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Abstract

Bottom-up models of functionally relevant patterns of neural activity provide an explicit link

between neuronal dynamics and computation. A prime example of functional activity pat-

terns are propagating bursts of place-cell activities called hippocampal replay, which is criti-

cal for memory consolidation. The sudden and repeated occurrences of these burst states

during ongoing neural activity suggest metastable neural circuit dynamics. As metastability

has been attributed to noise and/or slow fatigue mechanisms, we propose a concise meso-

scopic model which accounts for both. Crucially, our model is bottom-up: it is analytically

derived from the dynamics of finite-size networks of Linear-Nonlinear Poisson neurons with

short-term synaptic depression. As such, noise is explicitly linked to stochastic spiking and

network size, and fatigue is explicitly linked to synaptic dynamics. To derive the mesoscopic

model, we first consider a homogeneous spiking neural network and follow the temporal

coarse-graining approach of Gillespie to obtain a “chemical Langevin equation”, which can

be naturally interpreted as a stochastic neural mass model. The Langevin equation is com-

putationally inexpensive to simulate and enables a thorough study of metastable dynamics

in classical setups (population spikes and Up-Down-states dynamics) by means of phase-

plane analysis. An extension of the Langevin equation for small network sizes is also pre-

sented. The stochastic neural mass model constitutes the basic component of our meso-

scopic model for replay. We show that the mesoscopic model faithfully captures the

statistical structure of individual replayed trajectories in microscopic simulations and in previ-

ously reported experimental data. Moreover, compared to the deterministic Romani-Tso-

dyks model of place-cell dynamics, it exhibits a higher level of variability regarding order,

direction and timing of replayed trajectories, which seems biologically more plausible and

could be functionally desirable. This variability is the product of a new dynamical regime

where metastability emerges from a complex interplay between finite-size fluctuations and

local fatigue.
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Author summary

Cortical and hippocampal areas of rodents and monkeys often exhibit neural activities

that are best described by sequences of re-occurring firing-rate patterns, so-called meta-

stable states. Metastable neural population dynamics has been implicated in important

sensory and cognitive functions such as neural coding, attention, expectation and deci-

sion-making. An intriguing example is hippocampal replay, i.e. short activity waves across

place cells during sleep or rest which represent previous animal trajectories and are

thought to be critical for memory consolidation. However, a mechanistic understanding

of metastable dynamics in terms of neural circuit parameters such as network size and

synaptic properties is largely missing. We derive a simple stochastic population model at

the mesoscopic scale from an underlying biological neural network with dynamic synap-

ses at the microscopic scale. This “bottom-up” derivation provides a unique link between

emergent population dynamics and neural circuit parameters, thus enabling a systematic

analysis of how metastability depends on neuron numbers as well as neuronal and synap-

tic parameters. Using the mesoscopic model, we discover a novel dynamical regime,

where replay events are triggered by fluctuations in finite-size neural networks. This fluc-

tuation-driven regime predicts a high level of variability in the occurrence of replay events

that could be tested experimentally.

Introduction

Metastable dynamics of neural populations is an important concept in computational neuro-

science with increasing experimental evidence [1, 2]. It is loosely defined as a sequence of

recurring, discrete “states” of population activity that last much longer than the rapid, jump-

like transitions between states (typically hundreds of milliseconds to several seconds).

Sequences of metastable states have been frequently observed in cortical and hippocampal

areas during task engagement as well as during spontaneous, ongoing activity and have been

linked to various sensory and cognitive functions [3, 4]. These functions include the encoding

of sensory stimuli [5, 6] and internal representations of expectation [7] and attention [8]. In

these studies, the statistical properties of metastable neural activity can often be explained by

hidden Markov models with a few latent states [6, 8]. However, more complex spatio-temporal

activity patterns such as sequences of burst activity across hippocampal place cells during peri-

ods of both exploration and immobility (“replay of trajectories”) of an animal can also be

regarded as metastable activity. In in-silico studies, metastable dynamics also emerges in net-

works of excitatory and inhibitory spiking neurons. This is the case for finite-size networks

with clustered connectivity [6, 9], spatially-structured networks with slow fatigue processes for

hippocampal replay [10] and even for unstructured random connectivity in the inhibition-

dominated regime [11, 12]. Network models exhibiting metastable dynamics have also been

used to explain the stimulus-dependence of cortical variability [9].

The mechanisms of metastable dynamics are often explained using heuristic population, or

firing-rate, models. These mechanisms can be roughly divided into two types: one in which

transitions between metastable states are induced by fluctuations and another one in which

transitions are induced by the deterministic part of the dynamics. In the first case, noise is

essential for metastability because the noiseless dynamics would not exhibit spontaneous tran-

sitions. In contrast, in the second case, transitions also occur in the noiseless dynamics, while

noise can still be useful to model variability of state durations. An important instance for the

first type are multi-attractor models in the presence of noise, such as noisy bistable models for
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perceptual rivalry [13–15] and alternating Up-Down states [16–18]. Transitions correspond to

noise-induced escapes from the basins of attraction. A popular instance of the second type are

transiently stable states governed by a slow fatigue variable such as adaptation or synaptic

depression. In these fast-slow systems, rapid transitions occur when quasi-stationary states of

the fast subsystem (e.g. population activity) destabilize or vanish as the slow subsystem (fatigue

process) evolves on a longer time scale. A prototypical example are relaxation oscillations, i.e. a

(noisy) limit-cycle with a strong time-scale separation, used e.g. to model regular alternations

between Up and Down states in spontaneous cortical activity [19, 20]. A complex example of

fatigue-induced metastability is the Romani-Tsodyks ring model for nonlocal events in place

cells resembling the hippocampal “replay” dynamics [21]. This deterministic ring model

resides in a traveling-wave state (“non-local events”) or in a quiescent state depending on the

spatial profile of a slow synaptic depression variable, which leads to a complex spatio-temporal

activity pattern. We mention that there are also other mechanisms of metastability including

noisy excitable dynamics [20] and deterministic motions between saddle points [3], also

referred to as heteroclinic cycles or winnerless competition [22]. Looking at empirical data,

however, it can be hard to distinguish different mechanisms, especially at high noise levels.

There has been much effort to infer the mechanism underlying metastable dynamics by

studying the consistency of experimental data with heuristic population models. For example,

in the case of cortical and hippocampal Up and Down states [18–20] and for perceptual bist-

ability [13–15], it has been suggested that population models, where noise-induced transitions

are modulated by a slow fatigue variable, are most consistent with the data. An important

question that has received relatively little attention is whether such conclusions are also consis-

tent with the underlying circuit properties at the microscopic scale, modeled as networks of

spiking neurons with biologically realistic neuronal, synaptic and network properties. Unfor-

tunately, a clear link between the employed population models and microscopic circuit models

is largely missing, and it thus remains unclear how the mechanisms of metastability depend on

physiological parameters. While neuronal and synaptic properties can be accounted for by

mean-field models of integrate-and-fire networks [6, 23], the dependence of metastable

dynamics on the number N of neurons in the network is poorly understood. This latter aspect

is particularly crucial in the context of metastability because fluctuations due to a finite num-

ber of neurons have been found to be essential for fluctuation-induced metastability by several

detailed simulation studies [6, 9] as well as theoretical considerations [24]. The description of

these internally generated fluctuations requires population models at themesoscopic scale,

where the finite network size is explicitly taken into account [25–27]. Previous models for

determining the mechanisms of metastability cannot describe this dependence: In heuristic

population models, fluctuations were introduced ad hoc by adding a phenomenological noise

term without a link to the network size N. In the case of mean-field models, fluctuations are

usually not described at all because they vanish in the mean-field limit of infinitely many neu-

rons, N!1. We will refer to such deterministic mean-field models asmacroscopicmodels.

In this contribution, we develop a theoretical framework for mesoscopic population

dynamics with slow fatigue that can describe metastable dynamics and links to an underlying

microscopic description. To this end, we use a bottom-up approach starting from a finite-size

network of linear-nonlinear Poisson (LNP) spiking neurons connected via dynamic synapses

undergoing short-term plasticity (STP). From this microscopic model we derive stochastic dif-

ferential equations for a few mesoscopic variables describing the coarse-grained population

dynamics. We focus on STP in the form of short-term synaptic depression as a slow fatigue

mechanism because it is a ubiquitous feature of neural networks in the brain [28–32] and has

been implicated in important functions such as temporal filtering [33, 34], multistability [35]

and working memory [36]. Mean-field models of STP [23] have recently gained renewed
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attention [37, 38] in the context of the Montbrió-Pazó-Roxin theory for quadratic integrate-

and-fire neurons [39, 40]. These macroscopic models are exact in the case of static synapses, or

when STP is introduced at the population level, but not when dynamic synapses undergo STP

individually. Moreover, the resulting firing rate equations are deterministic—as they hold in

the limit of infinitely many neurons independently of individual neurons being subject to

Gaussian [41] or Cauchy noise [42, 43]—and thus cannot explain fluctuation-induced transi-

tions between metastable states in finite-size networks. Recently, we have developed a meso-

scopic bottom-up model for finite-size networks with STP and have demonstrated that the

mesoscopic model accurately reproduces the metastable Up-and-Down-states dynamics of the

microscopic model [44]. The mathematical structure of that model has the intricate form of a

state-dependent doubly-stochastic point-process driving a system of stochastic differential

equations. As such, it is difficult to analyze and it lacks a straightforward, efficient simulation

algorithm. However, the mesoscopic theory of [44] can be used as a starting point to derive a

temporally coarse-grained stochastic dynamics in the form of a simple jump-diffusion process.

For the case of synaptic depression and large network size, we also present a short direct deri-

vation of the diffusion limit that yields a mesoscopic model in the form a simple diffusion

process.

As we shall show below, our bottom-up modeling framework for mesoscopic population

dynamics permits a re-evaluation of existing heuristic models for metastability in terms of an

underlying microscopic network model. As a first example, we consider a single population of

excitatory neurons with synaptic depression that generates population spikes and can transi-

tion between Up and Down states. The corresponding mesoscopic population model is similar

to the model by Holcman, Tsodyks and co-workers [16, 45, 46], which successfully reproduced

experimental observations [46]. The important difference is that in our mesoscopic model all

parameters are fixed by the microscopic parameters. Thanks to the low-dimensional character

of the reduced mesoscopic system, we can apply phase-plane analysis to study the emergence

of multiple stable states that soon become metastable when decreasing the network size. As a

second, more complex example, we revisit the Romani-Tsodyks (RT) model for hippocampal

replay activity in circular networks of place cells with synaptic depression [21]. We propose a

spiking-neural-network implementation of the original firing-rate model. The corresponding

mesoscopic population model with finite-size noise enables us to shed new light on the mecha-

nisms underlying hippocampal replay in place cells of area CA3 in the hippocampus. In the

deterministic (and heuristic) RT model, irregular switching between metastable traveling

waves of sequential neural activity and a quiescent state is solely controlled by local synaptic

depression as a slow fatigue mechanism [21]. Yet, it is unclear whether such metastable replay

dynamics also occurs in finite-size networks of spiking neurons and whether, in this case,

replay sequences are fatigue-induced (like in the RT model) or may also be driven by finite-

size fluctuations. With our model that is reduced from a microscopic network of a finite num-

ber of neurons, we can interpolate between a fatigue-induced regime and a novel regime of

fluctuation-induced hippocampal replay. We show that these two regimes lead to very distinct

statistical predictions, which can be tested experimentally.

In the present paper, the Results are organized in three main parts. In the first part, we pres-

ent the mesoscopic bottom-up model in two variants, a diffusion and a jump-diffusion model.

In the second part, we use a single population model to demonstrate the performance of the

two variants with respect to network size and dynamical regime. In the third part, we turn to

the more complex scenario of metastable nonlocal replay events in hippocampal place cells.

We compare a novel dynamical regime of fluctuation-induced replay with the deterministic

replay dynamics of [21]. In the Discussion, we explicate biological limitations of the model

and possible extensions to address these limitations. We also discuss potential advantages of
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the novel fluctuation-induced replay dynamics. Finally, in the Methods section, we provide the

derivation of the mesoscopic model as well as the details on numerical simulations and statisti-

cal procedures.

Results

Mesoscopic description of microscopic network dynamics

We study the dynamics of a network of N spiking neurons that, on the microscopic level, are

modeled as linear-nonlinear-Poisson (LNP) neurons [47–49] with dynamic synapses [44, 50].

The network of LNP neurons without dynamic synapses is also referred to as a multivariate

nonlinear Hawkes process [51, 52] in the mathematical neuroscience literature. The LNP

model consists of a cascade of three steps: a temporal linear filter acting on the synaptic input,

a static nonlinearity, which accounts for nonlinearities of the output firing rate, and a stochas-

tic spike generation mechanism. While the simplicity of the LNP model enables us to derive

mesoscopic dynamics with spiking noise and dynamic synapses, we note that the model does

not capture spike correlations due to refractoriness and other spike-history effects [47]. The

synaptic dynamics is given by the Tsodyks-Markram model of short-term plasticity (STP)

[23]. For simplicity, we focus here, in the Results part, on the special case where the synaptic

dynamics corresponds to pure depression [53] and the linear filter of the LNP model corre-

sponds to a leaky integration of the input [54]. The general theory for the full Tsodyks-Mark-

ram model with depression and facilitation as well as the straightforward extension to general

linear filters, enabling biologically more realistic neuronal dynamics [54], is provided in the

Methods part.

Specifically, each LNP neuron i = 1, . . ., N is characterized by an input potential hi(t), which

can be loosely interpreted as its membrane potential at time t. Given the current value of hi(t),
neuron i emits a spike independently with state-dependent hazard rate f(hi(t)), also known as

conditional intensity [55]. Here, f is a non-negative, increasing function that represents the

static nonlinearity of the LNP model (see Eq (6) below for a concrete choice of f). Thus, the

conditional probability that neuron i fires a spike in an infinitesimally small time interval [t, t
+ dt) given the input potential hi(t) is

Probfspike of neuron i in ½t; t þ dtÞjhiðt� Þg ¼ f ðhiðt� ÞÞdt; ð1aÞ

where t− denotes the time just before t. The corresponding spike train is the sum of Dirac delta

pulses

siðtÞ ¼
X

k

dðt � tikÞ; ð1bÞ

where ftikgk are the spike times of neuron i. Mathematically, these spike times are a realization

of a stochastic point process with conditional intensity f(hi(t−)). In numerical simulations of

networks of N LNP neurons, in each small time step [t, t + Δt), we draw N independent Ber-

noulli random variables zt,1, . . ., zt,N 2 {0, 1} with success probabilities f(h1(t−))Δt, . . ., f(hN(t−))

Δt, respectively. If zt,i = 1, then neuron i emits a spike at time t.
We further consider fully-connected networks with homogeneous connectivity and depres-

sive synapses: each time neuron i emits a spike, all the input potentials in the network make a

jump proportional to 1

N xiðt
� Þ, where xi(t−) is the amount of synaptic resources available at the

outgoing synapses of neuron i just before its spike. In contrast to standard leaky integrate-and-

fire models [49], the potential hi(t) is not reset to a fixed value after each spike of neuron i.
Together with Eqs (1a) and (1b), the microscopic network model with LNP neurons and
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synaptic short-term depression (STD), in short LNP-STD model, reads

dhi
dt

¼
mðtÞ � hi

t
þ
JU0

N

XN

j¼1

xjðt
� ÞsjðtÞ; ð1cÞ

dxi
dt

¼
1 � xi
tD
� U0xiðt

� ÞsiðtÞ: ð1dÞ

Here, μ(t) represents a common external current mimicking, e.g., feedforward input from

other areas, and τ can be interpreted as the membrane time constant. The synaptic parameters

are given by the overall synaptic weight factor J, the relative depletion of neurotransmitter by a

single transmitted spike U0 and the time scale of synaptic depression τD. Note that hi(t) = hj(t)
for all t� 0 and for all i and j if at time 0, all the hi share the same initial condition.

From a mathematical point of view, the microscopic model (1) can be rigorously inter-

preted as a system of Poisson-noise-driven stochastic differential equations with solutions

taken in the sense of Itô.

Diffusion model of the mesoscopic dynamics (Gaussian noise). Our goal is to derive a

mean-field model for the microscopic dynamics, Eq (1), that accounts both for the finite num-

ber of neurons as well as for the dynamic synapses undergoing Tsodyks-Markram STP, see Fig

1. The mean-field description will be based on the dynamics of the following mesoscopic vari-

ables defined as the empirical averages

hðtÞ≔
1

N

XN

i¼1

hiðtÞ; xðtÞ≔
1

N

XN

i¼1

xiðtÞ; QðtÞ≔
1

N

XN

i¼1

x2

i ðtÞ: ð2Þ

The desired dynamics of h(t), x(t) and Q(t) are supposed to no longer depend on (the index

i of) individual neurons, so we will approximate terms such as, e.g., the sum 1

N

PN
i¼1
xiðt� ÞsiðtÞ,

by a diffusion term which only involves the mesoscopic variables. To this end, we follow

the temporal coarse-graining approach by Gillespie [56] for the derivation of a “chemical

Langevin equation”, see the Methods section for a detailed derivation. In brief, we first use a

macroscopically infinitesimal time step Δt [56] and approximate the coarse-grained sum

Fig 1. From microscopic to mesoscopic population dynamics. (A) Network with microscopic short-term plasticity. Dashed region shows a zoom into

a pair of interconnected neurons: presynaptic neuron 1 sends out an unmodulated spike train to postsynaptic neuron 2 that receives the spike-train

modulated by short-term depression. (B) Mesoscopic mean-field model with one effective synapse undergoing short-term depression.

https://doi.org/10.1371/journal.pcbi.1010809.g001
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R tþDt
t

1

N

PN
i¼1
xiðt� ÞsiðtÞ dt by a Gaussian random variable with variance proportional to Q(t−).

In a second step, we derive the dynamics of Q(t), discarding the fluctuations whose effect on

h(t) and x(t) is of order N−3/2. The resulting mesoscopic mean-field dynamics is given by the

diffusion model

dh
dt
¼
mðtÞ � h

t
þ JU0xf ðhÞ þ JU0

ffiffiffiffiffiffiffiffiffiffiffiffi
Qf ðhÞ
N

r

xðtÞ; ð3aÞ

dx
dt
¼

1 � x
tD
� U0xf ðhÞ � U0

ffiffiffiffiffiffiffiffiffiffiffiffi
Qf ðhÞ
N

r

xðtÞ; ð3bÞ

dQ
dt

¼ 2
x � Q
tD
� U0ð2 � U0ÞQf ðhÞ; ð3cÞ

where ξ(t) is a Gaussian white noise with auto-correlation function hξ(t)ξ(s)i = δ(t − s).
Although it is possible to deduce Eq (3) from the detailed doubly-stochastic mesoscopic

dynamics derived in [44] (see Methods), the derivation summarized above and presented in

Methods Section “Diffusion approximation for the mesoscopic dynamics with short-term

depression” is much simpler as it relies on a direct application of the diffusion approximation

(avoiding the detour via the model presented in [44]).

The stochastic differential equation (SDE) (3), as all the SDEs in this work, is integrated in

the sense of Itô. Numerically, this means that for each integration time step, the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qf ðhÞ=N

p
multiplying the noise is taken at the time just before the random increment.

Jump-diffusion model of the mesoscopic dynamics (Hybrid noise). In large networks, it

is plausible to assume that the spike input through a large number of recurrent connections

can be approximated by a Gaussian process, and the diffusion model Eq (3) is valid for suffi-

ciently large N. In smaller networks, by contrast, we may no longer rely on the diffusion

approximation since we need to take into account the shot noise character of the spike input.

To this end, we start from the mesoscopic model of [44] and derive a mesoscopic jump-diffu-

sion model with facilitation and depression (see Methods). In this model, the noise takes on a

hybrid form combining Poisson shot noise and Gaussian white noise. In the special case of

short-term synaptic depression only, the resulting jump-diffusion model of the mesoscopic

dynamics reads

dh
dt
¼
mðtÞ � h

t
þ JU0 xðt� ÞAðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
yf ðhÞ
N

r

xxðtÞ

" #

; ð4aÞ

dx
dt
¼

1 � x
tD
� U0 xðt� ÞAðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
yf ðhÞ
N

r

xxðtÞ

" #

; ð4bÞ

dy
dt
¼ �

2

tD
þ U0ð2 � U0Þf ðhÞ

� �

yþ U2
0
x2f ðhÞ; ð4cÞ

where we introduced the new variable y(t)≔ Q(t) − x(t)2, which can be interpreted as the pop-

ulation variance of the variables {xi(t)}. Furthermore, ξx(t) is a Gaussian white noise with auto-
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correlation function hξx(t)ξx(s)i = δ(t − s) and

AðtÞ ¼
1

N
dnðtÞ
dt
¼

1

N

X

k

dðt � tkÞ; dnðtÞ � Pois Nf hðt� Þð Þdt½ �; ð4dÞ

is a shot noise. The shot noise A(t) is defined by the counting process n(t) with jump times tk
that occur with conditional intensity Nf(h(t−)). This definition means that the probability for a

jump in a sufficiently small time step Δt is Nf(h(t−))Δt and the increments Δn(t) = n(t + Δt) −
n(t) of the counting process are conditionally independent given the values h(t−) just before

time t. The increment of the counting process dn(t) represents the total number of spikes gen-

erated by all neurons in the small time interval [t, t + dt), and A(t) is therefore the empirical

population activity. The presence of two different sources of noise in Eq (4) can be interpreted

as the effect of two components that make up the synaptic input N−1∑i xi(t−)si(t) on the meso-

scopic scale: First, a term (N−1∑i xi(t−)) � (N−1∑i si(t)) = x(t−)A(t) that arises if the variability of

the weighting factors xi across synapses is neglected. This term represents the common spiking

noise caused by shared spike inputs. Second, a correction term that accounts for the variability

of xi, approximated by a Gaussian distribution with variance y(t) as shown previously [44].

Mathematically, the mesoscopic model Eq (4) is a jump-diffusion process because the shot

noise leads to small jumps of order 1/N in addition to the diffusive dynamics caused by the

Gaussian white noise. The jumps, however, occur at a high rate Nf(h(t)) so that in simulations

with a coarse-grained time step Δt, unitary jumps will not be resolved. Instead, the increment

of the spike count Δn(t) = n(t + Δt) − n(t) can be drawn from a Poisson distribution with mean

Nf(h(t))Δt provided a sufficiently small simulation time step Δt� 1/f(h), τ, τD. The population

activity is then obtained from the increments as A(t) = Δn(t)/(NΔt).
We expect that the jump-diffusion model Eq (4) remains valid for small network sizes, for

which the diffusion model Eq (3) ceases to provide an accurate description of the microscopic

network dynamics Eq (1). For large N, the jump-diffusion model Eq (4) converges to the diffu-

sion model Eq (3), see also Methods “Reduction to a pure diffusion process”.

Mean-field model of the macroscopic dynamics (no noise). When the number of neu-

rons becomes infinitely large, i.e. in the thermodynamic limit N!1, fluctuations disappear

on the population level and Eqs (3) or (4) becomes a skew system as the variable Q no longer

influences the dynamics of h and x. Themacroscopic model then reads

dh
dt
¼
mðtÞ � h

t
þ JU0xf ðhÞ; ð5aÞ

dx
dt
¼

1 � x
tD
� U0xf ðhÞ; ð5bÞ

where we identified A(t) = f(h(t)) by taking the limit N!1 in Eq (4d). Thus, the transfer

function that relates the input potential h(t) to the neuronal population activity A(t) in the

macroscopic model is exactly given by the static nonlinearity f of the LNP neuron model, Eq

(1). Put differently, the nonlinear function f in the macroscopic model has a precise micro-

scopic interpretation as the static nonlinearity of the microscopic model. While the two-

dimensional macroscopic model, Eq (5), permits a phase-plane analysis of the underlying

deterministic dynamics, it cannot describe fluctuation-induced transitions between metastable

states.
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Microscopic vs. mesoscopic dynamics of a single population exhibiting

metastability

The mesoscopic descriptions Eqs (3) and (4) of the full network of N interacting spiking neu-

rons with short-term depression (STD) effectively reduce the high-dimensional microscopic

dynamics Eq (1) to a system of three stochastic differential equations in h, x, and Q. In the

limit N!1, finite-size fluctuations in the mesoscopic dynamics vanish and the variable Q
becomes superfluous. The two-dimensional macroscopic dynamics Eq (5) readily allows for a

comprehensive phase-plane analysis, see, e.g., [16, 46], which reveals the deterministic back-

bone of, and can therefore yield theoretical insights about, the full network dynamics.

To demonstrate the high accuracy of our mesoscopic description and also its usefulness for

studying the effect of finite-size fluctuations on metastable dynamics, we will focus in this Sec-

tion on two traditional examples of metastability in a single excitatory population (J> 0) of

LNP-STD neurons: populations spikes and spontaneous transitions between Up and Down

states. For reasons of comparability with previous models [16, 21], we assume in this paper

that the static nonlinearity of the microscopic LNP model (1) has the form

f ðhÞ ¼ ra lnf1þ exp½ðh � h0Þ=a�g ð6Þ

with slope parameter r, smoothness a, and threshold h0. The function f(h) has an exponential

sub-threshold tail and a linear supra-threshold part [21, 57]. In the limit a! 0, f(h) = r[h −
h0]+ becomes a threshold linear function with slope r and threshold h0 [16]. The larger a> 0,

the smoother the transition at the threshold.

Population spikes in an excitatory population. As a first example, we study the emer-

gence of spontaneous bursts of synchronized activity due to finite-size fluctuations and short-

term depression (Fig 2). To this end, we tune the parameters of our model such that the mac-

roscopic dynamics for N!1 exhibits a unique stable fixed point (red dot in Fig 2A) together

with a pair of unstable fixed points (orange, green). In the absence of external inputs or inter-

nal finite-size fluctuations, the system will remain in the stable, low-activity state forever. This

state, however, is excitable: Fluctuations can lead to rapid, transient excursions of the neural

trajectory, when the system is kicked across a separatrix (red-dashed curve = stable manifold

emanating from the unstable saddle point (orange diamond)), see the blue traces in Fig 2A.

During an excursion along the unstable manifold of the saddle point (orange-dotted), the

input potential h(t), and with it the population firing rate f(h), rapidly increases, which corre-

sponds to a short synchronized burst of activity. The increased firing of spikes leads to a strong

suppression of the depression variable x, which in turn pulls the firing rate down. Once the

depression variable x(t) has recovered sufficiently, finite-size fluctuations can again trigger a

synchronized burst of activity (Fig 2B and 2C). Such bursts of activity, called population spikes,

have been studied theoretically in the context of STP [44, 58–60] and have also been observed

experimentally [60, 61].

As predicted by the mesoscopic model, the corresponding microscopic network model also

exhibits population spikes with a similar rate, and this rate increases when the network size

decreases (Fig 2D and 2G). Quantitatively, the mesoscopic model accurately reproduces the

statistics of population spikes in the microscopic model: There is an excellent match between

the power spectra (Fig 2E and 2H) and between the distributions of the inter-population spike

intervals (Fig 2F and 2I). The slight deviations of the diffusion model Eq (3) with Gaussian

noise (orange, dashed traces) for a network of N = 30 neurons disappear for a network of

N = 200 neurons: as expected, the diffusion approximation becomes better with increased net-

work size. Remarkably, the jump-diffusion model Eq (4) with hybrid noise (both Gaussian and

Poisson; blue traces) perfectly matches the microscopic network dynamics even when N = 30.
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Given the close correspondence between microscopic and mesoscopic models, the mechanism

of excitable dynamics driven by finite-size noise found above for the mesoscopic model thus

explains the emergence of population spikes in the microscopic network model. Note that the

population spikes are endogenously generated without the need for external (noisy) inputs as

in previous microscopic [44, 58] and mesoscopic [44, 60] models.

Up-Down dynamics in an excitatory population. In a second example, we change the

model parameters slightly so that our system now exhibits two co-existing stable fixed points:

a high-activity “Up” state and a low-activity “Down” state. In the macroscopic model Eq (5),

which corresponds to the one studied in [16] in the absence of noise, only one of the two states

can be realized depending on the initial conditions. In the mesoscopic models, Eqs (3) and (4),

however, finite-size fluctuations lead to irregular transitions between Up and Down states. An

exemplary stochastic trajectory in Fig 3A starts close to the Down state, but soon gets kicked

across the separatrix (red-dashed stable manifold of the (orange) saddle fixed point), from

Fig 2. Population spikes in excitatory populations of finite size. (A) Phase-plane analysis of the macroscopic model (Eq (3) for N!1) reveals the

backbone of the metastable dynamics due to the proximity of a separatrix (red-dashed) near the unique stable fixed point (red dot = cross-section of the

black-dashed nullclines). Trajectories (blue) of the mesoscopic model reproduce population spikes by following the unstable manifold (orange dotted

line) of the saddle fixed point (orange diamond). Population spikes have variable amplitude and inter-population spike intervals (ISI), see also (B,C).

(D) The mesoscopic models with hybrid noise (jump-diffusion model; blue) and Gaussian noise (diffusion model; orange) accurately capture finite-size

fluctuations in the input potential h—note the logarithmic y-scale—and population spikes of the microscopic network dynamics (black) ofN = 30

neurons. (E) Power spectra of the input potential h and (F) ISI distributions coincide for all three models. (G-H) same as (D-F) for N = 200. Statistics

are for simulations of length Tsim = 1000000s. Model parameters can be found in Table 1.

https://doi.org/10.1371/journal.pcbi.1010809.g002
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where it follows the (orange-dotted) unstable manifold and undergoes a sharp excursion in

phase-space, resembling a population spike as described in the foregoing section. On its way

back to the stable Down state, the trajectory approaches the unstable limit cycle (green dashed)

that acts as the boundary of the basin of attraction of the Up state. Finite-size fluctuations can

induce attractor hopping: from the low-activity node (Down state), the trajectory can cross the

basin boundary and starts spiraling into the high-activity focus (Up state), until it crosses the

basin boundary again and converges towards the low-activity node (Down state), see also Fig

3B and 3C. The seemingly ongoing oscillations in the Up state are a pure finite-size effect,

which will be damped out in the macroscopic model. As an aside, the frequency of the oscilla-

tions in the Up state coincides with the imaginary part of the eigenvalue of the high-activity

focus, cf. [46].

To assess the accuracy of our mesoscopic description of this finite-size induced metastable

regime, we performed extensive simulations and compared them to the microscopic network

Eq (1). In Fig 3D, we show exemplary time series of the network dynamics forN = 100 neurons

of the jump-diffusion model Eq (4) with hybrid noise (blue), of the diffusion model Eq (3)

with Gaussian noise (orange) and of the microscopic model (black). Qualitatively, there is an

excellent agreement between micro- and mesoscopic simulations. However, closer inspection

of the time series reveal that the Up states in the diffusion model are, on average, of shorter

duration than in the microscopic and the jump-diffusion model. This slight shortcoming of

Fig 3. Up-down dynamics due to finite-size fluctuations. Mesoscopic model reproduces noisy bistable population dynamics. (A) Phase-plane analysis

of macroscopic dynamics (Eq (3) for N!1) reveals two stable fixed points (red): a high-activity focus representing the Up, and the low-activity node

the Down state of the system. From the saddle fixed point (orange diamond), an unstable (orange dotted line) and a stable manifold (red dashed line)

emerge. The latter acts as a separatrix—trajectories (blue curve) starting from above make an excursion around the unstable limit cycle (green dashed)

and converge towards the down state. Finite-size fluctuations can make the trajectory cross the limit cycle into the basin of attraction of the Up state. (B,

C) Stochastic trajectory of the mesoscopic dynamics (3) with N = 100 transitioning between Down and Up states. (D) The mesoscopic models with

hybrid noise (jump-diffusion model; blue) and Gaussian noise (diffusion model; orange) qualitatively capture Up-Down-dynamics of the microscopic

network (black). (E) Power spectrum and (F) histogram of input potential h over simulation of length Tsim = 1000000s. Model parameters can be found

in Table 1.

https://doi.org/10.1371/journal.pcbi.1010809.g003
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the diffusion model also becomes evident when looking at the power spectrum and the

bimodal distribution of the input potential h(t) computed over a long simulation of Tsim =

1000000s (Fig 3E and 3F, respectively). The jump-diffusion model perfectly captures the full

statistics of the microscopic network, but the diffusion model slightly underestimates the time

spent in the Up states (see the zoom in Fig 3F), which also manifests in small deviations of the

power spectrum.

Mesoscopic model for hippocampal replays

We now turn to a more complex biological example for metastability in neural circuits: the

spontaneous replay of activity sequences across hippocampal place cells [62, 63]. Sequential

activation patterns of place cells have been widely observed in experiments when an animal

explores its environment [64–67] and have been related to neural representations of animal

trajectories, which may subserve navigation and spatial learning [68–71]. Once an internal

representation, or map, unique to one environment [72] is formed, it can later be replayed

spontaneously in the absence of sensory input—a feature that is believed to contribute to

memory consolidation and retrieval [73–75] as well as to route planning [76, 77]. Spontaneous

replay occurs within so-called sharp waves (SW)—i.e. population bursts of co-active pyramidal

cells that give rise to large amplitude extracellular waves— during quiet wakefulness [78–80]

and sleep [81, 82], typically has a much faster, compressed time scale [78, 82, 83] and the

replayed trajectories can either be in the originally experienced order or backwards [84]. Spon-

taneous replay events appear and disappear abruptly and repeatedly, and can therefore be

regarded as metastable states separated by states of low activity. In the following, we extend

our mesoscopic theory to a ring-attractor model consisting of multiple neuronal populations

in order to provide a mechanistic description of hippocampal replay with a direct link to

microscopic networks of spiking neurons.

Microscopic and mesoscopic multi-population model of place cells. We aim for a

mesoscopic description of place cells in area CA3 of the hippocampus. Following Romani and

Tsodyks [21], we consider a network of neuronal populations, where each population is a

group of neurons with highly overlapping place fields. We assume that the full map of the envi-

ronment is covered by in totalM populations each containing N neurons. The activity of indi-

vidual neurons j 2 {1, . . ., N} in a given population α 2 {1, . . .,M} is described by the spike

trains saj ðtÞ ¼
P

k dðt � t
a
j;kÞ associated with the spike times ftaj;kg. As in Eq (1), we model the

spike trains of neuron j in population α as a stochastic point process with conditional intensity

f(hα(t−)) depending on the input potential hα(t), which is identical for all neurons in popula-

tion α under the assumption of full connectivity and homogeneous initial conditions. In our

microscopic ring-attractor network model with STD, the input potentials hα and the neuron-

specific synaptic depression variables xaj ðtÞ then follow the dynamics:

dha

dt
¼
ma � ha

t
þ

1

M

XM

b¼1

Jab
N

XN

j¼1

U0x
b

j ðt
� Þsbj ðtÞ; ð7aÞ

dxaj
dt

¼
1 � xaj
tD
� U0x

a

j ðt
� Þsaj ðtÞ: ð7bÞ

The input potential hα(t) integrates the external input μα (common to all neurons in popu-

lation α) and the recurrent input. The latter consists of contributions from the neurons in the

same population but also from all the other populations β 6¼ α, weighted with a synaptic

strength Jαβ that depends on the distance between the place fields of the corresponding
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populations (as detailed below). The resulting recurrent connectivity of the network with

weights Jαβ is assumed to encode the internal representation of one (or multiple)

environment(s) that the animal has explored recently. It should be noted that the recurrent

weights of an internal map can also be “learnt” via spike-timing-dependent synaptic plasticity

(STDP) during active exploration of the environment, see, e.g., [10, 71]. Here, however, we

assume for simplicity that the animal has already internalized the relevant environments and

that the corresponding internal maps are hardwired (at least on the relevant time scale) within

the synaptic connectivity matrix {Jαβ}α,β in a Hopfield-like manner [85].

Analogously to the case of one population, we can reduce the microscopic dynamics Eq (7)

to a mesoscopic model with multiple populations. Introducing the mesoscopic quantities xα(t)
and Qα(t) that correspond to the first and second moment, respectively, of the depression vari-

ables xai ðtÞ for population α 2 {1, . . .,M} and defining the variances yα(t) = Qα(t) − xα(t)2, we

obtain the mesoscopic dynamics

dha

dt
¼
ma � ha

t
þ

1

M

XM

b¼1

JabU0 xbAbðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ybf ðhbÞ
N

r

x
b

xðtÞ

" #

; ð8aÞ

dxa

dt
¼

1 � xa

tD
� U0 xaAaðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yaf ðhaÞ
N

r

x
a

xðtÞ

" #

; ð8bÞ

dya

dt
¼ �

2

tD
þ U0ð2 � U0Þf ðh

aÞ

� �

ya þ ðU0 xaÞ
2f ðhaÞ; ð8cÞ

with Gaussian white noises x
a

xðtÞ obeying hx
a

xðtÞi ¼ 0 and hx
a

xðtÞx
b

xðsÞi ¼ da;bdðt � sÞ for all α,

β 2 {1, . . .,M}. The activity Aα(t) of population α = 1, . . .,M is given by

AaðtÞ ¼
1

N
dnaðtÞ
dt
¼

1

N

X

k

dðt � takÞ; dnaðtÞ � Pois Nf haðt� Þð Þdt½ �; ð8dÞ

where the points in time ftakgk are a realization of a point process with conditional intensity

Nf(hα(t−)) and can be interpreted as the collection of all spike times generated by population α.

We here present only the jump-diffusion model with hybrid noise because we used this ver-

sion of the model in the simulations for the following figures. However, there is also an obvi-

ous multi-population extension of the simpler diffusion model, Eq (3), see Methods, Eq (36).

In some parameter regimes, the simpler diffusion model already faithfully reproduces micro-

scopic simulations and is sufficient to study the mechanisms of recent experimental observa-

tions. In other parameter regimes, as considered here, the jump-diffusion model Eq (8) with

hybrid noise captures finite-size induced metastable dynamics more accurately.

A circular environment. We first consider a single circular environment and assume

that, after exploration, the animal has formed an internal representation (map) of the corre-

sponding environment, which is encoded in the synaptic connectivity of the place cells in hip-

pocampal area CA3. Accordingly, we assign to all neurons in population α 2 {1, . . .,M} a place

field at angle θα = 2πα/M, so that the place field locations are equally spaced on a ring, see Fig

4A. The synaptic strength Jαβ depends on the distance between locations according to

Jab ¼ J1 cosðya � ybÞ � J0 ¼ J1 cosð2pða � bÞ=MÞ � J0; ð9Þ

where J1 scales the strength of map-specific interactions and J0 corresponds to uniform feed-

back inhibition. For J1 > J0� 0, populations with adjacent place fields excite each other,
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whereas populations with place fields far apart from each other are inhibitory. This form of

symmetric interaction is known to generate spatially coherent activity, leading to so-called

bump attractors [86–89]. STD has been shown to destabilize stationary bumps that move

around the environment [90], creating burst-like nonlocal traveling wave events (NLEs) that

resemble hippocampal replay patterns on a population level.

In our network simulations, we considerM = 100 populations around the ring with N = 50

neurons each. The external input is homogeneous, i.e. μα = μ for all α = 1, . . .,M. As shown in

Fig 4Bi, the network spontaneously generates a burst of elevated activity with one or more

peaks, that lasts up to a few hundred milliseconds and is then terminated due to STD. Another

burst is generated only after a recovery period—the so-called interburst interval (IBI). The

intermittently elevated activity on the ring is strongly localized because of the synaptic

Fig 4. Hippocampal replay in micro- and mesoscopic ring-attractor network model. (A) Ring-attractor model ofM population units ofN LNP spiking

neurons with STD. Synaptic weights Jα,β are excitatory for units with nearby place field positions θα and inhibitory at longer distances, see the coupling

function on the right. (B) Mesoscopic and (C) microscopic network simulations reveal (i) spontaneous bursts of the averaged activity, resembling SWs,

during which replay patterns evolve as (ii) metastable traveling waves, or nonlocal replay events (NLE), along the circular environment—the expected

activity rj = f(hj) at location θj = 2πj/M, j = 1, . . .,M is color-coded. Statistics of the (D) mesoscopic and (E) microscopic simulations perfectly match each

other with respect to: (i) the distribution of event duration, (ii) the correlation between the number of peaks per burst and its duration, (iii) the correlation

between the length of the traveled path during an event and its duration (the red curves in panels (ii,iii) are linear regression curves), as well as (iv) the

distribution of average bump speed during an event, computed from events with more than one peak; see Methods for more details, Table 1 for model

parameters and Table 2 for simulation results.

https://doi.org/10.1371/journal.pcbi.1010809.g004
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connectivity. STD makes the localized bump move to neighboring place field locations and,

thus, gives rise to an NLE, Fig 4Bii; we define an NLE (= nonlocal replay event) as a burst of

the averaged activity with more than one peak, see also Methods. As the elevated activity

locally alters the spatial profile of the slow synaptic depression variable, highly irregular activity

patterns emerge with bursts that start at seemingly random locations, travel in either backward

or forward direction, and vary both in duration and distance (note, however, that a single

wave of activity never travels further than once around the circle). This type of metastable

dynamics strongly resembles the behavior observed by Romani and Tsodyks in their determin-

istic firing rate model [21], hereafter referred to as the RT model, but with the important

difference that here the emergence of metastability is a finite-size effect—increasing the popu-

lation size from N = 50 to N = 5000 renders any initiation of burst-like activity impossible (see

the orange curve in Fig 4Bi). Put differently, our model reveals a novel dynamical regime, in

which metastable burst states are fluctuation driven, in contrast to the RT model, where bursts

are induced deterministically when depression slowly abates (for a similar mechanism of

noise-induced traveling waves, see [91]).

Comparing the simulations of our mesoscopic model with the microscopic network, we

find an excellent agreement both from a qualitative (Fig 4B and 4C) and from a quantitative

perspective (Fig 4D and 4E), where we follow the statistical analysis of [21], see also Methods.

For comparison, we considered two deterministic models with fatigue-induced bursts: (i) the

original RT model [21], and (ii) our model with N!1 and slightly increased external drive

(μ = −0.9 instead of μ = −1.4). This second model, which will be referred to as themacroscopic
model in the following, essentially reproduces the dynamics of the original RT model [21]. We

included this second model in the comparison (see also Fig A in S1 Text) because the macro-

scopic limit N!1 of our mesoscopic model yields slightly different model equations com-

pared to the heuristic RT model. A closer inspection of the statistical properties of NLEs and

IBIs reveals that mesoscopic and microscopic simulations not only match almost perfectly, but

the fluctuation-induced bursts may also have more biologically realistic properties than the

fatigue-induced regime. For example, experiments in rodents exposed to long linear tracks

[83, 92] had an experimentally estimated number of *10 SWs/s. Assuming that each peak in

the average activity corresponds to one SW, the micro- and mesoscopic models closely match

the experimental observations with 9.3 SWs/s in contrast to less than 8 SWs/s in the macro-

scopic and original RT model, see Methods for more details.

Furthermore, our fluctuation-driven model reveals larger temporal variability with a

unimodal IBI distribution (Fig 5A) and low serial correlations of the event speeds (Fig 5B). In

marked contrast, in the macroscopic and RT models of fatigue-induced bursts, the IBI distri-

butions are bimodal, and clearly not exponentially distributed as observed experimentally [62,

93, 94] and expected for a Poisson process. By contrast, our fluctuation-driven model shows

the tendency towards exponential IBI distributions with longer tails, showing in particular a

larger mean (0.65 s vs. 0.29 s) and a higher coefficient of variation (CV = 0.85 vs. 0.79).

Moreover, the macroscopic and RT models exhibit strong correlations between forward and

backward replay events as seen in the serial correlations of the event speed (Fig 5Bii). The alter-

nating structure of the serial correlation coefficient with strong anti-correlations at lag 1

means that forward and backward motion alternate almost perfectly. In contrast, the motion

directions in the sequence of NLEs in our fluctuation-driven model are almost uncorrelated

(Fig 5Bi). Another difference to the deterministic models is that the onset location of the fluc-

tuation-induced NLEs is independent of the offset location of the preceding event. By contrast,

in the deterministic fatigue-induced (macroscopic and RT) models, the activity bursts start at

the location where the slow depression variable has had most time to recover, leading to more

regular event patterns (see also [21] and Fig A in S1 Text).
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On shorter time scales, all models (micro-, meso-, macroscopic and RT) exhibit the experi-

mentally observed discontinuous nature of replay events [95]. In Fig 5Ci, we zoom into one

exemplary NLE of around 350ms, during which a metastable wave travels around the ring in

backward direction. The place field activity (color coded) varies critically in location and activ-

ity. Binning activity per location in moving 50ms windows, we estimate the animal’s (hypo-

thetical) position along the ring by applying the population vector average (PVA; [96]), see Fig

5Cii. The decoded trajectory (black dots) does not follow a smooth path, but the step sizes vary

irregularly in length (Fig 5Ciii). In Fig 5D, we show the step-size distributions for the four dif-

ferent models, featuring a large number of very short steps and a long tail of larger steps. The

broad distributions significantly differ from the narrow step-size distribution that would be

expected if the movement trajectory was uniform (thin lines in Fig 5D). More precisely, the lat-

ter distribution describes the variation of the average step sizes (computed for each NLE)

across different NLEs, which corresponds to approximating each replay trajectory by a straight

line (red-dashed curves in Fig 5C), see also [95] for more details on computing the step-size

distributions.

In conclusion, the mesoscopic model Eq (8) perfectly recovers the metastable replay

dynamics of the microscopic network model Eq (7). While our fluctuation-driven model is

similar to the deterministic models with respect to the structure of single replay trajectories

(Fig 5C and 5D), the fluctuation-driven model features unimodal IBI distributions and low

serial correlations of motion directions, in marked contrast to the bimodal IBI distribution

and the strong serial correlations of the deterministic fatigue-induced replay model. Thus, the

IBI distribution and the sequence of motion directions provide experimentally testable predic-

tions that may be useful to disentangle the contributions of deterministic and stochastic

sources of metastable hippocampal dynamics.

Fig 5. Comparison of fluctuation-induced and depression-induced hippocampal replay dynamics. (A) Interburst-interval distributions and (B)

serial correlations of the event speeds of consecutive NLEs for (i) the meso- and microscopic models and (ii) the deterministic models (green: original

Romani-Tsodyks model [21], purple: macroscopic model in the fatigue-driven regime obtained by setting Nα!1 and μ = −0.9 (instead of μ = −1.4)).

(C) On shorter time scales, all models capture the discontinuous nature of the replayed trajectory: (i) Single NLE of the mesoscopic model. (ii) Place

field positions decoded using PVA in bins of 50ms (black dots). This “replayed trajectory” deviates from a straight line (red-dashed) corresponding to a

hypothetical uniform motion. (iii) Increments of the movement trajectory exhibit strongly irregular movement features (black dots) in contrast to the

constant increments expected for a straight line (red-dashed). (D) (i): The distributions of reconstructed step-sizes of the meso- (blue) and microscopic

models (gray histogram) coincide and strongly deviate from the narrow distributions of average step sizes (computed for each NLE by fitting straight

lines to individual movement trajectories) for the meso- (red) and microscopic models (gray thin line). The average step sizes vary for different NLE’s,

causing the non-zero width of their distribution. (ii) Similar behavior is observed for the macroscopic model (purple; with increased external input μ =

−1.4 7! −0.9) and the Romani-Tsodyks (RT) model (green histogram); red/gray thin lines correspond to average step sizes in the macro/RT-models,

respectively. See main text and Methods for more details.

https://doi.org/10.1371/journal.pcbi.1010809.g005

PLOS COMPUTATIONAL BIOLOGY Mesoscopic description of hippocampal replay and metastability in spiking neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010809 December 22, 2022 16 / 46

https://doi.org/10.1371/journal.pcbi.1010809.g005
https://doi.org/10.1371/journal.pcbi.1010809


Multiple circular environments. In a next step, we assume that an animal has internal-

ized multiple environments. The ability to code for spatial locations in multiple environments

is considered one of the hallmarks of place cell activity in the hippocampus. Experimental

results have shown that rodents, when exposed to two distinct environments of similar shape,

most place cells are active in only one environment. However, a few place cells are active in

both environments but they typically exhibit place fields at different spatial locations, which is

referred to as global remapping [97, 98]. Replay events can then be observed in both neural

maps corresponding to each of the two environments [79], see also [99, 100].

Following [21], we consider K circular environments and store their respective maps within

the synaptic connectivity Jα,β of the network model Eq (7). To this end, we endow each popula-

tion α with a binary vector of selectivities for these K environments,

za ¼ ðz
1

a
; . . . ; z

K
a
Þ 2 f0; 1g

K
, where z

k
a
¼ 1 indicates that the neurons in population α are selec-

tive for environment k 2 {1, . . ., K} (i.e., the neurons contribute to the encoding of this envi-

ronment) [21, 101]. Otherwise, if z
k
a
¼ 0, population α is not selective for environment k.

Selectivity to particular environments is assigned randomly, but with the constraint that
PM

a¼1
z
k
a
¼ fM with f 2 [0, 1], i.e. exactly fM populations are selective for environment k. Fur-

thermore, we introduce place field locations y
k
~a
¼ 2p~a=ðfMÞ for each environment k and ran-

domly assign a unique place field angle to each of the fM populations ~a 2 f1; . . . ; fMg
selective for environment k. We then define the synaptic weights as

Jab ¼
1

f

XK

m¼1

J1z
k
a
z
k
b
cosðyk

a
� y

k
b
Þ � J0; ð10Þ

where map-specific interactions of strength J1 only occur within environments, and J0 repre-

sents uniform feedback inhibition as before [21]. In our simulations, we use K = 3, f = 0.3 and

M = 300, and find parameters of synaptic strength J0 and J1 as well as the homogeneous exter-

nal input μ such that replay events are again a pure finite-size effect: When increasing the pop-

ulation size from N = 50 to N = 500, the network remains in a quiescent state and bursts of

elevated activity no longer occur in our simulation.

As can be seen in Fig 6, bursts of elevated activity occur spontaneously and with high tem-

poral variability. During these nonlocal replay events (NLE) a metastable traveling wave state

is generated randomly in one of the three stored environments; activity in the other environ-

ments is suppressed due to global inhibition. As expected, our meso- and microscopic network

simulations show qualitatively very similar behavior (cf. Fig 6A and 6B). The metastable

dynamics exhibit high variability with respect to the duration of NLEs and the interburst inter-

vals (Fig 6E), the length of the traveled path during a NLE within the active environment, as

well as the order of environment activation.

In more detail, we statistically analyzed the patterns of sequential activations. For instance,

in Fig 6A the order of environment activation reads 313123122312321. To quantify whether

replay of distinct environments, i.e. their order of activation, is random or correlated, we first

computed the transition probabilities between environments. While the stochastic (meso- and

microscopic) models did not show strong preference for any environment transition, in the

deterministic (macroscopic and RT) models, preferred transitions were clearly visible (Fig

6C). Moreover, we checked whether particular sequences of recalled environments are more

probable than others, which may point at some (hidden) deterministic origin of sequence gen-

eration and recall. In order to avoid spurious deterministic effects that may be inherited from

asymmetries in the synaptic weights, we constructed the selectivity vectors zα symmetrically

and guaranteed that bursts within the environments were equally distributed, see Table 3 in
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the Methods section. The deterministic (macroscopic and RT) models, nonetheless, exhibited

a strong preference for specific order of environment activation (3! 2! 1! 3 in the exam-

ple of Fig 6). By contrast, the stochastic models did not show any preference for a particular

order, Fig 6D, which underlines once more the strong variability in the finite-size induced

metastable dynamical regime of hippocampal replay.

Fig 6. Spontaneous replay switches between multiple environments. In the (A) mesoscopic and (B) microscopic ring-attractor network storing

multiple environments, metastable replay dynamics spontaneously emerge due to finite-size fluctuations when decreasing the population size from

N = 500 (orange/red in panels i) to N = 50 (blue/black) per unit. Nonlocal replay events (NLEs) occur randomly in exclusively one of three

environments, while activity in the respective other two is suppressed. The resulting activation sequences of replayed environments—in (A) the

activation sequence reads 313123122312321—are analyzed with respect to (C) the transition probabilities between subsequently active environments

and (D) sequential activation patterns. In the meso- and microscopic models, transitions from environment k to j are equally likely for all pairs (k, j) 2
{1, 2, 3}2. But the deterministic (macro and RT) models show a clear preference for transitions 1! 3! 2! 1, which is also apparent in the high

probability of the corresponding subsequences of three distinct, subsequently active environments. (E) Larger heterogeneity with respect to NLE

duration and interburst intervals (IBI), as assessed by the respective means μ and coefficients of variation CV, further distinguishes the more variable

metastable regime of the micro-/mesoscopic vis-à-vis macroscopic/deterministic models. Model parameters can be found in Table 1.

https://doi.org/10.1371/journal.pcbi.1010809.g006
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Discussion

To better understand the mechanisms of emerging collective dynamics and metastability in

neural networks, low-dimensional mean-field models have become indispensable in theoreti-

cal, computational and systems neuroscience. In this paper, we have proposed a novel meso-

scopic mean-field model for networks of spiking neurons with short-term synaptic plasticity.

This mesoscopic model readily allows for systematically analyzing the effect of finite-size fluc-

tuations on metastable dynamics. Following a bottom-up approach, we have derived simple

stochastic differential equations for networks consisting of a finite number of Linear-Nonlin-

ear Poisson (LNP) spiking neurons with dynamic synapses undergoing short-term synaptic

plasticity (STP). The mesoscopic model comes in two variants: First, a jump-diffusion model

captures the network dynamics of only a few neurons with high accuracy thanks to a hybrid

formulation of the finite-size-induced fluctuations, which takes the shot-noise properties of

the spike-train inputs into account. Second, using a diffusion approximation, we obtained an

even simpler diffusion model for pure short-term depression, whose accuracy naturally

improves with increasing network size. Noteworthy, its accuracy also depends on the dynam-

ical regime under investigation, e.g., when the skewness of the shot noise critically affects the

transitions to the Up-states. Nonetheless, as we showed above, the mesoscopic diffusion model

is able to capture the microscopic network dynamics formidably well, allowing us to uncover

finite-size induced population spikes, spontaneous transitions between Up and Down states,

and a novel dynamical regime of quasi-traveling waves as a putative mechanism for fluctua-

tion-driven hippocampal replay.

Modeling population spikes and Up-Down dynamics

In the modeling literature, theoretical models of metastability are typically based on an inter-

play between the network’s tendency to posit itself in a self-excitable dynamical regime and

some fatigue mechanism that generates activity-dependent self-inhibition in response to ele-

vated network activity [102, 103]. Such a fatigue mechanism can be implemented in neural

networks via neural spike-frequency adaptation (SFA) or via synaptic short-term depression

(STD). Here, we focused on STD, but acknowledge that similar behavior can, in principle, also

be achieved with SFA. One possibility of self-excitability is that a stable low-activity state of

asynchronous activity is close to a Hopf bifurcation, at which it becomes destabilized in favor

of stable global oscillations. In the subcritical regime, noise can promote transient departures

from the fixed point, resembling populations spikes [60]. Another possibility is that the system

exhibits two stable fixed points, a high-activity (Up) and a low-activity (Down) state. Switching

between the states can be induced by internal or external noise. In addition, the Up state can

get destabilized in a saddle-node bifurcation by an adaptive fatigue mechanism described

above [18, 20, 104, 105]. These scenarios are effectively low-dimensional and, in consequence,

firing rate models describing the mean population activity can successfully explain metastable

dynamics. As noted in the Introduction, however, the firing rate models largely miss a clear

link to microscopic circuit models. While neuronal and synaptic properties can be partly

accounted for by mean-field models, incorporating biologically realistic fluctuations in such

models is more difficult as it often lacks a rigorous footing. Neglecting fluctuations may

explain purely deterministic, fatigue-induced metastable activity patterns with low variability.

Experimentally observed metastability in the brain, however, shows larger variability suggest-

ing fluctuation-induced metastable dynamics. Fluctuations can have manifold origins that

range from external noisy (cortical or thalamic) inputs or background noise [106], via specific

network connectivity topologies (random, sparse, or clustered) [107–111], heterogeneity

[112], (loose or strong) balance between excitation and inhibition, up to finite-size effects [60,
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113, 114], or even a combination of them [115, 116]. On the mesoscopic scale, such fluctua-

tions are often modeled heuristically by adding noise terms to the mean-field equations ad
hoc.

With the mesoscopic mean-field model that we have proposed here, we restricted ourselves

to explaining the fluctuations observed on a mesoscopic population level that are due to a finite

number of stochastic neurons. To minimize confounding factors, we considered just one excit-

atory population of Poisson spiking neurons, all-to-all coupling, and no external noise. Indeed,

it has been shown that inhibition is not necessarily needed to generate population spikes and

Up-Down transitions, neither is short-term synaptic facilitation needed; see [16, 45, 46] who

used a mean-field model with STD and Gaussian white noise in the voltage dynamics. Building

on their previous work and complementing that mean-field model by an additional facilitation

dynamics, Holcman and co-workers more recently provided an improved, and analytically

tractable, description of network bursts, Up-Down dynamics and slow oscillations that is com-

patible with experimental recordings on various scales [117, 118] and allows for detailed sto-

chastic analysis [119–121]. In the Methods, we extend our mesoscopic description considering

also short-term facilitation. Our mesoscopic mean-field model Eq (3) yields exactly the same

deterministic dynamics of their depression(-facilitation) mean-field model in the limit N!
1, see also [122]. The important difference, however, is how to deal with noise. While Holc-

man, Tsodyks and co-workers rather vaguely motivated an additive Gaussian white noise term

that is meant to represent the fluctuations from independent vesicular release events and/or

closings and openings of voltage gated channels, we here provide an explicit and rigorous deri-

vation of the multiplicative noise terms in our mesoscopic mean-field model. Our model can

thus accurately account for the finite-size fluctuations of the microscopic network including

the thereby induced heterogeneity of synaptic depression across the neurons.

Previous approaches to model finite-size effects in networks with STP included a multipli-

cative noise term ad hoc in the firing rate equation [123, 124]. By contrast, we here derived

Langevin equations directly from the underlying microscopic network of finitely many LNP

spiking neurons. In our bottom-up approach we explicitly take into account fluctuations due

to the variability of the individual depression variables across synapses, that are typically

neglected in the other approaches. Our resulting mesoscopic model remains nonetheless sim-

ple enough to allow for an efficient analysis of finite-size induced metastable dynamics in the

presence of a slow fatigue mechanism in form of STD.

Diffusion- vs. jump-diffusion model: It depends on network size and

dynamical regime

For a single population of LNP-STD neurons, we showed that microscopic network simula-

tions were accurately captured by our mesoscopic description. In general, the agreement with

the jump-diffusion model Eq (4) was excellent both for the population spike and the Up-

Down states dynamics. The fit between the diffusion model Eq (3) and the microscopic net-

work became better, the larger the network size N in line with the diffusion approximation

requiring a rather large N. At least this is true concerning the population spikes dynamics (Fig

2). In the Up-Down dynamics, however, even for intermediate network sizes of N = 100 neu-

rons, deviations between microscopic simulations and the diffusion model still prevailed, see

inset in Fig 3F. An increase in network size hardly led to a better fit. On top of that, a larger N
resulted in finite-size fluctuations with smaller amplitude, which made attractor hopping

between Up and Down states more difficult and less frequent, and thus required longer simu-

lation times. The origin of the deviations can be found in the phase plane shown in Fig 3A: the

unstable manifold of the saddle fixed point (orange dotted line) leads the neural trajectory
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close to the basin boundary (green dashed) of the Up state only in a small region of the phase

space. In this region, fluctuations need to perturb the neural trajectory in a particular direction

so that it can enter (and then also remain within) the basin of attraction of the Up state. The

jump-diffusion model actually recapitulates the correct fluctuations, whereas noise in the dif-

fusion model is too diffusive. This discrepancy can already be anticipated from the Q- and y-
dynamics in Eqs (3) and (4), respectively, which directly influence the finite-size fluctuations.

In fact, the steady state profiles of Q and y predict that the fluctuations are strongest for inter-

mediate firing rates f(h) and depression levels 0< x< 1, that is, right in the aforementioned

critical region of the phase space, where a delicate balance between Poisson and Gaussian

noise is important to recover the microscopic network dynamics. Consequently, the accuracy

of the simpler diffusion model Eq (3), and hence its choice over the more complex jump-diffu-

sion model Eq (4), to describe the microscopic network dynamics depends not only on the net-

work size N, but also on the dynamical regime under investigation.

In the case of the hippocampal replay dynamics in the ring-attractor model with multiple

populations of LNP-STD neurons, we saw a very similar effect. For fatigue-induced hippocam-

pal replay, the actual characteristics of the finite-size fluctuations were less important than the

deterministic backbone provided by the spatio-temporal profile of the slow fatigue (depres-

sion) variable. Hence, the diffusion model was able to accurately capture the metastable replay

dynamics of the microscopic ring network. By contrast, for the chosen parameter set in Fig 4,

hippocampal replay patterns were finite-size induced and vanished completely for large net-

work sizes. As such, capturing the finite-size noise properties of the microscopic network was

necessary for observing the NLE dynamics. The finite-size induced hippocampal replay

dynamics could be recovered by both mesoscopic model versions, albeit the jump-diffusion

model yielded a better quantitative agreement.

Network size variation resembles long-term plasticity

Our study of the Up-Down-dynamics has been guided by the work of Holcman, Tsodyks and

co-workers [16, 45], who considered a firing rate model with external stochastic input as a nec-

essary ingredient to realize the metastable dynamics and irregular transitions between Up and

Down states in a network with STD, which was supported by experimental observations in

[46]. The Up and Down transitions described by our mesoscopic model in Fig 3A–3C solely

stem from internally generated finite-size fluctuations and no external noise is needed. In

addition, the mesoscopic model can explain certain dynamical features that Holcman and Tso-

dyks ascribed to long-term synaptic plasticity by changing the network size. Specifically, in

[16] Holcman and Tsodyks attested deviations from typical Up-Down dynamics to external

stimulation (by changing the input parameter μ) or to long-term synaptic plasticity (by chang-

ing the recurrent coupling strength J). A depolarization injection current (larger μ) had a simi-

lar effect as long-term potentiation (LTP; stronger recurrent coupling J), which led to longer

Up states. On the other hand, a hyperpolarization injection current (smaller μ), or similarly

long-term depression (LTD; smaller J), led to shorter Up states and more frequent population

spikes. While our mesoscopic description predicts analogous behavior of the microscopic net-

work when changing μ and/or J, it also predicts that similar effects can be realized by varying

the network size N. Performing simulations with various network sizes between N = 50 and

N = 150 while keeping the other parameters unchanged, we found that for N = 100, metastable

activity featuring populations spikes is interspersed with Up states that last on average 10.6 s

(mean taken over all Up states that last at least 1 s), see Fig 3D. For smaller networks with

N = 50 (simulations not shown), population spikes become more frequent and Up states

become shorter (mean duration 3.1s): Over a 100000 s simulation, Up states followed
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population spikes in 16.9% of all 2249 cases for N = 50, whereas for N = 100 this only occurred

in 15.6% of all 1218 cases. Larger networks with N = 150, by contrast, exhibit significantly lon-

ger Up states (mean duration 41.9 s) and even less frequent population spikes (see Fig B in S1

Text). Computing the corresponding histograms of the input potential revealed only for suffi-

ciently large network sizes a second peak at around 5.5 mV (as in Fig 3F), which coincides

with the Up state in Fig 3A. Furthermore, the fluctuation-driven oscillations in the long-lasting

Up states (Fig 3B and 3C for N = 100) become visible in the power spectrum for N = 150 as

another peak at around 1.5 Hz emerges. This frequency corresponds to the imaginary part of

the eigenvalues of the stable focus (λ� (−1.54 + 9.24i) Hz hence Im(λ)/(2π)� 1.5 Hz).

We can conclude that in our theoretical model the network size critically affects the Up-

Down dynamics. Recent findings in mouse primary sensory cortex show that the network size

changes dynamically as the proportion of stimulus-responsive cells increases with learning

[125]. Likewise, learning or, more general, context-dependence may dynamically control Up

and Down states by recruiting more (or less) neurons in the respective brain area. One needs

to keep in mind, however, that when varying the number N of neurons in our model, we have

simultaneously rescaled the synaptic weights in proportion to 1/N. Although this specific

change of parameters is useful for the theoretical analysis, a corresponding biological imple-

mentation is difficult to perceive. In any case, for a given network size and synaptic weights,

our mesoscopic mean-field models Eqs (3) and (4) provide accurate descriptions of the micro-

scopic network with short-term synaptic depression and therefore allow for an efficient analy-

sis of how finite-size fluctuations contribute to and shape metastable dynamics.

Modeling hippocampal replay

Given the recent success in explaining a wide range of experimental observations on hippo-

campal dynamics by means of firing-rate models with STD [21, 71], we extended our meso-

scopic description for a single population to a ring-attractor model of spiking neurons.

Aiming at a minimal spiking neuron network model that can offer unique insights in the gen-

erative mechanisms of hippocampal dynamics in area CA3—in particular those underlying

sharp waves and bidirectional activity replay—, we ignored various degrees of biological plau-

sibility on purpose, but see below for possible extensions. In contrast to previous models that

incorporated more biological details [10, 126–131], our derived stochastic ring model provides

a relatively simple framework for a concise and efficient analysis of hippocampal sharp waves.

Moreover, we were able to overcome the notorious difficulties of accommodating both the

capability to endogenously generate sequential activity [132–134] and trial-to-trial temporal

variability [6, 9].

In previous approaches to model metastable sequential activation patterns, as evident in

hippocampal replay, successful candidate mechanisms to account for both of the above charac-

teristics have already been implemented with the help of firing rate models. Recanatesi et al.

[135] proposed a two-area mesoscale attractor network very much in the spirit of the winner-

less competition model by Seliger, Tsimring and Rabinovich [22], in which the combination of

asymmetric synaptic connectivity, arising from reciprocal coupling between fast and slow sys-

tems, with stochastic synaptic efficacy is crucial for the generation of sequences. Alternatively,

Romani and Tsodyks [21] proposed a fully deterministic mechanism for hippocampal replay

based on short-term depression (STD) and without the need for asymmetric connectivity, see

also [71]: A ring-attractor network model with symmetric synaptic connectivity with local

excitation and long-range inhibition exhibits transitions between a global quiescent state

and various spatially localized bump states [48, 86, 87]. STD, as a slow fatigue mechanism,

destabilizes these bumps and gives rise to traveling wave states [90]. In combination with the
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high-dimensional character of the network, the resulting dynamics appears effectively stochas-

tic and spontaneously switches between quiescence and metastable traveling waves. As the

approaches by Recanatesi et al. [135] and by Romani and Tsodyks [21] rely on heuristic firing-

rate models, both of them suffer from the limitations already discussed in the Introduction

and neither can account for a systematic investigation of finite-size effects on metastable activ-

ity. It is also unclear to what extent the deterministic Romani-Tsodyks (RT) model describes

neural variability. For these reasons, we saw the need for a mesoscopic theory and derived a

stochastic ring-attractor model bottom-up, thereby creating a direct link to microscopic net-

works of spiking neurons.

We first corroborated the findings of [21, 71] as we recovered, in the limit of infinitely

many neurons per population, an analogous deterministic regime of spontaneously emerging

hippocampal replay patterns as in the RT model [21], see Fig A in S1 Text. Given the similarity

between our macroscopic model and the RT model, we subsequently probed our mesoscopic

ring-attractor models by changing first the network size and then also by tuning the strength

of the common input. In the regime of fatigue-induced hippocampal replay, already the diffu-

sion model with Gaussian noise proved an accurate description of the microscopic network

dynamics with finite population sizes, see Table A in S1 Text. When decreasing the common

input μ = −0.9 7! −1.4, the microscopic network simulations featured finite-size induced hip-

pocampal replay dynamics for small population sizes N that were accurately recovered by the

mesoscopic jump-diffusion ring network model Eq (8) with hybrid noise, see Fig 4. The sim-

pler diffusion model also captured these metastable dynamics but the quantitative match was

not as good as in the jump-diffusion model, cf. Table B in S1 Text. Importantly, the macro-

scopic model could not retrieve the NLE regimes at all and remained in the globally quiescent

state. The good agreement between the ring network simulations for single and multiple envi-

ronments using either the microscopic or the mesoscopic ring network models, makes us con-

fident that our mesoscopic description readily allows for capturing realistic hippocampal

dynamics not only on periodic tracks—which we considered here for simplicity and as a proof

of concept—but also on linear tracks, in T-maze environments, and planar (and higher dimen-

sional) fields; we leave these extensions for future work as well as the formation of theta

sequences and phase precession [21, 71, 136], see also [137, 138].

Recent experiments highlight the importance of stochastic models of hippocampal replay

that can explain (i) replay patterns that resemble Brownian diffusion [139] or even super-diffu-

sion [140], (ii) interburst intervals that exhibit significant variability [62, 93, 94], and (iii)

replay episodes that do not always draw a smooth continuous path, but often follow a jumpy,

discontinuous trajectory [95, 141]. Our mesoscopic description can be a useful step towards

such a stochastic modeling framework. It may allow for a mechanistic understanding of the

neuronal, synaptic and network constituents for generating spontaneous hippocampal activity,

which are critical for memory consolidation, recall and spatial working memory, navigational

planning, as well as reward-based learning [63, 75, 77, 80].

Predictions and possible functional roles of variable hippocampal

dynamics

Our mesoscopic description opens a new perspective on the variability of hippocampal

dynamics. Using the mesoscopic model, we uncovered a novel, finite-sized induced metastable

regime of hippocampal replay (see also [91] for a similar mechanism of noise-induced travel-

ing waves). At first glance, these fluctuation-induced quasi-traveling waves are similar in

nature to those in [21]. On time-scales of a few hundred milliseconds, both the deterministic

RT model and our mesoscopic model exhibit spontaneously emerging bursts of activity that
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resemble a nonlocal replay event. As a single replay event unfolds, we showed that both models

feature discontinuous replay trajectories—consistent with experimental observations [95, 140,

141], which also underlines the biological plausibility of the ring-attractor assumption. On lon-

ger time-scales, however, our mesoscopic model allows for a much richer repertoire of replay

dynamics. We found that the mesoscopic ring-attractor network can exhibit significantly

larger variability for finite-sized induced replay dynamics than for deterministic, fatigue-

induced dynamical regimes. This variability manifests in the spatio-temporally irregular suc-

cession of replay events (Figs 4 and 5 and Fig A in S1 Text) and could be tested experimentally,

following, e.g., [62, 93, 94]. Consequently, our results insinuate that different replay dynamics

can have distinct dynamical origins. In particular, replay dynamics in rodents are reportedly

different during awake rest versus sleep [140, 142], possibly relating to fluctuation- versus

fatigue-induced metastability.

Replay in brains and machines

Our findings may also be relevant for human neuroscience, where a paradigm shift to decode

cognition rather from off-task, than from task-based, neural activity seems to be imminent

[143]. Hippocampal replay in rodents is a prime example for a “representation-rich” approach

to spontaneous neural activity by uncovering the temporal structure of task-related representa-

tions. In understanding how the temporal dynamics of a particular neural activity pattern (e.g.,

a nonlocal traveling wave) unfolds, researchers could shed light on various cognitive functions

that are subserved by spontaneous neural activity, including memory, learning, and decision-

making [77, 144]. Recent technical advances in human neuroimaging have inspired “human

replay” studies that investigate spontaneous task-related neural reactivations [145–147], which

bears strong resemblance to rodent replay. Instead of the spontaneous recall of an environ-

ment map in rodent hippocampal replay, the focus lies now on reactivation of a more abstract

“cognitive map” of task space. As the associated cognitive processes include memory retrieval,

planning and inference, and thus lie at the heart of sophisticated model-based reasoning, our

results can also be regarded as a proof-of-concept for the model-based representation-rich

approach advocated in [143] when re-interpreting the environmental maps stored in synaptic

connectivities as cognitive maps. Intriguingly, also in human replay studies, replay can occur

in forward and backward direction, with putative functional roles for spatial and non-spatial

learning [148, 149]. In particular, Liu and co-workers suggest that nonlocal backward replay

may serve as a neural mechanism for model-based reinforcement learning [149]. A compre-

hensive view about the different roles the wide variety of replay dynamics may subserve, how-

ever, remains elusive.

Insights from machine learning, where replay is commonly implemented in artificial

agents, may help to find answers about the putative computational functions [150, 151]. “Expe-

rience replay” was already introduced as a reinforcement learning technique in the early 90s

[152] and is nowadays a crucial ingredient in building human-level intelligence in deep neural

networks [153, 154]. Note also that in reinforcement learning, a ‘model’ has a similar meaning

to the notion of a ‘cognitive map’, which thus naturally bridges the gap from (human) cogni-

tion to artificial intelligence [155]. Nonetheless, research on replay in neuroscience and

machine learning has progressed largely in parallel, so that insights from the latter can also

inform future neuroscientific studies. An outstanding problem in the field of deep learning is

the catastrophic forgetting problem in online learning [151, 156, 157]. This problem is due to

the fact that during online learning, data is not guaranteed to be independent and identically

distributed (i.i.d.), which is a challenge for standard optimization methods. Replay-like meth-

ods are used to overcome this problem, but current replay implementations are
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computationally expensive to deploy. By contrast, uniform sampling of past experiences has

proven to be remarkably efficient both in supervised learning [158–160] and in reinforcement

learning tasks [153, 161]. These insights provide some indirect, yet important evidence for the

computational benefit of the stochastic replay that we have uncovered in this work and hint at

an important role of the novel fluctuation-induced replay regime.

Biological limitations and extensions

In this paper, we aimed at a minimal bottom-up population model that accounts for spiking

noise, short-term synaptic plasticity and basic neuronal properties. The result can be regarded

as a proof of concept that a simple nonlinear mesoscopic model, which enables the analysis of

metastable dynamics in terms of network size and the aforementioned properties, can be

derived from an underlying microscopic model. However, our model has several biological

limitations and lacks some important features. First, neurons exhibit post-spike refractoriness,
which is not captured by the LNP model. While the response of the instantaneous firing rate

can be well reproduced by choosing the linear filter function κ(t) and the nonlinearity f(h) of

the LNP model corresponding to realistic dynamical transfer functions of neurons with refrac-

toriness [54], the temporal spike-train correlations caused by refractoriness violate the Poisson

assumption of our derivation. Although the strict Poisson assumption can be relaxed to some

degree [44], strong spike-train auto-correlations influence the noise properties of the meso-

scopic model and hence the fluctuations of the population activities. This effect has already

been described for the mesoscopic model of [44] in the case of leaky integrate-and-fire neurons

with pronounced refractoriness. Because our theory is based on the previous mesoscopic

model, we expect that these effects carry over to the present model. How to account for non-

Poisson statistics due to refractoriness in a mesoscopic theory with STP is a challenging theo-

retical problem that is left for future research. We also mention that a related neuronal prop-

erty is spike-triggered adaptation, which—similar to synaptic depression—is a slow negative

feedback mechanism. Incorporating adaptation into a mesoscopic theory, either instead of or

in addition to depression, is interesting for two reasons: first, it represents an alternative slow

fatigue mechanisms driving metastable dynamics, and second, adaptation is an important bio-

logical feature found in many cell types [162]. A promising generalization of the present theory

to adaptation could be based on the quasi-renewal approximation [163] and its extension to

mesoscopic theories [26, 164].

Apart from a more realistic description of neuronal properties, also the synaptic dynamics

can be improved towards important biological features. First, the synaptic conductances

exhibit temporal filtering and, in a conductance-based model, they enter the voltage dynamics

in a multiplicative way. Both effects are neglected in our model. At least, the synaptic filtering

of the conductance dynamics is straightforward to include in our theory as shown in [44]. For

an extension of the mesoscopic model to a conductance-based description of synaptic input,

the interested reader is referred to the discussion of [26], see also [116, 165]. Second, the Tso-

dyks-Markram model considered here is a phenomenological and deterministic model of the

synaptic dynamics. However, synaptic transmission is stochastic, and thus a stochastic STP

model [166] would be biologically more realistic (see also discussion in [44]), but how to treat

such stochasticity within a mesoscopic theory remains unclear.

A biologically difficult problem is how to account for realistic network topology. Our theory

applies to networks of multiple interacting homogeneous populations. In turn, each popula-

tion is a fully-connected network of neurons. However, the connectivity of biological neural

networks is not fully connected and often exhibits a large degree of heterogeneity. Regarding

the first issue, we have shown previously that the full connectivity model represents an effective

PLOS COMPUTATIONAL BIOLOGY Mesoscopic description of hippocampal replay and metastability in spiking neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010809 December 22, 2022 25 / 46

https://doi.org/10.1371/journal.pcbi.1010809


model that faithfully reproduces the dynamics of a non-fully-connected, random network with

fixed in-degree if the synaptic weights are rescaled correspondingly [44] (see also [26] for the

case of static synapses). The second issue is a principle challenge for mean-field theories as

they rely on the possibility to use averages over many neurons, and hence cannot describe het-

erogeneous networks that are strongly affected by single neurons. However, in many cases it

might be valid to subdivide the network into many small subpopulations that can be regarded

as roughly homogeneous. Following this strategy, it is crucial to have a mesoscopic description

of the subpopulations because the grouping of neurons with similar properties may result in

small population sizes. For example, in our hippocampal network model, we have grouped

place cells with highly overlapping place fields into one homogeneous subpopulation. If the

number of these similarly tuned place cells is small, the mesoscopic framework can show its

full strength because in this case, the jump-diffusion model still provides an accurate descrip-

tion (see Fig 3 for N = 30 neurons). Finally, we note that a basic type of network heterogeneity

in biology, the separation of excitatory and inhibitory neurons (Dale’s law), is not realized in

our hippocampal network with “Mexican-hat”-type connectivity. However, it has been shown

that such connectivity can be re-implemented in accordance with Dale’s law by two layers of

neurons, one excitatory and one inhibitory layer [167].

Theoretical challenges

The diffusion model Eq (3) and its derivation based on temporal coarse-graining [56] greatly

simplify our previous theoretical work [44] but both results are consistent as shown below in

Methods. The simplicity of our new derivation and the remarkable agreement of the diffu-

sion model with microscopic simulations beg the question of whether the diffusion model is

the exact diffusion approximation [168]. The only way to give a positive answer to this ques-

tion would be to propose a rigorous diffusion approximation proof (as in [169] for the case

of LNP neurons without STP), which we leave as an open mathematical problem. A second

open theoretical question is the convergence of the multi-population model Eq (8) to a sto-

chastic neural field equation. The circular environment we study can be regarded as a space-

discretized stochastic neural field but the exact expression of the continuous equation and

its physical interpretation is unclear and will be subject of future work. Ideally, one would

want to be able to prove the convergence to such an equation, as in [170] in the case without

STP.

The low-dimensional mesoscopic model could be also interesting from a data-analytical

perspective. Recently, Bayesian state-space models have been developed to infer replay events

from spiking data [141]. Such inference does not exploit any knowledge about the dynamical

mechanisms underlying the data and the likelihood function is assumed ad hoc. Our low-

dimensional mesoscopic could provide an analytical likelihood function so as to enable

improved data assimilation methods to infer replay events.

In conclusion, we have put forward a multiscale framework for systematically investigating

metastable network dynamics in finite-sized networks of LNP-STD neurons using a bottom-

up mesoscopic model. This model is efficient to analyze and simulate and is also versatile for

incorporating more biological realism. Thanks to a unique link between the underlying micro-

scopic network and its mesoscopic description, it becomes possible to disentangle the differen-

tial roles of neuronal, synaptic and network properties—in particular the network size—for

emerging metastable brain dynamics. The mesoscopic model may also be instrumental for dis-

tinguishing between fatigue-driven and fluctuation-driven metastability because of their dis-

tinct statistical predictions—as in the case of hippocampal replay. Such predictions could be

tested experimentally and reveal the dynamical origin of spontaneous neural activity.
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Methods

Diffusion approximation for the mesoscopic dynamics with short-term

depression

The microscopic dynamics of a network of N LNP spiking neurons with short-term synaptic

depression and an exponential linear filter (leading to leaky input integration) are given by Eq

(1). To derive the diffusion model of the mesoscopic dynamics Eq (3), we focus on the meso-

scopic variables h(t), x(t) and Q(t) defined as in Eq (2):

hðtÞ≔
1

N

XN

i¼1

hiðtÞ; xðtÞ≔
1

N

XN

i¼1

xiðtÞ and QðtÞ≔
1

N

XN

i¼1

x2

i ðtÞ:

From Eq (1) and using the definition of x(t), we get

dh
dt
¼
mðtÞ � h

t
þ JU0

1

N

XN

i¼1

xiðt
� ÞsiðtÞ; ð11aÞ

dx
dt
¼

1 � x
tD
� U0

1

N

XN

i¼1

xiðt
� ÞsiðtÞ: ð11bÞ

Note that, as mentioned in the presentation of the microscopic LNP-STD model (1), if all

the hi have the same initial condition at time 0, then hi(t) = hj(t) for all times t� 0 and, conse-

quently, hi(t) = h(t) for all t� 0. This means that for this type of initial conditions (also used in

[50]), the microscopic hi are equivalent to the mesoscopic h. Here, we consider only this case.

To approximate the sum 1

N

PN
i¼1
xiðt� ÞsiðtÞ by a diffusion term which only involves

mesoscopic variables, we follow the coarse-graining approach by Gillespie [56] for the deriva-

tion of a “chemical Langevin equation”. To this end, we study the stochastic increments
R tþDt
t

1

N

PN
i¼1
xiðt̂ � Þsið̂tÞdt̂ , where Δt> 0 is assumed to be amacroscopically infinitesimal time

step [56]: Δt is small enough such that (i) the xi’s can be assumed to jump at most once in the

time interval [t, t + Δt], (ii) xiðt�i Þ � xiðt
� Þ if neuron i has a spike at time τi 2 [t, t + Δt], and

(iii) hðt̂Þ � hðt� Þ for all t̂ 2 ½t; t þ Dt�; and Δt is large enough such that many neurons

spike in the time interval [t, t + Δt]. These assumptions are expected to hold if Δt� τ, τD and

1� Nf(h(t))Δt� N for all t. By the smallness assumption, we have

Z tþDt

t

1

N

XN

i¼1

xiðt̂
� Þsiðt̂Þdt̂ �

1

N

XN

i¼1

xiðt
� ÞziðtÞ; ð12Þ

where fziðtÞg
N
i¼1

are i.i.d. Bernoulli random variables with mean f(h(t−))Δt. Conditioned on the

past fðhiðt0ÞÞt0<tg
N
i¼1

(where (hi(t0))t0 < t� (h(t0))t0 < t by our assumption on the initial condi-

tion), all the variables x1(t−), . . ., xN(t−), z1(t), . . ., zN(t) are approximately independent, and

the fxiðt� Þg
N
i¼1

are approximately i.i.d. (all these variables become truly independent as N!
1 [50]). Hence, we use the Gaussian approximation,

PN
i¼1
xiðt� ÞziðtÞ � NE½x1ðt� Þz1ðtÞ j ðhðt0ÞÞt0<t�ffiffiffiffi

N
p _�N 0;Var x1ðt

� Þz1ðtÞ j ðhðt
� ÞÞt0<t

� �� �
:
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We now use the empirical averages Eq (2) to approximate the conditional expectation and

variance:

E½x1ðt� Þz1ðtÞ j ðhðt0ÞÞt0<t� ¼ E½x1ðt� Þ j ðhðt0ÞÞt0<t� f ðhðt
� ÞÞDt � xðt� Þf ðhðt� ÞÞDt

Var½x1ðt� Þz1ðtÞ j ðhðt0ÞÞt0<t� ¼ E½x2
1
ðt� Þj ðhðt0ÞÞt0<t�E½z2

1
ðt� Þj ðhðt0ÞÞt0<t�

� E½x1ðt� Þj ðhðt0ÞÞt0<t�
2 E½z1ðt� Þj ðhðt0ÞÞt0<t�

2

� Qðt� Þf ðhðt� ÞÞDt þ OðDt2Þ:

We can now approximate the increment Eq (12) by a Gaussian:

Z tþDt

t

1

N

XN

i¼1

xiðt̂
� Þsiðt̂Þdt̂ _�N xðt� Þf ðhðt� ÞÞDt;

Qðt� Þf ðhðt� ÞÞDt
N

� �

:

Taking the limit Δt! 0, we obtain the diffusion approximation

dh
dt
¼
mðtÞ � h

t
þ JU0xf ðhÞ þ JU0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðtÞf ðhÞ

N

r

xðtÞ; ð13aÞ

dx
dt
¼

1 � x
tD
� U0xf ðhÞ � U0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðtÞf ðhÞ

N

r

xðtÞ; ð13bÞ

where ξ(t) is a Gaussian white noise with auto-correlation function hξ(t)ξ(t0)i = δ(t − t0).
To close the system (13), we have to derive the dynamics of Q(t). Going back to Eq (1d), by

Itô’s formula for jump processes, we have

dx2
i

dt
¼ 2

xi � x2
i

tD
� U0ð2 � U0Þx

2

i ðt
� ÞsiðtÞ:

Taking the empirical average, we get

dQ
dt
¼ 2

x � Q
tD
� U0ð2 � U0Þ

1

N

XN

i¼1

xiðt
� Þ

2siðtÞ: ð14Þ

We could follow the same steps as before and try to obtain a diffusion approximation for

Eq (14). However, the fluctuations of such a diffusion approximation would be of order 1=
ffiffiffiffi
N
p

and since Q(t) affects the dynamics of Eq (13) only through the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðtÞf ðhÞ=N

p
xðtÞ, the

effect of the fluctuation of Q(t) on h(t) and x(t) are of order N−3/2 and can therefore be

neglected when N is large. Hence, we approximate the increments by their (approximate)

expectation: for the time step Δt> 0,

Z tþDt

t

1

N

XN

i¼1

xiðt̂
� Þ

2siðt̂Þdt̂ � Qðt� Þf ðhðt� ÞÞDt;

whence,

dQ
dt
¼ 2

x � Q
tD
� U0ð2 � U0ÞQf ðhÞ: ð15Þ

Finally, gathering Eqs (13) and (15), we obtain the mesoscopic dynamics in the form of the

diffusion model Eq (3).

The fact that we are here considering the diffusion approximation (or Langevin dynamics)

allows us to significantly shorten the original derivation of the mesoscopic model presented in
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[44]. In particular, in the present derivation, we do not need to approximate the distribution of

the xi(t−) in Eq (12) by a Gaussian, since we only need to approximate the sum in Eq (12) by a

Gaussian. Note that the arguments enabling the present derivation were already hinted at in

the Section “Remarks on the approximation” and Appendix B of [44] but not put together.

Both derivations lead to the same mesoscopic model, except that here, for simplicity, we

neglect fluctuations of order N−3/2 and we consider the diffusion limit; see also the Methods

Section “Reduction to a pure diffusion process” below for an explicit derivation of the diffusion

model from the original mesoscopic model presented in [44].

Jump-diffusion model with synaptic depression and facilitation

Starting from our previous work [44], we can derive an improved mesoscopic model that also

accounts for synaptic facilitation and the shot-noise character of the finite-size spiking noise.

When allowing only for short-term depression while keeping the facilitation variable constant,

the resulting mesoscopic dynamics boils down to the jump-diffusion model Eq (4) with hybrid

noise. For large N� 1, the Poisson shot noise can be simplified under a diffusion approxima-

tion, which recovers the diffusion model Eq (3) derived in the previous section.

Microscopic model with synaptic depression and facilitation. We consider a network of

LNP neurons with dynamic synapses similar to Eq (1) but now complemented with a facilita-

tion variable ûi for each neuron i = 1, . . ., N. The full synaptic dynamics corresponds to the

STP model by Tsodyks and Markram [23, 36] and results in the following microscopic net-

work model:

dĥi
dt

¼
mðtÞ � ĥi

t
þ
J
N

XN

j¼1

ûjðt
� Þx̂jðt

� ÞsjðtÞ ð16aÞ

dûj
dt

¼
U0 � ûj
tF

þ Uð1 � ûjðt
� ÞÞsjðtÞ ð16bÞ

dx̂j
dt

¼
1 � x̂ j
tD
� ûjðt

� Þx̂jðt
� ÞsjðtÞ; ð16cÞ

where siðtÞ ¼
P

k dðt � t
i
kÞ is a point process with conditional intensity f ðĥiðt� ÞÞ. In Eq (16),

τF and τD are the facilitation and depression time constants, respectively, and U0 is the baseline

utilization of synaptic resources, whereas U determines the increase in the utilization of synap-

tic resources by a spike. As before, ûjðt� Þ is a shorthand for the left limit at time t. We note

that, for simplicity, we only consider the case of full connectivity. However, as shown in our

previous work [44], the mean-field theory also works well for random connectivity with fixed

in-degree.

We remark that the model Eq (16a) corresponds to LNP neurons with an exponential linear

filter, which we have chosen in the Results part for simplicity. The mesoscopic theory devel-

oped here can readily be extended to LNP neurons described by a general linear filter κ(t). In

this case and assuming ĥið0Þ ¼ 0, the h-dynamics will be given by

ĥiðtÞ ¼
Z tþ

0

kðt � t0Þ
mðt0Þ
t
þ
J
N

XN

j¼1

ûjðt
0� Þx̂jðt

0� Þsjðt
0Þ

 !

dt0: ð17Þ

With this extension more realistic neuronal dynamics can be modeled [54]. The simple
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dynamics Eq (16a) is recovered if the linear filter is chosen as κ(t) = e−t/τθ(t), where θ(t) is the

Heaviside step function.

Mesoscopic model. In the Appendix B of [44], it has been shown that the mesoscopic

dynamics of the empirical variables

hðtÞ≔
1

N

XN

i¼1

ĥiðtÞ; uðtÞ≔
1

N

XN

i¼1

ûiðtÞ; xðtÞ≔
1

N

XN

i¼1

x̂iðtÞ;

PðtÞ≔
1

N

XN

i¼1

û2

i ðtÞ; QðtÞ≔
1

N

XN

i¼1

x̂2

i ðtÞ; RðtÞ≔
1

N

XN

i¼1

ûiðtÞx̂iðtÞ

ð18Þ

can be approximated in discrete time with a macroscopic infinitesimal time step Δt (as defined

above) by the moment-closure equations

hkþ1 ¼ hk þ
mk � hk
t

Dt þ
J
N

RkDnk þ ðukε
x
k þ xkε

u
kÞ

ffiffiffiffiffiffiffiffi
Dnk

ph i
; ð19aÞ

ukþ1 ¼ uk þ
U0 � uk
tF

Dt þ
U
N
ð1 � ukÞDnk � εuk

ffiffiffiffiffiffiffiffi
Dnk

ph i

ð19bÞ

xkþ1 ¼ xk þ
1 � xk
tD

Dt �
1

N
RkDnk þ ðukε

x
k þ xkε

u
kÞ

ffiffiffiffiffiffiffiffi
Dnk

ph i
; ð19cÞ

Pkþ1 ¼ Pk þ 2
U0uk � Pk

tF
Dt þ

1

N
mPðukÞDnk þ εPk

ffiffiffiffiffiffiffiffi
Dnk

ph i
; ð19dÞ

Qkþ1 ¼ Qk þ 2
xk � Qk

tD
Dt þ

1

N
mQðuk; xk; Pk;Qk;RkÞDnk þ εQk

ffiffiffiffiffiffiffiffi
Dnk

ph i
; ð19eÞ

Rkþ1 ¼ Rk þ
U0xk � Rk

tF
Dt þ

uk � Rk
tD

Dt þ
1

N
mRðuk; xk; Pk;RkÞDnk þ εRk

ffiffiffiffiffiffiffiffi
Dnk

ph i
; ð19fÞ

where uk = u(kΔt) and analogous expressions hold for hk, xk, Pk, Qk, Rk and the external input

μk. In Eq (19), we use the abbreviations

mPðuÞ ¼ UðPðU � 2Þ � 2uðU � 1Þ þ UÞ;

mQðu; x; P;Q;RÞ ¼ PQ � 2Quþ 2ðRþ ðu � 2ÞxÞðR � uxÞ;

mRðu; x; P;RÞ ¼ ðUð1 � uÞ2 � u2Þxþ ðU � 1ÞxðP � u2Þ þ 2ðUðu � 1Þ � uÞðR � uxÞ;

and

εPk ¼ 2Uð1þ ukðU � 2Þ � UÞεuk ;

εQk ¼ 2ðuk � 1Þx2
kε

u
k þ 2ukðuk � 2Þxkεxk;

εRk ¼ 2ðUðuk � 1Þ � ukÞxkεuk þ ðUð1 � ukÞ
2
� u2

kÞε
x
k:

Importantly, the dynamics is driven by two sources of noise: First, εuk and εxk are correlated

Gaussian random numbers with means hεuki ¼ hε
x
ki ¼ 0 and (co)variances

hεukε
u
l i ¼ ðPk � u

2
kÞdk;l; hεxkε

x
l i ¼ ðQk � x2

kÞdk;l; hεukε
x
l i ¼ ðRk � ukxkÞdk;l; ð20Þ
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where δk,l is the Kronecker delta. The random numbers εuk and εxk reflect the heterogeneity

of ûi and x̂i across synapses i = 1, . . ., N, respectively. Second, Δnk represents the total spike

count in the time step Δt which is drawn independently from a Poisson distribution with

mean Nf(hk)Δt:

Dnk � Pois½Nf ðhkÞDt�: ð21Þ

This equation closes the discrete mesoscopic dynamics with STP derived in [44].

We will now use the discrete dynamics to derive a Langevin equation in continuous time.

Because of our assumption that Δt is large enough such that it contains many spikes, i.e.

hΔnki � Nf(hk)Δt� 1, we can use again a Gaussian approximation. Thus, we write

Dnk � Nf ðhkÞDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf ðhkÞ

p
DWk, where ΔWk is an independent, normally distributed ran-

dom number with hΔWki = 0 and hDW2
k i ¼ Dt. Furthermore, the noise terms appearing in Eq

(19) can be written within a Gaussian approximation as

εuk
ffiffiffiffiffiffiffiffi
Dnk

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðP � u2Þf ðhkÞ

p
DWu

k ; εxk
ffiffiffiffiffiffiffiffi
Dnk

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðQ � x2Þf ðhkÞ

p
DWx

k ; ð22Þ

where we neglected terms of order O N1
4

� �
and where DWu

k and DWx
k are mean-zero Gaussian

random numbers with covariance

hDWu
kDW

u
l i ¼ hDW

x
kDW

x
l i ¼ dk;lDt; hDWu

kDW
x
l i ¼ dk;lrkDt ð23Þ

Here, we introduced the correlation coefficient

rk ¼
Rk � ukxkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPk � u2
kÞðQk � x2

kÞ
p : ð24Þ

It follows that, within the Gaussian approximation, the other noise terms are given by

εPk
ffiffiffiffiffiffiffiffi
Dnk

p
� 2Uð1þ ukðU � 2Þ � UÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðPk � u2

kÞf ðhkÞ
p

DWu
k ;

εQk
ffiffiffiffiffiffiffiffi
Dnk

p
� 2ðuk � 1Þx2

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðPk � u2

kÞf ðhkÞ
p

DWu
k

þ 2ukðuk � 2Þxk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðQk � x2

kÞf ðhkÞ
p

DWx
k ;

εRk
ffiffiffiffiffiffiffiffi
Dnk

p
� 2ðUðuk � 1Þ � ukÞxk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðPk � u2

kÞf ðhkÞ
p

DWu
k

þ ðUð1 � ukÞ
2
� u2

kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðQk � x2

kÞf ðhkÞ
p

DWx
k :
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Taking the continuum limit Δt! 0 yields the Itô stochastic differential equation

dht ¼
mt � ht
t

dt þ
J
N

Rtdnt þ ut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðQt � x2
t Þf ðhtÞ

q

dWx
t þ xt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðPt � u2
t Þf ðhtÞ

q

dWu
t

h i
; ð25aÞ

dut ¼
U0 � ut
tF

dt þ
U
N
ð1 � utÞdnt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðPt � u2
t Þf ðhtÞ

q

dWu
t

h i

ð25bÞ

dxt ¼
1 � xt
tD

dt �
1

N
Rtdnt þ ut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðQt � x2
t Þf ðhtÞ

q

dWx
t þ xt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðPt � u2
t Þf ðhtÞ

q

dWu
t

h i
; ð25cÞ

dPt ¼ 2
U0ut � Pt

tF
dt þ

1

N
mPðutÞdnt þ 2U 1þ utðU � 2Þ � Uð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðPt � u2
t Þf ðhtÞ

q

dWu
t

h i
; ð25dÞ

dQt ¼ 2
xt � Qt

tD
dt þ

1

N

�

mQðut; xt; Pt;Qt;RtÞdnt

þ 2ðut � 1Þx2
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðPt � u2

t Þf ðhtÞ
p

dWu
t þ 2utðut � 2Þxt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðQt � x2

t Þf ðhtÞ
p

dWx
t

�

;

ð25eÞ

dRt ¼
U0xt � Rt

tF
dt þ

ut � Rt
tD

dt þ
1

N

�

mRðut; xt; Pt;RtÞdnt

þ 2ðUðut � 1Þ � utÞxt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðPt � u2

t Þf ðhtÞ
p

dWu
t

þ ðUð1 � utÞ
2
� u2

t Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðQt � x2

t Þf ðhtÞ
p

dWx
t

�

:

ð25fÞ

with Poisson noise

dnt ¼ pðdt; ½0;Nf ðht� Þ�Þ; ð25gÞ

where π is a two-dimensional Poisson random measure with mean hπ(ds, dt)i = dsdt (i.e. nt is

a counting process with conditional intensity Nf(ht−) and dnt/dt is the associated Dirac delta

spike train). Furthermore,Wu
t andWx

t are Wiener processes, whereWu
t andWx

t have corre-

lated increments

hdWu
t dW

u
s i ¼ hdW

x
t dW

x
s i ¼ dðt � sÞdtds; ð26aÞ

hdWu
t dW

x
s i ¼

Rt � utxtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPt � u2

t ÞðQt � x2
t Þ

p dðt � sÞdtds: ð26bÞ

Introducing the Gaussian white-noise processes

xxðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQt � x2

t Þf ðhtÞ
N

r
dWx

t

dt
; ð27aÞ

xuðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPt � u2

t Þf ðhtÞ
N

r
dWu

t

dt
; ð27bÞ

the full stochastic dynamics of the mesoscopic neural-mass model can be rewritten in the form
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of a Langevin equation

dh
dt
¼
mðtÞ � h

t
þ J RAðtÞ þ uxxðtÞ þ xxuðtÞ½ �; ð28aÞ

du
dt
¼
U0 � u
tF

þ Uð1 � uÞAðtÞ � UxuðtÞ ð28bÞ

dx
dt
¼

1 � x
tD
� RAðtÞ � uxxðtÞ � xxuðtÞ; ð28cÞ

dP
dt
¼ 2

U0u � P
tF

þ mPðuÞAðtÞ þ 2U 1þ u U � 2ð Þ � Uð ÞxuðtÞ; ð28dÞ

dQ
dt

¼ 2
x � Q
tD
þ mQðu; x; P;Q;RÞAðtÞ þ 2ðu � 1Þx2xuðtÞ þ 2uðu � 2ÞxxxðtÞ ð28eÞ

dR
dt
¼
U0x � R
tF

þ
u � R
tD
þ mRðu; x; P;RÞAðtÞ

þ 2ðUðu � 1Þ � uÞxxuðtÞ þ ðUð1 � uÞ
2
� u2ÞxxðtÞ:

ð28fÞ

with

AðtÞ ¼
1

N
dnt
dt
: ð28gÞ

The Gaussian white noise processes are given by their covariance functions

hxuðtÞxuðsÞi ¼
ðPt � u2

t Þf ðhtÞ
N

dðt � sÞ; ð28hÞ

hxxðtÞxxðsÞi ¼
ðQt � x2

t Þf ðhtÞ
N

dðt � sÞ; ð28iÞ

hxuðtÞxxðsÞi ¼ ðRt � utxtÞdðt � sÞ: ð28jÞ

Eq (28) constitutes the jump-diffusion model for the full Tsodyks-Markram STP model

with depression and facilitation.

In the case of a general linear filter κ, the derivation of the mesoscopic STP dynamics does

not change. The only difference is that the dynamics for h above needs to be changed to corre-

sponding convolution equations. Therefore, for a general linear filter one only needs to replace

Eq (28a) by

hðtÞ ¼
Z tþ

0

kðt � t̂Þ
mð̂tÞ
t
þ J Rðt̂ � ÞAðt̂Þ þ uðt̂ � Þxxðt̂Þ þ xðt̂

� Þxuðt̂Þ
� �

� �

dt̂: ð29Þ

Mesoscopic model with pure synaptic depression

In order to obtain the jump-diffusion model Eq (4) only with short-term synaptic depression

but without facilitation as considered in the Results section, we set u � U0; P � U2
0

and

R�U0x. Then, μQ(u, x, P,Q, R) = −U0(2−U0)Q and ξu(t)� 0, and the dynamics Eq (28) reduce
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to

dx
dt
¼

1 � x
tD
� U0xAðtÞ � U0xxðtÞ; ð30aÞ

dQ
dt

¼ 2
x � Q
tD
� U0ð2 � U0ÞQf ðhðtÞÞ; ð30bÞ

with the Gaussian white noise process ξx(t) defined as in Eq (28i). In Eq (30b), we have

neglected the noise terms and replaced the population activity A(t) by its mean f(h(t)) because

they enter the dynamics of x only to order N−3/2. Finally, introducing the new mesoscopic vari-

able y = Q − x2, we can combine Eqs (30) and (28i) to arrive at the jump-diffusion model Eq

(4).

Again, in the case of a general linear filter κ, the stochastic differential Eq (4a) for h(t) needs

to be replaced by the corresponding integral expression

hðtÞ ¼
Z tþ

0

kðt � t̂Þ
�
mðt̂Þ
t
þ JU0 xðt̂

� ÞAðt̂Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
yf ðhÞ
N

r

xxðt̂Þ

" #�

dt̂: ð31Þ

Reduction to a pure diffusion process. We can further reduce the jump-diffusion model

Eq (4) in the large N� 1 limit by exploiting the Gaussian approximation of the Poisson shot

noise Eq (4d) representing the empirical population activity

AðtÞ ¼
1

N
nðtÞ
dt
� f h tð Þð Þ þ xAðtÞ; ð32Þ

where the Gaussian white noise process ξA(t) has the auto-correlation function

hxAðtÞxAðsÞi ¼
f ðhðtÞÞ
N

dðt � sÞ: ð33Þ

Consequently, we find that

U0xAðtÞ þ U0xxðtÞ ¼ U0xf ðhÞ þ U0½xxAðtÞ þ xxðtÞ�:

We can simplify the term in brackets by capitalizing on the fact that xξA and ξx are indepen-

dent Gaussian white noises, whose sum is itself a Gaussian random variable with variance

x2f ðhÞ
N
þ
ðQ � x2Þf ðhÞ

N
¼
Qf ðhÞ
N

:

Finally, we can replace the term U0xA(t) + U0ξx(t) in the h- and x-dynamics of the jump-

diffusion model Eq (4) by

U0xAðtÞ þ U0xxðtÞ ¼ U0xf h tð Þð Þ þ U0

Qf ðhðtÞÞ
N

xðtÞ; ð34Þ

where ξ(t) is a Gaussian white noise with auto-correlation function hξ(t)ξ(s)i = δ(t − s), and we

retrieve, in an alternative way, the mesoscopic diffusion model Eq (3) with short-term synaptic

depression.
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As before, for a general linear filter κ, the stochastic differential Eq (3a) for h(t) needs to be

replaced by the corresponding integral expression

hðtÞ ¼
Z tþ

0

kðt � t̂Þ
mðt̂Þ
t
þ JU0 xðt̂Þf ðhðt̂ÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qðt̂ � Þf ðhðt̂ � ÞÞ
N

s

xðt̂Þ

2

4

3

5

8
<

:

9
=

;
dt̂: ð35Þ

For completeness, we also provide the diffusion model in the case of multiple populations.

For α = 1, . . .,M, the multi-population diffusion model corresponding to Eq (8) reads:

dha

dt
¼
ma � ha

t
þ

1

M

XM

b¼1

JabU0 xbf hb
� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qbf ðhbÞ
N

r

x
b
ðtÞ

" #

; ð36aÞ

dxa

dt
¼

1 � xa

tD
� U0 xaf hað Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qaf ðhaÞ
N

r

x
a
ðtÞ

" #

; ð36bÞ

dQa

dt
¼ 2

xa � Qa

tD
� U0ð2 � U0ÞQ

af ðhaÞ; ð36cÞ

with Gaussian white noises ξα(t) obeying hξα(t)i = 0 and hξα(t)ξβ(s)i = δα,β δ(t − s) for all α, β 2
{1, . . .,M}.

Recurrent network parameters and numerical simulations

In the Results section, we presented and analyzed the network dynamics of a single excitatory

population consisting of N LNP-STD spiking neurons following the microscopic dynamics Eq

(1) or the mesoscopic dynamics Eqs (3)/(4). For the ring-attractor network model to study hip-

pocampal replay dynamics, we used the microscopic dynamics Eq (7) and the mesoscopic

dynamics Eq (8). The parameters to obtain Figs 2–6 are detailed in Table 1. The number N of

neurons per population α = 1, . . .,M is indicated inside the Figures. The model specification

and parameters of the Romani-Tsodyks (RT) model for fatigue-induced hippocampal replay,

with which we compared our results for the mesoscopic ring-attractor network model in the

single and in the multiple environment case in Figs 4–6, respectively, can be found in [21].

Table 1. Parameters used in Figs 2–6.

Parameters Fig 2 3 4/5 6

Synaptic time constant τ [s] 0.05 0.05 0.01 0.01

Depression time constant τD [s] 0.8 0.6 0.8 0.8

Utilization of synaptic resources U0 0.4 0.4 0.8 0.8

Static nonlinearity f(h) of LNP model

—Suprathreshold slope r 3.15 3.15 1.0 1.0

—Smoothness at threshold α 0.25 0.2 1.0 1.0

—Threshold h0 [mV] 2.0 2.0 0.0 0.0

Coupling constant J � τ [mV] 3.5 3.5 – –

Uniform feedback inhibition J0 � τ [mV] – – 13 16

Map-specific interaction J1 � τ [mV] – – 30 25

External input (meso-,microscopic models) μ [mV] 1.4 1.4 -1.4 -1.5

External input (only macroscopic model) μmacro [mV] – – -0.9 -0.35

Number of populations M 1 1 100 300

https://doi.org/10.1371/journal.pcbi.1010809.t001
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We performed numerical simulations of the microscopic, mesoscopic and macroscopic

dynamics using an Euler–Maruyama scheme with time step dt = 10−4s. In the single-popula-

tion scenario considered in Figs 2 and 3, we ran the simulations for Tsim = 1000000s to obtain

significant statistics.

A circular environment. In the ring-attractor network with a single environment stored

in the synaptic connectivity, we ran the simulations long enough to have at least 50000 burst

events, which allows for a meaningful comparison of the different models. In Table 2, we list

the simulation length Tsim together with an overview over the simulation results.

In more detail, we defined burst events as contiguous epochs of the averaged population

activity above a certain threshold (taken as the activity averaged across neurons and the whole

simulation period). There is an almost perfect agreement between the microscopic network

and our mesoscopic description: First, the number of bursts (50040 vs. 50030) coincides up to

an error of less than 0.2%. Second, the slopes of the linear regression between the number of

peaks and the duration per burst are almost the same, see also Fig 4Dii and 4Eii, and our

Table 2. Simulation results complementing Figs 4 and 5.

Mesoscopic Microscopic RT model Macroμ = −0.9

Tsim [s] 4000 4000 2350 2350

# bursts 5030 5040 5096 5167

slope(# peaks/duration) 9.28 9.26 7.80 6.85

slope(distance/duration) 17.27 17.17 17.56 16.81

mean(IBI) 0.652 0.651 0.293 0.316

CV(IBI) 0.846 0.842 0.794 0.847

skewness γs(IBI) 0.917 0.940 1.230 1.224

resc. skewness αs(IBI) 0.361 0.372 0.516 0.481

kurtosis γe(IBI) -0.115 -0.047 0.499 0.454

resc. kurtosis αe(IBI) -0.011 -0.004 0.053 0.042

# NLE (>1 peak) 1019 967 939 1140

fraction(NLE/bursts) 20.3% 19.2% 18.4% 22.1%

fraction(forward/NLE) 51.03% 47.88% 51.54% 49.39%

mean(abs(NLE speed)) 12.41 12.54 12.79 12.64

Serial correlations

Lag 1 (event speed) 0.048 0.054 -0.563 -0.344

Lag 1 (forward/backward) 0.062 0.062 -0.525 -0.331

Lag 2 (event speed) -0.043 -0.010 0.434 0.229

Lag 2 (forward/backward) -0.041 -0.001 0.401 0.226

Lag 3 (event speed) -0.013 0.053 -0.320 -0.074

Lag 3 (forward/backward) -0.018 0.056 -0.312 -0.082

Lag 4 (event speed) -0.010 0.011 0.227 0.021

Lag 4 (forward/backward) -0.015 0.007 0.215 0.024

Lag 5 (event speed) 0.008 -0.032 -0.139 0.058

Lag 5 (forward/backward) 0.007 -0.033 -0.135 0.052

We computed the statistics for the sequence of interburst intervals (IBI) Ti, i = 1, 2, . . ., as follows: the mean is the first cumulant κ1 = hTii; the coefficient of

variation (CV) is CV ¼ ffiffiffiffiffi
k2

p
=k1 with second cumulant k2 ¼ hT2

i i � k
2
1
; the skewness is gs ¼ k3k

� 3=2

2 with third cumulant k3 ¼ hT3
i i � 3k1k2 � k

3
1
; the rescaled

skewness is as ¼ gs=ð3CVÞ ¼ k1k2=ð3k
2
2
Þ; the kurtosis is ge ¼ k4k

� 2
2

with fourth cumulant k4 ¼ hT4
i i � 4k1k3 � 3k2

2
� 6k2

1
k2 � k

4
1
; the rescaled kurtosis is

ae ¼ ge=ð15CV2Þ ¼ k2
1
k4=ð15k3

2
Þ. Similar to the definition of the CV, for which the Poisson process serves as a reference for the IBI variability with CV = 1, the

rescaled skewness αs and rescaled kurtosis αe use the inverse Gaussian distribution as a reference. Values of αs larger (smaller) than 1 and αe larger (smaller) than 0

indicate that the IBI distribution is more (less) skewed and more (less) peaked, respectively, than an inverse Gaussian, see [171].

https://doi.org/10.1371/journal.pcbi.1010809.t002
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model prediction (*9.3) is closer to the value observed experimentally (*10.0, [83, 92]) than

the macroscopic model predictions. Third, linear regression between the distance traveled dur-

ing an event and its duration, yield almost identical slopes for the micro- and the mesoscopic

models (Fig 4Diii and 4Eiii). Fourth, also the means and the coefficients of variation (CV) of

the interburst intervals, i.e. the time from the end of the kth burst until the start of the k + 1st

burst, coincide. Next, we defined nonlocal replay events (NLEs) as bursts of the average activity

with more than one peak so that a transient traveling wave is visible in the density plots in Fig

4Bii and 4Cii, resembling a hippocampal replay pattern. Among all bursts events, around 20%

are NLEs, which is consistent across all four models. Around half of all the NLEs travel in anti-

clockwise/negative direction (“forward replay”) and the other half in clockwise/positive direc-

tion (“backward replay” or “preplay”); also this feature is consistent across the different models

and matches experimental observations, where in individual experimental sessions both for-

ward and backward replay events are detected with similar proportion [83, 92]. To determine

the absolute event speed per NLE, see Fig 4Div and 4Eiv, we divided the distance of the trav-

eled path (irrespective of forward or backward direction) by the duration of the NLE. The

means of the absolute NLE speeds in all four models were again close to each other, which

stresses the robustness of our findings across parameters and models. Finally, we also investi-

gated serial correlations of the NLEs. Positive serial correlations of the event speed (now taking

into account also the travel direction by considering negative speed for backward replays) at

lag n indicate that the kth and the k + nth NLE are more likely to travel in the same direction,

whereas negative correlations indicate these NLEs to travel in opposite directions. While the

macroscopic and the RT model showed strong negative correlations at lag 1 and positive corre-

lations at lag 2, correlations in the mesoscopic and microscopic models were negligible, see

also Fig 5B. Besides, computing the serial correlations not for the (directional) event speed, but

for a binary vector of forward/backward replay directions (by taking the sign of the directional

event speed) yielded comparable results (see Table 2).

Multiple circular environments. In the ring-attractor network with three circular envi-

ronments stored in the synaptic connectivity, we ran micro- and mesoscopic simulations long

enough to match the number of bursts in the deterministic (macroscopic and RT) model sim-

ulations of length Tsim = 10000s, see Table 3. To reduce confounding asymmetries in the under-

lying synaptic connectivity structure, we constructed the selectivity vectors zα in Eq (10)

pseudo-randomly while guaranteeing that the number of bursts was equally distributed across

the three environments, see Table 3. More precisely, we created the binary selectivity vectors

zα under the constraint that exactly fM = 90 of in totalM = 300 units α = 1, . . .,M are selective

for each environment k 2 {1, 2, 3}. Out of these 90 selective units for environment k, units 1,

. . ., 7 were selective for all three environments, units 8, . . ., 17 were selective for environments

k and j and units 18, . . ., 27 for environments k and l with j, l 2 {1, 2, 3}, k 6¼ j 6¼ l 6¼ k. The

remaining 63 units were exclusively selective for environment k. After this selection process,

we randomly shuffled these 90 units and drew unique, evenly distributed place field angles

y
k
a
2 f2p=90; 4p=90; . . . ; 2pg for each unit α = 1, . . ., 90 selective for environment k.

Table 3. Simulation results complementing Fig 6.

Mesoscopic Microscopic RT model Macroμ = −0.35

Tsim [s] 1350 1350 1000 1000

# bursts 2291 2296 2354 2259

bursts in env. 1 34.57% 33.71% 32.71% 33.24%

bursts in env. 2 31.12% 31.66% 34.45% 33.95%

bursts in env. 3 34.31% 34.63% 32.84% 32.80%

https://doi.org/10.1371/journal.pcbi.1010809.t003
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To quantify which subsequences occurred more frequently than others, we computed the

probabilities for subsequences with three distinct environments (k, j, l) 2 {1, 2, 3}3 with k 6¼ j
6¼ l 6¼ k by dividing the number of occurrences of a particular subsequence by the number of

all possible 3-sequences (= number of all bursts−2). The results are shown in Fig 6.

Supporting information

S1 Text. Supplementary figures and tables. Fig A: shows “Fatigue-induced hippocampal

replay in the macroscopic and in the Romani-Tsodyks model” in correspondence to finite-

size-induced replay shown in Fig 4. Fig B: shows that “Up-Down dynamics depend on network

size” and complements the discussion around Fig 3. Table A: provides a comparison between

the simulation results for “Fatigue-induced hippocampal replay dynamics” in the micro-,

meso- and macroscopic models. Table B: provides a comparison between the simulation

results for “Finite-size-induced hippocampal replay dynamics” in the micro- and mesoscopic

models.
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94. Schlingloff D, Káli S, Freund TF, Hájos N, Gulyás AI. Mechanisms of sharp wave initiation and ripple

generation. J Neurosci. 2014; 34(34):11385–11398. https://doi.org/10.1523/JNEUROSCI.0867-14.

2014 PMID: 25143618

95. Pfeiffer BE, Foster DJ. Autoassociative dynamics in the generation of sequences of hippocampal

place cells. Science. 2015; 349(6244):180–183.

96. Kim SS, Rouault H, Druckmann S, Jayaraman V. Ring attractor dynamics in the Drosophila central

brain. Science. 2017; 356(6340):849–853. https://doi.org/10.1126/science.aal4835 PMID: 28473639

97. Muller RU, Kubie JL. The effects of changes in the environment on the spatial firing of hippocampal

complex-spike cells. J Neurosci. 1987; 7(7):1951–1968. https://doi.org/10.1523/JNEUROSCI.07-07-

01951.1987 PMID: 3612226

PLOS COMPUTATIONAL BIOLOGY Mesoscopic description of hippocampal replay and metastability in spiking neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010809 December 22, 2022 42 / 46

https://doi.org/10.1038/nn.2599
https://doi.org/10.1038/nn.2599
http://www.ncbi.nlm.nih.gov/pubmed/20639874
https://doi.org/10.1002/hipo.22824
https://doi.org/10.1002/hipo.22824
http://www.ncbi.nlm.nih.gov/pubmed/29266510
https://doi.org/10.1038/nature12112
http://www.ncbi.nlm.nih.gov/pubmed/23594744
https://doi.org/10.1016/j.cub.2017.10.073
http://www.ncbi.nlm.nih.gov/pubmed/29316421
https://doi.org/10.1038/nature04587
http://www.ncbi.nlm.nih.gov/pubmed/16474382
https://doi.org/10.1038/nn.2344
http://www.ncbi.nlm.nih.gov/pubmed/19525943
https://doi.org/10.1038/nn.2732
https://doi.org/10.1038/nn.2732
http://www.ncbi.nlm.nih.gov/pubmed/21270783
https://doi.org/10.1126/science.8036517
http://www.ncbi.nlm.nih.gov/pubmed/8036517
https://doi.org/10.1016/S0896-6273(02)01096-6
http://www.ncbi.nlm.nih.gov/pubmed/12495631
https://doi.org/10.1016/j.neuron.2009.07.027
http://www.ncbi.nlm.nih.gov/pubmed/19709631
https://doi.org/10.1038/nature09633
http://www.ncbi.nlm.nih.gov/pubmed/21179088
https://doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413
https://doi.org/10.1007/BF00337259
http://www.ncbi.nlm.nih.gov/pubmed/911931
https://doi.org/10.1073/pnas.92.9.3844
http://www.ncbi.nlm.nih.gov/pubmed/7731993
https://doi.org/10.1007/s10827-009-0172-4
http://www.ncbi.nlm.nih.gov/pubmed/19578989
https://doi.org/10.1093/cercor/bhx326
http://www.ncbi.nlm.nih.gov/pubmed/29190336
https://doi.org/10.1016/j.neuron.2010.01.034
http://www.ncbi.nlm.nih.gov/pubmed/20223204
https://doi.org/10.1093/brain/awn103
http://www.ncbi.nlm.nih.gov/pubmed/18503077
https://doi.org/10.1523/JNEUROSCI.0867-14.2014
https://doi.org/10.1523/JNEUROSCI.0867-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25143618
https://doi.org/10.1126/science.aal4835
http://www.ncbi.nlm.nih.gov/pubmed/28473639
https://doi.org/10.1523/JNEUROSCI.07-07-01951.1987
https://doi.org/10.1523/JNEUROSCI.07-07-01951.1987
http://www.ncbi.nlm.nih.gov/pubmed/3612226
https://doi.org/10.1371/journal.pcbi.1010809


98. Bostock E, Muller RU, Kubie JL. Experience-dependent modifications of hippocampal place cell firing.

Hippocampus. 1991; 1(2):193–205. https://doi.org/10.1002/hipo.450010207 PMID: 1669293

99. Dragoi G, Tonegawa S. Distinct preplay of multiple novel spatial experiences in the rat. Proc Nat Acad

Sci USA. 2013; 110(22):9100–9105. https://doi.org/10.1073/pnas.1306031110 PMID: 23671088

100. Gridchyn I, Schoenenberger P, O’Neill J, Csicsvari J. Assembly-specific disruption of hippocampal

replay leads to selective memory deficit. Neuron. 2020; 106(2):291–300. https://doi.org/10.1016/j.

neuron.2020.01.021 PMID: 32070475

101. Solstad T, Yousif HN, Sejnowski TJ. Place cell rate remapping by CA3 recurrent collaterals. PLoS

Comput Biol. 2014; 10(6):e1003648. https://doi.org/10.1371/journal.pcbi.1003648 PMID: 24902003

102. Millman D, Mihalas S, Kirkwood A, Niebur E. Self-organized criticality occurs in non-conservative neu-

ronal networks during ‘up’states. Nature Physics. 2010; 6(10):801–805. https://doi.org/10.1038/

nphys1757 PMID: 21804861

103. Levina A, Herrmann JM, Geisel T. Dynamical synapses causing self-organized criticality in neural net-

works. Nat Phys. 2007; 3(12):857. https://doi.org/10.1038/nphys758

104. Gigante G, Mattia M, Del Giudice P. Diverse Population-Bursting Modes of Adapting Spiking Neurons.

Phys Rev Lett. 2007; 98(14):148101. https://doi.org/10.1103/PhysRevLett.98.148101 PMID:

17501315

105. Mejias JF, Kappen HJ, Torres JJ. Irregular dynamics in up and down cortical states. PLoS One. 2010;

5(11):e13651. https://doi.org/10.1371/journal.pone.0013651 PMID: 21079740

106. Romani S, Amit DJ, Mongillo G. Mean-field analysis of selective persistent activity in presence of

short-term synaptic depression. J Comput Neurosci. 2006; 20(2):201. https://doi.org/10.1007/s10827-

006-6308-x PMID: 16699842

107. Eckmann JP, Jacobi S, Marom S, Moses E, Zbinden C. Leader neurons in population bursts of 2D liv-

ing neural networks. New J Phys. 2008; 10(1):015011. https://doi.org/10.1088/1367-2630/10/1/

015011

108. Shein M, Volman V, Raichman N, Hanein Y, Ben-Jacob E. Management of synchronized network

activity by highly active neurons. Physical Biology. 2008; 5(3):036008. https://doi.org/10.1088/1478-

3975/5/3/036008 PMID: 18780962

109. Mark S, Tsodyks M. Population spikes in cortical networks during different functional states. Front

Comput Neurosci. 2012; 6:43. https://doi.org/10.3389/fncom.2012.00043 PMID: 22811663

110. Luccioli S, Ben-Jacob E, Barzilai A, Bonifazi P, Torcini A. Clique of functional hubs orchestrates popu-

lation bursts in developmentally regulated neural networks. PLoS Comput Biol. 2014; 10(9):e1003823.

https://doi.org/10.1371/journal.pcbi.1003823 PMID: 25255443

111. Pirino V, Riccomagno E, Martinoia S, Massobrio P. A topological study of repetitive co-activation net-

works in in vitro cortical assemblies. Physical Biology. 2015; 12(1):016007. https://doi.org/10.1088/

1478-3975/12/1/016007 PMID: 25559130

112. Di Santo S, Villegas P, Burioni R, Muñoz MA. Landau–Ginzburg theory of cortex dynamics: Scale-free

avalanches emerge at the edge of synchronization. Proc Natl Acad Sci USA. 2018; 115(7):E1356–

E1365. https://doi.org/10.1073/pnas.1712989115 PMID: 29378970

113. Soula H, Chow CC. Stochastic dynamics of a finite-size spiking neural network. Neural Comput. 2007;

19(12):3262–3292. https://doi.org/10.1162/neco.2007.19.12.3262 PMID: 17970653

114. Benayoun M, Cowan JD, van Drongelen W, Wallace E. Avalanches in a stochastic model of spiking

neurons. PLoS Comput Biol. 2010; 6(7):e1000846. https://doi.org/10.1371/journal.pcbi.1000846

PMID: 20628615

115. Touboul J, Hermann G, Faugeras O. Noise-induced behaviors in neural mean field dynamics. SIAM J

Appl Dyn Syst. 2012; 11(1):49–81. https://doi.org/10.1137/110832392

116. Di Volo M, Romagnoni A, Capone C, Destexhe A. Biologically realistic mean-field models of conduc-

tance-based networks of spiking neurons with adaptation. Neural Comput. 2019; 31(4):653–680.

https://doi.org/10.1162/neco_a_01173

117. Dao Duc K, Lee CY, Parutto P, Cohen D, Segal M, Rouach N, et al. Bursting Reverberation as a Multi-

scale Neuronal Network Process Driven by Synaptic Depression-Facilitation. PLOS ONE. 2015;

10(5):1–20. https://doi.org/10.1371/journal.pone.0124694 PMID: 26017681

118. Zonca L, Holcman D. Emergence and fragmentation of the alpha-band driven by neuronal network

dynamics. PLoS Comput Biol. 2021; 17(12):e1009639. https://doi.org/10.1371/journal.pcbi.1009639

PMID: 34871305

119. Zonca L, Holcman D. Modeling bursting in neuronal networks using facilitation-depression and afterhy-

perpolarization. Commun Nonlinear Sci Numer Simul. 2021; 94:105555. https://doi.org/10.1016/j.

cnsns.2020.105555

PLOS COMPUTATIONAL BIOLOGY Mesoscopic description of hippocampal replay and metastability in spiking neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010809 December 22, 2022 43 / 46

https://doi.org/10.1002/hipo.450010207
http://www.ncbi.nlm.nih.gov/pubmed/1669293
https://doi.org/10.1073/pnas.1306031110
http://www.ncbi.nlm.nih.gov/pubmed/23671088
https://doi.org/10.1016/j.neuron.2020.01.021
https://doi.org/10.1016/j.neuron.2020.01.021
http://www.ncbi.nlm.nih.gov/pubmed/32070475
https://doi.org/10.1371/journal.pcbi.1003648
http://www.ncbi.nlm.nih.gov/pubmed/24902003
https://doi.org/10.1038/nphys1757
https://doi.org/10.1038/nphys1757
http://www.ncbi.nlm.nih.gov/pubmed/21804861
https://doi.org/10.1038/nphys758
https://doi.org/10.1103/PhysRevLett.98.148101
http://www.ncbi.nlm.nih.gov/pubmed/17501315
https://doi.org/10.1371/journal.pone.0013651
http://www.ncbi.nlm.nih.gov/pubmed/21079740
https://doi.org/10.1007/s10827-006-6308-x
https://doi.org/10.1007/s10827-006-6308-x
http://www.ncbi.nlm.nih.gov/pubmed/16699842
https://doi.org/10.1088/1367-2630/10/1/015011
https://doi.org/10.1088/1367-2630/10/1/015011
https://doi.org/10.1088/1478-3975/5/3/036008
https://doi.org/10.1088/1478-3975/5/3/036008
http://www.ncbi.nlm.nih.gov/pubmed/18780962
https://doi.org/10.3389/fncom.2012.00043
http://www.ncbi.nlm.nih.gov/pubmed/22811663
https://doi.org/10.1371/journal.pcbi.1003823
http://www.ncbi.nlm.nih.gov/pubmed/25255443
https://doi.org/10.1088/1478-3975/12/1/016007
https://doi.org/10.1088/1478-3975/12/1/016007
http://www.ncbi.nlm.nih.gov/pubmed/25559130
https://doi.org/10.1073/pnas.1712989115
http://www.ncbi.nlm.nih.gov/pubmed/29378970
https://doi.org/10.1162/neco.2007.19.12.3262
http://www.ncbi.nlm.nih.gov/pubmed/17970653
https://doi.org/10.1371/journal.pcbi.1000846
http://www.ncbi.nlm.nih.gov/pubmed/20628615
https://doi.org/10.1137/110832392
https://doi.org/10.1162/neco_a_01173
https://doi.org/10.1371/journal.pone.0124694
http://www.ncbi.nlm.nih.gov/pubmed/26017681
https://doi.org/10.1371/journal.pcbi.1009639
http://www.ncbi.nlm.nih.gov/pubmed/34871305
https://doi.org/10.1016/j.cnsns.2020.105555
https://doi.org/10.1016/j.cnsns.2020.105555
https://doi.org/10.1371/journal.pcbi.1010809


120. Zonca L, Holcman D. Escape from an attractor generated by recurrent exit. Phys Rev Res. 2021;

3(2):023115. https://doi.org/10.1103/PhysRevResearch.3.023115

121. Zonca L, Holcman D. Exit Versus Escape for Stochastic Dynamical Systems and Application to the

Computation of the Bursting Time Duration in Neuronal Networks. J Nonl Sci. 2022; 32(3):1–28.

https://doi.org/10.1007/s00332-022-09784-y

122. Barak O, Tsodyks M. Persistent activity in neural networks with dynamic synapses. PLoS Comput

Biol. 2007; 3(2):e35. https://doi.org/10.1371/journal.pcbi.0030035 PMID: 17319739

123. Brunel N, Hakim V. Fast global oscillations in networks of integrate-and-fire neurons with low firing

rates. Neural Comput. 1999; 11:1621–1671. https://doi.org/10.1162/089976699300016179 PMID:

10490941

124. Spiridon M, Gerstner W. Noise spectrum and signal transmission through a population of spiking neu-

rons. Network: Comput Neural Syst. 1999; 10:257. https://doi.org/10.1088/0954-898X_10_3_304

PMID: 10496476

125. Rabinovich RJ, Kato DD, Bruno RM. Learning enhances encoding of time and temporal surprise in

mouse primary sensory cortex. Nature Comm. 2022; 13(1):1–15. https://doi.org/10.1038/s41467-022-

33141-y PMID: 36127340

126. Jahnke S, Timme M, Memmesheimer RM. A unified dynamic model for learning, replay, and sharp-

wave/ripples. J Neurosci. 2015; 35(49):16236–16258. https://doi.org/10.1523/JNEUROSCI.3977-14.

2015 PMID: 26658873

127. Mishra RK, Kim S, Guzman SJ, Jonas P. Symmetric spike timing-dependent plasticity at CA3–CA3

synapses optimizes storage and recall in autoassociative networks. Nature Comm. 2016; 7(1):1–11.

https://doi.org/10.1038/ncomms11552 PMID: 27174042

128. Chenkov N, Sprekeler H, Kempter R. Memory replay in balanced recurrent networks. PLoS Comput

Biol. 2017; 13(1):e1005359. https://doi.org/10.1371/journal.pcbi.1005359 PMID: 28135266

129. Haga T, Fukai T. Recurrent network model for learning goal-directed sequences through reverse

replay. eLife. 2018; 7:e34171. https://doi.org/10.7554/eLife.34171 PMID: 29969098

130. Nicola W, Clopath C. A diversity of interneurons and Hebbian plasticity facilitate rapid compressible

learning in the hippocampus. Nature Neurosci. 2019; 22(7):1168–1181. https://doi.org/10.1038/

s41593-019-0415-2 PMID: 31235906

131. Malerba P, Bazhenov M. Circuit mechanisms of hippocampal reactivation during sleep. Neurobiology

of Learning and Memory. 2019; 160:98–107. https://doi.org/10.1016/j.nlm.2018.04.018 PMID:

29723670

132. Sompolinsky H, Kanter I. Temporal association in asymmetric neural networks. Phy Rev Lett. 1986;

57(22):2861. https://doi.org/10.1103/PhysRevLett.57.2861 PMID: 10033885

133. Kleinfeld D. Sequential state generation by model neural networks. Proc Natl Acad Sci USA. 1986;

83(24):9469–9473. https://doi.org/10.1073/pnas.83.24.9469 PMID: 3467316

134. Pereira U, Brunel N. Unsupervised learning of persistent and sequential activity. Frontiers Comput

Neurosci. 2020; 13:97. https://doi.org/10.3389/fncom.2019.00097 PMID: 32009924

135. Recanatesi S, Pereira-Obilinovic U, Murakami M, Mainen Z, Mazzucato L. Metastable attractors

explain the variable timing of stable behavioral action sequences. Neuron. 2022; 110(1):139–153.

https://doi.org/10.1016/j.neuron.2021.10.011 PMID: 34717794

136. Tsodyks MV, Skaggs WE, Sejnowski TJ, McNaughton BL. Population dynamics and theta rhythm

phase precession of hippocampal place cell firing: a spiking neuron model. Hippocampus. 1996; 6

(3):271–280. https://doi.org/10.1002/(SICI)1098-1063(1996)6:3%3C271::AID-HIPO5%3E3.0.CO;2-Q

PMID: 8841826
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