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LONG TIME BEHAVIOR OF AN AGE- AND LEAKY
MEMORY-STRUCTURED NEURONAL POPULATION EQUATION\ast 

CLAUDIA FONTE\dagger AND VALENTIN SCHMUTZ\ddagger 

Abstract. We study the asymptotic stability of a two-dimensional mean-field equation, which
takes the form of a nonlocal transport equation and generalizes the time-elapsed neuron network
model by the inclusion of a leaky memory variable. This additional variable can represent a slow
fatigue mechanism, such as spike-frequency adaptation or short-term synaptic depression. Even
though two-dimensional models are known to have emergent behaviors, such as population bursts,
which are not observed in standard one-dimensional models, we show that in the weak connectivity
regime, two-dimensional models behave like one-dimensional models, i.e., they relax to a unique
stationary state. The proof is based on an application of Harris's ergodic theorem and a perturbation
argument, both adapted to the case of a multidimensional equation with delays.
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1. Introduction. Multidimensional mean-field models in theoretical neuroscience
are challenging to analyze [41, 48, 2, 32], but their study is a necessary step towards
understanding how multiple timescales present at the single-neuron level [40, 45] affect
the dynamics of large networks of neurons.

One-dimensional mean-field equations for populations of spiking neurons with de-
terministic drift and stochastic jumps have been a subject of mathematical studies
since the works of Pakdaman, Perthame, and Salort [35, 36, 37], providing rigorous
foundations for earlier works in theoretical neuroscience [50, 21, 18, 19]. These pop-
ulation equations correspond to the mean-field limit of large networks of interacting
neurons [10, 15, 6]. However, they are derived from spiking neuron models that are of
the ``renewal"" type (with the exception of [37]), which means that, while they capture
the effect of neuronal refractoriness, they neglect slower neuronal timescales, such as
those of spike-frequency adaptation and short-term synaptic plasticity.

To take into account slow neuronal timescales, state-of-the-art phenomenological
spiking neuron models must be multidimensional [28, 45] or kernel-based [46, 38, 39]
(see also [20, Chap. 6.4]). In the following, we consider a class of neuron models that
characterize neuronal refractoriness by an ``age"" variable (the time elapsed since the
last spike) and effects of spike-frequency adaptation or short-term synaptic plasticity
by a ``leaky memory"" variable. For this class of neuron models, the mean-field limit
is characterized by a multidimensional transport equation with a nonlocal boundary
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condition [43]. In this work, we study in the two-dimensional case the long time
behavior of the solutions to the equation proposed in [43].

1.1. The age- and leaky memory-structured model. The population model
we consider describes the evolution of a density \rho t over the state-space (a,m) \in 
\BbbR + \times \BbbR \ast 

+, where a and m are the ``age"" and ``leaky memory"" variables of the neuron,
and \rho t(a,m) represents the density of neurons in state (a,m) at time t.

The nonlinear evolution problem for the density \rho t, for the initial datum u0, reads

\partial t\rho t +\nabla \cdot (b\rho t) =  - f(a,m, \varepsilon xt)\rho t,(1.1a)

\rho t(0,m) = 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \int \infty 

0

f(a, \gamma  - 1(m), \varepsilon xt)\rho t(a, \gamma 
 - 1(m))da,(1.1b)

xt =

\int t

0

\int \infty 

0

\int \infty 

0

h(t - s, a,m)f(a,m, \varepsilon xs)\rho s(a,m)dadmds,(1.1c)

\rho 0 = u0.(1.1d)

The dynamics of the model can be decomposed into three elements: (i) the behavior
of neurons between spikes, (ii) the spike-triggered jumps, and (iii) the interaction
between neurons, which we discuss in turn.

(i) Between spikes, neurons are transported along the vector field b(a,m) =
(1, - \lambda m), with \lambda > 0 (\nabla \cdot denotes the divergence operator over the state-space).

(ii) Neurons spike at rate f(a,m, \varepsilon xt), where f : \BbbR + \times \BbbR \ast 
+ \times \BbbR \rightarrow \BbbR + is the

``firing rate function"" corresponding to the stochastic intensity of the spike generation
process, and \varepsilon \in \BbbR is the connection strength. When a neuron spikes, its age a is
reset to 0, and its leaky memory variable m jumps to \gamma (m), where \gamma : \BbbR + \rightarrow \BbbR \ast 

+ is the
``jump mapping"" and is assumed to be a strictly increasing \scrC 1-diffeomorphism. As a
consequence, the border condition (1.1b) has a simple interpretation: the density of
neurons in state (0,m) at time t is equal to the marginal density of those neurons that
have their leaky memory variable in state \gamma  - 1(m) and spike at time t. The indicator
function 1m>\gamma (0) reflects the fact that m is always strictly positive, and the term\bigm| \bigm| (\gamma  - 1)\prime (m)

\bigm| \bigm| is necessary to guarantee the conservation of the total mass of neurons.
Indeed, formally,

\partial t

\int 
\rho t

=

\int 
1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \int \infty 

0

f(a, \gamma  - 1(m), \varepsilon xt)\rho t(a, \gamma 
 - 1(m))dadm - 

\int 
f(a,m, \varepsilon xt)\rho t=0,

by a change of variable.
(iii) Neurons interact through the ``total postsynaptic potential"" xt, which inte-

grates the past spiking activity of the population, filtered by the ``interaction function""
h : \BbbR + \times \BbbR + \times \BbbR \ast 

+ \rightarrow \BbbR , and which weighted by the connection strength \varepsilon \in \BbbR , in-
fluences the firing rate f . If we write N(t) the population activity (the mean firing
rate)

N(t) :=

\int \infty 

0

\int \infty 

0

f(a,m, \varepsilon xt)\rho t(a,m)dadm,

and if we take h independent of a and m, then xt takes the form

xt =

\int t

0

h(t - s)N(s)ds,
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where h is now a simple delay kernel, as in [21, 18, 19, 35]. In our formulation, h in
(1.1c) allows us to model more general interactions. For example, in subsection 1.2.2,

we show that by choosing h(t, a,m) = \^h(t)(1  - m), we can include the effects of a
classical short-term synaptic plasticity model [47].

1.2. Motivation. The model (1.1) extends the time-elapsed neuron network
model [35] (see also [18, 19]) by the addition of a leaky memory variable which can
accumulate over spikes (as opposed to the age variable which is reset to 0 at each
spike) and hence introduces a slow timescale in the population dynamics. Such a slow
timescale is typically used to account for some form of fatigue mechanism, which can
act on the spiking activity (spike-frequency adaptation) or on synaptic transmission
(short-term synaptic depression). Slow fatigue at the single-neuron level can lead
to nontrivial emergent behaviors at the population level, such as population bursts
[49, 22, 17] (see Figure 1), which have not been observed in the age- or voltage-
structured models of [35] and [10] (but see [37]). Even though some population equa-
tions have been successfully used in the computational neuroscience literature to study
emergent behaviors in networks of neurons with fatigue, these population equations
were obtained at the cost of a timescale separation approximation [22, 17] or a ``mix-
ing"" assumption [33, 44], making them inexact. In contrast, the model (1.1) is the
exact mean-field limit [43] for spiking neuron models with spike-frequency adaptation
or short-term synaptic depression, as we discuss now.

1.2.1. Spike-frequency adaptation. The recent spike history of a neuron can
modulate its firing rate f , leading to spike-frequency adaptation [3]. If h is indepen-
dent of a and m, and if \gamma (m) = m+ \^\Gamma for a fixed \^\Gamma > 0, (1.1) becomes

\partial t\rho t +\nabla \cdot (b\rho t) =  - f(a,m, \varepsilon xt)\rho t,(1.2a)

\rho t(0,m) = 1m>\^\Gamma 

\int \infty 

0

f(a,m - \^\Gamma , \varepsilon xt)\rho t(a,m - \^\Gamma )da,(1.2b)

xt =

\int t

0

h(t - s)

\int \infty 

0

\int \infty 

0

f(a,m, \varepsilon xs)\rho s(a,m)dadmds,(1.2c)

\rho 0 = u0.(1.2d)

If \eta : \BbbR + \rightarrow \BbbR is a bounded function such that lima\rightarrow +\infty \eta (a) = 0 (\eta is the ``refractory
kernel"" [20, sect. 9.3]), we can define f more explicitly as

(1.2e) f(a,m, \varepsilon xt) := \^f(\eta (a) - m+ \varepsilon xt),

where \^f : \BbbR \rightarrow \BbbR + is typically a nondecreasing function. Since m makes jumps
of size \^\Gamma > 0 at each spike and decays exponentially at rate \lambda between spikes, m
accumulates over spikes, which decreases the firing rate f (1.2e), leading to spike-
frequency adaptation [3]. More specifically, (1.2) is a population equation for adaptive
SRM0 (Spike Response Model) neurons [27, 20].

Populations of spiking neurons with spike-frequency adaptation exhibit self-
sustained population bursts when the connectivity strength is sufficiently strong [49,
22, 17]. We call self-sustained population bursts a periodic pattern of activity charac-
terized by an alternation between periods of low population activity and sequences of
population spikes (short time intervals where almost all the neurons in the population
fire). This definition is borrowed from the following definition of single-neuron burst-
ing [26]: ``When neuron activity alternates between a quiescent state and repetitive
spiking, the neuron activity is said to be bursting."" In Figure 1, we show simulations of
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Fig. 1. Depending on the connectivity strength \varepsilon , a population of adaptive SRM0 neurons
can exhibit self-sustained bursts (\varepsilon \gg 0) or relaxation to a stationary state (small \varepsilon ). We show
simulations of a network of 5 \cdot 105 adaptive SRM0 neurons, approximating the mean-field limit
(1.2), with identical parameters (except for \varepsilon ) and identical initial conditions. The raster plots
below the plots for the time-evolution of the total postsynaptic potential xt represent the spikes of
100 randomly selected neurons.

(1.2) for two different connectivity strengths \varepsilon . For large \varepsilon , we observe self-sustained
bursts, whereas for small \varepsilon , we observe relaxation to a stationary state. Note that
the neurons considered here are not intrinsically bursting: if an adaptive SRM0 neu-
ron receives no input (or a constant input), it does not burst. Population bursts are
therefore an emergent behavior of the mean-field model (1.2).

For comparison, in Appendix A we show similar simulations for the time-elapsed
neuron network model [35], where, as expected, we only observe self-sustained oscil-
lations or relaxation to a stationary state.

1.2.2. Short-term synaptic depression. The recent spike history of a presy-
naptic neuron can modulate the synaptic transmission, leading to short-term synap-
tic plasticity [51]. We will consider here the case of depressive synapses and use the
model of [47] (with a change of variable for convenience). In this case, the state-space
is (a,m) \in \BbbR +\times ]0, 1[ . Taking f independent of m, and choosing h and \gamma of the form
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h(t, a,m) := \^h(t)(1 - m) and \gamma (m) := 1 - \upsilon +\upsilon m for a fixed \upsilon \in ]0, 1[ , (1.1) becomes

\partial t\rho t +\nabla \cdot (b\rho t) =  - f(a, \varepsilon xt)\rho t,(1.3a)

\rho t(0,m) = 1m>\gamma (0)
1

\upsilon 

\int \infty 

0

f(a, \varepsilon xt)\rho t(a, \gamma 
 - 1(m))da,(1.3b)

xt =

\int t

0

\^h(t - s)

\int 1

0

\int \infty 

0

(1 - m)f(a, \varepsilon xs)\rho s(a,m)dadmds,(1.3c)

\rho 0 = u0.(1.3d)

Note that the term 1
\upsilon on the right-hand side of (1.3b) simply comes from the fact

that | (\gamma  - 1)\prime (m)| = 1
\upsilon for all m \in ]0, 1[ . Here, at each spike, m makes strictly positive

jumps whose size tends to 0 as m tends to 1 (since \gamma (1) = 1) and decays exponentially
at rate \lambda between spikes. If m is close to 1, synaptic transmission is weak because of
the factor (1 - m) in (1.3c).

As observed in [42], the stationary state of populations of neurons with short-
term synaptic plasticity can be described by a simple formula, which we rederive in
subsection 4.3.

1.3. Assumptions and main results. The main result of this work is the ex-
ponential stability of (1.1) in the weak connectivity regime (Theorem 1.4)---or, more
explicitly, there exists \varepsilon \ast \ast > 0 such that (1.1) is exponentially stable for all connec-
tivity strength \varepsilon \in ]  - \varepsilon \ast \ast ,+\varepsilon \ast \ast [ . Before proving the exponential stability, we first
establish the well-posedness of (1.1) in the appropriate function space (Theorem 1.2)
and show that stationary solutions exist and are unique for sufficiently weak connec-
tivity (Theorem 1.3).

Here, we study the weak solutions to (1.1) for an initial datum in L1
+ := L1(\BbbR +\times 

\BbbR \ast 
+,\BbbR +) and write L1

+(\BbbR \ast 
+) := L1(\BbbR \ast 

+,\BbbR +).

Definition 1.1 (solutions). (\rho , x) \in \scrC (\BbbR +, L
1
+) \times \scrC (\BbbR +) is a solution to (1.1),

for the initial datum u0 \in L1
+, if

(1.4a)

xt =

\int t

0

\int \infty 

0

\int \infty 

0

h(t - s, a,m)f(a,m, \varepsilon xs)\rho s(a,m)dadmds \forall t \geq 0

and if for all \varphi \in \scrC \infty 
c (\BbbR + \times \BbbR + \times \BbbR \ast 

+),

(1.4b) 0 =

\int \infty 

0

\int \infty 

0

u0(a,m)\varphi (0, a,m)dadm

+

\int \infty 

0

\int \infty 

0

\int \infty 

0

\rho t(a,m)
\Bigl\{ 
[\partial t + \partial a  - \lambda m\partial m]\varphi + (\varphi (t, 0, \gamma (m))

 - \varphi (t, a,m))f(a,m, \varepsilon xt)
\Bigr\} 
dadmdt.

To prove the well-posedness of (1.1), we need some simple assumptions on the
firing rate function f and the interaction function h.

Assumption 1. f is bounded and Lf -Lipschitz, i.e.,

| f(a,m, x) - f(a\ast ,m\ast , x\ast )| \leq Lf (| a - a\ast | +| m - m\ast | +| x - x\ast | ),

and h is bounded and continuous.

D
ow

nl
oa

de
d 

10
/1

1/
23

 to
 1

38
.1

99
.6

.1
84

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

4726 CLAUDIA FONTE AND VALENTIN SCHMUTZ

Since we want to apply Harris's theorem, the well-posedness in L1 (which is
treated in [43]) is not enough, and we need the well-posedness in a weighted L1 space
(where the weight satisfies a Lyapunov condition [29]) with a global-in-time estimate
in the weighted L1 norm.

Using the weight function

w : \BbbR + \times \BbbR + \rightarrow [1,\infty [ , (a,m) \mapsto \rightarrow 1 +m,

we define the function space

L1
+(w) :=

\biggl\{ 
g \in L1(\BbbR + \times \BbbR \ast 

+,\BbbR +)
\bigm| \bigm| \bigm| \| g\| L1(w) :=

\int \infty 

0

\int \infty 

0

g(a,m)w(a,m)dadm <\infty 
\biggr\} 
.

To obtain a global-in-time estimate in the L1
+(w) norm, we further require the jump

sizes of \gamma to be bounded.

Assumption 2. There exists a bounded function \Gamma : \BbbR \ast 
+ \rightarrow \BbbR \ast 

+ such that for all
m \in \BbbR \ast 

+, \gamma (m) = m+ \Gamma (m).

Theorem 1.2 (well-posedness). Grant Assumption 1. For any initial datum
u0 \in L1

+, there exists a unique weak solution (\rho , x) to (1.1). This solution satisfies
(i) (L1-stability) \| \rho t\| L1 =\| u0\| L1 for all t > 0.
(ii) (Global bound in L1

+(w)) If, in addition, Assumption 2 holds and u0 \in 
L1
+(w), then

(1.5) \forall t > 0, \| \rho t\| L1(w) \leq \| u0\| L1(w) e
 - \alpha t +

b

\alpha 
(1 - e - \alpha t)\| u0\| L1

for some constants \alpha > 0 and b \in \BbbR .
In contrast to [43], the well-posedness proof presented here does not involve any

probabilistic argument. The proof consists of two consecutive applications of Banach's
fixed-point theorem, where a first fixed-point gives the unique solution to a linearized
version of (1.1) which is then used in a second fixed-point treating the nonlinearity
of (1.1).

The second step towards the exponential stability proof is the study of the exis-
tence and uniqueness of the stationary solutions to (1.1). For this step, we require
the following assumption.

Assumption 3. nothing
(i) There exist \Delta abs > 0 and \sigma > 0 such that

f(a,m, x) \geq \sigma \forall (a,m, x) \in [\Delta abs,+\infty [\times \BbbR \ast 
+ \times \BbbR .

(ii) There exists C\gamma \in ]0, 1] such that C\gamma \leq \gamma \prime \leq 1.
(iii) \=h(a,m) =

\int \infty 
0
h(t, a,m)dt is bounded.

The first point of Assumption 3 sets a lower bound on the firing rate function f for
any a \geq \Delta abs while allowing neurons to have an absolute refractory period \Delta abs > 0,
i.e., a period of time following a spike during which f can be 0 (which is an important
neurodynamical feature [20, sect. 1.1]). This assumption is also used in [5].

In the second point of Assumption 3, the lower bound 0 < C\gamma \leq \gamma \prime guarantees that
\gamma is strictly increasing, which reflects the idea that m is a ``leaky memory"" variable
of the past neuronal activity. On the other hand, the upper bound \gamma \prime \leq 1, which can
be rewritten in terms of the jump size function \Gamma as \Gamma \prime \leq 0, prevents the variable m
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from growing too fast and allows for a potential saturation of the memory, as in the
example with short-term synaptic plasticity (1.3). The third point of Assumption 3
reflects the fact that a single spike has a finite impact on the neuron that receives it.

We emphasize that the two examples shown above---spike-frequency adaptation
(1.2) and short-term synaptic depression (1.3)---satisfy Assumption 3.

Theorem 1.3 (stationary solutions). Grant Assumptions 1--3.
(i) There exists a stationary solution to (1.1).
(ii) There exists \varepsilon \ast > 0 such that for all \varepsilon \in ] - \varepsilon \ast ,+\varepsilon \ast [ , the stationary solution

to (1.1) is unique.

Over the course of this work, we obtained the existence of the stationary solu-
tion by two different approaches. The first approach is based on the Doeblin--Harris
method [23] and is similar to that of [5]. First, we show that when xt is fixed and
time-invariant in (1.1) (neurons are noninteracting), the system satisfies a Harris
condition---this constitutes a key result of this work---and we can use Harris's the-
orem to get the stationary solution. Then, we use the Lipschitz continuity of the
stationary solutions with respect to the fixed x to prove the existence of a stationary
solution for arbitrary connectivity strengths \varepsilon . Finally, for \varepsilon small enough, we also
get the uniqueness of the stationary solution by Banach's fixed-point theorem.

The second approach relies on the fact that the stationary solutions solve an inte-
gral equation, for which we can show that a solution exists by Schauder's fixed-point
theorem. In the process, we get several estimates on the stationary solutions, namely
that they are continuous, bounded, and exponentially decaying in m. However, this
approach does not give uniqueness.

As mentioned above, the application of Harris's theorem requires us to consider
solutions in the weighted space L1(w). However, in the case where the state-space
of the leaky memory variable m is bounded, the situation is simpler: we can use
Doeblin's theorem in L1. The following assumption guarantees that m stays in a
bounded state-space.

Assumption 4. There exists G > 0 such that for all m \in \BbbR \ast 
+, \gamma (m) < G.

Note that this assumption is satisfied in the example with short-term synaptic
plasticity (1.3), with G = 1.

Finally, to study the exponential stability of (1.1), we need an exponential decay
on h.

Assumption 5. There exists h, Ch > 0 such that h(t, a,m) \leq Che
 - ht for all

(t, a,m) \in \BbbR + \times \BbbR + \times \BbbR \ast 
+.

By a perturbation argument similar to that of [30], we obtain our main result.

Theorem 1.4 (exponential stability in the weak connectivity regime). Grant
Assumptions 1--3 and 5. For any W > 0, there exists \varepsilon \ast \ast W > 0 such that for \varepsilon \in 
] - \varepsilon \ast \ast W ,+\varepsilon 

\ast \ast 
W [ , there exist C \geq 1 and cW > 0 such that for all initial data u0 \in L1

+(w)
with \| u0\| L1 = 1 and \| u0\| L1(w) \leq W , the solution (\rho , x) to (1.1) satisfies

(1.6) \| \rho t  - \rho \infty \| L1(w) + | xt  - x\infty | \leq Ce - cW t
\Bigl( 
\| u0  - \rho \infty \| L1(w) + 1

\Bigr) 
\forall t \geq 0,

where (\rho \infty , x\infty ) is the unique stationary solution given by Theorem 1.3(ii).
If, in addition, we grant Assumption 4, then there exists \varepsilon \ast \ast > 0 such that for all

\varepsilon \in ] - \varepsilon \ast \ast ,+\varepsilon \ast \ast [ , there exist C \prime \geq 1 and c > 0 such that for all initial data u0 \in L1
+
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with \| u0\| L1 = 1,

(1.7) \| \rho t  - \rho \infty \| L1 + | xt  - x\infty | \leq C \prime e - ct
\bigl( 
\| u0  - \rho \infty \| L1 + 1

\bigr) 
\forall t \geq 0.

From the neuronal modeling point of view, this result is not surprising: when the
connection strength is weak enough, neurons do not synchronize, and the population
activity converges to a stationary state. This was already proved for simpler one-
dimensional models (see below), and the addition of a leaky memory variable carrying
the effect of spike-frequency adaptation or short-term synaptic plasticity does not
change this behavior.

1.4. Discussion of the methods. The asymptotic stability of the age-structured
model of [35] in the weak connectivity regime has been studied using entropy methods
(assuming that f is a step-function) [35, 36], spectral analysis of semigroups in Banach
spaces [31, 30], and Doeblin's theorem [5]. For treatments of the strong connectivity
regime, we refer the reader to [35, 36, 30].

The asymptotic stability of the closely related voltage-structured model of [10]
in the weak connectivity regime has also been studied by Cormier, Tanr\'e, and Veltz
[8] using Laplace transform techniques. In addition, the same authors have analyzed
the nonlinear stability of the stationary solutions [7] (see also [12]) and proved the
existence of periodic solutions [9].

Doeblin's theorem has also been used in [14] in the case of the ``threshold crossing""
neuronal population equation of [34]. Note that closely related methods have been
used by probabilists to study the ergodicity of single-neuron models [25, 13].

Our approach combines strategies from [31] and [5], even though [5] uses Doeblin's
instead of Harris's theorem. On the one hand, our proof is based on the application
of Harris's theorem for the linear problem, which simplifies the proof of [31]. On the
other hand, we use an argument from [31] to deal with delay effects, which are not
considered in [5]. Note that our model is two-dimensional (by the addition of the leaky
memory variable), whereas the aforementioned works only considered one-dimensional
models.

1.5. Plan of the paper. The proof of Theorem 1.2 (well-posedness) is pre-
sented in section 2. In section 3, we prove the exponential stability of (1.1) in the
noninteracting case \varepsilon = 0 using Harris's or Doeblin's theorem. The proof of The-
orem 1.3 (stationary solutions) is presented in section 4 which is divided into three
parts: in the first part, we present a proof which uses the exponential stability of
the noninteracting case; in the second part, we present an alternative proof for the
existence of stationary solutions which does not involve the Doeblin--Harris method;
and in the last part, we present a proof for the formula of [42] in the case of short-term
synaptic plasticity (1.3). Finally, section 5 is dedicated to the proof of Theorem 1.4
(exponential stability in the weak connectivity regime).

2. Well-posedness. This section is dedicated to the proof of Theorem 1.2,
which we decompose into several lemmas. First, we verify the a priori L1-stability of
the solutions to (1.1), a technical result we use later in the proof. Then, we introduce
a linearized version of (1.1) and show that it is well-posed by an application of Ba-
nach's fixed-point theorem. Another application of Banach's fixed-point theorem is
used to treat the nonlinearity of (1.1) and concludes the proof of the well-posedness
in L1. Finally, we prove the global bound in L1

+(w) (Theorem 1.2(ii)), which we will
use to apply Harris's theorem in the next sections.

D
ow

nl
oa

de
d 

10
/1

1/
23

 to
 1

38
.1

99
.6

.1
84

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

AN AGE- AND LEAKY MEMORY-STRUCTURED POPULATION 4729

Lemma 2.1 (a priori L1-stability). Grant Assumption 1. If (\rho , x) is a weak
solution to (1.1) for the initial datum u0 \in L1

+, then

\| \rho t\| L1 =\| u0\| L1 \forall t > 0.

Proof. By a standard cut-off in time argument, we have that for all T > 0 and
for all \varphi \in \scrC \infty 

c (\BbbR + \times \BbbR + \times \BbbR \ast 
+),\int \infty 

0

\int \infty 

0

\rho T (a,m)\varphi (T, a,m)dadm - 
\int \infty 

0

\int \infty 

0

u0(a,m)\varphi (0, a,m)dadm

=

\int T

0

\int \infty 

0

\int \infty 

0

\rho t(a,m)
\Bigl\{ 
[\partial t + \partial a  - \lambda m\partial m]\varphi + (\varphi (t, 0, \gamma (m))

 - \varphi (t, a,m))f(a,m, \varepsilon xt)
\Bigr\} 
dadmdt.

Let \chi be a function in \scrC \infty 
c (\BbbR + \times \BbbR \ast 

+,\BbbR +) such that

\chi (a,m) = 1 \forall a2 +m2 \leq 1.

For all n \in \BbbN \ast , we write \widetilde \varphi n \in \scrC \infty (\BbbR + \times \BbbR + \times \BbbR \ast 
+), the classical solution to the

transport equation

\partial t \widetilde \varphi n(t, a,m) + \partial a \widetilde \varphi n(t, a,m) - \lambda m\partial m \widetilde \varphi n(t, a,m) = 0,(2.1a) \widetilde \varphi n(0, a,m) = \chi (a/n,m/n).(2.1b)

Because of the finite speed of propagation of the transport equation, for all n,
there exists a function \varphi n \in \scrC \infty 

c (\BbbR + \times \BbbR + \times \BbbR \ast 
+) such that \varphi n(t, a,m) = \widetilde \varphi n(t, a,m)

for all (t, a,m) \in [0, T ]\times \BbbR + \times \BbbR \ast . Hence, for all n \in \BbbN \ast ,\int \infty 

0

\int \infty 

0

\varphi n(T, a,m)\rho T (a,m)dadm - 
\int \infty 

0

\int \infty 

0

\varphi n(0, a,m)u0(a,m)dadm

=

\int T

0

\int \infty 

0

\int \infty 

0

\biggl\{ 
\partial t\varphi 

n + \partial a\varphi 
n  - \lambda m\partial m\varphi 

n +
\bigl( 
\varphi n(t, 0, \gamma (m))

 - \varphi n(t, a,m)
\bigr) 
f(a,m, \varepsilon xt)

\biggr\} 
\rho t(a,m)dadmdt.

As \varphi n is a solution to (2.1a) on time [0, T ], we get\int \infty 

0

\int \infty 

0

\varphi n(T, a,m)\rho T (a,m)dadm - 
\int \infty 

0

\int \infty 

0

\varphi n(0, a,m)u0(a,m)dadm

=

\int T

0

\int \infty 

0

\int \infty 

0

\biggl\{ \bigl( 
\varphi n(t, 0, \gamma (m)) - \varphi n(t, a,m)

\bigr) 
f(a,m, \varepsilon xt)

\biggr\} 
\rho t(a,m)dadmdt.

For all (t, a,m) \in [0, T ] \times \BbbR + \times \BbbR \ast 
+, \varphi 

n(t, a,m)  -  -  -  - \rightarrow 
n\rightarrow \infty 

1, since the initial datum

tends to 1 as n\rightarrow \infty (2.1b) and by finite speed of propagation. Thus, by dominated
convergence, we get

(2.2)

\int \infty 

0

\int \infty 

0

\rho T (a,m)dadm - 
\int \infty 

0

\int \infty 

0

u0(a,m)dadm = 0.

Since \rho is nonnegative, this concludes the proof.
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Lemma 2.1 will allow us to prove the well-posedness of (1.1) by means of fixed-
point arguments. Let us first introduce a linearized version of (1.1): for all x \in \scrC (\BbbR +),
we consider the linear evolution problem

\partial t\rho t +\nabla \cdot (b\rho t) =  - f(a,m, \varepsilon xt)\rho t,(2.3a)

\rho t(0,m) = 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \int \infty 

0

f(a, \gamma  - 1(m), \varepsilon xt)\rho t(a, \gamma 
 - 1(m))da,(2.3b)

\rho 0 = u0.(2.3c)

We can see (2.3) as the Kolmogorov forward equation of a time-dependent Markov
process. Indeed, we can rewrite (2.3a) and (2.3b) as

(2.4) \partial \rho t = \scrL t\rho t,

where, for all suitable test functions \phi : \BbbR + \times \BbbR \ast 
+ \rightarrow \BbbR ,

(2.5) \scrL \ast 
t\phi (a,m) = b(a,m) \cdot \nabla \phi (a,m) + [\phi (0, \gamma (m)) - \phi (a,m)]f(a,m, \varepsilon xt).

\scrL \ast 
t is the time-dependent generator of a piecewise deterministic Markov process with

degenerate jumps.
The linearized equation (2.3) will play a special role in the following sections and

therefore deserves its own proposition.

Proposition 2.2 (well-posedness of the linearized equation (2.3)). Grant As-
sumption 1. For any initial datum u0 \in L1

+ and any x \in \scrC (\BbbR +), there exists a unique
weak solution \rho x \in \scrC (\BbbR +, L

1
+) to (2.3). Furthermore, \rho x satisfies the following:

(i) For all t > 0 and for all m \in \BbbR \ast 
+,

\rho xt (0,m) = 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \int \infty 

0

f(a, \gamma  - 1(m), \varepsilon x)\rho xt (a, \gamma 
 - 1(m))da,

\rho xt (a,m) =\left\{       
u0(a - t, e\lambda tm) exp

\Bigl( 
\lambda t - 

\int t
0
f(a - t+ s, e\lambda (t - s)m, \varepsilon x)ds

\Bigr) 
if a \geq t,

\rho xt - a(0, e
\lambda am) exp

\Bigl( 
\lambda a - 

\int t
t - a f(a - t+ s, e\lambda (t - s)m, \varepsilon x)ds

\Bigr) 
if 0<a<t.

(ii) For all t > 0 and for all \phi \in \scrC \infty 
c (\BbbR + \times \BbbR \ast 

+),

(2.6) \langle \rho xt , \phi \rangle = \langle u0, \phi \rangle +
\int t

0

\langle \rho xs ,\scrL \ast 
s\phi \rangle ds.

Proof. Fix x \in \scrC (\BbbR +). For all p \in \scrC (\BbbR +, L
1
+(\BbbR \ast 

+)) and u0 \in L1
+, we know from

the standard theory of transport equations that there is a unique weak solution to

\partial t\rho t +\nabla \cdot (b\rho t) =  - f(a,m, \varepsilon xt)\rho t,
\rho t(0,m) = pt(m),

\rho 0 = u0,

which we denote by \rho x,p, and it is given by the representation formula,

\rho x,pt (a,m) :=

\left\{       
u0(a - t, e\lambda tm) exp

\Bigl( 
\lambda t - 

\int t
0
f(a - t+ s, e\lambda (t - s)m, \varepsilon xs)ds

\Bigr) 
if a \geq t,

pt - a(e
\lambda am) exp

\Bigl( 
\lambda a - 

\int t
t - a f(a - t+ s, e\lambda (t - s)m, \varepsilon xs)ds

\Bigr) 
if 0<a<t.
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The solution \rho x,p is in \scrC (\BbbR +, L
1) since

\forall t \in \BbbR +,
\bigm\| \bigm\| \rho x,pt \bigm\| \bigm\| 

L1 \leq \| u0\| L1 +

\int t

0

\| ps\| L1 ds.

We have\biggl( 
1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \int \infty 

0

f(a, \gamma  - 1(m), x)\rho x,pt (a, \gamma  - 1(m))da

\biggr) 
(t,m)\in \BbbR +\times \BbbR \ast 

+

\in \scrC (\BbbR +, L
1
+(\BbbR \ast 

+))

since

\forall t \in \BbbR +,

\int \infty 

\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \int \infty 

0

f(a, \gamma  - 1(m), x)\rho x,pt (a, \gamma  - 1(m))dadm

\leq \| f\| \infty 
\bigm\| \bigm\| \rho x,pt \bigm\| \bigm\| 

L1 \leq \| f\| \infty 

\Biggl( 
\| u0\| L1 +

\int t

0

\| ps\| L1 ds

\Biggr) 
.

Hence, we can define, for any T > 0, the operator \Phi xT :

\scrC ([0, T ], L1
+(\BbbR \ast 

+)) \rightarrow \scrC ([0, T ], L1
+(\BbbR \ast 

+))

p \mapsto \rightarrow 
\biggl( 
1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \int \infty 

0

f(a, \gamma  - 1(m), x)\rho x,pt (a, \gamma  - 1(m))da

\biggr) 
(t,m)\in [0,T ]\times \BbbR \ast 

+

.

For any p, q \in \scrC ([0, T ], L1
+(\BbbR \ast 

+)),\bigm\| \bigm\| \Phi xT (p) - \Phi xT (q)
\bigm\| \bigm\| 
\scrC ([0,T ],L1)

\leq \| f\| \infty sup
t\in [0,T ]

\bigm\| \bigm\| \rho x,pt  - \rho x,qt
\bigm\| \bigm\| 
L1

\leq \| f\| \infty 
\int T

0

\| ps  - qs\| L1 ds

\leq T\| f\| \infty \| p - q\| \scrC ([0,T ],L1) .

Therefore, if 0 < T < \| f\|  - 1
\infty , \Phi xT is a contraction. By Banach's fixed-point theo-

rem, there exists a unique \rho x \in \scrC ([0, T ], L1
+) solving (2.3). Since the choice of the

contracting T does not depend on the initial datum, we can iterate the above argu-
ment on successive time intervals of length T and conclude that there exists a unique
\rho x \in \scrC (\BbbR +, L

1
+) solving (2.3), for which formula (i) is satisfied. Then, (ii) follows from

a standard cut-off-in-time argument.

Now, we can prove the existence and uniqueness of a solution to the nonlinear
problem (1.1) by means of a second application of Banach's fixed-point theorem.

Proof of the well-posedness of (1.1) in L1. For any x \in \scrC (\BbbR +), we take the \rho x

given by Proposition 2.2. We have\Biggl( \int t

0

\int 
\BbbR +\times \BbbR \ast 

+

h(t - s)f(\varepsilon xs)\rho 
x
s dadmds

\Biggr) 
t\in \BbbR +

\in \scrC (\BbbR +)

since

\forall t \in \BbbR +,

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int t

0

\int 
\BbbR +\times \BbbR \ast 

+

h(t - s)f(\varepsilon xs)\rho 
x
s dadmds

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \| h\| \infty \| f\| \infty 
\int t

0

\| \rho xs\| L1 ds.
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Hence, for any T > 0, we can define the operator

\Psi T : \scrC ([0, T ]) \rightarrow \scrC ([0, T ])

x \mapsto \rightarrow 

\Biggl( \int t

0

\int 
\BbbR +\times \BbbR \ast 

+

h(t - s)f(\varepsilon xs)\rho 
x
s dadmds

\Biggr) 
t\in [0,T ]

.

For any x, y \in \scrC ([0, T ]), we have\bigm\| \bigm\| \Psi T (x) - \Psi T (y)
\bigm\| \bigm\| 
\scrC ([0,T ])

\leq T\| h\| \infty sup
t\in [0,T ]

\int 
\BbbR +\times \BbbR \ast 

+

| f(\varepsilon xt)\rho xt  - f(\varepsilon yt)\rho 
y
t | dadm

\leq T\| h\| \infty sup
t\in [0,T ]

\Bigl( 
\varepsilon Lf | xt  - yt| \| \rho xt \| L1 +\| f\| \infty 

\bigm\| \bigm\| \rho xt  - \rho yt
\bigm\| \bigm\| 
L1

\Bigr) 
.

By Gr\"onwall's lemma, \| \rho xt \| L1 \leq \| u0\| L1 exp(\| f\| \infty t) since

\forall t \in [0, T ], \| \rho xt \| L1 \leq \| u0\| L1 +\| f\| \infty 
\int t

0

\| \rho xs\| L1 ds.

On the other hand, we have, for all t \in [0, T ],

\bigm\| \bigm\| \rho xt  - \rho yt
\bigm\| \bigm\| 
L1 \leq 

\int t

0

\int \infty 

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \rho xs (0,m) exp

\Biggl( 
 - 
\int t

s

f(u - s, e - \lambda (u - s)\gamma (m), \varepsilon xu)du

\Biggr) 

 - \rho ys(0,m) exp

\Biggl( 
 - 
\int t

s

f(u - s, e - \lambda (u - s)\gamma (m), \varepsilon yu)du

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| dmds
\leq \| f\| \infty 

\int t

0

\| \rho xs  - \rho ys\| L1 ds+ t\varepsilon \| f\| \infty Lf\| x - y\| \scrC ([0,T ])

\int t

0

\| \rho xs\| L1 ds.

Hence, by Gr\"onwall's lemma, for all t \in [0, T ],

\bigm\| \bigm\| \rho xt  - \rho yt
\bigm\| \bigm\| 
L1 \leq \varepsilon Lf\| u0\| L1

\bigl( 
exp(\| f\| \infty t) - 1

\bigr) 2
\| f\| \infty 

\| x - y\| \scrC ([0,T ]) .

Gathering the bounds, we get\bigm\| \bigm\| \Psi T (x) - \Psi T (y)
\bigm\| \bigm\| 
\scrC ([0,T ])

\leq T\varepsilon \| h\| \infty Lf\| u0\| L1 exp(\| f\| \infty T )
\bigl[ 
1 + exp(\| f\| \infty T )

\bigr] 
\| x - y\| \scrC ([0,T ]) .

For T small enough, \Psi T is a contraction and, by Banach's fixed-point theorem, has a
unique fixed-point. Thus, there exists a unique solution (\rho , x) \in \scrC ([0, T ], L1

+). Since,
by Lemma 2.1, \| \rho T \| L1 = \| u0\| L1 , we can iterate this argument on successive time
intervals of length T and conclude that there exists a unique solution in \scrC (\BbbR +, L

1
+).

To conclude the proof of Theorem 1.2, it remains to show the estimate (1.5).
Under Assumption 2, the weight function

w : \BbbR + \times \BbbR + \rightarrow [1,\infty [ , (a,m) \mapsto \rightarrow 1 +m

satisfies w(a,m) \rightarrow \infty when m\rightarrow \infty and the Lyapunov condition on m:

(2.7) \exists \alpha > 0, b \geq 0 such that \scrL \ast 
tw \leq  - \alpha w + b.
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Indeed, for all (t, a,m) \in \BbbR + \times \BbbR + \times \BbbR \ast 
+,

\scrL \ast 
tw(a,m) =  - \lambda m+ \Gamma (m)f(a,m, \varepsilon xt) \leq  - \lambda w(a,m) + \lambda +\| \Gamma \| \infty \| f\| \infty .

Importantly, the constants \alpha and b do not depend on x.

Lemma 2.3 (global bound in L1
+(w)). Grant Assumptions 1 and 2. If the initial

datum u0 is in L1
+(w), then \rho t \in L1

+(w) for all t \geq 0. Moreover,

(2.8) \forall t > 0, \| \rho t\| L1(w) \leq \| u0\| L1(w) e
 - \alpha t +

b

\alpha 
(1 - e - \alpha t)\| u0\| L1 ,

where the constants \alpha and b are taken from the Lyapunov condition (2.7).

Proof. We divide the proof into two steps. First, we prove that the solution is
stable in L1

+(w) with a weaker and time-dependent bound; then we use this first
bound to apply the dominated convergence theorem and obtain (2.8) by Gr\"onwall's
lemma.

Step 1. Fix any T > 0. Let \chi \in \scrC \infty 
c (\BbbR +,\BbbR +) be a nonincreasing function such

that \chi (x) = 1 if 0 \leq x \leq 1 and \chi (x) = 0 if x > 2. For all n \in \BbbN \ast , let us write
\varphi k(a)\chi n(m) := \chi (a/k)\chi (m/n). We also consider gM (w) a smooth approximation
of w \wedge M , such that \| g\prime \| \infty \leq 1 and M1w\geq M \leq g(w) \leq M . For all n, k, and M ,
gM (w)\chi n\varphi k \in \scrC \infty 

c (\BbbR + \times \BbbR +,\BbbR +). Hence (by Proposition 2.2(ii)) the solution (\rho , x)
to (1.1) satisfies

\forall n \in \BbbN \ast , \langle \rho T , gM (w)\chi n\varphi k\rangle = \langle u0, gM (w)\chi n\varphi k\rangle +
\int T

0

\langle \rho t,\scrL \ast 
x(gM (w)\chi n\varphi k)\rangle dt,

where

\scrL \ast 
x(gM (w)\chi n\varphi k) = \partial a(gM (w)\chi n\varphi k) - \lambda m\partial m(gM (w)\chi n\varphi k)

+
\bigl( 
gM (w(\gamma (m)))\chi n(\gamma (m))\varphi k(0) - gM (w)\chi n\varphi k

\bigr) 
f

= gM (w)\chi n
1

k
\chi \prime (a/k) - \lambda mgM (w)\varphi k

1

n
\chi \prime (m/n) - \lambda mg\prime M (w)\chi n\varphi k

+
\bigl( 
gM (w(\gamma (m)))\chi n(\gamma (m))\varphi k(0) - gM (w)\chi n\varphi k

\bigr) 
f.

From the L1-stability and the fact that both gM (w)\partial m\chi n and gM (w)\chi n are bounded
and have compact support, we can go to the limit in k by dominated convergence:

\langle \rho T , gM (w)\chi n\rangle = \langle u0, gM (w)\chi n\rangle (2.9)

+

\int T

0

\biggl\langle 
\rho t, - \lambda mgM (w)

1

n
\chi \prime (m/n) - \lambda mg\prime M (w)\chi n

\biggr\rangle 
dt

+

\int T

0

\bigl\langle 
\rho t, (gM (w(\gamma (m)))\chi n(\gamma (m)) - gM (w)\chi n)f

\bigr\rangle 
dt.

On the other hand, from the properties of \chi and gM , we have\bigm| \bigm| \bigm| \bigm| \lambda mgM (w)
1

n
\chi \prime (m/n)

\bigm| \bigm| \bigm| \bigm| \leq \lambda gM (w)
2n

n
\| \chi \prime \| \infty \leq 2\lambda M\| \chi \prime \| \infty 

and

| \lambda mg\prime M (w)\chi n| \leq \lambda gM (w) \leq \lambda M,
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whence

\langle \rho T , gM (w)\chi n\rangle \leq \langle u0, gM (w)\chi n\rangle 

+

\int T

0

\langle \rho t, \lambda gM (w)\| \chi \prime \| \infty +\lambda gM (w)\rangle dt

+

\int T

0

\langle \rho t, (gM (w(\gamma (m)))\chi n(\gamma (m)) - gM (w)\chi n)f\rangle dt,

and we can take the limit in n by dominated convergence:

\langle \rho T , gM (w)\rangle \leq \langle u0, gM (w)\rangle 

+

\int T

0

\langle \rho t, \lambda gM (w)\| \chi \prime \| \infty +\lambda gM (w)\rangle dt

+

\int T

0

\langle \rho t, (gM (w(\gamma (m))) - gM (w))f\rangle dt.

From the properties of \gamma , we get

w(0, \gamma (m)) \leq w(0,m+\| \Gamma \| \infty ) \leq (1 +\| \Gamma \| \infty )w(a,m)

and

gM (w(0, \gamma (m))) \leq (1 +\| \Gamma \| \infty )gM (w(m)).

This, together with the fact that f is bounded, shows that there exists a constant C,
which does not depend on M , such that

\langle \rho T , gM (w)\rangle \leq \langle u0, gM (w)\rangle + C

\int T

0

\langle \rho t, gM (w)\rangle dt,

and we can apply Gr\"onwall's lemma to obtain

\langle \rho T , gM (w)\rangle \leq \langle u0, gM (w)\rangle eCt.

Finally, it follows from Fatou lemma that \rho T \in L1
+(w).

Step 2. To improve the previous estimate, we come back to (2.9) and use domi-
nated convergence in n and M (domination being guaranteed by Step 1) to show

\langle \rho T , w\rangle = \langle u0, w\rangle +
\int T

0

\langle \rho t,\scrL \ast 
xw\rangle dt.

By the Lyapunov condition (2.7),

\| \rho T \| L1(w) \leq \| u0\| L1(w)  - \alpha 

\int T

0

\| \rho t\| L1(w) dt+ Tb,

and by Gr\"onwall's lemma, we have, for all t \in [0, T ],

\| \rho T \| L1(w) \leq \| u0\| L1(w) e
 - \alpha t +

b

\alpha 
(1 - e - \alpha t).

Since T can be chosen arbitrarily large, this achieves the proof.

Remark 2.4. Following the same steps as in the proof above, we can show that
the bound (2.8) also holds for the linearized equation (2.3) and does not depend on
x or the constants \alpha and b.

D
ow

nl
oa

de
d 

10
/1

1/
23

 to
 1

38
.1

99
.6

.1
84

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

AN AGE- AND LEAKY MEMORY-STRUCTURED POPULATION 4735

3. Exponential stability in the noninteracting case. If x \in \scrC (\BbbR +) in the
linearized equation (2.3) is time-invariant, i.e., x \equiv \~x for some \~x \in \BbbR , then (2.3) can
be seen as the dynamics of a noninteracting population of neurons. In this section, we
prove the exponential stability in the noninteracting case using Harris's or Doeblin's
theorem. This is the key result of this work and will allow us to prove the existence
and uniqueness of the stationary solution to (1.1) (section 4) and the exponential
convergence towards it (section 5).

For \~x \in \BbbR , u0 \in L1, we denote by \rho \~xt the unique solution to (2.3) for the initial
datum u0 and for x \equiv \~x given by Proposition 2.2. We write, using the semigroup
notation,

(3.1) S\~x
t u0 := \rho \~xt \forall t \geq 0.

To show that the semigroup (3.1) is exponentially stable, we will use Harris's the-
orem in the general case or Doeblin's theorem if Assumption 4 is granted. The original
theorems of Doeblin [11] and Harris [24] have since been refined and extended---see
the well-known works of Meyn and Tweedie [29] and Hairer and Mattingly [23]. More
recently, these theorems have been generalized to stochastic semigroups [16, 5, 1, 4].
Below, we give general statements of Doeblin's and Harris's theorems. For complete-
ness, a short yet enlightening proof of Doeblin's theorem is presented in Appendix B.
A proof of Harris's theorem can be found in the recent work of Ca\~nizo and Mischler
[4].

Let \Omega denote a general state-space, and let (St)t\geq 0 be a stochastic semigroup;
i.e., for all t \geq 0, St is a mass and positivity preserving linear operator on L1(\Omega ); S0

is the identity operator; and for all t, s \geq 0, StSs = Ss+t. We say that \rho \infty \in L1
+(\Omega )

is an invariant probability measure of the semigroup (St)t\geq 0 if \| \rho \infty \| L1= 1 and if, for
all t \geq 0, St\rho \infty = \rho \infty .

Theorem 3.1 (Doeblin). If there exist T > 0 and a nonzero \nu \in L1
+ such that

(3.2) STu0 \geq \nu \| u0\| L1 \forall u0 \in L1
+,

then there exists a unique invariant probability measure \rho \infty , and for all initial data
u0 \in L1

+ with \| u0\| L1 = 1,

(3.3) \| Stu0  - \rho \infty \| L1 \leq Ke - at\| u0  - \rho \infty \| L1 \forall t \geq 0,

with

K =
1

1 - \| \nu \| L1

; a =  - log(1 - \| \nu \| L1)

T
> 0.

We call (3.2) the Doeblin minoration condition. Very loosely speaking, the Doe-
blin minoration condition is best suited for compact state-spaces (but see [16, 5] for
examples on \BbbR +). In the case of unbounded state-spaces, Harris's theorem tells us
that the Doeblin minoration condition can be relaxed to a more local form if there is
a Lyapunov-type localization condition.

Theorem 3.2 (Harris). Let w : \Omega \rightarrow [1,+\infty ) be a measurable weight function.
If there exists T > 0 such that

(i) (operator Lyapunov condition) there exist A \in ]0, 1[ and B \geq 0 such that

(3.4) \| STu0\| L1(w) \leq A\| u0\| L1(w) +B\| u0\| L1 \forall u0 \in L1
+(w);
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(ii) (Harris minoration condition) there exist a nonzero \nu \in L1
+ and R > 0 such

that

(3.5) STu0 \geq \nu 

\int 
\frakC 

u0 \forall u0 \in L1
+, with \frakC = \{ x \in \Omega | w(x) \leq R\} ,

then there exists a unique invariant probability measure \rho \infty such that \rho \infty \in L1
+(w),

1

and there exist K \geq 1 and a > 0 such that for all initial data u0 \in L1
+(w) with

\| u0\| L1 = 1,

(3.6) \| Stu0  - \rho \infty \| L1(w) \leq Ke - at\| u0  - \rho \infty \| L1(w) \forall t \geq 0.

For the model (1.1) considered in the present work, Assumption 3 will be necessary
to show the Doeblin or Harris minoration conditions. We then have to distinguish
two cases: either Assumption 2 holds, and we can use Harris's theorem since the
Lyapunov condition (2.7) implies the operator Lyapunov condition (3.4) by Lemma 2.3
(the constants are then A = e - \alpha T and B = b

\alpha ); or Assumption 4 holds, and we can
simply use Doeblin's theorem. The main technical difficulty is to verify the minoration
conditions, as the jumps of the process described by (2.5) are degenerate, and the
model is two-dimensional. The rest of the section is devoted to the verification of the
minoration condition.

Lemma 3.3 (minoration condition). Grant Assumptions 1 and 3. Fix any x \in \BbbR .
For all R > 0, there exist T > 0 and a nonzero \nu \in L1

+ such that

(3.7) S\~x
Tu0 \geq \nu 

\int 
\BbbR +\times ]0,R]

u0 dadm \forall u0 \in L1
+.

If, in addition, Assumption 4 holds, then there exist T > 0 and a nonzero \nu \in L1
+

such that

(3.8) S\~x
Tu0 \geq \nu \| u0\| L1 \forall u0 \in L1

+.

Proof. We proceed in two steps. First (Step 1), we choose a time T > 0 and
a rectangle [0, \=a] \times [m,m] \subset \BbbR + \times \BbbR \ast 

+ (with nonzero Lebesgue measure) and show
that the density S\~x

Tu0 \in L1 has a lower bound on [0, \=a]\times [m,m] which depends on a
Lebesgue integral in \BbbR 2

+ involving u0. Then (Step 2), we perform a change of variable
to express this lower bound in terms of

\int 
\BbbR +\times ]0,R]

u0 dadm. The proof only relies on the

expression of S\~x
t u0 given by the method of characteristics (see Proposition 2.2), and

this allows treating a typically probabilistic question---the Doeblin/Harris minoration
condition---from a transport point of view. This is possible because S\~x

t is the stochastic
(mass-conservative) semigroup of a piecewise deterministic Markov process.

The constants \Delta abs, \sigma , and C\gamma are taken from Assumption 3.
Step 1. Fix R > 0. Since \gamma (e - \lambda \Delta abs\gamma (0)) > \gamma (0) and \gamma (e - \lambda t\gamma (e - \lambda \Delta absR)) \rightarrow \gamma (0)

as t\rightarrow \infty , there exist \=a > 0 and T > \=a+\Delta abs such that

(3.9) m =: \gamma (e - \lambda (T - \=a - \Delta abs)\gamma (e - \lambda \Delta absR)) < e - \lambda \=a\gamma (e - \lambda \Delta abs\gamma (0)) =: m.

Equation (3.9) has the following heuristic interpretation: if we see S\~x
t as the stochastic

semigroup of the piecewise deterministic Markov process defined by the generator

1Note that Harris's theorem does not exclude the existence of an invariant probability measure
with infinite L1(w) norm.
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(2.5), for any initial point (a0,m0) \in \BbbR +\times ]0, R] and any landing point (a,m) \in [0, \=a]\times 
[m,m] at time T , there is a ``possible"" trajectory going from (a0,m0) to (a,m), with
exactly two jumps (spikes). Since the trajectories of the process are determined by
the jump times, we will exploit the fact that these ``possible"" trajectories correspond
to jump times with strictly positive probability density. Below, we take a transport
point of view on this probabilistic argument.

For all (a,m) \in [0, \=a]\times [m,m],

(S\~x
Tu0)(a,m)

\geq 1\{ a<T\} (S
\~x
T - au0)(0, e

\lambda am) exp

\Biggl( 
\lambda a - 

\int T

T - a
f(a - T + s, e\lambda (T - s)m, \~x)ds

\Biggr) 
\geq 1\{ a<T\} e

 - \| f\| \infty T e\lambda a(S\~x
T - au0)(0, e

\lambda am)

\geq 1\{ a<T\} e
 - \| f\| \infty T\sigma e\lambda a

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (e\lambda am)
\bigm| \bigm| \bigm| \int \infty 

\Delta abs

(S\~x
T - au0)(a

\prime , \gamma  - 1(e\lambda am))da\prime 

= 1\{ a<T\} e
 - \| f\| \infty T\sigma 

\bigm| \bigm| \bigm| \bigm| ddm\gamma  - 1(e\lambda am)

\bigm| \bigm| \bigm| \bigm| \int \infty 

\Delta abs

(S\~x
T - au0)(a

\prime , \gamma  - 1(e\lambda am))\underbrace{}  \underbrace{}  
( \star )

da\prime .

Above, we went back in time to the last jump time T - a. Let us note that \gamma  - 1(e\lambda am) \geq 
\gamma  - 1(e\lambda am) > 0. We can therefore define

a\ast a,m :=
1

\lambda 

\Bigl( 
log \gamma (0) - log \gamma  - 1(e\lambda am)

\Bigr) 
.

Note that a\ast a,m satisfies \gamma  - 1(e\lambda a
\ast 
a,m\gamma  - 1(e\lambda am)) = 0. In other words, a\ast a,m is the

minimal time between the last and second-to-last jumps for a trajectory landing at
(a,m) at time T . We can easily verify that, by our choice of \{ T, \=a,m,m\} , \Delta abs \leq 
a\ast a,m < T - a - \Delta abs. This guarantees that it is possible to make two jumps in [0, T ] and
land at (a,m) at time T while respecting the absolute refractoriness of the neuron (i.e.,
there needs to be a time interval \geq \Delta abs between jumps). This allows us to go further
back in time to the second-to-last jump as follows: for all a\prime \in [a\ast a,m, T  - a - \Delta abs],

( \star ) \geq 1\{ a\prime <T - a\} e
 - \| f\| \infty T\sigma 

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (e\lambda a
\prime 
\gamma  - 1(e\lambda am))

\bigm| \bigm| \bigm| e\lambda a\prime 
\times 
\int \infty 

\Delta abs

(S\~x
T - a - a\prime u0)(a

\prime \prime , \gamma  - 1(e\lambda a
\prime 
\gamma  - 1(e\lambda am)))\underbrace{}  \underbrace{}  

( \star  \star )

da\prime \prime .

Then, we can go further back to time 0 to get u0:

( \star  \star ) \geq 1\{ a\prime \prime \geq T - a - a\prime \} e
 - \| f\| \infty T e\lambda (T - a - a\prime )

\times u0(a
\prime \prime  - (T  - a - a\prime ), e\lambda (T - a - a\prime )\gamma  - 1(e\lambda a

\prime 
\gamma  - 1(e\lambda am))).

Putting all the lower bounds together, we get

(S\~x
Tu0)(a,m) \geq 1\{ a<T\} e

 - 3\| f\| \infty T\sigma 2\int T - a - \Delta abs

a\ast a,m

\int \infty 

T - a - a\prime 

\bigm| \bigm| \bigm| \bigm| ddme\lambda (T - a - a\prime )\gamma  - 1(e\lambda a
\prime 
\gamma  - 1(e\lambda am))

\bigm| \bigm| \bigm| \bigm| 
u0(a

\prime \prime  - (T  - a - a\prime ), e\lambda (T - a - a\prime )\gamma  - 1(e\lambda a
\prime 
\gamma  - 1(e\lambda am)))da\prime \prime da\prime .
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Since \gamma \prime \leq 1 (Assumption 3),\bigm| \bigm| \bigm| \bigm| ddme\lambda (T - a - a\prime )\gamma  - 1(e\lambda a
\prime 
\gamma  - 1(e\lambda am))

\bigm| \bigm| \bigm| \bigm| \geq e\lambda T .

Thus,

(S\~x
Tu0)(a,m) \geq 1\{ a<T\} e

(\lambda  - 3\| f\| \infty )T\sigma 2

\times 
\int T - a - \Delta abs

a\ast a,m

\int \infty 

0

u0(a0, e
\lambda (T - a - a\prime )\gamma  - 1(e\lambda a

\prime 
\gamma  - 1(e\lambda am)))da0da

\prime .
(3.10)

We have obtained that on [0, \=a] \times [m,m], the density (S\~x
Tu0) is lower bounded by a

constant depending on a Lebesgue integral on \BbbR 2
+ involving u0.

Step 2. Now, we want to express the lower bound (3.10) in terms of\int 
\BbbR +\times ]0,R]

u0 dadm

by a change of variable. Let us define the function \psi Ta,m:

\psi Ta,m : [a\ast a,m, T  - a - \Delta abs] \rightarrow \BbbR +, a\prime \mapsto \rightarrow e\lambda (T - a - a\prime )\gamma  - 1(e\lambda a
\prime 
\gamma  - 1(e\lambda am)).

We verify that (\psi Ta,m)\prime > 0 as follows: for all a\prime \in [a\ast a,m, T  - a],

(\psi Ta,m)\prime (a\prime )

= \lambda e\lambda (T - a - a\prime )
\biggl\{ 
(\gamma  - 1)\prime (e\lambda a

\prime 
\gamma  - 1(e\lambda am))e\lambda a

\prime 
\gamma  - 1(e\lambda am) - \gamma  - 1(e\lambda a

\prime 
\gamma  - 1(e\lambda am))

\biggr\} 
.

(3.11)

As \Gamma > 0 and \gamma \prime \leq 1 (Assumption 3), we have

(\psi Ta,m)\prime (a\prime ) > \lambda e\lambda (T - a - a\prime )
\biggl\{ 
(\gamma  - 1)\prime (e\lambda a

\prime 
\gamma  - 1(e\lambda am))e\lambda a

\prime 
\gamma  - 1(e\lambda am) - e\lambda a

\prime 
\gamma  - 1(e\lambda am)

\biggr\} 
= \lambda e\lambda (T - a)\gamma  - 1(e\lambda am)

\biggl\{ 
(\gamma  - 1)\prime (e\lambda a

\prime 
\gamma  - 1(e\lambda am))\underbrace{}  \underbrace{}  
\geq 1

 - 1

\biggr\} 
\geq 0.

Therefore, \psi Ta,m is a strictly increasing \scrC 1-diffeomorphism from [a\ast a,m, T  - a  - \Delta abs]

to [\psi Ta,m(a\ast a,m), \psi Ta,m(T  - a - \Delta abs)]. We can now rewrite (3.10) as

(S\~x
Tu0)(a,m) \geq e(\lambda  - 3\| f\| \infty )T\sigma 2

\int T - a - \Delta abs

a\ast a,m

\int \infty 

0

u0(a0, \psi 
T
a,m(a\prime ))da0da

\prime 

= e(\lambda  - 3\| f\| \infty )T\sigma 2

\int \psi T
a,m(T - a - \Delta abs)

\psi T
a,m(a\ast a,m)

\int \infty 

0

u0(a0,m0)
\bigm| \bigm| \bigm| ((\psi Ta,m) - 1)\prime (m0)

\bigm| \bigm| \bigm| da0dm0.

Going back to (3.11) and using the fact that there exists C\gamma such that C\gamma \leq \gamma \prime \leq 1
(Assumption 3), we have, for all a\prime \in [a\ast a,m, T  - a - \Delta abs],

(\psi Ta,m)\prime (a\prime ) \leq \lambda e\lambda (T - a - a\prime )C - 1
\gamma e\lambda a

\prime 
\gamma  - 1(e\lambda am) \leq \lambda e\lambda TC - 1

\gamma m.
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Hence,

(S\~x
Tu0)(a,m) \geq e - 3\| f\| \infty T\sigma 2C\gamma 

\lambda m

\int \psi T
a,m(T - a - \Delta abs)

\psi T
a,m(a\ast a,m)

\int \infty 

0

u0(a0,m0)da0dm0.

In addition, by our choice of \{ T, \=a,m,m\} , we have

\psi Ta,m(a\ast a,m) = 0,

\psi Ta,m(T  - a - \Delta abs) = e\lambda \Delta abs\gamma  - 1(e\lambda (T - a - \Delta abs)\gamma  - 1(e\lambda am)) > R.

Therefore,

(S\~x
Tu0)(a,m) \geq e - 3\| f\| \infty T\sigma 2C\gamma 

\lambda m

\int R

0

\int \infty 

0

u0(a0,m0)da0dm0.

Since we have assumed that (a,m) \in [0, \=a]\times [m,m], this concludes the proof of (3.7).
In the case where Assumption 4 also holds, the proof of (3.8) is similar except that

we can simply take R = +\infty and m =: \gamma (e - \lambda (T - \=a - \Delta abs)G) < e - \lambda \=a\gamma (e - \lambda \Delta abs\gamma (0)) =:
m.

In summary, by Harris's theorem, we have the following.

Theorem 3.4. Grant Assumptions 1--3. For all \~x \in \BbbR , there exists a unique
\rho \~x\infty \in L1

+(w) with
\bigm\| \bigm\| \rho \~x\infty \bigm\| \bigm\| L1 = 1 such that S\~x

t \rho 
\~x
\infty = \rho \~x\infty for all t \geq 0, and there exist

K \geq 1 and a > 0 such that for all initial data u0 \in L1
+(w) with \| u0\| L1 = 1,

(3.12)
\bigm\| \bigm\| \bigm\| S\~x

t u0  - \rho \~x\infty 

\bigm\| \bigm\| \bigm\| 
L1(w)

\leq Ke - at
\bigm\| \bigm\| \bigm\| u0  - \rho \~x\infty 

\bigm\| \bigm\| \bigm\| 
L1(w)

\forall t \geq 0.

Furthermore, by Lemma 2.3, we have that
\bigm\| \bigm\| \rho \~x\infty \bigm\| \bigm\| L1(w)

\leq b
\alpha , where the constants \alpha and

b are taken from the Lyapunov condition (2.7).

If Assumption 2 is replaced by Assumption 4, we can simply apply Doeblin's
theorem.

Theorem 3.5. Grant Assumptions 1, 3, and 4. For all \~x \in \BbbR , there exists a
unique \rho \~x\infty \in L1

+ with
\bigm\| \bigm\| \rho \~x\infty \bigm\| \bigm\| L1 = 1 such that S\~x

t \rho 
\~x
\infty = \rho \~x\infty for all t \geq 0, and there exist

K \geq 1 and a > 0 such that for all initial data u0 \in L1
+ with \| u0\| L1 = 1,

(3.13)
\bigm\| \bigm\| \bigm\| S\~x

t u0  - \rho \~x\infty 

\bigm\| \bigm\| \bigm\| 
L1

\leq Ke - at
\bigm\| \bigm\| \bigm\| u0  - \rho \~x\infty 

\bigm\| \bigm\| \bigm\| 
L1

\forall t \geq 0.

Note that both theorems imply the following.

Corollary 3.6. Grant Assumptions 1--3 (or Assumptions 1, 3, and 4). For all
\~x \in \BbbR , there exists a unique \rho \~x\infty \in L1

+(w) (or \in L1
+) with

\bigm\| \bigm\| \rho \~x\infty \bigm\| \bigm\| L1 = 1 solving

\partial a\rho 
\~x
\infty (a,m) - \lambda \partial m(m\rho \~x\infty (a,m)) =  - f(a,m, \~x)\rho \~x\infty (a,m),(3.14a)

\rho \~x\infty (0,m) = 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \int \infty 

0

f(a, \gamma  - 1(m), \~x)\rho \~x\infty (a, \gamma  - 1(m))da(3.14b)

in the weak sense. Furthermore, we have that \rho \~x\infty \in \scrC (\BbbR +, L
1
+(\BbbR \ast 

+))\cap L\infty (\BbbR +, L
1
+(\BbbR \ast 

+)).
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4. Stationary solutions for arbitrary connectivity strength. In this sec-
tion, we study the stationary solutions to (1.1), namely the solution to

\partial a\rho \infty (a,m) - \lambda \partial m(m\rho \infty (a,m)) =  - f(a,m, \varepsilon x\infty )\rho \infty (a,m),(4.1a)

\rho \infty (0,m) = 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \int \infty 

0

f(a, \gamma  - 1(m), \varepsilon x\infty )\rho \infty (a, \gamma  - 1(m))da,(4.1b)

x\infty =

\int \infty 

0

\int \infty 

0

\=h(a,m)f(a,m, \varepsilon x\infty )\rho \infty (a,m)dadm.(4.1c)

Definition 4.1. (\rho \infty , x\infty ) \in L1
+(w) \cap \scrC (\BbbR +, L

1
+(\BbbR \ast 

+)) \cap L\infty (\BbbR +, L
1
+(\BbbR \ast 

+)) \times \BbbR +

is a stationary solution to (1.1) if \| \rho \infty \| L1 = 1 and if it solves (4.1) in the weak sense.

4.1. Existence and uniqueness using the Doeblin--Harris method. We
present two Lipschitz continuity results, which will allow us to prove the existence
(and the uniqueness when \varepsilon is small) of stationary solutions. The following lemma
plays the same role as Theorem 4.5 in [5].

Lemma 4.2 (Lipschitz continuity at finite T ). Grant Assumptions 1--3. For all
initial data u0 \in L1

+(w) and for all T > 0, there exists a constant CT,\| u0\| L1(w)
> 0

such that

(4.2) \forall \widetilde x1,\widetilde x2 \in \BbbR ,
\bigm\| \bigm\| \bigm\| S\widetilde x1

T u0  - S\widetilde x2

T u0

\bigm\| \bigm\| \bigm\| 
L1(w)

\leq CT,\| u0\| L1(w)
| \widetilde x1  - \widetilde x2| .

Proof. For all t > 0,

\bigm\| \bigm\| \bigm\| S\widetilde x1
t u0  - S\widetilde x2

t u0

\bigm\| \bigm\| \bigm\| 
L1(w)

=

\int \infty 

0

\int \infty 

t

\bigm| \bigm| \bigm| \bigm| u0(a - t, e\lambda tm) exp

\Biggl( 
\lambda t - 

\int t

0

f(a - t+ s, e\lambda (t - s)m,\widetilde x1)ds\Biggr) 

 - u0(a - t, e\lambda tm) exp

\Biggl( 
\lambda t - 

\int t

0

f(a - t+ s, e\lambda (t - s)m,\widetilde x2)ds\Biggr) \bigm| \bigm| \bigm| \bigm| w(a,m)dadm

+

\int \infty 

0

\int t

0

\bigm| \bigm| \bigm| \bigm| \rho \widetilde x1
t - a(0, e

\lambda am) exp

\Biggl( 
\lambda a - 

\int t

t - a
f(a - t+ s, e\lambda (t - s)m,\widetilde x1)ds\Biggr) 

 - \rho \widetilde x2
t - a(0, e

\lambda am) exp

\Biggl( 
\lambda a - 

\int t

t - a
f(a - t+ s, e\lambda (t - s)m,\widetilde x2)ds\Biggr) \bigm| \bigm| \bigm| \bigm| w(a,m)dadm

=: Q1 +Q2.
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Q1 =

\int \infty 

0

\int \infty 

0

u0(a,m)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| exp
\Biggl( 
 - 
\int t

0

f(a+ s, e - \lambda sm,\widetilde x1)ds\Biggr) 

 - exp

\Biggl( 
 - 
\int t

0

f(a+ s, e - \lambda sm,\widetilde x2)ds\Biggr) 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| w(a+ t, e - \lambda tm)dadm

\leq 
\int \infty 

0

\int \infty 

0

u0(a,m)

\Biggl( \int t

0

\bigm| \bigm| \bigm| f(a+ s, e - \lambda sm,\widetilde x1)
 - f(a+ s, e - \lambda sm,\widetilde x2)\bigm| \bigm| \bigm| ds\biggr) w(a+ t, e - \lambda tm)dadm

\leq tLf | \widetilde x1  - \widetilde x2| \int \infty 

0

\int \infty 

0

u0(a,m)w(a+ t, e - \lambda tm)dadm

\leq tLf\| u0\| L1(w) | \widetilde x1  - \widetilde x2| ,
where, in the last inequality, we used

(4.3) w(a+ t, e - \lambda tm) \leq w(a,m) \forall a \geq 0,m \geq 0.

Q2 =

\int \infty 

0

\int t

0

\bigm| \bigm| \bigm| \bigm| \rho \widetilde x1
t - a(0,m) exp

\Biggl( 
 - 
\int t

t - a
f(a - t+ s, e\lambda (t - s - a)m,\widetilde x1)ds\Biggr) 

 - \rho \widetilde x2
t - a(0,m) exp

\Biggl( 
 - 
\int t

t - a
f(a - t+ s, e\lambda (t - s - a)m,\widetilde x2)ds\Biggr) \bigm| \bigm| \bigm| \bigm| w(a, e - \lambda am)dadm.

By changes of variables,

Q2 =

\int \infty 

0

\int t

0

\bigm| \bigm| \bigm| \bigm| \rho \widetilde x1
s (0,m) exp

\Biggl( 
 - 
\int t - s

0

f(u, e - \lambda um,\widetilde x1)du\Biggr) 

 - \rho \widetilde x2
s (0,m) exp

\Biggl( 
 - 
\int t - s

0

f(u, e - \lambda um,\widetilde x2)du\Biggr) \bigm| \bigm| \bigm| \bigm| w(t - s, e - \lambda (t - s)m)dsdm

\leq 
\int \infty 

0

\int t

0

\rho \widetilde x1
s (0,m)

\bigm| \bigm| \bigm| \bigm| exp
\Biggl( 
 - 
\int t - s

0

f(u, e - \lambda um,\widetilde x1)du\Biggr) 

 - exp

\Biggl( 
 - 
\int t - s

0

f(u, e - \lambda um,\widetilde x2)du\Biggr) \bigm| \bigm| \bigm| \bigm| w(t - s, e - \lambda (t - s)m)dsdm

+

\int \infty 

0

\int t

0

\bigm| \bigm| \bigm| \rho \widetilde x1
s (0,m) - \rho \widetilde x2

s (0,m)
\bigm| \bigm| \bigm| w(t - s, e - \lambda (t - s)m)dsdm

=: Q2,1 +Q2,2.

Q2,1 \leq t\| f\| \infty Lf | \widetilde x1  - \widetilde x2| \int t

0

\int \infty 

0

\int \infty 

0

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \rho \widetilde x1
s (a, \gamma  - 1(m))w(t,m)dadmds

\leq t\| f\| \infty Lf | \widetilde x1  - \widetilde x2| \int t

0

\int \infty 

0

\int \infty 

0

\rho \widetilde x1
s (a,m)w(t,m+\| \Gamma \| \infty )dadmds

\leq t(1 +\| \Gamma \| \infty )\| f\| \infty Lf | \widetilde x1  - \widetilde x2| \int t

0

\bigm\| \bigm\| \bigm\| \rho \widetilde x1
s

\bigm\| \bigm\| \bigm\| 
L1(w)

ds,
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where, in the last inequality, we used

(4.4) w(t,m+\| \Gamma \| \infty ) = 1 +m+\| \Gamma \| \infty \leq (1 +\| \Gamma \| \infty )w(a,m) \forall a \geq 0,m \geq 0.

By Lemma 2.3,

Q2,1 \leq t2(1 +\| \Gamma \| \infty )\| f\| \infty Lf

\biggl( 
\| u0\| L1(w) +

b

\alpha 

\biggr) 
| \widetilde x1  - \widetilde x2| .

Q2,2 \leq \| f\| \infty 
\int t

0

\int \infty 

0

\int \infty 

0

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \rho \widetilde x1

s (a, \gamma  - 1(m)) - \rho \widetilde x2
s (a, \gamma  - 1(m))

\bigm| \bigm| \bigm| w(t,m)dadmds

\leq \| f\| \infty 
\int t

0

\int \infty 

0

\int \infty 

0

\bigm| \bigm| \bigm| \rho \widetilde x1
s (a,m) - \rho \widetilde x2

s (a,m)
\bigm| \bigm| \bigm| w(t,m+\| \Gamma \| \infty )dadmds

\leq (1 +\| \Gamma \| \infty )\| f\| \infty 
\int t

0

\bigm\| \bigm\| \bigm\| S\widetilde x1
s u0  - S\widetilde x2

s u0

\bigm\| \bigm\| \bigm\| 
L1(w)

ds,

where again, in the last inequality, we used (4.4). Fix T > 0. Gathering the bounds
for Q1, Q2,1, and Q2,2 we see that there exist constants C > 0 and C \prime 

T,\| u0\| L1(w)
> 0

such that, for all t \in [0, T ],\bigm\| \bigm\| \bigm\| S\widetilde x1
t u0  - S\widetilde x2

t u0

\bigm\| \bigm\| \bigm\| 
L1(w)

\leq C

\int t

0

\bigm\| \bigm\| \bigm\| S\widetilde x1
s u0  - S\widetilde x2

s u0

\bigm\| \bigm\| \bigm\| 
L1(w)

ds+ tC \prime 
T,\| u0\| L1(w)

| \widetilde x1  - \widetilde x2| .
By Gr\"onwall's lemma, for all t \in [0, T ],

(4.5)
\bigm\| \bigm\| \bigm\| S\widetilde x1

t u0  - S\widetilde x2
t u0

\bigm\| \bigm\| \bigm\| 
L1(w)

\leq 
C \prime 
T,\| u0\| L1(w)

| \widetilde x1  - \widetilde x2| 
C

\bigl( 
exp(Ct) - 1

\bigr) 
.

Since (4.5) holds for all t \in [0, T ], this achieves the proof.

Lemma 4.3 (Lipschitz continuity at T = \infty ). Grant Assumptions 1--3. Writing
\rho \~x\infty \in L1

+(w), the invariant probability measure given by Theorem 3.2 for any \~x \in \BbbR ,
we see that the function

\Upsilon : \BbbR + \rightarrow \BbbR +, \Upsilon (x) =

\int \infty 

0

\int \infty 

0

\=h(a,m)f(a,m, \varepsilon x)\rho \varepsilon x\infty (a,m)dadm

is Lipschitz, and there exists C > 0 such that

\forall x1, x2 \in \BbbR +, | \Upsilon (x1) - \Upsilon (x2)| \leq | \varepsilon | C| x1  - x2| .

Proof. Since f is Lipschitz in x, we have, for any x1, x2 \in \BbbR +,

| \Upsilon (x1) - \Upsilon (x2)| \leq 
\bigm\| \bigm\| \=h\bigm\| \bigm\| \infty \bigl\{ \| f\| \infty \| \rho \varepsilon x1

\infty  - \rho \varepsilon x2
\infty \| L1 + Lf | \varepsilon | | x1  - x2| 

\bigr\} 
\leq 
\bigm\| \bigm\| \=h\bigm\| \bigm\| \infty \Bigl\{ \| f\| \infty \| \rho \varepsilon x1

\infty  - \rho \varepsilon x2
\infty \| L1(w) + Lf | \varepsilon | | x1  - x2| 

\Bigr\} 
,

from where we only need to bound the first term on the right-hand side. We can use
Theorem 3.2 and Lemma 4.2 as follows: for any T \in \BbbR +,

\| \rho \varepsilon x1
\infty  - \rho \varepsilon x2

\infty \| L1(w) = \| S\varepsilon x1

T \rho \varepsilon x1
\infty  - S\varepsilon x1

T \rho \varepsilon x2
\infty + S\varepsilon x1

T \rho \varepsilon x2
\infty  - S\varepsilon x2

T \rho \varepsilon x2
\infty \| L1(w)

\leq Ke - aT \| \rho \varepsilon x1
\infty  - \rho \varepsilon x2

\infty \| L1(w)+CT | \varepsilon | | x1  - x2| ,
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where K and a are the exponential stability constants of Theorem 3.2. Choosing T
such that Ke - aT = 1/2, we get

\| \rho \varepsilon x1
\infty  - \rho \varepsilon x2

\infty \| L1(w) \leq 2CT | \varepsilon | | x1  - x2| .

Gathering the bounds concludes the proof.

Theorem 4.4 (stationary solutions). Grant Assumptions 1--3. We have the fol-
lowing:

(i) There exists a stationary solution to (1.1).
(ii) There exists \varepsilon \ast > 0 such that for all \varepsilon \in ] - \varepsilon \ast ,+\varepsilon \ast [ , the stationary solution

to (1.1) is unique.

Proof. For all \~x \in \BbbR , let us write \rho \~x\infty \in L1
+(w) the unique invariant measure

given by Theorem 3.2, and let us also take the function \Upsilon from Lemma 4.3. By
Corollary 3.6, (\rho \infty , x\infty ) \in L1

+(w)\cap \scrC (\BbbR +, L
1
+(\BbbR \ast 

+))\cap L\infty (\BbbR +, L
1
+(\BbbR \ast 

+))\times \BbbR + is a weak
solution to (4.1) if and only if \rho \infty = \rho \varepsilon x\infty 

\infty and x\infty is a fixed-point of \Upsilon . Hence, the
study of the existence and uniqueness of stationary solutions is reduced to the study
of the existence and uniqueness of the fixed-point of \Upsilon .

Since for all x \in \BbbR +,\| \rho \varepsilon x\infty \| L1 = 1, we have that for all x \in \BbbR +, \Upsilon (x) \leq 
\bigm\| \bigm\| \=h\bigm\| \bigm\| \infty \| f\| \infty .

Therefore, the set [0,
\bigm\| \bigm\| \=h\bigm\| \bigm\| \infty \| f\| \infty ] (which is compact and convex) is stable by \Upsilon . Then,

the continuity of \Upsilon guarantees the existence of a fixed-point, which proves (i).
To obtain (ii), we observe that the Lipschitz constant of \Upsilon is | \varepsilon | C: if we take

| \varepsilon | < \varepsilon \ast := C - 1, then \Upsilon is a contraction, and we can apply Banach's fixed-point
theorem to conclude the proof.

4.2. Alternative proof for the existence using Schauder's fixed-point
theorem. We include here an alternative proof for the existence of a stationary
solution, which is interesting for two reasons: on the one hand, it does not rely on
the Doeblin--Harris method, and on the other hand, it provides some estimates on the
stationary solutions.

For any (\~u, \~x) \in L1
+(]\gamma (0),+\infty [)\times \BbbR , consider the transport equation

\partial a\varrho (a,m) - \lambda \partial m(m\varrho (a,m)) =  - f(a,m, \~x)\varrho (a,m),

\varrho (0,m) = \~u(m).

It has a unique weak solution \rho \~u,\~x\infty \in \scrC (\BbbR +, L
1
+(\BbbR \ast 

+))\cap L\infty (\BbbR +, L
1
+(\BbbR \ast 

+)) given by the
method of characteristics, i.e., for all (a,m) \in \BbbR + \times \BbbR \ast 

+,

(4.6) \rho \~u,\~x\infty (a,m) = \~u(e\lambda am) exp

\biggl( 
\lambda a - 

\int a

0

f(s, e\lambda (a - s)m, \~x)ds

\biggr) 
.

We can now define the operator \Phi := (\Phi 1,\Phi 2) on L
1
+(]\gamma (0),+\infty [)\times \BbbR , where, for

all (\~u, \~x) \in L1
+(]\gamma (0),+\infty [)\times \BbbR ,

\Phi 1(\~u, \~x)(m) := 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \int \infty 

0

f(a, \gamma  - 1(m), \~x)\rho (\~u,\~x)\infty (a, \gamma  - 1(m))da,(4.7a)

\Phi 2(\~u, \~x) :=

\int \infty 

0

\int \infty 

0

\=h(a,m)f(a,m, \~x)\rho \~u,\~x\infty (a,m)dadm.(4.7b)

A stationary solution (\rho \infty , x\infty ) is a fixed-point of \Phi , and vice versa. Therefore, we
have the following a priori estimates.
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Lemma 4.5. Grant Assumptions 1 and 3. There exists \theta \in ]0, 1[ such that for all
(\~u, \~x) \in L1

+(]\gamma (0),+\infty [)\times \BbbR , we have the following:
(i)
\bigm\| \bigm\| \Phi 1(\~u, \~x)

\bigm\| \bigm\| 
L1 =\| \~u\| L1 .

(ii) For all m \in \BbbR \ast 
+, | \Phi 1(\~u, \~x)(m)| \leq 1m>\gamma (0)

\| f\| \infty 
\lambda \gamma  - 1(m)\| \~u\| L1 .

(iii) \int \infty 

0

\Phi 1(\~u, \~x)(m)mdm \leq max

\biggl( \int \infty 

0

\~u(m)mdm,
\gamma (0)

1 - \theta 
\| \~u\| L1

\biggr) 
.

(iv) For all \beta \in ]0, min(f)
\lambda [ ,\int \infty 

\gamma (0)

\Phi 1(\~u, \~x)(m)

\gamma  - 1(m)\beta 
dm \leq 

\| f\| \infty 
\lambda \gamma (0)\beta 

\biggl( 
min(f)

\lambda 
 - \beta 

\biggr) 
\| \~u\| L1 .

(v) \Phi 2(\~u, \~x) \leq 
\bigm\| \bigm\| \=h\bigm\| \bigm\| \infty \| \~u\| L1 .

Proof. (i) By changes of variables on m,

\bigm\| \bigm\| \Phi 1(\~u, \~x)
\bigm\| \bigm\| 
L1 =

\int \infty 

0

\int \infty 

0

f(a,m, \~x)\~u(e\lambda am) exp

\biggl( 
\lambda a - 

\int a

0

f(s, e\lambda (a - s)m, \~x)ds

\biggr) 
dadm

=

\int \infty 

0

\~u(m)

\int \infty 

0

f(a, e - \lambda am, \~x) exp

\biggl( 
 - 
\int a

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
da\underbrace{}  \underbrace{}  

=1 (by Assumption 3(i))

dm.

(ii)

| \Phi 1(\~u, \~x)(m)| \leq 1m>\gamma (0)\| f\| \infty 
\int \infty 

0

\~u(e\lambda a\gamma  - 1(m)) exp(\lambda a)da

= 1m>\gamma (0)
\| f\| \infty 
\lambda \gamma  - 1(m)

\int \infty 

0

\~u(e\lambda a\gamma  - 1(m))\gamma  - 1(m)\lambda exp(\lambda a)da

= 1m>\gamma (0)
\| f\| \infty 
\lambda \gamma  - 1(m)

\int \infty 

\gamma  - 1(m)

\~u(y)dy\underbrace{}  \underbrace{}  
\leq \| \~u\| L1

,

where, for the last equality, we used the change of variable y = e\lambda a\gamma  - 1(m).
(iii) Performing the same change of variable as for (i) and using the fact that

\gamma (m) \leq \gamma (0) +m for all m \in \BbbR + (since \gamma \prime \leq 1), we have\int \infty 

0

\Phi 1(\~u, \~x)(m)mdm

=

\int \infty 

0

\~u(m)

\int \infty 

0

\gamma (e - \lambda am)f(a, e - \lambda am, \~x) exp

\biggl( 
 - 
\int a

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
dadm

\leq 
\int \infty 

0

\~u(m)m

\int \infty 

0

e - \lambda af(a, e - \lambda am, \~x) exp

\biggl( 
 - 
\int a

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
da\underbrace{}  \underbrace{}  

=:\vargamma (m)

dm+\gamma (0)\| \~u\| L1 .

There exists \theta \in ]0, 1[ such that for all m \in \BbbR \ast 
+, \vargamma (m) < 1, as we show in the
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following. Fix \epsilon > 0.

\vargamma (m) \leq 
\int \epsilon 

0

f(a, e - \lambda am, \~x) exp

\biggl( 
 - 
\int a

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
da

+

\int \infty 

\epsilon 

e - \lambda \epsilon f(a, e - \lambda am, \~x) exp

\biggl( 
 - 
\int a

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
da

= 1 - (1 - e - \lambda \epsilon )

\int \infty 

\epsilon 

f(a, e - \lambda am, \~x) exp

\biggl( 
 - 
\int a

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
da

= 1 - (1 - e - \lambda \epsilon ) exp

\biggl( 
 - 
\int \epsilon 

0

f(s, e - \lambda sm, \~x)ds

\biggr) 
\leq 1 - (1 - e - \lambda \epsilon ) exp( - \| f\| \infty \epsilon ) =: \theta < 1.

Therefore, \int \infty 

0

\Phi 1(\~u, \~x)(m)mdm \leq \theta 

\int \infty 

0

\~u(m)mdm+ \gamma (0)\| \~u\| L1 .

To see that \int \infty 

0

\Phi 1(\~u, \~x)(m)mdm \leq max

\biggl( \int \infty 

0

\~u(m)mdm,
\gamma (0)

1 - \theta 
\| \~u\| L1

\biggr) 
,

we can distinguish three cases: if
\int \infty 
0

\~u(m)mdm = \infty , the inequality is trivial; if
\gamma (0)
1 - \theta \| \~u\| L1 \leq 

\int \infty 
0

\~u(m)mdm < +\infty , then\int \infty 

0

\Phi 1(\~u, \~x)(m)mdm \leq 
\int \infty 

0

\~u(m)mdm - (1 - \theta )

\int \infty 

0

\~u(m)mdm+ \gamma (0)\| \~u\| L1

\leq 
\int \infty 

0

\~u(m)mdm;

and, finally, if
\int \infty 
0

\~u(m)mdm < \gamma (0)
1 - \theta \| \~u\| L1 , then\int \infty 

0

\Phi 1(\~u, \~x)(m)mdm \leq \theta 
\gamma (0)

1 - \theta 
\| \~u\| L1 + \gamma (0)\| \~u\| L1 =

\gamma (0)

1 - \theta 
\| \~u\| L1 .

(iv)\int \infty 

\gamma (0)

\Phi 1(\~u, \~x)(m)

\gamma  - 1(m)\beta 
dm

=

\int \infty 

0

\int \infty 

0

1

m
f(a,m, \~x)\~u(e\lambda am) exp

\biggl( 
\lambda a - 

\int a

0

f(s, e\lambda (a - s)m, \~x)

\biggr) 
dadm

\leq \| f\| \infty 
\int \infty 

0

\int \infty 

0

1

m\beta 
\~u(e\lambda am) exp

\bigl( 
\lambda a - min(f)a

\bigr) 
dadm.

Making the change of variable y = e\lambda am, we get

=\| f\| \infty 
\int \infty 

0

\int \infty 

m

1

\lambda m1+\beta 
\~u(y) exp

\Biggl( 
 - min(f)

1

\lambda 
ln

\biggl( 
y

m

\biggr) \Biggr) 
dydm

=
\| f\| \infty 
\lambda 

\int \infty 

0

\int \infty 

m

mmin(f)/\lambda  - 1 - \beta \~u(y)y - min(f)/\lambda dydm,
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and, using Fubini's theorem and the fact that min(f)/\lambda  - \beta > 0, we get

=
\| f\| \infty 
\lambda 

\int \infty 

0

\~u(y)y - min(f)/\lambda 

\int y

0

mmin(f)/\lambda  - 1 - \beta dm\underbrace{}  \underbrace{}  
= ymin(f)/\lambda  - \beta 

min(f)/\lambda  - \beta 

dy

=
\| f\| \infty 
\lambda 

\biggl( 
min(f)

\lambda 
 - \beta 

\biggr) \int \infty 

0

\~u(y)y - \beta dy.

Finally, it is easy to check that
\int \infty 
0

\~u(y)y - \beta dy \leq \gamma (0) - \beta \| \~u\| L1 .
(v) Use (4.7b) and see the proof of (i).

By these estimates, we see that there exists \beta ,C1, . . . , C4 > 0 such that the set
C \times B \subset L1(]\gamma (0),+\infty [)\times \BbbR , where

C :=

\biggl\{ 
u \in L1

+(]\gamma (0),+\infty [)

\bigm| \bigm| \bigm| \bigm| \| u\| L1 \leq 1;

u \leq C1

\gamma  - 1(\cdot )
a.e.;

\int \infty 

0

u(m)mdm \leq C2;

\int \infty 

\gamma (0)

u(m)

\gamma  - 1(m)\beta 
dm \leq C3

\biggr\} 
,

and B := [ - C4,+C4] is stable by the operator \Phi .
In order to apply Schauder's fixed-point theorem, we will need the next lemma.

Lemma 4.6. Grant Assumptions 1 and 3. C is convex, closed, and compact for
the weak topology \sigma (L1, L\infty ).

Proof. It is easy to verify that C is convex. Since C is convex, it suffices to
show that it is strongly closed to show that it is weakly closed. Let un be a sequence
of elements of C which converge strongly to u \in L1(]\gamma (0),+\infty [). By the strong
convergence, \| u\| L1 \leq 1. We can extract a subsequence unk

such that unk
converges

to u a.e. Taking the pointwise limit, we have that u \leq C1

\gamma  - 1(\cdot ) a.e. Furthermore, by

Fatou lemma, \int \infty 

\gamma (0)

u(m)mdm \leq lim inf
k\rightarrow +\infty 

\int \infty 

\gamma (0)

unk
(m)mdm \leq C2

and \int \infty 

\gamma (0)

u(m)

\gamma  - 1(m)\beta 
dm \leq lim inf

k\rightarrow +\infty 

\int \infty 

\gamma (0)

unk
(m)

\gamma  - 1(m)\beta 
dm \leq C3.

Hence, C is strongly closed.
To show that C is weakly compact, we will show the following:
(a) supu\in C \| u\| L1 <\infty .
(b) For all \epsilon > 0, there exists R > 0 such that

\int \infty 
R
u(m)dm < \epsilon for all u \in C .

(c) C is equi-integrable, i.e., for all \epsilon > 0, there exists \delta > 0 such that for all
Borel set A \subset \BbbR + with | A| \leq \delta and for all u \in C ,

\int 
A
u(m)dm \leq \epsilon .

Then use the Dunford--Pettis theorem. (a) is clearly verified. (b) is also verified since
for all R > 0,

\int \infty 
R
u(m)dm \leq 1

R

\int \infty 
0
u(m)mdm \leq C2

R . To show (c), let us first observe
that for all \delta 1 > 0,\int \gamma (0)+\delta 1

\gamma (0)

u(m)dm \leq \gamma  - 1(\gamma (0) + \delta 1)
\beta 

\int \infty 

\gamma (0)

u(m)

\gamma  - 1(m)\beta 
dm \leq \gamma  - 1(\gamma (0) + \delta 1)

\beta C3.
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For any \epsilon > 0, let us choose \delta 1 > 0 such that \gamma  - 1(\gamma (0) + \delta 1)
\beta C3 \leq \epsilon 

2 . Then, for all
Borel set A \subset \BbbR + with | A| \leq \delta ,\int 

A

u(m)dm \leq 
\int \gamma (0)+\delta 1

\gamma (0)

u(m)dm+

\int 
A\setminus [0,\gamma (0)+\delta 1]

u(m)dm \leq \epsilon 

2
+ \delta 

C1

\gamma  - 1(\gamma (0) + \delta 1)
.

Hence, we can choose \delta = min(\delta 1,
\epsilon \gamma  - 1(\gamma (0)+\delta 1)

2C1
), and (c) is verified. By the Dunford--

Pettis theorem, C is weakly relatively compact. Finally, since C is weakly closed, C
is weakly compact.

We can now give an alternative proof of the existence of stationary solutions to
(1.1) for arbitrary connectivity strength \varepsilon .

Proof of Theorem 1.3(i). We verify that the operator \Phi is weakly continuous: for
any sequence (un, xn) \rightarrow (u, x) in C \times \BbbR and for any \varphi \in L\infty (\BbbR +),\bigm| \bigm| \bigm| \bigm| \int (\Phi 1(un, xn) - \Phi 1(u, x))\varphi (m)dm

\bigm| \bigm| \bigm| \bigm| \leq Qn1 +Qn2 +Qn3 ,

where

Qn1 :=

\bigm| \bigm| \bigm| \bigm| \int \infty 

0

\int \infty 

0

(un(e
\lambda am) - u(e\lambda am))\varphi (\gamma (m))e\lambda af(a,m, x)e - 

\int a
0
f(\tau ,e\lambda (a - \tau )m,x)d\tau dadm

\bigm| \bigm| \bigm| \bigm| ,
Qn2 :=\| \varphi \| \infty 

\int \infty 

0

\int \infty 

0

un(e
\lambda am)e\lambda a| f(a,m, x) - f(a,m, xn)| e - 

\int a
0
f(\tau ,e\lambda (a - \tau )m,x)d\tau dadm,

Qn3 :=\| \varphi \| \infty 
\int \infty 

0

\int \infty 

0

un(e
\lambda am)e\lambda af(a,m, xn)

\bigm| \bigm| \bigm| e - \int a
0
f(\tau ,e\lambda (a - \tau )m,x)d\tau 

 - e - 
\int a
0
f(\tau ,e\lambda (a - \tau )m,xn)d\tau 

\bigm| \bigm| \bigm| dadm.
Making the change of variable ydy = e\lambda amdm in Q1, we get

Qn1 =

\bigm| \bigm| \bigm| \bigm| \int \infty 

0

(un(y) - u(y))

\int \infty 

0

\varphi (\gamma (ye - \lambda a))f(a, ye - \lambda a, x)e - 
\int a
0
f(\tau ,e - \lambda \tau y,x)dadm

\bigm| \bigm| \bigm| \bigm| .
Since un converges to u in \sigma (L1, L\infty ) and\int \infty 

0

\varphi (\gamma (ye - \lambda a))f(a, ye - \lambda a, x)e - 
\int a
0
f(\tau ,e - \lambda \tau y,x)d\tau da

\leq \| \varphi \| \infty 
\int \infty 

0

f(a, ye - \lambda a, x)e - 
\int a
0
f(\tau ,e - \lambda \tau y,x)d\tau da =\| \varphi \| \infty ,

Qn1 converges to 0. On the other hand, since f is bounded and Lipschitz, Qn2 , Q
n
3 \leq 

\| un\| L1C| xn  - x| \leq C| xn  - x| . Therefore, \Phi 1 is a continuous operator with respect to
the weak topology \sigma (L1, L\infty ).

The continuity of \Phi 2 is shown analogously, taking \varphi = h (h is bounded).
Since C is stable by \Phi , convex, and weakly compact (Lemma 4.6), we can apply

Schauder's fixed-point theorem to obtain the existence of a fixed-point, which gives
the existence of a stationary solution.

Corollary 4.7. Grant Assumptions 1 and 3. If f is of class \scrC k, then u(m) is a
function of class \scrC k for all m > \gamma (0). Consequently, the stationary solutions of (1.1)
are of class \scrC k.
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Proof. If (u, \~x) is a fixed-point of \Phi , then

(4.8) u(m) = 1m>\gamma (0)

\bigm| \bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| \bigm| \int \infty 

0

f(a, \gamma  - 1(m), \~x)u(e\lambda a\gamma  - 1(m))

\times exp

\biggl( 
\lambda a - 

\int a

0

f(s, e\lambda (a - s)\gamma  - 1(m), \~x)ds

\biggr) 
da.

Making the change of variable y = e\lambda a\gamma  - 1(m) in a, as in estimate (ii) of Lemma 4.5,
we obtain

u(m) = 1m>\gamma (0)

\bigm| \bigm| (\gamma  - 1)\prime (m)
\bigm| \bigm| 

\lambda \gamma  - 1(m)

\int \infty 

\gamma  - 1(m)

f(g(y,m), y, \~x)u(y)

\times exp

\Biggl( 
 - 
\int g(y,m)

0

f(s, esy, \~x)ds

\Biggr) 
dy,

(4.9)

where g(y,m) = ln y
\lambda (\gamma  - 1(m)) . We conclude with a bootstrap argument: if u is L1,

then the right-hand side of (4.9) is a continuous function of m, meaning that u is
continuous. But if u is continuous, then the right-hand side is of class \scrC 1, etc.

4.3. Formula in the case of short-term synaptic depression. In general,
there is no explicit formula for the invariant probability measure solving (3.14). How-
ever, in the case of short-term synaptic depression (1.3), we can derive an explicit
expression for the total postsynaptic potential

X(\~x) :=

\int \infty 

0

\^h(t)

\int 1

0

\int \infty 

0

(1 - m)f(a, \~x)\rho \~x\infty (a,m)dadmdt

for any \~x \in \BbbR . This fact has been reported in the theoretical neuroscience literature
[42]; we provide here a rigorous and analytic justification for it.

For all \~x \in \BbbR , let us introduce the quantities

I \~x :=

\int \infty 

0

af(a, \~x) exp

\biggl( 
 - 
\int a

0

f(s, \~x)ds

\biggr) 
da =

\int \infty 

0

exp

\biggl( 
 - 
\int a

0

f(s, \~x)ds

\biggr) 
da,

P \~x(\lambda ) :=

\int \infty 

0

e - \lambda af(a, \~x) exp

\biggl( 
 - 
\int a

0

f(s, \~x)ds

\biggr) 
da.

The value I \~x can be interpreted as the mean interspike interval of a neuron receiving
a constant input \~x. The value P \~x(\lambda ) can be seen as the Laplace transform of the
interspike interval distribution of that neuron evaluated in \lambda .

Proposition 4.8. Grant Assumptions 1 and 3. For all \~x \in \BbbR ,

X(\~x) =

\int \infty 

0

\^h(t)dt
1

I \~x

\Biggl\{ 
1 - P \~x(\lambda )

1 - \upsilon P \~x(\lambda )

\Biggr\} 
.

Proof. Using the method of characteristics (i.e., combining (4.6) and (3.14b)), we
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have

1 =

\int 1

0

\int \infty 

0

\rho \~x\infty (a,m)dadm

=

\int 1

0

\int \infty 

0

1e\lambda am<1\rho 
\~x
\infty (0, e\lambda am) exp

\biggl( 
\lambda a - 

\int a

0

f(s, \~x)ds

\biggr) 
dadm

=

\int 1

0

\int \infty 

0

\rho \~x\infty (0,m) exp

\biggl( 
 - 
\int a

0

f(s, \~x)ds

\biggr) 
dadm = I \~x

\int 1

0

\rho \~x\infty (0,m)dm.

Therefore, \int 1

0

\int \infty 

0

f(a, \~x)\rho \~x\infty (a,m)dadm =

\int 1

0

\rho \~x\infty (0,m)dm =
1

I \~x
.

On the other hand,\int 1

0

\int \infty 

0

mf(a, \~x)\rho \~x\infty (a,m)dadm

=

\int 1

0

\int \infty 

0

1e\lambda am<1mf(a, \~x)\rho 
\~x
\infty (0, e\lambda am) exp

\biggl( 
\lambda a - 

\int a

0

f(s, \~x)ds

\biggr) 
dadm

=

\int 1

0

\int \infty 

0

e - \lambda amf(a, \~x)\rho \~x\infty (0,m) exp

\biggl( 
 - 
\int a

0

f(s, \~x)ds

\biggr) 
dadm

= P \~x(\lambda )

\int 1

0

m\rho \~x\infty (0,m)dm

and \int 1

0

m\rho \~x\infty (0,m)dm =

\int 1

0

m1m>1 - \upsilon 
1

\upsilon 

\int \infty 

0

f(a, \~x)\rho \~x\infty 

\biggl( 
a, 1 - 1 - m

\upsilon 

\biggr) 
dadm

=

\int 1

0

(1 - \upsilon + \upsilon m)

\int \infty 

0

f(a, \~x)\rho \~x\infty (a,m)dadm

=
1 - \upsilon 

I \~x
+ \upsilon P \~x(\lambda )

\int 1

0

m\rho \~x\infty (0,m)dm.

Therefore, \int 1

0

m\rho \~x\infty (0,m)dm =
1 - \upsilon 

I \~x(1 - \upsilon P \~x(\lambda ))

and \int 1

0

\int \infty 

0

mf(a, \~x)\rho \~x\infty (a,m)dadm =
P \~x(\lambda )(1 - \upsilon )

I \~x(1 - \upsilon P \~x(\lambda ))
.

Finally, we have

X(\~x) =

\int \infty 

0

\^h(t)dt

\Biggl\{ \int 1

0

\int \infty 

0

f(a, \~x)\rho \~x\infty (a,m)dadm - 
\int 1

0

\int \infty 

0

mf(a, \~x)\rho \~x\infty (a,m)dadm

\Biggr\} 

=

\int \infty 

0

\^h(t)dt
1

I \~x

\Biggl\{ 
1 - P \~x(\lambda )(1 - \upsilon )

(1 - \upsilon P \~x(\lambda ))

\Biggr\} 
=

\int \infty 

0

\^h(t)dt
1

I \~x

\Biggl\{ 
1 - P \~x(\lambda )

1 - \upsilon P \~x(\lambda )

\Biggr\} 
.
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5. Exponential stability in the weak connectivity regime. To study the
long time behavior (1.1) in the weak connectivity regime, we perturb the noninteract-
ing case (3.1), taking \~x = \varepsilon x\infty , where x\infty is given by the unique stationary solution
to (1.1) when \varepsilon \in ]  - \varepsilon \ast ,+\varepsilon \ast [ (\varepsilon \ast is taken from Theorem 1.3(ii)). In this section, we
keep the small \varepsilon fixed, and we work under Assumptions 1--3 and 5. We roughly follow
the same line of argument as in [30, sect. 5].

For convenience, we first rewrite (1.1) in a more formal and compact form,

\partial t\rho t =  - \partial a\rho t + \lambda \partial m(m\rho t) - f(\varepsilon xt)\rho t + \delta a0 (\gamma \circ \Pi )\ast 
\bigl( 
f(\varepsilon xt)\rho t

\bigr) 
,(5.1a)

xt =

\int t

0

\int 
h(t - s)f(\varepsilon xs)\rho s dadmds,(5.1b)

\rho 0 = u0,(5.1c)

where \delta a0 indicates that (singular) mass enters in a = 0,2 \Pi : (a,m) \mapsto \rightarrow m is the pro-
jection on m, and \ast denotes the pushforward measure. To write (5.1) as an evolution
equation, we introduce an auxiliary transport equation on \BbbR + \times \BbbR + \times \BbbR \ast 

+,

\partial t\zeta t =  - \partial s\zeta t + \delta s0f(\varepsilon xt)\rho t,

\zeta 0 = 0,

which solution is given by the method of characteristics,

\zeta t(s) = 1s\leq tf(\varepsilon xt - s)\rho t - s \forall (t, s) \in \BbbR \ast 
+ \times \BbbR +.

Using the auxiliary equation, (5.1) is equivalent to

\partial t(\rho t, \zeta t)

(5.2a)

=
\Bigl( 
 - \partial a\rho t + \lambda \partial m(m\rho t) - f(\varepsilon xt)\rho t + \delta a0 (\gamma \circ \Pi )\ast 

\bigl( 
f(\varepsilon xt)\rho t

\bigr) 
, - \partial s\zeta t + \delta s0f(\varepsilon xt)\rho t

\Bigr) 
,

(\rho 0, \zeta 0) = (u0, 0) ,
(5.2b)

where xt :=
\int \infty 
0

\int 
h(s)\zeta t(s) dadmds.

By Theorem 1.3, for all \varepsilon \in ] - \varepsilon \ast ,+\varepsilon \ast [ , there exists a unique stationary solution
(\rho \infty , x\infty ), and we have

(5.3)  - \partial a\rho \infty + \lambda \partial m(m\rho \infty ) - f(\varepsilon x\infty )\rho \infty + \delta a0 (\gamma \circ \Pi )\ast 
\bigl( 
f(\varepsilon x\infty )\rho \infty 

\bigr) 
= 0.

Now, we write (5.2) as the sum of a linear equation and a perturbation,

\partial t(\rho t, \zeta t) = \Lambda (\rho t, \zeta t) + (Z
(1)
t , Z

(2)
t ),(5.4a)

(\rho 0, \zeta 0) = (u0, 0) ,(5.4b)

2\delta a0 should not be confused with the Dirac distribution \delta 0=a. Using \delta 0=a, by integration by parts
of weak solutions, (5.1a) should read

\partial t\rho t =  - \partial a\rho t + \lambda \partial m(m\rho t)  - f(\varepsilon xt)\rho t + \delta 0=a

\Bigl\{ 
(\gamma \circ \Pi )\ast 

\bigl( 
f(\varepsilon xt)\rho t

\bigr) 
 - \rho t(0, \cdot )

\Bigr\} 
.
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where

\Lambda (\rho t, \zeta t)

:=
\Bigl( 
 - \partial a\rho t + \lambda \partial m(m\rho t) - f(\varepsilon x\infty )\rho t + \delta a0 (\gamma \circ \Pi )\ast 

\bigl( 
f(\varepsilon x\infty )\rho t

\bigr) 
, - \partial s\zeta t + \delta s0f(\varepsilon x\infty )\rho t

\Bigr) 
,

Z
(1)
t := [f(\varepsilon x\infty ) - f(\varepsilon xt)]\rho t + \delta a0 (\gamma \circ \Pi )\ast ([f(\varepsilon xt) - f(\varepsilon x\infty )]\rho t),

Z
(2)
t := \delta s0[f(\varepsilon xt) - f(\varepsilon x\infty )]\rho t.

Let us put \zeta \infty (s) := f(\varepsilon x\infty )\rho \infty for all s \in \BbbR +. Then, using (5.3), by the linearity of
the operator \Lambda and writing \=\rho t := \rho t  - \rho \infty and \=\zeta t := \zeta t  - \zeta \infty , we get

\partial t(\=\rho t, \=\zeta t) = \Lambda (\=\rho t, \=\zeta t) + (Z
(1)
t , Z

(2)
t ),(5.5a)

(\=\rho 0, \=\zeta 0) = (u0  - \rho \infty , - \zeta \infty ) .(5.5b)

Writing (S\Lambda 
t )t\in \BbbR +

the semigroup associated with the operator \Lambda , we have, by
Duhamel's formula,

(5.6) (\=\rho t, \=\zeta t) = S\Lambda 
t (\=\rho 0,

\=\zeta 0) +

\int t

0

S\Lambda 
t - s(Z

(1)
s , Z(2)

s )ds \forall t \geq 0.

Let us define the weighted space

L1
+(\mu ) :=

\biggl\{ 
\zeta \in L1(\BbbR + \times \BbbR + \times \BbbR \ast 

+,\BbbR +)
\bigm| \bigm| \bigm| \int \infty 

0

\bigm\| \bigm\| \zeta (s)\bigm\| \bigm\| 
L1\| h\| \infty e - hsds <\infty 

\biggr\} 
.

Note that, for all t \geq 0,

| xt  - x\infty | =
\bigm| \bigm| \bigm| \bigm| \int \infty 

0

\int 
h(s)\zeta t(s) dadmds - 

\int \infty 

0

\int 
h(s)\zeta \infty (s) dadmds

\bigm| \bigm| \bigm| \bigm| 
\leq 
\int \infty 

0

\| h\| \infty e - hs
\bigm\| \bigm\| \zeta t(s) - \zeta \infty (s)

\bigm\| \bigm\| 
L1 ds =

\bigm\| \bigm\| \=\zeta t\bigm\| \bigm\| L1(\mu )
.

Also, we have, for all t \geq 0,\bigm\| \bigm\| \bigm\| Z(1)
t

\bigm\| \bigm\| \bigm\| 
L1

\leq | \varepsilon | 2Lf\| \rho t\| L1 | xt  - x\infty | \leq | \varepsilon | 2Lf
\bigm\| \bigm\| \=\zeta t\bigm\| \bigm\| L1(\mu )

,(5.7a) \bigm\| \bigm\| \bigm\| Z(1)
t

\bigm\| \bigm\| \bigm\| 
L1(w)

\leq | \varepsilon | 2Lf\| \rho t\| L1(w) | xt  - x\infty | \leq | \varepsilon | 2Lf
\Bigl( 
\| u0\| L1(w)+ b

\alpha 

\Bigr) \bigm\| \bigm\| \=\zeta t\bigm\| \bigm\| L1(\mu )
,(5.7b) \bigm\| \bigm\| \bigm\| Z(2)

t

\bigm\| \bigm\| \bigm\| 
L1(\mu )

\leq | \varepsilon | \| h\| \infty Lf\| \rho t\| L1 | xt  - x\infty | \leq | \varepsilon | \| h\| \infty Lf
\bigm\| \bigm\| \=\zeta t\bigm\| \bigm\| L1(\mu )

,(5.7c)

where we have used Theorem 1.2(ii) in the first line and Lemma 2.1 in the second.

Lemma 5.1. Grant 1--3 and 5 and take (\=\rho 0, \=\zeta 0) as in (5.5). There exist K1 \geq 1
and a1 > 0 such that, for all initial data u0 \in L1

+(w) with \| u0\| L1 = 1,

(5.8)
\bigm\| \bigm\| \bigm\| S\Lambda 

t (\=\rho 0,
\=\zeta 0)
\bigm\| \bigm\| \bigm\| 
L1(w)\times L1(\mu )

\leq K1e
 - a1t

\bigm\| \bigm\| (\=\rho 0, \=\zeta 0)\bigm\| \bigm\| L1(w)\times L1(\mu )
\forall t \geq 0.

If in addition we grant Assumption 4, then there exist K2 \geq 1 and a2 > 0 such that,
for all initial data u0 \in L1

+ with \| u0\| L1 = 1,

(5.9)
\bigm\| \bigm\| \bigm\| S\Lambda 

t (\=\rho 0,
\=\zeta 0)
\bigm\| \bigm\| \bigm\| 
L1\times L1(\mu )

\leq K2e
 - a2t

\bigm\| \bigm\| (\=\rho 0, \=\zeta 0)\bigm\| \bigm\| L1\times L1(\mu )
\forall t \geq 0.
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Proof. We write (S\Lambda 
t (\=\rho 0,

\=\zeta 0)
(1), S\Lambda 

t (\=\rho 0,
\=\zeta 0)

(2)) := S\Lambda 
t (\=\rho 0,

\=\zeta 0) the first and second
components of S\Lambda 

t (\=\rho 0,
\=\zeta 0).

By Theorem 3.2, there exist K \geq 0 and a > 0 such that\bigm\| \bigm\| \bigm\| S\Lambda 
t (\=\rho 0,

\=\zeta 0)
(1)
\bigm\| \bigm\| \bigm\| 
L1(w)

\leq Ke - at\| \=\rho 0\| L1(w) \forall t \geq 0.

Then,\bigm\| \bigm\| \bigm\| S\Lambda 
t (\=\rho 0,

\=\zeta 0)
(2)
\bigm\| \bigm\| \bigm\| 
L1(\mu )

=

\int t

0

\bigm\| \bigm\| \bigm\| f(\varepsilon x\infty )S\Lambda 
t - s(\=\rho 0,

\=\zeta 0)
(1)
\bigm\| \bigm\| \bigm\| 
L1
Che

 - hsds

+

\int \infty 

t

\bigm\| \bigm\| \=\zeta 0(s)\bigm\| \bigm\| L1 Che
 - hsds

\leq Ch

\Biggl\{ 
\| f\| \infty K

\int t

0

e - a(t - s)e - hsds\| \=\rho 0\| L1(w) + e - ht
\bigm\| \bigm\| \=\zeta 0\bigm\| \bigm\| L1(\mu )

\Biggr\} 
.

Gathering the bounds on the two components and observing that the function t \mapsto \rightarrow \int t
0
e - a(t - s)e - hsds decays exponentially, we conclude that there exist K1 \geq 1 and

a1 > 0 such that (5.8) holds.
For (5.9), we use Theorem 3.1 and follow the same argument.

We can now prove our main result.

Proof of Theorem 1.4. By Duhamel's formula (5.6), (5.8) in Lemma 5.1, and the
bounds (5.7), for all t \geq 0,\bigm\| \bigm\| (\=\rho t, \=\zeta t)\bigm\| \bigm\| L1(w)\times L1(\mu )

\leq 
\bigm\| \bigm\| \bigm\| S\Lambda 

t (\=\rho 0,
\=\zeta 0)
\bigm\| \bigm\| \bigm\| 
L1(w)\times L1(\mu )

+

\int t

0

\bigm\| \bigm\| \bigm\| S\Lambda 
t - s(Z

(1)
s , Z(2)

s )
\bigm\| \bigm\| \bigm\| 
L1(w)\times L1(\mu )

ds

\leq K1e
 - a1t

\bigm\| \bigm\| (\=\rho 0, \=\zeta 0)\bigm\| \bigm\| L1(w)\times L1(\mu )
+K1

\int t

0

e - a1(t - s)
\bigm\| \bigm\| \bigm\| (Z(1)

s , Z(2)
s )
\bigm\| \bigm\| \bigm\| 
L1(w)\times L1(\mu )

ds

\leq K1e
 - a1t

\bigm\| \bigm\| (\=\rho 0, \=\zeta 0)\bigm\| \bigm\| L1(w)\times L1(\mu )
+ | \varepsilon | \~CW

\int t

0

e - a1(t - s)
\bigm\| \bigm\| (\=\rho s, \=\zeta s)\bigm\| \bigm\| L1(w)\times L1(\mu )

ds

=: \scrQ (t),

where \~CK is a constant depending on W . We have, for all t \geq 0,

d

dt
\scrQ (t) =  - a1\scrQ (t) + | \varepsilon | \~CW

\bigm\| \bigm\| (\=\rho t, \=\zeta t)\bigm\| \bigm\| L1(w)\times L1(\mu )

\leq 
\Bigl( 
 - a1 + | \varepsilon | \~CW

\Bigr) 
\scrQ (t),

whence, by Gr\"onwall's lemma,

\forall t \geq 0, \scrQ (t) \leq K1

\bigm\| \bigm\| (\=\rho 0, \=\zeta 0)\bigm\| \bigm\| L1(w)\times L1(\mu )
exp

\biggl( \Bigl( 
 - a1 + | \varepsilon | \~CW

\Bigr) 
t

\biggr) 
.

For all t \geq 0, we have

\| \rho t  - \rho \infty \| L1(w) + | xt  - x\infty | \leq 
\bigm\| \bigm\| (\=\rho t, \=\zeta t)\bigm\| \bigm\| L1(w)\times L1(\mu )

\leq \scrQ (t)
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and

\bigm\| \bigm\| \=\zeta 0\bigm\| \bigm\| L1(\mu )
\leq 
\int \infty 

0

\bigm\| \bigm\| f(\varepsilon x\infty )\rho \infty 
\bigm\| \bigm\| 
L1 Che

 - hsds \leq 
\| f\| \infty Ch

h
.

Therefore, choosing \varepsilon \ast \ast W := a1
\~CW

\wedge \varepsilon \ast , we easily see that there exist C \geq 1 and cW > 0

such that (1.6) holds.
For (1.7), we use (5.9) instead of (5.8) and follow the same argument.

Appendix A. Time-elapsed neuron network model. Here, we compare
simulations of (1.2) with simulations of the time-elapsed neuron network model [35].

If the firing rate function f does not depend on m and if we put

(A.1) f(a, \varepsilon xt) := \^f(\eta (a) + \varepsilon xt),

then (1.2) reduces to the time-elapsed neuron network model

\partial t\rho t(a) + \partial a\rho t(a) =  - f(a, \varepsilon xt)\rho t(a),(A.2a)

\rho t(0) =

\int \infty 

0

f(a, \varepsilon xt)\rho t(a)da,(A.2b)

xt =

\int t

0

h(t - s)

\int \infty 

0

\int \infty 

0

f(a, \varepsilon xs)\rho s(a)dads,(A.2c)

\rho 0(a) = u0(a).(A.2d)

Equation (A.2) is the population equation for nonadaptive SRM0 neurons (or age-
dependent nonlinear Hawkes processes) [6]. As reported previously, (A.2) exhibits
self-sustained oscillations for large \varepsilon or relaxation to a stationary state for small \varepsilon 
(see Figure 2). Note that in the special case where h is a Dirac delta distribution
(``instantaneous transmission""), (A.2) can exhibit elaborate periodic patterns [36],
but these patterns do not fulfill our definition of self-sustained population bursts.

Appendix B. Proof of Doeblin's theorem (Theorem 3.1). We follow [4].
We first observe that for any t \geq 0, St is nonexpansive, i.e.,

(B.1) \| St\mu \| L1\leq \| \mu \| L1 \forall \mu \in L1.

Indeed, writing \mu + and \mu  - the positive and negative parts of \mu , respectively
(\mu = \mu +  - \mu  - and | \mu | = \mu + + \mu  - ),

| St\mu | \leq | St\mu +| + | St\mu  - | = St\mu + + St\mu  - = St| \mu | ,

and we get (B.1) by integrating both sides. The result can then be shown in two
steps.

Step 1. The Doeblin minorization condition (3.2) implies

(B.2) \| ST\mu \| L1\leq (1 - \| \nu \| L1)\| \mu \| L1 \forall \mu \in L1 :

\int 
\mu = 0.

Indeed, the Doeblin minoration condition (3.2) and the fact that \| \mu +\| L1= \| \mu  - \| L1=
\| \mu \| L1/2 imply

| ST\mu | \leq 
\bigm| \bigm| ST\mu +  - \| \mu +\| L1\nu 

\bigm| \bigm| + \bigm| \bigm| ST\mu  -  - \| \mu  - \| L1\nu 
\bigm| \bigm| = ST | \mu |  - \| \mu \| L1\nu ,
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Fig. 2. Same as Figure 1 but for the time-elapsed neuron network model (A.2). Simulations
of a network of 5 \cdot 105 nonadaptive SRM0 neurons, approximating (A.2), with identical parameters
(except for \varepsilon ) and identical initial conditions. Neuronal parameters are the same as in Figure 1,
except that f is replaced by (A.1). The \varepsilon have also been adapted.

and we get (B.2) by integrating both sides.
Then, by the estimate (B.2), there exists a unique \rho \infty \in L1

+ with \| \rho \infty \| L1= 1 such
that ST \rho \infty = \rho \infty . The existence is obtained by taking a \mu 0 \in L1 with \| \mu 0\| L1= 1
and defining \mu k = ST\mu k - 1 for all k \geq 1. The estimate (B.2) implies that \{ \mu k\} k\geq 1 is
a Cauchy sequence, and passing to the limit, we get that \rho \infty := limk\rightarrow \infty \mu k satisfies
ST \rho \infty = \rho \infty . If \varrho \infty \in L1

+ with \| \varrho \infty \| L1= 1 also satisfies ST \varrho \infty = \varrho \infty , taking \mu =
\rho \infty  - \varrho \infty in (B.2) implies \rho \infty = \varrho \infty , whence the uniqueness.

Step 2. By the semigroup property, for any t > 0 we have

St\rho \infty = StST \rho \infty = STSt\rho \infty ,

and from the uniqueness of the fixed-point of ST , we get that St\rho \infty = \rho \infty . Hence,
\rho \infty is the unique invariant probability measure.

The general estimate (3.3) is obtained by taking \mu = u0  - \rho \infty and writing t =
\lfloor tT \rfloor T+r1 with 0 \leq r1 < T . Indeed, using the semigroup property and nonexpansivity,
we get

\| St\mu \| L1= \| Sr1S\lfloor t
T \rfloor \mu \| L1\leq \| S\lfloor t

T \rfloor T\mu \| L1\leq (1 - \| \nu \| L1)\lfloor 
t
T \rfloor \| \mu \| L1 ,

which implies (3.3) for the given K and a.
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