated, and 100 where the momentarily
silent excitatory population was stimulated (Figure 5 A and B respectively). Each stimulation led
to two possible outcomes: stimulation could trigger a state switch (Switch trials) or no state switch
(No-switch trials). In both the ground truth SNN and the fitted neuLVM, we found that stimulating
the silent population triggered more frequent state switches (Figure 5 B) than stimulating the active
population (Figure 5 A). Moreover, in both the ground truth and the fitted neuLVM, we could induce
‘excitatory rebound’ switches by stimulating the active population (Figure 5 A, lower half).

6 Discussion

Understanding the neural dynamics underlying computation in the brain is one of the main goals
of latent variable modeling of multi-neuronal recordings [45, 47, 51, 53, 87, 88]. We contribute
to this effort by proposing here a bottom-up, mechanistic LVM – the neuronally-grounded latent
variable model (neuLVM) – which can be mapped to a multi-population SNN. Using SNN-based
generative models, which are more biological than RNN-based models [45], could allow systems
neuroscientists to test hypothesis about the architecture of the probed microcircuit, and provide a
neuronally-grounded understanding of computation.

While this work shows the potential of the neuLVM approach, the application of neuLVM to real data
faces two methodological challenges. First, there is the problem of identifiability: although neuLVM
could recover a single unknown connectivity parameter (Section 5.1), our method could not always
recover the SNN parameters when many parameters were unknown (Section 5.2). Bayesian inference
could circumvent the problem of non-identifiability by estimating the full posterior distribution over
model parameters [54, 89]. In addition, perturbing the probed network, with optogenetic stimulation
for example, could help model parameter recovery by providing richer data. Second, in the case of
real data, choosing the good generative SNN model is a nontrivial task. For example, how many
homogeneous populations should the SNN have? Clustering the recorded spike trains could guide
the design of possible generative models and Bayesian model comparison, as used in biophysical
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modeling of neuroimaging data [90–92], could help in selecting the most likely model among several
possible models.

The model proposed here is only one particular example of SNN-based, tractable latent variable
model. Whether other such neuronally-grounded models of partially observed spike trains can be
formulated and efficiently applied to real data is a question left for future work.
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Appendices of:

Mesoscopic modeling of hidden spiking neurons

A Mesoscopic model in the case of LIF neurons

In this section, we present in detail the mesoscopic model of Schwalger et al. [11] in the case of
multiple interacting populations of LIF neurons, as formulated in [13].

Fine-grained SNN of LIF neurons with escape noise. Let us consider a general network of N LIF
neurons (indexed by i = 1, . . . , N ) with escape noise [10]. Neurons are modeled as point processes:
the probability for neuron i to emit a spike at time t, given the past network activity y1:t−1, is

p(yit = 1|y1:t−1,Θ) = 1− exp
(
−λit∆t

)
, with λit = exp

(
V i(t|t̂i)− ϑi

)
,

where the escape rate (or stochastic intensity) λit depends on the momentary difference between the
membrane potential V i(t|t̂i) and the firing threshold ϑi, via an exponential escape function. The
voltage V i(t|t̂i) of neuron i at time t depends on its last spike time t̂i = t−ai and the inputs received
up to time t, which include the inputs coming from the other neurons and the external input Iext,i1:t .
Between spikes, for all t > t̂i+ tiref (tiref being the absolute refractory period of neuron i), the voltage
dynamics follows

V i(t|t̂i) = V i(t− 1|t̂i) +
(
U ir +RIext,it − V i(t− 1|t̂i)

τ imem

)
∆t+

N∑

j=1

J ij
(
ϵij ∗ yj

)
(t),

and V i(t|t̂i) = 0, for all t ≤ t̂i + tiref (which means that the voltage is reset to 0 after each spike
and is clamped at 0 for an absolute refractory period tiref ≥ 0). The parameters τ imem > 0 and
U ir > 0 are the membrane time constant and the resting potential respectively. The neuron i is
therefore characterized by the parameters θi = {ϑi, U ir , τ imem, t

i
ref}. While the escape function is

usually parameterized by a rescaled exponentional function of the form f(v) = 1
τ i
0
exp(βi(v − ϑ̃i))

[10, Sec 9.1], the parameters τ i0, β
i and ϑ̃i can be absorbed in ϑi (up to a rescaling of the resting

potential U ir ). The resistance R = 1Ω is used here simply for the consistency of physical units. The
postsynaptic current induced by a spike of neuron j on neuron i is define by the synaptic weight J ij
and the synaptic kernel ϵij : R+ → R+. In this work, we consider exponential kernels of the form

ϵij(t) = H(t−∆ij)

τ ij
syn

exp

(
− t−∆ij

τ ij
syn

)
, where τ ijsyn is the synaptic time constant, ∆ij is the synaptic

delay andH is the Heaviside function. The symbol ∗ denotes the convolution operator.

Coarse-grained multi-population SNN. Coarse-graining and mean-field approximations consist
in partitioning the N neurons into K homogeneous populations, indexed by α = 1, . . . ,K, where (i)
all the neurons i in population α share the same neuronal parameters θi = θα; (ii) for any neuron
j in population β and any neuron i in population α, J ij = Jαβ/Nβ (Nβ being the number of
neurons in population β) and ϵij = ϵαβ ; (iii) all the neurons i in population α share the same external
input Iext,i = Iext,α. In such a coarse-grained K-population SNN, we have, for any neuron i in
population α,

N∑

j=1

J ij
(
ϵij ∗ yj

)
(t) =

K∑

β=1

Jαβ
(
ϵαβ ∗ nβ

)
(t)/Nβ ,

where nβt =
∑
i∈ pop. β y

i
t is the total number of spikes in population β at time t. Hence, the

probability for any neuron i in population α to emit a spike at time t, given its age a and the past

1



population activity n1:t−1 is

pfire,αt,a = 1− exp (−λαt ∆t) , with λαt = exp
(
V α(t|t− a)− ϑα

)
. (5)

For all a > tαref , we have the update rule

V α(t|t− a) = V α(t− 1|t− a) +
(
Uαr +RIext,αt − V α(t− 1|t− a)

ταmem

)
∆t

+
K∑

β=1

Jαβ
(
ϵαβ ∗ nβ

)
(t)/Nβ ,

and V α(t|t− a) = 0 for all a ≤ tαref . This gives the explicit expression for the probability pfiret,a in
Eq. (1). In this work, for simplicity, we will assume that all the synaptic kernels are the same, i.e.
ϵαβ = ϵ, ∀α, β (see Table S2).

Mesoscopic description. The K-population SNN described above does not by itself constitute a
mesoscopic model because the probability pfire,αt,a still involves the age a of some neuron. To get a
mesoscopic model (i.e. a model that does not involve the fine-grained modeling of each individual
neuron), Schwalger et al. [11] used the population activity n to approximate the age density of each
population and derived a closed form system of stochastic integral equations: For all α ∈ 1, . . . ,K,

nαt ∼ Binomial
(
Nα, n̄αt /N

α
)
, (6a)

n̄αt =

[∑

a≥1

pfire,αt,a Sαt,a n
α
t−a + Λαt

(
Nα −

∑

a≥1

Sαt,a n
α
t−a

)]

+

, (6b)

Λαt =

∑
a≥1 p

fire,α
t,a (1− Sαt,a)Sαt,a nαt−a∑

a≥1(1− Sαt,a)Sαt,a nαt−a
, (6c)

where Sαt,a =
∏a−1
s=0 (1− p

fire,α
t−a+s,s) is the survival, i.e. the probability for a neuron in population α

to stay silent between time t− a and t− 1. A concise version of the derivation of the mesoscopic
model (6) is presented in [13]. Note that Eq. (6) is not a one-dimensional stochastic dynamical
system: the Markov embedding of the stochastic dynamics (6) is infinite-dimensional [13]. Indeed,
Eq. (6) does not only describes the evolution of the population activity nαt but it also describes
the evolution of the whole age (pseudo) density {Sαt,ant−a}a≥1 in the population, also called the
“refractory density” [12].

Formally, the ‘initial condition’ of Eq. (6) is defined by the population activity nt for all t ≤ 0
(denoted nt≤0). Several practical choices of initial conditions have been discussed in [11, 13, 54].
In this work, if not otherwise specified, nt≤0 is taken to be time-invariant, with stationary activities
estimated from the observed data (see below).

The size of the discrete time steps ∆t does not need to be the same for the fine-grained SNN and
for the mesoscopic model (6). Indeed, it can be useful to take longer time steps for the mesoscopic
description (time coarse-graining). In the following appendices, when there is an ambiguity, ∆tmeso

will denote the time step length for the mesoscopic model and neuLVM. The length ∆tmeso will
always be smaller or equal to the neuronal absolute refractory periods, so that a neuron can fire at
most once in each time step.

B neuLVM for multiple interacting populations

Let us assume that we observe, during T time steps, the spike trains of q simultaneously recorded
neurons that are part of a K-population SNN of N neurons, with N > q. For each of the population
α = 1, . . . ,K, qα > 0 neurons are observed (

∑K
α=1 q

α = q) and share the same set of neuronal pa-
rameters θα, input weights {Jαβ/Nβ}Kβ=1, and output weights {Jβα/Nα}Kβ=1, where N1, . . . , NK

are the numbers of neurons in each population (
∑K
α=1N

α = N).
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The likelihood L of the observed spike trains. Following the assumptions described above,
the likelihood L of the observed spike trains yo (a binary q × T matrix) can be formally writ-
ten as

∑
n p(y

o,n|Θ), where n (an integer-valued K × T matrix) is the population activity and
Θ = {{Jαβ}1≤α,β≤K , {θα}Kα=1} are the parameters of the K-population SNN. The probability
p(yo,n|Θ) factorizes in T terms of the form

p(yo
t ,nt|yo

1:t−1,n1:t−1,Θ) = p(yo
t |yo

1:t−1,n1:t−1,Θ)︸ ︷︷ ︸
part a

p(nt|n1:t−1,Θ)︸ ︷︷ ︸
part b

.

The probability (part a) of the observed spikes yo
t at time t given the past observed spike activity

yo
1:t−1 and the past population activity n1:t−1 is

p(yo
t |yo

1:t−1,n1:t−1,Θ) =
K∏

α=1

qα∏

i=1

p(yo,α,it |ai,n1:t−1,Θ) =
K∏

α=1

qα∏

i=1

pfire,αt,ai ,

where pfire,αt,ai , given by Eq. (5) in Appendix A, is the probability for the recorded neuron i of
population α to emit a spike at time t.

The probability (part b) of the population activity nt at time t given the past population activity
n1:t−1 is

p(nt|n1:t−1,Θ) =
K∏

α=1

p(nαt |n1:t−1,Θ),

where p(nαt |n1:t−1,Θ) is approximated by the mesoscopic model (6).

C Fitting algorithm for neuLVM

Baum-Viterbi algorithm. Given the observed spike trains yo, we optimize the likelihood L =∑
n p(y

o,n|Θ) via an EM-like algorithm – the Baum-Viterbi algorithm [79]. Relying on the
heuristic that the posterior p(n|yo,Θ) should be concentrated around its maximum, we approximate
the posterior p(n|yo,Θ) by a point mass δµ, where µ = argmaxn log p(yo,n|Θ). By doing so, the
alternating estimation (E) and maximization (M) step of the n-th iteration read

E-step. n̂n = argmaxn log p(yo,n|Θ̂n−1),

M-step. Θ̂n = argmaxΘ log p(yo, n̂n|Θ).

Details of the optimization. In the M-step, parameters Θ are optimized using the L-BFGS-B
algorithm and the optimization stops when either the maximum number of iterations (maxiterM) is
reached, or the objective function improves by less than ftolM, or the maximum norm of the gradient
is less than gtolM. Hyper-parameters including maxiterM, ftolM and gtolM are given in Table S5. In
the E-step, to carry out gradient ascent, we approximate the discrete Binomial distribution Eq. (6a)
by a Gaussian, i.e. nαt ∼ N (n̄αt , n̄

α
t ), where n̄αt is given by the mesoscopic model Eq (6) [11].

With this approximation, the latent population activity n is optimized with the Adam algorithm with
learning rate lrE and the optimization stops when either the maximum number of iterations (maxiterE)
is reached, or the objective function stops improving for the last itertolE iterations. Hyper-parameters
including lrE, maxiterE, ftolE and itertolE are given in Table S5. The estimated parameters Θ̂ and the
estimated latent population activity n̂ are the result of many iterations of E-step and M-step. The
fitting algorithm ends either when it stops improving the objective function or the maximum number
of E-M iterations is reached.

Multiple data-driven initializations. To deal with the fact that the joint probability p(yo,n|Θ)
to optimize is non-convex and high-dimensional (n has dimension K × T ), we perform the Baum-
Viterbi algorithm Ninit times with initial parameters Θ̂0 uniformly sampled in a certain range given in
Appendices E and F. Since the sum over the observed neurons from population α,

∑qα

i=1 y
o,i
1:T , already

provides a rough estimate of the latent population activity nα1:T , the E-Step of the first iteration (n̂1)
is replaced by an empirical estimation of the population activity n̂sm

σ from the observed spike trains
(see Appendix D).
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Numerical implementation of the mesoscopic model. To implement the mesoscopic model (6),
we approximate the infinite sums

∑
a≥1 in Eq. (6) by finite sums

∑amax

a=1 , where amax is chosen to be
large enough such that the probability for a neuron to remain silent for a duration longer than amax

is negligible. In a our numerical implementation, the mesoscopic model (6) has therefore a finite
memory amax. Note that a more principled way to implement finite memory can be found in [13],
where a numerical implementation similar to ours is presented in detail. The hyper-parameter amax

is given in Appendices E and F. If not otherwise specified, the initial condition n≤0 of Eq. (6) are
chosen to be time-invariant, with stationary activities estimated from the first amax time steps of the
recorded spike trains.

D Smoothed empirical population activity

A smoothed empirical estimation of the population activity n̂sm
σ was obtained from the recorded spike

trains yo by applying a Gaussian smoothing kernel gσ with standard deviation σ. For population
α = 1, . . . ,K,

n̂sm,α
σ,t =





N

α

qα

qα∑

i=1

yo,α,i
1:T


 ∗ gσ


 (t).

E Details of the cluster state example

Values of parameters used in this example are given in Table S2, except if mentioned otherwise.

When the network is initialized in the unstable asynchronous state (Figure 2 B-C). In this case,
the network is always initialized, at time 0, in the same unstable asynchronous state with firing rate
20 Hz. The spike train power spectrum (Figure 2 B), for different choices of connectivity parameter
J , were computed using 600 non-overlapping segments of 120 s. To measure the goodness of the
connectivity recovered by newLVM, for each J in {59, 60, 61, 62, 63, 64, 65} mV, we simulated the
ground truth SNN (starting from the same unstable asynchronous state mentioned above) for 1 s and
further generated 10 different datasets with different samples of six observed neurons (1% of the
population).

When the network is initialized in a 4-cluster state (Figure 2 D-F). In this case, we simulated a
trial (one second, J = 60.32 mV) with a transition from a metastable 4-cluster state to a 3-cluster
state (Figure 2 D E). To test how well newLVM work in the regime where only a tiny fraction of
the total number of neurons are observed, for each number {1, 2, 5, 10} of observed neurons, we
generated 10 different datasets with different samples of observed neurons.

Fitting of the neuLVM. The initial parameter Ĵ0 was drawn uniformly in [10, 30] ∪ [90, 110]
mV. The latent population activity was initialized as the smoothed empirical population activity
(n̂1 = n̂sm

σ,t, Appendix D) with σ = 1.4 ms (Figure 2 E). Since the Baum-Viterbi algorithm converged
reliably when only J was unknown, Ninit was set to 1. The hyper-parameter ∆tmeso was set to 1 ms
and amax was set to 100 (amax∆tmeso = 100 ms).

Fitting of René et al. (2020). A naive application of René et al. [54] consists in fitting the model
with Ĵ = argmaxΘ log p(n̂1|J). The parameter Ĵ0 and the latent population activity n̂1 were set
the same way as for neuLVM, but Ninit was set to 200. The best performing Ĵs were reported in
Figure 2 F. The hyper-parameters ∆tmeso and amax were the same as for neuLVM.

F Details of the metastable point attractors example

Values of parameters used in this example are given in Table S2, except if mentioned otherwise. In
this example, we simulated a 500 s-long trial and randomly cut out 20 non-overlapping 10 s-segments
to generate the training datasets.
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Fitting of the neuLVM. The initial parameter Θ̂0 (which include the connectivities J ·, membrane
time constants τ ·mem, firing thresholds ϑ· and resting potentials U ·

r) were sampled randomly by
assuming the uniform prior on the range 0.4 to 2 times the ground truth values. In this example,

the connectivity matrix J was parametrized by {J e1J e2 , J i}J>0: J =

(
Je1 0 0

0 Je2 0
0 0 J i

)(
1 0 1
0 1 1
−1 −1 −1

)

(see Figure 3 A for the network architecture). The latent population activity was initialized as the
smoothed empirical population activity (n̂1 = n̂sm,α

σ,t , Appendix D) with σ = 400ms (Figure S7).
Out of 5 fits (Ninit = 5), the fit with the highest joint likelihood p(yo, n̂|Θ̂) was selected. The related
hyper-parameter ∆tmeso was set to 4 ms and amax was set to 250 (amax∆tmeso = 1000 ms). When
∆tmeso was set to a value that was larger than the ∆t of the recorded data, the recorded spike trains
were downsampled.

PLDS We used code from https://bitbucket.org/mackelab/pop_spike_dyn/src/
master/. To fit Poisson Linear Dynamical Systems (PLDS) [33] to the three-population exam-
ple, we initialized the parameters with nuclear norm penalized rate estimation [93] and used the
variational EM algorithm of [33]. The dimensionality of the latent states was set to three (the
number of populations). The time resolution of the recorded spike trains was downsampled to 4 ms
(∆tPLDS = 4 ms). Other hyper-parameters were set to default.

SLDS We used code from https://github.com/lindermanlab/ssm [39]. To fit Poisson
Switching Linear Dynamical Systems (SLDS) [34–38] to the three-population example, we up-
dated the parameters with stochastic variational inference with the posterior approximated by a
factorized distribution. The dimensionality of the continuous latent states was chosen to be three (the
number of populations) and the dimensionality of the discrete latent states was chosen to be three
(corresponding to the number of metastable states plus one for the transition state). We specified the
‘emissions model’ as ‘Poisson_orthog’ with the exponential escape function. Other hyper-parameters
were set to default. Further, for SLDS to work, discrete time step had to be large enough. Here we
downsampled datasets to 40 ms (the smallest ∆tSLDS that worked).

An additional test. We were interested to find out whether neuLVM is robust to within-population
heterogeneity and slightly out-of-distribution data. To answer this question, we performed an
additional test where we introduced within-population heterogeneity in the ground truth winner-take-
all (WTA) network (Section 5.2) by adding noise to the connectivity and neuronal parameters as
specified in the Table S6 (noise in the neuronal parameters is small to conserve metastable WTA
dynamics). Furthermore, we set the N ’s of the neuLVM to 300, 300, 300 (the N ’s of the ground truth
network are 400, 400, 200). We tested neuLVM on eight 10 s-segments cut out from a 100 s-long
trial. The method is only mildly affected by these changes: all fitted neuLVM reproduced metastable
WTA dynamics and the Pearson correlation between n̂|yo and n∗ was 0.76 ± 0.02, which is still
higher than the correlations obtained by PLDS and SLDS (see Table 1).
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Figure S6: Smoothed empirical estimate n̂sm,α
σ,t (Appendix D) of the latent population activity for

one example trial (the same as in Figure 3, two excitatory populations). The value r is the Pearson
correlation coefficient between the inferred n̂|yo and the ground truth n∗ population activities.

Figure S7: Spontaneous population activity simulated by the neuLVM before learning. Population
activity of one excitatory population (the blue trace) quickly dies out. No visible metastable dynamics.

Table S2: Values of parameters used in simulations. Boldface is used to indicate fitted parameters.

Name Description Value

Example Section 5.1
Single excit. population

Example Section 5.2
Excitat. (inhib.) populations

∆t time step 1 ms 0.2 ms
N number of neurons 600 400 (200)

Θ J connectivity 60.32 mV 9.984 mV (-19.968 mV)*
ϑ firing threshold 49.7 mV 3.7 mV (3.7 mV)
Ur resting potential 26 mV 14.4 mV (14.4 mV)
τmem membrane time constant 100 ms 20 ms (20 ms)
tref absolute refractory period 0 ms 4 ms (4 ms)

ϵ τsyn synaptic time constant 4 ms 3 ms (6 ms)
∆ synaptic delay 10 ms 0 ms (0 ms)

* i.e. for all population α, Jαβ = 9.984 mV if β is an excitatory population and Jαβ = −19.968
mV if β is the inhibitory population.
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Table S3: Performance summary (ii) when fitting neuLVMs to the single-population example (Sec-
tion 5.2, Figure 2 C) with m-cluster states. For each ground truth J , 10 different datasets were
generated and tested. (6 observed neurons.)

J 59 60 61 62 63 64 65

Ĵ (mean) 58.18 60.46 61.20 62.05 62.39 63.58 63.66
Ĵ (std) 0.50 0.71 0.93 0.46 1.11 1.59 1.85

Pearson r 0.81 (p = 2.8e−17)

Table S4: Performance summary (i) when fitting neuLVMs to the single-population example (Sec-
tion 5.2, Figure 2 F) with a transition from a metastable 4-cluster state to a 3-cluster state. For each
ground truth J , 10 different datasets were generated and tested. (J = 60.32 mV.)

# observed neurons 1 2 5 10 599

Ĵ (mean) 60.37 60.14 59.33 59.81 59.10
Ĵ (std) 2.43 1.48 0.91 1.25 1.26

Table S5: Hyper-parameters used when fitting neuLVM.

Name Value

Example Section 5.1
Single excit. population

Example Section 5.2
Excitat. (inhib.) populations

lrE 1e−3 1e−3
maxiterE 200 200
itertolE 3 3
lrM 1e−8 * 1e−8*
maxiterM 200 200
ftolM 2e−9* 2e−9*
gtolM 1e−5* 1e−5*

* Values are default as in scipy.optimize.minimize(method=‘L-BFGS-B’).

Table S6: Within-population heterogeneity introduced in the ground truth winner-take-all (WTA)
network (in the additional experiment of Appendix F).

ground truth within-population heterogeneity µ σ (normal distribution)

J e1J e2 , J i 9.98 / 9.98 / 19.97 2.00 / 2.00 / 2.00
ϑ 3.70 0.07
Ur 14.40 0.29
τmem 20.00 0.40
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Abstract
Can the dynamics of large Spiking Neural Networks (SNNs) converge to the smooth dynamics of

equally large Recurrent Neural Networks (RNNs)? Classical mean-field theory provides a positive

answer when the networks are redundant, that is, when each neuron has many “twins” receiving nearly

identical inputs. Using a disordered network model which guarantees the absence of redundancy in

large networks, we show that redundancy-free, densely connected spiking neural networks converge

to RNNs when the ℓ2 norms of the rows of the connectivity matrix tend to zero.

Neurons in the brain interact via spikes – short and stereotyped membrane potential

deflections – commonly modeled as Dirac pulses [1]. SNNs with recurrent connectivity offer

simplified models of real networks retaining the essential biological feature of spike-based

neuronal communication. On the other hand, traditional RNN are continuous dynamical

systems where abstract rate neurons directly transmit their firing rate to other neurons, a

type of communication which is not biological. Despite their inferior realism, RNNs continue

to play a central role in theoretical neuroscience because they can be trained by modern

machine learning methods [2–4], they can be analysed using tools from statistical physics

[5–8], and because biological networks are believed to perform computation by implementing

continuous dynamical systems [9, 10]. Closing the gap between the more biological SNNs

and the more tractable RNNs requires identifying the conditions under which the continuous

dynamics of RNNs can be approximated by SNNs [11].

To clearly state the problem, let us consider a SNN composed of N Poisson neurons (linear-

nonlinear-Poisson neurons [12] or nonlinear Hawkes processes [13]). For each neuron index i,

the spike times {tki }k of neuron i, which define the neuron’s spike train si(t) =
∑

k δ(t− tki ),

are generated by an inhomogeneous Poisson process with instantaneous firing rate ϕ(hi(t)),

where hi(t) represents the neuron’s potential and ϕ is a positive-valued nonlinear transfer

function. The potential hi(t) is a leaky integrator of the recurrent inputs coming from

neurons j ̸= i and the external input Iext
i (t):

τ
d

dt
hi(t) = −hi(t) +

N∑

j=1

Jijsj(t) + Iext
i (t), (1)

where τ is the integration (or membrane) time constant and Jij is the synaptic weight from

neuron j to neuron i (by convention, Jii = 0). While the spike-based model described

here is biologically simplistic, it is mathematically convenient as it has a straightforward
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rate-based counterpart. If we replace the spike trains {sj(t)}j in Eq. (1) by the corresponding

instantaneous firing rates {ϕ(hj(t))}j (i.e. neurons communicate their firing rate directly),

we get the rate-based dynamics

τ
d

dt
xi(t) = −xi(t) +

N∑

j=1

Jijϕ(xj(t)) + Iext
i (t), (2)

which defines a RNN with N rate units. To avoid confusion, we write hi(t) for the potentials

of the SNN (1) and xi(t) for the potentials of the RNN (2). While the mapping from the

SNN to the RNN looks simple at first glance, the spike-based stochastic process Eq. (1)

and the rate-based dynamical system Eq. (2) describe very different kinds of systems and

the SNN potentials hi(t) are not guaranteed, in general, to be equal or even close to the

RNN potentials xi(t) even if both networks receive the same external input. Note that if the

neurons are uncoupled (i.e. Jij = 0 for all i, j), the SNN potentials hi(t) are trivially equal to

the RNN potentials xi(t). Therefore, comparing the SNN and the RNN is meaningful only if

the coupling does not vanish. For nontrivial coupling, there are two known types of scaling

limits where the SNN potentials hi(t) converge to the RNN potentials xi(t):

(i) Spatial averaging over many redundant neurons : Consider networks of increasing size

N . If each neuron can be assigned to a point in some fixed space such that two neurons

assigned to the same point always share the same recurrent and external input, and

if the synaptic weights are scaled by 1/N , we can take the mean-field limit N →∞
[14, 15]. The fixed space can be either discrete and finite [16, 17] or continuous and

finite-dimensional [18], e.g. a ring. These classical mean-field limits entail redundancy,

i.e. the existence of large groups of identical neurons receiving the same recurrent and

external input when N →∞. To our knowledge, this form of redundancy has not been

found in the cortex.

(ii) Temporal averaging over many spikes : In Eq. (1), we can replace the transfer function

ϕ and the synaptic weights {Jij}i ̸=j by b ϕ and {Jij/b}i ̸=j , respectively (for b > 0), and

take the limit b→∞ [19]. This limit entails arbitrarily high firing rates in the SNN,

which is biological unrealistic since two spikes have to be separeted by at least 1 to

2 milliseconds (the absolute refractory period) [20]. Similarly, we can take the limit

τ →∞ in both Eq. (1) and (2) while re-scaling the synaptic weights {Jij}i ̸=j and the

external inputs Iext
i (t) by 1/τ . This last limit entails arbitrarily slow network dynamics,
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which is incompatible with human visual processing speed (less than 150 milliseconds)

[21].

In this letter, we address the following question: can large SNNs, as defined in Eq. (1),

converge to equally large RNNs without involving redundancy or temporal averaging.

Avoiding temporal averaging (ii) will be guaranteed by assuming that maxϕ ≤ 1/τ . Under

this condition, leaky integration by the potential, Eq. (1), is too fast to average out the

Poisson noise of individual input spike trains and neither of the two scalings mentioned under

(ii) can be applied.

To assess the redundancy of a RNN, we look at the distribution of correlations between

pairs of distinct neurons i ̸= j

ρ(xi, xj) := lim
T→∞

1

T

∫ T

0

(xi(t)− xi)(xj(t)− xj)

σxi
σxj

dt,

where xi and σ2
xi

are, respectively, the time average and fluctuation of xi(t):

xi := lim
T→∞

1

T

∫ T

0

xi(t)dt,

σ2
xi
:= lim

T→∞

1

T

∫ T

0

(xi(t)− xi)
2dt.

(3)

Based on the correlation distribution (which has total mass 1), we say that a network is

redundant if the mass of the correlation distribution around 1 (e.g. on some small interval

[θ, 1] with 0 < θ < 1) is non-negligible. For example, if the N units of a RNN are uniformly

assigned to points on a ring where nearby neurons receive similar recurrent and external

(stochastic) inputs, in the mean-field limit N → ∞, the distribution of the correlations

{ρ(xi, xj)}i ̸=j converge to a correlation distribution with strictly positive mass around at

1, reflecting the fact that the number of redundant “twins” per unit grows linearly with N

(Fig 1A, see the Appendix for the details on the simulated model). This simple ring model

illustrates how redundancy builds up in classical mean-field models as N →∞ (i).

Conversely, we say that large networks of a given model are redundancy-free if, for

any 0 < θ < 1, the mass of the correlation distribution on the interval [θ, 1] vanishes as

N →∞. In the following, we propose a disordered network model where large networks are

redundancy-free.

Input-driven disordered network model.— We construct the connectivity matrix J = {Jij}i,j
as a sum of random rank-one matrices (minus self-interaction terms), a construction similar
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Iext(t)
xrec(t)

hrec(t)SNN

RNN

A B C

D E

disordered

FIG. 1. Networks with (A,B) and without (C) redundant neurons. Distributions of correlations

ρ(xi, xj) in RNNs of increasing size N , for (A) a ring model, (B) a low-rank model with rank p = 3,

and (C) a disordered network model with load α = 10−4. In (B,C), the correlations ρ(xrec
i , xrec

j ) are

for pairs of neurons receiving no external input but only recurrent input. In the disordered network

model (C), correlations concentrate around 0 as N → ∞. (D) SNN and RNN comparison. The

potentials of the neurons receiving no external input but only recurrent input, hrec(t) and xrec(t),

are linear readouts of the recurrent drive. (E) Trajectories of single-neuron potentials in the SNN

(hrec
i (t), upper panel) and in the RNN (xrec

i (t), lower panel) during a one-second simulation of the

setup shown in (D). The networks have N = 106 neurons and load α = 10−4, as in (C). The same

randomly chosen 11 neurons are recorded in the SNN and in the RNN and each color corresponds

to a different neuron index i (the colors in the upper and lower panels correspond). For one neuron

index i (the black trace), the spike times of the neuron in the SNN are indicated by vertical bars.

The differences between the potentials of the SNN and the RNN are almost imperceptible. (A-E)

Neuronal parameters: τ = 10 ms and ϕ(x) = 1
2τ

(
tanh(x− θ) + 1

)
with θ = 2. Input noise is σ = 0.5

in (B-E).
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to that of Hopfield networks [7, 22, 23]. For any number of units N and any number of

patterns p, let ξ be a random N × p-matrix with i.i.d., zero-mean, unit-variance, normally

distributed entries {ξiµ}i,µ. We choose a connectivity matrix given by

Jij :=
1

cN

p∑

µ=1

ξiµ
(
ϕ(ξjµ)− a

)
for all i ̸= j, (4)

and Jii := 0 for all i, where the constants a := E[ϕ(ξ11)] and c := Var[ϕ(ξ11)] guarantee the

normalization
1

cN

N∑

i=1

(
ϕ(ξi1)− a

)
ϕ(ξi1)→ 1, as N →∞.

A well-known feature of this type of connectivity is that, exchanging the order of summation,

the dynamics of the RNN (2) can be re-written in terms of p overlap variables {mµ(t)}µ
[24–26]: for all i = 1, . . . , N and for all µ = 1, . . . , p,

τ
d

dt
xi(t) = −xi(t) +

p∑

ν=1

ξiνmν(t)− γiϕ(xi(t)) + Iext
i (t),

mµ(t) =
1

cN

N∑

j=1

(
ϕ(ξjµ)− a

)
ϕ(xj(t)),

where the γi :=
1
cN

∑p
ν=1 ξiν

(
ϕ(ξiν)− a

)
are virtual self-interaction weights. Analogously,

for the SNN, we have

τ
d

dt
hi(t) = −hi(t) +

p∑

ν=1

ξiνmν(t)− γisi(t) + Iext
i (t),

mµ(t) =
1

cN

N∑

j=1

(
ϕ(ξjµ)− a

)
sj(t). (5)

This reformulation clearly shows that if p≪ N , the γi are small and therefore the recurrent

drive {∑N
j=1 Jijϕ(xj(t))}i is approximately restricted to the p-dimensional subspace spanned

by the p columns of the random matrix ξ. To force the recurrent drive to visit all p dimensions

homogeneously over time in a single stationary process, we inject the following p-dimensional

external input to half of the neurons:

Iext
i (t) =

σ√
p

p∑

µ=1

ξiµηµ(t) if i ≤ N/2,

Iext
i (t) = 0 if i > N/2,

(6)
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where the η1(t), . . . , ηp(t) are independent Gaussian white noises and σ > 0 is the input noise

parameter. For indexing convenience, the potentials of the N/2 neurons receiving external

input but only recurrent input will be denoted xrec
i (t); the xrec

i (t) can therefore be seen as

linear readouts of the recurrent drive; cf. Eq. (2).

If the number of patterns p is kept constant as N → ∞, the limit RNN is a low-rank

mean-field model [8]. In such a low-rank model, redundancy also builds up as N → ∞,

namely, the distribution of correlations converges to a limit distribution where the density at

1 is strictly positive (Fig. 1B), indicating again that the number of redundant “twins” per

unit grows linearly with N . The reason for the accumulation of redundancy is the same as in

the ring model except that, here, the fixed space is not a ring but Rp: unit i has coordinate

(ξi1, . . . , ξip) and units with similar coordinates receive similar recurrent and external inputs.

Therefore, if p is kept constant as N →∞, we fall again in a case of spatial averaging over

redundant neurons (i); cf. [14].

To prevent redundancy from accumulating as N →∞, we make the number of patterns p

grow linearly with N , taking p = αN for some fixed load α > 0, as in the Hopfield model [23].

With this choice of scaling, synaptic weights {Jij}i,j scale as O(1/
√
N) (as in random RNNs

[6, 27]), whence the name “disordered network” for this model. We will show that for any

fixed α > 0, large networks are redundancy-free (as defined above). Then, we will show that

large SNNs converge to large RNNs, as α→ 0, achieving the numerical demonstration that

large, redundancy-free SNNs can converge to equally large RNNs. To show the convergence

of the SNN (1) to the RNN (2), we will inject the same time-dependent external input (6) in

both networks (Fig 1D) and compare the trajectories hrec
i (t) of the SNN with the trajectories

xrec
i (t) of the RNN (Fig 1E).

We first verify numerically that the SNNs (and the RNNs) converge to the dynamic

mean-field limit of a disordered system [6] (not to be confused with classical mean-field limits

where there is no disorder [15, 28]). Since the trajectories hrec
i (t) of the SNN are almost

identical to the trajectories xrec
i (t) of the RNN when α is small (α = 10−4 in Fig. 1C,E

and Fig 2A-E), we only show numerical results for the SNN; those for the RNN are almost

identical. Defining the time average hrec
i and the fluctuation σhrec

i
as in Eq. (3), we see

that the distributions of hrec
i concentrate around 0 (Fig 2A) and the distributions of σhrec

i

concentrate around a value slightly larger than 1 (Fig 2B) as N →∞. Moreover, when N

is large, the trajectories hrec
i (t) (and xrec

i (t)) look like independent realizations of the same

7



A B C

D E F

FIG. 2. (A-E) Scaling behavior of the disordered SNN as N increases for load α = 10−4. (A)

Distributions the of single-neuron average potentials hrec
i in the SNNs concentrate around 0. (B)

Distributions the of single-neuron potential fluctuations σhrec
i

concentrate around a value slightly

larger than 1. (C) Principal component analysis of hrec(t). The recurrent drive spans the whole

p = αN -dimensional subspace. (D) Distributions of correlations ρ(hrec
i , hrec

j ). The dashed black line

represents a centered normal distribution with variance 1/p, for N = 106. As in Fig. 1C, correlations

concentrate around 0. (E) Distributions of single-neuron distances ∆rec
i . Distances concentrate

around a limit distance ∆(α) ≈ 0.03 (dashed blue line). (F) Numerical estimate of the limit distance

∆(α) (circles) and fitted power law with exponent 1/2 (dashed line). The value ∆rec(α) for α = 10−4

is indicated by a blue circle and corresponds to the dashed blue line in (E). (A-F) All the quantities

are estimated using samples of 5000 neurons. Same neuronal and noise parameters as in Fig. 1B-E.

stochastic process (Fig. 1E), which is reminiscent of the dynamic mean-field theory of random

chaotic RNNs [6, 27]. The comprehensive study of this putative dynamic mean-field theory

is beyond the scope of this letter.

Large networks are redundancy-free.— To explain why, in the disordered network model

described above, correlations concentrate around 0 as N → ∞ (Fig. 1C), we first verify

numerically that the recurrent drive of the SNN is of dimension p = αN by performing a

principal component analysis (PCA) of the trajectories hrec
i (t) over a single trial of 100 s. The
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result shows that the cumulative explained variance grows approximately linearly with the PC

dimension and saturates at p (Fig. 2C), confirming that the recurrent drive homogeneously

visits all p dimensions spanned by the columns of ξ. This implies that the overlaps, Eq. (5),

also homogeneously visit their p dimensions. In the overlap formulation of the dynamics of

the SNN, Eq. (5), we see that, when α is small, the recurrent inputs of two distinct neurons

i and j are approximately
∑p

µ=1 ξiµmµ(t) and
∑p

µ=1 ξjµmµ(t) respectively. Therefore, for

large N , we expect the correlations between distinct neurons to approximate the correlations

between the corresponding rows of ξ:

ρ(hrec
i , hrec

j ) ≈ 1

p

p∑

µ=1

ξiµξjµ. (7)

By the Central limit theorem, the approximation Eq. (7) implies that the distribution of

correlations converges to a zero-mean normal distribution with variance 1/p, which we confirm

numerically (Fig. 2D). Since p = αN , the fact that the normal distribution has variance

1/p is sufficient to guarantee the absence of redundancy as N → ∞ (i). Indeed, for any

0 < θ < 1, the expected number of pairs of distinct neurons having a correlation greater or

equal to θ is the product of the proportion of such pairs and the total number of pairs in

the network. This product can be upper-bounded by e−θ2p/2 ·N(N − 1)/2 (using a standard

Gaussian tail bound) and therefore converges to 0 as N →∞ (since p = αN).

Large SNNs converge to large RNNs as α→ 0.— Finally, we study the convergence of the

SNN to the RNN as α→ 0. Let us first observe that, for a fixed α > 0 and as N →∞, the

distributions of the single-neuron distances

∆rec
i := lim

T→∞

∫ T

0

∣∣hrec
i (t)− xrec

i (t)
∣∣ dt.

concentrate around a finite value (around 0.03 for α = 10−4, Fig. 2E). Thereby, for any α > 0,

we can define the N →∞ limit distance between the SNN and the RNN as the time average

of the distance between the potential of a typical neuron i∗ (receiving recurrent input only)

in the limit SNN, ĥrec
i∗ (t), and the potential of the corresponding rate unit in the limit RNN,

x̂rec
i∗ (t):

∆rec(α) := lim
T→∞

1

T

∫ T

0

∣∣∣ ĥrec
i∗ (t)− x̂rec

i∗ (t)
∣∣∣ dt.

Numerical estimates of the limit distance ∆rec(α) indeed show that the limit SNN converge

to the limit RNN as α→ 0 and the power law fit of the estimated ∆rec(α) (Fig. 2F) indicates
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that

∆rec(α) = O(√α), as α→ 0. (8)

We have therefore shown, using the input-driven disordered network model, that large SNNs

can converge to equally large RNNs (i) without redundancy and (ii) temporal averaging. In

the absence of redundancy, what mechanism allows a SNN to approximate a RNN? Borrowing

ideas from an established mean-field convergence proof technique [16, 29] (see also [30]), we

present a heuristic argument suggesting that the convergence of the SNNs to the RNNs is

related to the ℓ2 norms (Euclidean norms) of the incoming synaptic weights to each neuron

(the rows of the connectivity matrix) ∥Ji∥2 =
√∑N

j=1 J
2
ij.

For simplicity, let us assume that at some initial time t, hi(t) = xi(t), for all i = 1, . . . , N .

Since the SNN (1) and the RNN (2) receive the same external input Iext
i (t), for a small time

step dt, we have, for the expected difference between Eqs. (1) and (2),

E
[
|hi(t+ dt)− xi(t+ dt)|

]
=

1

τ
E




∣∣∣∣∣∣

N∑

j=1

Jijnj −
N∑

j=1

Jijϕ(xj(t))dt

∣∣∣∣∣∣


+ o(dt),

where the {nj}j are independent Poisson-distributed random variables with means {ϕ(hj(t))dt}j ≡
{ϕ(xj(t))dt}j. By Jensen’s inequality and the independence of the random variables {nj}j,
we get the bound

E




∣∣∣∣∣∣

N∑

j=1

Jijnj −
N∑

j=1

Jijϕ(xj(t))dt

∣∣∣∣∣∣




2

≤
N∑

j=1

J2
ijϕ(xj(t))dt.

Since the transfer function ϕ is upper-bounded by 1/τ , we get

E
[
|hi(t+ dt)− xi(t+ dt)|

]
≤ 1

τ
∥Ji∥2

√
dt

τ
+ o(dt). (9)

The bound (9) implies that if for all i the ℓ2 norm of the incoming synaptic weights, ∥Ji∥2,

is small, then the distance between the SNN (1) and the RNN (2) remains small (at least

over a short time). In our disorder network model, the reason why the distance between the

SNN and the RNN does not diverge over time is likely due to the fact that we are in an

input-driven regime.

Importantly, the bound (9), which holds for any arbitrary connectivity matrix J, is

consistent with the idea that spike noise absorption in large networks – enabling a stochastic
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SNN to behave like a deterministic RNN – does not require redundancy (as we have

numerically shown with our the disordered network example).

Classical mean-field limit results where synaptic weights are scaled by 1/N (i), e.g. for

interacting homogeneous populations [14, 15] or spatially structured networks [15], can be

rigorously proven using bounds similar to Eq. (9) [16–18, 31, 32]. Indeed, if weights are

scaled by 1/N , then ∥Ji∥2
2 = O(1/N) and the bound (9) tends to 0 as N →∞ (see [16–18]

for full mean-field limit convergence proofs).

By contrast, in the case of our disordered network model, the synaptic weights {Jij}i ̸=j

defined in Eq. (4) scale as O(1/
√
N) and the distribution of the ℓ2 norms ∥Ji∥2 concentrate

around
√
α/c, meaning that for a typical neuron i∗ in a large network, ∥Ji∗∥2 =

√
α/c.

Hence, as α→ 0, the limit distance between a large SNN and a large RNN ∆rec(α), Eq. (8),

tends to zero at the same speed as the ℓ2 norm ∥Ji∗∥2, which supports the claim that the

bound (9) explains (at least heuristically) spike noise absorption in redundancy-free networks.

Whereas classical mean-field models rely on redundancy and the law of large numbers to

absorb spike noise, the bound (9) suggests that the “independence” of neurons and the

concentration of measure phenomenon (which only require variables to be independent [33])

are sufficient for redundancy-free networks to absorb spike noise; this heuristic observation

should be confirmed by future mathematical proofs (see [30] for a first step).

More generally, absorbing spike noise by imposing small ℓ2 norms ∥Ji∥2 (see Eq. (9)) while

keeping a nontrivial recurrent drive requires networks to be densely connected (fixed fraction

of nonzero incoming synaptic weights as N →∞), as opposed to sparsely connected (fixed

number of nonzero incoming synaptic weights as N →∞) [34, 35]. Note however that not

all densely connected networks absorb spike noise. For example, in random chaotic networks

[6], the ℓ2 norms ∥Ji∥2 are not small and spike noise is not absorbed [36]. This shows how

the ℓ2 norms of the incoming synaptic weights can help distinguish spike noise-absorbing

dense networks, which approximate rate-based dynamics, from dense networks where spike

noise plays a significant role in network dynamics.

While the disordered network models considered here are redundancy-free, it can be argued

that they are redundant in a weaker sense: the dimensionality p = αN of the recurrent

drive has to be small in proportion to the number of neurons N for the SNN to approximate

the RNN. Our disordered network model therefore shows a trade-off between spike noise

absorption and the dimensionality of noise-robust recurrent dynamics. Whether this trade-off
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is a general feature of spiking neural networks is an open theoretical question we leave for

future work. Such a tradeoff could shed light on how the noisy wetware of the brain [37]

constrains the implementation of “computation through neural population dynamics” [10].
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Ring model

For simplicity, in Fig. 1A, we simulate a ring model with spatially structured stochastic

external input but without recurrent connections. For all i = 1, . . . , N ,

τ
d

dt
xi(t) = −xi(t) + Iext

i (t),

Iext
i (t) = cos

(
2π

(
i

N
+Θ(t)

))

with

d

dt
Θ(t) = σ̃η(t),

where η(t) is a Gaussian white noises and σ̃ = 10−3.
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7 Discussion and conclusion

A well-established working hypothesis in neuroscience posits that computation in the brain

rests emergent noise-robust population dynamics in large networks of noisy neurons (Ger-

stner, Kistler, et al. 2014; Vyas et al. 2020). This hypothesis is shared by theorists, who build

bottom-up, mechanistic models of neuronal population dynamics via classical mean-field

theory (Gerstner and van Hemmen 1992; Wang 2002; Wong and Wang 2006), and data analysts,

who model multi-neuronal recordings using latent variable models (Duncker et al. 2019; Kim

et al. 2021; Macke et al. 2012). In Chapter 5, we showed the conceptual link between classical

mean-field theory and latent variable models.

Classical mean-field limits for networks of renewal-type neurons provide examples where

the dynamics of networks of noisy spiking neurons converge, in the mean-field limit, to a

deterministic neuronal population equation (Gerstner 2000; Ostojic, Brunel, and Hakim 2009).

In Chapter 2, I showed that mean-field limit proofs for such models can be generalized to a

large class of “nonrenewal” neuron models, that I called age- and leaky memory-dependent

Hawkes processes. We then analysed the long time behavior of the limit neuronal population

equation in Chapter 3.

In classical mean-field models (see Introduction and Chapter 2), large networks absorb neu-

ronal noise by applying the law of large numbers: the noise of independent and identically

distributed neurons is averaged out by the dense connectivity of the network. The problem

with using the law of large numbers to absorb neuronal noise is that it implies an unrealistic

form of redundancy. In Chapter 6, I showed numerically that redundancy was actually unnec-

essary. Without redundancy and the law of large numbers, how can large networks absorb

neuronal noise? As the informal argument at the end of Chapter 6 suggests, concentration

of measure is sufficient. Studying the effect of neuronal noise in large networks of stochastic

spiking neurons through the lens of concentration of measure is an exciting direction for

future theoretical work. In a way, this would be the natural direction to take for going beyond

classical mean-field models since the law of large number is (roughly speaking) only a special

case of the concentration of measure phenomenon. Although concentration of measure was

not thoroughly treated in Chapter 6, we can nevertheless extract from the given example a
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Chapter 7 Discussion and conclusion

heuristic strategy for taming neuronal noise in large networks. First, if the direct effect of

any single presynaptic neuron on any postsynaptic neuron vanishes in large networks (dense

connectivity), we get propagation of independence (borrowing the expression of Jabin, Poyato,

and Soler (2021)), i.e., neurons behave like independent – but not necessarily identically dis-

tributed – processes. Then, since independence is the key ingredient for the concentration of

measure, we can search for quantities whose measure (probability distribution) concentrates.

Finally, if the interaction between neurons can be reduced to these almost-deterministic

quantities, reliable “computation through neural population dynamics” (Vyas et al. 2020) is

theoretically possible.

Concentration of measure also appear in deterministic networks of rate units with quenched

disorder; landmark results on the statics (Amit, Gutfreund, and Sompolinsky 1985b; Gardner

1988) and dynamics (Sompolinsky, Crisanti, and Sommers 1988) of disordered neural networks

have been proven by probability theorists using the idea of concentration of measure (large

deviations in particular) (Arous and Guionnet 1995, 1997; Bovier and Picco 2012; Guionnet

1997; Moynot and Samuelides 2002; Talagrand 2010, 2011). The spiking disordered network

described in Chapter 6 is an example of model with both quenched disorder and neuronal

noise. The rigorous mathematical study of such models would generalize two currently distinct

families of mean-field models: mean-field models for networks of stochastic spiking neurons

(where synaptic weights are scaled by 1/N ) and mean-field models for disordered networks of

rate units (where synaptic weights are scaled by 1/
p

N ).

Regarding biological realism, all exact mean-field models studied or cited in this thesis share

the common limitation of being models of densely connected networks. In densely connected

networks, no matter the scaling of the synaptic weights (1/N or 1/
p

N ), in the mean-field

limit N →∞, the direct effect of any single presynaptic neuron on any postsynaptic neuron

vanishes. This feature is incompatible with experiments showing that the stimulation of

a single neuron (or a few neurons) can systematically affect other neurons (Carrillo-Reid,

Yang, et al. 2016; Jouhanneau, Kremkow, and Poulet 2018; London, Roth, et al. 2010), brain

state (Li, Poo, and Dan 2009), and even behavior (Brecht et al. 2004; Carrillo-Reid, Han, et al.

2019; Dalgleish et al. 2020). Single neuron stimulation experiments therefore suggest that

neural circuits are, to a certain extent, sparsely connected, that is, a single spike can have a

non-negligible effect on some postsynaptic neurons. The problem is that there is no obvious

propagation of independence in sparsely connected networks and independence is critical

for the concentration of measure. Rigorous mathematical results on the effects of neuronal

noise in sparse networks are, to my knowledge, lacking. Such theoretical results would be

of interest to many experimentalists currently using two-photon optogenetics for targeted

stimulation of single (or few) neurons in vivo (Adesnik and Abdeladim 2021; Russell et al.

2022; Yang et al. 2018). Other important biological neuronal features have been neglected

in the models considered in this thesis, notably, dendritic dynamics (London and Häusser

2005; Poirazi and Papoutsi 2020) and synaptic noise (Rusakov, Savtchenko, and Latham 2020).

Developing mathematically tractable models including these features would contribute to our

understanding of how neuronal noise is tamed in the brain.
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Starting with the study of classical mean-field models for networks of noisy spiking neurons,

this thesis ends with an hypothesis. Noise-robust population dynamics in classical mean-field

models – taking the form of deterministic neuronal population equations – is only a very

special case of a more general mechanism relying on two probabilistic ingredients: indepen-

dence and concentration of measure. Studying the interplay between these two phenomena in

mathematical models of biological neural networks could help us understand how neuronal

noise constrains the design of brain circuits and how reliable computation emerges from large

networks of unreliable neurons.
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Visiting doctoral student in the Buenos Aires Probability Group Jul 2019 - Sep 2019
University of Buenos Aires, Argentina
Supervisor: Prof. Pablo A. Ferrari
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